Proceedings of the Royal Society of Edinburgh: page 1 of 19
DOI:10.1017/50308210516000287

The algebra of symmetric analytic functions on L,

Pablo Galindo

Departamento de Anélisis Matematico, Universidad de Valencia,
Av. Doctor Moliner 50, Burjasot (Valencia) 46100, Spain
(pablo.galindo@uv.es)

Taras Vasylyshyn and Andriy Zagorodnyuk

Vasyl Stefanyk Precarpathian National University,

57 Shevchenka Street, Ivano-Frankivsk 76000, Ukraine
(taras.v.vasylyshyn@gmail.com; andriyzag@yahoo.com)

(MS received 17 November 2015; accepted 21 December 2015)

We consider the algebra of holomorphic functions on L that are symmetric,

i.e. that are invariant under composition of the variable with any measure-preserving
bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences
{&n 1321 such that { ¥/|€n|}52; is bounded and turns to be separable. All this

n=
follows from our main result that the subalgebra of symmetric polynomials on Lo
has a natural algebraic basis.
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1. Introduction

In [14] Nemirovski and Semenov considered functions on ¢, spaces invariant under
the permutation of variables and their approximation by the same kind of polyno-
mials. They used the term symmetric for such functions and it appears that this
was the first time that symmetric functions of an infinite number of variables were
dealt with. Some of their results were generalized by Gonzélez et al. [10] to real
separable rearrangement-invariant function spaces. In [3] Alencar et al. studied in
detail the algebra of functions that are symmetric in the ball algebra A(B,,) and
described its spectrum. Chernega et al. [7-9] deal with the analogous situation
for the space H;(¢p) of analytic functions of bounded type, including the study of
convolution operators on the algebra of symmetric functions.

Let Lo, be the compler Banach space of all Lebesgue measurable essentially
bounded complex-valued functions x on [0, 1] with norm

|z]| o = ess sup |z(t)].
te
Let = be the set of all measurable bijections of [0, 1] that preserve the measure. A
function F': Lo, — C is called Z-symmetric (or just symmetric when the context

(© 2017 The Royal Society of Edinburgh

Downloaded from https:/www.cambridge.org/core. Universidad Valenciaa, on 05 Jun 2017 at 15:19:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/50308210516000287


https://doi.org/10.1017/S0308210516000287
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

2 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

is clear) if, for every € Lo, and for every o € =,
F(zoo)=F(z).

For every n € NU {0} we define R,,: Lo, — C by

We call the functions R,, the elementary symmetric polynomials.

Our main result states that (R,)2%, is an algebraic basis for the space of con-
tinuous symmetric polynomials P on L., that is, for each given such P, there is a
(unique) polynomial ¢ in finitely many variables such that

P(x) = q(Ry(x),...,Rn(x)) for every x € Lyo.

It has been shown (see [10] in the real case and [6] in the complex case) that the
above equality holds for functions x in the closed linear span of the characteristic
functions of the dyadic intervals.

The Z-symmetric continuous polynomials on L,-spaces, 1 < p < oo, have been
investigated in [6,10,14]; the article [6] studies analytic functions invariant under the
action of some group of operators from a more general point of view. The present
paper also fits in this setting.

2. Measurable automorphisms

A measure space is a triple (§2, F,v), where (2 is a set, F is a o algebra of its subsets
and v: F — [0,+00) is a measure. An isomorphism between two measure spaces
(21, F1,11) and (§25, Fa, 1) is an invertible map f: 21 — (25 such that f and
f~1 are both measurable and measure-preserving maps. In the case ({21, F1,v1) =
(£25, F2,v5) the mapping f is called a measurable automorphism. Two measure
spaces ({21, F1,1v1) and (§22, Fa, v9) are called isomorphic modulo zero if there exist
null sets M C 2; and N C 25 such that measure spaces {21 \ M and 23 \ N are
isomorphic [15].

In this paper we shall only consider the Lebesgue measure on [0, 1]. Clearly, = is
the set of all measurable automorphisms of [0, 1].

The following simple proposition shows that a measurable automorphism of [0, 1]
can be defined up to a null set.

PROPOSITION 2.1. Let f be an isomorphism modulo zero of [0,1]. Then there exists
a measurable automorphism of [0,1] that coincides with f almost everywhere.

Proof. There exist null sets M and N such that
0,1\ M = 0,1\ N
is an isomorphism. Let IC be the Cantor set. Let
Ci=Kn(0,1]\ M) and Cy=KnN([0,1]\ N).

The sets
U=KUf Y C)UM and V =KUf(C))UN
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are both null sets of the cardinality of the continuum. Let h be the bijection between
U and V. Clearly,

Ft) iftef0,1\U,

is a bijection, and therefore it is a measurable automorphism of [0, 1]. O

@:{Mﬂiﬁea

For every E C [0,1] let

1 iftekF
1(t) = ’
&) {0 otherwise.

