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We consider the algebra of holomorphic functions on L∞ that are symmetric,
i.e. that are invariant under composition of the variable with any measure-preserving
bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences
{ξn}∞

n=1 such that { n
√

|ξn|}∞
n=1 is bounded and turns to be separable. All this

follows from our main result that the subalgebra of symmetric polynomials on L∞
has a natural algebraic basis.
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1. Introduction

In [14] Nemirovski and Semenov considered functions on �p spaces invariant under
the permutation of variables and their approximation by the same kind of polyno-
mials. They used the term symmetric for such functions and it appears that this
was the first time that symmetric functions of an infinite number of variables were
dealt with. Some of their results were generalized by González et al . [10] to real
separable rearrangement-invariant function spaces. In [3] Alencar et al . studied in
detail the algebra of functions that are symmetric in the ball algebra A(B�p) and
described its spectrum. Chernega et al . [7–9] deal with the analogous situation
for the space Hb(�p) of analytic functions of bounded type, including the study of
convolution operators on the algebra of symmetric functions.

Let L∞ be the complex Banach space of all Lebesgue measurable essentially
bounded complex-valued functions x on [0, 1] with norm

‖x‖∞ = ess sup
t∈[0,1]

|x(t)|.

Let Ξ be the set of all measurable bijections of [0, 1] that preserve the measure. A
function F : L∞ → C is called Ξ-symmetric (or just symmetric when the context
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is clear) if, for every x ∈ L∞ and for every σ ∈ Ξ,

F (x ◦ σ) = F (x).

For every n ∈ N ∪ {0} we define Rn : L∞ → C by

Rn(x) =
∫ 1

0
xn(t) dt.

We call the functions Rn the elementary symmetric polynomials.
Our main result states that (Rn)∞

n=0 is an algebraic basis for the space of con-
tinuous symmetric polynomials P on L∞, that is, for each given such P , there is a
(unique) polynomial q in finitely many variables such that

P (x) = q(R1(x), . . . , Rm(x)) for every x ∈ L∞.

It has been shown (see [10] in the real case and [6] in the complex case) that the
above equality holds for functions x in the closed linear span of the characteristic
functions of the dyadic intervals.

The Ξ-symmetric continuous polynomials on Lp-spaces, 1 � p < ∞, have been
investigated in [6,10,14]; the article [6] studies analytic functions invariant under the
action of some group of operators from a more general point of view. The present
paper also fits in this setting.

2. Measurable automorphisms

A measure space is a triple (Ω, F , ν), where Ω is a set, F is a σ algebra of its subsets
and ν : F → [0, +∞) is a measure. An isomorphism between two measure spaces
(Ω1,F1, ν1) and (Ω2,F2, ν2) is an invertible map f : Ω1 → Ω2 such that f and
f−1 are both measurable and measure-preserving maps. In the case (Ω1,F1, ν1) =
(Ω2,F2, ν2) the mapping f is called a measurable automorphism. Two measure
spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) are called isomorphic modulo zero if there exist
null sets M ⊂ Ω1 and N ⊂ Ω2 such that measure spaces Ω1 \ M and Ω2 \ N are
isomorphic [15].

In this paper we shall only consider the Lebesgue measure on [0, 1]. Clearly, Ξ is
the set of all measurable automorphisms of [0, 1].

The following simple proposition shows that a measurable automorphism of [0, 1]
can be defined up to a null set.

Proposition 2.1. Let f be an isomorphism modulo zero of [0, 1]. Then there exists
a measurable automorphism of [0, 1] that coincides with f almost everywhere.

Proof. There exist null sets M and N such that

f : [0, 1] \ M → [0, 1] \ N

is an isomorphism. Let K be the Cantor set. Let

C1 = K ∩ ([0, 1] \ M) and C2 = K ∩ ([0, 1] \ N).

The sets
U = K ∪ f−1(C2) ∪ M and V = K ∪ f(C1) ∪ N
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The algebra of symmetric analytic functions on L∞ 3

are both null sets of the cardinality of the continuum. Let h be the bijection between
U and V . Clearly,

g(t) =

{
h(t) if t ∈ U,

f(t) if t ∈ [0, 1] \ U,

is a bijection, and therefore it is a measurable automorphism of [0, 1].

For every E ⊂ [0, 1] let

1E(t) =

{
1 if t ∈ E,

0 otherwise.

Proposition 2.2. Let E1, . . . , EN ⊂ [0, 1] be measurable sets such that µ(Ej ∩
Ek) = 0 if j 	= k. Then there exist σE1,...,EN

∈ Ξ such that

1Em = 1[bm−1,bm] ◦ σE1,...,EN

for every m ∈ {1, . . . , N} almost everywhere on [0, 1], where bk =
∑k

j=1 µ(Ej) for
k ∈ {1, . . . , N} and b0 = 0.

Proof. Without loss of generality we can assume that the Em are disjoint. Let
EN+1 = [0, 1] \

⋃N
m=1 Em and bN+1 = 1. By [15, § 2, nos 1–4], every measurable

subset E ⊂ [0, 1] is isomorphic modulo zero to an interval of length µ(E). Thus,
every Em is isomorphic modulo zero to [bm, bm+1]. Let fm be the proper isomor-
phisms. Let

σE1,...,EN
(t) = fm(t)

if t ∈ Em, m ∈ {1, . . . , N + 1}. Evidently, σE1,...,EN
satisfies the stated conditions.

3. Symmetric functions on L∞

Theorem 3.1. For every sequence

ξ = {ξn}∞
n=1 ⊂ C

such that the sequence { n
√

|ξn|}∞
n=1 is bounded, there exists xξ ∈ L∞ such that

Rn(xξ) = ξn for every n ∈ N.

