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Abstract
We consider on the space 𝓁∞ polynomials that are invariant regarding permutations

of the sequence variable or regarding finite permutations. Accordingly, they are trivial

or factor through 𝑐0. The analogous study, with analogous results, is carried out on

𝐿∞[0,+∞), replacing the permutations of 𝐍 by measurable bijections of [0,+∞) that

preserve the Lebesgue measure.
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1 INTRODUCTION

We continue the study of the analytic functions on complex Banach spaces that are invariant under the action of a certain set

of operators acting on the given space. Such invariant functions have been vaguely called “symmetric” in the mathematical

literature.

The topic of “symmetric” functions in infinite dimensions can be traced back to [9] where the case of the Hilbert space 𝓁2 was

considered. Since then research on the matter either in sequence spaces, spaces of integrable functions or continuous functions

has been done. Sometimes symmetry is so restrictive that the only analytic symmetric functions are the constant ones like for

𝑐0, while at other times there are algebraically independent sequences that generate all symmetric polynomials, as it happens

with 𝓁𝑝, 1 ≤ 𝑝 <∞, ([7]), that also separate the points in the base space ([1]). In all these cases, “symmetric” means invariant

under permutations of the variable sequence.

When turning to function spaces like 𝐿𝑝([0, 1]), 𝑝 ≥ 1, a different notion of symmetry has been used: Invariance under

bijections of [0, 1] that preserve the Lebesgue measure. There it turns out that on 𝐿𝑝([0, 1]), 𝑝 <∞, there is finite algebraic

basis of the “symmetric” polynomials ([7] and [2]). A completely different situation occurs in 𝐿∞([0, 1]), where an algebraic

basis is provided by the sequence of the integrals of the power functions ([6]). Other aspects of the theme have been treated in

these references as well as in [3], [4] and [5].

Here we focus on 𝓁∞ and 𝐿∞[0,+∞). In the case of 𝓁∞ we deal with either the set of operators arising from all permutations

of 𝐍 or the subset of those arising from finite permutations of 𝐍, while for 𝐿∞[0,+∞) we replace the permutations of 𝐍
by measurable bijections of [0,+∞) that preserve the Lebesgue measure and by the subset of those that are eventually the

identity, respectively. Accordingly, we have both the symmetric and the finitely symmetric cases. These are quite different since

all symmetric polynomials on 𝓁∞ and 𝐿∞[0,+∞) are trivial, while the algebra of all finitely symmetric analytic functions on

𝓁∞ turns to be identified with the algebra of analytic (not necessarily symmetric) functions on the quotient space 𝓁∞∕𝑐0. Realize

in passing how different the situation in 𝐿∞[0, 1] and 𝐿∞[0,+∞) is. In Section 5 we study the algebra of all finitely symmetric

analytic functions on 𝐿∞[0,+∞) that can be described in an analogous way to that of 𝓁∞, see Corollary 6.7. Our results stress

the presumable fact that on a given Banach space, different meanings attributed to “symmetry” lead to drastically distinct results.
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Nevertheless, this is not always so: there is no difference for symmetric and finitely symmetric polynomials on 𝑐0, since they are

all trivial.

2 PRELIMINARIES

A mapping 𝑃 ∶ 𝑋 → 𝑌 , where 𝑋 and 𝑌 are Banach spaces with norms ‖ ⋅ ‖𝑋 and ‖ ⋅ ‖𝑌 respectively, is called an

𝑛-homogeneous polynomial if there exists an 𝑛-linear symmetric mapping 𝐴𝑃 ∶ 𝑋𝑛 → 𝑌 such that

𝑃 (𝑥) = 𝐴𝑃 (𝑥,… , 𝑥
⏟⏟⏟

𝑛

)

for every 𝑥 ∈ 𝑋. Here “symmetric” means that 𝐴𝑃
(
𝑥𝜏(1),… , 𝑥𝜏(𝑛)

)
= 𝐴𝑃 (𝑥1,… , 𝑥𝑛) for every permutation 𝜏 ∶ {1,… , 𝑛} →

{1,… , 𝑛}. The mapping 𝐴𝑃 is called the 𝑛-linear symmetric mapping associated with 𝑃 .

It is known (see e.g. [8], Theorem 1.10) that 𝐴𝑃 can be recovered from 𝑃 by means of the so-called Polarization Formula:

𝐴𝑃 (𝑥1,… , 𝑥𝑛) =
1
𝑛!2𝑛

∑
𝜀1,…,𝜀𝑛=±1

𝜀1 … 𝜀𝑛𝑃 (𝜀1𝑥1 +… + 𝜀𝑛𝑥𝑛). (2.1)

We shall use the Polynomial Formula (see [8], Theorem 1.8)

𝑃 (𝑥1 +… + 𝑥𝑘) =
∑

𝑛1+…+𝑛𝑘=𝑛

𝑛!
𝑛1!… 𝑛𝑘!

𝐴𝑃 (𝑥1,… , 𝑥1
⏟⏞⏞⏟⏞⏞⏟

𝑛1

, 𝑥2,… , 𝑥2
⏟⏞⏞⏟⏞⏞⏟

𝑛2

,… , 𝑥𝑘,… , 𝑥𝑘
⏟⏞⏞⏟⏞⏞⏟

𝑛𝑘

) (2.2)

and its corollary, the Binomial Formula (see [8], Corollary 1.9)

𝑃 (𝑥 + 𝑦) =
𝑛∑
𝑚=0

(
𝑛
𝑚

)
𝐴𝑃 (𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑚

, 𝑦,… , 𝑦
⏟⏟⏟
𝑚

). (2.3)

Lemma 2.1. Let 𝐽 ∶ 𝑋 → 𝑋 be a linear operator and let 𝑃 be an 𝑛-homogeneous polynomial. Then 𝑃 (𝐽𝑥) = 𝑃 (𝑥) for every
𝑥 ∈ 𝑋 if and only if 𝐴𝑃 (𝐽𝑥1,… , 𝐽𝑥𝑛) = 𝐴𝑃 (𝑥1,… , 𝑥𝑛) for every 𝑥1,… , 𝑥𝑛 ∈ 𝑋.

As usual,𝐻𝑏(𝑋) denotes the Fréchet space of holomorphic functions of bounded type on𝑋, that is the space of holomorphic

functions on 𝑋 that are bounded on bounded sets in 𝑋 endowed with the topology of uniform convergence on bounded sets.

3 SYMMETRIC POLYNOMIALS ON 𝓵∞

A function 𝑓 on 𝓁∞ is called symmetric if for every bijection 𝜎 ∶ 𝐍 → 𝐍 and every 𝑥 ∈ 𝓁∞

𝑓 (𝑥 ◦ 𝜎) = 𝑓 (𝑥).

For 𝐸 ⊂ 𝐍 let us denote 𝟏𝐸 the sequence (𝑥(1),… , 𝑥(𝑚),…) such that

𝑥(𝑚) =
{

1, if 𝑚 ∈ 𝐸,
0, if 𝑚 ∈ 𝐍 ⧵ 𝐸.

For an infinite set 𝐸 ⊂ 𝐍 we denote 𝑣𝐸 an increasing bijection from 𝐍 to 𝐸.

Proposition 3.1. Let 𝜑 ∶ 𝓁∞ → 𝐂 be a symmetric (not necessarily linear) function such that

𝜑
(
𝟏𝐸1∪𝐸2

)
= 𝜑

(
𝟏𝐸1

)
+ 𝜑

(
𝟏𝐸2

)
(3.1)

for every disjoint sets 𝐸1, 𝐸2 ⊂ 𝐍. Then 𝜑(𝟏𝐸) = 0 for every 𝐸 ⊂ 𝐍.
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Proof. Let 𝐹 and 𝐹1 be infinite subsets of 𝐍 such that 𝐍 ⧵ 𝐹 and 𝐍 ⧵ 𝐹1 are also infinite. Let us show that 𝜑
(
𝟏𝐹

)
= 𝜑

(
𝟏𝐹1

)
.

Note that the mapping

𝜎𝐹 ,𝐹1 (𝑚) =

{
𝑣𝐹1

(
𝑣−1
𝐹
(𝑚)

)
, if 𝑚 ∈ 𝐹 ,

𝑣𝐍⧵𝐹1
(
𝑣−1𝐍⧵𝐹 (𝑚)

)
, if 𝑚 ∈ 𝐍 ⧵ 𝐹 ,

is a bijection from 𝐍 to 𝐍 such that 𝜎𝐹 ,𝐹1 (𝐹 ) = 𝐹1 and 𝜎𝐹 ,𝐹1 (𝐍 ⧵ 𝐹 ) = 𝐍 ⧵ 𝐹1. Therefore 𝟏𝐹 = 𝟏𝐹1 ◦ 𝜎𝐹 ,𝐹1 . By the symmetry

of 𝜑,

𝜑
(
𝟏𝐹

)
= 𝜑

(
𝟏𝐹1

)
. (3.2)

Let 𝐴 be an infinite subset of 𝐍 such that 𝐍 ⧵ 𝐴 is also infinite. We check that 𝜑
(
𝟏𝐴

)
= 0. Let 𝐴1 and 𝐴2 be disjoint infinite

subsets of 𝐴 such that 𝐴 = 𝐴1 ∪ 𝐴2. Then, by (3.2),

𝜑
(
𝟏𝐴

)
= 𝜑

(
𝟏𝐴1

)
= 𝜑

(
𝟏𝐴2

)
.