PROPOSITION 2.2. Let E,...,Ex C [0,1] be measurable sets such that p(E; N
Ey) =0 if j # k. Then there exist o, .. gy € = such that

1g, =1, 1 ,bm] COE,...Ex

for every m € {1,..., N} almost everywhere on [0,1], where b, = 2?21 w(E;) for

ke{l,...,N} and by = 0.

Proof. Without loss of generality we can assume that the FE,, are disjoint. Let

Ent1=10,1]\ Uﬁizl E,, and byy1 = 1. By [15, §2, nos 14|, every measurable

subset E C [0, 1] is isomorphic modulo zero to an interval of length p(E). Thus,

every E,, is isomorphic modulo zero to [by,, bm+1]. Let f, be the proper isomor-

phisms. Let

OBy,....By (1) = fm(t)

ifte E,, me{l,...,N+1}. Evidently, og, . g, satisfies the stated conditions.

O

3. Symmetric functions on L
THEOREM 3.1. For every sequence
§= {fn}zozl cC

such that the sequence {¥/|6,|}0%, is bounded, there exists x¢ € Lo, such that
R, (x¢) =&, for everyn € N.

Proof. Let ¢ be the kth Rademacher function, i.e.
ex(t) = sgnsin 2%t

It is known (see [11, ch. 3] or [2, p. 162]) that the series Y, ek (t)uy converges
almost everywhere on [0, 1] if and only if "7, |ug|? converges. Consequently, the
series

o0

Ek(t)
Pt k+1

converges almost everywhere on [0, 1]. For every n € N we define

_ im o ex(t)

Clearly, |p,(t)| = 1 almost everywhere. Therefore, p, € L, and ||p,|leo = 1.
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Next, we provide some lemmas we need to complete the proof.

LEMMA 3.2. For every m,n € N we have
i T m
Ry (pn) = —— .
(Pr) kl;[lcos (2 n(k + 1)>
Proof of lemma 3.2. By definition,

Ron(pn) = / (pa(t)™ .

The sequence of functions {p% )}fil C Ly given by

converges almost everywhere to p,. By the dominated convergence theorem,

/ l(pn(t))m dt = lim 1(p£j>(t))m dt.
0

l—oo Jo

Note that

I
N
>
D
M
(S
N\
3
SE
o
+|=
=
N———
(oW
~

[ w0y a
0

. . !

B imm 1 imm ex(t)
- eXp ( 2n 2> /[071/2] eXp ( n Z k + ].
. . !

imm (—1) itm ex(t)
—l—exp( S )/[1/27” exp( - Zk+1 dt
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Therefore,

Rm<pn>=lgrgogcos(2 ) - loj (5 ari)

O

Let ay = exp(2nik/n) for k = 1,2,...,n. We define the function y,: [0,1] = C
in the following way: For ¢ € [(k — 1)/n, k/n), where k € {1,...,n}, we set

Yn(t) = agpn(nt — k + 1).
Note that y, € Lo and ||yn /o = 1.

LEMMA 3.3. For m,n € N, we have

Ron(yn) = {M ifm :‘n7

0  otherwise,
where
b T 1
M = H COS <2 k—i—]_) .
k=1
Proof. Note that

R () = / (gn(®)™dt =5 /[( o (aspa( k)

Since
1 i o 1 if m is a multiple of n,
0 otherwise,
it follows that R,,(y,) = 0 if m is not a multiple of n. However, if m is a multiple
of n, i.e. m = kgn for some kg € N, we have

o = = [l ()~ e (55

If m # n, then kg > 1 and one of the factors is equal to cos
R, (yn) = 0. In the m = n case we have

HCOS(2k+1)

%7‘(, and therefore
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We now continue with the proof of theorem 4.3. We set
1

—Yn(?).

i’ (t)

Taking into account that ||y,|lcc =1 and 0 < M < 1, we have

1 1
UM S M

xn(t) =

1Zalloo = —lya]
Tnlloo = —F—— n|loo —
v

From lemma 3.3 it follows that

Ry (a) 1 ifm=n,
m\Tn) =
0 otherwise.

Now we construct z¢. For t € [(2"~! —1)/2"71 (2" — 1)/2"), where n € N, we set
ze(t) = 23/&nxn (2t — 2™ + 2).