Proof. Let εk be the kth Rademacher function, i.e.

εk(t) = sgn sin 2kπt.

It is known (see [11, ch. 3] or [2, p. 162]) that the series
∑∞

k=1 εk(t)uk converges
almost everywhere on [0, 1] if and only if

∑∞
k=1 |uk|2 converges. Consequently, the

series
∞∑

k=1

εk(t)
k + 1

converges almost everywhere on [0, 1]. For every n ∈ N we define

pn(t) = exp
(

iπ
2n

∞∑
k=1

εk(t)
k + 1

)
.

Clearly, |pn(t)| = 1 almost everywhere. Therefore, pn ∈ L∞ and ‖pn‖∞ = 1.

https://doi.org/10.1017/S0308210516000287
Downloaded from https:/www.cambridge.org/core. Universidad Valenciaa, on 05 Jun 2017 at 15:19:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0308210516000287
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


4 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Next, we provide some lemmas we need to complete the proof.

Lemma 3.2. For every m, n ∈ N we have

Rm(pn) =
∞∏

k=1

cos
(

π

2
m

n(k + 1)

)
.

Proof of lemma 3.2. By definition,

Rm(pn) =
∫ 1

0
(pn(t))m dt.

The sequence of functions {p
(l)
n }∞

l=1 ⊂ L∞ given by

p(l)
n (t) = exp

(
iπ
2n

l∑
k=1

εk(t)
k + 1

)
converges almost everywhere to pn. By the dominated convergence theorem,∫ 1

0
(pn(t))m dt = lim

l→∞

∫ 1

0
(p(l)

n (t))m dt.

Note that∫ 1

0
(p(l)

n (t))m dt =
∫ 1

0
exp

(
iπm

2n

l∑
k=1

εk(t)
k + 1

)
dt

=
∫ 1

0
exp

(
iπm

2n

ε1(t)
2

)
exp

(
iπm

2n

l∑
k=2

εk(t)
k + 1

)
dt

= exp
(

iπm

2n

1
2

) ∫
[0,1/2]

exp
(

iπm

2n

l∑
k=2

εk(t)
k + 1

)
dt

+ exp
(

iπm

2n

(−1)
2

) ∫
[1/2,1]

exp
(

iπm

2n

l∑
k=2

εk(t)
k + 1

)
dt

= 2 cos
(

πm

2n

1
2

) ∫
[0,1/2]

exp
(

iπm

2n

l∑
k=2

εk(t)
k + 1

)
dt

= 4 cos
(

πm

2n

1
2

)
cos

(
πm

2n

1
3

) ∫
[0,1/4]

exp
(

iπm

2n

l∑
k=3

εk(t)
k + 1

)
dt

= 2l
l∏

k=1

cos
(

πm

2n

1
k + 1

) ∫
[0,1/2l]

dt

=
l∏

k=1

cos
(

πm

2n

1
k + 1

)
.
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The algebra of symmetric analytic functions on L∞ 5

Therefore,

Rm(pn) = lim
l→∞

l∏
k=1

cos
(

πm

2n

1
k + 1

)
=

∞∏
k=1

cos
(

πm

2n

1
k + 1

)
.

Let αk = exp(2πik/n) for k = 1, 2, . . . , n. We define the function yn : [0, 1] → C

in the following way: For t ∈ [(k − 1)/n, k/n), where k ∈ {1, . . . , n}, we set

yn(t) = αkpn(nt − k + 1).

Note that yn ∈ L∞ and ‖yn‖∞ = 1.

Lemma 3.3. For m, n ∈ N, we have

Rm(yn) =

{
M if m = n,

0 otherwise,

where

M =
∞∏

k=1

cos
(

π

2
1

k + 1

)
.

Proof. Note that

Rm(yn) =
∫ 1

0
(yn(t))m dt =

n∑
k=1

∫
[(k−1)/n,k/n)

(αkpn(nt − k + 1))m dt

=
(

1
n

n∑
k=1

αm
k

) ∫ 1

0
(pn(t))m dt

=
(

1
n

n∑
k=1

αm
k

)
Rm(pn).

Since
1
n

n∑
k=1

αm
k =

{
1 if m is a multiple of n,

0 otherwise,

it follows that Rm(yn) = 0 if m is not a multiple of n. However, if m is a multiple
of n, i.e. m = k0n for some k0 ∈ N, we have

Rm(yn) = Rm(pn) =
∞∏

k=1

cos
(

π

2
m

n(k + 1)

)
=

∞∏
k=1

cos
(

π

2
k0

k + 1

)
.

If m 	= n, then k0 > 1 and one of the factors is equal to cos 1
2π, and therefore

Rm(yn) = 0. In the m = n case we have

Rn(yn) =
∞∏

k=1

cos
(

π

2
1

k + 1

)
= M.
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We now continue with the proof of theorem 4.3. We set

xn(t) =
1

n
√

M
yn(t).

Taking into account that ‖yn‖∞ = 1 and 0 < M < 1, we have

‖xn‖∞ =
1

n
√

M
‖yn‖∞ =

1
n
√

M
� 1

M
.

From lemma 3.3 it follows that

Rm(xn) =

{
1 if m = n,

0 otherwise.

Now we construct xξ. For t ∈ [(2n−1 − 1)/2n−1, (2n − 1)/2n), where n ∈ N, we set

xξ(t) = 2 n
√

ξnxn(2nt − 2n + 2).

Since the sequence { n
√

|ξn|}∞
n=1 is bounded, there exists a > 0 such that |ξn| � an

for every n ∈ N. Note that

‖xξ‖∞ � sup
n∈N

2| n
√

ξn|‖xn‖∞ � 2a

M
.