On the other hand, by (3.1),

𝜑(𝟏𝐴) = 𝜑
(
𝟏𝐴1

)
+ 𝜑

(
𝟏𝐴2

)
.

Therefore

𝜑
(
𝟏𝐴

)
= 0. (3.3)

Let 𝐵 be an arbitrary infinite subset of 𝐍. Let us see that 𝜑
(
𝟏𝐵

)
= 0. Let 𝐵1 and 𝐵2 be disjoint infinite subsets of 𝐵 such that

𝐵 = 𝐵1 ∪ 𝐵2. Then 𝐍 ⧵ 𝐵1 and 𝐍 ⧵ 𝐵2 are infinite. Therefore, by (3.3), 𝜑
(
𝟏𝐵1

)
= 0 and 𝜑

(
𝟏𝐵2

)
= 0. By (3.1),

𝜑
(
𝟏𝐵

)
= 𝜑

(
𝟏𝐵1

)
+ 𝜑

(
𝟏𝐵2

)
.

Thus,

𝜑
(
𝟏𝐵

)
= 0. (3.4)

Let 𝐶 be a finite subset of 𝐍. Then, by (3.1),

𝜑
(
𝟏𝐍

)
= 𝜑

(
𝟏𝐶

)
+ 𝜑

(
𝟏𝐍⧵𝐶

)
.

Since 𝐍 and 𝐍 ⧵ 𝐶 are both infinite, by (3.4), 𝜑
(
𝟏𝐍

)
= 0 and 𝜑

(
𝟏𝐍⧵𝐶

)
= 0. Therefore, 𝜑

(
𝟏𝐶

)
= 0. □

Theorem 3.2. Let 𝑃 ∶ 𝓁∞ → 𝐂 be a symmetric continuous 𝑛-homogeneous polynomial. Then 𝑃 = 0.

Proof. We proceed by induction on 𝑛. In the case 𝑛 = 1 the polynomial 𝑃 is a symmetric continuous linear functional. Let

𝑥 =
𝑁∑
𝑗=1
𝑎𝑗𝟏𝐵𝑗 , (3.5)

where𝑁 ∈ 𝐍, 𝑎1,… , 𝑎𝑁 ∈ 𝐂 and 𝐵1,… , 𝐵𝑁 are disjoint subsets of 𝐍. By the linearity of 𝑃 ,

𝑃 (𝑥) =
𝑁∑
𝑗=1
𝑎𝑗𝑃

(
𝟏𝐵𝑗

)
.

By Proposition 3.1, 𝑃
(
𝟏𝐵𝑗

)
= 0. Therefore 𝑃 (𝑥) = 0. Note that the set of sequences of the form (3.5) is dense in 𝓁∞. Therefore,

by the continuity of 𝑃 , 𝑃 (𝑦) = 0 for every 𝑦 ∈ 𝓁∞.

Assume that the statement of the theorem holds for every 𝑘 ∈ {1,… , 𝑛 − 1}. We prove it for 𝑛. Let 𝐴𝑃 ∶ (𝓁∞)𝑛 → 𝐂 be the

continuous 𝑛-linear symmetric form associated with 𝑃 . By Lemma 2.1, where 𝐽 ∶ 𝑥 → 𝑥 ◦ 𝜎,

𝐴𝑃 (𝑥1 ◦ 𝜎,… , 𝑥𝑛 ◦ 𝜎) = 𝐴𝑃 (𝑥1,… , 𝑥𝑛) (3.6)

for every 𝑥1,… , 𝑥𝑛 ∈ 𝓁∞ and for every bijection 𝜎 ∶ 𝐍 → 𝐍.
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Lemma 3.3. Let 𝐹1,… , 𝐹𝑙 be disjoint subsets of 𝐍, where 2 ≤ 𝑙 ≤ 𝑛. Then

𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙 ,… , 𝟏𝐹𝑙
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘𝑙

)
= 0,

where 𝑘1,… , 𝑘𝑙 ∈ 𝐍 such that 𝑘1 +… + 𝑘𝑙 = 𝑛.

Proof. Without loss of generality we can assume that the set Ω = 𝐍 ⧵
⋃𝑙−1
𝑠=1 𝐹𝑠 is infinite. Let 𝑤 ∶ Ω → 𝐍 be a bijection. Let

𝑦(𝑚) =
{
𝑦(𝑤(𝑚)), if 𝑚 ∈ Ω,
0, if 𝑚 ∈ 𝐍 ⧵Ω,

for 𝑦 ∈ 𝓁∞. Let us define a mapping 𝑄 ∶ 𝓁∞ → 𝐂 by

𝑄 ∶ 𝑦 → 𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙−1 ,… , 𝟏𝐹𝑙−1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙−1

, 𝑦,… , 𝑦
⏟⏟⏟
𝑘𝑙

)
.

Note that 𝑄 is a continuous 𝑘𝑙-homogeneous polynomial. Let us show that 𝑄 is symmetric. Let 𝜎 ∶ 𝐍 → 𝐍 be a bijection. Note

that

𝑦 ◦ 𝜎 = 𝑦 ◦ 𝜎,

where 𝜎 ∶ 𝐍 → 𝐍 is defined by

𝜎(𝑚) =
{
𝑤−1(𝜎(𝑤(𝑚))), if 𝑚 ∈ Ω,
𝑚, 𝑚 ∈ 𝐍 ⧵Ω.

Evidently, 𝜎 is a bijection. Since 𝜎(𝑚) = 𝑚 for 𝑚 ∈ 𝐍 ⧵Ω, it follows that 𝟏𝐹𝑠 ◦ 𝜎 = 𝟏𝐹𝑠 for 𝑠 ∈ {1,… , 𝑙 − 1}. Therefore

𝑄(𝑦 ◦ 𝜎) = 𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙−1 ,… , 𝟏𝐹𝑙−1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙−1

, 𝑦 ◦ 𝜎,… , 𝑦 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)

= 𝐴𝑃
(
𝟏𝐹1 ◦ 𝜎,… , 𝟏𝐹1 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙−1 ◦ 𝜎,… , 𝟏𝐹𝑙−1 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙−1

, 𝑦 ◦ 𝜎,… , 𝑦 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)
.

By (3.6),

𝐴𝑃
(
𝟏𝐹1 ◦ 𝜎,… , 𝟏𝐹1 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙−1 ◦ 𝜎,… , 𝟏𝐹𝑙−1 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙−1

, 𝑦 ◦ 𝜎,… , 𝑦 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)
.

= 𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙−1 ,… , 𝟏𝐹𝑙−1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙−1

, 𝑦,… , 𝑦
⏟⏟⏟
𝑘𝑙

)
= 𝑄(𝑦).

Hence, 𝑄(𝑦 ◦ 𝜎) = 𝑄(𝑦). Thus, 𝑄 is a continuous 𝑘𝑙-homogeneous symmetric polynomial. Since 𝑘𝑙 < 𝑛, it follows that 𝑄 = 0
by the induction hypothesis. Let𝐻 = 𝑤(𝐹𝑙). Then 𝟏𝐻 = 𝟏𝐹𝑙 . Therefore

𝑄(𝟏𝐻 ) = 𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙 ,… , 𝟏𝐹𝑙
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘𝑙

)
.

Thus,

𝐴𝑃
(
𝟏𝐹1 ,… , 𝟏𝐹1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐹𝑙 ,… , 𝟏𝐹𝑙
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘𝑙

)
= 0.

□
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Let 𝐸1 and 𝐸2 be disjoint subsets of 𝐍. By the Binomial formula (2.3),

𝑃
(
𝟏𝐸1∪𝐸2

)
= 𝑃

(
𝟏𝐸1

)
+
𝑛−1∑
𝑗=1

𝑛!
𝑗!(𝑛 − 𝑗)!

𝐴𝑃
(
𝟏𝐸1
,… , 𝟏𝐸1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛−𝑗

, 𝟏𝐸2
,… , 𝟏𝐸2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑗

)
+ 𝑃

(
𝟏𝐸2

)
.

By Lemma 3.3,

𝐴𝑃
(
𝟏𝐸1
,… , 𝟏𝐸1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛−𝑗

, 𝟏𝐸2
,… , 𝟏𝐸2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑗

)
= 0.

