Oleh Lopushansky Andriy Zagorodnyuk
 Infinite

 Dimensional

 Dimensional Holomorphy
 Spectra and Hilbertian Structures

Oleh Lopushansky
 Andriy Zagorodnyuk

Infinite

 Dimensional

 Dimensional Holomorphy

Spectra and Hilbertian Structures

Editor-in-Chief:
Jan Sas
Editorial Committee:
Zbigniew Kqkol (Chairman)
Marek Cala
Borys Mikulowski
Tadeusz Sawik
Mariusz Ziolko
Reviewers:
prof. dr hab. Anatolij Plichko
prof. dr hab. Michal Zariczny

Author of the monograph is an employee of:
Oleh Lopushansky, University of Rzeszów
Andriy Zagorodnyuk, Precarpathian National University and Institute for Applied Problems of Mechanics and Mathematics
Ukrainian National Academy of Sciences, Ukraine

Desktop publishing: Oleh Lopushansky and Andriy Zagorodnyuk
Cover: Zofia Eucka
© Wydawnictwa AGH, Kraków 2013
ISBN 978-83-7464-643-7

Wydawnictwa AGH
al. A. Mickiewicza 30, 30-059 Kraków
tel. 1261732 28, tel./fax 126364038
e-mail: redakcja@wydawnictwoagh.pl
www.wydawnictwa.agh.edu.pl

Contents

Introduction 2
Clupter 1. Background on infinite-dimensional holomorphy 3
1.1. Continuous polynomials and symmetric tensor products 3
1.2. Linenr subspaces in zeros of polynomials 8
1,3. Amlytic functions 9
1.4. The Aron-Berner extension 12
1.8. Concept of regularity 14
1.6. Hillbert-Schmidt polynomials 16
1.7. Reproducing kernels 20
Clmpler 2. Descriptions of topological spectra and applications 22
2.1. Spectra of algebras of polynomials 23
2.2. Applications for symmetric polynomials 29
2.3. Polynomials on tensor products 31
2.4. The spectrum of $\mathcal{H}_{b}(X)$ endowed with the Gelfand topology 34
2.5. The Gelfand transformation and linear structures on M_{b} 42
2.11. Linesrity of topologies on spectra 47
2.7. Discontinuous complex homomorphisms and Michael's problem 50
2.8. Continuous homomorphisms 51
2.9. Continuous derivations 53
2.10. Ball algebras of analytic functions 55
2.11. C^{*}-algebras of continuous functions 57
Clinpter 3. Hardy spaces associated with topological groups 59
3.1. Hardy spaces on compact infinite-dimensional group orbits 60
3.2. Symmetric Fock spaces associated with matrix unitary groups 74
3.3. Hardy spaces associated with infinite-dimensional unitary groups 86
3.4. Hurdy spaces on irreducible orbits of locally compact groups 98
Chapter 4. Reproducing kernel spaces of analytic functions 111
4.1. Abstrmet Hardy spaces 111
1.2. Hilbert-Schmidt analytic functions 123
1.3. Holomorphicity and generalized symmetric Fock spaces 130
Bibliography 138

Introduction

This book is intended to be a survey of recent authors' results in infinite-dimensional holomorphy.

During last years, various spaces and algebras of analytic functions on Banach spaces have been considered by a number of authors. The interplay between function theory on infinite-dimensional domains, geometric properties of Banach spaces, and Banach and Fréchet algebras lead us to investigation of uniform algebras of analytic functions, their spectra (sets of characters), homomorphisms and derivations. The spectra of such algebras was studied first in $[6],[7],[9],[44],[77]$ by R. Aron, B. Cole, T. Gamelin, P. Galindo, D. García, M. Maestre, J. Mujica and others. In particular, in [6] it is shown that the spectrum of the algebra of bounded type entire functions on a Banach space X contains the second dual $X^{\prime \prime}$ as point-evaluation functionals of the Aron-Berner extension of entire functions. However, $X^{\prime \prime}$ does not exhaust the spectrum in general (see e.g. [9]).

Next vital topic related to infinite-dimensional holomorphy is construction Hardy type spaces of analytic functions with infinitely many variables. Integral representations of such Hardy spaces was studied in $[\mathbf{3 0}, \mathbf{8 3}, 80]$ by B. Cole, T. Gamelin, B. Ørted, K. Neeb, D. Pinasco, I. Zalduendo and others. The main difficulty is that, in the general case, we have no good enough invariant measure on a ball in a Banach space.

The book is organized as follows. Chapter 1 contains a background on infinitedimensional complex analysis. Chapter 2 is devoted to description of spectra of algebras of entire functions on Banach spaces using an approach developed in [96], [97]. In Chapter 3 we consider Hilbertian Hardy type spaces associated with various infinite-dimensional groups of isometric operators on a separable Hilbert space and applications to symmetric Fock spaces. It presents an approach developed in [60], [61], [65]. In Chapter 4 we give a general construction of reproducing kernel Hilbert space of analytic functions on ℓ_{2} and their relations to abstract Fock spaces. It mainly summarizes the works [56], [59].

Oleh Lopushansky and Andriy Zagorodnyuk,
Rzeszów - Ivano-Frankivsk,
September 2013

CHAPTER 1

Wackground on infinite-dimensional holomorphy

W. hegin wllh it brief summary of important notions and facts used in the theory if finifi.initula und analytic functions with infinite-dimensional domains in Banach

11. Comtlmous polynomials and symmetric tensor products

1.1 A inul Y be complex Banach vector spaces. For every positive integer mini..." $\quad \|, \cdots$ iN let $X^{n} Y^{m}$ will denote the Cartesian product of n copies of (imil in coples of γ, and $x^{n} y^{m}$ will denote the element $(x, \ldots, x, y, \ldots, y)$ from -1 1
Din \quad win denote by $\mathscr{L}\left({ }^{n} X, Y\right)$ the vector space of all continuous n-linear (manyine Ifomi X^{\prime} to Y endowed with the norm of uniform convergence on the Hini linll $_{\text {if }} \mathrm{S}^{\prime \prime}$. A\| n-linear mapping F is called symmetric if

$$
F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{s(1)}, \ldots, x_{s(n)}\right), \quad s \in \mathfrak{S}_{n}
$$

$$
s:\{1, \ldots, n\} \longmapsto\{s(1), \ldots, s(n)\} .
$$

Ilin pitami" lil $\mathscr{L}\left({ }^{n} X, Y\right)$ of all continuous symmetric n-lineár maps will be Ib.minith \mathscr{Y}, " $\left.^{n} X, Y\right)$. Clearly, $\mathscr{L}\left({ }^{n} X, Y\right)$ and $\mathscr{L}_{s}\left({ }^{n} X, Y\right)$ are Banach spaces. Fur(ti.. in ti.i provkux motations we will not write the index $n=1$. In particular, $\mathscr{L}(X)$ ito thin. Hian ingorn of all continuous linear operators and $\mathscr{L}(X, \mathbb{C}):=X^{\prime}$ denotes the iliait sume of X.

II, 1.aition 1.1. Let us denote by Δ_{n} the natural embeddings called diagonal

$$
\begin{aligned}
\Delta_{n}: X & \longrightarrow X^{n} \\
x & \longmapsto(x, \ldots, x) .
\end{aligned}
$$

A "..n川⿲inif I' from X to Y is called a continuous n-homogeneous polynomial if

$$
P(x)=\left(F \circ \Delta_{n}\right)(x) \quad \text { for some } \quad F \in \mathscr{L}\left({ }^{n} X, Y\right)
$$

in I("NY) denote the vector space of all continuous n-homogeneous polynomials (inimallitherm of uniform convergence on the unit ball B of X, i.e.,

$$
\|P\|=\sup _{x \in B}\|P(x)\|
$$

with $P \in P(" X, Y)$.
THEOREM 1.2. The map

$$
\begin{aligned}
\mathscr{L}_{s}\left({ }^{n} X, Y\right) & \longrightarrow \mathcal{P}\left({ }^{n} X, Y\right) \\
F & \longmapsto F \circ \Delta_{n}
\end{aligned}
$$

is an isomorphism between the Banach space $\mathscr{L}_{s}\left({ }^{n} X, Y\right)$ and the normed space $\mathcal{P}\left({ }^{n} X, Y\right)$, and

$$
\begin{equation*}
\left\|F \circ \Delta_{n}\right\| \leq\|F\| \leq \frac{n^{n}}{n!}\left\|F \circ \Delta_{n}\right\| \tag{1.1}
\end{equation*}
$$

Proof. The main tool of the proof is the polarization formula (see [35, p. 8]):

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2^{n} n!} \sum_{\delta_{i}= \pm 1} \delta_{1} \ldots \delta_{n} F \circ \Delta_{n}\left(\sum_{j=1}^{n} \delta_{i} x_{j}\right) \tag{1.2}
\end{equation*}
$$

By the polarization formula

$$
\begin{aligned}
\|F\| & \leq \frac{1}{2^{n} n!} \sum_{1 \leq i \leq n} \sum_{\delta_{i}= \pm 1} \sup _{\left\|x_{i}\right\| \leq 1}\left\|F \circ \Delta_{n}\left(\sum_{j=1}^{n} \delta_{i} x_{i}\right)\right\| \\
& =\frac{n^{n}}{2^{n} n!} \sum_{1 \leq i \leq n} \sum_{\delta_{i}= \pm 1} \sup _{\left\|x_{i}\right\| \leq 1}\left\|F \circ \Delta_{n}\left(\frac{1}{n} \sum_{j=1}^{n} \delta_{i} x_{j}\right)\right\| \leq \frac{n^{n}}{n!}\left\|F \circ \Delta_{n}\right\| .
\end{aligned}
$$

The left-hand side of inequality (1.1) is trivial.
Corollary 1.3. $\mathcal{P}\left({ }^{n} X, Y\right)$ is a Banach space and for any $P \in \mathcal{P}\left({ }^{n} X, Y\right)$ there is a unique n-linear symmetric map $F_{P} \in \mathscr{L}_{s}\left({ }^{n} X, Y\right)$, so-called the associated with $P n$-linear map, such that $P=F_{P} \circ \Delta_{n}$.

For a positive integer n and a Banach space X let

$$
\begin{equation*}
c(n, X):=\inf \left\{M>0:\|F\| \leq M\left\|F \circ \Delta_{n}\right\| \text { for all } F \in \mathscr{L}_{s}\left({ }^{n} X, Y\right)\right\} \tag{1.3}
\end{equation*}
$$

We call $c(n, X)$ the nth polarization constant of X. From (1.1) it follows that

$$
\begin{equation*}
1 \leq c(n, X) \leq \frac{n^{n}}{n!} \tag{1.4}
\end{equation*}
$$

It is well known that $c\left(n, \ell_{1}\right)=n^{n} / n$! and $c\left(n, \ell_{2}\right)=1$ (see [36, p. 45] for details).
We say that a class $\mathcal{F}(X, Y)$ of nonlinear mappings from X to Y admits a linearization if there is a vector space W_{X} and an injective map

$$
J_{\mathcal{F}(X, Y)}: X \longrightarrow W_{X}
$$

such that for any $F \in \mathcal{F}(X, Y)$ there is a linear operator $L_{F} \in \mathscr{L}\left(W_{X}, Y\right)$ such that the diagram

The mир) $J_{\mathcal{F}(X, Y)}$ is called the canonical map associated with the linEllonllow:

I'muin, Wenote by $X^{(n)}$ the vector space of all formal finite sums

$$
\sum_{i_{n} \in \mathbb{N}} \lambda_{i_{1}, \ldots, i_{n}}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right), \quad \lambda_{i_{1}, \ldots, i_{n}} \in \mathbb{C},\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \in X^{n}
$$

I wi $\boldsymbol{V}^{1 i \prime \prime}$ Inmute the subspace of $X^{(n)}$ generated by the elements

$$
\begin{aligned}
& \left(\boldsymbol{V}_{1}, \ldots \ldots, i_{i_{k}}+x_{i_{k}}, \ldots, x_{i_{n}}\right)-\left(x_{i_{1}}, \ldots, x_{i_{k}}, \ldots, x_{i_{n}}\right)-\left(x_{i_{1}}, \ldots, x_{i_{k}^{\prime}}, \ldots, x_{i_{n}}\right) \text {, }
\end{aligned}
$$

11 amb l he $"$ linll tensor product $\otimes^{n} X$ of X with itself, as the quotient vector space
(i) / Ni日), Lut un put $x_{i_{1}} \otimes \cdots \otimes x_{i_{n}}:=\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)+X^{(0)}$ and denote by J_{n} the When minilling from X^{n} into $\otimes^{n} X$ such that

$$
J_{n}:\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \longmapsto x_{i_{1}} \otimes \cdots \otimes x_{i_{n}}
$$

|lif пиi" " linwor impping $F \in \mathscr{L}\left({ }^{n} X, Y\right)$,

$$
I_{n} \mid+1\left(\sum_{i_{1}}^{1} \lambda_{i_{1}, \ldots, i_{n}}\left(x_{i_{1}} \otimes \cdots \otimes x_{i_{n}}\right)\right):=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}, \ldots, i_{n}} F\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)
$$

Lave How intin linilc. Hence the linear map J_{n}^{*} is well defined on $\otimes^{n} X$ and

$$
\mathcal{F}_{n}^{*}(F)\left(x_{i_{1}} \otimes \cdots \otimes x_{i_{n}}\right)=F\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) .
$$

Crimb, if $f(X, Y)=\mathscr{L}\left({ }^{n} X, Y\right)$, then $L_{F}=J_{n}^{*}(F)$ and $J_{\mathcal{F}(X, Y)}=J_{n}$. Now in (1.5) [osiminu $\|_{x}=\theta^{n} X$.
 $\| 1,11$ il lineur continuous operators from the projective tensor product $\otimes_{\pi}^{n} X$ Whi amor 1, whire $\otimes_{\pi}^{n} X$ means the completion of $\otimes^{n} X$ by the projective tensor

$$
\|n\|-\ln \left\{\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}}\left\|x_{i_{1}}\right\| \ldots\left\|x_{i_{n}}\right\|: w=\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}} x_{i_{1}} \otimes \cdots \otimes x_{i_{n}} \in \otimes^{n} X\right\}
$$

Sow the infirmum in taken over all above representations of $w \in \otimes^{n} X$.
Im lin N.llm the mymmetric tensor product $\odot^{n} X$ of X to itself as the subspace

$$
x_{1} \odot \cdots \odot x_{n}:=\frac{1}{n!} \sum_{s \in \mathfrak{S}_{n}} x_{s(1)} \otimes \cdots \otimes x_{s(n)}
$$

 puman if vinlorn we will use the short notation

$$
x^{\otimes n}:=\overbrace{x \otimes \ldots \otimes x}^{n \text { times }} \in \odot^{n} X, \quad x \in X
$$

I lim or momitite projective tensor product $\bigodot_{\pi}^{n} X$ we define as the closure of $\otimes^{n} X$ in

$$
s_{11}\left(\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}} x_{i_{1}} \otimes \cdots \otimes x_{i_{n}}\right)=\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}} x_{i_{1}} \odot \cdots \odot x_{i_{n}}
$$

In a contimuour projection.
COHOL,AAYY 1.7. The following isomorphism holds

$$
\mathscr{L}\left(\odot_{\pi}^{n} X, Y\right) \simeq \mathscr{L}_{s}\left({ }^{n} X, Y\right)
$$

From the polarization formula (1.2) and Corollary 1.7 it follows that

$$
\begin{equation*}
x_{1} \odot \cdots \odot x_{n}=\frac{1}{2^{n}} \sum_{1 \leq i \leq n} \sum_{\delta_{i}= \pm 1} \delta_{1} \ldots \delta_{n}\left(\sum_{j=1}^{n} \delta_{i} x_{i}\right)^{\otimes n} \tag{1.6}
\end{equation*}
$$

(see e.g. [41, 1.5]). Therefore for each vector $w_{n} \in \odot^{n} X$ there are representations $w_{n}=\sum_{i} u_{i}^{\otimes n}$ with $u_{i} \in X$, for which we define an equivalent norm with the projective tensor norm,

$$
\begin{equation*}
\left\|w_{n}\right\|:=\inf \left\{\sum_{i \in \mathbb{N}}\left\|u_{i}\right\|^{n}: w_{n}=\sum_{i \in \mathbb{N}} u_{i}^{\otimes n} \in \odot^{n} X\right\} \tag{1.7}
\end{equation*}
$$

where the infimum is taken over all such representations. Then for any mapping $F \in \mathscr{L}_{x}\left({ }^{n} X, Y\right)$,

$$
\|F\|=\sup _{\left\|w_{n}\right\| \leq 1}\left\|J_{n}^{*}(F)\left(w_{n}\right)\right\|=\left\|F \circ \Delta_{n}\right\|
$$

Thus we have proved the following theorem.
THEOREM 1.8. There is an equivalent norm $\|\cdot\|$ on $\odot_{\pi}^{n} X$ such that the space $\mathscr{L}\left(\left(\odot_{\pi}^{n} X,\|\cdot\|\right), Y\right)$ is isometric to $\mathcal{P}\left({ }^{n} X, Y\right)$ for every Banach space Y. In particular, the following isometry holds

$$
\left(\odot_{\pi}^{n} X,\|\cdot\|\right)^{\prime} \simeq \mathcal{P}^{n}(X)
$$

From the polarization inequality (1.4) and formula (1.7) we have the next polarization inequality for tensor products:

$$
\begin{equation*}
\|w\| \leq\|w\| \leq c(n, X)\|w\|, \quad w \in \bigodot_{\pi}^{n} X \tag{1.8}
\end{equation*}
$$

A map $P: X \longrightarrow Y$ is said to be a continuous polynomial of degree n if

$$
P=P_{0}+P_{1}+\cdots+P_{n}
$$

with

$$
P_{0} \in Y, \quad P_{k} \in \mathcal{P}\left({ }^{k} X, Y\right), \quad P_{n} \neq 0
$$

The space of all continuous polynomials from X into Y will be denoted by $\mathcal{P}(X, Y)$. Usually $\mathcal{P}(X, Y)$ endowed with the uniform norm

$$
\|P\|=\sup _{\|x\| \leq 1}\|P(x)\|
$$

We will use notations $\mathcal{P}\left({ }^{\leq n} X, Y\right)$ and $\mathcal{P}\left({ }^{\leq n} X\right)$ for spaces of Y-valued and \mathbb{C} valued respectively, all continuous m-degree polynomials on X with $m \leq n$. We will Nhortly denote the spaces $\mathcal{P}\left({ }^{k} X, \mathbb{C}\right)$ and $\mathcal{P}(X, \mathbb{C})$ by $\mathcal{P}\left({ }^{k} X\right)$ and $\mathcal{P}(X)$ respectively.

Wain that $I^{\prime}\left(N^{\prime}\right)$ in a topological algebra with the locally convex topology of uniform Cumarean oill boimeded sets．
（w）will ilonote by

$$
\mathcal{P}_{w}(X, \cdot), \quad \mathcal{P}_{w}\left({ }^{n} X, \cdot\right), \quad \mathcal{P}_{w}\left({ }^{\leq n} X, \cdot\right)
$$

 ilvily，whieli ure contimous on bounded subsets of X endowed with the weak topol－ －II m（ $\mathrm{N}, \mathrm{N}^{\prime}$ ）

An slement $P \in \mathcal{P}(X)$ is called a polynomial of finite type if it is a finite sum if finile jundut of linear functionals．More generally，if $P \in \mathcal{P}(X, Y)$ ，then P 0 ｜minuminl of tinite type if for every linear functional $h \in Y^{\prime}$ the composition h）${ }^{\prime}$ in a pulymominl of finite type．The space of n－homogeneous polynomials of
 Whin nit lamuloul hy $\Gamma_{11}\left({ }^{n} X, Y\right)$ ．Each approximable polynomial is weakly continuous on （hanitial anm，The following theorem is proved in［10］by Aron and Prolla．

I\｜blinin 1．1）．The dual space X^{\prime} has the approximation property if and only ${ }^{1}$ fof a⿴囗十⺝刂y＂lir apace $\mathcal{P}_{f}\left({ }^{n} X, Y\right)$ coincides with the space of all n－homogeneous （milfulumin prolynomials $\mathcal{P}_{w}\left({ }^{n} X, Y\right)$ for an arbitrary Banach space Y ．

If it inhomwn does equality

$$
\mathcal{P}_{f}\left({ }^{n} X\right)=\mathcal{P}_{w}\left({ }^{n} X\right)
$$

 in｜ 1 ）huw thint if X is a reflexive Banach space without the approximation property， then

$$
\mathcal{P}_{f}\left({ }^{2} X \oplus X^{\prime}\right) \neq \mathcal{P}_{w}\left({ }^{2} X \oplus X^{\prime}\right)
$$

Ilw evinumicic tensor power $\odot^{n} X^{\prime}$ of a dual Banach space X^{\prime} çan be endowed bilit iln lifoulive norm

$$
\begin{gathered}
\|x\|_{\odot_{e}^{n} X^{\prime}}=\sup _{\|y\| \leq 1}\left|\sum_{j \in \mathbb{N}} \lambda_{j}\left\langle y \mid x_{j}\right\rangle^{n}\right| \\
x=\sum_{j} \lambda_{j}\left(\otimes^{n} x_{j}\right) \in \odot^{n} X^{\prime}
\end{gathered}
$$

Ulawn $M \in X_{1}, r_{j} \in X^{\prime}, \lambda_{j} \in \mathbb{C}$ ．Let $\odot_{\varepsilon}^{n} X^{\prime}$ denote the corresponding completion．The almon $w_{i}^{\prime \prime} X^{\prime}$ colncides with a subspace in $\mathcal{P}^{n}(X)$ of approximable n－homogeneous parlomiminl on X which are weakly star continuous on the bounded sets and the cmbloulationg

$$
\mathcal{P}_{\varepsilon}^{n}(X)=\bigodot_{\varepsilon}^{n} X^{\prime} \uparrow \mathcal{P}^{n}(X)
$$

Ia｜anmetric（мпе e．g．［36，p．112］，［41］）．Further $\mathcal{P}_{\varepsilon}(X)$ denotes the algebra of all mpиr＂ulomilile pulyromials on X which are weakly star continuous on the bounded inlmeta of X ．

1.2. Linear subspaces in zeros of polynomials

If X if nu arbitrary complex vector space (not necessarily normed), we define a n-homogeneous complex polynomial by the formula

$$
P(x)=\left(F \circ \Delta_{n}\right)(x) \quad x \in X,
$$

where F is a complex n-linear (not necessarily continuous) functional on X.
It is clear that the kernel (i.e. the set of zeros) of an n-homogeneous complex polynomial P on X, where $n>0$ and $\operatorname{dim} X>1$, consists of one-dimensional subspaces. Now we will show that it consists of infinite-dimensional subspaces if $\operatorname{dim} X=\infty$.

Theorem 1.10. Let X be an infinite-dimensional complex vector space and P is a complex n-homogeneous polynomial on X. Then there exists an infinite-dimensional subspace X_{0} such that

$$
X_{0} \subset \operatorname{ker} P .
$$

Lemma 1.11. Let Theorem 1.10 be proved for every homogeneous polynomial of degree $\leq n$. Then for arbitrary homogeneous polynomials P_{1}, \cdots, P_{m} of degree $\leq n$ there exists a subspace

$$
X_{0} \subset \operatorname{ker} P_{1} \cap \ldots \cap \operatorname{ker} P_{m}
$$

such that $\operatorname{dim} X_{0}=\infty$.
Proof. Let $X_{1} \subset \operatorname{ker} P_{1}$ with $\operatorname{dim} X_{1}=\infty$. Then there exists a subspace $X_{2} \subset X_{1} \cap \operatorname{ker} P_{2}$ such that $\operatorname{dim} X_{2}=\infty$. Continuing this process, we get the subspace

$$
X_{0}=X_{m} \subset X_{m-1} \subset \cdots \subset X_{1}
$$

with $X_{0} \subset \operatorname{ker} P_{1} \cap \cdots \cap \operatorname{ker} P_{m}$ and $\operatorname{dim} X_{0}=\infty$.
Proof of Theorem 1.10. We will construct X_{0} using the induction on n. Evidently that the theorem is true for linear functionals. Suppose that it is true for homogeneous polynomials of degree $<n$.

Let $x_{1} \in X$ is chosen such that $P\left(x_{1}\right) \neq 0$ (if such x_{1} does not exist then the assertion of theorems is true automatically). By the induction hypothesis and by Lemma 1.11 there exists a subspace $X_{1} \subset X$ with $\operatorname{dim} X_{1}=\infty$, on which each of the homogeneous polynomials

$$
\begin{aligned}
& P_{x_{1}}(x):=F\left(x_{1}, x^{n-1}\right), \\
& P_{x_{1}^{2}}(x):=F\left(x_{1}^{2}, x^{n-2}\right), \\
& \ldots \ldots \ldots \ldots \ldots \ldots \cdots \\
& P_{x_{1}^{n-1}}(x):=F\left(x_{1}^{n-1}, x\right)
\end{aligned}
$$

vanish for all $x \in X_{1}$, where F is the symmetric n-linear functional associated with the n-homogeneous polynomial P.

On second step we choose an element $x_{2} \in X_{1}$ such that $P\left(x_{2}\right) \neq 0$ (if x_{2} does not exist then $X_{1} \subset \operatorname{ker} P$ and the theorem is proved at once). By the induction
linjuil main mal liy Lomma 1.11 there exists a subspace $X_{2} \subset X_{1}$ with $\operatorname{dim} X_{2}=\infty$ Whilis ma li lomogeneous polynomials

$$
P_{n \uparrow, \frac{1}{2}}(x):=F\left(x_{1}^{k}, x_{2}^{l}, x^{n-k-l}\right), \quad 0<k+l<n
$$

how wll at $0 X_{2}$.

Wh cumilmue thin process in the way written above. If it finishes on the i-th step (1) $\left.10 \|_{i} \mid=10\right)$, then the theorem is proved. If it does not finish then we will get an (Namilom mulle.tien (x_{i}) consisting of linearly independent terms such that $P\left(x_{i}\right) \neq 0$ (4.3) momy if N nind

$$
F\left(x_{1}^{k_{1}}, x_{2}^{k_{2}}, \ldots, x_{i}^{k_{i}}\right)=0
$$

III) oh $_{i}<i$ it lonst for one k_{i}.

I vimanimily, it follows that for any finite sequence of scalars $\left(a_{i}\right)$,

$$
P\left(\sum_{i} a_{i} x_{i}\right)=\sum_{i} a_{i}^{n} P\left(x_{i}\right) .
$$

WWI $y_{1}=r_{1} / I^{\prime}\left(x_{i}\right)$ for all $i \in \mathbb{N}$. Then P vanishes on the linear span of elements

$$
y_{1}+\sqrt[n]{-1} y_{2}, y_{3}+\sqrt[n]{-1} y_{4},, y_{5}+\sqrt[n]{-1} y_{6}, \ldots
$$

Ihime Iheureill in proved.
1 (1tinil Al| 1.12. For every polynomial functional P on a complex infinite di---

Ulo infollary is proved in the same way as Lemma 1.11. Applying Corollary 1.12 lue thou pulynomial $P_{x_{0}}(x)=P\left(x_{0}+x\right)$, we obtain the following assertion.
 nimulal vin tor space and $P\left(x_{0}\right)=0$, then there exists an infinite dimensional affine kiluman $\mathrm{X}_{11} \subset \operatorname{ker} P$ with $x_{0} \in X_{0}$.

1.3. Analytic functions

Luil Ω be a subset of a Banach space X. We say that Ω is finitely open if for mur linte dimensional affine subspace V of X, endowed with the Euclidean topology, 1 IIll lw open in V.

Divinition 1.14. We say that a map

$$
f: \Omega \longrightarrow Y
$$

|n॥n in Bunuch space Y is G-analytic (Gâteaux-analytic), and write $f \in \mathcal{H}_{G}(\Omega, Y)$, If lif nuy finite dimensional affine subspace V (or, equivalently, for any complex line $V^{\prime} \subset \lambda^{\prime}$) the restriction of f onto $V \cap \Omega$ is analytic.
\wedge G-mualytic map $f: \Omega \longrightarrow Y$, defined on an open subset $\Omega \subset X$, is called umulylic, which is written $f \in \mathcal{H}(\Omega, Y)$, if f is continuous.
\|f $\Omega=X$ and $f \in \mathcal{H}(X, Y)$ then the function f is called entire.

We will short write $\mathcal{H}(\cdot, \mathbb{C})=\mathcal{H}(\cdot)$ for spaces of \mathbb{C}-valued functions.
Every nmulytic function $f \in \mathcal{H}(\Omega, Y)$ can be locally represented by its Taylor's neriter expansion

$$
f(a+x)=\sum_{n \in \mathbf{Z}_{+}} f_{n}(x), \quad f_{n}(x)=\frac{d_{a}^{n} f(x)}{n!}
$$

uniformly convergent on a neighborhood of $a \in \Omega$, in which $d_{a}^{n} f(x)$ denotes the nth Fréchet derivation of f at a by the direction $x \in X$ and belongs to the space of n-homogeneous polynomials $\mathcal{P}\left({ }^{n} X, Y\right)$.

Proposition 1.15. Let $\left(f_{n}\right)$ be a sequence of n-homogeneous polynomials such that $f_{n} \in \mathcal{P}\left({ }^{n} X, Y\right)$ for all $n \in \mathbb{N}$. A necessary and sufficient condition for existence of a function $f \in \mathcal{H}(X, Y)$ such that $f_{n}=d_{0}^{n} f / n$! is that for any given $\varepsilon>0$ each $x \in X$ has a neighborhood U such that

$$
\sup _{U}\left\|f_{n}\right\|^{1 / n} \leq \varepsilon
$$

for n large enough.
Let Ω be an open subset of X and $f \in \mathcal{H}(\Omega, Y)$. The radius of uniform convergence $\varrho_{a}(f)$ of the function f at $a \in \Omega$ is defined as a supremum of all number $\lambda \in \mathbb{C}$ such that

$$
a+\lambda B \subset \Omega
$$

and the Taylor series of f at a converges to f uniformly on $a+\lambda B$, where B is the unit ball of X. Note that if X is an infinite dimensional Banach space, then there exists a \mathbb{C}-valued entire function f on X, such that $\varrho_{a}(f)<\infty$ for every $a \in X$ (see e.g. [35, p.169]).

The radius of boundedness of f at $a \in \Omega$ is defined as a supremum of all $\lambda \in \mathbb{C}$ such that f is bounded on $a+\lambda B$.

Theorem 1.16. The radii of uniform convergence and boundedness of any function $f \in \mathcal{H}(\Omega, Y)$ at $a \in \Omega$ coincide and

$$
\varrho_{a}(f)=\left(\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|^{1 / n}\right)^{-1}
$$

where

$$
f_{n}=\frac{d_{a}^{n} f}{n!}, \quad\left\|f_{n}\right\|=\sup _{x \in B}\left\|f_{n}(x)\right\| .
$$

Denote by $\mathcal{H}_{b}(X)$ the space of all entire \mathbb{C}-valued functions of bounded type, i.e., of all entire complex functions on X which are bounded on bounded subsets (having the radius of boundedness equal to infinity).

The space $\mathcal{H}_{b}(X)$ is a Frechet topological algebra endowed with the seminorms

$$
\|f\|_{r}=\sup _{x \in r B}|f(x)|, \quad f \in \mathcal{H}_{b}(X),
$$

where $r>0$ is a rational number. Consider its dual space $\mathcal{H}_{b}(X)^{\prime}$. Each linear functional $\phi \in \mathcal{H}_{b}(X)^{\prime}$ is bounded with respect to the norm of uniform convergence on some ball in X.

Ther indrus function $R(\phi)$ of the functional $\phi \in \mathcal{H}_{b}(X)^{\prime}$ is defined as the infimum if ail manlomin $r>0$ such that ϕ is bounded with respect to the norm of uniform (Wath meina int the ball $r B$.

Themble liy ϕ_{n} the restriction of $\phi \in \mathcal{H}_{b}(X)^{\prime}$ to the subspace of n-homogeneous piltinaminle $P(" X)$. Then ϕ_{n} is a bounded linear functional on $\mathcal{P}\left({ }^{n} X\right)$ and

$$
\left\|\phi_{n}\right\|=\sup \left\{|\phi(P)|: P \in \mathcal{P}\left({ }^{n} X\right),\|P\| \leq 1\right\} .
$$

IIII

$$
R(\phi)=\underset{n \rightarrow \infty}{\lim \sup }\left\|\phi_{n}\right\|^{1 / n} .
$$

Fmurn, Suppose that

$$
0<t<\limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n}
$$

Thinit lime in a nequence of homogeneous symmetric polynomials $\left(P_{j}\right)$ of degree inf. 1 at mili that. $\left\|P_{j}\right\|=1$ and $\left|\phi\left(P_{j}\right)\right|>t^{n_{j}}$. If $0<r<t$, then by homogeneity,

$$
\left\|P_{j}\right\|_{r}=\sup _{x \in r B}\left|P_{j}^{\prime}(x)\right|=r^{n_{j}},
$$

that

$$
\left|\phi\left(P_{j}\right)\right|_{0}>(t / r)^{n_{j}}\left\|P_{j}\right\|_{r},
$$

Wif to twiml continuous with respect to the norm of uniform convergence on $r B$. It hailime llint $R(\phi) \geq r$, and in view of the arbitrary choice of r we obtain

$$
R(\phi) \geq \underset{n \rightarrow \infty}{\lim \sup }\left\|\phi_{n}\right\|^{1 / n}
$$

Lin now $n>\lim \sup \left\|\phi_{n}\right\|^{1 / n}$ so that $s^{m} \geq\left\|\phi_{m}\right\|$ for m large. Then there is 1 mull that $\left\|\phi_{m}^{n \rightarrow \infty}\right\| \leq s^{m}$ for every m. If $r>s$ is arbitrary and ${ }^{\circ} f \in H_{b}(X)$ has livliuf nerter expansion $f=\sum_{n \in \mathbb{Z}_{+}} f_{n}$, then

$$
r^{m}\left\|f_{m}\right\|=\left\|f_{m}\right\|_{r} \leq\|f\|_{r}, \quad m \in \mathbb{Z}_{+}
$$

Hone

$$
\left|\phi\left(f_{m}\right)\right| \leq\left\|\phi_{m}\right\|\left\|f_{m}\right\| \leq \frac{c s^{m}}{r^{m}}\|f\|_{r}
$$

nowl mo

$$
\|\phi(f)\| \leq c\left(\sum_{m \in \mathbb{Z}_{+}} \frac{s^{m}}{r^{m}}\right)\|f\|_{r} .
$$

Ihur in in continuous with respect to the uniform norm on $r B$, and $R(\phi) \leq r$. Since f mill \& nre arbitrary,

$$
R(\phi) \leq \limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n} .
$$

The theorem is proved.
Connider now the dual space $\mathcal{P}\left({ }^{n} X\right)^{\prime}$ of the space $\mathcal{P}\left({ }^{n} X\right)$.

Timomem 1.18. Suppose that $\phi_{n} \in \mathcal{P}\left({ }^{n} X\right)^{\prime}$ for any $n \in \mathbb{Z}_{+}$, and suppose that

$$
\left\|\phi_{n}\right\| \leq c s^{n}
$$

for nome $C, A>0$. Then there is a unique functional $\phi \in \mathcal{H}_{b}(X)^{\prime}$ whose restriction to $\mathcal{P}(" X)$ coincides with ϕ_{n} for all $n \in \mathbb{Z}_{+}$.

1.4. The Aron-Berner extension

Let X be a complex Banach space and $X^{\prime \prime}$ its second dual. Any given continuous n-linear mapping $F: X \times \cdots \times X \longrightarrow \mathbb{C}$ can be extended to a continuous n-linear mapping $\widetilde{F}: X^{\prime \prime} \times \cdots \times X^{\prime \prime} \longrightarrow \mathbb{C}$ as follows

$$
\begin{equation*}
\tilde{F}\left(x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)=\lim _{\alpha_{1}} \ldots \lim _{\alpha_{n}} F\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right), \tag{1.9}
\end{equation*}
$$

where for each $k,\left(x_{\alpha_{k}}\right)$ is a net in X weakly-star converging to $x_{k}^{\prime \prime}$.
Let $P \in \mathcal{P}\left({ }^{n} X\right)$ and $F_{P} \in \mathscr{L}_{s}\left({ }^{n} X, \mathbb{C}\right)$ be the n-linear symmetric form associated with P. Then the Aron-Berner extension \widetilde{P} of P is defined as

$$
\widetilde{P}(x):=\widetilde{F}_{P}(x, \ldots, x), \quad x \in X^{\prime \prime}
$$

Theorem 1.19. Let $\left(x_{\alpha}\right)$ be a net in the unit ball of X that weakly-star converges to $z \in X^{\prime \prime}$ with $\|z\|<1$. Then there is a net $\left(y_{\beta}\right)$ in the unit ball B of X such that each y_{β} is an arithmetic mean of a finite number of x_{α} 's, and

$$
P\left(y_{\beta}\right) \rightarrow \tilde{P}(z)
$$

for every polynomial P on X.
Theorem 1.20. Let $f \in \mathcal{H}_{b}(X)$ and

$$
f=\sum_{n \in \mathbb{Z}_{+}} f_{n}
$$

is its Taylor series expansion. Then there exists $\tilde{f} \in \mathcal{H}_{b}\left(X^{\prime \prime}\right)$ with the Taylor series expansion

$$
\tilde{f}=\sum_{n \in \mathbb{Z}_{+}} \tilde{f}_{n}
$$

such that \tilde{f}_{n} is the Aron-Berner extension of f_{n}. Moreover,

$$
\left\|\tilde{f}_{n}\right\|=\left\|f_{n}\right\| \quad \text { for every } n
$$

and the operator $f \longmapsto \tilde{f}$ is a homomorphism between the Fréchet algebras $\mathcal{H}_{b}(X)$ and $\mathcal{H}_{b}\left(X^{\prime \prime}\right)$, i.e.,

$$
\mathcal{H}_{b}(X) \simeq \mathcal{H}_{b}\left(X^{\prime \prime}\right)
$$

Itat Ine in wet of indexes and $\left(X_{i}\right)_{i \in \mathcal{I}}$ with $X_{i}=X$ be a \mathcal{I}-fold family of X. Hrintalot $f_{-}(X, I)$ the ℓ_{∞}-direct sum of X 's, that is, the space of all elements

$$
\left(x_{i}\right)_{i \in \mathcal{I}} \in \underset{i \in \mathcal{I}}{X} X_{i}
$$

| flun the mequence $\left(\left\|x_{i}\right\|\right)_{i \in \mathcal{I}}$ is bounded with the ℓ_{∞}-norm

$$
\left\|\left(x_{i}\right)_{i \in \mathcal{I}}\right\|_{\infty}:=\sup _{i \in \mathcal{I}}\left\|x_{i}\right\| .
$$

I.4 11 liwn ultrafilter on \mathcal{I} and $\left(x_{i}\right)_{i \in \mathcal{I}} \in \ell_{\infty}(X, \mathcal{I})$. We define the ultrapower of - $H 1 /$ impect to \mathfrak{U} as the quotient space $\ell_{\infty}(X, \mathcal{I}) / \mathcal{N}_{\mathfrak{u}}$ equipped with the quotient fa monlill, where

$$
\mathcal{N}_{\mathfrak{A}}:=\left\{\left(x_{i}\right) \in \ell_{\infty 0}(X, \mathcal{I}): \lim _{\mathfrak{U}}\left\|x_{i}\right\|=0\right\} .
$$

I willmily, N_{11} if a closed vector subspace of $\ell_{\infty}(X, \mathcal{I})$. We will denote

$$
X^{\mathfrak{H}}:=\ell_{\infty}(X, \mathcal{I}) / \mathcal{N}_{\mathfrak{U}} .
$$

Chin, Ilum ullupower $X^{\mathfrak{U}}$ consists of elements $\left(x_{i}\right)_{\mathfrak{U}} \in \ell_{\infty}(X, \mathcal{I}) / \mathcal{N}_{\mathfrak{U}}$, where $x_{i} \in X$ fint many $10 I$ and

$$
\left(x_{i}\right)_{\mathfrak{U}}=\left(y_{i}\right)_{\mathfrak{U}} \quad \text { if } \quad \lim _{\mathfrak{U}} x_{i}=\lim _{\mathfrak{U}} y_{i}
$$

inithe Ilmimelt anuce X.