Since the sequence { ¥/|€,|}52; is bounded, there exists a > 0 such that |£,| < a™
for every n € N. Note that

2a
n < .
Vénlllznlleo < Vi

[7¢[loo < sup2
neN

Thus, ¢ € Lo. For m € N we have

mmazémwwwt

— 325 gn)m/ (0 (27 — 27 4 2))™ dt
= [(2n 1 - 1)/ (2n 1) /2n)
- n m 1 1 m m m 1
= E (2%/&n) o (zn(t)™ dt = (2 /&m) om
0

1

I
mes
3

4. Homogeneous symmetric continuous polynomials on L,

A mapping P: X — Y, where X and Y are Banach spaces with norms || - || x and
|- ||y respectively, is called an n-homogeneous polynomial if there exists an n-linear
symmetric mapping Ap: X™ — Y such that

P(z) = Ap(z,.”.,x) for every z € X.

Here ‘symmetric’ means that Ap(2.(1),...,%rmn)) = Ap(x1,...,2,) for every per-
mutation 7: {1,...,n} — {1,...,n}.

It is known (see, for example, [13, theorem 1.10]) that Ap can be recovered from
P by means of the so-called polarization formula:

1
Ap(z1,...,2,) = Z g1 enPle1xy + - +entn). (4.1)
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The algebra of symmetric analytic functions on Leo 7

We shall use the polynomial formula (see [13, theorem 1.8])

|
P($1++xk) = Z ﬁAp(l‘l,.n}.,l‘l,xg,.n?.,J,‘Q,...,.Z‘k,.n.""'.,J,‘k,)
nitAng=n
(4.2)
and its corollary, the binomial formula (see [13, corollary 1.9])
" In
Pz+y) =) <m>Ap(x,.7?.,m,y, o). (4.3)
m=0

It is known that an n-homogeneous polynomial P: X — Y is continuous if and
only if
[Pl = sup [[P(z)|y < +oc.

x X<1

Similarly, an n-linear mapping A: X™ — Y is continuous if and only if

|All = sup JA(z1, ..., zn)|ly < +o0.

lz1llx <1, llzn || x <1

Clearly, if A is continuous, then

[A@@y, - wn)lly < Allllzallx, - el x (4.4)

for every z1,...,x, € X.

We restrict our attention to scalar-valued =-symmetric n-homogeneous continu-
ous polynomials on L. In this section we shall prove that every such a polynomial
can be represented as an algebraic combination of the elementary symmetric poly-
nomials R,,. First, we prove some auxiliary results.

REMARK 4.1. For every symmetric k-homogeneous polynomial Q: Lo, — C and
functions o € =, x1,...,Tr € Lo we have

Ag(zr00,...,xp00) = Ag(x1, ..., Tk).
Proof. By the polarization formula (4.1) and by the symmetry of @,
Ag(zr00,...,200)

= — Z e1-exQer(xrro00) + - +ep(xg 00))

51,...,6]@::‘:1

= Z e1--exQ((e121 + - - - +epar) 0 0)
61,..‘,Ek::‘:1

= Z 61"~€kQ(€1$1+"'+8k$k):AQ(xl,...,l‘k).
E1,..,6r==%1

O

Let us prove that the coefficients of an algebraic combination of elementary sym-
metric polynomials can be recovered from the values of the combination.
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PROPOSITION 4.2. For every N € N there exist functions ©; € Lo, and constants
u,(c]l) ____ ky € C, where j € {1,....,(N+ 1)} and ky, ..., ky €{0,..., N}, such that

for every functional G: Lo, — C of the form

N N
= Z Z ak1,~~~7kNR]f1(x)'”Rf\fN(l‘)’

k1=0  kn=0
where oy, .. ky € C, the following equality holds:

(N+1)N

oy, kn Z u(J) ey G(T5)-

Proof. For every j € {1 (N + 1)N} by theorem 3.1, there exists ; € Lo, such
that R, (z;) = jOV+D" Cor 1 <m < (N+1)Y and Ry, (z;) = 0 form > (N+1)V.
Then

. « N—
Z Z ozkl,.4.,kNJkl+k2(N+1)+k3(N+1)2+ e (VDY G(zx;),
je{l,...,(N+ 1N} (4.5)

It is easy to check that the expression ky+ka(N+1)+ks(N+1)24- - -+ ky(N+1)V -1
takes all the values from 0 to (N + 1)N — 1.

Thus, the determinant of the system of linear equations (4.5) is, up to permuta-
tion, a Vandermonde determinant, which is not equal to zero. Therefore, there exist
constants u(J) ky €C, where j € {1,...,(N+1)"}and ky,...,ky € {0,...,N},
such that

(N+D)Y

..... Z 'UJ(]) kN .’tj).

O

THEOREM 4.3. Every symmetric continuous n-homogeneous polynomial P: Lo, —
C can be uniquely represented as

P(z) = > Uy RY () - R (),

k1+2ka+-+nkn,=n

where k1,...,k, € NUA{0} and ag, ..k, € C. In other words, {R,} forms an
algebraic basis in the algebra of symmetric continuous polynomials on L.