Therefore 𝑃
(
𝟏𝐸1∪𝐸2

)
= 𝑃

(
𝟏𝐸1

)
+ 𝑃

(
𝟏𝐸2

)
. Thus, by Proposition 3.1,

𝑃
(
𝟏𝐸

)
= 0 (3.7)

for every 𝐸 ⊂ 𝐍.
For 𝑥 of the form (3.5), by the Polynomial formula (2.2),

𝑃 (𝑥) = 𝑎𝑛1𝑃
(
𝟏𝐵1

)
+⋯ + 𝑎𝑛𝑁𝑃

(
𝟏𝐵𝑛

)
+

∑
𝑘1+⋯+𝑘𝑙=𝑛, 𝑙≥2

𝑛!
𝑘1!… 𝑘𝑙!

𝐴𝑃
(
𝟏𝐵1 ,… , 𝟏𝐵1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘1

,… , 𝟏𝐵𝑙 ,… , 𝟏𝐵𝑙
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘𝑙

)
.

Therefore, by (3.7) and by Lemma 3.3, 𝑃 (𝑥) = 0. Since the set of sequences of the form (3.5) is dense in 𝓁∞ and 𝑃 is continuous,

it follows that 𝑃 (𝑦) = 0 for every 𝑦 ∈ 𝓁∞. □

4 FINITELY SYMMETRIC ANALYTIC FUNCTIONS ON 𝓵∞

Definition 4.1. Let 𝜎 ∶ 𝐍 → 𝐍 be a bijection. We call 𝜎 a finite bijection if there is 𝑎 ∈ 𝐍 such that the restriction of 𝜎 to

{𝑎, 𝑎 + 1,…} is the identity map. A function 𝑓 on 𝓁∞ is called finitely symmetric if

𝑓 (𝑥 ◦ 𝜎) = 𝑓 (𝑥)

for every finite bijection 𝜎 ∶ 𝐍 → 𝐍 and for every 𝑥 ∈ 𝓁∞.

Note that there are a lot of finitely symmetric analytic functions on 𝓁∞. For example, if  is a free ultrafilter on 𝐍 and 𝑔 an

entire function on 𝐂, then

𝑔(𝑥) = lim 𝑔(𝑥𝑛), 𝑥 = (𝑥𝑛) ∈ 𝓁∞,

is a finitely symmetric entire function of bounded type on 𝓁∞. Also every Banach limit is a finitely symmetric linear functional

on 𝓁∞. Let us denote by 𝑓𝑠(𝓁∞) the algebra of all finitely symmetric polynomials and 𝐻𝑏𝑓𝑠(𝓁∞) the algebra of all finitely

symmetric entire functions of bounded type on 𝓁∞.

Proposition 4.2. Let 𝑓 ∈ 𝐻𝑏𝑓𝑠(𝓁∞). Then the restriction of 𝑓 to 𝑐0 is a constant function.

Proof. The restriction of 𝑓 to 𝑐0 is finitely symmetric. Since 𝑐0 is separable and 𝑓 is continuous, it follows (see [7, Section 1])

that the restriction of 𝑓 to 𝑐0 is symmetric. But it is well-known that there are no nontrivial symmetric analytic functions on 𝑐0.

See [7, Theorem 1.1]. □

Theorem 4.3. An entire function 𝑓 ∈ 𝐻𝑏(𝓁∞) is finitely symmetric if and only if it factors through 𝑐0, that is, there is 𝑓 ∈
𝐻𝑏(𝓁∞∕𝑐0) such that 𝑓 = 𝑓 ◦, where  is the quotient map from 𝓁∞ to 𝓁∞∕𝑐0.

Proof. For every finite permutation 𝜎 ∶ 𝐍 → 𝐍 and 𝑥 ∈ 𝓁∞ we have 𝑥 − 𝑥 ◦ 𝜎 ∈ 𝑐0 and so (𝑥) = (𝑥 ◦ 𝜎), hence 𝑓 ◦(𝑥) =
𝑓 ◦(𝑥 ◦ 𝜎).

In order to prove the reverse statement, it is enough to show that

𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥)

for every continuous finitely symmetric 𝑛-homogeneous polynomial 𝑃 ∶ 𝓁∞ → 𝐂 and for every 𝑥 ∈ 𝓁∞ and 𝑦 ∈ 𝑐0.
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Let 𝐴𝑃 be the continuous 𝑛-linear symmetric form associated with 𝑃 . By the Binomial formula (2.3),

𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥) + 𝑃 (𝑦) +
𝑛−1∑
𝑘=1

𝑛!
𝑘!(𝑛 − 𝑘)!

𝐴𝑃
(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

)
.

By Proposition 4.2, 𝑃 (𝑦) = 0. We will prove that 𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

) = 0 for 𝑘 ∈ {1,… , 𝑛 − 1}.

First we assume that 𝑦 has a finite support, that is, 𝑦 ∈ 𝑐00. Let 𝐾 = max{𝑗 ∈ 𝐍 ∶ 𝑦(𝑗) ≠ 0} and Ω0 = {1,… , 𝐾}. Let

Ω1,… ,Ω𝑛 be some disjoint infinite sets such that 𝐍 ⧵Ω0 =
⋃𝑛
𝑗=1 Ω𝑗 . For 𝑗 ∈ {0,… , 𝑛} let us define the sequences

𝑥𝑗(𝑚) =
{
𝑥(𝑚), if 𝑚 ∈ Ω𝑗 ,
0, if 𝑚 ∈ 𝐍 ⧵Ω𝑗 .

Since 𝑥 =
∑𝑛
𝑗=0 𝑥𝑗 , it follows that

𝐴𝑃
(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

)
=

𝑛∑
𝑗1=0

…
𝑛∑

𝑗𝑛−𝑘=0
𝐴𝑃

(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥𝑗1 ,… , 𝑥𝑗𝑛−𝑘
)
.

Let 𝑗1,… , 𝑗𝑛−𝑘 ∈ {0,… , 𝑛}. Let us prove that 𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥𝑗1 ,… , 𝑥𝑗𝑛−𝑘 ) = 0. Without loss of generality we can assume that

𝑗1 = ⋯ = 𝑗𝑘0 = 0, 𝑗𝑘0+1 = ⋯ = 𝑗𝑘0+𝑘1 = 1,… , 𝑗𝑘0+…+𝑘𝑙−1+1 = ⋯ = 𝑗𝑘0+⋯+𝑘𝑙 = 𝑙, where 𝑙 ∈ {0,… , 𝑛 − 𝑘}, 𝑘0 ≥ 0, 𝑘1,… ,
𝑘𝑙 ≥ 1 (in the case 𝑙 ≥ 1) and 𝑘0 + 𝑘1 +⋯ + 𝑘𝑙 = 𝑛 − 𝑘. Let𝑤′ ∶ Ω𝑙+1 → 𝐍 ⧵Ω0 be an increasing bijection. We define a bijec-

tion 𝑤 ∶ Ω0 ∪ Ω𝑙+1 → 𝐍 by

𝑤(𝑚) =
{
𝑚, if 𝑚 ∈ Ω0,
𝑤′(𝑚), if 𝑚 ∈ Ω𝑙+1.

For 𝑧 ∈ 𝓁∞ let

𝑧(𝑚) =
{

(𝑧 ◦𝑤)(𝑚), if 𝑚 ∈ Ω0 ∪ Ω𝑙+1,
0, if 𝑚 ∈ 𝐍 ⧵

(
Ω0 ∪ Ω𝑙+1

)
.

Let 𝐵 ∶ (𝓁∞)𝑘+𝑘0 → 𝐂,

𝐵 ∶ (𝑧1,… , 𝑧𝑘+𝑘0 ) → 𝐴𝑃 (𝑧1,… , 𝑧𝑘+𝑘0 , 𝑥1,… , 𝑥1⏟⏞⏞⏟⏞⏞⏟
𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

).

Evidently, 𝐵 is a continuous symmetric (𝑘 + 𝑘0)-linear form. For each finite bijection 𝜎 ∶ 𝐍 → 𝐍, we construct a finite bijection

𝜎 ∶ 𝐍 → 𝐍 according to

𝜎(𝑚) =
{(
𝑤−1 ◦ 𝜎 ◦𝑤

)
(𝑚), if 𝑚 ∈ Ω0 ∪ Ω𝑙+1,

𝑚, if 𝑚 ∈ 𝐍 ⧵
(
Ω0 ∪ Ω𝑙+1

)
.

It can be checked that 𝑧 ◦ 𝜎 = 𝑧 ◦ 𝜎 and 𝑥𝑗 ◦ 𝜎 = 𝑥𝑗 for 𝑧 ∈ 𝓁∞, and 𝑗 ∈ {1,… , 𝑙}. Therefore, for every 𝑧1,… , 𝑧𝑘+𝑘0 ∈ 𝓁∞ and

for every finite bijection 𝜎 ∶ 𝐍 → 𝐍

𝐵(𝑧1 ◦ 𝜎,… , 𝑧𝑘+𝑘0 ◦ 𝜎) = 𝐴𝑃
(
𝑧1 ◦ 𝜎,… , 𝑧𝑘+𝑘0 ◦ 𝜎, 𝑥1 ◦ 𝜎,… , 𝑥1 ◦ 𝜎⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘1

,… , 𝑥𝑙 ◦ 𝜎,… , 𝑥𝑙 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)
= 𝐴𝑃

(
𝑧1,… , 𝑧𝑘+𝑘0 , 𝑥1,… , 𝑥1⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

)
= 𝐵

(
𝑧1,… , 𝑧𝑘+𝑘0

)
.
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Thus, the restriction of 𝐵 to the diagonal is a continuous finitely symmetric (𝑘 + 𝑘0)-homogeneous polynomial. By Proposition

4.2, 𝐵(𝑧,… , 𝑧) = 0 for every 𝑧 ∈ 𝑐00. By the Polarization formula (2.1), 𝐵
(
𝑧1,… , 𝑧𝑘+𝑘0

)
= 0 for every 𝑧1,… , 𝑧𝑘+𝑘0 ∈ 𝑐00.