Thus, xξ ∈ L∞. For m ∈ N we have

Rm(xξ) =
∫ 1

0
(xξ(t))m dt

=
∞∑

n=1

(2 n
√

ξn)m

∫
[(2n−1−1)/2n−1,(2n−1)/2n)

(xn(2nt − 2n + 2))m dt

=
∞∑

n=1

(2 n
√

ξn)m 1
2n

∫ 1

0
(xn(t))m dt = (2 m

√
ξm)m 1

2m

= ξm.

4. Homogeneous symmetric continuous polynomials on L∞

A mapping P : X → Y , where X and Y are Banach spaces with norms ‖ · ‖X and
‖·‖Y respectively, is called an n-homogeneous polynomial if there exists an n-linear
symmetric mapping AP : Xn → Y such that

P (x) = AP (x, n. . . , x) for every x ∈ X.

Here ‘symmetric’ means that AP (xτ(1), . . . , xτ(n)) = AP (x1, . . . , xn) for every per-
mutation τ : {1, . . . , n} → {1, . . . , n}.

It is known (see, for example, [13, theorem 1.10]) that AP can be recovered from
P by means of the so-called polarization formula:

AP (x1, . . . , xn) =
1

n!2n

∑
ε1,...,εn=±1

ε1 · · · εnP (ε1x1 + · · · + εnxn). (4.1)
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The algebra of symmetric analytic functions on L∞ 7

We shall use the polynomial formula (see [13, theorem 1.8])

P (x1 + · · · + xk) =
∑

n1+···+nk=n

n!
n1! · · ·nk!

AP (x1, n1. . . , x1, x2, n2. . . , x2, . . . , xk, nk. . . , xk)

(4.2)

and its corollary, the binomial formula (see [13, corollary 1.9])

P (x + y) =
n∑

m=0

(
n

m

)
AP (x, n. . . , x, y, m. . . , y). (4.3)

It is known that an n-homogeneous polynomial P : X → Y is continuous if and
only if

‖P‖ = sup
‖x‖X�1

‖P (x)‖Y < +∞.

Similarly, an n-linear mapping A : Xn → Y is continuous if and only if

‖A‖ = sup
‖x1‖X�1,...,‖xn‖X�1

‖A(x1, . . . , xn)‖Y < +∞.

Clearly, if A is continuous, then

‖A(x1, . . . , xn)‖Y � ‖A‖‖x1‖X , . . . , ‖xn‖X (4.4)

for every x1, . . . , xn ∈ X.
We restrict our attention to scalar-valued Ξ-symmetric n-homogeneous continu-

ous polynomials on L∞. In this section we shall prove that every such a polynomial
can be represented as an algebraic combination of the elementary symmetric poly-
nomials Rn. First, we prove some auxiliary results.

Remark 4.1. For every symmetric k-homogeneous polynomial Q : L∞ → C and
functions σ ∈ Ξ, x1, . . . , xk ∈ L∞ we have

AQ(x1 ◦ σ, . . . , xk ◦ σ) = AQ(x1, . . . , xk).

Proof. By the polarization formula (4.1) and by the symmetry of Q,

AQ(x1 ◦ σ, . . . , xk ◦ σ)

=
1

k!2k

∑
ε1,...,εk=±1

ε1 · · · εkQ(ε1(x1 ◦ σ) + · · · + εk(xk ◦ σ))

=
1

k!2k

∑
ε1,...,εk=±1

ε1 · · · εkQ((ε1x1 + · · · + εkxk) ◦ σ)

=
1

k!2k

∑
ε1,...,εk=±1

ε1 · · · εkQ(ε1x1 + · · · + εkxk) = AQ(x1, . . . , xk).

Let us prove that the coefficients of an algebraic combination of elementary sym-
metric polynomials can be recovered from the values of the combination.
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Proposition 4.2. For every N ∈ N there exist functions xj ∈ L∞ and constants
u

(j)
k1,...,kN

∈ C, where j ∈ {1, . . . , (N + 1)N} and k1, . . . , kN ∈ {0, . . . , N}, such that
for every functional G : L∞ → C of the form

G(x) =
N∑

k1=0

· · ·
N∑

kN=0

αk1,...,kN
Rk1

1 (x) · · ·RkN

N (x),

where αk1,...,kN
∈ C, the following equality holds:

αk1,...,kN
=

(N+1)N∑
j=1

u
(j)
k1,...,kN

G(xj).

Proof. For every j ∈ {1, . . . , (N + 1)N}, by theorem 3.1, there exists xj ∈ L∞ such
that Rm(xj) = j(N+1)m−1

for 1 � m � (N +1)N and Rm(xj) = 0 for m > (N +1)N .
Then

N∑
k1=0

· · ·
N∑

kN=0

αk1,...,kN
jk1+k2(N+1)+k3(N+1)2+···+kN (N+1)N−1

= G(xj),

j ∈ {1, . . . , (N + 1)N}. (4.5)

It is easy to check that the expression k1+k2(N+1)+k3(N+1)2+· · ·+kN (N+1)N−1

takes all the values from 0 to (N + 1)N − 1.
Thus, the determinant of the system of linear equations (4.5) is, up to permuta-

tion, a Vandermonde determinant, which is not equal to zero. Therefore, there exist
constants u

(j)
k1,...,kN

∈ C, where j ∈ {1, . . . , (N + 1)N} and k1, . . . , kN ∈ {0, . . . , N},
such that

αk1,...,kN
=

(N+1)N∑
j=1

u
(j)
k1,...,kN

G(xj).

Theorem 4.3. Every symmetric continuous n-homogeneous polynomial P : L∞ →
C can be uniquely represented as

P (x) =
∑

k1+2k2+···+nkn=n

αk1,...,knRk1
1 (x) · · ·Rkn

n (x),

where k1, . . . , kn ∈ N ∪ {0} and αk1,...,kn ∈ C. In other words, {Rn} forms an
algebraic basis in the algebra of symmetric continuous polynomials on L∞.