Il hatio ate two approaches to construct of ultrapower extensions of polynomials.
Laf I^{\prime} © $P\left({ }^{\prime \prime} X\right)$ and F_{P} be the symmetric n-linear forms associated with P. Ihen wr ileline an n-linear forms on $X^{\mathbb{L}}$ by

$$
\tilde{F}_{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{i_{1}, \mathcal{U}} \ldots \lim _{i_{n}, \mathcal{U}} \tilde{F}_{P}\left(x_{i_{1}}^{(1)}, \ldots, x_{i_{n}}^{(n)}\right)
$$

(hit $i=\left(x_{i}^{(k)}\right)_{\mathcal{U}}$. It is easy to see that \tilde{F}_{P} is well defined, \tilde{F}_{P} is an extension of \tilde{F}_{P} ninil lint $\left\|\tilde{F}_{P}\right\|=\left\|F_{P}\right\|$. Thus, we can define an extension of P to $X^{\mathfrak{U}}$ by

$$
\widetilde{P}\left(\left(x_{i}\right)_{\mathfrak{U}}\right)=\widetilde{F}_{P}\left(\left(x_{i}\right)_{\mathfrak{U}}, \ldots,\left(x_{i}\right)_{\mathfrak{U}}\right)
$$

Wulu thint if F_{P} is symmetric, it does not necessary follow that \widetilde{F}_{P} is symmetric.
The ultrufilter \mathfrak{U} associated with the weak convergence on the space X is called - himal ullivefilter on X.

If It the local ultrafilter on X then the restriction of \widetilde{P} to the canonical image iff $X^{\prime \prime}$ in X^{4} coincides with the Aron-Berner extension of P onto $X^{\prime \prime}$.

Thbonem 1.21. The following assertions are equivalent:
(1) For every ultrafilter \mathfrak{U} and every continuous symmetric bilinear form F on X, the ultrapower extension \widetilde{F}_{P} is symmetric.
(2) For every ultrafilter \mathfrak{U} and every continuous symmetric n-linear form F on X, the ultrapower extension \widetilde{F}_{P} is symmetric.
(3) Fior local ultrafilter on X and every continuous symmetric bilinear form F on X, the ultrapower extension \widetilde{F}_{P} from X onto $X^{\prime \prime}$ is symmetric.
(4) Every continuous symmetric linear operator from X into X^{\prime} is weakly compuct.
(5) Byery continuous symmetric bilinear form on X extends to a separately. werkly-atar continurous bilinear form on $X^{\prime \prime}$.

A Bmach space X is said to be symmetrically regular if the assertions (1)-(5) of Theorem 1.21 hold.

Since every polynomial $P \in \mathcal{P}\left({ }^{n} X\right)$ is bounded on bounded nets, we can define

$$
\bar{P}\left(\left(x_{i}\right)_{\mathfrak{U}}\right):=\lim _{\mathfrak{U}} P\left(x_{i}\right)
$$

and we have $\|P\|=\|\bar{P}\|$. Note that, in general, $\widetilde{P} \neq \bar{P}$.
A closed subspace Y of a Banach space X is locally complemented in X if there is a constant M such that whenever E is a finite-dimensional subspace of Y there is a linear map (depending on the given finite-dimensional subspace) $T: E \longrightarrow X$ so that $\|T\| \leq M$ and $T x=x$ for all $x \in E \cap X$.

For instance, Lindenstrauss-Rosenthal Principle of Local Reflexivity says that every Banach space is locally complemented in its second dual. Also, it is well-known that every Banach space is locally complemented in its ultrapowers.

Theorem 1.22. Let Y be a subspace of X. Then there exists a linear extension operator

$$
\mathcal{P}\left({ }^{n} Y\right) \longrightarrow \mathcal{P}\left({ }^{n} X\right)
$$

for all (or some) $n \geq 1$ if and only if Y is locally complemented in X.

1.5. Concept of regularity

A bilinear form F on a Banach space X is called Arens regular if the following two extensions of F onto $X^{\prime \prime} \times X^{\prime \prime}$ coincide:

$$
\begin{aligned}
& \tilde{F}_{[12]}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\lim _{\alpha} \lim _{\beta} F\left(x_{\alpha}, y_{\beta},\right. \\
& \tilde{F}_{[21]}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\lim _{\beta} \lim _{\alpha} F\left(x_{\alpha}, y_{\beta}\right),
\end{aligned}
$$

where $\left(x_{\alpha}\right)$ (resp. $\left(y_{\beta}\right)$) is a net in X weakly-star converging to $x^{\prime \prime} \in X^{\prime \prime}$ (resp. $y^{\prime \prime} \in X^{\prime \prime}$). Evidently,

$$
\tilde{F}_{[12]}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\tilde{F}_{[21]}\left(y^{\prime \prime}, x^{\prime \prime}\right) .
$$

Note that F is Arens regular if and only if the extension $\tilde{F}=\widetilde{F}_{[22]}$ is separately weakly-star continuous in each variable.

A Banach space X is called regular if every continuous bilinear form on $X \times X$ is Arens regular.

From Theorem 1.21 it follows that X is symmetrically regular if and only if every symmetric continuous bilinear form $F \in \mathscr{L}_{s}\left({ }^{2} X, \mathbb{C}\right)$ is Arens regular. In other words, if

$$
\tilde{F}\left(x^{\prime \prime}, y^{\prime \prime}\right):=\tilde{F}_{[12]}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { and } \tilde{F}\left(y^{\prime \prime}, x^{\prime \prime}\right):=\tilde{F}_{[21]}\left(x^{\prime \prime}, y^{\prime \prime}\right)
$$

How aymmetric regularity of X means that the extension $\widetilde{F}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ of any symHo conllomonw bilinear form $F(x, y)$ is symmetric. Evidently, if X is symmetriWumber then it is regular.
hiif n given billinear form $F \in \mathscr{L}\left({ }^{2} X, \mathbb{C}\right)$ we consider the linear operator $T=T_{F}$ X In X ' determined by the formula

$$
F(x, y)=\langle T x \mid y\rangle, \quad x, y \in X
$$

$I_{r}(y)=\langle T x \mid y\rangle$ is the value of $T x \in X^{\prime}$ in $y \in X$. If F is a symmetric |n man lurlin, then T is a symmetric operator, that is

$$
\langle T x \mid y\rangle=\langle T y \mid x\rangle, \quad x, y \in X
$$

Imopuition 1.23. Let X, Y be a Banach spaces. The Cartesian product $X \times Y$ lular if mud only if every map in any of the following four spaces

$$
\mathscr{L}\left(X, X^{\prime}\right), \quad \mathscr{L}\left(X, Y^{\prime}\right), \quad \mathscr{L}\left(Y, X^{\prime}\right), \quad \mathscr{L}\left(Y, Y^{\prime}\right)
$$

lily compurt.

Vminir, Suppose that the above four spaces possess the specified property. Let (1, 1,) $X \times Y \longrightarrow X^{\prime} \times Y^{\prime}$ be a continuous linear mapping. Then

$$
T(x, y)=\left(T_{1}(x, 0), 0\right)+T_{1}((0, y), 0)+\left(0, T_{2}(x, 0)\right)+\left(0, T_{2}(0, y)\right)
$$

Vur $(r, \mu) \subseteq X \times Y$. We define

$$
\begin{array}{lll}
R_{1}: X \longrightarrow X^{\prime} & \text { by } & R_{1}(x):=T_{1}(x, 0), \\
R_{2}: Y \longrightarrow X^{\prime} & \text { by } & R_{2}(y):=T_{1}(0, y), \\
R_{3}: X \longrightarrow Y^{\prime} & \text { by } & R_{3}(x):=T_{2}(x, 0), \\
R_{4}: Y \longrightarrow Y^{\prime} & \text { by } & R_{4}(y):=T_{2}(0, y), \\
y \in Y .
\end{array}
$$

Hlinw $I_{1}(j=1,2,3,4)$ are weakly compact operators and since

$$
T(x, y)=\left(R_{1}(x), 0\right)+\left(R_{2}(y), 0\right)+\left(0, R_{3}(x)\right)+\left(0, R_{4}(y)\right)
$$

ill $(a, y) \in X \times Y$, the conclusion holds. The adversary implication is clear.

Comoliarky 1.24 .

(1) If X is regular, then $X \times X$ is regular too.
(d) If X is regular, then $X \times \mathbb{C}$ is regular too.
(a) If X is not reflexive, then $X \times X^{\prime}$ is not regular.

I'morostition 1.25. For a given Banach space X, the Cartesian product $X \times X$ thenular if and only if it is symmetrically regular.

Note that from this propositions it follows that if X is isomorphic to its square, Ulwon it In regular if and only if it is symmetrically regular. In [9] is noted that the iluial of Jumew space is symmetrically regular but it is not regular.

Jof in given linear operator T from X to X^{\prime} we denote by T^{t} the transposed (miljuint) operator, acting from $X^{\prime \prime}$ to X^{\prime}. Throughout further we suppose that each Hnimiti apmee is naturally embedded into its second dual. In particularly, it means lloul $T^{\prime \prime}$ in well defined on X and

$$
T^{t t} x=T x, \quad x \in X
$$

It fint blallinum furm $I^{\prime} \in \mathscr{L}\left({ }^{2} X, \mathbb{C}\right)$ corresponds the linear

$$
\begin{aligned}
& \eta_{121}\left(1^{\prime \prime}, y^{\prime \prime}\right)=\left\langle T^{t t} x^{\prime \prime} \mid y^{\prime \prime}\right\rangle, \\
& \boldsymbol{A}_{211}\left(\mathrm{r}^{\prime \prime}, y^{\prime \prime}\right)=\left\langle J_{1} T^{t t} x^{\prime \prime} \mid y^{\prime \prime}\right\rangle,
\end{aligned}
$$

in Ilim anmulial propection of $X^{\prime \prime \prime}$ onto the embedded image of X^{\prime} in $X^{\prime \prime \prime}$. HImany Mir min $x \in X$ the functional

$$
y^{\prime \prime} \longmapsto\left\langle T^{t t} x \mid y^{\prime \prime}\right\rangle=\langle T x \mid y\rangle
$$

In minily-atar continuous on $X^{\prime \prime}$. Also, for each $y^{\prime \prime}$, the functional

$$
x^{\prime \prime} \longmapsto\left\langle T^{t t} x^{\prime \prime} \mid y^{\prime \prime}\right\rangle=\left\langle x^{\prime \prime} \mid T^{t} y^{\prime \prime}\right\rangle
$$

in weakly-ntar continuous on $X^{\prime \prime}$. So.

$$
\begin{aligned}
\tilde{F}_{[12]}\left(x^{\prime \prime}, y^{\prime \prime}\right) & =\lim _{\alpha} \lim _{\bar{\beta}}\left\langle T x_{\alpha} \mid y_{\beta}\right\rangle=\lim _{\alpha}\left\langle T^{t t} x_{\alpha} \mid y^{\prime \prime}\right\rangle \\
& =\lim _{\alpha}\left\langle x_{\alpha} \mid T^{t} y^{\prime \prime}\right\rangle=\left\langle T^{t t} x^{\prime \prime} \mid y^{\prime \prime}\right\rangle
\end{aligned}
$$

and the equation (1.10) is proved.
Similarly, to establish (1.11) is sufficient to observe that for each $y \in X$, the functional

$$
x^{\prime \prime} \longmapsto\left\langle J_{1} T^{t t} x^{\prime \prime} \mid y\right\rangle=\left\langle T^{t t} x^{\prime \prime} \mid y\right\rangle=\left\langle x^{\prime \prime} \mid T^{t} y\right\rangle
$$

is weakly-star continuous on $X^{\prime \prime}$ and for any fixed $x^{\prime \prime} \in X^{\prime \prime}$, the functional

$$
y \longmapsto\left\langle J_{1} T^{t t} x^{\prime \prime} \mid y\right\rangle
$$

is weakly-star continuous on $X^{\prime \prime}$.

1.6. Hilbert-Schmidt polynomials

Let E be a separable Hilbert complex space with an orthonormal basis $\left(\mathfrak{e}_{i}\right)_{i \in \mathbb{N}}$, endowed with the scalar product $\langle x \mid y\rangle_{\mathrm{E}}$ and the norm

$$
\|x\|_{\mathbf{E}}=\langle x \mid y\rangle_{\mathrm{E}}^{1 / 2}, \quad x, y \in \mathrm{E}
$$

Clearly, for all $n \in \mathbb{N}$ the nth tensor power $\otimes^{n} E$ is defined to be a complex linear span of elements

$$
\left\{x_{1} \otimes \ldots \otimes x_{n}: x_{1}, \ldots, x_{n} \in \mathrm{E}\right\} .
$$

It is well-known (see e.g. [33] p. 351 or [15]) that it is possible to define a norm $\|\cdot\| \otimes_{h}^{n} \mathrm{E}$ on the vector space $\otimes^{n} \mathrm{E}$ such that the corresponding completion $\otimes_{h}^{n} \mathrm{E}$ is a Hilbert space. More exactly, the scalar product on $\otimes_{\mathrm{h}}^{n} \mathrm{E}$ is defined by the equality

$$
\left\langle x_{1} \otimes \ldots \otimes x_{n} \mid y_{1} \otimes \ldots \otimes y_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}:=\left\langle x_{1} \mid y_{1}\right\rangle_{\mathrm{E}} \ldots\left\langle x_{n} \mid y_{n}\right\rangle_{\mathrm{E}}
$$

for all $x_{i}, y_{i} \in \mathrm{E}$. Let $\{i\}$ denotes a multi-index $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$. Since the system
huinin int orthonormal basis in $\otimes_{h}^{n} \mathrm{E}$, each vector $w \in \otimes_{\mathrm{h}}^{n} \mathrm{E}$ can be represented as the fluiter nerliow

$$
w=\sum_{\{i\} \in \mathbb{N}^{n}} \lambda_{\{i\}} \mathfrak{e}_{i_{1}} \otimes \cdots \otimes \mathfrak{c}_{i_{n}}, \quad \lambda_{\{i\}} \in \mathbb{C}
$$

nuif it. lius the norm

$$
\|w\|_{\otimes_{\xi}^{n} \mathrm{E}}=\langle w \mid w\rangle_{\otimes_{n}^{n} \mathrm{E}}^{1 / 2}=\left(\sum_{\{i\} \in \mathbb{N}^{n}}\left|\lambda_{\{i\}}\right|^{2}\right)^{1 / 2} .
$$

11 in ilemr that the above norm, generated by the scalar product, is a cross-norm on PI, that in,

$$
\left\|x_{1} \otimes \ldots \otimes x_{n}\right\|_{\otimes_{0}^{n} \mathrm{E}}=\left\|x_{1}\right\|_{\mathrm{E}} \ldots\left\|x_{n}\right\|_{\mathrm{E}}
$$

I'MOPOSITION 1.27. There exists a unique continuous orthogonal projection S_{n} i.i. "in much that

$$
S_{n}\left(\mathfrak{e}_{i_{1}} \otimes \ldots \otimes \mathfrak{i}_{i_{n}}\right)=\frac{1}{n!} \sum_{n \in \mathfrak{S}_{n}} \mathfrak{e}_{i_{s(1)}} \otimes \ldots \otimes \mathfrak{e}_{i_{s(n)}}
$$

Uルoof. The equality $S_{n}^{2}(w)=S_{n}(w)$ and orthogonality of S_{n} are evident on a it $n, \ldots \in \mathbb{E}$ of finite sums $w=\sum_{\{i\}} \lambda_{\{i\}} \mathfrak{c}_{i_{1}} \otimes \cdots \otimes \mathfrak{e}_{i_{n}}$. The continuity of S_{n} follows fli.in the inequality

$$
\begin{aligned}
& \leq \sup _{\|w\|_{\otimes_{n}^{n} \mathrm{E}} \leq 1} \frac{1}{n!} \sum_{s \in \mathfrak{S}_{n}}\left(\sum_{\{i\}}\left|\lambda_{i_{s(1)}, \ldots, i_{s(n)}}\right|^{2}\left\|\boldsymbol{e}_{i_{s(1)}}\right\|_{\mathbb{E}}^{2} \ldots\left\|\boldsymbol{e}_{i_{s(n)}}\right\|_{\mathbb{E}}^{2}\right)^{1 / 2} \\
& =\frac{1}{n!} \sup _{\|w\|_{\otimes_{n}^{n} \mathrm{E}} \leq 1} n!\|w\|_{\otimes_{h}^{n} \mathrm{E}}=1 .
\end{aligned}
$$

Wniqueness of S_{n} is a consequence of the basis property of $\left(\mathfrak{e}_{\boldsymbol{i}}\right)$ and $\mathfrak{e}_{i_{1}} \otimes \ldots \otimes \mathfrak{e}_{i_{n}}$ in How njaces E and $\odot_{h}^{n} \mathrm{E}$, respectively.

The symmetric Hilbertian tensor product $\bigodot_{h}^{n} \mathrm{E}$ is defined to be the codomain of inllogonal projection S_{n}, setting on the space $\otimes_{h}^{n} \mathrm{E}$, that is,

$$
\odot_{\mathfrak{h}}^{n} \mathrm{E}:=S_{n}\left(\otimes_{\mathrm{h}}^{n} \mathrm{E}\right)
$$

We will use the following notations

$$
(k):=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}, \quad|(k)|:=\sum_{i} k_{i}, \quad(k)!:=\prod_{i} k_{i}!
$$

Proposition 1.28. \quad (i) The system of elements
forme un orthogomal basis in $\odot_{h}^{n} \mathrm{E}$, at that

$$
\left\|e_{(1)}^{\otimes(k)}\right\|_{\Theta_{n}^{n} E}=\sqrt{\frac{(k)!}{n!}}, \quad n=|(k)|
$$

(ii) The symmetric Hilbertian tensor product $\odot_{h}^{n} \mathrm{E}$ is the closure in $\otimes_{h}^{n} \mathrm{E}$ of the complex linear span of elements

$$
\left\{x^{\otimes n}: x \in \mathrm{E}\right\} .
$$

Proof. The assertion (i) see e.g. in $[\mathbf{1 5}, 2.2 .2]$.
(ii) The system $x_{\{i\}}^{\otimes n} \in \bigodot_{h}^{n} \mathrm{E}$ with

$$
x_{\{i\}}=\delta_{1} \mathbf{e}_{i_{1}}+\ldots+\delta_{n} \mathfrak{c}_{i_{n}} \in \mathrm{E},
$$

where $\{i\} \in \mathbb{N}^{n}$ and $\delta_{i}= \pm 1$, is total in $\bigodot_{\mathfrak{h}}^{n} \mathrm{E}$. Indeed, using the polarization formula (1.2), we have

$$
\mathfrak{e}_{\{i\}}^{\otimes(k)}=\frac{1}{2^{n} n!} \sum_{i=1}^{n} \sum_{\delta_{i}= \pm 1} \delta_{1} \cdot \ldots \cdot \delta_{n} x_{\{i\}}^{\otimes n} \quad \text { with } \quad n=|(k)| .
$$

If an element $\psi_{n} \in \odot_{h}^{n} \mathrm{E}$ satisfies the conditions $\left\langle x_{\{i\}}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}=0$ for all $\{i\} \in \mathbb{N}^{n}$ then $\left\langle\ell_{\{i\}}^{\otimes(k)} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}}=0$ for all indexes $\{i\} \in \mathbb{N}^{n}$ and $(k) \in \mathbb{Z}_{+}^{n}$ such that $|(k)|=n$. However, elements $\mathrm{c}_{\{i\}}^{\otimes(k)}$ form a basis in $\bigcirc_{h}^{n} \mathrm{E}$, hence $\psi_{n}=0$. Thus, the set $x_{\{i\}}^{\otimes n}$ is total in the space $\bigcirc_{n}^{n} \mathrm{E}$, if $\{i\}$ runs all such indexes.

Using the Riesz theorem, the Hermitian dual of a Hilbert space E we can to define by the relation

$$
\mathrm{E}^{*}=\left\{y^{*}:=\langle\cdot \mid y\rangle_{\mathrm{E}}: y \in \mathrm{E}\right\} .
$$

Since the natural unitary isometries

$$
\left(\otimes_{h}^{n} \mathrm{E}\right)^{*}=\otimes_{h}^{n} \mathrm{E}^{*}, \quad\left(\bigodot_{h}^{n} \mathrm{E}\right)^{*}=\bigodot_{h}^{n} \mathrm{E}^{*}
$$

hold, the similar argument allows us to note

$$
\begin{aligned}
& \otimes_{h}^{n} \mathrm{E}^{*}=\left\{w^{*}:=\langle\cdot \mid w\rangle_{\otimes_{n}^{n} \mathrm{E}}: w \in \otimes_{h}^{n} \mathrm{E}\right\}, \\
& \odot_{h}^{n} \mathrm{E}^{*}=\left\{w^{*}:=\langle\cdot \mid w\rangle_{\otimes_{\mathrm{h}}^{n} \mathrm{E}}: w \in \odot_{h}^{n} \mathrm{E}\right\} .
\end{aligned}
$$

Then the restriction $\left.w^{*}\right|_{\left\{x^{\otimes n} ; x \in E\right\}}$ of any $w^{*} \in \bigodot_{h}^{n} \mathrm{E}^{*}$, which we denote as

$$
P_{w^{*}}(x)=\left\langle x^{\otimes n} \mid w\right\rangle_{\otimes_{n}^{n} \mathrm{E}}, \quad x \in \mathrm{E},
$$

is an n-homogeneous polynomial on E . Since

$$
\left|P_{w} \cdot(x)\right| \leq\left\|w^{*}\right\|_{\otimes_{n}^{n} \mathrm{E}^{*}}\left\|x^{\otimes n}\right\|_{\otimes_{h}^{n} \mathrm{E}}=\|w\|_{\otimes_{h}^{n} E}\|x\|_{\mathrm{E}}^{n}, \quad x \in \mathrm{E},
$$

the polynomial $P_{w^{*}}$ is bounded and so $P_{w^{*}} \in \mathcal{P}\left({ }^{n} \mathrm{E}\right)$.
Let us denote by $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$ the subspace of all n-homogeneous continuous polynomials $\left\{P_{w^{*}}: w \in \bigodot_{h}^{n} \mathrm{E}\right\}$ with the norm

$$
\left\|P_{w} \cdot\right\|=\|w\|_{\otimes_{n}^{n} E}=\left\|w^{*}\right\|_{\otimes_{6}^{n} E^{*}},
$$

whifis ure culled Hilbert-Schmidt polynomials. For any Hilbert space Y the Y-valued

$$
\psi \circ P \in \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)
$$

(i) wiry $\psi \in Y^{*}$. The previous notes can be precisely formulated as follows.

I'morosition 1.29. The Hermitian dual space $\odot_{h}^{n} \mathrm{E}^{*}$ is isometrically isomorphic I.1 in inhonpace $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$ of the space $\mathcal{P}\left({ }^{n} \mathrm{E}\right)$ of all n-homogeneous continuous polynointale on E.

I'Hoof. Proposition 1.28(ii) implies that the system $\left\{x^{\otimes n}: x \in \mathrm{E}\right\}$ is total in iil. This yields the one-to-one linear mapping

$$
\phi \rightleftarrows P_{\phi}
$$

lin arevl $\bigcirc_{h}^{n} \mathrm{E}^{*}$ and $\mathcal{P}_{\mathrm{h}}\left({ }^{n} \mathrm{E}\right)$. Hence, $\bigcirc_{\mathfrak{h}}^{n} \mathrm{E}^{*}$ is isometric to $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$.
Thus, for any element $w \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$ uniquely assists the continuous linear functional " ${ }^{\prime} \mid=\langle\cdot \mid w\rangle_{\otimes_{h}^{n}}$ belonging to $\odot_{h}^{n} \mathrm{E}^{*}$, which can be identified with the n-homogeneous Illlont-Schmidt polynomial $P_{w}{ }^{\prime \prime}$. Further we will use the short notation

$$
P_{w^{*}}: \mathrm{E} \ni x \longmapsto w^{*}(x):=\left\langle x^{\otimes n} \mid w\right\rangle_{\otimes_{h}^{n} \mathrm{E}} .
$$

II In clear that every polynomial of finite type is Hilbert-Schmidt. Moreover, since muly woment $w \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$ has a form $w=\sum_{\{i\}} \lambda_{\{i\}} \mathfrak{c}_{i_{1}} \otimes \cdots \otimes \mathfrak{e}_{i_{n}}$, it is, a limit of finite min!. So, every Hilbert-Schmidt polynomial is approximated by polynomials of finite [r|m., Thus, if P is a Hilbert-Schmidt polynomial then P is weakly continuous on inminded sets $[8]$. The converse is not true.

I'IOPOSITION 1.30. There is a polynomial which is weakly continuous on bounded milli und not Hilbert-Schmidt.

Plooof. It is known that if E^{*} has the approximation property then the space of in homogeneous weakly continuous polynomials on bounded sets $\mathcal{P}_{w}\left({ }^{n} \mathrm{E}\right)$ is isomorphic (I) the injective symmetric tensor product $\odot_{\varepsilon}^{n} \mathrm{E}^{*}$ of $\mathrm{E}^{*}[36$, p. 112]. On the other liniol,

$$
\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)=\left(\odot_{\mathfrak{h}}^{n} \mathrm{E}\right)^{*} \subset \odot_{\varepsilon}^{n} \mathrm{E}^{*}=\mathcal{P}_{w}\left({ }^{n} \mathrm{E}\right)
$$

Thitr embedding is proper because $\left(\odot_{h}^{n} \mathrm{E}\right)^{*}=\odot_{\mathfrak{h}}^{n} \mathrm{E}$ is a reflexive space but $\odot_{\varepsilon}^{n} \mathrm{E}^{*}$ is linl. More exactly, the adjoint space to the injective symmetric tensor product of the Ililbert space is the symmetric projective tensor product of the Hilbert space [36, p. 11 ? which contains a copy of ℓ_{1}. Note that since $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$ contains all polynomials of linlte type and it is a proper subspace of $\mathcal{P}_{w}\left({ }^{n} \mathrm{E}\right)$, the closure of $\mathcal{P}_{\mathrm{b}}\left({ }^{n} \mathrm{E}\right)$ in $\mathcal{P}\left({ }^{n} \mathrm{E}\right)$ milucldes with $\mathcal{P}_{w}\left({ }^{n} \mathrm{E}\right)$.

A polynomial P is said to be an integral polynomial if there exists a regular Borel I!ниниге μ of finite variation on \bar{B}^{*}, endowed with the weak star topology, and such thint

$$
\begin{equation*}
P(x)=\int_{\hat{B}^{*}}(\phi(x))^{n} d \mu(\phi) \tag{1,1:3}
\end{equation*}
$$

$\|)^{\|} \|=\operatorname{lni}\{\|n\|!$ is is mular flite Borel measure satisfying (1.13) $\}$
In deminolliy F("リ)

I'mou, Slum $\mu_{1}\left({ }^{n} E\right)=\left(\varrho_{\varepsilon}^{n} \mathrm{E}\right)^{*}$ and $\odot_{\mathfrak{h}}^{n} \mathrm{E}$ is a proper subspace of $\odot_{\varepsilon}^{n} \mathrm{E}$, thus
 from the finct thet $P_{l}\left({ }^{n} E\right)$ contains all polynomials

$$
\left\{\left\langle\mid \mathfrak{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\otimes_{\mathrm{h}}^{n} \mathrm{E}}: \mathfrak{e}_{\{i\}}^{\otimes(k)} \in \mathscr{E}_{n}\right\}
$$

that form an orthonormal basis in the Hilbert space

$$
\odot_{h}^{n} \mathrm{E}^{*} \simeq \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)
$$

and their linear span as well.
Therefore Proposition 1.30 and Proposition 1.31 imply that the space of HilbertSchmidt polynomials lies strictly between the space of integral and weakly (sequentially) continuous polynomials.

1.7. Reproducing kernels

Let \mathcal{Q} be an abstract set and \mathcal{H} be a Hilbert space of complex valued functions on \mathcal{Q} equipped with the scalar product $\langle\cdot \mid \cdot\rangle_{\mathcal{H}}$.

Definition 1.32. A function $K(x, z)$ defined on $\mathcal{Q} \times \mathcal{Q}$ is called reproducing kernel of a closed subspace $\mathcal{H}_{K} \subset \mathcal{H}$ if:
(i) for any fixed $z \in \mathcal{Q}$, the kernel $K(x, z)$ belongs to \mathcal{H}_{K} as a function of $x \in \mathcal{Q}$;
(ii) for any $f \in \mathcal{H}_{K}$ and for any $z \in \mathcal{Q}$,

$$
f(z)=\langle f(\cdot) \mid K(\cdot, z)\rangle_{\mathcal{H}}
$$

The space \mathcal{H}_{K} is called a reproducing kernel Hilbert space.
Theorem 1.33. If a \mathcal{H}-valued function $h: \mathcal{Q} \longrightarrow \mathcal{H}$ is such that

$$
f(x)=\langle f(\cdot) \mid h(x)\rangle_{\mathcal{H}}, \quad x \in \mathcal{Q}
$$

for every $f \in \mathcal{H}_{K}$, then the function

$$
K(x, z)=\langle h(z) \mid h(x)\rangle_{\mathcal{H}}, \quad x \in \mathcal{Q}
$$

is a reproduction kernel of \mathcal{H}_{K}.

IIIOHEM 1.34. For a Hilbert space \mathcal{H} of functions

$$
\mathcal{Q} \ni x \longmapsto f(x)
$$

Ihour erisls a reproducing kernel $K(x, z)$ of \mathcal{H} if and only if for any point $x \in \mathcal{Q}$ the mulnl veraluation

$$
\delta_{x}: f \longmapsto f(x), \quad f \in \mathcal{H}
$$

is it mnlintious linear functional on \mathcal{H}.
Then next theorems deliver some elementary properties of reproducing kernels.
Tinonem 1.35. If a reproducing kernel Hilbert space \mathcal{H}_{K} is a subspace of \mathcal{H}, INaH1

$$
f(x)=\langle f(\cdot) \mid K(\cdot, x)\rangle_{\mathcal{H}}, \quad x \in \mathcal{Q}
$$

Wume a projection from \mathcal{H} onto \mathcal{H}_{K}.
TIILOREM 1.36. For any subspace \mathcal{H}_{0} of a reproducing kernel Hilbert space $\mathcal{H}_{K_{K}}$, thur winls the reproducing kernel $K_{0}(x, z)$ for \mathcal{H}_{0} and it is given by

$$
K_{0}(x, z)=\left\langle P_{0} K(\cdot, z) \mid K(x, \cdot)\right\rangle_{\mathcal{H}_{K}}
$$

five tha arthogonal projection P_{0} from \mathcal{H}_{K} onto \mathcal{H}_{0}.
Nole nlso that the sum $K_{1}+K_{2}$ of reproducing kernels K_{1} and K_{2} for the spaces W_{1} anll \mathcal{H}_{2} is a reproducing kernel for the orthogonal Hilbertian sum $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and the [ITilitil $\mathbb{K}_{1} \cdot K_{2}$ is a reproducing kernel for the Hilbertian tensor product $\mathcal{H}_{1} \otimes_{1} \mathcal{H}_{2}$.

Nutus and remarks. For general theory of analytic functions on Banach and hwilly convex spaces we refer the reader to $[\mathbf{1}, \mathbf{3 5}, \mathbf{3 6}, \mathbf{4 4}, \mathbf{5 0}, \mathbf{7 6}]$.

We ussentially use some classical results. Among them the relationship between n limmogeneous polynomials and n-linear mappings with the following application to Hn Thylor series, established by A.D. Michael and his successors [71, 72, 73], based (wn thw polarization formula, which has been independently established by R. Martin [07| und by S. Mazur and W. Orlicz [68, 69]. Detailed descriptions can be found in Ilve ilnwaic book [52] and in the historical notes [74].

The spectral theory of algebras of analytic functions developed in this book essen\|nily unce a nonlinear version of the Hahn-Banach theorem, which was established in (1) A rulationship between the continuity and local boundedness, using in the theory in lominded type analytic functions, was proved in [18].

I'rools of basic properties of polynomials and tensor products can be find in [36]. Iforrem 1.10 was proved in [85]. In [6] was introduced the radius function of linear fumilumals on $\mathcal{H}_{b}(X)$ and proved Theorem 1.17 and Theorem 1.18. Theorem 1.19 anil Theorem 1.20 are partial cases of results in [32]. Extensions of polynomials to ulornowers were investigated in [54]. Propositions 1.23, 1.25, 1.26 and Corollary 1.24 ware proved in [9].

Apprently, first applications of the Hilbert-Schmidt type analytic functions ap|wnruil in [39]. The abstract reproducing kernel theory was developed by N. Aronzajn (11), печ иlso Saitoh book [90] for proofs of Theorems 1.33, 1.34, 1.35 and 1.36.

CHAPTER 2

Descriptions of topological spectra and applications

Let \mathcal{A} be a complex commutative topological algebra. Let us denote by $M(\mathcal{A})$ the topological spectrum (set of continuous characters, which also are called continuous complex-valued homomorphisms) of \mathcal{A}. It is well-known from the theory of commutative algebras that there is a bijective correspondents between maximal ideals of \mathcal{A} and its complex continuous homomorphisms. So, we can identify $M(\mathcal{A})$ with the set of all closed maximal ideals of \mathcal{A}.

Recall that \mathcal{A} is a semisimple algebra if the complex homomorphisms in $M(\mathcal{A})$ separate points of \mathcal{A}. Let \mathcal{A} be a semisimple commutative Fréchet algebra. Then \mathcal{A} is isomorphic to some subalgebra of continuous functions on $M(\mathcal{A})$ endowed with a natural topology. More exactly, for every $a \in \mathcal{A}$ there exists a function

$$
\hat{a}: M(\mathcal{A}) \longrightarrow \mathbb{C}, \quad \hat{a}(\phi):=\phi(a)
$$

with $\phi \in M(\mathcal{A})$. The weakest topology on $M(\mathcal{A})$ such that all functions \hat{a} with $a \in \mathcal{A}$ are continuous is called the Gelfand topology. The Gelfand topology coincides with the weak-star topology of the strong dual space \mathcal{A}^{\prime}, restricted to $M(\mathcal{A})$. If \mathcal{A} is a Banach algebra, $M(\mathcal{A})$ is a weak-star compact subset of the unit ball of \mathcal{A}^{\prime}.

The map

$$
\mathcal{A} \ni a \leadsto \hat{a} \in C(M(\mathcal{A}))
$$

is called the Gelfand transform of \mathcal{A}, where $C(M(\mathcal{A}))$ is the algebra of all continuous functions on $M(\mathcal{A})$.

If \mathcal{A} is a uniform algebra of continuous complex functions f on a metric space \mathcal{Q} then for every $x \in \mathcal{Q}$ the point evaluation functional

$$
\delta_{x}: f \longmapsto f(x) \quad \text { (denoted also as } \delta(x):=\delta_{x} \text {) }
$$

belongs to $M(\mathcal{A})$.
Let us consider several important examples of spectra. Let \mathcal{Q} be a metric spaces and $C_{b}(\mathcal{Q})$ be the uniform Banach algebra of all bounded continuous functions on \mathcal{Q}. Then the topological spectrum of $C_{b}(\mathcal{Q})$ coincides with the the Czech-Stone compactification $\beta \mathcal{Q}$ of \mathcal{Q}. That is, every function $f \in C_{b}(\mathcal{Q})$ can be extended to a continuous function \hat{f} on $\beta \mathcal{Q}$ and for every point $x \in \beta \mathcal{Q}$ the map

$$
f \longmapsto \hat{f}(x)
$$

is a complex homomorphism of $C_{b}(\mathcal{Q})$.
Let $\mathcal{A}(\Omega)$ be a uniform algebra of all analytic functions on an open domain $\Omega \subset$ \mathbb{C}^{n} which are continuous on the closure $\bar{\Omega}$. Then $M(\mathcal{A}(\Omega))$ is the polynomially convex hull $[\Omega]$ of Ω (see $[\mathbf{4 3}]$ for details), where $[\Omega]$ is defined as a subset of all point $x \in \mathbb{C}^{n}$
anth llout lin' every polynomial $p \in \mathcal{P}\left(\mathbb{C}^{n}\right)$, the inequality $|p(x)| \leq \sup _{z \in \Omega}|p(z)|$ holds. A int in molynomially convex if it coincides with its polynomially convex hull.

If II in convex, then its polynomially convex hull $[\Omega]$ coincides with the closure () IIf pinticular, if $\Omega=\mathbb{C}^{n}$, then $\mathcal{A}(\Omega)$ is the algebra $\mathcal{H}\left(\mathbb{C}^{n}\right)$ of all entire functions min ('" mind its topological spectrum coincides with all point evaluation functionals (10) dofloued by $x \in \mathbb{C}^{n}$.