Since 𝑦 and 𝑥0 belong to 𝑐00, it follows that 𝐵(𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

) = 0, i.e.

𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

, 𝑥1,… , 𝑥1
⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

) = 0.

Note that 𝑦 = 𝑦 and 𝑥0 = 𝑥0. Therefore,

𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

, 𝑥1,… , 𝑥1
⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

) = 0.

Hence, 𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥) for every 𝑥 ∈ 𝓁∞ and 𝑦 ∈ 𝑐00. Since each element in 𝑐0 can be approximated by elements with finite

support and by the continuity of 𝑃 we have 𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥) for every 𝑦 ∈ 𝑐0, 𝑥 ∈ 𝓁∞. □

Let𝑀𝑏(𝓁∞), 𝑀𝑏𝑓𝑠(𝓁∞) and𝑀𝑏
(
𝓁∞∕𝑐0

)
be the spectrum of𝐻𝑏(𝓁∞), 𝐻𝑏𝑓𝑠(𝓁∞) and𝐻𝑏

(
𝓁∞∕𝑐0

)
, respectively. Recall that

for a given Fréchet algebra , the spectrum,𝑀(), is the set of all continuous scalar-valued homomorphisms defined on .

Corollary 4.4. The algebra of finitely symmetric entire functions of bounded type on 𝓁∞ is isomorphic to𝐻𝑏
(
𝓁∞∕𝑐0

)
. Moreover,

the mapping 𝜈 ∈𝑀𝑏(𝓁∞) → 𝜈 ◦𝑡 ∈𝑀𝑏(𝓁∞∕𝑐0
)

is onto.

Proof. The mapping 𝑡 ∶ 𝐻𝑏(𝓁∞∕𝑐0
)
→ 𝐻𝑏𝑓𝑠(𝓁∞), given by 𝑡(𝑓 ) = 𝑓 ◦ is an algebra isomorphism.

To prove the second statement, notice that the group 𝐺 of all finite permutations on 𝐍 is the union of the finite subgroups

𝐺𝑎 ⊂ 𝐺 of permutations that coincide with the identity on [𝑎,+∞) ∩ 𝐍. So, the assumptions of [2, Theorem 2.5 and Corollary

2.7] are fulfilled and consequently, the mapping 𝑀𝑏(𝓁∞)
𝜌
→𝑀𝑏𝑓𝑠(𝓁∞) defined by taking the restriction to𝐻𝑏𝑓𝑠(𝓁∞) is onto.

Hence, given 𝜇 ∈𝑀𝑏
(
𝓁∞∕𝑐0

)
≈𝑀𝑏𝑓𝑠(𝓁∞), there is 𝜈 ∈𝑀𝑏(𝓁∞) such that 𝜇 = 𝜈|𝐻𝑏𝑓𝑠(𝓁∞)

= 𝜈 ◦𝑡. □

Remark 4.5. Since there is in 𝓁∞∕𝑐0 a (necessarily) complemented copy of 𝓁∞, (see for instance [10]) with projection, say, 𝜋,

every 𝑓 ∈ 𝐻𝑏(𝓁∞) gives rise to 𝑓 ◦𝜋, a finitely symmetric analytic function on 𝓁∞.

5 SYMMETRIC POLYNOMIALS ON 𝑳∞[𝟎,+∞)

Let Ω be a Lebesgue measurable subset of [0,+∞). Let 𝐿∞(Ω) be the complex Banach space of all Lebesgue measurable

essentially bounded complex-valued functions 𝑥 on Ω with norm

‖𝑥‖∞ = ess sup
𝑡∈Ω

|𝑥(𝑡)|.
Let ΞΩ be the set of all measurable bijections of Ω that preserve the measure.

A function 𝐹 ∶ 𝐿∞(Ω) → 𝐂 is called symmetric if for every 𝑥 ∈ 𝐿∞(Ω) and every 𝜎 ∈ ΞΩ

𝐹 (𝑥 ◦ 𝜎) = 𝐹 (𝑥).

Let us denote 𝑠(𝑛𝐿∞(Ω)) the Banach space of all continuous 𝑛-homogeneous symmetric polynomials on 𝐿∞(Ω). We shall

prove that if 𝜇(Ω) = +∞, then 𝑠(𝑛𝐿∞(Ω)) = {0} for every 𝑛 ∈ 𝐍. First, we prove some auxiliary results.

Let𝐷 =
⋃∞
𝑘=1[𝛼𝑘, 𝛽𝑘), where 0 ≤ 𝛼1 < 𝛽1 ≤ 𝛼2 < 𝛽2 ≤ ⋯, such that𝜇(𝐷) = +∞. We define the mapping 𝛿𝐷 ∶ [0,+∞) → 𝐷

in the following way. For 𝑡 ∈ [0,+∞) there exists 𝑚 ∈ 𝐍 such that
∑𝑚−1
𝑘=1 (𝛽𝑘 − 𝛼𝑘) ≤ 𝑡 < ∑𝑚

𝑘=1(𝛽𝑘 − 𝛼𝑘). We set

𝛿𝐷(𝑡) = 𝛼𝑚 + 𝑡 −
𝑚−1∑
𝑘=1

(𝛽𝑘 − 𝛼𝑘). (5.1)

It is easy to check that 𝛿𝐷 is a measure preserving bijection.

Let us denote Δ1 =
⋃∞
𝑘=1[2𝑘 − 2, 2𝑘 − 1) and Δ2 =

⋃∞
𝑘=1[2𝑘 − 1, 2𝑘).
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For every 𝐸 ⊂ [0,+∞) let

𝟏𝐸(𝑡) =
{

1, if 𝑡 ∈ 𝐸,
0, otherwise.

Note that

𝟏𝐸 = 𝟏𝜎(𝐸) ◦ 𝜎

a.e. on [0,+∞) for every measurable set 𝐸 ⊂ [0,+∞) and for every 𝜎 ∈ Ξ[0,+∞).

Proposition 5.1. For every measurable set 𝐸 ⊂ [0,+∞) there exists 𝜎𝐸 ∈ Ξ[0,+∞) such that

𝟏𝐸 = 𝟏Δ ◦ 𝜎𝐸

a.e. on [0,+∞), where

Δ =
⎧⎪⎨⎪⎩
[0, 𝜇(𝐸)), if 𝜇(𝐸) < +∞,
[𝜇([0,+∞) ⧵ 𝐸),+∞), if 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) < +∞,
Δ1, if 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) = +∞.

(5.2)

Proof. By [6, Proposition 2.2], for every 𝑛 ∈ 𝐍 there exists 𝜎𝑛 ∈ Ξ[𝑛−1,𝑛] such that

𝟏𝐸∩[𝑛−1,𝑛] = 𝟏[𝑛−1,𝑛−1+𝑎𝑛) ◦ 𝜎𝑛

a.e. on [𝑛 − 1, 𝑛], where 𝑎𝑛 = 𝜇(𝐸 ∩ [𝑛 − 1, 𝑛]). Let 𝜎′ ∶ [0,+∞) → [0,+∞), 𝜎′(𝑡) = 𝜎𝑛(𝑡) for 𝑡 ∈ [𝑛 − 1, 𝑛], where 𝑛 ∈ 𝐍. Then

𝜎′ ∈ Ξ[0,+∞) and

𝟏𝐸 = 𝟏⋃∞
𝑛=1[𝑛−1,𝑛−1+𝑎𝑛)

◦ 𝜎′ (5.3)

a.e. on [0,+∞).
Let 𝑏𝑛 =

∑𝑛
𝑘=1 𝑎𝑘, 𝑏0 = 0, 𝑐𝑛 =

∑𝑛
𝑘=1(1 − 𝑎𝑘) and 𝑐0 = 0. We define a mapping 𝜎′′ ∶ [0,+∞) → [0,+∞) in the following

way. If 𝜇(𝐸) < +∞, then we set

𝜎′′(𝑡) =
{
𝑏𝑛−1 + 𝑡 − (𝑛 − 1), if 𝑡 ∈ [𝑛 − 1, 𝑛 − 1 + 𝑎𝑛), 𝑛 ∈ 𝐍,
𝜇(𝐸) + 𝑐𝑛−1 + 𝑡 − (𝑛 − 1 + 𝑎𝑛), if 𝑡 ∈ [𝑛 − 1 + 𝑎𝑛, 𝑛), 𝑛 ∈ 𝐍.