Proof. Once the existence of the coefficients is proved, uniqueness follows from
proposition 4.2.

For the existence, we proceed by induction on n. In the n = 1 case the polynomial
P is a symmetric continuous linear functional. Let g : [0, 1] → C,

g(t) = P (1[0,t]).
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The algebra of symmetric analytic functions on L∞ 9

By the symmetry and the linearity of P ,

g(t1 + t2) = P (1[0,t1+t2])
= P (1[0,t1] + 1[t1,t1+t2])
= P (1[0,t1]) + P (1[t1,t1+t2])
= P (1[0,t1]) + P (1[0,t2]) = g(t1) + g(t2), (4.6)

where t1, t2 ∈ [0, 1] such that t1 + t2 � 1. Thus, g is additive, that is, it satisfies the
Cauchy functional equation. By the continuity of P we also have the boundedness
of g. It is well known that every bounded additive function on [0, 1] is necessarily
linear (see, for example, [1, ch. 2]. Thus, g is linear, and therefore g(t) = tg(1) for
every t ∈ [0, 1].

Hence,
P (1[0,t]) = tP (1[0,1]). (4.7)

Let E be a measurable subset of [0, 1]. Applying proposition 2.2 to N = 1 and
E1 = E, there exists σE ∈ Ξ such that 1E = 1[0,µ(E)] ◦ σE almost everywhere on
[0, 1]. By the symmetry of P and by (4.7),

P (1E) = P (1[0,µ(E)]) = µ(E)P (1[0,1]).

For the simple measurable function x =
∑J

j=1 hj1Ej
, where hj ∈ C and Ej ⊂ [0, 1],

by the linearity of P ,

P (x) =
J∑

j=1

hjP (1Ej ) = P (1[0,1])
J∑

j=1

hjµ(Ej) = P (1[0,1])R1(x).

Since the set of simple measurable functions is dense in L∞, the continuity of P
leads to

P (x) = P (1[0,1])R1(x)

for every x ∈ L∞. This completes the proof for the n = 1 case.
Assume the statement of the theorem holds for every m ∈ {1, . . . , n − 1}. We

prove it for n. To do this we provide several lemmas.

Lemma 4.4. Let 1 � m < n and [a, b] ⊂ [0, 1] and let y1, . . . , yn−m ∈ L∞ be
such that the restrictions of y1, . . . , yn−m to [a, b] are constant. Then there exists a
constant C1(m, a, b) > 0 such that, for every measurable subset E of [a, b],

|AP (1E , m. . . ,1E , y1, . . . , yn−m)| � µ(E)‖y1‖∞ · · · ‖yn−m‖∞C1(m, a, b).

Proof. For every x ∈ L∞ let

x̂(t) =

⎧⎪⎨⎪⎩
x

(
t − a

b − a

)
if t ∈ [a, b],

0 if t ∈ [0, 1] \ [a, b].

Consider the m-homogeneous polynomial L(x) = AP (x̂, m. . . , x̂, y1, . . . , yn−m).
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10 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

For every σ ∈ Ξ let

σ̃(t) =

⎧⎨⎩a + (b − a)σ
(

t − a

b − a

)
if t ∈ [a, b],

t if t ∈ [0, 1] \ [a, b].

Clearly, σ̃ ∈ Ξ. We claim that x̂ ◦ σ = x̂ ◦ σ̃. Indeed, if t ∈ [a, b], then

x̂ ◦ σ(t) = (x ◦ σ)
(

t − a

b − a

)
and

(x̂ ◦ σ̃)(t) = x̂(σ̃(t))

= x̂

(
a + (b − a)σ

(
t − a

b − a

))
= x

(
a + (b − a)σ

(
t − a

b − a

)
− a

)(
1

b − a

)
= (x ◦ σ)

(
t − a

b − a

)
,

while if t ∈ [0, 1] \ [a, b], then x̂ ◦ σ(t) = 0, and so (x̂ ◦ σ̃)(t) = x̂(σ̃(t)) = x̂(t) = 0.
Thus, the claim is verified, and hence

L(x ◦ σ) = AP (x̂ ◦ σ, m. . . , x̂ ◦ σ, y1, . . . , yn−m) = AP (x̂ ◦ σ̃, m. . . , x̂ ◦ σ̃, y1, . . . , yn−m).

Since yj are constant on [a, b], it follows that yj ◦ σ̃ = yj for j ∈ {1, . . . , n − m}.
Therefore,

AP (x̂ ◦ σ̃, m. . . , x̂ ◦ σ̃, y1, . . . , yn−m) = AP (x̂ ◦ σ̃, m. . . , x̂ ◦ σ̃, y1 ◦ σ̃, . . . , yn−m ◦ σ̃).

By remark 4.1,

AP (x̂ ◦ σ̃, m. . . , x̂ ◦ σ̃, y1 ◦ σ̃, . . . , yn−m ◦ σ̃) = AP (x̂, m. . . , x̂, y1, . . . , yn−m) = L(x).

Thus, L(x ◦ σ) = L(x) for every σ ∈ Ξ. The continuity of AP implies that of L.
Hence, L is a continuous symmetric m-homogeneous polynomial on L∞. By the
induction hypothesis, L can be represented as

L(x) =
∑

k1+2k2+···+mkm=m

α
([a,b])
k1,...,km

(y1, . . . , yn−m)Rk1
1 (x) · · ·Rkm

m (x),

where the coefficients depend on [a, b] and y1, . . . , yn−m.
By proposition 4.2, there exist functions xj ∈ L∞ and constants u

(j)
k1,...,km

∈ C,
where j ∈ {1, . . . , (m + 1)m} and k1, . . . , km ∈ {0, . . . , m}, such that

α
([a,b])
k1,...,km

(y1, . . . , yn−m) =
(m+1)m∑

j=1

u
(j)
k1,...,km

L(xj).
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The algebra of symmetric analytic functions on L∞ 11

Thus,

α
([a,b])
k1,...,km

(y1, . . . , yn−m) =
(m+1)m∑

j=1

u
(j)
k1,...,km

AP (x̂j , m. . . , x̂j , y1, . . . , yn−m).