Proof. Once the existence of the coefficients is proved, uniqueness follows from
proposition 4.2.

For the existence, we proceed by induction on n. In the n = 1 case the polynomial
P is a symmetric continuous linear functional. Let g: [0,1] — C,

g(t) = P(1j,9)-
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The algebra of symmetric analytic functions on Leo 9

By the symmetry and the linearity of P,

g(t1 +t2) = P(Ljo4, 44,])
= P(Ljo,,] + Lty 4 442])
P(l[o t1] ) (1[t1,t1+t2])
= P(Ljo,]) + P(Ljo,t,)) = g(t1) + g(t2), (4.6)

where t1,t2 € [0, 1] such that ¢; +t2 < 1. Thus, g is additive, that is, it satisfies the
Cauchy functional equation. By the continuity of P we also have the boundedness
of g. It is well known that every bounded additive function on [0, 1] is necessarily
linear (see, for example, [1, ch. 2]. Thus, g is linear, and therefore g(t) = tg(1) for
every ¢ € [0,1].
Hence,
P(1p.q) =tP(1p,1) (4.7)

Let E be a measurable subset of [0,1]. Applying proposition 2.2 to N = 1 and
FEy = E, there exists og € Z such that 15 = ljo,u(E)°0E almost everywhere on
[0,1]. By the symmetry of P and by (4.7),

P(1g) = P(1p,ue)y) = W(E)P(1p,1))-

For the simple measurable function z = ijl h;1g,, where h; € C and E; C [0, 1],
by the linearity of P,

J
:Zth(lEj) 10.17) Zhﬂi P(1po,11) Ba(2).
j=1

Since the set of simple measurable functions is dense in L., the continuity of P
leads to

P(x) = P(1j,1)) R ()

for every x € Lo,. This completes the proof for the n = 1 case.
Assume the statement of the theorem holds for every m € {1,...,n — 1}. We
prove it for n. To do this we provide several lemmas.

LEMMA 4.4. Let 1 < m < n and [a,b] C [0,1] and let y1,...,Yn—m € Loo be
such that the restrictions of yi1,...,Yn—m to [a,b] are constant. Then there exists a
constant Cy(m,a,b) > 0 such that, for every measurable subset E of [a,b],

|AP(1Ea . ) ]-Ea Yiy--- aynfm)| < ,U(E)”ylHoo te ||yn7m||oocl(m,av b)

Proof. For every x € L let

t—a .
3(t) = m(ba) if t € [a,b],
0 it ¢ €0,1]\ [a,b].

Consider the m-homogeneous polynomial L(z) = Ap(Z, ™ , &, Y1, -, Yn—m)-
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For every o € = let

at (b a)a<2_2> if ¢ € [a,b)],

t if t € [0,1]\ [a, b].

Clearly, ¢ € =. We claim that Z oo = # o 5. Indeed, if t € [a, b], then

m(t)z(xoa)<z_a>

—a

and

xoa)(Z_Z)

while if ¢ € [0,1] \ [a,b], then Too(t) = 0, and so (£ 0 5)(t) = £(5(t)) = 2(¢) = 0.
Thus, the claim is verified, and hence

L(roo)=Ap(T 005, ™ ,T00,Y1, s Ynm) = Ap(£05, ™ 0G5, Y1, Ynm)-
Since y; are constant on [a, b], it follows that y; o 6 = y; for j € {1,...,n — m}.
Therefore,

Ap(Zo&, ™ £00,Y1,. - Yn—m) =Ap(Z05, ™, 206,Y1005,...,Yn—m © 7).
By remark 4.1,

Ap(Zod,™ £00,y108,...,Yn—m©0)=Ap(Z, ™ &, y1,.. ., Yn—m) = L(x).

Thus, L(z o o) = L(z) for every o € =. The continuity of Ap implies that of L.
Hence, L is a continuous symmetric m-homogeneous polynomial on L.,. By the
induction hypothesis, L can be represented as

a,b 1 m
L(z) = 3 o™ (g1, Ynem)RY () - RE (),
k1+2ko+---+mkpy=m

where the coefficients depend on [a,b] and y1,. .., Yn—m.
By proposition 4.2, there exist functions z; € Lo, and constants u;
where j € {1,. (m—|— 1)™} and kq,. ..,k € {0,...,m}, such that

2 €C,

(m+1)™
([a, b])

g e W Ynem) = Z Ejl), 1, L(5)-
j=1
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The algebra of symmetric analytic functions on Leo 11

Thus,
(m41)™
b j ~ ~
O‘]E:[i,,l)km (yla cee ’yn—m) = Z ugcjl),,,,’kmAP(xj7 0 s LjsYlyen s Zln—m)
j=1

This implies that a,(c[la’b])km : (Loo)™™ ™ — C is a continuous (n —m)-linear mapping.