I'rivious examples show that we can think the topological spectrum of a uniform aluilin In a maximal natural domain such that all elements of this algebra can be wimblerod us a continuous function on this domain.

Thim chapter is devoted to study of spectra in the case of uniform algebras of กииןlex unalytic functions with domains in infinite-dimensional Banach spaces.

2.1. Spectra of algebras of polynomials

L.emma 2.1. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let $P=\left(f_{1}, \ldots, f_{n}\right)$ be a map from Y to \mathbb{C}^{n} such that the restriction of each f_{j} to any finite ilimensional subspace of Y is a polynomial. Then the closure of the range of F is un ulyebraic variety.
l'ıoof. Let Y_{0} be a finite dimensional subspace of Y. It is well known to algebraic -uminly that the closure $F\left(Y_{0}\right)^{-}$of $F\left(Y_{0}\right)$ is an irreducible algebraic variety of Almminan $k \leq n$. Without loss of generality, we can assume that Y_{0} is chosen so that Hur illmension k of $F\left(Y_{0}\right)^{-}$is a maximum. If Y_{1} is any finite dimensional subspace if Y wiech that

$$
Y_{1} \supseteq Y_{0}
$$

Hwil $F\left(Y_{1}\right)^{-}$is also an irreducible algebraic variety of dimension k, which contains I (II) $)^{-}$. It follows that

$$
F\left(Y_{1}\right)^{-}=F\left(Y_{0}\right)^{-}
$$

nal we conclude that $F\left(Y_{0}\right)^{-}=F(Y)^{-}$.
Theorem 2.2. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let \mathcal{A} In un algebra of functions on Y such that the restriction of each $f \in \mathcal{A}$ to any finite drmensional subspace of Y is an analytic polynomial. Let J be a proper ideal in \mathcal{A}. Then there is a net $\left(y_{\alpha}\right)$ in Y such that

$$
f\left(y_{\alpha}\right) \rightarrow 0 \quad \text { for all } \quad f \in J
$$

Proof. Suppose that the conclusion fails. Then there are $\left(f_{1}, \ldots, f_{n}\right) \in J$ such llint.

$$
\max \left(\left|f_{1}(y)\right|, \ldots,\left|f_{n}(y)\right|\right) \geq 1, \quad y \in Y
$$

L.1। F be the map from Y to \mathbb{C}^{n} having components f_{1}, \ldots, f_{n}. Let V be an algebraic virluty which does not contain 0 . Hence there is a polynomial p on \mathbb{C}^{n} such that $\mu=0$ on V and $p(0)=1$. Since the functions p together with the coordinate functions z_{1}, \ldots, z_{n} have no common zero, the ideal generated by them in the polynomial ring
on $\mathrm{C}^{\text {n }}$ im not proper (vin the Hilbert Nullstellensatz). So, there exist polynomials Y/1. $1 / 1, \ldots . V_{1}$ on $\mathbb{C}^{\prime \prime}$ such that.

$$
p_{(1)}+z_{1} q_{1}+\cdots+z_{n} q_{n}=1 \quad \text { on } \mathbb{C}^{n}
$$

implying

$$
z_{1} q_{1}+\cdots+z_{n} q_{n}=1 \quad \text { on } V .
$$

Now let $g_{1}, \ldots, g_{n} \in \mathcal{A}$ be the compositions of q_{1}, \ldots, q_{n} with F, respectively. Then

$$
f_{1} g_{1}+\cdots+f_{n} g_{n}=1
$$

and the ideal J is not proper.
Corollary 2.3. Let ϕ be any (possibly discontinuous) complex-valued homomorphism on the Fréchet algebra of entire \mathbb{C}-valued functions $\mathcal{H}_{b}(X)$ on the Banach space X. Then there is a net (x_{α}) in X such that

$$
P\left(x_{\alpha}\right) \rightarrow \phi(P)
$$

for all analytic polynomials P on X.
For a given algebra \mathcal{A} of continuous functions on a Banach space X we define an \mathcal{A}-topology on X as the weakest topology such that all functions of \mathcal{A} are continuous. That is \mathcal{A}-topology is the restriction of the Gelfand topology to X.

We say that a net x_{α} is \mathcal{A}-convergent (notation $x_{\alpha} \xrightarrow{\mathcal{A}} \phi$) if $f\left(x_{\alpha}\right)$ is convergent for every $f \in \mathcal{A}$.

Proposition 2.4. Let $\mathcal{P}_{0}(X)$ be a subalgebra of the algebra $\mathcal{P}(X)$ on the Banach space X. Then for every bounded \mathcal{P}_{0}-convergent net $\left(x_{\alpha}\right) \in X$ there is a continuous complex-valued homomorphism ϕ on $\mathcal{P}_{0}(X)$ such that

$$
P\left(x_{\alpha}\right) \rightarrow \phi(P)
$$

for each $P \in \mathcal{P}_{0}(X)$.
Proof. It is easy to see that

$$
\phi(P):=\lim _{\alpha} P\left(x_{\alpha}\right)
$$

is a complex-valued homomorphism on $\mathcal{P}_{0}(X)$. From the boundedness of $\left(x_{\alpha}\right)$ it follows that ϕ is continuous.

Theorem 2.5. Let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$ with unity which contains all finite type polynomials. Let J be an ideal in $\mathcal{P}_{0}(X)$ which is generated by a finite sequence of polynomials $P_{1}, \ldots, P_{n} \in \mathcal{P}_{0}(X)$. If the polynomials P_{1}, \ldots, P_{n} have no common zeros, then J is not proper.

Proof. According to Lemma 2.1 there exists a finite dimensional subspace $Y_{0}=$ $\mathbb{C}^{m} \subset X$ such that

$$
F\left(Y_{0}\right)^{-}=F(X)^{-},
$$

where $F(x)=\left(P_{1}(x), \ldots P_{n}(x)\right)$.
Let $\mathfrak{c}_{1}, \ldots, \mathfrak{e}_{m}$ be a basis in Y_{0} and $\mathfrak{e}_{1}^{*}, \ldots, \mathfrak{e}_{m}^{*}$ be the coordinate functionals. Denote by $\left.P_{k}\right|_{Y_{0}}$ the restriction of P_{k} to Y_{0}. Since $\operatorname{dim} Y_{0}=m<\infty$, there exists a
 ifir pulynomial $\hat{Q} \in \mathcal{P}_{0}(X)$ by the formula

$$
\hat{Q}(x)=Q(T(x))
$$

Then) is belongs to $\mathcal{P}_{0}(X)$ because it is a finite type polynomial. Let us consider the map

$$
G(x)=\left(P_{1}(x), \ldots, P_{n}(x), \widehat{\mathfrak{e}_{1}^{*}}(x), \ldots, \widehat{\mathfrak{e}_{m}^{*}}(x)\right): X \longrightarrow \mathbb{C}^{m+n} .
$$

ily uldiultion of G, we have $G(X)^{-}=G\left(Y_{0}\right)^{-}$.
Euppose that J is a proper ideal in $\mathcal{P}_{0}(X)$, and so, J is contained in a maximal lifeal I_{A}. Let ϕ be a complex homomorphism such that

$$
J_{M}=\operatorname{ker} \phi
$$

Ily Theorem 2.2 there exists a \mathcal{P}_{0}-convergent net $\left(x_{\alpha}\right)$ such that

$$
\phi(P)=\lim _{\alpha} P\left(x_{\alpha}\right)
$$

fif wory $P \in \mathcal{P}_{0}(X)$. Since $G(X)^{-}=G\left(Y_{0}\right)^{-}$, there is a net $\left(z_{\beta}\right) \subset Y_{0}$ such that

$$
\lim _{\alpha} G\left(x_{\alpha}\right)=\lim _{\beta} G\left(z_{\beta}\right)
$$

Whte that each polynomial $Q \in \mathcal{P}\left(Y_{0}\right)$ is generated by the coordinate functionals. Thus,

$$
\lim _{\beta} Q\left(z_{\beta}\right)=\lim _{\alpha} \widehat{Q}\left(x_{\alpha}\right)=\phi(Q)
$$

8 (m)

$$
\left.\lim _{\beta} P_{k}\right|_{Y_{0}}\left(z_{\beta}\right)=\lim _{\alpha} P_{k}\left(x_{\alpha}\right)=\phi\left(P_{k}\right)
$$

Ilif $\mathrm{k}:=1, \ldots, n$. On the other hand, every \mathcal{P}_{0}-convergent net on a finite dimensional -ulaphace is weakly convergent and so it converges to a point $x_{0} \in Y_{0} \subset X$. Thus,

$$
P_{k}\left(x_{0}\right)=0, \quad 1 \leq k \leq n
$$

Ilint contradicts the assumption that P_{1}, \ldots, P_{n} have no common zeros.
Note that we also proved that each complex homomorphism

$$
\phi: \mathcal{P}_{0}(X) \longrightarrow \mathbb{C}
$$

II it local evaluation, which means that for a given $P_{1}, \ldots, P_{n} \in \mathcal{P}_{0}(X)$ there exists $\boldsymbol{U}_{11} \in X$ such that

$$
\phi\left(P_{k}\right)=P_{k}\left(x_{0}\right), \quad k=1, \ldots, n
$$

For an ideal $J \subset \mathcal{P}_{0}(X)$, let $V(J) \subset X$ denotes the zero of J, that is, the common net of zeros of all polynomials belonging to J.

Let G be a subset of X and $I(G)$ denotes the hull of G, that is, a set of all polynomials in $\mathcal{P}_{0}(X)$ which vanish on G.

The set $\operatorname{Rad} J \subset \mathcal{P}(X)$ is called the radical of $J \subset \mathcal{P}_{0}(X)$ if $P^{k} \in J$ for some ponitive integer k implies $P \in \operatorname{Rad} J$.

A polynomial $P \in \mathcal{P}(X)$ is called a radical if it can be represented by a product of mutully different. Irreducible polynomials. In this case $\operatorname{Rad} P$ is generated by P, l.e.,

$$
\operatorname{Rad} P=(P)
$$

A subulgebrn \mathcal{A}_{10} of an algebra \mathcal{A} is called factorial if for every $f \in \mathcal{A}_{0}$ the equality $f=f_{1} f_{2}$ implies that $f_{1} \in \mathcal{A}_{0}$ and $f_{2} \in \mathcal{A}_{0}$.

Using a standard idea from Algebraic Geometry, now we can prove the next theorem which is a generalization of the well known Hilbert Nullstellensatz for algebras of polynomials of infinitely many variables.

Theorem 2.6. Let $\mathcal{P}_{0}(X)$ be a factorial subalgebra in $\mathcal{P}(X)$ which contains all polynomials of finite type and J be an ideal in $\mathcal{P}_{0}(X)$ which is generated by a finite sequence of polynomials $P_{1}, \ldots, P_{n} \in \mathcal{P}_{0}(X)$. Then

$$
\operatorname{Rad} J \subset \mathcal{P}_{0}(X)
$$

and the equality

$$
I[V(J)]=\operatorname{Rad} J
$$

holds in $\mathcal{P}_{0}(X)$.
Proof. Since $\mathcal{P}_{0}(X)$ is factorial,

$$
\operatorname{Rad} J \subset \mathcal{P}_{0}(X)
$$

for every ideal $J \subset \mathcal{P}_{0}(X)$. Evidently, $I[V(J)] \supset \operatorname{Rad} J$. Let $P \in \mathcal{P}_{0}(X)$ and $P(x)=$ 0 for every $x \in V(J)$. Let $y \in \mathbb{C}$ be an additional "independent variable" which is associated with a basis vector e of an extra dimension. Consider a Banach space

$$
X \oplus \mathbb{C} e=\{x+y e: x \in X, y \in \mathbb{C}\} .
$$

We denote by $\mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ the algebra of polynomials on $X \oplus \mathbb{C} e$ such that every polynomial in $\mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ belongs to $\mathcal{P}_{0}(X)$ for arbitrary $y \in \mathbb{C}$. The polynomials $P_{1}, \ldots, P_{n}, P y-1$ have no common zeros. By Theorem 2.5 there are polynomials $Q_{1}, \ldots, Q_{n+1} \in \mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ such that

$$
\sum_{i=1}^{n} P_{i} Q_{i}+(P y-1) Q_{n+1} \equiv 1
$$

Since it is an identity, it will be still true for all vectors x such that $P(x) \neq 0$, if we substitute $y=1 / P(x)$. Thus

$$
\sum_{i=1}^{n} P_{i}(x) Q_{i}(x, 1 / P(x))=1
$$

Taking a common denominator, we find that for some positive integer N,

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i}(x) Q_{i}^{\prime}(x) P^{-N}(x)=1 \quad \text { or } \quad \sum_{i=1}^{n} P_{i}(x) Q_{i}^{\prime}(x)=P^{N}(x) \tag{2.1}
\end{equation*}
$$

where $Q^{\prime}(x)=Q\left(x, P^{-1}\right) P^{N}(x) \in \mathcal{P}_{0}(X)$. The equality (2.1) holds on an open subset $X \backslash \operatorname{ker} P$, so it holds for every $x \in X$. But it means that P^{N} belongs to J. So, $P \in \operatorname{Rad} J$.

Chilollary 2.7. Suppose that ker P with $P \in \mathcal{P}(X)$ contains a linear subspace 1 uf rodlmension one. Then there exists a polynomial $Q \in \mathcal{P}(X)$ and a linear Aminformal L such that

$$
P=Q L
$$

l'moof, Let L be a linear functional on X such that $\operatorname{ker} L=Z$. By Theorem $\|$ i L ilivides P^{N} for some positive integer N. So, L divides P.

Cohollary 2.8. Suppose that $\operatorname{ker} P$ with $P \in \mathcal{P}(X)$ is a union of a finite my finico of linear subspaces. Then P is a product of a finite sequence of linear Alur Iomils.

I'roof. From the Hahn-Banach Theorem it follows that ker P is contained In ॥ linle union of one codimensional linear subspaces. So, P is a factor of a product ol Ilnonr functionals. Thus, P is a product of a finite sequence of linear functionnls. \square

TuEOREM 2.9. Let $\mathcal{P}_{0}(X)$ be a factorial subalgebra in $\mathcal{P}(X)$ which contains all mulynnnials of finite type and has the following property: if $Q \in \mathcal{P}_{0}(X)$ and

$$
Q=Q_{1}+\cdots+Q_{n}
$$

1 the (necessary unique) representation of Q by homogeneous polynomials, then all $4 b$ lorlong to $\mathcal{P}_{0}(X)$.

If $P \in \mathcal{P}(X)$ is continuous in the weakest topology on X, with respect to which all pulynomials in $\mathcal{P}_{0}(X)$ are continuous, then $P \in \mathcal{P}_{0}(X)$.

I'roof. Without loss of generality, we can assume that $P \in \mathcal{P}(X)$ is m lonnogeneous and irreducible. By theorem assumptions, the polynomial P must be luminded on the set

$$
\left\{x \in X:\left|P_{1}(x)\right|<1, \ldots,\left|P_{n}(x)\right|<1\right\}
$$

Wlilı кome $P_{1}, \ldots, P_{n} \in \mathcal{P}_{0}(X)$.
Lat J be an ideal generated by P_{1}, \ldots, P_{n}. If $x_{0} \in V(J)$, then $t x_{0} \in V(J)$ for uwty number t. So, P is bonded on the subspace $\left\{t x_{0}: t \in \mathbb{C}\right\}$. But this is possible mily if P is an identical zero on this subset. Hence,

$$
V(J) \subset \operatorname{ker} P
$$

Denote by \mathcal{A}_{0} a minimal factorial algebra which contains $\mathcal{P}_{0}(X)$ and P. By Theorem 2.6 there are $Q_{1}, \ldots, Q_{n} \in \mathcal{A}_{0}$ such that

$$
P_{1} Q_{1}+\cdots+P_{n} Q_{n}=P
$$

We cun assume that Q_{k} with $k=1, \ldots, n$ are homogeneous and

$$
\begin{cases}\operatorname{deg} Q_{k}+\operatorname{deg} P_{k}=m & \text { if } \quad \operatorname{deg} P_{k} \leq m \\ Q_{k}=0 & \text { if } \quad \operatorname{deg} P_{k}>m\end{cases}
$$

linleect, let $Q_{k}=\sum_{j} Q_{k}^{j}$ is the decomposition of Q_{k} by j-homogeneous polynomials. Then

$$
\sum_{k=1}^{n} P_{k} Q_{k}=\sum_{k=1}^{n} P_{k} Q_{k}^{m-\operatorname{deg} P_{k}}+\sum_{k=1}^{n} P_{k} \sum_{j /=m-\operatorname{deg} P_{k}} Q_{k}^{j}=P
$$

Illue Ilux Intimal nutin

$$
\sum_{k=1}^{n} P_{k} \sum_{j=m-\operatorname{deg} P_{k}} Q_{k}^{j}
$$

combulne no m-homogeneous polynomials and $\operatorname{deg} P=m$, we obtain

$$
\sum_{k=1}^{n} P_{k} \sum_{j /=m-\operatorname{deg} P_{k}} Q_{k}^{j}=0
$$

Putting $Q_{k}=Q_{k}^{m-\operatorname{deg} P_{k}}$, we have the required restrictions for Q_{k}. Since P is irreducible and $\operatorname{deg} Q_{k}<\operatorname{deg} P=m$, the polynomial Q_{k} belongs to $\mathcal{P}_{0}(X) \subset \mathcal{A}_{0}$ for every k. Therefore $P \in \mathcal{P}_{0}(X)$.

We say that a set $\mathcal{V} \subset X$ is an algebraic set of finite type if \mathcal{V} is the set of common zeros of some finite sequence of polynomials $P_{1}, \ldots, P_{n} \in \mathcal{P}(X) . \mathcal{V}$ is called an algebraic variety of finite type if the ideal $\left(P_{1}, \ldots, P_{n}\right)$, generated by P_{1}, \ldots, P_{n}, is prime.

Let $\mathcal{V}=V\left(P_{1}, \ldots, P_{n}\right)$ be an algebraic set of finite type. We can define an algebra of polynomials on \mathcal{V} as a quotient algebra

$$
\mathcal{P}(\mathcal{V}):=\mathcal{P}(X) / I(\mathcal{V})
$$

From Theorem 2.6 it follows that a polynomials P is the identical zero in $\mathcal{P}(\mathcal{V})$ if and only if $P^{N} \in\left(P_{1}, \ldots, P_{n}\right)$ for some N and $\mathcal{P}(\mathcal{V})$ is an integral domain if and only if the ideal $\left(P_{1}, \ldots, P_{n}\right)$ is prime.

ThEOREM 2.10. Let ϕ be a complex homomorphism (possible discontinuous) of $\mathcal{P}(\mathcal{V})$. Then there is a net $\left(x_{\alpha}\right) \subset \mathcal{V}$ such that

$$
\phi(P)=\lim _{\alpha} P\left(x_{\alpha}\right)
$$

for every $P \in \mathcal{P}(\mathcal{V})$.
Proof. Note first that each complex homomorphism of $\mathcal{P}(\mathcal{V})$ is a local evaluation at \mathcal{V}. Indeed, if ϕ is a complex homomorphism of $\mathcal{P}(\mathcal{V})$, then ϕ may be considered as a complex homomorphism of $\mathcal{P}(X)$ which vanishes on $I(\mathcal{V})$. As we have indicated, ϕ must be a local evaluation at points of x, that is, for every polynomials $P_{1}, \ldots, P_{n} \in \mathcal{P}(X)$ there exists $x_{0} \in X$ such that

$$
\phi\left(P_{k}\right)=P_{k}\left(x_{0}\right)
$$

Since ϕ vanishes on $I(\mathcal{V})$, we have $x_{0} \in \mathcal{V}$. Thus, for every $Q_{1}, \ldots, Q_{n} \in \mathcal{P}(\mathcal{V})$ there exists $x_{0} \in \mathcal{V}$ such that $\phi\left(Q_{k}\right)=Q_{k}\left(x_{0}\right)$ with $1 \leq k \leq n$.

Consider the set of zeros of all finitely generated ideals in $\mathcal{P}(\mathcal{V})$:

$$
\left\{V_{\alpha}=\bigcap_{k=1}^{m} \operatorname{ker}\left[P_{\alpha, k}-\phi\left(P_{\alpha, k}\right)\right]: P_{\alpha, k} \in \mathcal{P}(X)\right\}
$$

Ench V_{18} is nonempty and the set $\left\{V_{\alpha}\right\}$ is naturally ordered by inclusion. Let $\left(x_{\alpha}\right) \subset$ \mathcal{V} be a net such that $x_{\alpha} \in V_{\alpha}$. It is clear, $\phi(P)=\lim _{\alpha} P\left(x_{\alpha}\right)$ for every $P \in \mathcal{P}(\mathcal{V})$.

2.2. Applications for symmetric polynomials

Let 6 be a group of linear isometries of a Banach space X. A subset V of X is the to be \mathcal{G}-symmetric if it is invariant under the action of \mathcal{G} on X. A function with IV U nymuetric domain is \mathcal{G}-symmetric if

$$
f(\sigma(x))=f(x)
$$

liw uvery $\sigma \in \mathcal{G}$, where $x \in X$. It is clear that the kernel of a \mathcal{G}-symmetric polynomial D-nymmetric. We consider the question: under which conditions a polynomial with n U-nymmetric set of zeros is \mathcal{G}-symmetric?

First we observe that if $P \in \mathcal{P}(X)$ is an irreducible polynomial then $P \circ \sigma$ is Invilucible for every $\sigma \in \mathcal{G}$. Indeed, if $P(\sigma(x))=P_{1}(x) P_{2}(x)$, then

$$
P(x)=P_{1}\left(\sigma^{-1}(x)\right) P_{2}\left(\sigma^{-1}(x)\right), \quad x \in X .
$$

Hecall that a group homomorphism from \mathcal{G} to $S^{1}=\left\{e^{i \vartheta}: 0 \leq \vartheta<2 \pi\right\}$ is culled n chnancter of \mathcal{G}.

Phoposition 2.11. Suppose that \mathcal{G} has no nontrivial characters. If $P \in \mathcal{P}(X)$ In fulical and ker P is a \mathcal{G}-symmetric set, then P is a \mathcal{G}-symmetric polynomial.

Proof. Since

$$
\operatorname{ker} P=\operatorname{ker}(P \circ \sigma)
$$

hir every $\sigma \in \mathcal{G}$, then, by Theorem 2.6, $P=c(P \circ \sigma)$ for some constant $c=c(\sigma)$. Hecnuse σ is an isometry, $|c|=1$. If $c \neq 1$, then $c=c(\sigma)$ is a nontrivial character of U. So, $c=1$.

Suppose for example that $\mathcal{G}=S^{1}$, i.e., the group acts on X as follows $x \rightsquigarrow e^{i \vartheta} x$. Then a homogeneous polynomial is \mathcal{G}-symmetric only if it is a constant. However, uero set of any homogeneous polynomial is S^{1}-symmetric.

Note that the subset of all \mathcal{G}-symmetric polynomials is a subalgebra in $\mathcal{P}(X)$.
Theorem 2.12. Suppose that the algebra of \mathcal{G}-symmetric polynomials on X is fuctorial and \mathcal{G} has no nontrivial characters. Then the kernel of a \mathcal{G}-symmetric pmlynomial P is \mathcal{G}-symmetric if and only if P is \mathcal{G}-symmetric.

Proof. Let $k_{1}, \ldots, k_{n} \in \mathbb{N}$ and

$$
P=P_{1}^{k_{1}} \ldots P_{n}^{k_{n}}
$$

where P_{1}, \ldots, P_{n} are mutually different irreducible polynomials, Then the product $P_{1} \ldots P_{n}$ has the same set of zero that P. So, if ker P is \mathcal{G}-symmetric, then $P_{1} \ldots P_{n}$ In \mathcal{G}-symmetric by Proposition 2.11. On the other hand, by the theorem assumption, nll polynomials P_{1}, \ldots, P_{n} must be \mathcal{G}-symmetric. So, P is \mathcal{G}-symmetric as well.

Note that if there exist a \mathcal{G}-symmetric polynomial $P=P_{1} P_{2}$ such that P_{1} is not \mathcal{G}-symmetric, then $P_{1}^{2} P_{2}$ is a not \mathcal{G}-symmetric polynomial with a \mathcal{G}-symmetric kernel.

If X is the infinite-dimensional space $\ell_{p},(1 \leq p<\infty)$ of sequences

$$
x=\left(x_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{C}
$$

mid if In the group of permutations of basis elements, then it is not difficult to see that the ulgehtn of \bar{i}-nymmetric polynomial is factorial and \mathcal{G} has no nontrivial characters. For my finite-dimenwonal space there exists a nonsymmetric polynomial which has a symmetric kermel. For example, the polynomial

$$
P(x)=x_{1}^{2} x_{2} \ldots x_{n}
$$

has a symmetric kernel in \mathbb{C}^{n}, but it is not symmetric if $n>1$.
Note that the algebra $\mathcal{P}_{s}\left(\ell_{p}\right)$ of symmetric polynomials on the space ℓ_{p} with respect to the group of permutations of basis elements $\left(e_{k}\right) \subset \ell_{p}$ does not satisfy the conditions of Theorem 2.6. However, this theorem is still true for this algebra. For simplicity we consider the case of ℓ_{1}-space.

Theorem 2.13. The elementary symmetric polynomials $\left(\Theta_{i}\right)_{i \in \mathbb{N}}$,

$$
\Theta_{i}(x)=\sum_{k_{1}<\cdots<k_{i}} x_{k_{1}} \ldots x_{k_{i}}, \quad x=\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i} \in \ell_{1}, \quad k_{1}, \ldots, k_{n} \in \mathbb{N} .
$$

form an algebraic basis in the algebra $\mathcal{P}_{s}\left(\ell_{1}\right)$. It means that every symmetric polynomial $Q \in \mathcal{P}_{s}\left(\ell_{1}\right)$ can be represented by the way

$$
\begin{equation*}
Q(x)=q\left(\Theta_{1}(x), \ldots, \Theta_{n}(x)\right) \tag{2.2}
\end{equation*}
$$

where q is a polynomial in $\mathcal{P}\left(\mathbb{C}^{n}\right)$ and $\left(\Theta_{i}\right)_{i \in \mathbb{N}}$, are algebraically independent, that is, if $p\left(\Theta_{1}(x), \ldots, \Theta_{n}(x)\right) \equiv 0$ for some $p \in \mathcal{P}\left(\mathbb{C}^{n}\right)$, then $p \equiv 0$.

Proof. It is well known from Algebra (see [94]) that for any symmetric complex polynomial $Q^{(m)} \in \mathcal{P}_{s}\left(\mathbb{C}^{m}\right)$ with $\operatorname{deg} Q^{(m)}=n$ there is a polynomial $q \in \mathcal{P}\left(\mathbb{C}^{n}\right)$ such that

$$
Q^{(m)}(x)=q\left(\Theta_{1}^{(m)}(x), \ldots, \Theta_{n}^{(m)}(x)\right)
$$

where

$$
\Theta_{i}^{(m)}(x)=\sum_{k_{1}<\cdots<k_{i}}^{m} x_{k_{1}} \ldots x_{k_{i}}
$$

Let $V_{m}=\operatorname{span}\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{m}\right\}$ is the m-dimensional subspace in ℓ_{1} spanned by the basis elements $\left\{\mathfrak{e}_{1}, \ldots, e_{m}\right\}$. We set

$$
T_{m}: \sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i} \longmapsto \sum_{i=1}^{m} x_{i} \mathfrak{e}_{i}
$$

the projection from ℓ_{1} to V_{m}. Let $Q \in \mathcal{P}_{s}\left(\ell_{1}\right), \operatorname{deg} Q=n$. Then there exists a polynomial $q \in \mathcal{P}\left(\mathbb{C}^{n}\right)$ such that for every $m \geq n$ and for every $x \in \ell_{1}$

$$
Q\left(T_{m}(x)\right)=q\left(\Theta_{1}^{(m)}(x), \ldots, \Theta_{n}^{(m)}(x)\right)
$$

Taking the limit as $m \rightarrow \infty$ we obtain (2.2).
To show that Θ_{j} are algebraically independent, we observe that for every $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$ there exists a vector $x_{\xi}=\left(x_{1}, \ldots, x_{n}, 0,0 \ldots\right) \in \ell_{1}$ such that

$$
\begin{equation*}
\Theta_{1}\left(x_{\xi}\right)=\xi_{1}, \ldots, \Theta_{n}\left(x_{\xi}\right)=\xi_{n} \tag{2.3}
\end{equation*}
$$

Indeed, according to the Vieta formula, the solutions of the equation

$$
x^{n}-\xi_{1} x^{n-1}+\ldots(-1)^{n} \xi_{n}=0
$$

Ulinfy the conditions $\Theta_{i}\left(x_{1}, \ldots, x_{n}\right)=\xi_{i}$ and so $x_{\xi}=\left(x_{1}, \ldots, x_{n}\right)$ is as required. If $M\left(1, \ldots, \xi_{n}\right) \neq 0$ for some $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$, then $P\left(\Theta_{1}\left(x_{\xi}\right), \ldots, \Theta_{n}\left(x_{\xi}\right)\right) \neq 0$.

Conollary 2.14. Let $P_{1}, \ldots, P_{m} \in \mathcal{P}_{s}\left(\ell_{1}\right)$ be such that

$$
\operatorname{ker} P_{1} \cap \cdots \cap \operatorname{ker} P_{m}=\emptyset
$$

Howl there are $Q_{1}, \ldots, Q_{m} \in \mathcal{P}_{s}\left(\ell_{1}\right)$ such that

$$
\sum_{i=1}^{m} P_{i} Q_{i} \equiv 1
$$

1'Hoof. Let $n=\max _{i}\left(\operatorname{deg} P_{i}\right)$. We may assume that

$$
P_{i}(x)=g_{i}\left(\Theta_{1}(x), \ldots, \Theta_{n}(x)\right)
$$

fir mome $g_{i} \in \mathcal{P}\left(\mathbb{C}^{n}\right)$. Let us suppose that at some point $\xi \in \mathbb{C}^{n}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, lif which $g_{i}(\xi)=0$. Then there is $x_{\xi} \in \ell_{1}$ such that $\Theta_{i}\left(x_{0}\right)=\xi_{i}$ (sce formuln 2.1). Io, the common set of zeros of all g_{i} is empty. Thus, by the Hilbert. Nullstellensant: lhwe are polynomials q_{1}, \ldots, q_{m} such that

$$
\sum_{i=1}^{m} g_{i} q_{i} \equiv 1
$$

I'ut $Q_{i}(x)=q_{i}\left(\Theta_{1}(x), \ldots, \Theta_{n}(x)\right)$.

2.3. Polynomials on tensor products

We need some technical results about tensor products of tensor product spaces und polynomials on tensor products. Let X be a complex Banach space.

Let $P \in \mathcal{P}\left({ }^{k m} X\right)$ for some positive integers m and k. Let F_{P} be the symmetric Inultilinear form associated with the polynomial P. Consider $F_{P}\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)$ for nome $x_{1}, \ldots, x_{k} \in X$. For any fixed

$$
x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}, \quad 1 \leq j \leq k
$$

$F_{P}\left(x_{1}^{m}, \ldots, x_{j}^{m}, \ldots, x_{k}^{m}\right)$ is an m-homogeneous polynomial of $x_{j} \in X$ and so it can be expressed as a value of a continuous linear functional on $\odot_{\pi}^{m} X$ at the point $x_{j}^{\otimes m}$. Since it is true for every $1 \leq j \leq k$, there is a continuous symmetric multilinear map $F_{P_{(m)}}:\left(\odot_{\pi}^{m} X\right)^{m} \longrightarrow \mathbb{C}$ such that

$$
F_{P_{(m)}}\left(x_{1}^{\otimes m}, \ldots, x_{k}^{\otimes m}\right)=F_{P}\left(x_{1}^{m}, \ldots, x_{k}^{m}\right) .
$$

Let us denote $P_{(m)}\left(x^{\otimes m}\right):=F_{P_{(m)}}\left(x^{\otimes m}, \ldots, x^{\otimes m}\right)$. Since $\left\|x^{\otimes n}\right\| \leq 1$ if $\|x\| \leq 1$, we can see that

$$
\begin{equation*}
\|P\| \leq\left\|P_{(m)}\right\| \tag{2.4}
\end{equation*}
$$

Note that we have natural embeddings

$$
\odot_{\pi}^{k m} X \subset \odot_{\pi}^{k}\left(\odot_{\pi}^{m} X\right) \subset \otimes_{\pi}^{k m} X
$$

Let w hew wennent in $0_{\pi}^{k m} X$. Consider following norms for w. Let $\|w\|$ be th projective tenmor norm onl $\odot_{\pi}^{k m} X$. That is,

$$
\|w\|=\inf \left\{\sum_{\{j\} \in \mathbb{N}^{n}} \prod_{k=1}^{n}\left\|x_{j_{k}}\right\|: w=\sum_{\{j\} \in \mathbb{N}^{n}} x_{j_{1}} \odot \cdots \odot x_{j_{n}}\right\}
$$

where $n=k m$ und infimum is taken under all above representations of w. Accordin to (1.7) we can define

$$
\|w\|:=\inf \left\{\sum_{j \in \mathbb{N}}\left\|x_{j}\right\|^{k m}: w=\sum_{j \in \mathbb{N}} x_{j}^{\otimes k m}\right\}
$$

where $n=k m$ and the infimum is taken over all representations of w. Also, we set

$$
\begin{gathered}
\|w\|_{(m)}:=\inf \left\{\sum_{\{j\} \in \mathbb{N}^{m}}\left\|\sum_{i \in \mathbb{N}} x_{i j_{1}} \odot \cdots \odot x_{i j_{m}}\right\|^{k}:\right. \\
\left.w=\sum_{\{j\} \in \mathbb{N}^{m}}\left(\sum_{i \in \mathbb{N}} x_{i j_{1}} \odot \cdots \odot x_{i j_{m}}\right)^{\otimes k}\right\} \\
\|w\|_{(m)}:=\inf \left\{\sum_{j \in \mathbb{N}}\left\|\sum_{i \in \mathbb{N}} x_{i j}^{\otimes m}\right\|^{k}: w=\sum_{j \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} x_{i j}^{\otimes m}\right)^{\otimes k}\right\}
\end{gathered}
$$

and finally,

$$
\|w\|_{(k)(m)}:=\inf \sum_{\{j\} \in \mathbb{N}^{m}}\left(\sum_{\{i\} \in \mathbb{N}^{k}} \prod_{l=1}^{m}\left\|x_{i_{1} j_{l}}\right\|\right) \cdots\left(\sum_{\{i\} \in \mathbb{N}^{k}} \prod_{l=1}^{m}\left\|x_{i_{k} j_{l}}\right\|\right)
$$

where the infimum is taken over all representations

$$
\begin{equation*}
w=\sum_{\{j\} \in \mathbb{N}^{m}}\left(\sum_{i_{1} \in \mathbb{N}} x_{i_{1} j_{1}} \odot \cdots \odot x_{i_{1} j_{m}}\right) \odot \cdots \odot\left(\sum_{i_{k} \in \mathbb{N}} x_{i_{k} j_{1}} \odot \cdots \odot x_{i_{k} j_{m}}\right) \tag{2.5}
\end{equation*}
$$

Let us observe that the representation

$$
w=\sum_{j \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} x_{i j}^{\otimes m}\right)^{\otimes k}
$$

is a partial case of the representation

$$
\begin{equation*}
w=\sum_{j_{1}, \ldots, j_{m} \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} x_{i j_{1}} \odot \cdots \odot x_{i j_{m}}\right)^{\otimes k} \tag{2.6}
\end{equation*}
$$

So, $\|w\|_{(m)} \leq\|w\|_{(m)}$. Let

$$
\begin{equation*}
u_{j}=\sum_{i \in \mathbb{N}} x_{i j_{1}} \odot \cdots \odot x_{i j_{m}} \tag{2.7}
\end{equation*}
$$

Then by the polarization inequality (1.8),

$$
\left\|u_{j}\right\|=\inf \sum_{i \in N}\left\|x_{i j_{j}}\right\| \cdots\left\|x_{i j_{m}}\right\| \geq \frac{1}{c(m, X)}\left\|u_{j}\right\|
$$

Therw the infimum is taken over all representations (2.7). Combining (2.6) and (2.7), m. nul wee that $\|w\|_{(m)} \geq\|w\|_{(m)} /[c(m, X)]^{k}$ or

$$
\begin{equation*}
\|w\|_{(m)} \leq\|w\|_{(m)} \leq[c(m, X)]^{k}\|w\|_{(m)} . \tag{4.4}
\end{equation*}
$$

Now we observe that the representation

$$
\begin{equation*}
w=\sum_{\{j\} \in \mathbb{N}^{m}}\left(\sum_{i \in \mathbb{N}} x_{i j_{1}} \odot \cdots \odot x_{i j_{m}}\right)^{\otimes k} \tag{201}
\end{equation*}
$$

ion purtial case of (2.5). So,

$$
\begin{equation*}
\|w\|_{(k)(m)} \leq\|w\|_{(m)} \leq c\left(k, \odot_{\pi}^{m} X\right)\|w\|_{(k)(m)} . \tag{2.10}
\end{equation*}
$$

On the other hand, the representation given by (2.5) is a partial case of

$$
w=\sum_{\{j\} \in \mathbb{N}^{n}} x_{j_{1}} \odot \cdots \odot x_{j_{n}} .
$$

Hence, for some constant $s_{k, m}$,

$$
\begin{equation*}
\|w\| \leq\|w\|_{(k)(m)} \leq s_{k, m}\|w\| . \tag{2.11}
\end{equation*}
$$

Combining formulas (2.8),(2.10),(2.11) and taking into account

$$
\|w\| \leq\|w\| \leq c(k m, X)\|w\|,
$$

wi have the following inequality:

$$
\|w\| \leq c(k m, X)\|w\|_{(m)} .
$$

Note that from formula (2.4) it follows that

$$
\|w\|_{(m)} \leq\|w\| .
$$

So, we have the following theorem.
Theorem 2.15. Let $w \in \odot_{\pi}^{k m} X$ and $P \in \mathcal{P}\left({ }^{k m} X\right)$. Then

$$
\|w\|_{(m)} \leq\|w\| \leq c(k m, X)\|w\|_{(m)}
$$

and

$$
\|P\| \leq\left\|P_{(m)}\right\| \leq c(k m, X)\|P\| .
$$

Let now $n=k_{1}+2 k_{2}+\cdots+m k_{m}$ for some $k_{1}, \ldots, k_{m} \in \mathbb{N}$ and P be an n-homogeneous polynomial. We define a form $F_{k_{1}, \ldots, k_{m}}^{P}$ on the Cartesian product

$$
X \times \odot_{\pi}^{2} X \times \cdots \times \odot_{\pi}^{m} X
$$

such that $F_{k_{1}, \ldots, k_{m}}^{P}\left(x_{1}, x_{2}^{\otimes 2}, \ldots, x_{j}^{\otimes j}, \ldots, x_{m}^{\otimes m}\right)$ is a k_{j}-homogeneous polynomial of the variable $x_{j}^{\otimes j}$ for any $1 \leq j \leq m$ if $x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m}$ are fixed and

$$
\begin{equation*}
F_{k_{1}, \ldots, k_{m}}^{P}\left(x, x^{\otimes 2}, \ldots, x^{\otimes m}\right)=P(x) . \tag{2.12}
\end{equation*}
$$

The map $F_{k_{1}, \ldots, k_{m}}^{P}$ is well defined and

$$
\left\|F_{k_{1}, \ldots, k_{m}}^{P}\right\| \geq\|P\| .
$$

$$
\begin{aligned}
\|w\|_{k_{1}, \ldots, k_{m}} & :=\inf \left(\sum_{i_{1} \in \mathbb{N}}\left\|x_{i_{1}}\right\|\right)^{k_{1}}\left(\sum_{i_{2} \in \mathbb{N}}\left\|x_{i_{2}}\right\|^{2}\right)^{k_{2}} \cdots\left(\sum_{i_{m} \in \mathbb{N}}\left\|x_{i_{m}}\right\|^{m}\right)^{k_{m}} \\
& \leq c\left(k_{1}, X\right) c\left(2 k_{2}, X\right) \cdots c\left(m k_{m}, X\right)\|w\|
\end{aligned}
$$

where the infinmm taken over all representations

$$
w=\left(\sum_{i_{1} \in \mathbb{N}} x_{i_{1}}\right)^{\otimes k_{1}}\left(\sum_{i_{2} \in \mathbb{N}} x_{i_{2}}^{\otimes 2}\right)^{\otimes k_{2}} \cdots\left(\sum_{i_{m} \in \mathbb{N}} x_{i_{m}}^{\otimes m}\right)^{\otimes k_{m}}
$$

Therefore, the next corollary is proved.
Corollary 2.16. Let $P \in \mathcal{P}\left({ }^{n} X\right)$ and $k_{1}+\cdots+k_{m}=m$. Then

$$
\|P\| \leq\left\|F_{k_{1}, \ldots, k_{m}}^{P}\right\| \leq c\left(k_{1}, X\right) c\left(2 k_{2}, X\right) \cdots c\left(m k_{m}, X\right)\|P\| .
$$

2.4. The spectrum of $\mathcal{H}_{b}(X)$ endowed with the Gelfand topology

Let X be a complex Banach space. Let us denote by $\mathcal{A}_{n}(X)$ the closure of the algebra, generated by polynomials from $\mathcal{P}\left(\leq^{n} X\right)$ with respect to the uniform topology on bounded subsets of X. It is clear that

$$
\mathcal{A}_{1}(X) \cap \mathcal{P}\left({ }^{n} X\right)=\mathcal{P}_{a}\left({ }^{n} X\right)
$$

and $\mathcal{A}_{n}(X)$ is a Fréchet algebra of entire analytic functions on X for every $n \in \mathbb{N}$.
Recall that $\mathcal{H}_{b}(X)$ coincides with the closure of algebra of all polynomials $\mathcal{P}(X)$ with respect to the uniform topology on bounded subsets X.