If 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) < +∞, then we set

𝜎′′(𝑡) =
{
𝜇([0,+∞) ⧵ 𝐸) + 𝑏𝑛−1 + 𝑡 − (𝑛 − 1), if 𝑡 ∈ [𝑛 − 1, 𝑛 − 1 + 𝑎𝑛), 𝑛 ∈ 𝐍,
𝑐𝑛−1 + 𝑡 − (𝑛 − 1 + 𝑎𝑛), if 𝑡 ∈ [𝑛 − 1 + 𝑎𝑛, 𝑛), 𝑛 ∈ 𝐍.

If 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) = +∞, then we set

𝜎′′(𝑡) =
{
𝛿Δ1

(𝑏𝑛−1 + 𝑡 − (𝑛 − 1)), if 𝑡 ∈ [𝑛 − 1, 𝑛 − 1 + 𝑎𝑛), 𝑛 ∈ 𝐍,
𝛿Δ2

(𝑐𝑛−1 + 𝑡 − (𝑛 − 1 + 𝑎𝑛)), if 𝑡 ∈ [𝑛 − 1 + 𝑎𝑛, 𝑛), 𝑛 ∈ 𝐍,

where 𝛿Δ1
and 𝛿Δ2

are defined by (5.1). In each case

𝜎′′
( ∞⋃
𝑛=1

[𝑛 − 1, 𝑛 − 1 + 𝑎𝑛)

)
= Δ,

where Δ is defined by (5.2). Therefore,

𝟏⋃∞
𝑛=1[𝑛−1,𝑛−1+𝑎𝑛)

= 𝟏Δ ◦ 𝜎′′ (5.4)

a.e. on [0,+∞).
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By (5.3) and (5.4),

𝟏𝐸 = 𝟏Δ ◦ 𝜎𝐸

a.e. on [0,+∞), where 𝜎𝐸 = 𝜎′′ ◦ 𝜎′. □

Proposition 5.2. For every measurable set𝐸 ⊂ [0,+∞) and for every continuous symmetric polynomial 𝑃 ∶ 𝐿∞[0,+∞) → 𝐂,

𝑃 (𝟏𝐸) = 0.

Proof. For 𝛼 > 0 let 𝑆𝛼 be the subspace of 𝐿∞[0,+∞) of all functions of the form

𝑥 =
∞∑
𝑛=1
𝑧𝑛𝟏[𝛼(𝑛−1),𝛼𝑛),

where (𝑧1,… , 𝑧𝑛,…) ∈ 𝓁∞. The space 𝑆𝛼 is isometrically isomorphic to 𝓁∞. Therefore, the restriction of 𝑃 to 𝑆𝛼 is equal to

zero. Let 𝐸 be a measurable subset of [0,+∞). By Proposition 5.1, there exists 𝜎𝐸 ∈ Ξ[0,+∞) such that

𝟏𝐸 = 𝟏Δ ◦ 𝜎𝐸

a.e. on [0,+∞), where Δ is defined by (5.2). Since 𝑃 is symmetric,

𝑃 (𝟏𝐸) = 𝑃 (𝟏Δ).

If 𝜇(𝐸) < +∞, then 𝟏Δ = 𝟏[0,𝜇(𝐸)) ∈ 𝑆𝜇(𝐸). If 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) < +∞, then 𝟏Δ = 𝟏[𝜇(([0,+∞)⧵𝐸),+∞) ∈
𝑆𝜇([0,+∞)⧵𝐸). If 𝜇(𝐸) = +∞ and 𝜇([0,+∞) ⧵ 𝐸) = +∞, then 𝟏Δ = 𝟏Δ1

∈ 𝑆1. Therefore, in each case 𝑃 (𝟏Δ) = 0. □

Proposition 5.3. Let Ω be a measurable subset of [0,+∞) such that 𝜇(Ω) = +∞. Then the space 𝑠(𝑛𝐿∞(Ω)) is isometrically
isomorphic to the space 𝑠(𝑛𝐿∞[0,+∞)).

Proof. By Proposition 5.1, there exists 𝜎Ω ∈ Ξ[0,+∞) such that 𝟏Ω = 𝟏Δ ◦ 𝜎Ω a.e. on [0,+∞), where

Δ =
{

[𝜇([0,+∞) ⧵Ω),+∞), if 𝜇([0,+∞) ⧵Ω) < +∞,
Δ1, if 𝜇([0,+∞) ⧵Ω) = +∞.

Let us define 𝛾 ∶ [0,+∞) → Ω by 𝛾 = 𝜎−1Ω |Δ ◦ 𝛿Δ. The mapping 𝛾 is a measure preserving bijection.

Let 𝛽 ∶ 𝐿∞(Ω) → 𝐿∞[0,+∞), 𝛽 ∶ 𝑥 → 𝑥 ◦ 𝛾 . The mapping 𝛽 is an isometric isomorphism.

Let 𝛼 ∶ 𝑠(𝑛𝐿∞[0,+∞)) → 𝑠(𝑛𝐿∞(Ω)), 𝛼 ∶ 𝑃 → 𝑃 ◦ 𝛽. Evidently, 𝛼(𝑃 ) is a continuous 𝑛-homogeneous polynomial for

every 𝑃 ∈ 𝑠(𝑛𝐿∞[0,+∞)). Let us prove that 𝛼(𝑃 ) is symmetric. Let 𝜎 ∈ ΞΩ. By the definition, for 𝑥 ∈ 𝐿∞(Ω),

𝛼(𝑃 )(𝑥 ◦ 𝜎) = 𝑃 (𝛽(𝑥 ◦ 𝜎)).

Note that

𝛽(𝑥 ◦ 𝜎) = 𝛽(𝑥) ◦ 𝑣(𝜎),

where 𝑣 ∶ ΞΩ → Ξ[0,+∞), 𝑣 ∶ 𝜎 → 𝛾−1 ◦ 𝜎 ◦ 𝛾 . Therefore,

𝛼(𝑃 )(𝑥 ◦ 𝜎) = 𝑃 (𝛽(𝑥) ◦ 𝑣(𝜎)).

By the symmetry of 𝑃 , 𝑃 (𝛽(𝑥) ◦ 𝑣(𝜎)) = 𝑃 (𝛽(𝑥)). Thus, 𝛼(𝑃 ) is symmetric. Similarly it can be checked that 𝛼−1(𝑄) is a contin-

uous 𝑛-homogeneous symmetric polynomial on 𝐿∞[0,+∞) for every 𝑄 ∈ 𝑠(𝑛𝐿∞(Ω)). Since 𝛽 is an isometric isomorphism,

it follows that 𝛼 is an isometric isomorphism too. □

We obtain the following statement from Propositions 5.2 and 5.3.

Corollary 5.4. Let Ω be a measurable subset of [0,+∞) such that 𝜇(Ω) = +∞. Then for every measurable set 𝐸 ⊂ Ω and for
every continuous symmetric polynomial 𝑃 ∶ 𝐿∞(Ω) → 𝐂,

𝑃 (𝟏𝐸) = 0.
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Theorem 5.5. Let 𝑃 be a continuous 𝑛-homogeneous symmetric polynomial on 𝐿∞[0,+∞). Then 𝑃 = 0.

Proof. Let 𝐴𝑃 ∶ (𝐿∞[0,+∞))𝑛 → 𝐂 be the continuous 𝑛-linear symmetric form associated with 𝑃 . By Lemma 2.1, where

𝐽 ∶ 𝑥 → 𝑥 ◦ 𝜎,

𝐴𝑃 (𝑥1 ◦ 𝜎,… , 𝑥𝑛 ◦ 𝜎) = 𝐴𝑃 (𝑥1,… , 𝑥𝑛) (5.5)

for every 𝑥1,… , 𝑥𝑛 ∈ 𝐿∞[0,+∞) and for every 𝜎 ∈ Ξ[0,+∞).

Let us prove that 𝑃 (𝑥) = 0 for every simple measurable function 𝑥 ∈ 𝐿∞[0,+∞). Let 𝑥 =
∑𝑚
𝑗=1 𝑧𝑗𝟏𝐸𝑗 , where 𝑧1,… , 𝑧𝑚 ∈ 𝐂

and 𝐸1,… , 𝐸𝑚 are disjoint measurable subsets of [0,+∞). By the 𝑛-linearity of 𝐴𝑃 ,

𝑃 (𝑥) = 𝐴𝑃 (𝑥,… , 𝑥) =
𝑚∑
𝑗1=1

…
𝑚∑
𝑗𝑛=1
𝑧𝑗1 … 𝑧𝑗𝑛𝐴𝑃

(
𝟏𝐸𝑗1 ,… , 𝟏𝐸𝑗𝑛

)
.