Therefore, by (4.4),

.....

a,b])

b
|O[](€[1 (la

et vem) < el yallo - 9n—mllo:

~ t—a
FE = te b .
{b—a © }

Since E C [a, b], it follows that £ C [0, 1]. Since

Let

—

1, =1g,
it follows that
AP(1E7 R 5 1E7y13 e aynfm)
= 14})(]?%,7 . s ]T;,y]_, . ?y’ﬁ,—m) = L(lE)
,b k -
- Z al(ﬂ[la,..l)km(ylw-~ayn7m)R11(1E)"'R7]; (1E)
k142ka+-+mkpy,=m
7b - een m
= S ol e (B

k1+2ka+-+mk,=m

Taking into account that

A N 1
M(E)kﬁ-kz-‘r +km < /J'(E) — - aM(E)7
we have
|AP(1E3 T ) ]-Ea Yiy--- ,yn—m)|
1 a,b
<@ lyilloe - lyn-mlle X e
k14+2k2+-4+mk,,=m
Defining
1 a,b
Ci(m,a,b) = —a Z Hal(c[l,..?,)kmnv
k14+2ko+--+mky,=m
we obtain the result. O

LEMMA 4.5. Let 1 < m < n and [a,b], [c1,d1], [c2,d2] C [0, 1] be such that u([a,d] N
[c1,d1]) =0, p([a, b]N[c2, d2]) = 0, u(ler, di]N[ez, d2]) = 0 and p([er, di]U[e2, da]) <
w([a,b]). Let y1,...,Yn—m € Loo be such that the restrictions of yi,...,Yn—m to
[a,b] U [e1,d1] U [ca,ds] are constant. Then there exists a constant C(m,a,b) > 0
such that

| AP (Lie, dy)Uleasda]s ™ > Lier,di]Uearda]s Y1s - - - s Yn—m)|
< w(fer, di] Ulea, do))|yilloo -+ - [Yn—mlloo C(m, @, b).
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12 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Proof. Let
a+t—oc iftE(Cl,dl),
c1+t—a ift e (a,a+dy —c1),
Ul(t): a+d1701 +t762 iftE(CQ,dQ),

Cg+t—(a+d1—01) ifte(a+d1—cl,a+d1—cl+d2—62),
t otherwise.

Evidently, 01 € =.
By proposition 4.1,

Ap(Lie; di)Ulensda)s ™ 5 Lier,da]Ufea,da]s YLs -« - s Yn—m.)
= Ap(Lie, . d]Ucards] © 15 ™ s Ly di]Ufea,da] © 15 Y1 O T1y vy Yn—m © O1).
Since 1ie, d,]Ufes,ds] 901 = Lja,atdy—c1+ds—cy) a0d yjooy = y; forevery j € {1,...,n—

m}, it follows that
Ap(Lie, di)Ules,da)s ™ 5 Ler,da)Ulea,da]s Y1s - - - » Yn—m)
= AP(l[a,a+d1—cl+d2—cQ]7 RS 5 1[a,a+d1—c1+d2—cz] s Yty .o 7yn7m)'
By lemma 4.4, there exists a constant Cy(m,a,b) > 0 such that
|AP(1[a,a+dlfcl+d2702]7 RS 5 1[a,a+d17c1+d2702] yYly - 7yn—m)|
Sulla,a+dy — e+ dy — ea])[yilloc -+ [IYn—mllocCr(m, @, ).
We set C(m,a,b) = Cy(m,a,b). This completes the proof of the lemma. O

LEMMA 4.6. There exists a sequence {s}5>, C [0,1] such that limy_,oc s, = 0 and,
for every sequence {ri .}, such that 0 < ry < si,

1
[P(Lo,ng)l < Z(IPI+1).
Proof of lemma 4.6. We set s; = 1. By the continuity of P,
[P(1om )l < 1P| <[P +1

for every 0 < r; < s1.
For k > 2 let t > 0 be such that kt < 3. Since L4 = Y5 Lj—1)r,j4, by the
polynomial formula (4.2),

n!
P(1okn) = >

ni+net-+nrg=n niing! ng!
X AP(l[O,t], RICAN 1[0715], 1[t,2t]a e 1[t72t], ey 1[(k—1)t,kt]7 KL 1[(k—1)t,kt])7

where ny,na,...,n, € NU{0}. For every multi-index (n1,ng,...,ng) let

U=l g m) € {1, K}
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The algebra of symmetric analytic functions on Leo 13