Denote by $\mathcal{H}_{u c}^{\infty}(B)$ the closure of algebra of all polynomials $\mathcal{P}(X)$ with respect to the uniform topology on the unit ball $B \subset X$. Then $\mathcal{H}_{u c}^{\infty}(B)$ is the algebra of all analytic functions on B, which are uniformly continuous on B.

We will use short notations M_{b} and $M_{u c}$ for the topological spectra $M\left(\mathcal{H}_{b}(X)\right)$ and $M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$, respectively.

Lemma 2.17. Let a functional $\phi \in \mathcal{H}_{b}(X)^{\prime}$ is such that $\phi(P)=0$ for every $P \in \mathcal{P}\left({ }^{m} X\right) \cap \mathcal{A}_{m-1}(X)$, where m is a fixed positive integer and ϕ_{m} is the nonzero restriction of $\phi \in \mathcal{H}_{b}(X)^{\prime}$ to $\mathcal{P}\left({ }^{m} X\right)$.

Then there is a linear multiplicative functional $\psi \in M_{b}$ such that its restrictions ψ_{k} to $\mathcal{P}\left({ }^{k} X\right)$ satisfy the conditions: $\psi_{k}=0$ for all $k<m$ and $\psi_{m}=\phi_{m}$. Moreover, the madius function of ψ is calculated by the formula

$$
\left\|\phi_{m}\right\|^{1 / m} \leq R(\psi) \leq e\left\|\phi_{m}\right\|^{1 / m}
$$

Proof. Since $\phi_{m} \neq 0$, there is an element $w \in\left(\odot_{\pi}^{m} X\right)^{\prime \prime}, w \neq 0$ such that for nny m-homogeneous polynomial P,

$$
\phi(P)=\phi_{m}(P)=\tilde{P}_{(m)}(w), \quad\|w\|=\left\|\phi_{m}\right\|
$$

Whrer $\tilde{P}_{(m)}$ is the Aron-Berner extension of linear functional $P_{(m)}$ from $\odot_{\pi}^{m} X$ to (${ }^{\prime \prime} X$ ' X ". For an arbitrary n-homogeneous polynomial $Q \in \mathcal{P}\left({ }^{n} X\right)$ we set

$$
\psi(Q)=\left\{\begin{array}{lr}
\widetilde{Q}_{(m)}(w) & \text { if } n=m k \text { for some } k \geq 0 \tag{1.13}\\
0 & \text { otherwise }
\end{array}\right.
$$

Whore $\tilde{Q}_{(m)}$ is the Aron-Berner extension of the k-homogeneous polynomial $Q_{(m)}$ Irom $\odot_{\pi}^{m} X$ to $\left(\odot_{\pi}^{m} X\right)^{\prime \prime}$.
latt $\left(u_{\alpha}\right)$ be a net from $\odot_{\pi}^{m} X$ which converges to w in the weak-star topology if $\left(\sigma_{\pi}^{m} X\right)^{\prime \prime}$, where α belongs to an index set \mathfrak{A}. We can assume that every u_{n} hus - inpresentation

$$
u_{\alpha}=\sum_{j \in \mathbb{N}} x_{j, \alpha}^{\otimes m} \quad \text { for some } \quad x_{j, \alpha} \in X
$$

Now we will show that

$$
\psi(P Q)=\psi(P) \psi(Q)
$$

firf nuy homogeneous polynomials P and Q. Let us suppose first that

$$
\operatorname{deg}(\dot{P} Q)=m r+l
$$

for some integers $r \geq 0$ and $m>l>0$. Then P or Q has degree equal to $m k+s$, $\downarrow \geq 0, m>s>0$. Thus, by the definition, $\psi(P Q)=0$ and $\psi(P) \psi(Q)=0$. Suppose nuw that

$$
\operatorname{deg}(P Q)=m r
$$

lor some integer $r \geq 0$. If $\operatorname{deg} P=m k$ and $\operatorname{deg} Q=m n$ for $k, n \geq 0$, then $\operatorname{deg}(P Q)=$ $m(k+n)$ and

$$
\psi(P Q)=(\widetilde{P Q})_{(m)}(w)=\tilde{P}_{(m)}(w) \widetilde{Q}_{(m)}(w)=\psi(P) \psi(Q)
$$

L.et at last $\operatorname{deg} P=m k+l$ and $\operatorname{deg} Q=m n+r, l, r>0, l+r=m$. Write

$$
\nu=\frac{1}{(\operatorname{deg} P+\operatorname{deg} Q)!}=\frac{1}{(m(k+n+1))!}
$$

Denote by $F_{P Q}$ the symmetric multilinear map, associated with $P Q$. Then

$$
\begin{aligned}
& F_{P Q}\left(x_{1}, \ldots, x_{m(k+n+1)}\right)= \\
& =\nu \sum_{\sigma \in \mathfrak{G}_{m(k+n+1)}} F_{P}\left(x_{\sigma(1)}, \ldots, x_{\sigma(m k+l)}\right) F_{Q}\left(x_{\sigma(m k+l+1)}, \ldots, x_{\sigma(m(k+n+1))}\right)
\end{aligned}
$$

Where d $\sigma_{1} \ldots . . a_{n+n+1}$ E © wo have

$$
\begin{aligned}
& \psi(P Q)=(\widetilde{P Q})_{(m)}(w)=\lim _{\alpha_{1}, \ldots, \alpha_{k+n+1}} \widetilde{F}_{P Q_{(m)}}\left(u_{\alpha_{1}}, \ldots, u_{\alpha_{k+n+1}}\right) \\
& =\lim _{\left(1, \ldots, \alpha_{k+n+1}\right.} \tilde{F}_{P Q_{(m)}}\left(\sum_{j \in \mathbb{N}} x_{j, a_{1}}^{\otimes m}, \ldots, \sum_{j \in \mathbb{N}} x_{j, \alpha_{k+n+1}}^{\otimes m}\right) \\
& =\nu \sum_{\sigma \in \mathcal{Q}_{m(k+n+1)}} \lim _{\sigma(1), \ldots, \alpha_{\sigma(k+n+1)}} \\
& \sum_{j_{1}, \ldots, j_{k+n+1} \in \mathbf{N}} F_{P}\left(x_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m}, \ldots, x_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m}, x_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{l}\right) \times \\
& \times F_{Q}\left(x_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{r}, x_{j_{\sigma(k+2)}, \alpha_{\sigma(k+2)}}^{m}, \ldots, x_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right) .
\end{aligned}
$$

Fix some $\sigma \in \mathfrak{S}_{m(k+n+1)}$ and fix all $x_{j_{\sigma(i)}, \alpha_{\sigma(i)}}$ for $i \leq k$ and for $i>k+1$. Then

$$
\begin{aligned}
& \quad \sum_{j_{1}, \ldots, j_{k+n+1} \in \mathbb{N}} \lim _{\alpha_{\sigma(k+1)}} F_{P}\left(x_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m}, \ldots, x_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m}, x_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{l}\right) \times \\
& \quad \times F_{Q}\left(x_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{r}, x_{j_{\sigma(k+2)}, \alpha_{\sigma(n+2)}}^{m}, \ldots, x_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right)=0
\end{aligned}
$$

because for a fixed $x_{k_{\sigma(i)}, \alpha_{\sigma(i)}}, i \leq k$,

$$
P_{\sigma}(y):=\sum_{j_{1}, \ldots, j_{k}, j_{k+2}, \ldots, j_{k+n+1} \in \mathbb{N}} F_{P}\left(x_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m}, \ldots, x_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m}, y^{l}\right)
$$

is an l-homogeneous polynomial and for fixed $x_{k_{\sigma(0)}, \alpha_{\sigma(i)}}, i>k+1$,

$$
Q_{\sigma}(y):=\sum_{j_{1}, \ldots, j_{k}, j_{k+2}, \ldots, j_{k+n+1} \in \mathbb{N}} F_{Q}\left(y^{r}, x_{j_{\sigma(k+2)}, \alpha_{\sigma(n+2)}}^{m}, \ldots, x_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right)
$$

is an r-homogeneous polynomial. Thus, $P_{\sigma} Q_{\sigma} \in \mathcal{A}_{m-1}(X)$. Hence,

$$
\lim _{\alpha}\left(P_{\sigma} Q_{\sigma}\right)_{(m)}\left(u_{\alpha}\right)=\psi\left(P_{\sigma} Q_{\sigma}\right)=0
$$

for every fixed σ. Therefore, $\psi(P Q)=0$. On the other hand, $\psi(P) \psi(Q)=0$ by the definition of ψ. So,

$$
\psi(P Q)=\psi(P) \psi(Q)
$$

Thus, we have defined the multiplicative function ψ on homogeneous polynomials. We can extend it by linearity and distributivity to a linear multiplicative functional on the algebra of all continuous polynomials $\mathcal{P}(X)$.

If ψ_{n} is the restriction of ψ to $\mathcal{P}\left({ }^{n} X\right)$, then $\left\|\psi_{n}\right\|=\|w\|^{n / m}$ if n / m is a positive integer and $\left\|\psi_{n}\right\|=0$ otherwise. Hence, the series

$$
\psi=\sum_{n \in \mathbb{N}} \psi_{n}
$$

is 11 continuous linear multiplicative functional on $\mathcal{H}_{b}(X)$ by Theorem 1.18 and the rudius function of ψ can be computed by

$$
R(\psi)=\limsup _{n \rightarrow \infty}\left\|\psi_{n}\right\|^{1 / n} \geq \limsup _{n \rightarrow \infty}\|w\|^{n / m n}=\|w\|^{1 / m}=\left\|\phi_{m}\right\|^{1 / m}
$$

Ilis Ilw other hand,

$$
\left\|\psi_{n}\right\|=\sup _{\|P\|=1}\left|\psi_{n}(P)\right|=\sup _{\|P\|=1}\left|P_{(m)}(w)\right|
$$

Alline

$$
\left|P_{(m)}(w)\right| \leq\|w\|^{n / m}\left\|P_{(m)}\right\| \leq c(n, X)\|w\|^{n / m}\|P\|
$$

we luive

$$
\begin{gathered}
\left\|\psi_{n}\right\| \leq c(n, X)\|w\|^{n / m} \leq \frac{n^{n}}{n!}\|w\|^{n / m}=\frac{n^{n}}{n!}\left\|\phi_{m}\right\|^{n / m} \\
R(\psi) \leq e\left\|\phi_{m}\right\|^{1 / m}
\end{gathered}
$$

For each fixed element $x \in X$ the translation operator T_{x} is defined on $\mathcal{H}_{b}(X)$ II be:

$$
\left(T_{x} f\right)(y)=f(y+x), \quad f \in \mathcal{H}_{b}(X)
$$

It is not complicated to check that $T_{x} f \in \mathcal{H}_{b}(X)$ and for fixed $\phi \in \mathcal{H}_{b}(X)^{\prime}$ the finuction

$$
X \ni x \longmapsto \phi\left(T_{x} f\right)
$$

lulongs to $\mathcal{H}_{b}(X)$ (see [6]). For fixed $\phi, \theta \in \mathcal{H}_{b}(X)^{\prime}$ the convolution product $\phi * \theta$ in $H_{1}(X)$ is defined to be

$$
(\phi * \theta)(f)=\phi\left(\dot{\theta}\left(T_{x} f\right)\right), \quad f \in \mathcal{H}_{b}(X)
$$

Let now $\phi, \theta \in M_{b}$. By Corollary 2.3, there exist nets $\left(x_{\alpha}\right),\left(y_{\beta}\right) \subset X$ such that

$$
\begin{equation*}
\phi(P)=\lim _{\alpha} P\left(x_{\alpha}\right), \quad \theta(P)=\lim _{\beta} P\left(y_{\beta}\right) \tag{2.14}
\end{equation*}
$$

lur every polynomial $P \in \mathcal{P}(X)$, or in according to our previous notations, $x_{\alpha} \xrightarrow{\mathcal{P}} \phi$ und $y_{\beta} \xrightarrow{\mathcal{P}} \theta$. Thus, for every polynomial $P \in \mathcal{P}(X)$ we have

$$
(\phi * \theta)(P)=\lim _{\beta} \lim _{\alpha} P\left(x_{\alpha}+y_{\beta}\right)
$$

Note that the spectrum M_{b} is a semigroup with respect to the convolution product und

$$
\phi * \theta \neq \theta * \phi
$$

in general (see [9, Remark 3.5]). We denote $\phi_{1} * \cdots * \phi_{n}$ briefly by

$$
\stackrel{n}{*}{ }_{k=1}^{n} \phi_{k}
$$

Let I_{k} be the minimal closed ideal in the algebra $\mathcal{H}_{b}(X)$, generated by all m homogeneous polynomials $\mathcal{P}\left({ }^{\leq k} X\right)$, where $0<m \leq k$. Evidently, I_{k} is a proper ideal (contains no unit). So, it is contained in a closed maximal ideal (see [76, p. 228]). Let

$$
\Phi_{k}:=\left\{\phi \in M_{b}: \operatorname{ker} \phi \supset I_{k}\right\}, \quad k \in \mathbb{N} .
$$

We set $\Phi_{0}:=M_{b}$. Note that the functional $\delta(0)$, that is point evaluation at zero, belongs to Φ_{k} for every $k \in \mathbb{N}$.

Lemma 2.18. If for some $m \in \mathbb{N}$, tions on $\{1$,

$$
\mathcal{A}_{n}(X) \neq \mathcal{A}
$$

then theqe cxints a lincar multiplicative func ${ }_{+1} \tilde{F}_{P Q_{(m)}}\left(u_{\varsigma_{m-1}}\right.$ such that $\psi \notin \Phi_{m}$.
Proor, Let $P \in \mathcal{P}\left({ }^{m} X\right)$ and $P \notin \mathcal{A}_{m} ., \sum x_{j}^{\otimes m}: \mathcal{A}_{m-1}(X)$ is a closed subspace of $\mathcal{H}_{b}(X)$, by the Hahn-Banach Theo ${ }^{-} \sum_{j \in \mathbb{N}} x_{j, \alpha_{k+n}}^{\otimes i s t s}$ a linear functional $\phi \in$ $\mathcal{H}_{b}(X)^{\prime}$ such that $\phi(Q)=0$ for every $Q \in{ }^{\circ} \quad{ }^{j \in N} \quad d \phi(P) \neq 0$. So, the restriction $\phi_{k} \equiv 0$ for $k<m$ and $\phi_{m}(P) \neq 0$. By that $\psi_{k}=\phi_{k}$ for $k=1, \ldots, m$. Thus $\psi \in \Phi$

7 there exists $\psi \in M_{b}$ such $\neq \Phi_{m}$.

Note that in particular cases of known $\mathrm{c}_{\boldsymbol{r}(1)}, \ldots, x_{j_{(k}}^{m}$ ch spaces X we have

$$
\mathcal{A}_{1}\left(c_{0}\right)=\mathcal{A}_{n}\left(c_{0}\right) \quad \text { fo } \quad=\mathbb{N}
$$

but for $k \neq m$ ${ }_{k+2)}, \alpha_{\sigma(k+2)},$.

$$
\mathcal{A}_{k}\left(\ell_{p}\right)=\mathcal{A}_{\Im(i)} \text { for } i \leq k
$$

if and only if $k<p$ and $m<p$.
Moreover, if the Banach space X admit ${ }^{\circ}, x_{j_{\sigma(k)}, \alpha_{\sigma(k)} \text { al }}^{m}$ which is not weakly sequentially continuous, then the chain of algel । $\}$ does not stabilize and if X contains ℓ_{1}, then (see $[47,34]$)

$$
\alpha_{\sigma(n+2)}, \ldots, 2
$$

$$
\mathcal{A}_{k}(X) \neq \mathcal{A}_{m}(X)
$$

Lemma 2.19. If $\phi, \psi \in M_{b}$ and $\psi \in \Phi_{k-} x_{j_{\sigma(1)}, \alpha_{\sigma(1)}}$, .

$$
\begin{array}{r}
\phi * \psi(P)=\phi\left(P \begin{array}{l}
1 x_{k_{\sigma(i)}, \alpha_{\sigma(i)}}
\end{array}, . x_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m},\right.
\end{array}
$$

for every $P \in \mathcal{P}\left({ }^{k} X\right)$.
 fixed y_{β} and $0<n<k$, the continuous sym. linear form $F_{P}\left(x^{k-n}, y_{\beta}^{n}\right)$ associated with the polynomial $P \in \mathcal{P}\left({ }^{k} X\right)$, b $\in \mathcal{A}_{m-1}$ (X homogeneous polynomial. Thus,

$$
\phi\left(F_{P}\left(x^{k-n}, y_{\beta}^{n}\right)\right)=\lim _{\alpha} F \psi\left(P_{\sigma} Q_{\sigma}\right)=c=0
$$

Therefore, for every $P \in \mathcal{P}\left({ }^{k} X\right)$,

$$
\begin{aligned}
\phi * \psi(P) & =\lim _{\beta, \alpha} P\left(x_{\alpha}+y_{\beta}\right) \\
& \left.=\sum_{n+m=k} \lim _{\beta, \alpha} F_{P}\left(x_{\alpha}^{n}, y_{\beta}^{m}\right)=\begin{array}{c}
\mid \psi(Q) . \\
\text { ıction } \psi \text { on h } \\
\text { y to a linear } \\
n \dashv(X) .
\end{array} F_{P}\left(x_{\alpha}^{n}, y_{\beta}^{m}\right)\right)
\end{aligned}
$$

That it was necessary to prove.
Lemma 2.20. If $P \in \mathcal{P}\left({ }^{k} X\right)$ and $\phi_{j} \in \Phi_{j-} \quad$ very $m>k$,

$$
\underset{j=1}{m} \phi_{j}(P)=\stackrel{k}{j=1} \text { on } \mathcal{H}_{b}(X) \text { by }
$$

Proof. In fact, since $\phi_{j} \in \Phi_{j-1}$, we have ${ }^{/ m n}=\|w\|^{1 /}$ r every $j>k$.

Given a sequence $\left(\phi_{n}\right)_{n=1}^{\infty} \subset M_{b}$ with $\phi_{n} \in \Phi_{n-1}$, the infinite convolution $\underset{n=1}{\infty} \phi_{n}$ denoters a linear multiplicative functional on the algebra of all polynomials $\mathcal{P}(X)$ such H14.

$$
\underset{n=1}{\stackrel{\infty}{*}} \phi_{n}(P)=\stackrel{k}{\underset{n=1}{*}} \phi_{n}(P) \quad \text { if } \quad P \in \mathcal{P}\left({ }^{k} X\right)
$$

luf inl arbitrary $k \in \mathbb{N}$. This multiplicative functional uniquely determines a functional III M_{h} (which we denote by the same symbol $\underset{n=1}{\infty} \phi_{n}$) if it is continuous.

The point evaluation operator δ maps X into M_{b} by

$$
x \longmapsto \delta(x), \quad \delta(x)(f)=f(x)
$$

for every $x \in X$.
The operator $\tilde{\delta}$ is the extension of δ onto $X^{\prime \prime}$, i.e.

$$
\tilde{\delta}\left(x^{\prime \prime}\right)(f)=\tilde{f}\left(x^{\prime \prime}\right)
$$

lof every $x^{\prime \prime} \in X^{\prime \prime}$.
Theorem 2.21. There exists a sequence of dual Banach spaces $\left(E_{n}\right)_{n=1}^{\infty}$ and a minuence of maps

$$
\delta^{(n)}: E_{n} \longrightarrow M_{b}
$$

such that

$$
E_{1}=X^{\prime \prime}, \quad E_{n}=\mathcal{P}\left({ }^{n} X\right)^{\prime} \cap I_{n-1}^{\perp}, \quad \delta^{(1)}=\bar{\delta}
$$

and such that an arbitrary complex homomorphism $\phi \in M_{b}$ has a representation

$$
\begin{equation*}
\phi=\underset{n=1}{\infty}{ }^{\infty} \delta^{(n)}\left(u_{n}\right) \tag{2.15}
\end{equation*}
$$

for some $u_{n} \in E_{n}, n=1,2, \ldots$, where is denoted

$$
I_{n-1}^{\perp}:=\left\{u \in \mathcal{H}_{b}(X)^{\prime}: u(f)=0 \text { for all } f \in I_{n-1}\right\} .
$$

Proof. Put $E_{1}=X^{\prime \prime}$. Then

$$
\delta^{(1)}\left(x^{\prime \prime}\right)=\tilde{\delta}\left(x^{\prime \prime}\right) \in M_{b}, \quad x^{\prime \prime} \in X^{\prime \prime} .
$$

Suppose that spaces E_{k} and maps $\delta^{(k)}$ are constructed for $k<n$. Denote

$$
E_{n}:=\left\{\pi_{n}(\phi): \phi \in \Phi_{n-1}\right\},
$$

where $\pi_{n}(\phi)=\phi_{n}$ is the restriction of ϕ onto subspace $\mathcal{P}\left({ }^{n} X\right)$. In other words, Hee space E_{n} consists of linear continuous functionals on $\mathcal{P}\left({ }^{n} X\right)$ that vanish on ill polynomials in $\mathcal{P}\left({ }^{n} X\right) \cap \mathcal{A}_{n-1}$. If $\mathcal{A}_{n}=\mathcal{A}_{n-1}$, then $E_{n} \equiv 0$. Otherwise, by Lemma 2.18, there are nonzero points in E_{n}.

By Lemma 2.19, for $P \in \mathcal{P}\left({ }^{n} X\right)$ and $\phi, \psi \in \Phi_{n-1} \subset M_{b}$,

$$
\pi_{n}(\phi * \psi)(P)=\phi * \psi(P)=\phi(P)+\psi(P)=\pi_{n} \phi(P)+\pi_{n} \psi(P) .
$$

Consequently,

$$
\pi_{n}(\phi * \psi)=\pi_{n}(\phi)+\pi_{n}(\psi)
$$

For an arbitrary complex number a, we have $a \phi \in \mathcal{H}_{b}(X)^{\prime}$ and $\pi_{k}(a \phi)=a \pi_{k}(\phi)$. So, $a \phi$ vanishes on all homogeneous polynomials of degree k less than n. By Lemma
2.17 Ihorn wints $\psi \in M_{1}$ such that $\psi_{k}=a \phi_{k}$ for $1 \leq k \leq n$. Thus, $\psi \in \Phi_{n-1}$ and $u \psi_{n}=\psi_{n} \in E_{n}$.

Henoc, E_{n} in it vector npace and polynomials from $\mathcal{P}\left({ }^{n} X\right)$ are acting on E_{n} as linewr finuctomin. Put.

$$
W_{n}=\mathcal{P}\left({ }^{n} X\right) /\left(I_{n-1} \cap \mathcal{P}\left({ }^{n} X\right)\right)
$$

Then W_{n} is a Banach space of linear functionals on E_{n} and the functionals from W_{n} separate points of E_{n}.

Let us define a norm $\|\cdot\|_{n}$ on E_{n}, as the supremum of values of a vector from E_{n} on the unit ball of W_{n}. Therefore,

$$
W_{n}^{\prime}=\left(\mathcal{P}\left({ }^{n} X\right) /\left(I_{n-1} \cap \mathcal{P}\left({ }^{n} X\right)\right)\right)^{\prime}=\mathcal{P}\left({ }^{n} X\right)^{\prime} \cap I_{n-1}^{\perp} \supset E_{n}
$$

On the other hand, if $u \in \mathcal{P}\left({ }^{n} X\right)^{\prime} \cap I_{n-1}^{\perp}$, then by Lemma $2.17 u=\pi_{n}(\phi)$ for some $\phi \in M_{b}$. So, $u \in E_{n}$. Therefore,

$$
E_{n}=W_{n}^{\prime}
$$

For a given $w \in E_{n}$ let us define

$$
\delta^{(n)}(w)(Q)=\psi(Q)
$$

on homogeneous polynomials Q by formula (2.13) and extend it to the unique complex homomorphism on $\mathcal{H}_{b}(X)$ as in Lemma 2.17. So, $\delta^{(n)}$ maps E_{n} into M_{b}. For any $\phi \in M_{b}$ put

$$
u_{1}:=\phi_{1} \in X^{\prime \prime}=E_{1}, \quad u_{2}:=\phi_{2}-\pi_{2}\left(\delta^{(1)}\left(u_{1}\right)\right)
$$

It is clear that $u_{2} \in E_{2}$.
Suppose that we have defined $u_{k} \in E_{k}$ with $k<n$. Set

$$
u_{n}:=\phi_{n}-\pi_{n}\left(\begin{array}{l}
n-1 \tag{2.16}\\
k=1
\end{array} \delta^{(k)}\left(u_{k}\right)\right) .
$$

Let us show that $u_{n} \in E_{n}$. It is enough to check that for every $P \in \mathcal{P}\left({ }^{n} X\right)$ such that $P=P_{k} P_{m}$ with $\operatorname{deg} P_{k}=k \neq 0$ and $\operatorname{deg} P_{n}=n \neq 0$ implies $u_{n}(P)=0$. Note that for every n-homogeneous polynomials P_{n},

$$
\phi_{n}-\pi_{n}\left(\begin{array}{c}
n-1 \\
k=1 \\
k=1
\end{array} \delta^{(k)}\left(u_{k}\right)\right)\left(P_{n}\right)=\phi_{n}-\underset{k=1}{\substack{*-1}} \delta^{(k)}\left(u_{k}\right)\left(P_{n}\right) .
$$

From the multiplicativity of ϕ and Lemma 2.20 it follows that

$$
\begin{aligned}
& u_{n}(P)=\phi_{n}\left(P_{k} P_{m}\right)-{\underset{j=1}{n-1} \delta^{(j)}\left(u_{j}\right)\left(P_{k} P_{m}\right), ~(n)}^{n} \\
& =\phi_{k}\left(P_{k}\right) \phi_{m}\left(P_{m}\right)-\left(\begin{array}{c}
n-1 \\
\left.\underset{j=1}{*} \delta^{(j)}\left(u_{j}\right)\left(P_{k}\right)\right)\left(\begin{array}{c}
n-1 \\
j=1
\end{array} \delta^{(j)}\left(u_{j}\right)\left(P_{m}\right)\right), ~(1)
\end{array}\right. \\
& =\left(u_{k}\left(P_{k}\right)+\underset{j=1}{k-1} \delta^{(j)}\left(u_{j}\right)\left(P_{k}\right)\right)\left(u_{m}\left(P_{m}\right)+\underset{j=1}{m-1} \delta^{(j)}\left(u_{j}\right)\left(P_{m}\right)\right) \\
& -\left(\underset{\substack{k \\
j=1}}{\stackrel{*}{*} \delta^{(j)}}\left(u_{j}\right)\left(P_{k}\right)\right)\left(\begin{array}{c}
m \\
\underset{j=1}{*} \\
j
\end{array} \delta^{(j)}\left(u_{j}\right)\left(P_{m}\right)\right)=0 .
\end{aligned}
$$

Thm liet equality holds, because by the induction assumption, $u_{k} \in E_{k}, u_{m} \in E_{m}$ nul lunce, by Lemma 2.19,

$$
\begin{equation*}
u_{k}\left(P_{k}\right)+{ }_{j=1}^{k-1} \delta^{(j)}\left(u_{j}\right)\left(P_{k}\right)={\underset{j=1}{k}}_{{ }_{j}^{*}} \delta^{(j)}\left(u_{j}\right)\left(P_{k}\right) \tag{11.17}
\end{equation*}
$$

Inl

$$
u_{m}\left(P_{m}\right)+\underset{j=1}{m-1} \delta^{(j)}\left(u_{j}\right)\left(P_{m}\right)={\underset{j=1}{*} \delta^{(j)}\left(u_{j}\right)\left(P_{m}\right)}^{*}
$$

Lat us consider the functional $\underset{j=1}{\infty} \delta^{(j)}\left(u_{j}\right)$. Since $u_{k} \in E_{k}$, by Lemma 2.19,

$$
\underset{j=1}{\infty} \delta^{(j)}\left(u_{j}\right)(f)=f(0)+\sum_{n \in \mathbb{N}} \stackrel{n}{j=1} \delta^{(j)}\left(u_{j}\right)\left(f_{n}\right)
$$

where $f=\sum f_{n}$ is the Taylor series of f. Hence, $\underset{j=1}{\infty} \delta^{(j)}\left(u_{j}\right)$ is well defined on $P(X)$. (III the other hand, applying (2.16) and (2.17) we obtain

$$
\begin{aligned}
\left(\phi-\underset{j=1}{\infty} \delta^{(j)}\left(u_{j}\right)\right)\left(P_{n}\right) & =\phi_{n}\left(P_{n}\right)-\underset{j=1}{\stackrel{n}{n}} \delta^{(j)}\left(u_{j}\right)\left(P_{n}\right) \\
& =u_{n}(P)+\underset{j=1}{n-1} \delta^{(j)}\left(u_{j}\right)\left(P_{n}\right)-\underset{j=1}{n} \delta^{(j)}\left(u_{j}\right)\left(P_{n}\right)=0
\end{aligned}
$$

lor urbitrary $P_{n} \in \mathcal{P}\left({ }^{n} X\right)$. Thus $\phi=\underset{j=1}{\substack{*}} \delta^{(j)}\left(u_{j}\right)$ on $\mathcal{P}(X)$. Hence $\phi=\underset{j=1}{\infty} \delta^{\infty} \delta^{(j)}\left(u_{j}\right)$ IIII $\mathcal{H}_{b}(X)$.

Let us denote by \mathbb{E}^{∞} the space of all finite sequences $\mathfrak{u}=\left(u_{1}, \ldots, u_{m}, 0, \ldots\right)$ with $u_{k} \in E_{k}$. According to Theorem 2.21, every finite sequence ($u_{1}, \ldots, u_{m}, 0, \ldots$) wefines a character

$$
\phi_{\mathbf{u}}=\stackrel{m}{*=1} \delta^{*} \delta^{(k)}\left(u_{k}\right) \in M_{b}
$$

Thus, $\mathbb{E}^{\infty} \subset M_{b}$ and for every $\mathfrak{u}, \mathfrak{v} \in \mathbb{E}^{\infty}$, we obtain

$$
\phi_{u+\mathfrak{v}} \in M_{b}
$$

Moreover, from the density of polynomials in $\mathcal{H}_{b}(X)$ it follows that \mathbb{E}^{∞} is dense in M_{b} with respect to the Gelfand topology. So, we have proved the following theorem.

Theorem 2.22. The spectrum M_{b} contains the dense vector subspace \mathbb{E}^{∞} of all finite subsequences $\left(u_{1}, \ldots, u_{m}, 0, \ldots\right)$ with $u_{k} \in E_{k}$.

We will use also notation \mathbb{E}^{m} for the Banach space which is the direct sum of E_{1}, \ldots, E_{m}, i.e.,

$$
\mathbb{E}^{m}:=E_{1} \oplus \ldots \oplus E_{m}
$$

It is clear $\mathbb{E}^{m} \subset \mathbb{E}^{\infty}$ for every m. Note that \mathbb{E}^{m} coincides with the set of maximal ldeals of $\mathcal{A}_{m}(X)$.

2.6. The Gelfand transformation and linear structures on M_{b}

Using the Gilfund transformation, every element of a commutative Fréchet algebru cun ber represented by a continuous function on the topological spectrum. We will consider much representations for functions of the algebra $\mathcal{H}_{b}(X)$ on a Banach complex ниниe X. Since the apace X is naturally embedded into the topological spectrum M_{b} we can nay ubout extensions of functions from X onto M_{b}.

A given function $f \in \mathcal{H}_{b}(X)$ by \hat{f} we denote its Gelfand transformation. Since $\mathbb{E}^{m} \subset M_{b}$, we can use notation $\hat{f}\left(u_{1}, \ldots, u_{m}\right)$ instead $\hat{f}\left(u_{1}, \ldots, u_{m}, 0,0 \ldots\right)$.

Theorem 2.23. Let $P \in \mathcal{P}\left({ }^{n} X\right)$. Then for every fixed $m \in \mathbb{N}$ and positive integers k_{1}, \ldots, k_{m} such that $k_{1}+2 k_{2}+\cdots+m k_{m}=n$ there exists a map

$$
\widetilde{F}_{k_{1}, \ldots, k_{m}}^{P}: E_{1}^{k_{1}} \times \cdots \times E_{m}^{k_{m}} \longrightarrow \mathbb{C}
$$

such that for every $1 \leq j \leq n$,

$$
\widetilde{F}_{k_{1}, \ldots, k_{m}}^{P}(\underbrace{u_{1}, \ldots, u_{1}}_{k_{1}}, \ldots, \underbrace{u_{j}, \ldots, u_{j}}_{k_{j}}, \ldots, \underbrace{u_{m}, \ldots, u_{m}}_{k_{m}})
$$

is a k_{j}-homogeneous polynomial of u_{j} for fixed $u_{1}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{m}$ and

$$
\widehat{P}\left(u_{1}, \ldots, u_{m}\right)=\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n} \tilde{F}_{k_{1}, \ldots, k_{m}}^{P}\left(u_{1}, \ldots, u_{m}\right) .
$$

Moreover,

$$
\left\|\widetilde{F}_{k_{1}, \ldots, k_{m}}^{P}\right\| \leq c\left(k_{1}, X\right) c\left(2 k_{2}, X\right) \cdots c\left(m k_{m}, X\right)\|P\|
$$

Proof. For $m=1$ it is trivially true. Suppose that the theorem is true for $m-1$. Then

$$
\begin{aligned}
& \hat{P}\left(u_{1}, \ldots, u_{m}\right)=\underset{j=1}{m} \delta^{(j)}\left(u_{j}\right)(P) \\
& \left.=\left[\left(\begin{array}{c}
m-1 \\
j=1 \\
* \\
j \\
j \\
j) \\
j
\end{array} u_{j}\right)\right) * \delta^{(m)}\left(u_{m}\right)\right](P)=\delta^{(m)}\left(u_{m}\right)\left(\begin{array}{c}
m-1 \\
j=1
\end{array} \delta^{(j)}\left(u_{j}\right) T_{x}(P)\right) \\
& =\delta^{(m)}\left(u_{m}\right)\left(\sum_{i=0}^{n-1} \sum_{k_{1}+\cdots+(m-1) k_{m-1}=n-i} \tilde{F}_{k_{1}, \ldots, k_{m-1}}^{P_{i}}\left(u_{1}, \ldots, u_{m-1}\right)+P(x)\right),
\end{aligned}
$$

where

$$
T_{x}(P)(z)=\sum_{i=1}^{n-1} P_{i}(z), \quad P_{i}(z)=\binom{n-i}{i} F_{P}\left(z^{n-i}, x^{i}\right)
$$

is an ($n-i$)-homogeneous polynomial by z for any fixed x, the functional $\underset{j=1}{m-1} \delta^{(j)}\left(u_{j}\right)$ is linear, and $\widetilde{F}_{k_{1}, \ldots, k_{m-1}}^{P_{i}}\left(u_{1}, \ldots, u_{m-1}\right)$ is an i-homogeneous polynomial of x for all $i=1, \ldots, n-1$ with fixed u_{1}, \ldots, u_{m-1}.