This implies that α
([a,b])
k1,...,km

: (L∞)n−m → C is a continuous (n−m)-linear mapping.
Therefore, by (4.4),

|α([a,b])
k1,...,km

(y1, . . . , yn−m)| � ‖α
([a,b])
k1,...,km

‖‖y1‖∞ · · · ‖yn−m‖∞.

Let

Ê =
{

t − a

b − a
: t ∈ E

}
.

Since E ⊂ [a, b], it follows that Ê ⊂ [0, 1]. Since

1̂Ê = 1E ,

it follows that

AP (1E , m. . . ,1E , y1, . . . , yn−m)

= AP (1̂Ê , m. . . , 1̂Ê , y1, . . . , yn−m) = L(1Ê)

=
∑

k1+2k2+···+mkm=m

α
([a,b])
k1,...,km

(y1, . . . , yn−m)Rk1
1 (1Ê) · · ·Rkm

m (1Ê)

=
∑

k1+2k2+···+mkm=m

α
([a,b])
k1,...,km

(y1, . . . , yn−m)µ(Ê)k1+k2+···+km .

Taking into account that

µ(Ê)k1+k2+···+km � µ(Ê) =
1

b − a
µ(E),

we have

|AP (1E , m. . . ,1E , y1, . . . , yn−m)|

� 1
b − a

µ(E)‖y1‖∞ · · · ‖yn−m‖∞
∑

k1+2k2+···+mkm=m

‖α
([a,b])
k1,...,km

‖.

Defining

C1(m, a, b) =
1

b − a

∑
k1+2k2+···+mkm=m

‖α
([a,b])
k1,...,km

‖,

we obtain the result.

Lemma 4.5. Let 1 � m < n and [a, b], [c1, d1], [c2, d2] ⊂ [0, 1] be such that µ([a, b] ∩
[c1, d1]) = 0, µ([a, b]∩[c2, d2]) = 0, µ([c1, d1]∩[c2, d2]) = 0 and µ([c1, d1]∪[c2, d2]) �
µ([a, b]). Let y1, . . . , yn−m ∈ L∞ be such that the restrictions of y1, . . . , yn−m to
[a, b] ∪ [c1, d1] ∪ [c2, d2] are constant. Then there exists a constant C(m, a, b) > 0
such that

|AP (1[c1,d1]∪[c2,d2],
m. . . ,1[c1,d1]∪[c2,d2], y1, . . . , yn−m)|

� µ([c1, d1] ∪ [c2, d2])‖y1‖∞ · · · ‖yn−m‖∞C(m, a, b).
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12 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Proof. Let

σ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a + t − c1 if t ∈ (c1, d1),
c1 + t − a if t ∈ (a, a + d1 − c1),
a + d1 − c1 + t − c2 if t ∈ (c2, d2),
c2 + t − (a + d1 − c1) if t ∈ (a + d1 − c1, a + d1 − c1 + d2 − c2),
t otherwise.

Evidently, σ1 ∈ Ξ.
By proposition 4.1,

AP (1[c1,d1]∪[c2,d2],
m. . . ,1[c1,d1]∪[c2,d2], y1, . . . , yn−m)

= AP (1[c1,d1]∪[c2,d2] ◦ σ1, m. . . ,1[c1,d1]∪[c2,d2] ◦ σ1, y1 ◦ σ1, . . . , yn−m ◦ σ1).

Since 1[c1,d1]∪[c2,d2]◦σ1 = 1[a,a+d1−c1+d2−c2] and yj◦σ1 = yj for every j ∈ {1, . . . , n−
m}, it follows that

AP (1[c1,d1]∪[c2,d2],
m. . . ,1[c1,d1]∪[c2,d2], y1, . . . , yn−m)

= AP (1[a,a+d1−c1+d2−c2],
m. . . ,1[a,a+d1−c1+d2−c2], y1, . . . , yn−m).

By lemma 4.4, there exists a constant C1(m, a, b) > 0 such that

|AP (1[a,a+d1−c1+d2−c2],
m. . . ,1[a,a+d1−c1+d2−c2], y1, . . . , yn−m)|

� µ([a, a + d1 − c1 + d2 − c2])‖y1‖∞ · · · ‖yn−m‖∞C1(m, a, b).

We set C(m, a, b) = C1(m, a, b). This completes the proof of the lemma.

Lemma 4.6. There exists a sequence {sk}∞
k=1 ⊂ [0, 1] such that limk→∞ sk = 0 and,

for every sequence {rk}∞
k=1 such that 0 � rk � sk,

|P (1[0,rk])| � 1
k

(‖P‖ + 1).

Proof of lemma 4.6. We set s1 = 1. By the continuity of P ,

|P (1[0,r1])| � ‖P‖ < ‖P‖ + 1

for every 0 � r1 � s1.
For k � 2 let t � 0 be such that kt < 1

2 . Since 1[0,kt] =
∑k

j=1 1[(j−1)t,jt], by the
polynomial formula (4.2),

P (1[0,kt]) =
∑

n1+n2+···+nk=n

n!
n1!n2! · · ·nk!