be the position of the first non-zero element in (ni,ne,...,nk). The sum of the
addends for which n; = n is equal to kP (1g ) due to the symmetry of P. Therefore,

n!
EP(og) = Plos) = Do oo
nit+nz+--+ng=n 12 ke
ny<n

x Ap(Ljo,5 ™5 Lo, L2 ™5 Li2e)s - - > L k=)t ket ™ 5 Lj—1)t,k1])-
If n; < n, then by lemma 4.5, in which we set m = ny, [a,b] = [%, 1], [e1,d1] =
[(l — 1)t, lt] and Cy = dg,
|[Ap (10,40, ™, Ljo,4), Lpes2es 25 Lpe2e]s - - Li(k—1)t,kt]> 7 5 Li(—1)t, k]|
<tC(ny, 5,1).
Taking into account that |P(1 k)| < || P], we have
n! 1
|kP(1j0.0)| < [|P]| +1 Z mc(nl, 5, 1).

nit+nz+--+np=n
n<n

We set

) _ n! -1
sommnf{er ey (5 S omd)

nitng+-+ng=n
ny<n

Then, for 0 < ¢ < sg,
k|P(Lj0,9)| < 1P|l + 1.
Thus,

[P0, )| < (1P +1).

T =

LEMMA 4.7. Let N
T = Z hjl[ajvbj]7
j=1

where hj € C for j € {1,...,N} and a; <b; < ajy1 forje{l,...,N —1}. Then,
for everyl € {1,...,N} and for all sequences
k) oo k) oo
{al( )}k=17 {bl( )}k=13
such that a; < al(k) <a+ % min{sx,b; —a;} and b; — %min{sk, by—a;} < bl(k) < by,

lim P(z™®) = P(x),
k—o0
where

N
™ = Z hiLias b, + hll[agk),bgk)}'
=1l

Downloaded from https:/www.cambridge.org/core. Universidad Valenciaa, on 05 Jun 2017 at 15:19:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/50308210516000287


https://doi.org/10.1017/S0308210516000287
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

14 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Proof of lemma 4.7. Let 6%) = _hll[al L0 U [bl(k),bl]. Then z*) =z 4 6. By
g

the binomial formula (4.3), !

n—1
P(z®)) = P(z) + P(6™) + > (”)Ap((s(’f), mo 50 g mom g,
m
m=1

Since P is a symmetric n-homogeneous polynomial, it follows that

P((S(k)) = (_hl)np(l[az,al(k)]u[bl(k),bl]) = (_hl)np(l[o,al(k)*az+bl*b§k)]).

Since al(k) —a;+ b — bl(k) < Sk, we have by lemma 4.6 that
1
1P(Lig,a0_ap i, —pp) | < £ U1+ 1).

Thus,
1 n
|P(6™M)] < ZIul* (P +1).

By lemma 4.5, where [c1,d1] = [az, a\"], [e2, da] = [0, by], [a,b] = [az, by] and y; =

o =Yn—-m = T,
|Ap (6" m. §F) g nom 4|
= [l™AP (L, 201000 b1 ™ L a® o oy @ )]
< pllar, afPTO B, bi]) ™ |25 C(m, ar, by)
< splha|™ ][5 ™ C (my ag, by).
Therefore,
1 n—1 n
|P(z®)) - P(x)] < 2" (Pl +1) + s > (m>|hzmllxl&‘mC(m,al.bl)
m=1

Recall that limg_.,o s = 0. Thus,

lim P(z®) = P(z).

k—o0

We now continue with the proof of theorem 4.3. For M € N we set

2M

G = {Zdﬁl[(jl)/w,j/wy d; € C} and G = U G-
=t M=1
Let
2M
gu(dy,-.. dorr) = P(Zdjlwn/w,j/zm).
j=1

Clearly, gas is a symmetric polynomial of degree n of 2M scalar variables. It is well
known (see, for example, [12, ch. XI, § 53]) that there exists a polynomial py; such
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The algebra of symmetric analytic functions on Leo 15

that

1 2M 1 21\/1 1 21VI
gu(dy, ..., danr) :pM(WZdja QMZdi’“"QMZd?)
j=1 j=1 j=1
Hence, for every x € Gy,
P(z) = pu(Ri(2), Ro(2), ..., Ry()).
That is,

P(z) = Z iy oy R (2)RE2 () - - - REn (). (4.8)
Ky +2ka Ak, =n

Since Gpr C G for M < M, it follows that coefficients ay, ..k, do not depend
on M. Thus, (4.8) holds for every = € G.
Let