By the definition of $\delta^{m}\left(u_{m}\right)$,

$$
\delta^{m}\left(u_{m}\right)\left(\widetilde{F}_{k_{1}, \ldots, k_{m-1}}^{P_{i}}\left(u_{1}, \ldots, u_{m-1}\right)\right)
$$

In ini (i / m)-homogeneous polynomial if (i / m) is integer and zero otherwise. Siminily, $\delta^{m}\left(u_{m}\right)(P)$ is a (n / m)-homogeneous polynomial if (n / m) is integer and ॥rи otherwise. Therefore, if $i=k_{m} m$, then we can put

$$
\tilde{F}_{k_{1}, \ldots, k_{m}}^{P}\left(u_{1}, \ldots, u_{m}\right):=\delta^{m}\left(u_{m}\right)\left(\widetilde{F}_{k_{1}, \ldots, k_{m-1}}^{P_{i}}\left(u_{1}, \ldots, u_{m-1}\right)\right)
$$

anl if $n=k_{m} m$, then

$$
\widetilde{F}_{0, \ldots, 0, k_{m}}^{P}\left(u_{1}, \ldots, u_{m}\right):=\delta^{m}\left(u_{m}\right)(P)
$$

Since E_{j} is a subspace of $\left(\odot_{\pi}^{j} X\right)^{\prime \prime}$, for every $u_{j} \in E_{j}$ there exists a net $\left(w_{\alpha_{j}}^{j}\right) \subset$ (1) X such that

$$
\left\|w_{\alpha_{j}}^{j}\right\| \leq\left\|u_{j}\right\| \quad \text { and } \quad w_{\alpha_{j}}^{j} \rightarrow u_{j}
$$

In the weak-star topology of $\left(\odot_{\pi}^{j} X\right)^{\prime \prime}$. Thus,

$$
\tilde{F}_{k_{1}, \ldots, k_{m}}^{P}\left(u_{1}, \ldots, u_{m}\right)=\lim _{\alpha_{1}} \ldots \lim _{\alpha_{m}} F_{k_{1}, \ldots, k_{m}}^{P}\left(w_{\alpha_{1}}^{1}, \ldots, w_{\alpha_{m}}^{m}\right)
$$

where $F_{k_{1}, \ldots, k_{m}}^{P}$ is defined by (2.12). So, via Corollary 2.16

$$
\left\|\tilde{F}_{k_{1}, \ldots, k_{m}}^{P}\right\|=\left\|F_{k_{1}, \ldots, k_{m}}^{P}\right\| \leq c\left(k_{1}, X\right) c\left(2 k_{2}, X\right) \cdots c\left(m k_{m}, X\right)\|P\|
$$

IN was to be shown.
Corollary 2.24. Let $f \in \mathcal{H}_{b}(X)^{\circ}$. Then for every E_{k} the restriction $\left.\hat{f}\right|_{E_{k}}$ of \hat{f} 10. E_{k} belongs to $\mathcal{H}_{b}\left(E_{k}\right)$.

Proof. Let

$$
f(x)=\sum_{n \in \mathbf{Z}_{+}} P_{n}(x)
$$

lue the Taylor series of f. By Theorem 2.23

$$
\left\|\left.\hat{P}_{n}\right|_{E_{k}}\right\| \leq\left\|\tilde{F}_{m}^{P_{n}}\right\| \leq c(m k, X)\left\|P_{n}\right\|
$$

where $m k=n$. So each polynomial $\left.\hat{P}_{n}\right|_{E_{k}}$ is continuous and the radius of boundedness of

$$
\left.\widehat{f}\right|_{E_{k}}=\left.\sum_{n \in \mathbb{Z}_{+}} \hat{P}_{n}\right|_{E_{k}}
$$

equals infinity.
A given positive integer n let $p(n)$ be the number of positive solutions of the Diophantine equation

$$
k_{1}+2 k_{2}+\cdots+n k_{n}=n
$$

It is known from Combinatorics that $p(n)$ is equal to the number of all partitions on n and asymptotically

$$
\begin{equation*}
p(n) \sim \frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}} \tag{2.18}
\end{equation*}
$$

THEOH:M 2.25. Le:t $\left(u_{k}\right)_{k=1}^{\infty}$ be a sequence such that $u_{k} \in E_{k}$ for every k. Then

$$
\phi=\underset{k=1}{\infty} \delta^{(k)}\left(u_{k}\right)
$$

in a continu*oเง complex homomorphism in M_{b} if and only if

In this case

$$
\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty
$$

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k} \leq R(\phi) \leq e \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k} \tag{2.19}
\end{equation*}
$$

Proof. Let $\sup _{k}\left\|u_{k}\right\|^{1 / k}=r<\infty$ for some positive r. Then $\left\|u_{k}\right\| \leq r^{k}$. For any $P \in \mathcal{P}\left({ }^{n} X\right)$ such that $\|P\|=1$ we have

$$
\begin{aligned}
\left\|\phi_{n}(P)\right\| & =\|\phi(P)\|=\left\|\hat{P}\left(u_{1}, \ldots, u_{n}\right)\right\| \\
& \leq\left\|\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}} \widetilde{F}_{k_{1}, \ldots, k_{n}}^{P}\left(u_{1}, \ldots, u_{n}\right)\right\| \\
& \leq \widetilde{F}_{k_{1}+2 k_{2}+\cdots+n k_{n}=n}\left\|\widetilde{F}_{k_{1}, \ldots, k_{n}}^{P}\left(u_{1}, \ldots, u_{n}\right)\right\| \\
& \leq m_{n} \sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n}\left\|u_{1}\right\|^{k_{1}} \cdots\left\|u_{n}\right\|^{k_{n}},
\end{aligned}
$$

where

$$
m_{n}=\max _{k_{1}+2 k_{2}+\cdots+n k_{n}=n}\left[c\left(k_{1}, X\right) c\left(2 k_{2}, X\right) \cdots c\left(m k_{m}, X\right)\right] .
$$

We observe that

So, via the Sterling formula,

$$
m_{n} \leq \max _{s_{1}+\cdots+s_{n}=n} \frac{s_{1}^{s_{1}} \cdots s_{n}^{s_{n}}}{s_{1}!\cdots s_{n}!}
$$

Therefore,

$$
\limsup _{n \rightarrow \infty} m_{n}^{1 / n} \leq e
$$

$$
\begin{aligned}
R(\phi)=\limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n} & \leq e \limsup _{n \rightarrow \infty}\left(p(n) r^{k_{1}+2 k_{2}+\cdots+n k_{n}}\right)^{1 / n} \\
& =e r \limsup _{n \rightarrow \infty}(p(n))^{1 / n}
\end{aligned}
$$

where $p(n)$ is the number of partitions of n. Using the asymptotical formula (2.18), we have that

So, $\phi \in M_{b}$.

$$
R(\phi) \leq e r=e \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty
$$

On the other hand, $\left\|u_{k}\right\| \leq\left\|\phi_{k m}\right\|$ for every positive integer m. Hence

$$
\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k} \leq \limsup _{k \rightarrow \infty}\left\|\phi_{k}\right\|^{1 / k}=R(\phi)
$$

Hence, the inequalities (2.19) are proved.

Lal $u=\left(u_{1}, u_{2}, \ldots\right), \mathfrak{v}=\left(v_{1}, v_{2}, \ldots\right)$ be sequences with $u_{k}, v_{k} \in E_{k}$ for every bif innd

$$
\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty, \quad \sup _{k \in \mathbb{N}}\left\|v_{k}\right\|^{1 / k}<\infty
$$

I limit, there are complex homomorphisms of $\mathcal{H}_{b}(X)$ of the forms

$$
\phi_{\mathfrak{u}}=\underset{k=1}{\infty} \delta^{(k)}\left(u_{k}\right), \quad \phi_{\mathfrak{v}}=\underset{k=1}{\infty} \delta^{(k)}\left(v_{k}\right) .
$$

Corollary 2.26. For any $\phi_{\mathfrak{u}}, \phi_{\mathfrak{v}} \in M_{b}$ and a constant $c>0$, we have

$$
\phi_{\mathfrak{u}+\mathfrak{v}}=\underset{k=1}{\infty} \delta^{(k)}\left(u_{k}+v_{k}\right) \in M_{b}, \quad \phi_{c u}=\underset{k=1}{\infty} \delta^{(k)}\left(c u_{k}\right) \in M_{b}
$$

So, the spectrum M_{b} may be identified with a sequence space

$$
\overline{\mathbb{E}}^{\infty}:=\left\{\left(u_{1}, u_{2}, \ldots\right): u_{k} \in E_{k}, \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty\right\}
$$

Proposition 2.27. The function

$$
\rho(u, \mathfrak{v}):=\sup _{k \in \mathbb{N}}\left\|u_{k}-v_{k}\right\|^{1 / k}
$$

In in metric on $\overline{\mathbb{E}}^{\infty}$, which is invariant with respect to translations.
Proof. From the definition of ρ it follows

$$
\rho(\mathfrak{u}-\mathfrak{v}, 0)=\rho(\mathfrak{u}, \mathfrak{v})
$$

II IN enough to check the triangle inequality. Since

$$
\left\|u_{k}+v_{k}\right\|^{1 / k} \leq\left(\left\|u_{k}\right\|+\left\|v_{k}\right\|\right)^{1 / k} \leq\left\|u_{k}\right\|^{1 / k}+\left\|v_{k}\right\|^{1 / k}
$$

wo have

$$
\sup _{k \in \mathbb{N}}\left\|u_{k}+v_{k}\right\|^{1 / k} \leq \sup _{k \in \mathbb{N}}\left(\left\|u_{k}\right\|^{1 / k}+\left\|v_{k}\right\|^{1 / k}\right) \leq \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}+\sup _{j \in \mathbb{N}}\left\|v_{j}\right\|^{1 / j}
$$

innd

$$
\rho(\mathfrak{u}+\mathfrak{v}, 0) \leq \rho(\mathfrak{u}, 0)+\rho(\mathfrak{v}, 0)
$$

$\|$ is necessary to do replacement \mathfrak{u} by $\mathfrak{u}-\mathfrak{w}$ and \mathfrak{v} by $\mathfrak{m}-\mathfrak{v}$.
The following proposition easily follows from the completeness of each E_{k}.
Proposition 2.28. The metric space

$$
\overline{\mathbb{E}}^{\infty}=\left(\overline{\mathbb{E}}^{\infty}, \rho\right)=\left\{\left(u_{1}, u_{2}, \ldots\right): u_{k} \in E_{k}, \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty\right\}
$$

In complete.
Note that in the general case both the Gelfand topology and the topology genernted by ρ are not linear. We consider this situation in the next section.

Given a sequence of Banach spaces $\left(E_{n},\|\cdot\|_{n}\right)_{n=1}^{\infty}$ and $0<\rho \leq \infty$ the Köthe mequence space $\lambda^{1}\left(K_{\rho} ;\left(E_{n}\right)\right)$ with $K_{\rho}=\left\{\left(r^{n}\right)_{n=1}^{\infty}: 0<r<\rho\right\}$ is defined to be the Fréchet vector space

$$
\left\{\left(x_{n}\right)_{n=1}^{\infty} \in \underset{n \in \mathbb{N}}{X} E_{n}: p_{r}\left(\left(x_{n}\right)_{n=1}^{\infty}\right):=\sum_{n \in \mathbb{N}}\left\|x_{n}\right\| r^{n}<\infty \text { for all } r \in(0, \rho)\right\}
$$

endowed with the topology given by seminorms $\left\{p_{r}\right\}_{0<r<\rho}$. It is clear that

$$
\lambda^{1}\left(K_{\rho_{1}} ;\left(E_{n}\right)\right) \supset \lambda^{1}\left(K_{\rho_{2}} ;\left(E_{n}\right)\right) \quad \text { if } \quad \rho_{1}<\rho_{2}
$$

und the topology induced by $\lambda^{1}\left(K_{\rho_{1}} ;\left(E_{n}\right)\right)$ on $\lambda^{1}\left(K_{\rho_{2}} ;\left(E_{n}\right)\right)$ is weaker than the original toppology of $\lambda^{1}\left(K_{\rho_{2}} ;\left(E_{n}\right)\right)$. We define on the union

$$
\bigcup_{\rho>0} \lambda^{1}\left(K_{\rho} ;\left(E_{n}\right)\right)
$$

the topology of inductive limits of the Köthe spaces respectively above continuous embeddings, that is denoted

$$
\hat{\mathbb{E}}^{\infty}:=\operatorname{limind}_{\rho \rightarrow 0} \lambda^{1}\left(K_{\rho} ;\left(E_{n}\right)\right)
$$

Theorem 2.29. The map

$$
\underset{k=1}{\infty} \delta^{(k)}\left(u_{k}\right) \longmapsto\left(u_{1}, u_{2}, \ldots\right), \quad u_{k} \in E_{k}
$$

produces a bijection from M_{b} onto $\hat{\mathbb{E}}^{\infty}$. The inductive topology of $\hat{\mathbb{E}}^{\infty}$ is stronger than the Gelfand topology transferred by this bijection from M_{b}, i.e., the bijective mapping

$$
\widehat{\mathbb{E}}^{\infty} \longrightarrow M_{b}
$$

is continuous. The space $\hat{\mathbb{E}}^{\infty}$ is a Hausdorff locally convex vector space.

$$
\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty
$$

So, there is some $0<\varrho<\infty$ such that

$$
\underset{k \rightarrow \infty}{\limsup }\left\|u_{k}\right\|^{1 / k}<\varrho
$$

By Cauchy-Hadamard's formula

$$
\sum_{n \in \mathbb{N}}\left\|u_{n}\right\| r^{n}<\infty \quad \text { for } \quad 0<r<\frac{1}{\varrho}
$$

So, $\left(u_{k}\right)_{k=1}^{\infty} \subset \lambda^{1}\left(K_{\rho} ;\left(E_{n}\right)\right)$, where $\rho=1 / \varrho$.
Now in the opposite side, let $\left(u_{k}\right)_{k=1}^{\infty} \subset \lambda^{1}\left(K_{p} ;\left(E_{n}\right)\right)$. Then by the CauchyHadamard formula

$$
\limsup _{k \rightarrow \infty}\left\|u_{k}\right\|^{1 / k}<\frac{1}{\rho}, \quad \text { consequently, } \quad \sup _{k \in \mathbb{N}}\left\|u_{k}\right\|^{1 / k}<\infty
$$

Let $f \in \mathcal{H}_{b}(X)$. By Corollary 2.24 the restriction of \hat{f} to each space E_{k} is continuous. So, \widehat{f} is continuous on $\hat{\mathbb{E}}^{\infty}$. Since the Gelfand topology is the weakest topology such that all functions \hat{f} with $f \in \mathcal{H}_{b}(X)$ are continuous, it also is weaker Hinn the topology of $\widehat{\mathbb{E}}^{\infty}$. As a consequence, the inductive limits of Köthe spaces $\widehat{\mathbb{E}}^{\infty}$ is n Hansdorff topological space, thus it is a locally convex vector space.

Corollary 2.30. For every $f \in \mathcal{H}_{b}(X)$ the Gelfand transform \hat{f} belongs to $W_{n}\left(\mathbb{K}^{\infty}\right)$ and the mapping

$$
\mathcal{H}_{b}(X) \ni f \longmapsto \hat{f} \in \mathcal{H}_{b}\left(\hat{\mathbb{E}}^{\infty}\right)
$$

In continuous, where $\mathcal{H}_{b}\left(\hat{\mathbb{E}}^{\infty}\right)$ means the space of all entire \mathbb{C}-valued functions of lumuled type on the locally convex space $\widehat{\mathbb{E}}^{\infty}$ endowed with the topology of uniform milivergence on bounded sets.

2.6. Linearity of topologies on spectra

We have proved that $\left(\overline{\mathbb{E}}^{\infty}, \rho\right)$ is a complete metric space. If $\mathcal{H}_{1}(X)=A_{1}(X)$. \|nen \mathbb{E}^{∞} is isometrically isomorphic to the second dual $X^{\prime \prime}$. However, in lhe gemernl tive, $\overline{\mathbb{E}}^{\infty}$ is not a topological vector space.

Theorem 2.31. If the sequence of algebras $\mathcal{A}_{n}(X)$ does not stabilize, then there vints $\mathfrak{u}=\left(u_{1}, u_{2}, \ldots\right) \in M_{b}$ such that the operation of multiplication by is constual

$$
\lambda \leadsto \lambda u=\left(\lambda u_{1}, \lambda u_{2}, \ldots\right), \quad \lambda \in \mathbb{C}
$$

IN IIscontinuous as a function from \mathbb{C} to ($\overline{\mathbb{E}^{\infty}}, \rho$).
Proof. Let $\mathfrak{u}=\left(u_{1}, u_{2}, \ldots\right) \in M_{b}$ such that $\left\|u_{k}\right\|=1$ for every $k \in \mathbb{N}$. Then for each $0<\lambda<1$,

$$
\rho(0, \lambda \mathfrak{u})=\sup _{k \in \mathbb{N}} \lambda^{1 / k}\left\|u_{k}\right\|^{1 / k}=1
$$

III particular, if $\lambda_{n} \rightarrow 0,0<\lambda_{n}<1$, then $\rho\left(0, \lambda_{n} \mathfrak{u}\right)=1$ but $\rho(0,0 \mathfrak{u})=0$.
Corollary 2.32. Let $\mathfrak{u}=\left(u_{1}, u_{2}, \ldots\right) \in M_{b}$ such that $\left\|u_{k}\right\|=1$ for every k. Then the linear map

$$
\mathbb{C} \ni \lambda \longmapsto \lambda \mathfrak{u} \in\left(\overline{\mathbb{E}}^{\infty}, \rho\right)
$$

In discontinuous at every $\lambda \in \mathbb{C}$.
Proof. Let $\lambda_{n} \rightarrow \lambda_{0} \in \mathbb{C}$ as $n \rightarrow \infty$. Then $\lambda_{n}-\lambda$ tends to 0 as $n \rightarrow \infty$ but $\left(\lambda_{n}-\lambda\right) u$ does not.

Proposition 2.33. The multiplication by a constant

$$
(\lambda, \mathfrak{u}) \rightsquigarrow \lambda \mathfrak{u}=\left(\lambda u_{1}, \lambda u_{2}, \ldots\right), \quad \lambda \in \mathbb{C}, \quad \mathfrak{u} \in M_{b}
$$

Im jointly continuous in the Gelfand topology.
Proof. Let $\lambda_{n} \rightarrow \lambda_{0}$ in \mathbb{C} as $n \rightarrow \infty, u_{\alpha} \rightarrow u_{0}$ in the Gelfand topology and $f \in \mathcal{H}_{b}(X)$. If $f=\sum_{k} f_{k}$ is the Taylor series of f, then $\widehat{f}\left(\lambda_{n} \mathfrak{u}_{\alpha}\right)=\sum_{k} \lambda_{n}^{k} \hat{f}_{k}\left(\mathfrak{u}_{\alpha}\right)$ and

$$
\lim _{n \rightarrow \infty} \lim _{\alpha} \sum_{k \in \mathbb{Z}_{+}} \lambda_{n}^{k} \hat{f}_{k}\left(\mathfrak{u}_{\alpha}\right)=\sum_{k \in \mathbb{Z}_{+}} \lambda_{0}^{k} \widehat{f}_{k}\left(\mathfrak{u}_{0}\right)=\lim _{\alpha} \lim _{n \rightarrow \infty} \sum_{k \in \mathbb{Z}_{+}} \lambda_{n}^{k} \hat{f}_{k}\left(\mathfrak{u}_{\alpha}\right) .
$$

Since it is true for every $f \in \mathcal{H}_{b}(X)$, the multiplication by a constant is jointly continuous in the Gelfand topology.

Let X_{Γ} be the Banach space X endowed with the finest topology Γ, which colncides on bounded sets with the Gelfand topology of M_{b} restricted to X. Since every function in $\mathcal{H}_{b}(X)$ can be approximated by polynomials uniformly on bounded nots, I in the finest topology which coincides on bounded sets with the weakest topology on X such that all polynomials in $\mathcal{P}(X)$ are continuous. We consider the question: Under which conditions the operation of sum $(x, y) \rightsquigarrow x+y$ is jointly continuous in X_{Γ} ?

It is not difficult to check that the operation of sum is separately continuous in the space X_{Γ}.

THEOREM 2.34. If the operation of sum is jointly continuous in X_{Γ}, then $\odot_{\pi}^{n} X$ is symmetrically regular for every positive integer n.

Proof. Suppose that $\odot_{\pi}^{n} X$ is not symmetrically regular for some n. Then there are $u^{\prime \prime}, v^{\prime \prime} \in\left(\odot_{\pi}^{n} X\right)^{\prime \prime}$ and nets $u_{\alpha}, v_{\beta} \in \odot_{\pi}^{n} X$ such that $u_{\alpha} \rightarrow u^{\prime \prime}, v_{\beta} \rightarrow v^{\prime \prime}$ in the weak-star topology of $\left(\odot_{\pi}^{n} X\right)^{\prime \prime}$ and

$$
\lim _{\alpha} \lim _{\beta} F\left(u_{\alpha}, v_{\beta}\right) \neq \lim _{\beta} \lim _{\alpha} F\left(u_{\alpha}, v_{\beta}\right)
$$

for a symmetric bilinear form F on $\odot_{\pi}^{n} X$. Let

$$
\begin{equation*}
u_{\alpha}=\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}} x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\beta}=\sum_{j_{1}, \ldots, j_{n} \in \mathbb{N}} y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}} \tag{2.21}
\end{equation*}
$$

be some representations of u_{α} and v_{β} respectively, where $x_{\alpha}^{i}, y_{\beta}^{j} \in X$. According to the definition of the projective tensor product series (2.20) and (2.21) are absolutely convergent. So, if $\Phi \in\left(\odot_{\pi}^{n} X\right)^{\prime}$, then

$$
\Phi\left(v_{\beta}\right)=\Phi\left(\sum_{j_{1}, \ldots, j_{n} \in \mathbb{N}} y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right)=\sum_{j_{1}, \ldots, j_{n} \in \mathbb{N}} \Phi\left(y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right)
$$

For a fixed index $\alpha, F\left(u_{\alpha}, \cdot\right)$ is a linear functional on $\odot_{\pi}^{n} X$. Thus,

$$
\begin{aligned}
\lim _{\alpha, \beta} F\left(u_{\alpha}, v_{\beta}\right) & =\lim _{\alpha, \beta} F\left(\sum_{\{i\} \in \mathbb{N}^{n}} x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, \sum_{\{j\} \in \mathbb{N}^{n}} y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right) \\
& =\lim _{\alpha} \lim _{\beta} \sum_{\{i\} \in \mathbb{N}^{n}} \sum_{\{j\} \in \mathbb{N}^{n}} F\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right) .
\end{aligned}
$$

Since the series

$$
\sum_{\{i\} \in \mathbb{N}^{n}} \sum_{\{j\} \in \mathbb{N}^{n}} F\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right)
$$

absolutely converges, we have

$$
\lim _{\alpha, \beta} F\left(u_{\alpha}, v_{\beta}\right)=\sum_{\{i\} \in \mathbb{N}^{n}} \sum_{\{j\} \in \mathbb{N}^{n}} \lim _{n} \lim _{\beta} F\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right)
$$

Hencew, for some $\{i\} \in \mathbb{N}^{n} \quad\{j\} \in \mathbb{N}^{n}$,

$$
\begin{aligned}
& \lim _{\alpha} \lim _{\beta} F\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right) \neq \\
& \quad \neq \lim _{\beta} \lim _{\alpha} F\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes y_{\beta}^{j_{n}}\right) .
\end{aligned}
$$

Let $P_{B}(x):=B(x \otimes \cdots \otimes x, x \otimes \cdots \otimes x)$. From the Polarization formulas (1.2) and (1.6) it follows that there are constants $a_{k}, b_{k}, c_{k}, d_{k}, h_{k}$ such that

$$
F_{P_{B}}\left(x_{\alpha}^{i_{1}}, \ldots, x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}}, \ldots, y_{\beta}^{j_{n}}\right)=\sum_{k} c_{k} P_{B}\left(a_{k} \sum_{m=1}^{n} d_{m} x_{\alpha}^{i_{m}}+b_{k} \sum_{m=1}^{n} h_{m} y_{\beta}^{j_{m}}\right)
$$

where $F_{P_{B}}$ is the symmetric n-linear form associated with P_{B} and the right linnd inill contains a finite number of terms. Since,

$$
F_{P_{B}}\left(x_{\alpha}^{i_{1}}, \ldots, x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}}, \ldots, y_{\beta}^{j_{n}}\right)=B\left(x_{\alpha}^{i_{1}} \otimes \cdots \otimes x_{\alpha}^{i_{n}}, y_{\beta}^{j_{1}} \otimes \cdots \otimes v_{\beta}^{j_{n}}\right)
$$

lir some k,

$$
\begin{aligned}
\lim _{\alpha} \lim _{\beta} P_{B}\left(a_{k} \sum_{m=1}^{n} d_{m} x_{\alpha}^{i_{m}}\right. & \left.+b_{k} \sum_{m=1}^{n} h_{m} y_{\beta}^{j_{m}}\right) \neq \\
& \neq \lim _{\beta} \operatorname{Kim}_{\alpha} P_{B}\left(a_{k} \sum_{m=1}^{n} d_{m} x_{\alpha}^{i_{m}}+b_{k} \sum_{m=1}^{n} h_{m} y_{\beta}^{j_{m}}\right)
\end{aligned}
$$

Hellce the sum is discontinuous in X_{Γ}.
Proposition 2.35. If $\odot_{\pi}^{n} X$ is symmetrically regular for every n, then the operillon of convolution of complex homomorphisms in M_{b} is commutative.

Proof. Let P be an n-homogeneous polynomial and F_{P} be the correspondent n-llnear form, associated with P. Let g be an arbitrary functional in $X^{\prime}, g \neq 0$. Consider a map

$$
B_{g}\left(x^{\otimes n}, y^{\otimes n}\right):=\sum_{k=1}^{n-1} F_{P}\left(x^{k}, y^{n-k}\right) g^{n-k}(x) g^{k}(y)
$$

where $x^{\otimes n}, y^{\otimes n} \in \odot_{\pi}^{n} X$. It is clear that $B_{g}\left(x^{\otimes n}, y^{\otimes n}\right)$ defines a symmetric bilinear form $\odot_{\pi}^{n} X$. Let ϕ and ψ be the restriction of some arbitrary characters to $\mathcal{P}\left({ }^{n} X\right)$ nuld x_{α} and y_{α} be corespondent nets which converge in X_{Γ} to ϕ and ψ respectively. Then $x_{\alpha}^{\otimes n}, y_{\beta}^{\otimes n} \in \odot_{\pi}^{n} X$ are weakly-star convergent to some elements in $\left(\odot_{\pi}^{n} X\right)^{\prime \prime}$. Sluce $\odot_{\pi}^{n} X$ is symmetrically regular,

$$
\lim _{\alpha, \beta} B_{g}\left(x_{\alpha}^{\otimes n}, y_{\beta}^{\otimes n}\right)=\lim _{\beta, \alpha} B_{g}\left(x_{\alpha}^{\otimes n}, y_{\beta}^{\otimes n}\right) .
$$

If we put y_{β} instead $t y_{\beta}$ with $t \in \mathbb{C}$ we get

$$
\sum_{k=1}^{n-1} t^{k}\left(\lim _{\alpha, \beta} F_{P}\left(x_{\alpha}^{k}, y_{\beta}^{n-k}\right)-\lim _{\beta, \alpha} F_{P}\left(x_{\alpha}^{k}, y_{\beta}^{n-k}\right)\right) g^{n-k}\left(x_{\alpha}\right) g^{k}\left(y_{\beta}\right)=0
$$

Since it is true for every $t \in \mathbb{C}$ and $g \in X^{\prime}$, we have

$$
\lim _{\alpha, \beta} F_{P}\left(x_{\alpha}^{k}, y_{\beta}^{n-k}\right)=\lim _{\beta, \alpha} F_{P}\left(x_{\alpha}^{k}, y_{\beta}^{n-k}\right)
$$

for un urbitrary k. Taking into account that

$$
P\left(x_{\alpha}+y_{\beta}\right)=\sum_{k=0}^{n}\binom{n}{n-k} F_{P}\left(x_{\alpha}, \ldots, x_{\alpha}, y_{\beta}, \ldots, y_{\beta}\right)
$$

and that

$$
\phi * \psi(P)=\lim _{\alpha} \lim _{\beta} P\left(x_{\alpha}+y_{\beta}\right),
$$

we have that the convolution is commutative.

2.7. Discontinuous complex homomorphisms and Michael's problem

E.Michael [75] posed the following problem in 1952 which is still open: Is every complex homomorphism of a commutative Fréchet algebra continuous?

In [76, p. 240] Mujica proved that the Michael problem can be reduced to the case of the algebra $\mathcal{H}_{b}(X)$ for an arbitrary Banach space X with a Schauder basis. However, a dense subalgebra of $\mathcal{H}_{b}(X)$ may admit a discontinuous complex homomorphism. Dixon [37] has given an example of an algebra of polynomials of infinitely many variables which admits discontinuous scalar-valued homomorphisms. In [42] Galindo et al. gave a construction of a discontinuous scalar-valued homomorphism of algebra of polynomials on arbitrary infinite-dimensional Banach space. Their idea is to take a discontinuous functional on X^{\prime} and extend it to a functional on $\mathcal{P}(X)$. The next proposition shows that the restriction of a discontinuous complex homomorphism on $\mathcal{A}_{n}(X) \cap \mathcal{P}(X)$ can be continuous for every $n \in \mathbb{N}$.

Proposition 2.36. If the sequence of algebras $\mathcal{A}_{n}(X)$ does not stabilize, then there is a discontinuous complex homomorphism ζ on $\mathcal{P}(X)$ such that the restriction of ζ on $\mathcal{A}_{n}(X) \cap \mathcal{P}(X)$ is a continuous complex homomorphism for every $n \in \mathbb{N}$.

Proof. By Corollary 2.18 and Theorem 2.21 there exists an infinity sequence $\left(u_{k}\right)_{k=1}^{\infty}$ with $u_{k} \in E_{k}, u_{k} \neq 0$. Since each E_{k} is a vector space, we can choose u_{k} such that $\sup _{k}\left\|u_{k}\right\|_{k}^{1 / k}=\infty$. If

$$
\zeta=\underset{k=1}{\infty} \delta^{(k)}\left(u_{k}\right) \quad \text { then } \quad \zeta(f)=\stackrel{n}{k=1}{ }_{k=1}^{*} \delta^{(k)}\left(u_{k}\right)(f)
$$

for every $f \in \mathcal{A}_{n}(X)$. So, ζ is well defined and continuous on $\mathcal{A}_{n}(X) \cap \mathcal{P}(X)$. If ζ is continuous on $\mathcal{P}(X)$, then it can be extended to a continuous complex homomorphism on $\mathcal{H}_{b}(X)$. But it contradicts Theorem 2.25.

A discontinuous complex homomorphism of $\mathcal{H}_{b}(X)$ (if it exists) eventually, need not to be discontinuous on $\mathcal{P}(X)$.

Proposition 2.37. If there exists a discontinuous complex homomorphism ϕ of $H_{b}(X)$, then there exists a discontinuous complex homomorphism ψ of $\mathcal{H}_{b}(X)$ such thint the restriction of ϕ on X^{\prime} is discontinuous.

Proof. Let $\left(f_{n}\right)$ be a sequence in $\mathcal{H}_{b}(X)$ such that $\left\|f_{n}\right\|_{r} \rightarrow 0$ as $n \rightarrow \infty$ for wiry $r>0$ and

$$
\phi\left(f_{n}\right)>4^{n}
$$

laul $\left(e_{n}\right)$ be a normalized basis sequence in X with a normalized biorthogonal se-川иинее $\left(\mathfrak{e}_{n}^{*}\right) \subset X$. Put

$$
F(x):=\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} f_{n}(x) \mathfrak{e}_{n}
$$

II In easy to check that $F \in \mathcal{H}_{b}(X, X)$. So, the composition operator

$$
T_{F}: f \longmapsto f \circ F
$$

In il continuous homomorphism from $\mathcal{H}_{b}(X)$ to itself. We set $\psi:=\phi \circ F$. Then ψ im n cimplex homomorphism of $\mathcal{H}_{b}(X)$ and

$$
\left|\psi\left(c_{n}^{*}\right)\right|=\left|\frac{\phi\left(f_{n}\right)}{2^{n}}\right|>2^{n}
$$

Hence, ψ is a discontinuous complex homomorphism of $\mathcal{H}_{b}(X)$.

2.8. Continuous homomorphisms

Recall that $\mathbb{E}^{n} \subset \mathbb{E}^{\infty} \subset M_{b}$, where

$$
\mathbb{E}^{n}:=E_{1} \times \cdots \times E_{n}=\left\{\left(u_{1}, \ldots, u_{n}\right): u_{k} \in E_{k}, 1 \leq k \leq n\right\} .
$$

Proposition 2.38. Let Θ be a continuous homomorphism from $\mathcal{H}_{b}(X)$ to itself. Then for every positive integer n there exists a map

$$
F_{n}: \mathbb{E}^{n} \longrightarrow \mathbb{E}^{n}
$$

nuch that for every $f \in \mathcal{A}_{n}(X)$,

$$
\Theta(f)=\hat{f} \circ F_{n}
$$

Proof. If $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{E}^{n}$. Then

$$
\phi_{\mathfrak{u}} \circ \Theta=\stackrel{*}{*}_{k=1}^{m} \delta^{(k)}\left(u_{k}\right) \circ \Theta \in M_{b}
$$

By Theorem 2.21 there exists a point $\mathfrak{v}=\left(v_{1}, v_{2}, \ldots\right) \in M_{b}$ such that

$$
\phi_{\mathfrak{u}} \circ \Theta(f)=\hat{f}(\mathfrak{v})
$$

If $f \in \mathcal{A}_{n}(X)$, then $\hat{f}(\mathfrak{v})=\widehat{f}\left(v_{1}, \ldots, v_{n}\right)$. So, we can assume that $\mathfrak{v} \in \mathbb{E}^{n}$. Put $\digamma_{n}^{\prime}(\mathfrak{u}):=\mathfrak{v}$. Thus, we have constructed the required mapping $\mathfrak{u} \longmapsto F_{n}(u)$ with the property $\Theta(f)=\hat{f} \circ F_{n}$.

We notice that the above map F_{n} need not to be analytic in \mathbb{E}^{n}. For example, let $0, u_{d} \in E_{2}$ and g be a linear functional on X. We define $F: X \longrightarrow E_{2}$ by $P(x):=\sqrt{!(x)} u$. Then

$$
\Theta_{F}(f)(x):=f \circ F(x)=\sum_{n \in \mathbb{Z}_{+}}(g(x))^{n} f_{2 n}\left(u_{2}\right)
$$

for un arbitrary Taylor series $f=\sum f_{n} \in \mathcal{H}_{b}(X)$. It is easy to see that Θ_{F} is n continuous homomorphism of $\mathcal{H}_{b}(X)$ to itself but F is not holomorphic.

A homomorphism Θ from $\mathcal{H}_{b}(X)$ to itself is called $A B$-composition homomorphism [23] if there exists $F \in \mathcal{H}_{b}\left(X^{\prime \prime}, X^{\prime \prime}\right)$ such that

$$
\widetilde{\Theta(f)}\left(x^{\prime \prime}\right)=\tilde{f}\left(F\left(x^{\prime \prime}\right)\right), \quad x^{\prime \prime} \in X^{\prime \prime}
$$

where \tilde{f} is the Aron-Berner extension of f.
Theorem 2.39. Every polynomial on X is approximable if and only if every homomorphism on $\mathcal{H}_{b}(X)$ is an $A B$-composition homomorphism.

Proof. Suppose that every polynomial on X is approximable. Then $\mathcal{H}_{b}(X)=$ $\mathcal{A}_{1}(X)$. By Proposition 2.38 for every homomorphism

$$
\Theta: \mathcal{H}_{b}(X) \longrightarrow \mathcal{H}_{b}(X)
$$

there exists a mapping $F: X^{\prime \prime} \longrightarrow X^{\prime \prime}$ such that

$$
\Theta(f)=\hat{f} \circ F=\tilde{f} \circ F, \quad f \in \mathcal{H}_{b}(X)
$$

In particular, for every $f \in X^{\prime}$, we have $\tilde{f} \circ F \in \mathcal{H}_{b}(X)$. So, we can say that F is weakstar analytic map on $X^{\prime \prime}$. By a classical result of Dunford [38] and Grothendieck [49] on weak-star analytic mappings, we obtain that F is analytic on $X^{\prime \prime}$. Since $\tilde{f} \circ F$ is bounded on bounded sets of $X^{\prime \prime}$ for every $f \in X^{\prime}$ and weak-star boundedness implies boundedness, we have $F \in H_{b}\left(X^{\prime \prime}, X^{\prime \prime}\right)$.

Suppose now that $\mathcal{A}_{n}(X) \neq \mathcal{A}_{1}(X)$ for some n. Let us choose $u_{n} \in E_{n}$ with $u_{n} \neq 0$ and $l \in X^{\prime}$ with $l \neq 0$. Put

$$
F(x):=l(x) u_{n}, \quad \Theta(f)(x):=\widehat{f}(F(x)), \quad x \in X
$$

Since $F \in \mathcal{H}_{b}\left(X, \mathbb{E}^{n}\right)$, we obtain that $\Theta(f)(x) \in \mathcal{H}_{b}(X)$. But Θ is not an $A B$ composition homomorphism, because $\Theta \neq 0$ and $\Theta(f)=0$ for every $f \in \mathcal{A}_{1}$.

Since the approximation property of X^{\prime} implies that every weakly continuous on bounded sets polynomial is approximable [10], we have the following corollary.

Corollary 2.40. (c.f. [23]). Let X^{\prime} have the approximation property. Then every polynomial on X is weakly continuous on bounded sets if and only if every homomorphism on $\mathcal{H}_{b}(X)$ is an $A B$-composition homomorphism.

The result of Theorem 2.39 can be improved for a reflexive Banach space.
Theorem 2.41. (Mujica [77]). If $\mathcal{P}(X)=\mathcal{P}_{a}(X)$ for a reflexive Banach space X, then for every continuous homomorphism

$$
\Theta: \mathcal{H}_{b}(X) \longrightarrow \mathcal{H}_{b}(X)
$$

(hirer in a unique map $F \in \mathcal{H}_{b}(X, X)$ such that

$$
\Theta(f)=f \circ F
$$

Cohollary 2.42. Let X be a reflexive Banach space with $\mathcal{P}(X)=\mathcal{P}_{a}(X)$ and 15 $H_{l}(X, X)$. Suppose that $\Theta(f)=f \circ F$ is an isomorphism of $\mathcal{H}_{b}(X)$. Then F is livvortible and $F^{-1} \in \mathcal{H}_{b}(X, X)$.