Let us prove that 𝐴𝑃

(
𝟏𝐸𝑗1 ,… , 𝟏𝐸𝑗𝑛

)
= 0 for every 𝑗1,… , 𝑗𝑛 ∈ {1,… , 𝑚}. Without loss of generality we can assume that

𝑗1 = ⋯ = 𝑗𝑘1 = 1, 𝑗𝑘1+1 = ⋯ = 𝑗𝑘1+𝑘2 = 2,… , 𝑗𝑘1+⋯+𝑘𝑙−1+1 = ⋯ = 𝑗𝑘1+⋯+𝑘𝑙 = 𝑙,

where 𝑙 ∈ {1,… , 𝑚}, 𝑘1 +⋯ + 𝑘𝑙 = 𝑛, and that 𝜇(Ω) = +∞, where

Ω =
{

[0,+∞), if 𝑙 = 1,
[0,+∞) ⧵

⋃𝑙−1
𝑠=1 𝐸𝑠, if 𝑙 > 1.

For 𝑦 ∈ 𝐿∞(Ω) we set

𝑦(𝑡) =
{
𝑦(𝑡), if 𝑡 ∈ Ω,
0, if 𝑡 ∈ [0,+∞) ⧵Ω.

The mapping 𝑄 ∶ 𝐿∞(Ω) → 𝐂, defined by

𝑄 ∶ 𝑦 → 𝐴𝑃
(
𝟏𝐸1
,… , 𝟏𝐸1

,… , 𝟏𝐸𝑙−1 ,… , 𝟏𝐸𝑙−1 , 𝑦,… , 𝑦
)

is a continuous 𝑘𝑙-homogeneous polynomial. Let us show that 𝑄 is symmetric. Let 𝜎 ∈ ΞΩ. We set

𝜎(𝑡) =
{
𝜎(𝑡), if 𝑡 ∈ Ω,
𝑡, if 𝑡 ∈ [0,+∞) ⧵Ω.

Note that 𝜎 ∈ Ξ[0,+∞) and 𝟏𝐸𝑠 ◦ 𝜎 = 𝟏𝐸𝑠 for every 𝑠 ∈ {1,… , 𝑙 − 1} because 𝐸1,… , 𝐸𝑙−1 ⊂ [0,+∞) ⧵Ω. Evidently, 𝑦 ◦ 𝜎 =
𝑦 ◦ 𝜎 for every 𝑦 ∈ 𝐿∞(Ω). Therefore,

𝑄(𝑦 ◦ 𝜎) = 𝐴𝑃
(
𝟏𝐸1

◦ 𝜎,… , 𝟏𝐸1
◦ 𝜎,… , 𝟏𝐸𝑙−1 ◦ 𝜎,… , 𝟏𝐸𝑙−1 ◦ 𝜎, 𝑦 ◦ 𝜎,… , 𝑦 ◦ 𝜎

)
.

By (5.5),

𝐴𝑃
(
𝟏𝐸1

◦ 𝜎,… , 𝟏𝐸1
◦ 𝜎,… , 𝟏𝐸𝑙−1 ◦ 𝜎,… , 𝟏𝐸𝑙−1 ◦ 𝜎, 𝑦 ◦ 𝜎,… , 𝑦 ◦ 𝜎

)
= 𝐴𝑃

(
𝟏𝐸1
,… , 𝟏𝐸1

,… , 𝟏𝐸𝑙−1 ,… , 𝟏𝐸𝑙−1 , 𝑦,… , 𝑦
)
.

Therefore, 𝑄(𝑦 ◦ 𝜎) = 𝑄(𝑦). Thus, 𝑄 is symmetric.

Note that 𝐸𝑙 ⊂ Ω. Therefore, by Corollary 5.4, 𝑄(𝟏𝐸𝑙 ) = 0, i.e.

𝐴𝑃
(
𝟏𝐸1
,… , 𝟏𝐸1

,… , 𝟏𝐸𝑙 ,… , 𝟏𝐸𝑙
)
= 0.

Thus, 𝑃 (𝑥) = 0 for every simple measurable function 𝑥 ∈ 𝐿∞[0,+∞). Since the set of such functions is dense in 𝐿∞[0,+∞),
by the continuity of 𝑃 we have that 𝑃 (𝑥) = 0 for every 𝑥 ∈ 𝐿∞[0,+∞). □

We obtain the following statement from Proposition 5.3 and Theorem 5.5.

Corollary 5.6. Let Ω be a measurable subset of [0,+∞) such that 𝜇(Ω) = +∞ and let 𝑃 be a continuous 𝑛-homogeneous
symmetric polynomial on 𝐿∞(Ω). Then 𝑃 = 0.
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6 FINITELY SYMMETRIC ANALYTIC FUNCTIONS ON𝑳∞[𝟎,+∞)

Definition 6.1. We call 𝜎 ∈ Ξ[0,+∞) a finite bijection of [0,+∞) if there is 𝑎 ∈ [0,+∞) such that the restriction of 𝜎 to [𝑎,+∞)
is the identity map a.e. We denote Ξ0

[0,+∞) the set of all finite bijections in Ξ[0,+∞).

A function 𝑓 on 𝐿∞[0,+∞) is called finitely symmetric if

𝑓 (𝑥 ◦ 𝜎) = 𝑓 (𝑥), ∀𝜎 ∈ Ξ0
[0,+∞), ∀𝑥 ∈ 𝐿∞[0,+∞).

Let  be a free ultrafilter on 𝐍 and let 𝑔 be an entire function on 𝐂. Then

𝑓 (𝑥) = lim ∫[𝑛,𝑛+1] 𝑔(𝑥(𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐿∞[0,+∞),

is a finitely symmetric entire function of bounded type on 𝐿∞[0,+∞).

Lemma 6.2. If 𝐴,𝐵 ⊂ [0,+∞) are disjoint non-null measurable sets such that [0,+∞) ⧵ (𝐴 ∪ 𝐵) is also non-null, then there is
a measurable bijection 𝑤 ∶ [0,+∞) ⧵ 𝐵 → [0,+∞) such that 𝑤([0,+∞) ⧵ (𝐴 ∪ 𝐵)))

𝑎.𝑒.
= [0,+∞) ⧵ 𝐴 and 𝑤(𝑡) = 𝑡 for 𝑡 ∈ 𝐴.

Proof. Put 𝐶 = [0,+∞) ⧵ (𝐴 ∪ 𝐵). By considering the homeomorphism Λ(𝑥) = 𝑥
1+𝑥 from [0,+∞) onto [0, 1) we reduce the

result to the case of the finite measure space [0, 1) and non-null subsets 𝐸 ∶= Λ(𝐴), 𝐹 ∶= Λ(𝐵) and 𝐺 ∶= Λ(𝐶). There we may

use [11] to assure that there is a measurable bijection Φ of [0, 1) and non-trivial disjoint intervals, 𝐼𝑖, 𝑖 = 1, 2, 3, decomposing

[0, 1) such that 0 ∈ 𝐼1
𝑎.𝑒.
= Φ(𝐸), 𝐼2

𝑎.𝑒.
= Φ(𝐹 ) and 𝐼3

𝑎.𝑒.
= Φ(𝐺). It is well-known that there is a measurable bijection 𝑈 ∶ 𝐼3 →

𝐼2 ∪ 𝐼3. Now, consider the mapping

𝑢(𝑡) =
{
𝑈 (𝑡), if 𝑡 ∈ 𝐼3,
𝑡, if 𝑡 ∈ 𝐼1.

In this way 𝑢 is a measurable bijection from [0, 1) ⧵ 𝐼2 = (𝐼1 ∪ 𝐼3) to [0, 1) such that

𝑢
(
[0, 1) ⧵

(
𝐼1 ∪ 𝐼2

))
= 𝑢

(
𝐼3
)
= 𝐼2 ∪ 𝐼3.

If 𝑣 =∶ Φ−1 ◦ 𝑢 ◦Φ, we get that 𝑣 is a measurable bijection from [0, 1) ⧵ 𝐹 to [0, 1) such that

𝑣
(
[0, 1) ⧵ (𝐸 ∪ 𝐹 )

) 𝑎.𝑒.
= [0, 1) ⧵ 𝐸.

Finally 𝑤 ∶= Λ−1 ◦ 𝑣 ◦Λ satisfies the statement. □

Let𝑀00 be the space of all functions of the form

𝑥 =
𝑁∑
𝑗=1
𝑎𝑗𝟏𝐸𝑗 , (6.1)

where 𝑁 ∈ 𝐍, 𝑎1,… , 𝑎𝑁 ∈ 𝐂 and 𝐸1,… , 𝐸𝑁 be disjoint bounded non-null measurable subsets of [0,+∞). Let 𝑀0 be the

completion of𝑀00 in 𝐿∞[0,+∞).

Proposition 6.3. Let 𝑃 ∶ 𝐿∞[0,+∞) → 𝐂 be a continuous finitely symmetric 𝑛-homogeneous polynomial. Then 𝑃 (𝑥) = 0 for
every 𝑥 ∈𝑀0.