× AP (1[0,t], m. . . ,1[0,t],1[t,2t], n2. . . ,1[t,2t], . . . ,1[(k−1)t,kt],
nk. . . ,1[(k−1)t,kt]),

where n1, n2, . . . , nk ∈ N ∪ {0}. For every multi-index (n1, n2, . . . , nk) let

l = l(n1,n2,...,nk) ∈ {1, . . . , k}
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The algebra of symmetric analytic functions on L∞ 13

be the position of the first non-zero element in (n1, n2, . . . , nk). The sum of the
addends for which nl = n is equal to kP (1[0,t]) due to the symmetry of P . Therefore,

kP (1[0,t]) = P (1[0,kt]) −
∑

n1+n2+···+nk=n
nl<n

n!
n1!n2! · · ·nk!

× AP (1[0,t], n1. . . ,1[0,t],1[t,2t], n2. . . ,1[t,2t], . . . ,1[(k−1)t,kt],
nk. . . ,1[(k−1)t,kt]).

If nl < n, then by lemma 4.5, in which we set m = nl, [a, b] = [12 , 1], [c1, d1] =
[(l − 1)t, lt] and c2 = d2,

|AP (1[0,t], n1. . . ,1[0,t],1[t,2t], n2. . . ,1[t,2t], . . . ,1[(k−1)t,kt],
nk. . . ,1[(k−1)t,kt])|

� tC(nl,
1
2 , 1).

Taking into account that |P (1[0,kt])| � ‖P‖, we have

|kP (1[0,t])| � ‖P‖ + t
∑

n1+n2+···+nk=n
nl<n

n!
n1!n2! · · ·nk!

C(nl,
1
2 , 1).

We set

sk = min
{

(2k + 1)−1,

( ∑
n1+n2+···+nk=n

nl<n

n!
n1!n2! · · ·nk!

C(nl,
1
2 , 1)

)−1}
.

Then, for 0 � t � sk,

k|P (1[0,t])| � ‖P‖ + 1.

Thus,

|P (1[0,rk])| � 1
k

(‖P‖ + 1).

Lemma 4.7. Let

x =
N∑

j=1

hj1[aj ,bj ],

where hj ∈ C for j ∈ {1, . . . , N} and aj < bj � aj+1 for j ∈ {1, . . . , N − 1}. Then,
for every l ∈ {1, . . . , N} and for all sequences

{a
(k)
l }∞

k=1, {b
(k)
l }∞

k=1,

such that al � a
(k)
l � al + 1

2 min{sk, bl − al} and bl − 1
2 min{sk, bl − al} � b

(k)
l � bl,

lim
k→∞

P (x(k)) = P (x),

where

x(k) =
N∑

j=1,j �=l

hj1[aj ,bj ] + hl1[a(k)
l ,b

(k)
l ].
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14 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

Proof of lemma 4.7. Let δ(k) = −hl1[al,a
(k)
l ] ∪ [b(k)

l , bl]. Then x(k) = x + δ(k). By
the binomial formula (4.3),

P (x(k)) = P (x) + P (δ(k)) +
n−1∑
m=1

(
n

m

)
AP (δ(k), m. . . , δ(k), x, n−m. . . , x).

Since P is a symmetric n-homogeneous polynomial, it follows that

P (δ(k)) = (−hl)nP (1[al,a
(k)
l ]∪[b(k)

l ,bl]
) = (−hl)nP (1[0,a

(k)
l −al+bl−b

(k)
l ]).

Since a
(k)
l − al + bl − b

(k)
l � sk, we have by lemma 4.6 that

|P (1[0,a
(k)
l −al+bl−b

(k)
l ])| � 1

k
(‖P‖ + 1).

Thus,

|P (δ(k))| � 1
k

|hl|n(‖P‖ + 1).

By lemma 4.5, where [c1, d1] = [al, a
(k)
l ], [c2, d2] = [b(k)

l , bl], [a, b] = [al, bl] and y1 =
· · · = yn−m = x,

|AP (δ(k), m. . . , δ(k), x, n−m. . . , x)|
= |hl|m|AP (1[al,a

(k)
l ]∪[b(k)

l ,bl]
, m. . . ,1[al,a

(k)
l ]∪[b(k)

l ,bl]
, x, n−m. . . , x)|

� µ([al, a
(k)
l ] ∪ [b(k)

l , bl])|hl|m‖x‖n−m
∞ C(m, al, bl)

� sk|hl|m‖x‖n−m
∞ C(m, al, bl).

Therefore,

|P (x(k)) − P (x)| � 1
k

|hl|n(‖P‖ + 1) + sk

n−1∑
m=1

(
n

m

)
|hl|m‖x‖n−m

∞ C(m, al.bl).

Recall that limk→∞ sk = 0. Thus,

lim
k→∞

P (x(k)) = P (x).

We now continue with the proof of theorem 4.3. For M ∈ N we set

GM =
{ 2M∑

j=1

dj1[(j−1)/2M ,j/2M ] : dj ∈ C

}
and G =

∞⋃
M=1

GM .

Let

gM (d1, . . . , d2M ) = P

( 2M∑
j=1

dj1[(j−1)/2M ,j/2M ]

)
.

Clearly, gM is a symmetric polynomial of degree n of 2M scalar variables. It is well
known (see, for example, [12, ch. XI, § 53]) that there exists a polynomial pM such
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The algebra of symmetric analytic functions on L∞ 15

that

gM (d1, . . . , d2M ) = pM

(
1

2M

2M∑
j=1

dj ,
1

2M

2M∑
j=1

d2
j , . . . ,

1
2M

2M∑
j=1

dn
j

)
.

Hence, for every x ∈ GM ,

P (x) = pM (R1(x), R2(x), . . . , Rn(x)).