Proof. By Theorem 2.41 there exists a map $G \in \mathcal{H}_{b}(X, X)$ such that $\Theta^{-1}(f)=$ $f \because G$. It is easy to see that $G=F^{-1}$.

2.9. Continuous derivations

Let $u_{k} \in E_{k}$. According to Theorem 2.21 we can define a complex homomorphism

$$
\phi=\delta^{(k)}\left(u_{k}\right) \in M_{b}, \quad \phi(f)=\hat{f}\left(u_{k}\right)
$$

lif every $f \in \mathcal{H}_{b}(X)$, where \hat{f} denotes the Gelfand transform of f.
However, the element u_{k} belongs to $\left(\odot_{\pi}^{k} X\right)^{\prime \prime}$ and so there is an another natural wny to define a linear functional on $\mathcal{H}_{b}(X)$, associated with u_{k}. Let

$$
\theta=\theta\left(u_{k}\right)=\sum_{m \in \mathbb{Z}_{+}} \theta_{m} \in \mathcal{H}_{b}(X)^{\prime}
$$

mich that $\theta_{k}(P)=\widehat{P}\left(u_{k}\right)$ if $P \in \mathcal{P}\left({ }^{k} X\right)$ and $\theta_{m}=0$ if $m \neq k$. Recall that here θ_{m} In the restriction of θ to $\mathcal{P}\left({ }^{m} X\right)$. It is easy to see that θ is not a homomorphism if $u_{k} \neq 0$. We define a linear operator $\partial_{(k)}\left(u_{k}\right)$ on $\mathcal{H}_{b}(X)$ by

$$
\partial_{(k)}\left(u_{k}\right)(f)(x):=\theta\left(u_{k}\right) \circ T_{x}(f), \quad f \in \mathcal{H}_{b}(X)
$$

For the multilinear form F_{P} associated with an n-homogeneous polynomial P we denote by $\widehat{F}_{P}\left(x^{n-k}, u_{k}\right)$ the value of the Gelfand transform of the k-homogeneous polynomial $E_{k} \ni u_{k} \longmapsto F_{P}\left(x^{n-k}, \cdot\right)$ with a fixed $x \in X$.

Theorem 2.43. Let $u_{k} \in E_{k}$. The operator $\partial_{(k)}\left(u_{k}\right)$ is a continuous derivation on $\mathcal{H}_{b}(X)$,

$$
\begin{equation*}
\partial_{(k)}\left(u_{k}\right)(P)(x)=\binom{n}{k} \hat{F}_{P}\left(x^{n-k}, u_{k}\right), \quad x \in X \tag{2.22}
\end{equation*}
$$

for every $P \in \mathcal{P}\left({ }^{n} X\right)$ and

$$
\begin{equation*}
\delta^{(k)}\left(u_{k}\right)(f)(x)=\sum_{m \in \mathbf{Z}_{+}} \frac{(k!)^{m}}{(m k)!} \partial_{(k)}^{m}\left(u_{k}\right)(f)(x), \quad x \in X \tag{2.23}
\end{equation*}
$$

for every $f \in \mathcal{H}_{b}(X)$.

Proof. To prove the formula (2.22) we observe that

$$
P(z+x)=\sum_{m=0}^{n}\binom{n}{m} F_{P}\left(x^{n-m}, z^{m}\right)
$$

So, for a fixed $x \in X$, we obtain

$$
\partial_{(k)}\left(u_{k}\right)(P)(x)=\theta\left(u_{k}\right)(P(z+x))=\binom{n}{k} \hat{F}_{P}\left(x^{n-k}, u_{k}\right) .
$$

Note that if $\operatorname{deg} P \leq k$, then $\partial_{(k)}\left(u_{k}\right)(P)(x)=0$ for every $x \in X$ by the definitic of $\partial_{(k)}\left(u_{k}\right)$.

Let $P \in \mathcal{P}\left({ }^{n} X\right)$ and $Q \in \mathcal{P}\left({ }^{m} X\right)$. The multilinear form $F_{P Q}\left(x^{n m-k}, z^{k}\right)$ ass ciated with $P Q$ can be represented by

$$
F_{P Q}\left(x^{n m-k}, z^{k}\right)=F_{P Q}^{1}\left(x^{n m-k}, z^{k}\right)+F_{P Q}^{2}\left(x^{n m-k}, z^{k}\right)+F_{P Q}^{3}\left(x^{n m-k}, z^{k}\right),
$$

where

$$
\begin{aligned}
& F_{P Q}^{1}\left(x^{n-k}, z^{k}\right):=F_{P}\left(x^{n-k}, z^{k}\right) F_{Q}\left(x^{m}\right) \\
& F_{P Q}^{2}\left(x^{n-k}, z^{k}\right):=F_{P}\left(x^{n}\right) F_{Q}\left(z^{k}, x^{m-k}\right)
\end{aligned}
$$

and

$$
F_{P Q}^{3}\left(x^{n-k}, z^{k}\right):=\frac{1}{k-1} \sum_{s=1}^{k-1} F_{P}\left(x^{n-s} z^{s}\right) F_{Q}\left(z^{k-s}, x^{m-k+s}\right)
$$

If $n \leq k$ (resp. $m \leq k$), then $F_{P Q}^{1}$ (resp. $F_{P Q}^{2}$) is equal to zero. By definitions $\theta\left(u_{k}\right)$ and u_{k}, we have

$$
\theta\left(u_{k}\right) F_{P Q}^{3}\left(x^{n-k}, z^{k}\right)=0
$$

for any fixed $x \in X$. So,

$$
\partial_{(k)}\left(u_{k}\right)(P Q)(x)=\partial_{(k)}\left(u_{k}\right)(P)(x) Q(x)+P(x) \partial_{(k)}\left(u_{k}\right)(Q)(x)
$$

Since $\partial_{(k)}\left(u_{k}\right)$ is linear, it is a differentiation on the algebra $\mathcal{H}_{b}(X)$. The continui of $\partial_{(k)}\left(u_{k}\right)$ follows from the continuity of $\theta\left(u_{k}\right)$ and the translation T_{x}.

Let $P \in \mathcal{P}\left({ }^{n} X\right)$ and $n=k m$. From (2.22) we have that

$$
\partial_{(k)}^{m}\left(u_{k}\right)(P)=\binom{k m}{k}\binom{k(m-1)}{k} \cdots\binom{k}{k} \hat{P}\left(u_{k}\right)=\frac{(m k)!}{(k!)^{m}} \delta^{(k)}\left(u_{k}\right)(P)
$$

Thus,

$$
\delta^{(k)}\left(u_{k}\right)=\sum_{m \in \mathbb{Z}_{+}} \frac{(k!)^{m}}{(m k)!} \partial_{(k)}^{m}\left(u_{k}\right),
$$

so, the formula (2.22) is proved.
This approach can be generalized by the following way. Let $v_{p} \neq 0$ be an arbitrar element in E_{p} for some positive integer p. Denote by $T_{v_{p}}$ the following operator o $\mathcal{H}_{b}(X)$,

$$
T_{v_{p}}(f):=\widehat{f}\left(\cdot+v_{p}\right)
$$

We can write

$$
\partial_{(k, p)}\left(u_{k}\right)(\hat{f})\left(v_{p}\right):=\theta\left(u_{k}\right) \circ T_{v_{p}}(f)
$$

Repeating arguments of Theorem 2.43, we can see that for every $P \in \mathcal{P}\left({ }^{k m} X\right)$,

$$
\partial_{(k, k)}\left(u_{k}\right)(\widehat{P})\left(v_{k}\right)=m \hat{F}_{P}\left(v_{k}^{m-1}, u_{k}\right)
$$

Mlorsover, if $f=\sum f_{n} \in \mathcal{H}_{b}(X)$, then

$$
\hat{f}\left(v_{k}+u_{k}\right)=\sum_{m \in \mathbb{Z}_{+}} \frac{\partial_{(k, k)}^{m}\left(u_{k}\right)\left(\widehat{f_{k m}}\right)\left(v_{k}\right)}{m!}
$$

Aron, Cole and Gamelin in [6] considered the operation $\partial_{(k)}\left(u_{k}\right)$ for the case when $k=1$ and so $u_{k}=u_{1}=z$ for some $z \in X^{\prime \prime}$. They used notation

$$
(z) T_{x} f=(* z) f(x)
$$

lualead our $\partial_{(1)}(z) f(x)$. For this special case using this notation formuln 2.23 can bo luwritten as

$$
\delta^{(1)}(z) f=\tilde{\delta}(z) f=\sum_{m \in Z_{+}} \frac{1}{m!} z^{* m}=\exp (* z)
$$

2.10. Ball algebras of analytic functions

In this section we consider maximal ideals of uniform algebras of analytic complex finctions on the ball $r B$ for some $r>0$, where B is the unit open ball of a Banach complex space X. We will analyze the following uniform algebras:

$$
\mathcal{H}^{\infty}(r B), \quad \mathcal{H}_{u c}^{\infty}(r B), \quad \text { and } \quad \mathcal{H}_{c}^{\infty}(r B)
$$

where $\mathcal{H}^{\infty}(r B)$ is the algebra of all bounded analytic complex functions on $r B$, $H_{\mathrm{wc}}^{\infty}(r B)$ is the algebra of all uniformly continuous analytic complex functions on $r B$, nind $\mathcal{H}_{c}^{\infty}(r B)$ is the algebra of all bounded analytic complex functions on $r B$, which ure continuous on the closure $r \bar{B}$. It is clear that

$$
\mathcal{H}_{b}(X) \subset \mathcal{H}_{u c}^{\infty}(r B) \subset \mathcal{H}_{c}^{\infty}(r B) \subset \mathcal{H}^{\infty}(r B)
$$

It is easy to check at once that $\mathcal{H}_{u c}^{\infty}(r B)$ precisely consists with the uniform limit in $r B$ of functions from $\mathcal{H}_{b}(X)$.

Since the set of $\phi \in M_{b}$, satisfying the inequality $R(\phi) \leq r$, is the $\mathcal{H}_{b}(X)$-convex hull of $r B$ in M_{b}, we obtain the following theorem.

Theorem 2.44. For each fixed $r>0$, the compact set

$$
\left\{\phi \in M_{b}: R(\phi) \leq r\right\}
$$

conncides with the spectrum of $\mathcal{H}_{u c}^{\infty}(r B)$, in particular,

$$
M\left(\mathcal{H}_{u c}^{\infty}(B)\right)=\left\{\phi \in M_{b}: R(\phi) \leq 1\right\}
$$

Corollary 2.45. The spectrum of $\mathcal{H}_{u c}^{\infty}(B)$ contains unit balls of E_{k} for every positive integer k.

Lell now \mathcal{H} be a uniform algebra such that

$$
\mathcal{H}_{u c}^{\infty}(r B) \subset \mathcal{H} \subset \mathcal{H}^{\infty}(r B)
$$

nud M_{H} be itw mpectrum. There is a natural projection

$$
\iota: M_{\mathcal{H}} \longrightarrow M_{b}
$$

such that $\ell(\psi)$ is the restriction of $\psi \in M_{\mathcal{H}}$ to $\mathcal{H}_{b}(X)$.
Now we exprand the definition of the radius function R to any functional $\psi \in M_{\mathcal{H}}$ by declaring $R(\psi)$ to be the smallest value of $r, 0 \leq r \leq 1$, such that ψ is continuous with respect to the norm of uniform convergence on $r B$.

THEOREM 2.46. Let \mathcal{H} be a uniform algebra between $\mathcal{H}_{u c}^{\infty}(B)$ and $\mathcal{H}^{\infty}(B)$. The image $\iota\left(M_{\mathcal{H}}\right)$ of the projection ८ precisely coincides with the set

$$
\left\{\phi \in M_{b}: R(\phi) \leq 1\right\} .
$$

Proof. If $\psi \in M_{\mathcal{H}}$ and

$$
|\psi(f)| \leq \sup _{r B}|f| \quad \text { for all } \quad f \in \mathcal{H}
$$

then this inequality holds, in particular, for all $f \in \mathcal{H}_{b}(X)$. Therefore,

$$
R(\iota(\psi)) \leq R(\psi) \quad \text { for all } \quad \psi \in M_{\mathcal{H}} .
$$

Suppose that $\phi \in M_{b}$ satisfies $R(\phi)<1$. Then ϕ is continuous on $\mathcal{H}_{b}(X)$ with respect to the norm of uniform convergence on $R(\phi) B$. Each $f \in \mathcal{H}^{\infty}(B)$ is a uniform limit on any ball $r B, 0<r<1$ of the partial sums of its Taylor series. Hence, ϕ extends uniquely to f and determine a unique $\psi \in M_{\mathcal{H}}$ such that $\iota(\psi)=\phi$ and $R(\psi)<1$. As a consequence, we obtain that

$$
R(\phi)=R(\psi)
$$

Suppose now that $\phi \in M_{b}$ satisfies the equality $R(\phi)=1$. Let

$$
\phi=\underset{k=1}{\infty} \delta^{*} \delta^{(k)}\left(u_{k}\right)
$$

for some $\left(u_{k}\right)$. For $|\xi|<1$, consider the homomorphism

$$
\phi^{\xi}:=\stackrel{\infty}{*=1} \stackrel{*}{*} \delta^{(k)}\left(\xi u_{k}\right) .
$$

Since $R\left(\phi^{\xi}\right)=|\xi|<1$, the homomorphism ϕ^{ξ} extends to a homomorphism in $M_{\mathcal{H}}$ If ψ is any cluster point in $M_{\mathcal{H}}$ of the extension of ϕ^{ξ} as $\xi \rightarrow 1$ with $|\xi|<1$, then

$$
\iota(\psi)=\phi \text { and } R(\phi)=R(\psi)
$$

Thus, the image of ι is precisely coincided with $\left\{\phi \in M_{b}: R(\phi) \leq 1\right\}$.
Comparing Theorem 2.46 and Theorem 2.44 we can see that if $\mathcal{H}=\mathcal{H}_{u c}^{\infty}(B)$, then the projection ८ is one-to-one.

THEOREM 2.47. Let \mathcal{H} be a uniform algebra between $\mathcal{H}_{u c}^{\infty}(B)$ and $\mathcal{H}^{\infty}(B)$. Then the natural projection of the spectrum $M_{\mathcal{H}}$ of \mathcal{H} onto

$$
\left\{\phi \in M_{b}: R(\phi) \leq 1\right\}
$$

is one-to-one if and only if $\mathcal{H}=\mathcal{H}_{u c}^{\infty}(B)$.

Proof. Suppose that $f \in \mathcal{H}$ is not uniformly continuous. Then there are $\varepsilon>0$, aind mequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in B such that $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$ bif ull $n \in \mathbb{N}$. A subnet ($x_{n_{\alpha}}$) converges in M_{b} to some ϕ satisfying $R(\phi) \leq 1$. The init $\left(1 / n_{n_{\alpha}}\right)$ then also converges in M_{b} to ϕ. Since $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$, we see that ($x_{n_{\alpha}}$) III ($\mu_{n_{\alpha}}$) have cluster points θ and θ^{\prime} in $M_{\mathcal{H}}$ such that $f(\theta) \neq f\left(\theta^{\prime}\right)$. However, θ null θ^{\prime} both coincide with ϕ on $\mathcal{H}_{u c}^{\infty}(B)$, that is θ and θ^{\prime} both project onto ϕ.

We notice that in [6] is proved that if X is an infinite-dimensional Banach space, Il|‥1

$$
\mathcal{H}_{u c}^{\infty}(B) \neq \mathcal{H}_{c}^{\infty}(B)
$$

2.11. C^{*}-algebras of continuous functions

For a given complex Banach space X we denote by $X^{\mathbb{Z}}$ a Bunuch apuce which colucides with X as a point set but endowed with the real structure. In the other words, X^{\Re} is X where we allow real scalar multiplication only. Evidently $X=X^{\text {®r }}$ пн lopological spaces and each continuous function f on X is well defined and continuous IIII X^{\Re}. We will denote by f^{\Re} the act of f on X^{\Re}.

Definition 2.48. A mapping $Q: X \longrightarrow \mathbb{C}$ is called an n-degree $*$-polynomial if $Q^{R}: X^{\Re} \longrightarrow \mathbb{C}$ is a complex-valued palynomial of n degree on the real Banach space N^{*} 。

We denote by $\mathcal{P}^{*}(X)$ the algebra of all *-polynomials on X and by $\mathcal{C}_{\mathcal{P}}(B)$ Hee completion of $\mathcal{P}^{*}(X)$ in the uniform topology on the open unit ball B of X. $C^{\prime} \mathrm{f}(B)$ contains all continuous polynomials on X and all continuous anti-polynomials (in X, where anti-polynomials are just complex conjugates to polynomials. Let us denote by $\mathcal{C}_{a}(B)$ a minimal closed subalgebra of $\mathcal{C}_{\mathcal{P}}(B)$ which contains all continuous polynomials on X and all continuous anti-polynomials. Notice that $\mathcal{C}_{\mathcal{P}}(B) \neq \mathcal{C}_{a}(B)$ In the general case. For example it is easy to check that a $*$-polynomial Q on ℓ_{2},

$$
Q\left(\sum_{n \in \mathbb{N}} x_{n} \mathfrak{e}_{n}\right)=\sum_{n \in \mathbb{N}} x_{n} \bar{x}_{n}
$$

leelongs to $\mathcal{C}_{\mathcal{P}}(B)$ but does not belong to $\mathcal{C}_{a}(B)$.
THEOREM 2.49. The spectrum $M\left(\mathcal{C}_{a}(B)\right)$ of $\mathcal{C}_{a}(B)$ consists of all characters ϕ of $\mathcal{H}_{u c}^{\infty}(B)$ for which there are nets $\left(x_{\alpha}\right) \subset B$ such that

$$
\begin{equation*}
\phi(P)=\lim _{\alpha} P\left(x_{a}\right), \quad \forall P \in \mathcal{P}(X) \tag{2.24}
\end{equation*}
$$

Proof. Let $\phi \in \mathcal{H}_{u c}^{\infty}(B)$ such that (2.24) holds for some $\left(x_{\alpha}\right) \subset B$. Then $\phi(\bar{P}):=\bar{\phi}(P)$ is well defined for every $P \in \mathcal{P}(X)$. If Q is in an algebraic span of polynomials and antipolynomials, $|\phi(Q)| \leq \sup _{\alpha}\left|Q\left(x_{\alpha}\right)\right| \leq\|Q\|$. So, ϕ can be extended by continuity to a character on $\mathcal{C}_{a}(B)$.

Let now ϕ be a character on $\mathcal{C}_{a}(B)$. Since $\mathcal{C}_{a}(B)$ is a C^{*}-algebra, $M\left(\mathcal{C}_{a}(B)\right)$ Is the Czech-Stone compactification of B in the Gelfand topology of $\mathcal{C}_{a}(B)$ on B.

Honco, B is dense in $\beta B=M\left(\mathcal{C}_{a}(B)\right)$, that is, there exists a net $\left(x_{\alpha}\right) \subset B$ such that $\phi(f)=\lim _{11} f\left(x_{a}\right)$ for every $f \in \mathcal{C}_{a}(B)$. So (2.24) holds.

By the theorem we can write $M\left(\mathcal{C}_{a}(B)\right) \subset M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$. Since, $M\left(\mathcal{H}_{u c}^{\infty}(B)\right)=$ $\left\{\phi \in M_{l}: \mathbb{R}(\phi) \leq 1\right\}$, we can apply Theorem 2.21 and Theorem 2.25.

Corohdahy 2.50. Let $\phi \in M\left(\mathcal{C}_{a}(B)\right)$. Then there exists a sequence $\left(u_{k}\right)_{k=11}^{\infty}$ $u_{k} \in E_{k}$ such that $\sup _{k}\left\|u_{k}\right\|^{1 / k} \leq e$ and

$$
\phi(f)=\underset{k=1}{\substack{*}} \delta^{(k)}\left(u_{k}\right)(f) \quad \text { and } \quad \phi(\bar{f})=\underset{k=1}{\substack{*}} \overline{\delta^{(k)}\left(u_{k}\right)(f)}
$$

for every $f \in \mathcal{H}_{u c}^{\infty}(B)$.
A given positive integer m we denote by Q_{m} a $*$-polynomial on $\ell_{2 m}$ as

$$
Q_{m}(x)=Q_{m}\left(\sum_{n \in \mathbb{N}} x_{n} \mathfrak{e}_{n}\right)=\sum_{n \in \mathbb{N}} x_{n}^{m} \bar{x}_{n}^{m}
$$

Let x_{α} be a weakly polynomially zero net in $\ell_{2 m}$ with $\left\|x_{\alpha}\right\|=1$, where α belongs to an index set \mathfrak{A}. Let \mathscr{U} be a free ultrafilter on \mathfrak{A}. We set

$$
\psi(f)=\lim _{\mathscr{K}} f\left(x_{\alpha}\right)
$$

It is clear that $\psi(f)=f(0)$ if $f \in \mathcal{C}_{a}(B)$ but $\psi\left(Q_{m}\right)=1$. So we can see that $\mathcal{C}_{a}(B) \neq \mathcal{C}_{\mathcal{P}}(B)$ in $\ell_{2 m}$ and there exists a character ψ in $M\left(\mathcal{C}_{\mathcal{P}}(B)\right)$ which vanishes on homogeneous polynomials of $\mathcal{C}_{a}(B)$.

Notes and Remarks. The problem of description of the spectrum of $H_{b}(X)$ was first studied by Aron, Cole and Gamelin [6, 7]. Using the Aron-Berner extension operation $[4,32]$, they showed, in particular that $X^{\prime \prime}$ belongs to the spectrum of $H_{b}(X)$. In [9] it is proved that this inclusion is proper if there exists a polynomial on X which is not weakly continuous on bounded sets. This approach was generalized for algebra-valued analytic functions by García et al. in [46]. Some analytic structure on the set of maximal ideals was considered in [9] (a generalization for functions with values in an algebra is given in [45]). In [77] Mujica investigated ideals of analytic functions of bounded type on Tsirelson's space T and showed that each character on $H_{b}(T)$ is a point evaluation functional. Homomorphisms of H_{b} was studied by Carando, García and Maestre in [23]. Further developing in this direction is in [5, 24, 25, 70].

Main results of this chapter were basically obtained in [96, 97]. Some of them were generalized for Wiener type algebras generated by (p, q)-polynomials by Vasylyshyn in [93].

Note that in $[\mathbf{2}, \mathbf{2 7}, \mathbf{2 8}, \mathbf{2 9}]$ were investigated spectra of algebras of symmetric analytic functions on ℓ_{p} using some another approach. Locally convex algebras of malytic functions on nuclear spaces were investigated in $[58,62]$.

CHAPTER 3

Hardy spaces associated with topological groups

The classic theory of unitary Hardy spaces $\mathcal{H}_{\chi}^{2}(B)$ of complex analytic functions

$$
\left\{f: \sup _{r \in[0,1)} \int_{\mathbb{T}}\left|f\left(r e^{i \vartheta}\right)\right|^{2} d \chi\left(e^{i \vartheta}\right)<\infty\right\}
$$

Neflued on the 1-dimensional open complex ball B, essentially usew of invorinut propunties of probability Haar's measure χ on the complex cyclic group)

$$
\mathbb{T}=\left\{e^{\mathrm{i} \vartheta}: \vartheta \in[0,2 \pi)\right\}
$$

Ifreducibly and unitarily acting in \mathbb{C}. The \mathbb{T}-invariancy provides that $\mathcal{H}_{\chi}^{2}(B)$ is uniLıry equivalent to the Hermitian dual $\ell^{2 *}$ of the ℓ^{2}-space Taylor coefficients ($d_{0}^{n} f / n$!) in. the origin i.e.,

$$
\mathcal{H}_{\chi}^{2}(B) \simeq \ell^{2 *}
$$

Moreover, every function $f \in \mathcal{H}_{\chi}^{2}(B)$ can be uniquely defines by its radial boundiry values on \mathbb{T} with the help of the integral Cauchy formula

$$
f(\xi)=\int_{\mathbb{T}}\left(e^{\mathbf{i} \vartheta}-\xi\right)^{-1} f\left(e^{\mathbf{i} \vartheta}\right) d \chi\left(e^{\mathbf{i} \vartheta}\right), \quad|\xi|<1
$$

There is a natural question: is it possible to replace in this theory the cyclic group T by a infinite-dimensional topological group? The purpose of this chapter is to show lhat this is possible in many cases.

Namely, we analyze various cases of infinite-dimensional topological groups \mathcal{G} that have an unitary representation over an infinite-dimensional Hilbert complex space E. F'or these groups we give definitions of appropriate unitary Hardy spaces \mathcal{H}_{χ}^{2} defined ly \mathcal{G}-invariant probability measures χ, which coincide in the 1 -dimensional case with Whe classic unitary Hardy space. These spaces \mathcal{H}_{χ}^{2} consist of complex functions that huve unique analytic extensions on a domain in E .

Also, we show that for infinite-dimensional cases instead of the space $\ell^{2 *}$ of Taylor coefficients ($d_{0}^{n} f / n!$) it is necessary to use the Hermitian dual F^{*} of the symmetric Fock space F generated by a given Hilbert space E. Similarly as in the 1-dimensional 'ase, the integral Cauchy type formulas use reproducing kernels which are generated ly an orthogonal basis of the symmetric Fock space F associated with E.

3.1. Hardy spaces on compact infinite-dimensional group orbits

3.1.1. Hilbert spaces of compact group representations. Denote by $\mathscr{U}_{r}=$ \% $\left(n_{r}\right)$ the group) of all linear unitary operators in an n_{r}-dimensional complex Hilbert space $\mathbb{C}^{n_{r}}$ with the scalar product $\langle\cdot \mid \cdot\rangle_{\mathbb{C}_{r}}$ and an orthonormal basis

$$
\mathscr{E}_{r}:=\left\{\mathfrak{e}_{j_{r}(1)}, \ldots, \mathfrak{e}_{j_{r}\left(n_{r}\right)}\right\} .
$$

A given subsequence $\left\{n_{r}: r \in \mathbb{N}\right\}$ of natural numbers we correspond the Cartesian product

$$
\mathcal{G}:=\underset{r \in \mathbb{N}}{X} \mathscr{U}_{r}=\left\{U=\left(U_{r}\right): U_{r} \in \mathscr{U}_{r}\right\},
$$

endowed with the product's topology, which is an infinite-dimensional compact topological group. As is well known (see e.g. [51]), the compact group \mathcal{G} can be unitary represented on the countable orthogonal Hilbertian sum

$$
\begin{aligned}
\mathrm{E} & :=\ell_{\mathcal{G}}^{2}, \\
\ell_{\mathcal{G}}^{2} & =\oplus_{r \in \mathbb{N}} \mathrm{E}_{r}=\left\{x=\left(x_{r}\right): x_{r} \in \mathbb{C}^{n_{r}},\|x\|:=\left(\sum_{r \in \mathbb{N}}\left\|x_{r}\right\|_{\mathbb{C}_{r}}^{2}\right)^{1 / 2}<\infty\right\}
\end{aligned}
$$

endowed with the scalar product $\langle x \mid y\rangle:=\sum_{r}\left\langle x_{r} \mid y_{r}\right\rangle_{\mathbb{C}^{n_{r}}}$, where $\left\{\mathrm{E}_{r}: r \in \mathbb{N}\right\}$ is n sequence of \mathcal{G}-irreducible subspaces such that

$$
\mathrm{E}_{r} \bigcap \mathrm{E}_{s}=\{0\} \quad \text { for all } \quad r \neq s
$$

and each \mathbf{E}_{r} is unitary equivalent to $\mathbb{C}^{n_{r}}$ for the corresponding $r \in \mathbb{N}$. For simplicity we identify any element $x_{r} \in \mathbb{C}^{n_{r}}$ with its image ($0, \ldots, 0, x_{r}, 0, \ldots$) $\in \mathrm{E}_{r}$ under the canonical embedding

$$
\mathbb{C}^{n_{r}} q \mathrm{E} .
$$

So, we can consider in E the orthonormal basis

$$
\mathscr{E}:=\bigcup_{r \in \mathbb{N}} \mathscr{E}_{r}=\left\{\mathfrak{e}_{j}\right\}_{j \in \mathbb{N}}
$$

indexed such that $j<i$ for all $\mathfrak{e}_{j} \in \mathrm{E}_{r}$ and $\mathfrak{e}_{i} \in \mathrm{E}_{r+1}$. Let $\mathrm{B}=\{x \in \mathrm{E}:\|x\|<1\}$ denote the open Hilbertian ball.

The symmetric tensor elements

$$
\mathscr{E}_{n}:=\left\{\mathfrak{e}_{\{j\}}^{\otimes(k)}:=\mathfrak{e}_{j_{1}}^{\otimes k_{1}} \cdots \cdots \cdot \mathfrak{e}_{j_{n}}^{\otimes k_{n}}: \quad\{j\} \in \mathbb{N}^{n}, \quad(k) \in \mathbb{Z}_{+}^{n}, \quad|(k)|=n\right\}
$$

form an orthogonal basis in $\bigodot_{\mathfrak{h}}^{n} \mathrm{E}$. If $n=|(k)|=0$, we set $\mathrm{c}_{\{j\}}^{\otimes(k)} \equiv 1$. So,

$$
\mathscr{E}_{0}=\{1\} \quad \text { and } \quad \mathscr{E}_{1}=\mathscr{E} .
$$

In the symmetric Fock space $F=\oplus_{n}\left(\odot_{n}^{n} \mathrm{E}\right)$, generated by the Hilbert space E , the system

$$
\mathscr{E}:=\left\{\mathscr{E}_{n}: n \in \mathbb{Z}_{+}\right\}
$$

furms an orthogonal basis (see Proposition 1.28).

We also consider the corresponding basis of Hilbert-Schmidt homogeneous polynumials

$$
\begin{aligned}
\mathscr{E}^{*} & :=\left\{\mathscr{E}_{n}^{*}: n \in \mathbb{Z}_{+}\right\} \\
\mathscr{E}_{n}^{*} & :=\left\{\mathfrak{e}_{\{j\}}^{*(k)}=\mathfrak{e}_{j_{1}}^{* k_{1}} \cdots \mathfrak{e}_{j_{n}}^{* k_{n}} \in \mathcal{P}_{h}\left({ }^{n} \mathbf{E}\right): \mathfrak{e}_{\{j\}}^{\otimes(k)} \in \mathscr{E}_{n},|(k)|=n\right\}
\end{aligned}
$$

numurated by generated by \mathscr{E}, where

$$
\mathbf{e}_{\{j\}}^{*(k)}(x):=\left\langle x^{\otimes n} \mid \mathbf{e}_{\{j\}}^{\otimes(k)}\right\rangle_{8_{h}^{n} \mathrm{E}}=\left\langle x \mid \mathbf{e}_{j_{1}}\right\rangle_{\mathrm{E}}^{k_{1}} \cdots\left\langle x \mid \mathbf{e}_{j_{n}}\right\rangle_{\mathrm{E}}^{k_{n}}, \quad x \in \mathrm{E} .
$$

('lewrly such polynomials form an orthogonal basis in the Hermitian dual symmetric F'ock space F*.
3.1.2. Representing invariant measures. Consider the Bammeh миныи

$$
\ell_{\mathcal{G}}^{\infty}=\left\{x=\left(x_{r}\right) \in \underset{r \in \mathbb{N}}{X} \mathbb{C}^{n_{r}}:\|x\|_{\ell \in \mathscr{g}}=\sup _{r \in \mathbb{N}}\left\|x_{r}\right\|_{\mathbf{C}^{n_{r}}}<\infty\right\}
$$

mill the compact metric spaces

$$
\begin{array}{ll}
\mathrm{S}_{\mathcal{G}}^{\infty}:=\underset{r \in \mathbb{N}}{X} \mathrm{~S}_{r}, & \mathrm{~S}_{r}:=\left\{x_{r} \in \mathbb{C}^{n_{r}}:\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}=1\right\} \\
\mathrm{K}_{\mathcal{G}}^{\infty}:=\underset{r \in \mathbb{N}}{X} \mathrm{~K}_{r}, & \mathrm{~K}_{r}:=\left\{x_{r} \in \mathbb{C}^{n_{r}}:\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}} \leq 1\right\}
\end{array}
$$

nndowed with the product topologies. It is easy to see that $\mathrm{K}_{\mathcal{G}}^{\infty}$ coincides with a norm closed unit ball of $\ell_{\mathcal{G}}^{\infty}$ endowed with the weak-star topology., The contractive umbedding

$$
\mathrm{E} \rightarrow \ell_{\mathcal{G}}^{\infty}, \quad\|x\|_{\ell_{\mathcal{G}}^{\infty}} \leq\|x\|, \quad x \in \mathrm{E}
$$

loolds. A norm open unit ball in $\ell_{\mathcal{G}}^{\infty}$ we denote by

$$
\mathrm{B}_{G^{\circ}}^{\circ \circ}:=\left\{x \in \ell_{\mathcal{G}}^{\infty}:\|x\|_{\ell_{\mathscr{g}}}<1\right\}
$$

As well we consider the uniform algebra of all continuous complex functions ψ iII $\mathrm{K}_{\mathcal{G}}^{\infty}$,

$$
C\left(\mathrm{~K}_{g}^{\infty}\right) \quad \text { with the norm } \quad\|\psi\|_{C\left(\mathrm{~K}_{g}^{\infty}\right)}=\sup _{x \in \mathrm{~K}_{g}^{\infty}}|\psi(x)|
$$

Clearly $C\left(\mathrm{~K}_{\mathcal{G}}^{\infty}\right)$ contains the unity function $\mathbf{1}_{\mathrm{K}_{\mathfrak{g}}^{\infty}}$.
Remark 3.1. Note that each linear functional $\mathfrak{e}_{j}^{*} \in \mathscr{E}^{*}$ can be uniquely extended (1) a weak-star continuous linear functional on $\ell_{\mathcal{G}}^{\infty}$ which we denote by the same nymbol. Up to this extension we can write

$$
\mathscr{E}^{*} \subset C\left(\mathrm{~K}_{G}^{\infty}\right)
$$

Let $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\infty}\right)$ be a closure in $C\left(\mathrm{~K}_{\mathcal{G}}^{\circ \circ}\right)$ of the complex linear span of extended Hilbert-Schmidt polynomials \mathscr{E}^{*}. Clearly, $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\circ}\right)$ is a uniform subalgebra in the nigebra $C\left(\mathrm{~K}_{G}^{\infty}\right)$.

Recall that an element $x \in \mathrm{~K}_{\mathcal{G}}^{\infty}$ is a peak point if there is a function $f \in \mathcal{A}\left(\mathrm{~K}_{\mathcal{G}}^{\infty}\right)$ wuch that $f(x)=1$ and $|f(y)|<1$ for all $y \in \mathrm{~K}_{马}^{\infty}$ if $y \neq x$.

Proposition 3.2. Let \mathfrak{P} be the set of peak points and $\partial \mathcal{A}$ denotes the Choquet. boundary of $\mathcal{A}\left(\mathrm{K}_{\mathcal{C}}^{\circ \circ}\right)$. Then

$$
\mathrm{S}_{\mathcal{G}}^{\infty}=\mathfrak{P}=\partial \mathcal{A} .
$$

For the uniform algebra

$$
A\left(\mathrm{~S}_{\mathcal{G}^{\circ}}^{\circ}\right):=\left.\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\infty}\right)\right|_{\mathrm{s}_{\natural}^{\infty}} ^{\infty}
$$

endowed with the uniform norm $\sup _{x \in S_{0}^{\infty}}|f(x)|$ the isometry

$$
\begin{equation*}
\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\infty}\right)=\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right) \tag{3.1}
\end{equation*}
$$

holds.
Proof. As is well-known (see [6], [44])), the algebra $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\circ 0}\right)$, as an uniform closure of the linear span of finite type continuous polynomials, consists of complex analytic functions in the norm open unit ball $\mathrm{B}_{\mathcal{G}}^{\infty}$ having the form

$$
\mathrm{B}_{\mathcal{G}}^{\infty}=\underset{r \in \mathbb{N}}{X} \mathrm{~B}_{r}, \quad \mathrm{~B}_{r}:=\left\{x_{r} \in \mathbb{C}^{n_{r}}:\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}<1\right\}
$$

Hence, if $a \in \mathfrak{P}$, then $a \in \mathcal{S}_{\mathcal{G}}^{\circ \circ}$ via Maximum Principle for analytic functions. Therefore, $\mathfrak{P} \subset \mathrm{S}_{\mathcal{G}}^{\infty}$.

In the other hand, for every fixed $a_{r} \in \mathrm{~S}_{r}$ there exists an analytic in B_{r} and continuous on B_{r} function f_{r} such that

$$
f_{r}\left(a_{r}\right)=1, \quad \text { and } \quad\left|f_{r}\left(x_{r}\right)\right|<1 \quad \text { for all } \quad x_{r} \in \mathrm{~K}_{r} \backslash\left\{a_{r}\right\}
$$

(see e.g. [43]). Then for each $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$ such that the orthogonal projection of a onto the subspace $\mathrm{E}_{r} \simeq \mathbb{C}^{n_{r}}$ is equal to a fixed a_{r}, the analytic function

$$
f=f_{r} \cdot \prod_{j \in \mathbb{N} \backslash\{r\}} \mathbf{1}_{j} \in \mathcal{A}\left(\mathbf{K}_{\mathcal{G}}^{\infty}\right)
$$

satisfies the conditions

$$
f(a)=1, \quad \text { and } \quad|f(x)|<1 \quad \text { for all } \quad x \in \mathrm{~K}_{\mathcal{G}}^{\infty} \backslash\{a\}
$$

where $\mathbf{1}_{j}$ denotes the identically unit function on K_{j}, Hence, $a \in \mathfrak{P}$ and the embedding $\mathcal{S}_{\mathcal{G}}^{\infty} \subset \mathfrak{P}$ is proved. Therefore, $\mathfrak{P}=\mathrm{S}_{\mathcal{G}}^{\circ \circ}$ and so we have the isometrical isomorphism (3.1).