K
D{QM:MEN, KG{O,L...,QM}}.
and

N
€T = Z hjl[aj’bj]7
j=1

where h; € Cfor j € {1,...,N}, a; <b; < ajy for je{l,...,N—1}.
For every I € {1,..., N} we choose sequences {al(k)}iozl, {bl(k)}z":1 C D such that

a; < al(k) <+ 3 min{s, b — a1},
by — %min{sk,bl — al} < bl(k) < b
Then, for every multi-index s = (571, 7, ..., 2¢5) € NV, the function

N
X, = E hjl[a(v%j) b(,%j)}
= j j

belongs to G. By using lemma 4.7 N times,

P(z)= lim lim --- lim P(z,,)
21 —00 29 —+00 N —00
- 1 1 ... 1 kl DEEY kn
o z}lgloo %llgloo %Jklgloo Z akl"”’k"Rl (I%) Rn (I%)
k14+2ka+---4+nk,=n
= > Qhy ey BY () -+ R ().

k1+2ka+-4nkn=n

Now let
N
Tr = ZhleJ'7
j=1

where Ep, Fa, ..., Ey are disjoint measurable subsets of [0, 1]. By proposition 2.2,
there exists 0 = og, ... gy € 5 such that

1 = 1xm— oo
Em [ j:llﬂ(Ej)ij=1H(Ej)] Ei, BN
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16 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk
for every m € {1,..., N} almost everywhere on [0, 1]. By the symmetry of P,

N
P(x)=P(woo ')=P ( D MLt a5 u(Am)])
j=1

- > oy on BY () -+ RE ().
k14+2ko+--+nk,=n

Hence, for every simple measurable function x, (4.8) holds. Since the set of simple
measurable functions is dense in Lo, the continuity of P yields that (4.8) holds for

every = € Ly. This completes the proof of theorem 4.3. O
The statement of theorem 4.3 for symmetric linear functionals is proved directly

in [17].

COROLLARY 4.8. Let Py, ..., Py, be symmetric polynomials on Lo, such that

ﬁ Ker(P;) = 0.
i=1

Then there are symmetric polynomials Q1,. .., Qm such that Y ;- PiQ; = 1.

Proof. Let n = max(deg(P;)). Since (R;) is an algebraic basis for the symmetric
polynomials, there exist p; € P(C") such that P;(x) = p;(Ri(x),...,Ru(z)). If
pi(01,...,0,) = 0 for all ¢ = 1,...,m for some point (61,...,6,) € C", then by
theorem 3.1 there exists 29 € Lo, such that R;(xg) =6; for alli =1,...,m. So zy
would be a common zero of the P;. Hence, the p; have no common zeros, and thus
by the Hilbert Nullstellensatz there are polynomials ¢1, ..., g, € P(C™) such that
S pigi = 1. Set Q; = gi(Ra, ..., Ry,) to complete the proof. O

5. The space Hps(Loo) and its spectrum

Let Hps(Loo) be the Fréchet algebra of all entire symmetric functions F': Lo, — C
which are bounded on bounded sets endowed with the topology of uniform conver-
gence on bounded sets. Every such entire function can be described by its Taylor
series of continuous homogeneous polynomials which in turn are symmetric as well.
Therefore, by theorem 4.3, every F' € Hys(Loo) can be represented as

0o
Fz)=) > kg BY () RS2 (2) - - RE™ (),
n=0 k1+2ko+---+nk,=n
k; >0

where o, k,.-k, € C and the series converges uniformly on bounded sets.
Next, we point out some topological properties of functions in Hys(Loo).

PROPOSITION 5.1. For every F € Hyps(Ls) we have that
(a) its derivative mapping dF is weakly compact,

(b) lim; F(u;)—F(v;) = 0 for bounded sequences (u;) and (vj) such that (u; —v;)
is weakly null.
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The algebra of symmetric analytic functions on Leo 17

Proof. Let us first verify the statements for R,. The multilinear form
n A 1
(xb.“,xn)elmx-~-an—+L/'x1@)~-xnﬁ)dt
0

is well defined and continuous. Recall that Lo, embeds continuously into L,[0,1]
for any p > 1, since |z|P < ||z(|% X[0,1]- Therefore, the polynomials

2 € Lo 2% A(z,. 1., z,,n71,-) € P(" L)

factor through the reflexive space L, [0, 1]. Thus, they are weakly compact. In partic-
ular, the derivative mapping dR,,: Lo — LY given by dR, (z)(y) = nA(z...,z,y)
is weakly compact.

To check (b), recall that Lo, has the Dunford—Pettis property. Hence, the weakly
compact polynomials A; are weakly sequentially continuous, that is,

lijrrlAi(uj—vj,.?.7uj—vj7~7@i",-):0 fori=1,...,n—1.