That is,

P (x) =
∑

k1+2k2+···+nkn=n

αk1,...,knRk1
1 (x)Rk2

2 (x) · · ·Rkn
n (x). (4.8)

Since GM ⊂ GM ′ for M � M ′, it follows that coefficients αk1,...,kn
do not depend

on M . Thus, (4.8) holds for every x ∈ G.
Let

D =
{

K

2M
: M ∈ N, K ∈ {0, 1, . . . , 2M}

}
.

and

x =
N∑

j=1

hj1[aj ,bj ],

where hj ∈ C for j ∈ {1, . . . , N}, aj < bj � aj+1 for j ∈ {1, . . . , N − 1}.
For every l ∈ {1, . . . , N} we choose sequences {a

(k)
l }∞

k=1, {b
(k)
l }∞

k=1 ⊂ D such that

al � a
(k)
l � al + 1

2 min{sk, bl − al},

bl − 1
2 min{sk, bl − al} � b

(k)
l � bl.

Then, for every multi-index κ = (κ1, κ2, . . . , κN ) ∈ NN , the function

xκ =
N∑

j=1

hj1[
a
(κj)
j ,b

(κj)
j

]
belongs to G. By using lemma 4.7 N times,

P (x) = lim
κ1→∞

lim
κ2→∞

· · · lim
κN →∞

P (xκ)

= lim
κ1→∞

lim
κ2→∞

· · · lim
κN →∞

∑
k1+2k2+···+nkn=n

αk1,...,knRk1
1 (xκ) · · ·Rkn

n (xκ)

=
∑

k1+2k2+···+nkn=n

αk1,...,knRk1
1 (x) · · ·Rkn

n (x).

Now let

x =
N∑

j=1

hj1Ej ,

where E1, E2, . . . , EN are disjoint measurable subsets of [0, 1]. By proposition 2.2,
there exists σ = σE1,...,EN

∈ Ξ such that

1Em
= 1[

∑m−1
j=1 µ(Ej),

∑m
j=1 µ(Ej)] ◦ σE1,...,EN
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16 P. Galindo, T. Vasylyshyn and A. Zagorodnyuk

for every m ∈ {1, . . . , N} almost everywhere on [0, 1]. By the symmetry of P ,

P (x) = P (x ◦ σ−1) = P

( N∑
j=1

hj1[
∑j−1

m=1 µ(Am),
∑j

m=1 µ(Am)]

)
=

∑
k1+2k2+···+nkn=n

αk1,...,kn
Rk1

1 (x) · · ·Rkn
n (x).

Hence, for every simple measurable function x, (4.8) holds. Since the set of simple
measurable functions is dense in L∞, the continuity of P yields that (4.8) holds for
every x ∈ L∞. This completes the proof of theorem 4.3.

The statement of theorem 4.3 for symmetric linear functionals is proved directly
in [17].

Corollary 4.8. Let P1, . . . , Pm be symmetric polynomials on L∞ such that
m⋂

i=1

Ker(Pi) = ∅.

Then there are symmetric polynomials Q1, . . . , Qm such that
∑m

i=1 PiQi = 1.

Proof. Let n = max(deg(Pi)). Since (Rj) is an algebraic basis for the symmetric
polynomials, there exist pi ∈ P(Cn) such that Pi(x) = pi(R1(x), . . . , Rn(x)). If
pi(θ1, . . . , θn) = 0 for all i = 1, . . . , m for some point (θ1, . . . , θn) ∈ Cn, then by
theorem 3.1 there exists xθ ∈ L∞ such that Ri(xθ) = θi for all i = 1, . . . , m. So xθ

would be a common zero of the Pi. Hence, the pi have no common zeros, and thus
by the Hilbert Nullstellensatz there are polynomials q1, . . . , qm ∈ P(Cn) such that∑m

i=1 piqi = 1. Set Qi = qi(R1, . . . , Rn) to complete the proof.

5. The space Hbs(L∞) and its spectrum

Let Hbs(L∞) be the Fréchet algebra of all entire symmetric functions F : L∞ → C

which are bounded on bounded sets endowed with the topology of uniform conver-
gence on bounded sets. Every such entire function can be described by its Taylor
series of continuous homogeneous polynomials which in turn are symmetric as well.
Therefore, by theorem 4.3, every F ∈ Hbs(L∞) can be represented as

F (x) =
∞∑

n=0

∑
k1+2k2+···+nkn=n

kj�0

αk1k2···knRk1
1 (x)Rk2

2 (x) · · ·Rkn
n (x),

where αk1k2···kn ∈ C and the series converges uniformly on bounded sets.
Next, we point out some topological properties of functions in Hbs(L∞).

Proposition 5.1. For every F ∈ Hbs(L∞) we have that

(a) its derivative mapping dF is weakly compact,

(b) limj F (uj)−F (vj) = 0 for bounded sequences (uj) and (vj) such that (uj −vj)
is weakly null.
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The algebra of symmetric analytic functions on L∞ 17

Proof. Let us first verify the statements for Rn. The multilinear form

(x1, . . . , xn) ∈ Ln× n· · · ×Ln
A−→

∫ 1

0
x1(t) · · ·xn(t) dt

is well defined and continuous. Recall that L∞ embeds continuously into Lp[0, 1]
for any p > 1, since |x|p � ‖x‖p

∞χ[0,1]. Therefore, the polynomials

x ∈ L∞
Ai�→ A(x, i. . . , x, ·, n−i. . . , ·) ∈ P (n−iL∞)

factor through the reflexive space Ln[0, 1]. Thus, they are weakly compact. In partic-
ular, the derivative mapping dRn : L∞ → L∗

∞ given by dRn(x)(y) = nA(x . . . , x, y)
is weakly compact.