Finally, since $K_{\ell \mathcal{E}}$ is a compact metric separable space, the set of peak points \downarrow of $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\infty}\right)$ is a G_{δ}-subset in $\mathrm{K}_{\mathcal{G}}^{\infty}$. Hence the equality

$$
\partial \mathcal{A}=\mathfrak{P}
$$

is also true (for detail see [43, Section II.11.2]).
As is well-known there exists a probability Haar measure χ on the group \mathcal{G} existm a probability Haar measure χ (respectively, there exists a probability Haar measure

1. on the subgroup \mathscr{U}_{r}) for which

$$
\begin{aligned}
\chi(\phi) & :=\int_{\mathcal{G}} \phi(U) d \chi(U) \\
& =\int_{\mathcal{G}} \phi(V U) d \chi(U)=\int_{\mathcal{G}} \phi(U V) d \chi(U)
\end{aligned}
$$

will all $U, V \in \mathcal{G}$ and $\phi \in C(\mathcal{G}$ such that $\chi(\mathcal{G})=\|\chi\|$, where $C(\mathcal{G})$ stands for the imilform algebra of continuous complex functions on \mathcal{G} (similarly for the measure χ_{r} and the uniform algebra $C\left(\mathscr{U}_{r}\right)$).

The unitary group \mathcal{G} on the compact set $\mathcal{S}_{\mathcal{G}}^{\infty}$ acts continuously. This group pellerates a group of linear operators on the algebra $C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)$:

$$
C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right) \ni \varphi \mapsto \varphi \circ U
$$

Ior a fixed $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$ the mapping $\mathcal{G} \ni U \longmapsto U a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$ is contimuour und nurjuctive, Hence, the function $U \longmapsto(\varphi \circ U)(a)$ belongs to $C(\mathcal{G})$ for all $\varphi \in C\left(\mathrm{~S}_{\mathcal{U}}\right)$. Therefore,

$$
\sup _{U \in \mathcal{G}}|(\varphi \circ U)(a)|=\sup _{x \in \mathrm{~S}_{\mathscr{G}}^{\infty}}|\varphi(x)|
$$

The Riesz representation theorem implies that the Haar measure χ uniquely defines a probability \mathcal{G}-invariant measure ς on the \mathcal{G}-orbit $\mathrm{S}_{\mathcal{G}}^{\infty}=\{U a: U \in \mathcal{G}\}$ by the formula

$$
\begin{equation*}
\varsigma(\varphi):=\int_{\mathcal{S}_{\mathcal{G}}^{\infty}} \varphi d \varsigma=\int_{\mathcal{G}} \varphi(U a) d \chi(U), \quad \varphi \in C\left(S_{\mathcal{G}}^{\infty}\right) \tag{3.2}
\end{equation*}
$$

where ς does not depend on a via transitivity of \mathcal{G} on the \mathcal{G}-orbit. Recall that a probability measure ς on $\mathbf{S}_{\mathcal{G}}^{\infty}$ is \mathfrak{G}-invariant, if ς satisfies the relation $\varsigma=\varsigma \circ U$ for ull $U \in \mathcal{G}$.

For a given E_{r} let

$$
\mathrm{E}_{r}^{\perp}:=\left\{x=\left(x_{m}\right) \in \ell_{\mathcal{G}}^{\infty}: x_{r}=0\right\}
$$

Then $\ell_{\mathcal{G}}^{\infty}=\mathrm{E}_{r}^{\perp} \oplus \mathrm{E}_{r}$ and for every $a \in \ell_{\mathcal{G}}^{\infty}$ we have

$$
a=a_{r}^{\perp}+a_{r} \in \ell_{\mathcal{G}}^{\infty}
$$

where $a_{r}^{\perp} \in \mathrm{E}_{r}^{\perp}, a_{r} \in \mathrm{E}_{r}$ and $a \longmapsto a_{r}$ is a projection.
For a given n_{r}-dimensional subgroup \mathscr{U}_{r} the mappings

$$
a \longmapsto U_{r}\left(a_{r}\right)+a_{r}^{\perp} \quad \text { with } \quad U_{r} \in \mathscr{U}_{r}
$$

generate the linear operators

$$
T_{r} \varphi(a):=\varphi\left(U_{r}\left(a_{r}\right)+a_{r}^{\perp}\right), \quad \varphi \in C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)
$$

ncting in the algebra $C\left(\mathbf{S}_{G}^{\infty}\right)$. We will use the following useful formulas.
Proposition 3.3. For any $r_{1}, \ldots, r_{m} \in N$ the equality

$$
\begin{equation*}
\int_{S_{\mathcal{Q}}^{\infty}} \varphi d \varsigma=\int_{S_{\mathcal{G}}^{\infty}} d \zeta(a) \prod_{i=1}^{m} \int_{\mathscr{U}_{r_{i}}} T_{r_{i}} \varphi(a) d \chi_{r_{i}}\left(U_{r_{i}}\right), \quad \varphi \in C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right) \tag{3.3}
\end{equation*}
$$

holds. Thereto, for any compact subgroup $\mathcal{G}_{0} \subset \mathcal{G}$ with the probability Haar measure ${ }^{51}$ the equality

$$
\begin{equation*}
\int_{\mathcal{S}_{\circ}^{\infty}} \varphi d \varsigma=\int_{S_{\mathcal{G}}^{\infty}} d \varsigma(a) \int_{\mathcal{G}_{0}} \varphi(U a) d \varsigma_{0}(U), \quad \varphi \in C\left(\mathrm{~S}_{\mathcal{G}}^{a \circ}\right) \tag{3.4}
\end{equation*}
$$

holds.
Proof. For each $\varphi \in C\left(\mathrm{~S}_{\mathcal{G}}^{\circ}\right)$ the function

$$
\left(a, U_{r_{1}}, \ldots, U_{r_{m}}\right) \longmapsto T_{r_{1}} \cdot \ldots \cdot T_{r_{m}} \varphi(a)
$$

is continuous on the Cartesian product

$$
\mathbf{S}_{\mathcal{G}}^{\infty} \times \mathscr{U}_{r_{1}} \times \ldots \times \mathscr{U}_{r_{m}}
$$

By the Fubini theorem, we have

$$
\int_{S_{\S}^{\infty}} d \varsigma(a) \prod_{i=1}^{m} \int_{\mathscr{U}_{r_{i}}} T_{r_{i}} \varphi(a) d \chi_{r_{i}}=\prod_{i=1}^{m} \int_{\mathscr{U}_{r_{i}}} d \chi_{r_{i}} \int_{S_{S_{\dot{G}}^{\infty}}} T_{r_{i}} \varphi(a) d \varsigma(a) .
$$

However, the internal integrals on the right side does not depend of $T_{r_{1}}, \ldots, T_{T_{m}}$. Therefore, taking into account that $\int_{U_{r_{i}}} d \chi_{r_{i}}=1$, we obtain (3.3). The formula (3.4) can be proved similarly.

Proposition 3.4. The \mathcal{G}-invariant measure ς represents the character $\delta_{0}(f)=$ $f(0)$ of the algebra $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\circ \circ}\right)$ i.e. it satisfies the following relation

$$
\begin{equation*}
\delta_{0}(f)=\int_{\delta_{\mathcal{G}}^{\infty}} f d \varsigma, \quad f \in_{\mathcal{A}}\left(\mathbb{K}_{\mathcal{G}}^{\infty}\right) \tag{3.5}
\end{equation*}
$$

Proof. By the formula (3.4) for any $\mathfrak{e}_{\{j\}}^{*(k)} \in \mathscr{E}_{n}^{*}$ we obtain

$$
\begin{aligned}
\int_{S_{G}^{\infty}} \mathfrak{e}_{\{j\}}^{*(k)} d \varsigma & =\frac{1}{2 \pi} \int_{S_{\varsigma}^{\infty}} d \varsigma(a) \int_{0}^{2 \pi} \mathfrak{e}_{\{j\}}^{*(k)}(\exp (\mathbf{i} \vartheta) a) d \vartheta \\
& =\frac{1}{2 \pi} \int_{S_{G}^{\infty}} \mathfrak{e}_{\{j\}}^{*(k)}(a) d \varsigma(a) \int_{0}^{2 \pi} \exp (\mathrm{i} n \vartheta) a d \vartheta \\
& =\left\{\begin{array}{lll}
0 & : & n \neq 0 \\
1 & : & n=0 .
\end{array}\right.
\end{aligned}
$$

Uniformly approaching any function $f \in \mathcal{A}\left(\mathrm{~K}_{\mathcal{G}}^{\infty}\right)$ by polynomials \mathscr{E}^{*}.* and using the linearity and continuity on $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\circ \circ}\right)$ of the integral with the measure ς, we come to the formula (3.5).
3.1.3. Hardy spaces on orbits of compact groups. Let the probability \mathcal{G} invarinnt measure ς, defined by the formula (3.2), be given. Then the functional

$$
\|f\|_{L_{\mathrm{G}}^{2}}=\left(\int_{S_{G}^{\infty}}|f|^{2} d \varsigma\right)^{1 / 2}, \quad f \in C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)
$$

In in Hilbertian norm on the space $C\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)$. Indeed, let f be a nonzero function in C $\left(5_{0}^{\infty}\right)$ and

$$
\varphi:=|f|^{2} .
$$

If we suppose that $\varsigma(\varphi)=0$ then (3.2) implies that for a fixed $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$,

$$
(\varphi \circ U)(a) \stackrel{\text { a.e. }}{=} 0, \quad U \in \mathcal{G}
$$

wilh respect to the Haar measure χ defined on \mathcal{G}. The function

$$
U \longmapsto(\varphi \circ U)(a)
$$

loulongs to $C(\mathcal{G})$, hence $(\varphi \circ U)(a) \equiv 0$ as a function of $U \in \mathcal{G}$. Since the mapping

$$
\mathcal{G} \ni U \longmapsto U(a) \in \mathrm{S}_{\mathcal{G}}^{\infty}
$$

In murjective, we obtain $\varphi \equiv 0$ on $\mathbf{S}_{\mathcal{G}}^{\infty}$. Consequently $f \equiv 0$ on $\mathbf{S}_{\mathcal{Q}}^{\infty}$ which contridicter Hue assumption.

Consider the Hilbert space $L_{\varsigma}^{2}=L^{2}(d \varsigma)$ of all quadratically ς-intugrable complex lunctions with the scalar product

$$
\langle f \mid g\rangle_{L_{\varsigma}^{2}}=\int_{S_{G}^{\infty}} f \bar{g} d \varsigma, \quad f, g \in L^{2}(d \varsigma)
$$

Definition 3.5. The Hardy type space $\mathcal{H}^{2}(d \varsigma)$ we define as a closure of the ulgebra $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\infty}\right)$ (or $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$, that is the same) in the space $L^{2}(d \varsigma)$ endowed with the l_{1}^{2}-norm.

Note that the embedding $\mathcal{A}\left(\mathrm{K}_{\mathcal{G}}^{\circ \circ}\right) \uparrow \mathcal{H}^{2}(d \varsigma)$ is continuous, since

$$
\begin{equation*}
\|f\|_{L_{\varsigma}^{2}} \leq\|f\|_{C\left(\mathbf{S}_{G}^{\infty}\right)}, \quad f \in \mathcal{A}\left(\mathrm{~K}_{G}^{\infty}\right) \tag{3.6}
\end{equation*}
$$

For a fixed $n \in \mathbb{Z}_{+}$let \mathcal{H}_{n}^{2} be a closure in the space $L^{2}(d \varsigma)$ of the complex linear span of homogenous Hilbert-Schmidt polynomials \mathscr{E}_{n}^{*} (extended on $\mathrm{K}_{\mathfrak{G}}^{\infty}$) and $H_{0}^{i}:=\mathbb{C}$.

Theorem 3.6. The sequence of homogeneous Hilbert-Schmidt polynomials \mathscr{E}^{*} forms an orthogonal basis in $\mathcal{H}^{2}(d \varsigma)$. In particular, the subsequence $\mathscr{E}_{\mathrm{n}}^{*}$ forms the sume basis in \mathcal{H}_{n}^{2} for any $n \in \mathbb{Z}_{+}$and

$$
\mathcal{H}_{n}^{2} \perp \mathcal{H}_{m}^{2}
$$

in $\mathcal{H}^{2}(d s)$ whenever $n \neq m$.
Proof. Every element $a=\sum_{i \in \mathbb{N}} \mathfrak{e}_{i}^{*}(a) \mathfrak{e}_{i} \in \ell_{\mathcal{G}}^{\infty}$ can be written as

$$
a=a_{s}^{\perp}+\mathfrak{e}_{s}^{*}(a) \mathfrak{e}_{s}
$$

where a_{s}^{\perp} denotes a projection of a onto the complementing subspace

$$
\mathfrak{e}_{s}^{\perp}:=\left\{a \in \ell_{\mathcal{G}}^{\infty}: \mathfrak{e}_{s}^{*}(a)=0\right\}, \quad s \in \mathbb{N}
$$

Consider the 1 -dimensional subgroups in \mathcal{G} of linear transformations

$$
\begin{aligned}
& U_{s}(\vartheta) a:=\exp (\mathrm{i} \vartheta) \mathfrak{e}_{s}^{*}(a) \mathfrak{e}_{s}+a_{s}^{\perp} \\
& U_{0}(\vartheta) a:=\exp (\mathrm{i} \vartheta) a
\end{aligned}
$$

with $u \in \mathrm{~S}_{8}^{\infty}$ and $\vartheta \in(-\pi, \pi]$. We assign to these transformations the 1 -parameter groups of linear operators on the algebra $C\left(S_{G}^{\infty}\right)$

$$
\begin{aligned}
& \vartheta \longmapsto T_{s}(\vartheta) f:=f\left(U_{s}(\vartheta) a\right), \\
& \vartheta \longmapsto T_{0}(\vartheta) f:=f\left(U_{0}(\vartheta) a\right)
\end{aligned}
$$

with $f \in C\left(\mathrm{~S}_{0^{\infty}}^{\infty}\right)$ and $a \in \mathrm{~S}_{⿷}^{\infty}$. The formulas (3.3) and (3.4) imply that

$$
\begin{equation*}
\int_{\mathrm{S}_{\emptyset} \mathrm{O}} f d \varsigma=\frac{1}{2 \pi} \int_{\mathrm{s}_{\mathrm{s}} \mathrm{~g}} d \varsigma(a) \int_{-\pi}^{\pi} T(\vartheta) f(a) d \vartheta \tag{3.7}
\end{equation*}
$$

for any $T \in\left\{T_{0}, T_{s}: s \in \mathbb{N}\right\}$. If $|(k)| \neq|(l)|$ then from (3.7) it follows that

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{S_{\Phi}^{\infty}} \dot{e}_{\{j\}}^{\stackrel{e}{f}^{(k)}} \cdot \vec{e}_{\{i\}}^{(l)} d \varsigma \int_{-\pi}^{\pi} \exp (\mathrm{i}(|(k)|-|(l)|) \vartheta) d \vartheta=0 .
\end{aligned}
$$

So, $\mathbf{c}_{\{j\}}^{*(k)} \perp \mathbf{c}_{(i)}^{*(l)}$ in $L^{2}(d \varsigma)$ if $|(k)| \neq|(l)|$ for all $\{j\},\{i\} \in \mathbb{N}^{n}$.
If $|(k)|=|(l)|$ and the corresponding elements $\boldsymbol{\varepsilon}_{(j\}}^{*(k)}$ with $\{j\}=\left(j_{1}, \ldots, j_{n}\right)$ and ${\underset{e}{f}\{i\}}_{*(l)}^{(l)}$ with $\{i\}=\left(i_{1}, \ldots, i_{m}\right)$ are different, then there exists an index $j_{s} \in\left\{j_{1}, \ldots, j_{n}\right\}$ such that $j_{s} \notin\left\{i_{1}, \ldots, i_{m}\right\}$. Now (3.7) implies that
hence, $\mathfrak{e}_{i i\}}^{*(l)} \perp \mathfrak{e}_{\{j\}}^{*(k)}$ in $L^{2}(d \varsigma)$ as well.
Further in this section we use the following notations.
Let $\{j\}_{r}:=\left(j_{r(1)}, \ldots, j_{r\left(n_{r}\right)}\right) \in \mathbb{N}^{n_{r}}$ denote a sub-index of the multi-index $\{j\}=$ $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ such that $j_{r(1)}<\ldots<j_{r\left(n_{r}\right)}$.

Let $(k)_{r}:=\left(k_{r(1)}, \ldots, k_{r\left(n_{r}\right)}\right) \in \mathbb{Z}_{+}^{n_{r}}$ stand for a sub-index of the index $(k)=$ $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ with $n_{r} \leq n$.

As is usual, $\left|(k)_{r}\right|:=k_{\tau(1)}+\cdots+k_{r\left(n_{r}\right)}$ and $(k)_{r}!:=k_{r(1)}!\cdots k_{r\left(n_{r}\right)}!$.
Theorem 3.7. If a Hilbert-Schmidt polynomial
is of the form

$$
\dot{c}_{\{j\}}^{*(k)}=\mathbf{e}_{\{j\}_{r(1)}^{*}}^{*(k)_{r(1)}} \cdots \mathbf{e}_{\{j\}_{r(t)}^{*}}^{*(k)_{r_{(t)}}}
$$

with block-indexes $\{j\}=\left(\{j\}_{r(1)}, \ldots,\{j\}_{r(t)}\right)$ and $(k)=\left((k)_{r(1)}, \ldots,(k)_{r(t)}\right)$ such that

$$
n_{r(1)}+\ldots+n_{r(t)}=n
$$

where

$$
\left\{\mathfrak{e}_{j_{r(1)}}, \ldots, \mathfrak{e}_{j_{r\left(n_{r}\right)}}\right\}=\left\{\mathfrak{e}_{j_{1}}, \ldots, \mathfrak{e}_{j_{n}}\right\} \bigcap \mathrm{E}_{r}
$$

and $t \in \mathbb{N}$ stands for the number of all such sub-indexes in $\{j\}$, then

$$
\begin{equation*}
\left\|\boldsymbol{e}_{\{j\}}^{*(k)}\right\|_{L_{\mathrm{c}}^{2}}^{2}=\prod_{r \in\left\{r_{1}, \ldots, r_{t}\right\}} \frac{\left(n_{r}-1\right)!(k)_{r}!}{\left(n_{r}-1+\left|(k)_{r}\right|\right)!} \tag{1.8}
\end{equation*}
$$

Proof. Use that

$$
T_{r}\left|\mathbf{e}_{\{j\}_{r}}^{*(k)_{r}}\right|^{2}(a)=\left|\mathbf{e}_{\{j\}_{r}}^{*(k)_{r}}\right|^{2}\left(U_{r}\left(a_{r}\right)\right)
$$

lif any $a=\left(a_{r}\right) \in \mathrm{S}_{\mathcal{G}}^{\infty}$ with $a_{r} \in \mathrm{~S}_{r}$. As is well-known [88, 1.4.9],

$$
\begin{aligned}
\int_{\mathscr{U}_{r}} T_{r}\left|\mathfrak{e}_{\{j\}_{r}}^{*(k)_{r}}\right|^{2}(a) d \chi_{T} & =\int_{\mathscr{U}_{r}}\left|\mathfrak{e}_{\{j\}_{r}}^{*(k)_{r}}\right|^{2}\left(U_{r}\left(a_{r}\right)\right) d \chi_{r}\left(U_{r}\right) \\
& =\frac{\left(n_{r}-1\right)!(k)_{r}!}{\left(n_{r}-1+\left|(k)_{r}\right|\right)!}
\end{aligned}
$$

with the Haar measure χ_{r} on \mathscr{U}_{r}. Thus formula (3.3) immediately implies (3.8). \square
3.1.4. Cauchy kernels for compact group orbits. Let us define the following "nxiliary Banach space, associated with the group \mathcal{G},

$$
\ell_{n_{r}}^{1}:=\left\{x=\left(x_{r}\right) \in \underset{r \in \mathbb{N}}{X} \mathbb{C}^{n_{r}}:\|x\|_{\ell_{n_{r}}^{1}}:=\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}<\infty\right\}
$$

Note that $\mathfrak{e}_{j} \in \ell_{\mathcal{G}}^{\infty} \bigcap \ell_{n_{r}}^{1}$ for all $j \in \mathbb{N}$ and the group

$$
\mathcal{G} \ni U \longrightarrow U x=\left(U_{r} x_{r}\right)_{r \in \mathbb{N}}
$$

nets isometrically in both $\ell_{\mathcal{G}}^{\infty}$ and $\ell_{n_{r}}^{1}$. Since the embedding

$$
\ell_{n_{r}}^{1} \leftrightarrow \ell_{\mathcal{G}}^{\infty}
$$

In continuous, the set $\mathrm{B}_{\mathcal{G}}^{c \infty} \bigcap \ell_{n_{r}}^{1}$ is open and the set $\mathrm{K}_{\mathcal{G}}^{\infty} \cap \ell_{n_{r}}^{1}$ is closed in $\ell_{n_{r}}^{1}$.
Let us examine the Cauchy type kernel

$$
\begin{equation*}
\mathfrak{C}(x, a):=\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}_{r}}\right)^{n_{r}}}, \quad a \in \mathrm{~S}_{\mathcal{G}}^{\infty} \tag{3.9}
\end{equation*}
$$

which is a priori Gâteaux analytic mapping of x running over the finitely open ball

$$
\bigcup_{r \in \mathbb{N}} \mathrm{~B}_{1} \times \ldots \times \mathrm{B}_{r}
$$

with values in the uniform algebra $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$.
Proposition 3.8. The Cauchy type kernel \mathfrak{C} is a well defined analytic $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\circ}\right)$ vilued mapping

$$
\mathrm{B}_{G^{\prime}}^{\infty \circ} \bigcap \ell_{n_{r}}^{1} \ni x \longmapsto \mathbb{C}(x, a), \quad a \in \mathrm{~S}_{\mathcal{G}}^{\infty}
$$

Proof. For every $\varrho \in(0,1)$ the series

$$
\ln (1-\zeta)^{-r}=-r \sum_{n \in \mathbb{N}} \frac{\zeta^{n}}{n}=-r \zeta \sum_{n \in \mathbb{N}} \frac{\zeta^{n-1}}{n}, \quad r \in \mathbb{N}
$$

is convergent absolutely for all $|\zeta| \leq \varrho$. Therefore the estimation

$$
\begin{equation*}
\left|\ln (1-\zeta)^{-r}\right| \leq c_{\varrho} r|\zeta| \quad \text { for all } \quad|\zeta| \leq \varrho \tag{3.10}
\end{equation*}
$$

with

$$
c_{\varrho}:=\sum_{n \in \mathbb{N}} \frac{\varrho^{n-1}}{n}<\infty
$$

holds. Denote by $\mathrm{B}_{n_{r}}^{1}$ and $\mathrm{K}_{n_{r}}^{1}$ the open and the closed unit balls in the space $\ell_{n_{r} \text { t }}^{1}$ respectively. Consider the 1-parametr families of balls

$$
\begin{aligned}
\mathrm{K}_{\varepsilon} & :=\varepsilon \mathrm{K}_{\mathcal{G}}^{\infty} \bigcap \frac{1}{1-\varepsilon} \mathrm{K}_{n_{r}}^{1}, \\
\mathrm{~B}_{\varepsilon} & :=\varepsilon \mathrm{B}_{\mathfrak{G}}^{\infty} \bigcap \frac{1}{1-\varepsilon} \mathrm{B}_{n_{r}}^{1}
\end{aligned}
$$

with $\varepsilon \in(0,1)$. Clearly, K_{ε} and B_{ε} are closed and open sets in the space $\ell_{n_{r}}^{1}$ respectively, because the embedding

$$
\ell_{n_{r}}^{1} \leftrightarrow \ell_{\mathcal{G}}^{\infty}
$$

is continuous.
Let $x=\left(x_{r}\right) \in \mathrm{K}_{\varepsilon}$ and $a=\left(a_{r}\right) \in \mathrm{S}_{\mathcal{G}}^{\infty}$. Then we obtain for instance

$$
\sup _{\left\|a_{r}\right\|=1}\left|\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right| \leq \frac{\varepsilon}{n_{r}}<1
$$

Hence, the inequality (3.10) implies

$$
\sum_{r \in \mathbb{N}}\left|\ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}\right| \leq \sum_{r \in \mathbb{N}} c_{\varrho(r)} n_{r}\left|\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right|
$$

with $\varrho(r):=\frac{\varepsilon}{n_{r}}$. Since $c_{\varrho(r)} \leq c_{\varepsilon}$ for any $r \in \mathbb{N}$, it follows that

$$
\begin{aligned}
\sup _{\|a\|_{\ell_{\mathcal{G}}}=1} \sum_{r \in \mathbb{N}}\left|\ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}\right| & \leq c_{\varepsilon} \sup _{\|a\|_{\ell_{\mathcal{C}}}=1} \sum_{r \in \mathbb{N}} n_{r}\left|\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right| \\
& \leq c_{\varepsilon} \sum_{r \in \mathbb{N}} n_{r} \sup _{\left\|a_{r}\right\| \mathbb{C}^{n_{r}}=1}\left|\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right| \\
& =c_{\varepsilon} \sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}=c_{\varepsilon}\|x\|_{\ell_{n_{r}}^{1}}
\end{aligned}
$$

Consequently, the series of $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$-valued functions

$$
\begin{equation*}
\mathrm{K}_{\varepsilon} \ni x \longmapsto \sum_{r \in \mathbb{N}} \ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}} \in \mathcal{A}\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right), \quad a \in \mathrm{~S}_{\mathcal{G}}^{\infty} \tag{3.11}
\end{equation*}
$$

minverges absolutely and uniformly on K_{ε}. Hence, its sum represents a bounded conIlıuous $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$-valued function on K_{ε} for any $\varepsilon \in(0,1)$. Moreover, one is Gâteauxmimlytic on the open domain B_{ε}, since its restriction to any 1-dimensional affine mimet is obviously analytic. Thus, the function (3.11) is analytic on B_{ε}. By the nminticity of the exponential function, the following map

$$
\begin{equation*}
\mathrm{K}_{\varepsilon} \ni x \longmapsto \mathfrak{C}_{\varepsilon}(x, a):=\exp \sum_{r \in \mathbb{N}} \ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}} \in \mathcal{A}\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right) \tag{3.12}
\end{equation*}
$$

if in bounded continuous function, which is analytic on B_{ε}. As is easy to see, for any $\| \in S_{\mathcal{G}}^{\infty}$ and $x \in B_{\varepsilon}$ we have

$$
\mathfrak{C}_{\varepsilon}(x, a)=\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbf{C}^{n_{r}}}\right)^{n_{r}}}
$$

If $\varepsilon_{1}<\varepsilon_{2}$ then $\mathrm{B}_{\varepsilon_{1}} \subset \mathrm{~B}_{\varepsilon_{2}}$ and the function $\mathfrak{C}_{\varepsilon_{1}}$ defined on $\mathrm{B}_{\varepsilon_{1}}$ has a nuique unalyile: mxtension $\mathfrak{C}_{\varepsilon_{2}}$ on $\mathrm{B}_{\varepsilon_{2}}$ such that

$$
\left.\mathfrak{C}_{\varepsilon_{2}}\right|_{\mathbb{E}_{\varepsilon_{1}}}=\mathfrak{C}_{\varepsilon_{1}},
$$

liy virtue of Uniqueness Principle for analytic functions. Therefore, the Cauchy kernel
 ilomain

$$
\mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{n_{r}}^{1}=\bigcup_{\varepsilon \in(0,1)} \mathrm{B}_{\varepsilon}
$$

which we also denote by \mathfrak{C}.
3.1.5. Hilbertian extensions of Cauchy kernels. Now we define a Hilbert ijpace, associated with \mathcal{G},

$$
\ell_{\sqrt{n_{r}}}^{2}:=\left\{x=\left(x_{r}\right) \in \underset{r \in \mathbb{N}}{X} \mathbb{C}^{n_{r}}:\|x\|_{\ell_{\bar{n}_{r}}^{2}}:=\left(\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2}\right)^{1 / 2}<\infty\right\}
$$

where the group \mathcal{G} acts isometrically. The inequality

$$
\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2} \leq\left(\sum_{r \in \mathbb{N}} \sqrt{n_{r}}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}\right)^{2} \leq\left(\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\| \mathbb{C}^{n_{r}}\right)^{2}
$$

liuplies that the following continuous embedding is true

$$
\ell_{n_{r}}^{1} \leftrightarrow \ell_{\sqrt{n_{r}}}^{2}
$$

Consider the Banach space

$$
\ell_{\sqrt{n_{r}}}^{2, \infty}:=\ell_{G}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}
$$

with the norm

$$
\|x\|_{\ell_{\sqrt{2^{2}, \infty}}}=\max \left\{\|x\|_{e_{g}^{\infty}},\|x\|_{\ell_{\sqrt{n r}}^{2}}\right\} .
$$

III each of the above spaces \mathcal{G} acts isometrically. Since, the embedding

$$
\ell_{\sqrt{n_{r}}}^{2, \infty} \rightarrow \ell_{\mathcal{G}}^{\infty}
$$

In continuous, the set $B_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}$ is open and the set $K_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$ is closed in $\ell_{\sqrt{n_{r}}}^{2, \infty}$.

Phobosition 3.9. The Cauchy kernel \mathfrak{C} possesses a unique analytic $\mathcal{A}\left(\mathrm{S}_{\mathrm{eg}}\right)$. vilued extension

$$
\mathrm{B}_{\mathfrak{G}}^{\infty} \bigcap \mathbb{R}_{n_{r}}^{2} \ni x \longmapsto \mathbb{C}(x, a), \quad a \in \mathrm{~S}_{\mathcal{G}}^{\infty} .
$$

Proof. Lett $x=\left(x_{r}\right) \in \ell_{\mathcal{G}}^{\infty}$ with $x_{r} \in \mathrm{E}_{r}$ and we denote

$$
\hat{x}:=\left(\hat{x}_{r}\right) \quad \text { with } \quad \hat{x}_{r}:=v_{r} x_{r}, \quad v_{r}=\frac{1}{\sqrt{n_{r} 2^{r}}} .
$$

Note that if $x=\left(x_{r}\right) \in \mathrm{S}_{G}^{\infty}$ with $x_{r} \in \mathrm{~S}_{r}$ then $\hat{x} \in \ell_{\sqrt{n_{r}}}^{2}$ and

$$
\|\hat{x}\|_{e_{\tilde{m}_{r}}^{2}}^{2}=\sum_{r \in \mathbb{N}} \frac{1}{2^{r}}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2}=1 .
$$

Consider the linear mapping

$$
\hat{v}: \ell_{g}^{\infty} \ni x \longmapsto \hat{x} \in \ell_{\bar{n}_{\bar{r}}}^{2} .
$$

The mapping \hat{v} is continuous, since

$$
\|\hat{x}\|_{\hat{e}_{n_{r}}^{2}}^{2}=\sum_{r \in \mathbb{N}} \frac{1}{2^{r}}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2} \leq\|x\|_{e_{o}^{2}}^{2} .
$$

Moreover, from

$$
\|x\|_{\ell_{g}^{\circ}}^{2}=\sup _{r \in \mathbb{N}}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2} \leq \sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2}=\|x\|_{\mathbb{Q}_{\varepsilon_{r r}}^{2}}^{2}
$$

we come to the continuous embedding

$$
\ell_{n_{n_{r}}}^{2}+\ell_{\mathcal{G}}^{\infty} .
$$

Note that the restriction $\left.\hat{v}\right|_{\ell_{n_{n} r}^{2}}$ maps continuously from $\ell_{\sqrt{n_{r}}}^{2}$ into $\ell_{n_{r}}^{1}$. In fact, from the Cauchy-Schwartz Inequality it follows that

$$
\|\hat{x}\|_{\ell_{n_{r}}}=\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}} v_{r} \leq\|x\|_{\ell_{m_{r}}^{2}},
$$

since $\sum_{r \in \mathbb{N}} n_{r} v_{\tau}^{2}=1$ and $\|\hat{x}\|_{e_{\infty}^{\infty}} \leq\|x\|_{\ell \infty}$. Hence, the mapping

$$
\hat{v}: \ell_{\mathcal{G}}^{\infty} \bigcap \ell_{n_{n_{r}}^{2}}^{2} \ni x \mapsto \hat{x} \in \ell_{\mathcal{G}}^{\infty} \bigcap \ell_{n_{r}}^{1},
$$

is continuous as well. By Proposition 3.8 the mapping

$$
\mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{n_{r}}^{1} \ni z \longmapsto \mathbb{C}(z, a) \quad \text { with } \quad a \in \mathbf{S}_{\mathcal{G}}^{\infty}
$$

is an analytic $\mathcal{H}^{2}(d \varsigma)$-valued function. Hence, putting $z=\hat{x}$ with an element $x \in$ $\mathrm{B}_{g}^{\mathrm{zo}} \cap \hat{\sqrt{n}}_{2}^{2}$, we obtain that the mapping

$$
\mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2} \ni x \longmapsto \mathbb{C}(\hat{x}, a)
$$

is also analytic. Note that

$$
\frac{1}{\left(1-\left\langle\hat{x}_{r} \mid a_{r}\right\rangle_{\mathrm{C}^{n_{r}}}\right)^{n_{r}}}=\frac{1}{\left(1-\left\langle x_{r} \mid \hat{a}_{r}\right\rangle_{\mathrm{C}^{n_{r}}}\right)^{n_{r}}} .
$$

Hlum we have the following equalities
(i.1:3)

$$
\begin{aligned}
\mathfrak{C}(\hat{x}, a) & =\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\left\langle\hat{x}_{r} \mid a_{r}\right\rangle_{\mathbb{C}_{r}}\right)^{n_{r}}} \\
& =\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\left\langle x_{r} \mid \hat{a}_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}=\mathfrak{C}(x, \hat{a}),
\end{aligned}
$$

which is true for all $x \in \mathrm{~B}_{\mathcal{G}}^{c \circ} \bigcap \ell_{\sqrt{n_{r}}}^{2}$ and for a suitable vector such that the right side product in (3.13) converges. Let us check that it converges for every $a \in S_{\mathcal{C}}^{\infty}$. Using intutions from the proof of Proposition 3.8 and the Cauchy-Schwartz Inequality wo whonin

$$
\begin{aligned}
\sup _{\|a\|_{\ell_{G}^{\infty}}^{\infty}=1} \sum_{r \in \mathbb{N}}\left|\ln \frac{1}{\left(1-\left\langle x_{r} \mid \hat{a}_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}\right| & \leq c_{\varepsilon} \sup _{\|a\|_{e_{\varnothing}^{\infty}}=1} \sum_{r \in \mathbb{N}} n_{r}\left|\left\langle x_{r} \mid \hat{a}_{r}\right\rangle_{C^{n r}}\right| \\
& \leq c_{\varepsilon}\left(\sum_{r \in \mathbb{N}} n_{r}\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}^{2}\right)^{1 / 2} \\
& =c_{\varepsilon}\|x\|_{e_{n_{r}}^{2}}
\end{aligned}
$$

for all $a=\left(a_{r}\right) \in \mathrm{S}_{\mathcal{G}}^{\infty}$ and $x=\left(x_{r}\right) \in \ell_{\sqrt{n_{r}}}^{2} \bigcap \varepsilon K_{\mathcal{G}}^{\infty}$ with $\varepsilon \in(0,1)$.
From the density of $\hat{v}\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)$ in $\mathbf{S}_{\mathcal{G}}^{\infty}$ it follows that the previous inequality has a unique continuous extension to $\mathbb{S}_{\mathcal{G}}^{\circ \circ}$ i.e.,

$$
\sup _{\|a\|_{\ell \infty}=1} \sum_{r \in \mathbb{N}}\left|\ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbf{C}^{n_{r}}}\right)^{n_{r}}}\right| \leq c_{\varepsilon}\|x\|_{\ell_{n_{n_{r}}^{2}}^{2}}
$$

lor all $a=\left(a_{r}\right) \in \mathrm{S}_{\mathcal{G}}^{\infty}$ and $x=\left(x_{r}\right) \in \ell_{\sqrt{n_{r}}}^{2} \bigcap \varepsilon \mathrm{~K}_{\mathcal{G}}^{\infty}$ with $\varepsilon \in(0,1)$. Consequently, the lollowing product of $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty \circ}\right)$-valued functions

$$
\begin{aligned}
\ell_{\sqrt{n_{r}}}^{2} \bigcap \varepsilon \mathrm{~K}_{\mathcal{G}}^{\infty} \ni x \longmapsto & \exp \sum_{r \in \mathbb{N}} \ln \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}= \\
& =\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}} \in \mathcal{A}\left(\mathrm{~S}_{\mathcal{G}}^{\infty}\right)
\end{aligned}
$$

with $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$ converges absolutely and uniformly. Finally, this product represents ubounded continuous $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$-valued function on $\ell_{\sqrt{n_{r}}}^{2} \bigcap \varepsilon \mathrm{~K}_{\mathcal{G}}^{\infty}$ for all $\varepsilon \in(0,1)$ and therefore it has a unique analytic $\mathcal{A}\left(\mathrm{S}_{\mathcal{G}}^{\infty}\right)$-valued extension on the open domain

$$
\mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}=\bigcup_{\varepsilon \in(0,1)} \ell_{\sqrt{n_{r}}}^{2} \bigcap \varepsilon \mathrm{~K}_{\mathcal{G}}^{\infty}
$$

which we also denote by \mathfrak{C}. The proposition is proved.
3.1.6. The Cauchy integral formula on compact group orbits. Now we can already formulate and prove a first main result of this section.

T'heorem 3.10. Every function

$$
f=\sum_{n \in \mathbb{Z}_{+}} f_{n} \in \mathcal{H}^{2}(d \varsigma) \quad \text { with } \quad f_{n} \in \mathcal{H}_{n}^{2}
$$

has ant analytic extension onto the open domain $\mathrm{B}_{\mathcal{G}}^{\infty 0} \cap \ell_{\sqrt{n_{r}}}^{2}$, which can be representel by the Cauchy type integral formula

$$
\begin{equation*}
\mathfrak{C}[f](x):=\int_{S_{\mathcal{G}}^{\infty}} f(a) \mathfrak{C}(x, a) d \varsigma(a), \quad x \in \mathrm{~B}_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2} \tag{3.14}
\end{equation*}
$$

The corresponding Cauchy type kernel \mathfrak{C} can be represented, in turn, by the series

$$
\begin{equation*}
\mathfrak{C}(x, a)=\sum_{n \in \mathbb{Z}_{+}} \mathfrak{C}_{n}(x, a), \quad \mathfrak{C}_{n}(x, a):=\sum_{\substack{(k) \in \mathbb{Z}_{n}^{n} \\|(k)|=n}} \sum_{\substack{ \\\mid j \in \mathbb{N}^{n}}} \frac{\mathfrak{e}_{\{j\}}^{*(k)}(x) \bar{e}_{j j\}}^{*(k)}(a)}{\left\|\mathfrak{e}_{\{j\}}^{*(k) \|^{2}}\right\|_{L_{\leftarrow}^{2}}} \tag{3.15}
\end{equation*}
$$

with $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$, weakly convergent in $\mathcal{H}^{2}(d \varsigma)$ for all $x \in \mathrm{~B}_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$. The Taylor coefficients at origin are uniquely defined by the formula

$$
\begin{equation*}
\frac{d_{0}^{n} \mathfrak{C}[f](x)}{n!}=\int_{S_{\mathcal{G}}^{\infty}} f_{n}(a) \mathfrak{C}_{n}(x, a) d \varsigma(a), \quad x \in \ell_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2} \tag{3.16}
\end{equation*}
$$

Proof. For any $f \in \mathcal{H}^{2}(d \varsigma)$ the linear functional

$$
\varsigma_{f}: \mathcal{H}^{2}(d \varsigma) \ni g \longmapsto \int f g d \varsigma
$$

is continuous. Since $\mathfrak{C}[f](x)=\varsigma_{f} \circ \mathfrak{C}(x, \cdot)$, the function $\mathfrak{C}[f]$ defined by the formuln (3.14) is analytic on $\mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}$ via Proposition 3.9.