Proof. By the density of𝑀00 in𝑀0, it suffices to prove the result for 𝑥 ∈𝑀00.

Let 𝑎 > 0 and 𝑦𝑚 = 1[0,𝑎𝑚) for 𝑚 ∈ 𝐍. Note that the sequence {𝑦𝑚}∞𝑚=1 is bounded. By the continuity of 𝑃 , the sequence

{𝑃 (𝑦𝑚)}∞𝑚=1 is bounded too. Since 𝑃 is finitely symmetric, it follows that

𝑃
(
𝟏[0,𝑎)

)
= 𝑃

(
𝟏[𝑎(𝑘−1),𝑎𝑘)

)
for every 𝑘 ∈ 𝐍 and (6.2)

𝑃 (𝟏𝐸) = 𝑃
(
𝟏[0,𝜇(𝐸))

)
for every bounded measurable set 𝐸 ⊂ [0,+∞). (6.3)
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We proceed by induction on 𝑛. In the case 𝑛 = 1 the polynomial 𝑃 is a linear functional. Therefore,

𝑃 (𝑦𝑚) =
𝑚∑
𝑘=1
𝑃
(
𝟏[𝑎(𝑘−1),𝑎𝑘)

)
.

By (6.2),

𝑃 (𝑦𝑚) = 𝑚𝑃
(
𝟏[0,𝑎)

)
.

The sequence {𝑃 (𝑦𝑚)}∞𝑚=1 is bounded if and only if 𝑃
(
𝟏[0,𝑎)

)
= 0. Since 𝑃 is finitely symmetric, it follows from (6.3) that for

every 𝑥 of the form (6.1),

𝑃 (𝑥) =
𝑁∑
𝑗=1
𝑎𝑗𝑃

(
𝟏𝐸𝑗

)
= 0.

Assume that the statement of the proposition holds for every 𝑘 ∈ {1,… , 𝑛 − 1}. We prove it for 𝑛. Let 𝐴𝑃 be the continuous

𝑛-linear symmetric form associated with 𝑃 . By the 𝑛-linearity of 𝐴𝑃 ,

𝑃 (𝑥) =
𝑁∑
𝑗1=1

…
𝑁∑
𝑗𝑛=1
𝑎𝑗1 … 𝑎𝑗𝑛𝐴𝑃

(
𝟏𝐸𝑗1 ,… , 𝟏𝐸𝑗𝑛

)
for 𝑥 of the form (6.1). Let 𝑗1,… , 𝑗𝑛 ∈ {1,… , 𝑁} be such that 𝑗𝑚 ≠ 𝑗𝑠 for some 𝑚, 𝑠 ∈ {1,… , 𝑛}. Let us prove that in

this case 𝐴𝑃
(
𝟏𝐸𝑗1 ,… , 𝟏𝐸𝑗𝑛

)
= 0. Without loss of generality we can assume that 𝑗1 = ⋯ = 𝑗𝑘1 = 1, 𝑗𝑘1+1 = ⋯ = 𝑗𝑘1+𝑘2 =

2,… , 𝑗𝑘1+⋯+𝑘𝑙−1+1 = … = 𝑗𝑘1+⋯+𝑘𝑙 = 𝑙, where 𝑙 ≥ 2, 𝑘1,… , 𝑘𝑙 ≥ 1 and 𝑘1 +… + 𝑘𝑙 = 𝑛. Since
⋃𝑙
𝑠=1 𝐸𝑠 is a bounded set,

there exists 𝑐 > 0 such that
⋃𝑙
𝑠=1 𝐸𝑠 ⊂ [0, 𝑐), and we may consider 𝐸′

1 = 𝐸1 ∪ [𝑐,+∞) so that 𝐵 =
⋃𝑙
𝑠=2 𝐸𝑠 and𝐴 = 𝐸′

1 satisfy

the assumptions in Lemma 6.2 to find a measurable bijection

𝑤 ∶ [0,+∞) ⧵
𝑙⋃
𝑠=2
𝐸𝑠 → [0,+∞)

such that 𝑤(𝑡) = 𝑡 if 𝑡 ∈ 𝐸′
1 and

𝑤

(
[0,+∞) ⧵

(
𝑙⋃
𝑠=2
𝐸𝑠 ∪ 𝐸′

1

))
𝑎.𝑒.
= [0,+∞) ⧵ 𝐸′

1.

For 𝑧 ∈ 𝐿∞[0,+∞) let

𝑧(𝑡) =

{
(𝑧 ◦𝑤)(𝑡), if 𝑡 ∈ [0,+∞) ⧵

⋃𝑙
𝑠=2 𝐸𝑠,

0, if 𝑡 ∈
⋃𝑙
𝑠=2 𝐸𝑠.

Let 𝐵 ∶ (𝐿∞[0,+∞))𝑘1 → 𝐂,

𝐵 ∶ (𝑧1,… , 𝑧𝑘1 ) → 𝐴𝑃
(
𝑧1,… , 𝑧𝑘1 , 𝟏𝐸2

,… , 𝟏𝐸2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘2

,… , 𝟏𝐸𝑙 ,… , 𝟏𝐸𝑙
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘𝑙

)
.

Evidently, 𝐵 is a continuous symmetric 𝑘1-linear form. Let us show that

𝐵(𝑧1 ◦ 𝜎,… , 𝑧𝑘1 ◦ 𝜎) = 𝐵(𝑧1,… , 𝑧𝑘1 ) for 𝑧1,… , 𝑧𝑘1 ∈ 𝐿∞[0,+∞) and 𝜎 ∈ Ξ0
[0,+∞).

Indeed: Given 𝜎 ∈ Ξ0
[0,+∞), construct 𝜎 according to

𝜎(𝑡) =

{(
𝑤−1 ◦ 𝜎 ◦𝑤

)
(𝑡), if 𝑡 ∈ [0,+∞) ⧵

⋃𝑙
𝑠=2 𝐸𝑠,

𝑡, if 𝑡 ∈
⋃𝑙
𝑠=2 𝐸𝑠.
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Observe that 𝜎 ∈ Ξ0
[0,+∞) because for 𝑡 > 𝑐, we have 𝑡 ∈ 𝐸′

1, so 𝑤(𝑡) = 𝑡. It can be checked that 𝑧 ◦ 𝜎 = 𝑧 ◦ 𝜎 for every 𝑧 ∈
𝐿∞[0,+∞) and also that 𝟏𝐸𝑗 ◦ 𝜎 = 𝟏𝐸𝑗 for every 𝑗 ∈ {2,… , 𝑙}. Therefore,

𝐵
(
𝑧1 ◦ 𝜎,… , 𝑧𝑘1 ◦ 𝜎

)
= 𝐴𝑃

(
𝑧1 ◦ 𝜎,… , 𝑧𝑘1 ◦ 𝜎, 𝟏𝐸2

◦ 𝜎,… , 𝟏𝐸2
◦ 𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑘2

,… , 𝟏𝐸𝑙 ◦ 𝜎,… , 𝟏𝐸𝑙 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)
.

Since

𝐴𝑃
(
𝑧1 ◦ 𝜎,… , 𝑧𝑘1 ◦ 𝜎, 𝟏𝐸2

◦ 𝜎,… , 𝟏𝐸2
◦ 𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑘2

,… , 𝟏𝐸𝑙 ◦ 𝜎,… , 𝟏𝐸𝑙 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)

= 𝐴𝑃
(
𝑧1,… , 𝑧𝑘1 , 𝟏𝐸2

,… , 𝟏𝐸2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘2

,… , 𝟏𝐸𝑙 ,… , 𝟏𝐸𝑙
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘𝑙

)
,

it follows that 𝐵
(
𝑧1 ◦ 𝜎,… , 𝑧𝑘1 ◦ 𝜎

)
= 𝐵

(
𝑧1,… , 𝑧𝑘1

)
. Thus, the restriction of 𝐵 to the diagonal is a continuous finitely sym-

metric 𝑘1-homogeneous polynomial. By the induction hypothesis, 𝐵
(
𝟏𝐸1
,… , 𝟏𝐸1

)
= 0, i.e.

𝐴𝑃
(
𝟏𝐸1
,… , 𝟏𝐸1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑘1

, 𝟏𝐸2
,… , 𝟏𝐸2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑘2

,… , 𝟏𝐸𝑙 ,… , 𝟏𝐸𝑙
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘𝑙

)
= 0.

Notice that 𝟏𝐸1
= 𝟏𝐸1

. Hence, for 𝑥 of the form (6.1),

𝑃 (𝑥) =
𝑁∑
𝑗=1
𝑎𝑁𝑗 𝑃

(
𝟏𝐸𝑗

)
.

Therefore, 𝑃 (𝑦𝑚) = 𝑃
(∑𝑚

𝑘=1 𝟏[𝑎(𝑘−1),𝑎𝑘)
)
= 𝑚𝑃

(
𝟏[0,𝑎)

)
. Since the sequence {𝑃 (𝑦𝑚)}∞𝑚=1 is bounded, we have 𝑃

(
𝟏[0,𝑎)

)
= 0.