Now, use the binomial formula (4.3) to see that

limP(Uj) — P(’Uj) = HmP(Uj — Uj + ’Uj) — P(Uj) =0.
J J

It is immediate that the derivative of the product of finitely many polynomials
with weakly compact derivative (respectively, satisfying statement (b)) has weakly
compact derivative (respectively, satisfies (b)). Hence, by theorem 4.3, every sym-
metric polynomial has a weakly compact derivative and satisfies (b).

Finally, for the Taylor series of F at 0, F' = > P, that is made up of symmetric
polynomials, we have that dF = 3 dP,. Thus, we use [16, theorem 3.2] to deduce
that dF is weakly compact. Moreover, (b) holds by suitably approximating F by
symmetric polynomials. O

Note that there are (necessarily non-symmetric) polynomials on L., whose de-
rivatives are not weakly compact (see [5, remark 3.3(b)]) or do not satisfy (b) [4,
example 2.4].

We denote by My the spectrum of Hys(Ls), that is, the set of all continuous
complex-valued homomorphisms (characters) on Hps(Loo). As usual, we shall con-
sider Mys endowed with the weak® topology, that is, the topology of convergence
against functions in Hps(Loo ). For every character ¢ € M, we have

PF)=> > Uy hyok S(R1)M G(Ro)2 L d(Ry )P

n=0 k1+2ko+---+nk,=n
;>0
Thus, we see that ¢ is completely defined by its values on R; (j € N). Hence, we
can identify every ¢ € Mys with the sequence ({1,62,...,&n, ... ), where & = ¢(R;)
(j €N).

PROPOSITION 5.2. Let R(¢) be the radius of ¢ € Mys. Then |&,| < R(@)™ for every
n € N.
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18 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Proof. Let B denote the unit ball in L. Since [¢(F)| < || F||r(¢), and || Ry || = 1,
we have 6, = |¢(Rn)| < [|Rnllr(g)B = R(¢)" O

Note that for z € Ly, the point-evaluation functional J, defined by
0,(F)=F(z), F € Hps(Loo),

belongs to Mys. For every sequence {&,}52; C C such that { {/]&,]}22, is bounded,
there exists, by theorem 3.1, z¢ € Lo, such that R,,(z¢) = &, for every n € N. Hence,
we have the following.

COROLLARY 5.3. Every ¢ € My is a point-evaluation functional.

COROLLARY 5.4. The set My can be identified with the set A C CN of all sequences
{1521 C C such that { ¥/|6n]}0%, is bounded.

COROLLARY 5.5. The bounded subsets of Mys are separable. Consequently, My
itself is separable.

Proof. By the uniform boundedness principle the bounded subsets S of My are
equicontinuous and hence weak* relatively compact, and as a consequence the weak*
topology coincides on them with the Hausdorff topology of the convergence against
the symmetric polynomials.

Denote by A the identification mapping {£,}5°; € A — ¢ € M. Endow A71(9)
with the induced product topology of CY that is a separable metrizable space. Then
A7Y(S) is a separable space. We shall deduce that S is separable just by checking
that A is continuous on A~1(S). Indeed, let ({€£}°° ), € A71(S) be a convergent
sequence to, say, {/, 32, € A7L(S). Then, for ¢ := A({¢F}) and w := A({pn}),
we have

lim gy (Rn) = 11}315’; =t = w(R,),

and also, according to theorem 4.3, limy, ¢ (P) = w(P) for all symmetric polyno-
mials P. Thus, by the comment above, limg ¢ = w for the weak® topology, as
required.

To check that My is separable, recall that there is a sequence (L;); of weak*
compact subsets of My such that Mys = J; Li, e.g. L; = {¢ € Mys: R(p) < i}.
Since for each of the L; there is a countable dense subset D;, it follows that | J, D;
is a dense subset of M.

6. Functions of exponential type

From the general theory of entire functions of exponential type we have the following
corollary.

COROLLARY 6.1. The set My can be identified with the set Exp(C) of all functions
of exponential type on C vanishing at the origin by

oo nn o0 Rn n
MbSBQbWZlgnZ!ZIWGEXp(C).

The next theorem gives a new representation of functions of exponential type.
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The algebra of symmetric analytic functions on Leo 19

THEOREM 6.2. Let g: C — C be a function of exponential type with g(0) = 1. Then
there exists x € Lo, such that

(o) n 1
g(z) = 1+ZW :/0 M dt, 2 eC.
n=1 ’

Proof. The proof follows from corollaries 5.3 and 6.1 and direct calculations. [

Note that this representation is not unique because for example R, (e*™*) = 0
for every n.

By [15], every Lebesgue-Rohlin space with continuous measure (2, F,v) is iso-
morphic modulo zero to [0, 1] with Lebesgue measure. Therefore, all of the results
of this work are also valid for L., on a Lebesgue—Rohlin space with continuous
measure.
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