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Abstract

The paper contains a proof of Newton’s formula for the block-symmetric
polynomials.
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1 Introduction

Let X be a Banach spaces, and let P(X) be the algebra of all continuous
polynomials defined on X. Let P0(X) be a subalgebra of P(X). A sequence
(Gi)i of polynomials is called an algebraic basis of P0(X) if for every P ∈ P0(X)
there is a unique q ∈ P(Cn) for some n such that P (x) = q(G1(x), . . . , Gn(x));
in other words, if G is mapping x ∈ X  (G1(x), . . . , Gn(x)) ∈ Cn, then
P = q ◦G.

Let Ps(`1) be the algebra of symmetric polynomials on the space `1. In [4],

it is proved that the polynomials Fk =
∞∑
i=1

xki , where k ≥ 1 form an algebraic

basis in Ps(`1). It is well known that any polynomial in Ps(`1) is uniquely rep-
resentable as a polynomial in the elementary symmetric polynomials {Gi}∞i=1,
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Gk =
∞∑

i1<i2<...<ik

xi1xi2 . . . xik , where k ≥ 1. The algebra of symmetric analytic

functions Hbs(X) were investigated by many authors ([1], [2], [3]).
On the other hand, there are more representations of S∞ in Banach spaces.

For example, if X is a directs sum of infinite many of “blocks” which are copies
of a Banach space X, then S∞ acts permutations the “blocks”. For this case
we have invariants — the algebra of block-symmetric analytic functions. Note
that this algebra is much more complicated and in the general case has no
algebraic basis (see e. g. [6], [9], [5]).

It is well known the Newton’s formula for symmetric polynomials [8]:

nGn = F1Gn−1 − F2Gn−2 + F3Gn−3 − . . .+ (−1)n−2Fn−1G1 + (−1)n−1Fn.

In this paper we propose a genralization of this formula for block-symmetric
polynomials on `1.

2 Main Result

Let
X 2 = ⊕`1C2

be an infinite `1-sum of copies of Banach space C2. So any element x ∈ X 2

can be represented as a sequence x = (x1, . . . , xn, . . .), where xn ∈ C2, with

the norm ‖x‖ =
∞∑
k=1

‖xk‖.

A polynomial P on the space X 2 is called block-symmetric (or vector-
symmetric) if:

P

((
u1
v1

)
1

, . . . ,

(
um
vm

)
m

, . . .

)
= P

((
u1
v1

)
σ(1)

, . . . ,

(
um
vm

)
σ(m)

, . . .

)
,

for every permutation σ on the set N, where

(
ui
vi

)
∈ C2. Let us denote by

Pvs(X 2) the algebra of block-symmetric polynomials on X 2.
In paper [7] it was shown that the following vectors form an algebraic bases

of Pvs(X 2) :

Hp,n−p(x, y) =
∞∑
i=1

xpi y
n−p
i , (1)

where 0 ≤ p ≤ n, (xi, yi) ∈ C2, i ≥ 1 or “elementary” block-symmetric
polynomials:

Rp,n−p(x, y) =
∞∑

i1<...<ip
j1<...<jn−p

ik 6=jl

xi1 . . . xipyj1 . . . yjn−p ,
(2)
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where 0 ≤ p ≤ n, n ≥ 1 and (xi, yi) ∈ C2.
For equations (1) and (2) of generators we can write an analogue of New-

ton’s formula.

Theorem 2.1 The following formula is true

nRp,n−p = H1,0Rp−1,n−p +H0,1Rp,n−1−p −
(
H2,0Rp−2,n−p + 2H1,1Rp−1,n−p−1+

+H0,2Rp,n−p−2
)

+
(
H3,0Rp−3,n−p + 3H2,1Rp−2,n−p−1 + 3H1,2Rp−1,n−p−2+

+H0,3Rp,n−p−3
)
− . . .+ (−1)s−1

s∑
k=0

Ck
sH

s−k,kRp−(s−k),n−p−k + . . .+

+(−1)n−2
(
Cp−1
n−1H

p−1,n−pR1,0 + Cp
n−1H

p,n−p−1R0,1
)

+ (−1)n−1Cp
nH

p,n−p,

(3)
where Ck

n = n!
k!(n−k)! , 0 ≤ p ≤ n and if s−k > p or k > n− p, then we consider

that Rp−(s−k),n−p−s ≡ 0.