According to (6.3), for every bounded measurable set 𝐸 ⊂ [0,+∞), we have 𝑃 (𝟏𝐸) = 𝑃
(
𝟏[0,𝜇(𝐸))

)
thus, 𝑃 (𝟏𝐸) = 0. Hence,

𝑃 (𝑥) =
𝑁∑
𝑗=1
𝑎𝑛𝑗𝑃

(
𝟏[0,𝜇(𝐸𝑗 ))

)
= 0.

□

Proposition 6.4. Let 𝑃 ∶ 𝐿∞[0,+∞) → 𝐂 be a continuous finitely symmetric 𝑛-homogeneous polynomial. Then 𝑃 (𝑥 + 𝑦) =
𝑃 (𝑥) for every 𝑥 ∈ 𝐿∞[0,+∞) and 𝑦 ∈𝑀00.

Proof. Let 𝐴𝑃 be the continuous 𝑛-linear symmetric form associated with 𝑃 . By the Binomial formula (2.3),

𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥) + 𝑃 (𝑦) +
𝑛−1∑
𝑘=1

𝑛!
𝑘!(𝑛 − 𝑘)!

𝐴𝑃
(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

)
.

By Proposition 6.3, 𝑃 (𝑦) = 0. We prove that 𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

) = 0 for 𝑘 ∈ {1,… , 𝑛 − 1}.

Let Ω0 be the support of 𝑦 ⊂ [0, 𝑎]. Let Ω1,… ,Ω𝑛 be disjoint measurable sets such that [0,+∞) ⧵Ω0 =
⋃𝑛
𝑗=1 Ω𝑗 and

𝜇
(
Ω𝑗

)
= +∞ for every 𝑗 ∈ {1,… , 𝑛}, and define for 𝑗 ∈ {0,… , 𝑛}, the functions

𝑥𝑗(𝑡) =
{
𝑥(𝑡), if 𝑡 ∈ Ω𝑗 ,
0, if 𝑡 ∈ [0,+∞) ⧵Ω𝑗 .

Since 𝑥 =
∑𝑛
𝑗=0 𝑥𝑗 , it follows that

𝐴𝑃
(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥,… , 𝑥
⏟⏟⏟
𝑛−𝑘

)
=

𝑛∑
𝑗1=0

…
𝑛∑

𝑗𝑛−𝑘=0
𝐴𝑃

(
𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥𝑗1 ,… , 𝑥𝑗𝑛−𝑘
)
.
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Let 𝑗1,… , 𝑗𝑛−𝑘 ∈ {0,… , 𝑛}. Let us prove that 𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥𝑗1 ,… , 𝑥𝑗𝑛−𝑘 ) = 0. Without loss of generality we can assume

that 𝑗1 = ⋯ = 𝑗𝑘0 = 0, 𝑗𝑘0+1 = ⋯ = 𝑗𝑘0+𝑘1 = 1, … , 𝑗𝑘0+⋯+𝑘𝑙−1+1 = ⋯ = 𝑗𝑘0+⋯+𝑘𝑙 = 𝑙, where 𝑙 ∈ {0,… , 𝑛 − 𝑘}, 𝑘0 ≥ 0,
𝑘1,… , 𝑘𝑙 ≥ 1 (in the case 𝑙 ≥ 1) and 𝑘0 + 𝑘1 +⋯ + 𝑘𝑙 = 𝑛 − 𝑘.

Using Lema 6.2 with 𝐴 = Ω0 ∪ (Ω𝑙+1 ∩ [𝑎,+∞)) and 𝐵 = [0,+∞) ⧵ (Ω0 ∪ Ω𝑙+1), we are led to a measurable bijection 𝑤 ∶
Ω0 ∪ Ω𝑙+1 → [0,+∞) such that 𝑤(𝑡) = 𝑡 for 𝑡 ∈ Ω0 ∪ (Ω𝑙+1 ∩ [𝑎,+∞)).

For 𝑧 ∈ 𝐿∞[0,+∞) let

𝑧(𝑡) =
{

(𝑧 ◦𝑤)(𝑡), if 𝑡 ∈ Ω0 ∪ Ω𝑙+1,
0, if 𝑡 ∈ [0,+∞) ⧵ (Ω0 ∪ Ω𝑙+1).

Let 𝐵 ∶ (𝐿∞[0,+∞))𝑘+𝑘0 → 𝐂,

𝐵 ∶ (𝑧1,… , 𝑧𝑘+𝑘0 ) → 𝐴𝑃
(
𝑧1,… , 𝑧𝑘+𝑘0 , 𝑥1,… , 𝑥1⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

)
.

Evidently, 𝐵 is a continuous symmetric (𝑘 + 𝑘0)-linear form. For each 𝜎 ∈ Ξ0
[0,+∞), we construct 𝜎 ∈ Ξ[0,+∞) according to

𝜎 =
{(
𝑤−1 ◦ 𝜎 ◦𝑤

)
(𝑡), if 𝑡 ∈ Ω0 ∪ Ω𝑙+1,

𝑡, if 𝑡 ∈ [0,+∞) ⧵ (Ω0 ∪ Ω𝑙+1).

Also 𝜎 ∈ Ξ0
[0,+∞) because for 𝑡 > 𝑎, we have 𝑤(𝑡) = 𝑡.

It can be checked that 𝑧 ◦ 𝜎 = 𝑧 ◦ 𝜎 and 𝑥𝑗 ◦ 𝜎 = 𝑥𝑗 for 𝑧 ∈ 𝐿∞[0,+∞), and 𝑗 ∈ {1,… , 𝑙}. Therefore, for every

𝑧1,… , 𝑧𝑘+𝑘0 ∈ 𝐿∞[0,+∞) and 𝜎 ∈ Ξ0
[0,+∞)

𝐵
(
𝑧1 ◦ 𝜎,… , 𝑧𝑘+𝑘0 ◦ 𝜎

)
= 𝐴𝑃

(
𝑧1 ◦ 𝜎,… , 𝑧𝑘+𝑘0 ◦ 𝜎, 𝑥1 ◦ 𝜎,… , 𝑥1 ◦ 𝜎⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘1

,… , 𝑥𝑙 ◦ 𝜎,… , 𝑥𝑙 ◦ 𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘𝑙

)
= 𝐴𝑃

(
𝑧1,… , 𝑧𝑘+𝑘0 , 𝑥1,… , 𝑥1⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

)
= 𝐵

(
𝑧1,… , 𝑧𝑘+𝑘0

)
.

Thus, the restriction of 𝐵 to the diagonal is a continuous finitely symmetric (𝑘 + 𝑘0)-homogeneous polynomial. By Proposition

6.3, 𝐵(𝑧,… , 𝑧) = 0 for every 𝑧 ∈𝑀00. By the Polarization formula (2.1) 𝐵(𝑧1,… , 𝑧𝑘+𝑘0 ) = 0 for every 𝑧1,… , 𝑧𝑘+𝑘0 ∈𝑀00.

Since 𝑦 and 𝑥0 belong to𝑀00, it follows that 𝐵(𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

) = 0, i.e.

𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

, 𝑥1,… , 𝑥1
⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

) = 0.

Note that 𝑦 = 𝑦 and 𝑥0 = 𝑥0. Therefore,

𝐴𝑃 (𝑦,… , 𝑦
⏟⏟⏟

𝑘

, 𝑥0,… , 𝑥0
⏟⏞⏞⏟⏞⏞⏟

𝑘0

, 𝑥1,… , 𝑥1
⏟⏞⏞⏟⏞⏞⏟

𝑘1

,… , 𝑥𝑙,… , 𝑥𝑙
⏟⏞⏟⏞⏟

𝑘𝑙

) = 0.

Hence, 𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥) for every 𝑥 ∈ 𝐿∞[0,+∞) and 𝑦 ∈𝑀00. □

Continuity of 𝑃 implies the following corollary.

Corollary 6.5. Let 𝑃 ∶ 𝐿∞[0,+∞) → 𝐂 be a continuous finitely symmetric 𝑛-homogeneous polynomial. Then 𝑃 (𝑥 + 𝑦) = 𝑃 (𝑥)
for every 𝑥 ∈ 𝐿∞[0,+∞) and 𝑦 ∈𝑀0.

Let  be the quotient map from 𝐿∞[0,+∞) to 𝐿∞[0,+∞)∕𝑀0.

Corollary 6.6. An entire function 𝑓 ∈ 𝐻𝑏(𝐿∞[0,+∞)) is finitely symmetric if and only if it factors through𝑀0, that is, there
is 𝑓 ∈ 𝐻𝑏(𝐿∞[0,+∞)∕𝑀0) such that 𝑓 = 𝑓 ◦.
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Corollary 6.7. The algebra of finitely symmetric entire functions of bounded type on 𝐿∞[0,+∞) is isomorphic to
𝐻𝑏

(
𝐿∞[0,+∞)∕𝑀0

)
.
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