To check (b), recall that L∞ has the Dunford–Pettis property. Hence, the weakly
compact polynomials Ai are weakly sequentially continuous, that is,

lim
j

Ai(uj − vj , i. . . , uj − vj , ·, n−i. . . , ·) = 0 for i = 1, . . . , n − 1.

Now, use the binomial formula (4.3) to see that

lim
j

P (uj) − P (vj) = lim
j

P (uj − vj + vj) − P (vj) = 0.

It is immediate that the derivative of the product of finitely many polynomials
with weakly compact derivative (respectively, satisfying statement (b)) has weakly
compact derivative (respectively, satisfies (b)). Hence, by theorem 4.3, every sym-
metric polynomial has a weakly compact derivative and satisfies (b).

Finally, for the Taylor series of F at 0, F =
∑

Pn, that is made up of symmetric
polynomials, we have that dF =

∑
dPn. Thus, we use [16, theorem 3.2] to deduce

that dF is weakly compact. Moreover, (b) holds by suitably approximating F by
symmetric polynomials.

Note that there are (necessarily non-symmetric) polynomials on L∞ whose de-
rivatives are not weakly compact (see [5, remark 3.3(b)]) or do not satisfy (b) [4,
example 2.4].

We denote by Mbs the spectrum of Hbs(L∞), that is, the set of all continuous
complex-valued homomorphisms (characters) on Hbs(L∞). As usual, we shall con-
sider Mbs endowed with the weak∗ topology, that is, the topology of convergence
against functions in Hbs(L∞). For every character φ ∈ Mbs we have

φ(F ) =
∞∑

n=0

∑
k1+2k2+···+nkn=n

kj�0

αk1k2···knφ(R1)k1φ(R2)k2 . . . φ(Rn)kn .

Thus, we see that φ is completely defined by its values on Rj (j ∈ N). Hence, we
can identify every φ ∈ Mbs with the sequence (ξ1, ξ2, . . . , ξn, . . . ), where ξj = φ(Rj)
(j ∈ N).

Proposition 5.2. Let R(φ) be the radius of φ ∈ Mbs. Then |ξn| � R(φ)n for every
n ∈ N.
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Proof. Let B denote the unit ball in L∞. Since |φ(F )| � ‖F‖R(φ)B , and ‖Rn‖B = 1,
we have |ξn| = |φ(Rn)| � ‖Rn‖R(φ)B = R(φ)n.

Note that for x ∈ L∞ the point-evaluation functional δx defined by

δx(F ) = F (x), F ∈ Hbs(L∞),

belongs to Mbs. For every sequence {ξn}∞
n=1 ⊂ C such that { n

√
|ξn|}∞

n=1 is bounded,
there exists, by theorem 3.1, xξ ∈ L∞ such that Rn(xξ) = ξn for every n ∈ N. Hence,
we have the following.

Corollary 5.3. Every φ ∈ Mbs is a point-evaluation functional.

Corollary 5.4. The set Mbs can be identified with the set ∆ ⊂ CN of all sequences
{ξn}∞

n=1 ⊂ C such that { n
√

|ξn|}∞
n=1 is bounded.

Corollary 5.5. The bounded subsets of Mbs are separable. Consequently, Mbs
itself is separable.

Proof. By the uniform boundedness principle the bounded subsets S of Mbs are
equicontinuous and hence weak∗ relatively compact, and as a consequence the weak∗

topology coincides on them with the Hausdorff topology of the convergence against
the symmetric polynomials.

Denote by Λ the identification mapping {ξn}∞
n=1 ∈ ∆ → φ ∈ Mbs. Endow Λ−1(S)

with the induced product topology of CN that is a separable metrizable space. Then
Λ−1(S) is a separable space. We shall deduce that S is separable just by checking
that Λ is continuous on Λ−1(S). Indeed, let ({ξk

n}∞
n=1)k ∈ Λ−1(S) be a convergent

sequence to, say, {µn}∞
n=1 ∈ Λ−1(S). Then, for φk := Λ({ξk

n}) and ω := Λ({µn}),
we have

lim
k

φk(Rn) = lim
k

ξk
n = µn = ω(Rn),

and also, according to theorem 4.3, limk φk(P ) = ω(P ) for all symmetric polyno-
mials P . Thus, by the comment above, limk φk = ω for the weak∗ topology, as
required.

To check that Mbs is separable, recall that there is a sequence (Li)i of weak∗

compact subsets of Mbs such that Mbs =
⋃

i Li, e.g. Li = {φ ∈ Mbs : R(ϕ) � i}.
Since for each of the Li there is a countable dense subset Di, it follows that

⋃
i Di

is a dense subset of Mbs.

6. Functions of exponential type

From the general theory of entire functions of exponential type we have the following
corollary.

Corollary 6.1. The set Mbs can be identified with the set Exp(C) of all functions
of exponential type on C vanishing at the origin by

Mbs 
 φ �
∞∑

n=1

ξnzn

n!
=

∞∑
n=1

φ(Rn)zn

n!
∈ Exp(C).

The next theorem gives a new representation of functions of exponential type.
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Theorem 6.2. Let g : C → C be a function of exponential type with g(0) = 1. Then
there exists x ∈ L∞ such that

g(z) = 1 +
∞∑

n=1

Rn(x)zn

n!
=

∫ 1

0
ezx(t) dt, z ∈ C.

Proof. The proof follows from corollaries 5.3 and 6.1 and direct calculations.

Note that this representation is not unique because for example Rn(e2πit) = 0
for every n.

By [15], every Lebesgue–Rohlin space with continuous measure (Ω, F , ν) is iso-
morphic modulo zero to [0, 1] with Lebesgue measure. Therefore, all of the results
of this work are also valid for L∞ on a Lebesgue–Rohlin space with continuous
measure.
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