Proof Let us consider the polynomial P (x + jy), which is symmetric on the
space `1 with respect to simultaneously permutations of xi + jyi, i ≥ 1. For
the algebraic bases Fk(x+ jy) and Gk(x+ jy) of this polynomial the Newton
formula holds

nGn(x+ jy) = F1(x+ jy)Gn−1(x+ jy)−
−F2(x+ jy)Gn−2(x+ jy) + F3(x+ jy)Gn−3(x+ jy)− . . .+

+(−1)n−2Fn−1(x+ jy)G1(x+ jy) + (−1)n−1Fn(x+ jy).
(4)

Each of polynomials Fk(x+ jy) and Gk(x+ jy) can be represented as a linear
combination of polynomials Hp,k−p(x, y) and Rp,k−p(x, y) respectively. Indeed,

Gn(x+ jy) =
∞∑

i1<...<in

(xi1 + jyi1) . . . (xin + jyin) =

= Rn,0(x, y) + jRn−1,1(x, y) + j2Rn−2,2(x, y) + j3Rn−3,3(x, y) + . . .+
+jkRn−k,k(x, y) + . . .+ jnR0,n(x, y)

(5)

and

Fn(x+ jy) =
∞∑
i=1

(xi + jyi)
n =

= Hn,0(x, y) + jC1
nH

n−1,1(x, y) + j2C2
nH

n−2,2(x, y)+
+j3C3

nH
n−3,3(x, y) + . . .+ jkCk

nH
n−k,k(x, y) + . . .+ jnH0,n(x, y),

(6)

where Ck
n = n!

k!(n−k)! .

So each term of equality (4) can be represented by over polynomialsHp,k−p(x, y)
and Rp,k−p(x, y). Then we obtain

F1(x+ jy)Gn−1(x+ jy) = H1,0Rn−1,0 + j(H1,0Rn−2,1 +H0,1Rn−1,0)+
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+j2(H1,0Rn−3,2 +H0,1Rn−2,1) + j3(H1,0Rn−4,3 +H0,1Rn−3,2) + . . .+

+jn−1(H1,0R0,n−1 +H0,1R1,n−2) + jnH0,1R0,n−1,

F2(x+ jy)Gn−2(x+ jy) = H2,0Rn−2,0 + j(H2,0Rn−3,1 + 2H1,1Rn−2,0)+

+j2(H2,0Rn−4,2 + 2H1,1Rn−3,1 +H0,2Rn−2,0)+

+j3(H2,0Rn−5,3 + 2H1,1Rn−4,2 +H0,2Rn−3,1) + . . .+

+jn−1(2H1,1R0,n−2 +H0,2R1,n−3) + jnH0,2R0,n−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fn−1(x+ jy)G1(x+ jy) = Hn−1,0R1,0 + j(Hn−1,0R0,1 + C1
n−1H

n−2,1R1,0)+

+j2(C1
n−1H

n−2,1R0,1 + C2
n−1H

n−3,2R1,0)+

+j3(C2
n−1H

n−3,2R0,1 + C3
n−1H

n−4,3R1,0) + . . .+

+jn−1(Cn−2
n−1H

1,n−2R0,1 +H0,n−1R1,0) + jnHn−1R0,1.

If we substitute this equalities and equalities (5), (6) to (4) and equate
multipliers at the same degrees of j, we obtain next equalities:

nRn,0 = H1,0Rn−1,0 −H2,0Rn−2,0 +H3,0Rn−3,0 − . . .+ (−1)n−1Hn,0,

nRn−1,1 = H1,0Rn−2,1 +H0,1Rn−1,0 −
(
H2,0Rn−3,1 + 2H1,1Rn−2,0

)
+

+
(
H3,0Rn−4,1 + 3H2,1Rn−3,0

)
− . . .+

+(−1)n−2
(
Hn−1,0R0,1 + C1

n−1H
n−2,1R1,0

)
+ (−1)n−1C1

nH
n−1,1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nRn−k,k = H1,0Rn−k−1,k +H0,1Rn−k,k−1 −
(
H2,0Rn−k−2,k+

+2H1,1Rn−k−1,k−1 +H0,2Rn−k,k−2
)

+
(
H3,0Rn−k−3,k + 3H2,1Rn−k−2,k−1+

+3H1,2Rn−k−1,k−2 +H0,3Rn−k,k−3
)
− . . .+ (−1)n−2

(
Ck−1
n−1H

n−k,k−1R0,1+

+Ck
n−1H

n−k−1,kR1,0
)

+ (−1)n−1Ck
nH

n−k,k,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nR0,n = H0,1R0,n−1 −H0,2R0,n−2 +H0,3R0,n−3 − . . .+ (−1)n−1H0,n.

Therefore from these equalities it follows formula (3) for any polynomial
Rp,n−p.
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