Let $a=\left(a_{r}\right) \in \mathcal{S}_{\mathcal{G}}^{\infty}$ with $a_{r} \in \mathrm{~S}_{r}$ and $x=\left(x_{r}\right) \in \mathrm{B}_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}$ with $x_{r} \in \mathbb{C}^{n_{r}}$, Consider the polynomial $\mathfrak{e}_{\{j\}}^{*(k)} \in \mathscr{E}_{n}^{*}$ of the form

$$
\mathfrak{e}_{\{j\}}^{*(k)}=\mathfrak{e}_{\{j\}_{r_{1}}}^{*(k)_{r_{1}}} \cdots \mathfrak{e}_{\{j\}_{r_{t}}}^{*(k)_{r_{t}}},
$$

cited in Theorem 3.7. Since

$$
x_{r}=\mathfrak{e}_{j_{r(1)}}^{*}\left(x_{r}\right) \mathfrak{e}_{j_{r(1)}}+\ldots+\mathfrak{e}_{j_{r\left(n_{r}\right)}}^{*}\left(x_{r}\right) \mathfrak{e}_{j_{r\left(n_{r}\right)}},
$$

and $\left\|x_{r}\right\|_{\mathbb{C}^{n_{r}}}<1,\left\|a_{r}\right\|_{\mathbb{C}^{n_{r}}}=1$, we obtain

$$
\begin{aligned}
\frac{1}{\left(1-\left\langle x_{r} \mid a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}} & =\sum_{n \in \mathbb{Z}_{+}} \frac{\left(n_{r}-1+n\right)!}{\left(n_{r}-1\right)!n!}\left\langle x_{r}\right| a_{r / \mathbb{C}^{n_{r}}}^{n} \\
& =\sum_{n \in \mathbb{Z}_{+}} \frac{\left(n_{r}-1+n\right)!}{\left(n_{r}-1\right)!n!}\left(\sum_{i=1}^{n_{r}} \mathfrak{e}_{j_{r(i)}}^{*}\left(x_{r}\right) \overline{\mathfrak{e}}_{j_{r(i)}^{*}}^{*}\left(a_{r}\right)\right)^{n} \\
& =\sum_{n \in \mathbb{Z}_{+}\left|(k)_{r}\right|=n} \sum_{\left(n_{r}-1+n\right)!} \frac{\left(n_{r}-1\right)!(k)_{r}!}{} \mathfrak{e}_{\{j\}_{r}}^{*(k)_{r}}\left(x_{r}\right)_{\{j\}_{r}}^{*(k)_{r}}\left(\hat{a}_{r}\right)
\end{aligned}
$$

Thking into account Theorem 3.7, it follows that

$$
\mathfrak{C}(x, a)=\prod_{r \in \mathbb{N}} \frac{1}{\left(1-\dot{\{ } x_{r}\left|a_{r}\right\rangle_{\mathbb{C}^{n_{r}}}\right)^{n_{r}}}=\sum_{n \in \mathbf{Z}_{+}} \mathfrak{C}_{n}(x, a)
$$

wilh
(is.17)

$$
\begin{aligned}
& \mathfrak{C}_{n}(x, a)=\sum_{\{j\} \in \mathbb{N}^{n}} \sum_{\substack{(k) \in \mathbb{Z}^{n} \\
|(k)|=n}} \frac{\left.\mathfrak{e}_{\{j\}}^{*(k)}(x)\right)_{\{j}^{*}(k)(a)}{\left\|\mathfrak{e}_{\{j\}}^{*(k)}\right\|_{L_{\leftarrow}^{2}}^{2}} \\
& =\sum_{\substack{\left(\{j\}_{r_{1}}, \ldots,\{j\}_{r_{2}}\right) \in \mathbb{N}^{n} \\
\left|(k)_{r_{1}}\right|+\ldots+(k) \\
r_{r_{t}} \mid=n}} \prod_{\substack{t}}^{t} \frac{\left(n_{r_{i}}-1+n\right)!}{\left(n_{r_{i}}-1\right)!(k)_{r_{i}}!} \varepsilon_{\{j\}_{r_{i}}}^{*(k)_{r_{i}}}\left(x_{r_{i}}\right) \bar{e}_{\{j\}_{r_{i}}}^{*(k)_{r_{i}}}\left(a_{r_{i}}\right) .
\end{aligned}
$$

On the other hand, the equality (3.17) implies that for any $x \in \ell_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$

$$
\int_{S_{j}^{\circ}} \mathfrak{e}_{\{j\}}^{*(k)}(a) \mathfrak{C}_{n}(x, a) d \varsigma(a)=\mathfrak{e}_{\{j\}}^{*(k)}(x), \quad \mathfrak{e}_{\{j\}}^{*(k)} \in \mathscr{S}_{n}^{*}
$$

Yince \mathscr{E}_{n}^{*} forms an orthogonal basis in \mathcal{H}_{n}^{2}, the kernel \mathfrak{C}_{n} producew the itcontity mupping in \mathcal{H}_{n}^{2}. It follows that for any $f_{n} \in \mathcal{H}_{n}^{2}$

$$
f_{n}(x)=\int_{\mathrm{S}_{g}^{\infty}} f_{n}(a) \mathfrak{C}_{n}(x, a) d \varsigma(a), \quad x \in \ell_{\square}^{\infty} \bigcap e_{\sqrt{n_{r}}}^{2} .
$$

Using that $f_{n} \perp \mathfrak{C}_{l}(x, \cdot)$ at $n \neq l$, we obtain

$$
\mathfrak{C}[f](x)=\int_{S_{\emptyset}^{\infty}} f(a) \mathfrak{C}(x, a) d \varsigma(a)=\sum_{n \in \mathbb{Z}_{+}} \varrho^{n} f_{n}(y)
$$

for all $x=\varepsilon y \in \ell_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$ with $\|y\|_{\ell_{\sqrt{n_{r}}}^{2, \infty}}=1$ and $\varepsilon \in[0,1)$. Now the equality

$$
\begin{equation*}
f_{n}(y)=\left.\frac{1}{n!} \frac{d_{0}^{n} \mathfrak{C}[f](\varepsilon y)}{d \varepsilon^{n}}\right|_{\varepsilon=0} \tag{3.18}
\end{equation*}
$$

implies that f_{n} is a Taylor coefficient of $\mathfrak{C}[f]$.
Finally, the relation

$$
\mathfrak{C}[f](x)=\varsigma_{f} \circ \mathfrak{C}(x, \cdot)
$$

with $x \in \mathrm{~B}_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$ implies that for any $f \in \mathcal{H}^{2}(d \varsigma)$ the series (3.15) is pointwise by $r \in \mathrm{~B}_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$ weakly convergent in $\mathcal{H}^{2}(d \varsigma)$, as a function of the variable $a \in \mathrm{~S}_{\mathcal{G}}^{\infty}$. Clearly, $d_{0}^{n} \mathfrak{C}[f]$ in (3.18) can be extended on $\ell_{\mathcal{G}}^{\infty} \bigcap \ell_{\sqrt{n_{r}}}^{2}$, as a continuous polynomial. Thus, the formula (3.16) is true.

It remains to note that Taylor coefficients $\frac{d_{0}^{n} \mathfrak{C}[f]}{n!}=f_{n}$ uniquely define the analytic function $\mathfrak{C}[f]$ on the open domain $\mathrm{B}_{\mathcal{G}}^{\infty} \cap \sqrt[{\ell_{\sqrt{n_{r}}}^{2}}]{ }$.

Corollary 3.11. For every $x \in \mathrm{~B}_{\mathcal{G}}^{\infty} \cap \ell_{\sqrt{n_{r}}}^{2}$ the point-evaluation functional

$$
\delta_{x}(f): f \longmapsto f(x)
$$

In continuous on $\mathcal{H}^{2}(d \varsigma)$.
Proof. From Theorem 3.10 we have

$$
\delta_{x}(f)=f(x)=\langle\mathfrak{C}(x, \cdot) \mid f(\cdot)\rangle_{\mathcal{H}^{2}(d \varsigma)}
$$

nnd Proposition 3.9 implies that $\mathfrak{C}(x, \cdot) \in \mathcal{A}\left(\mathrm{S}_{\ell \ell^{\circ}}\right) \subset \mathcal{H}^{2}(d \varsigma)$.

Remakк 3.12. In the partial case if $n_{r}=1$ for all $r \in \mathbb{N}$, the ball $\mathbb{K}_{\mathcal{G}}^{\infty}$ has n polydisk form. For this case the Cauchy type formula has been established in [80].

3.2. Symmetric Fock spaces associated with matrix unitary groups

3.2.1. Unitarily-invariant integral. We consider the compact group

$$
U=U(d), \quad d \in \mathbb{N}
$$

of unitary $(d \times d)$-matrices with the unit $\mathbb{1}=\mathbb{1}_{d}$, equipped with the probability Harr measure χ. On U we define the right action

$$
u . g=w^{-1} u v, \quad u \in U, \quad g=(v, w) \in U \times U
$$

Recall some known invariant properties under the right action of integrals over unitary groups.

Let $C(U)$ denote the space of continuous functions $f: U \longrightarrow \mathbb{C}$ endowed with the uniform norm $\|f\|_{C(U)}=\sup _{u \in U}|f(u)|$. Consider in $C(U)$ the group of shifts

$$
\Theta_{g} f(u)=f(u . g)
$$

generated by the right action. The unitary invariance of χ instantly yields the equality

$$
\int_{U} f d \chi=\int_{U} \Theta_{g} f(u) d \chi(u), \quad f \in C(U)
$$

The application of Fubini's theorem for double integrals leads to the following factorization formulas under various scalar-type matrix subgroups in U. Namely, for the scalar matrix subgroup

$$
\Theta_{0}=\{g(\vartheta)=\exp (\mathfrak{i} \vartheta) \mathbb{1}: \vartheta \in(-\pi, \pi]\}
$$

we have

$$
\int_{U} f d \chi=\frac{1}{2 \pi} \int_{U} d \chi(u) \int_{-\pi}^{\pi} \Theta_{g(\vartheta)} f(u) d \vartheta
$$

Let $U_{\imath} \subset U(\imath=1, \ldots, m)$ mean the subgroup of $(\imath \times \imath)$-matrices with the unit \mathbf{I}_{1} equipped with the probability Haar measure χ_{2}. Consider the corresponding matrix subgroups

$$
\Theta_{1}=\left\{g_{2}(\vartheta)=\mathbb{1}_{\imath-1} \otimes \exp (\mathrm{i} \vartheta) \otimes \mathbb{1}_{d-2}: \vartheta \in(-\pi, \pi]\right\}
$$

for all indexes $\imath=1, \ldots, d$.
Similarly, the unitary invariance of χ_{2} yields the equalities

$$
\int_{J_{U}} f d \chi=\int_{J_{U}} d \chi(u) \int_{J_{U_{\imath} \times U_{\imath}}} \Theta_{g} f(u) d\left(\chi_{\imath} \otimes \chi_{\imath}\right)(g)
$$

for all elements $g \in U_{i} \times U_{\imath}$ and indexes $\imath=1, \ldots, d$.
Let L_{x}^{2} stand for the space of square χ-integrable complex functions f on thin compact space U with the norm $\|f\|_{L_{x}^{2}}=\left(\int_{U}|f|^{2} d \chi\right)^{1 / 2}$. Since χ is a probability mensure, the contractive embedding $C(U) \leftrightarrow L_{\chi}^{2}$ holds, i.e.,

$$
\|f\|_{L_{x}^{2}} \leq\|f\|_{C(U)}, \quad f \in C(U)
$$

3.2.2 Homogenous polynomial functions. We endow the d-dimensional immplex space

$$
\mathbb{C}^{d}=\left\{x=\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{d}\right): \mathfrak{x}_{\imath} \in \mathbb{C}, \imath=1, \ldots, d\right\}
$$

with the Euclidean norm $\|x\|_{\mathbb{C}^{d}}=\langle x \mid x\rangle_{\mathbb{C}^{d}}^{1 / 2}$ and the corresponding scalar product $(1 \cdot)_{\mathbf{C}^{d}}$. Consider in the complex space \mathbb{C}^{d} the canonical orthonormal basis

$$
\mathscr{E}\left(\mathbb{C}^{d}\right)=\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{d}\right\}, \quad \mathfrak{e}_{2}=(\overbrace{0, \ldots, 0,1}, 0, \ldots, 0) \in \mathbb{C}^{d} .
$$

The unit sphere and open ball in \mathbb{C}^{d} we denote by

$$
\mathbb{S}^{d}=\left\{x \in \mathbb{C}^{d}:\|x\|_{\mathbb{C}^{d}}=1\right\}, \quad \mathbb{B}^{d}=\left\{x \in \mathbb{C}^{d}:\|x\|_{\mathbb{C}^{d}}<1\right\}
$$

Let $\otimes_{h}^{n} \mathbb{C}^{d}$ be the nth tensor power of the complex space \mathbb{C}^{d} endowed with the morm $\left\|\psi_{n}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}}=\left\langle\psi_{n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}^{1 / 2}$ for all elements $\psi_{n}=\sum_{\imath} y_{1 \imath} \otimes \ldots \otimes y_{n \imath}$, where $y_{1} \otimes \ldots \otimes y_{n 2} \in \otimes_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ with $y_{t 2} \in \mathbb{C}^{d}$ at $t=1, \ldots, n$. Put $\otimes_{\mathfrak{h}}^{0} \mathbb{C}=1$. If $d=1$ then $)_{h}^{n} \mathbb{C}=\mathbb{C}$.

Let us define the nth symmetric tensor power $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ as the image of the mapping

$$
S_{n}: \otimes_{\mathfrak{h}}^{n} \mathbb{C}^{d} \ni x_{1} \otimes \ldots \otimes x_{n} \longmapsto x_{1} \odot \ldots \odot x_{n}
$$

linearly extended to the whole space $\otimes_{h}^{n} \mathbb{C}^{d}$ (see Proposition 1.29).
Let us use the short notations $(k)=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}_{+}^{d},|(k)|=k_{1}+\ldots+k_{m}$, $(k)!=k_{1}!\cdot \ldots \cdot k_{m}!, x^{(k)}:=\mathfrak{r}_{1}^{k_{1}} \cdot \ldots \cdot \mathfrak{r}_{d}^{k_{d}},\{d\}=\{1, \ldots, d\}$.

Proposition 1.28 implies that the system of symmetric tensor elements with a flxed n, indexed by (k),

$$
\mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}\right)=\left\{\mathfrak{e}_{\{d\}}^{\otimes(k)}:=\mathfrak{e}_{1}^{\otimes k_{1}} \odot \ldots \odot \mathfrak{e}_{d}^{\otimes k_{d}}:(k) \in \mathbb{Z}_{+}^{d} ;|(k)|=n\right\}
$$

lorms an orthogonal basis in $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ such that $\left\|\mathbb{e}_{\{d\}}^{\otimes(k)}\right\|_{\otimes_{b}^{n} \mathbb{C}^{d}}^{2}=(k)!/ n!$,
Fix an element $\mathfrak{a} \in \mathbb{S}^{d}$. Then for any element $\psi_{n}=\sum_{\imath} y_{1 \imath} \otimes \ldots \otimes y_{n ı} \in \otimes_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ we cull define the n-homogeneous Hilbert-Schmidt polynomial

$$
\psi_{n}^{*}: \mathbb{C}^{d} \ni x \longmapsto\left\langle x^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathbb{C}^{d}}=\sum_{\imath} \prod_{t=1}^{n}\left\langle x \mid y_{t \imath}\right\rangle_{\mathbb{C}^{d}}
$$

With this polynomial is uniquely associated the corresponding n-homogenous complex function

$$
\psi_{n}^{\circ}: U \ni u \longmapsto\left\langle\bar{u}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathbb{C}^{d}}=\sum_{i} \prod_{t=1}^{n}\left\langle u(\mathfrak{a}) \mid y_{t \imath}\right\rangle_{\mathbb{C}^{d}}
$$

where an arbitrary element of U-orbit of $\mathfrak{a} \in \mathbb{S}^{d}$ is denoted by

$$
\bar{u}:=u(\mathfrak{a}) \in \mathbb{S}^{d}
$$

We denote by

$$
\mathcal{P}_{x}^{n}=\left\{\psi_{n}^{\circ}: \psi_{n} \in \otimes_{h}^{n} \mathbb{C}^{d}\right\}, \quad \mathcal{P}_{x}^{0}=\{1\}
$$

Whe space of all functions ψ_{n}^{\diamond} on U with a fixed integer $n \in \mathbb{Z}_{+}$endowed with the l_{x}^{2}-norm.

The following theorem is main in this section.
Theorem 3.13. Every function $\psi_{n}^{\diamond} \in \mathcal{P}_{\chi}^{n}$ is independent of an element $\mathfrak{a} \in \mathbb{S}^{\prime \prime}$ and the one-to-one anti-linear correspondence

$$
\mathcal{P}_{\chi}^{n} \ni \psi_{n}^{\diamond} \rightleftarrows \psi_{n} \in \bigodot_{\mathfrak{h}}^{n} \mathbb{C}^{d}
$$

satisfying the equality

$$
\begin{equation*}
\binom{n+d-1}{n} \int_{U} \phi_{n}^{\diamond} \bar{\psi}_{n}^{\diamond} d \chi=\left\langle\psi_{n} \mid \phi_{n}\right\rangle_{\otimes_{\xi}^{n} \mathbb{C}^{d}}, \quad \psi_{n}, \phi_{n} \in \odot_{h}^{n} \mathbb{C}^{d} \tag{3.19}
\end{equation*}
$$

holds. As a consequence, the subspace \mathcal{P}_{χ}^{n} is closed in the space L_{x}^{2} and the following system of n-homogenous complex functions on the group U,

$$
\begin{align*}
& \mathscr{E}_{n}^{\diamond}=\left\{\mathfrak{e}_{\{d\}}^{\diamond(k)}=\mathfrak{e}_{1}^{\circ k_{1}} \cdot \ldots \cdot \mathfrak{e}_{d}^{\diamond k_{d}}: \mathfrak{e}_{\{d\}}^{\otimes(k)} \in \otimes_{\mathfrak{h}}^{n} \mathbb{C}^{d} ;|(k)|=n\right\}, \tag{3.20}\\
& \mathscr{E}_{0}^{\circ}=\{1\}
\end{align*}
$$

forms an orthogonal basis in \mathcal{P}_{χ}^{n}.
Proof. First verify that the sesquilinear form defined by the above integral in continuous. The probability property of χ yields the inequalities

$$
\begin{aligned}
\left|\int_{U} \phi_{n}^{\circ} \bar{\psi}_{n}^{\diamond} d \chi\right| & \leq \sup _{u \in U}\left|\left\langle\check{u}^{\otimes n} \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}\right| \cdot\left|\left\langle\bar{u}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}\right| \\
& \leq \sup _{u \in U}\|\tilde{u}\|_{\mathbb{C}^{d}}^{2 n}\left\|\phi_{n}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}}\left\|\psi_{n}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}} \\
& =\left\|\phi_{n}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}}\left\|\psi_{n}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}}
\end{aligned}
$$

for all $\phi_{n}, \psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}$. Hence, there exists a linear operator A_{n} over $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ such that

$$
\left\langle A_{n}\left(\psi_{n}\right) \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}=\int_{U} \phi_{n}^{0} \bar{\psi}_{n}^{0} d \chi .
$$

Let us show that this operator A_{n} commutes with all operators

$$
\left\{v^{\otimes n} \in \mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}\right): v \in U\right\}
$$

defined by the formula $v^{\otimes n}\left(x^{\otimes n}\right)=[v(x)]^{\otimes n}$. The unitarily-invariant property of Haar's measure χ under the right action yields

$$
\begin{aligned}
& \left\langle\left(A_{n} \circ v^{\otimes n}\right)\left(\psi_{n}\right) \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}=\int_{U}\left\langle\check{u}^{\otimes n} \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}} \overline{\left\langle\check{u}^{\otimes n} \mid v^{\otimes n}\left(\psi_{n}\right)\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}} d \chi(u), ~}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{U}\left\langle\check{u}^{\otimes n} \mid\left(v^{-1}\right)^{\otimes n}\left(\phi_{n}\right)\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}} \overline{\left\langle\tilde{u}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n}}^{n} \mathbb{C}^{d}} d \chi(u) \\
& =\left\langle A_{n}\left(\psi_{n}\right) \mid\left(v^{-1}\right)^{\otimes n}\left(\phi_{n}\right)\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}} \\
& =\left\langle\left(v^{\otimes n} \circ A_{n}\right) \psi_{n} \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}
\end{aligned}
$$

for all elements $\phi_{n}, \psi_{n} \in \otimes_{h}^{n} \mathbb{C}^{d}$. Hence, the equality

$$
\begin{equation*}
A_{n} \circ v^{\otimes n}=v^{\otimes n} \circ A_{n} \tag{3.21}
\end{equation*}
$$

hulids for any $v \in U$. Let us check that the operator A_{n}, satisfying (3.21), is proporHomml to the identity operator $\mathbb{1}_{\odot_{b}^{n} \mathbb{C}^{d}}$ on $\odot_{h}^{n} \mathbb{C}^{d}$. For this goal we form the n-fold lammer power of the unitary group $U=U(d)$,

$$
U^{\otimes n}=\left\{v^{\otimes n} \in \mathscr{E}_{0}^{\circ}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}\right): v \in U\right\}, \quad U^{\otimes 0}=1
$$

livariantly acting on the space $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}$ by the formula

$$
v^{\otimes n}\left(x_{1} \odot \ldots \odot x_{n}\right)=v\left(x_{1}\right) \odot \ldots \odot v\left(x_{n}\right)
$$

lur all $x_{1} \otimes \ldots \otimes x_{n} \in \odot_{h}^{n} \mathbb{C}^{d}$. Clearly, $U^{\otimes n}$ is a unitary group over $\odot_{h}^{n} \mathbb{C}^{d}$ at a roniriction of the unitary group $U^{\otimes n}$, acting over $\otimes_{\mathfrak{h}}^{n} \mathbb{C}^{d}$. Check that the corresponding iniltary representation

$$
\begin{equation*}
U \ni v \longmapsto v^{\otimes n} \in \mathscr{L}\left(\odot_{h}^{n} \mathbb{C}^{d}\right) \tag{33.22}
\end{equation*}
$$

In irreducible. This means that there is no subspace $\odot_{h}^{n} \mathbb{C}^{d}$ other thm $\{0\}$ nnd the whole space which is invariant under the action of $U^{\circledR 2 n}$.

Suppose, on the contrary, that there is an element $\psi_{n} \in \odot_{h}^{n} \mathbb{C}^{d}$ such that the iorresponding n-homogenous complex function ψ_{n}° satisfies the equality

$$
\psi_{n}^{\diamond}(v)=\left\langle\bar{v}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{0}^{n} \mathbb{C}^{d}}=0
$$

for all elements $\tilde{v}=v(\mathfrak{a}) \in \mathbb{S}^{d}$ dependent on the variable $v \in U$. The unitary group $\|$ acts surjectivity over the unit sphere \mathbb{S}^{d}. Hence, by n-homogeneity of ψ_{n}°, we ubtain

$$
\left\langle x^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{d}}=0
$$

lior all elements $x \in \mathbb{C}^{d}$. Let us apply the polarization formula for symmetric tensor products (see (1.6))

$$
z_{1} \odot \cdots \odot z_{n}=\frac{1}{2^{n} n!} \sum_{1 \leq x \leq n} \sum_{\theta_{2}= \pm 1} \theta_{1} \ldots \theta_{n} x^{\otimes n}, \quad x=\sum_{\imath=1}^{n} \theta_{2} z_{\imath}^{*} \in \mathbb{C}^{d}
$$

An a result, we obtain

$$
\left\langle z_{1} \odot \cdots \odot z_{n} \mid \phi_{n}\right\rangle_{\otimes_{n}^{n} \dot{C}^{d}}=0
$$

fior all $z_{1}, \ldots, z_{n} \in \mathbb{C}^{d}$. It follows that $\psi_{n}=0$, because the set of elements $\therefore \odot \cdots \odot z_{n}$ is total in $\odot_{h}^{n} \mathbb{C}^{d}$. As a consequence, the unitary representation (3.22) In irreducible.

Now we can apply to the unitary representation (3.22) the well known Schur Lemma [51, Theorem 21.30]: a non-zero matrix which commutes with all of the Inntrices of an irreducible representation is a constant multiple of the unit matrix. So, we obtain that the operator A_{n}, satisfying the equality (3.21), is proportional to the identity operator on $\odot_{h}^{n} \mathbb{C}^{d}$ i.e.

$$
A_{n}=\alpha_{n} \mathbb{1}_{\odot_{n}^{n} \mathbb{C}^{d}}
$$

with a constant $\alpha_{n}>0$. In other words, we have

$$
\begin{equation*}
\int_{U} \phi_{n}^{\circ} \bar{\psi}_{n}^{\circ} d \chi=\alpha_{n}\left\langle\psi_{n} \mid \phi_{n}\right\rangle_{\Theta_{n}^{n} \mathbb{C}^{d}}, \quad \phi_{n}, \psi_{n} \in \odot_{b}^{n} \mathbb{C}^{d} \tag{3.23}
\end{equation*}
$$

It yields in particular that the system of functions $\mathscr{E}_{n}^{\triangleright}$ forms an orthogonal basim In the npuce \mathcal{P}_{χ}^{n}, because the system of tensors $\mathscr{E}\left(\odot_{\mathfrak{k}}^{n} \mathbb{C}^{d}\right)$ forms an orthogonal basin In the sprices $\odot_{h}^{n} \mathbb{C}^{d}$. The subspace \mathcal{P}_{x}^{n} in L_{x}^{2} is closed, because it is isometric to then complete spuce $\bigcirc_{\hbar}^{n} \mathbb{C}^{d}$.

Taking into account (1.12), we can choose

$$
\phi_{n}=\psi_{n}=\mathfrak{e}_{\{d\}}^{\otimes(k)} \sqrt{\frac{n!}{(k)!}}
$$

with $|(k)|=n$ in (3.23). As a result, we obtain

$$
\begin{equation*}
\alpha_{n}=\frac{n!}{(k)!}\left\|e_{\{d\}}^{\circ(k)}\right\|_{L_{\varkappa}^{2}}^{2}, \quad|(k)|=n \in \mathbb{Z}_{+} \tag{3.24}
\end{equation*}
$$

Using the well known formula $[\mathbf{8 8}, 1.4 .9]$ for the unitary d-dimensional group U,

$$
\left\|Q_{\{d\}}^{\diamond(k)}\right\|_{L_{x}^{2}}^{2}=\frac{(k)!(d-1)!}{(n+d-1)!}, \quad|(k)|=n
$$

we see that the constant α_{n} does not depend on indexes (k) such that $|(k)|=n$ and

$$
\begin{equation*}
\alpha_{n}=\frac{n!}{(k)!} \int_{U}\left|\mathfrak{e}_{\{d\}}^{\propto(k)}\right|^{2} d \chi=\frac{n!}{(k)!} \frac{(k)!(d-1)!}{(n+d-1)!}=\frac{n!(d-1)!}{(n+d-1)!} \tag{3.25}
\end{equation*}
$$

Thus, the isometry (3.19) is proven.
Using the fact that any function $\psi_{n}^{\diamond} \in \mathcal{P}_{\chi}^{n}$ is independent of an element $\mathfrak{a} \in \mathbb{S}^{\prime}$. in what follows in (3.20) we take

$$
\mathfrak{a}=\mathfrak{e}_{d}
$$

and denote

$$
\mathfrak{e}_{\{d\}}^{\circ(k)}(u):=\left\langle\left[u\left(\mathfrak{e}_{d}\right)\right]^{\otimes n} \mid \mathfrak{e}_{\{d\}}^{\otimes(k)}\right\rangle_{\bigotimes_{n}^{n} \mathbb{C}^{d}}=\prod_{r=1}^{d}\left\langle u\left(\mathfrak{e}_{d}\right) \mid \mathfrak{e}_{r}\right\rangle_{\mathbb{C}^{d}}^{k_{r}}
$$

for all $(k) \in \mathbb{Z}_{+}^{d}$ so that $|(k)|=n$.
Corollary 3.14. Symmetric tensors $\mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}\right)$ uniquely define the system $\mathcal{\delta}_{n}^{\prime \prime}$ of n-homogeneous polynomial functions of the variable $u \in U$ with norms

$$
\begin{equation*}
\left\|e_{\{d\}}^{\otimes(k)}\right\|_{\vartheta_{\zeta}^{n} \mathrm{C}^{d}}=\binom{n+d-1}{n}^{-1 / 2}\left\|e_{\{d\}}^{\diamond(k)}\right\|_{L_{\varkappa}^{2}} \tag{3.26}
\end{equation*}
$$

In particular,

$$
\left\|\mathfrak{e}_{\mathrm{i}}^{o}\right\|_{L_{x}^{2}}=\frac{1}{\sqrt{d}}
$$

for all $\imath=1, \ldots, d$.
The dimension of the space \mathcal{P}_{x}^{n} is equal to

$$
\operatorname{dim} \mathcal{P}_{x}^{n}=\frac{(n+d-1)!}{n!(d-1)!}=\binom{n+d-1}{n}
$$

3.2.3. Polynomial reproducing kernels. Let the orbits in the space $\odot_{h}^{n} \mathbb{C}^{d}$ of The last basis element $\mathfrak{e}_{d} \in \mathscr{E}\left(\mathbb{C}^{d}\right)$ under the unitary representation (3.22) is denoted liy

$$
\left\{\check{u}^{\otimes n}: \bar{u}=u\left(e_{d}\right), u \in U\right\}
$$

Note that it is total in $\odot_{h}^{n} \mathbb{C}^{d}$.
Lemma 3.15. The reproducing kernel of the space \mathcal{P}_{χ}^{n} endowed with the L_{χ}^{2}-norm lus the form

$$
\begin{align*}
\left.\binom{n+d-1}{n}\langle\check{v}| \check{u}\right|_{\mathbb{C}^{d}} ^{n} & =\sum_{|(k)|=n}\left\|\mathfrak{e}_{\{d\}}^{\circ(k)}\right\|_{L_{\chi}^{2}}^{-2} \mathfrak{e}_{\{d\}}^{\circ(k)}(v) \bar{e}_{\{d\}}^{\circ(k)}(u) \tag{il.27}\\
& =\sum_{|(k)|=n} \frac{(n+m-1)!}{(k)!(m-1)!} e_{\{d\}}^{\circ(k)}(v) \mathfrak{e}_{\{d\}}^{\circ(k)}(u)
\end{align*}
$$

lor all $u, v \in U$.
Proof. Expand any vector $\breve{u} \in \mathbb{S}^{d}$ into the sum of the basis elements

$$
\check{u}=\sum_{j \in \mathbb{N}} \mathfrak{e}_{j}^{0}(u) \mathfrak{e}_{j} .
$$

Then the Tensor Multinomial Theorem yields the Fourier expansion

$$
\check{u}^{\otimes n}=\left(\sum_{j \in \mathbb{N}} \mathfrak{e}_{j}^{\circ}(u) \mathfrak{e}_{j}\right)^{\otimes n}=\sum_{|(k)|=n} \frac{n!}{(k)!} \mathfrak{e}_{\{d\}}^{\diamond(k)}(u) \mathfrak{e}_{\{d\}}^{\otimes(k)}
$$

whh respect to the orthogonal basis $\mathscr{E}\left(\odot_{h}^{n} \mathbb{C}^{d}\right)$ in the space $\odot_{h}^{n} \mathbb{C}^{d}$. Using the equality (1.12), we obtain

$$
\begin{aligned}
\langle\bar{v} \mid \bar{u}\rangle_{\mathbb{C}^{d}}^{n} & =\left\langle\check{v}^{\otimes n} \mid \check{u}^{\otimes n}\right\rangle_{\otimes_{h}^{n} \mathbb{C}^{d}} \\
& =\sum_{|(k)|=n}\left(\frac{n!}{(k)!}\right)^{2}\left(\mathfrak{e}_{\{d\}}^{\otimes(k)}\left|\mathfrak{e}_{\{d\}}^{\otimes(k)}\right\rangle_{\otimes_{b}^{n} \mathbb{C}^{d}} e_{\{d\}}^{\circ(k)}(v) \bar{e}_{\{d\}}^{\circ(k)}(u)\right. \\
& =\sum_{|(k)|=n} \frac{n!}{(k)!} e_{\{d\}}^{\circ(k)}(v) \overline{\mathbf{e}}_{\{d\}}^{\circ(k)}(u)
\end{aligned}
$$

lor all $n \in \mathbb{Z}_{+}$. Multiplying both sides by

$$
\binom{n+d-1}{n}=\frac{(n+d-1)!}{n!(d-1)!}
$$

we get the equality (3.27).
Via Theorem 3.32 the system $\mathscr{E}_{n}^{\circ}(U)$ forms an orthogonal basis in the space \mathcal{P}_{χ}^{n}. Hence, applying the equality (3.27), we have

$$
\binom{n+d-1}{n} \int_{U}\langle\bar{v} \mid \bar{u}\rangle_{\mathrm{C}^{d}}^{n} \mathbf{c}_{\{d\}}^{\circ(k)}(u) d \chi(u)=\mathbf{e}_{\{d\}}^{\circ(k)}(v)
$$

for all $v \in U$, i.e., the integral operator with the kernel (3.27) acts as the identily mupping over \mathcal{P}_{χ}^{n}. So, the equality

$$
\begin{equation*}
\binom{n+d-1}{n} \int_{U}\langle\bar{v} \mid \bar{u}\rangle_{\mathbb{C}^{d}}^{n} \psi_{n}^{\diamond}(u) d \chi(u)=\psi_{n}^{\circ}(v), \quad v \in U \tag{3.28}
\end{equation*}
$$

holds for nll $\psi_{n}^{\circ} \in \mathcal{P}_{\chi}^{n}$. Consequently, the kernel (3.27) is reproducing in \mathcal{P}_{χ}^{n}.
3.2.4. Segal-Bargmann space. Consider the standard Gaussian measure μ oll the complex space \mathbb{C}^{d}, centered at 0 and normalized so that $\mu\left(\mathbb{C}^{d}\right)=1$. In terms of the Lebesgue measure $d x=d p d q\left(x=p+\dot{\mathrm{i}} q\right.$ with $\left.p, q \in \mathbb{R}^{n}\right)$ on the correspondiın real space $\mathbb{R}^{2 n} \simeq \mathbb{C}^{d}$ we can write

$$
d \mu(x)=\pi^{-d} \exp \left(-\|x\|_{\mathbb{C}^{d}}^{2}\right) d x, \quad x=\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{d}\right) \in \mathbb{C}^{d}
$$

Let L_{μ}^{2} be the space of square μ-integrable complex functions f on \mathbb{C}^{d} with the norm $\|f\|_{L_{\mu}^{2}}=\left(\int_{\mathbb{C}^{d}}|f|^{2} d \mu\right)^{1 / 2}$. As is well-known [40, Theorem 1.63]

$$
\int_{\mathbb{C}^{d}} x^{(k)} \bar{x}^{(l)} d \mu(x)=\left\{\begin{array}{cl}
(k)! & : k=l \\
0 & : k \neq l
\end{array}\right.
$$

for any $(k),(l) \in \mathbb{Z}_{+}^{d}$.
Recall that the the Segal-Bargmann space $\mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right)$ (see e.g. [12, 14]) is definel to be the subspace in L_{μ}^{2} of all entire analytic functions. It is well known that $\mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{\prime}\right)$ is the L_{μ}^{2}-closure of all polynomials in the variables $\mathfrak{x}_{1}, \ldots, \mathfrak{r}_{d} \in \mathbb{C}$. The reproducin, and normalized reproducing kernels of the space \mathcal{H}_{μ}^{2} have the forms, respectively

$$
\begin{aligned}
& K_{y}(x)=\exp \langle x \mid y\rangle_{\mathbb{C}^{d}} \\
& k_{y}(x)=\frac{K_{y}(x)}{\sqrt{K_{y}(y)}}=\exp \left(\langle x \mid y\rangle_{\mathbb{C}^{d}}-\frac{\|y\|_{\mathbb{C}^{d}}^{2}}{2}\right)
\end{aligned}
$$

for all $x, y \in \mathbb{C}^{d}$.
The space of all n-homogenous polynomials on \mathbb{C}^{d}, generated by the system

$$
\left\{x^{(k)}:|(k)|=n, x \in \mathbb{C}^{d}\right\}
$$

with a fixed $n \in \mathbb{Z}_{+}$and endowed with the L_{μ}^{2}-norm, we denote by \mathcal{P}_{μ}^{n}. Clearly, this system forms an orthogonal basis in \mathcal{P}_{μ}^{n}. Whereas, the system $\left\{x^{(k)}\right\}$ form, an orthogonal basis in the whole Segal-Bargmann space $\mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right)$. So, the followinn orthogonal decomposition holds

$$
\begin{equation*}
\mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right)=\mathbb{C} \oplus \mathcal{P}_{\mu}^{1} \oplus \mathcal{P}_{\mu}^{2} \oplus \ldots \tag{3.29}
\end{equation*}
$$

Consider the Hilbertian orthogonal sum

$$
\Gamma\left(\mathbb{C}^{d}\right)=\left\{\psi=\bigoplus_{n \in \mathbb{Z}_{+}} \psi_{n}: \psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{d},\|\psi\|_{\Gamma}<\infty\right\}
$$

endowed with the scalar product and norm, respectively

$$
\langle\psi \mid \phi\rangle_{\Gamma}=\sum_{n \in \mathbb{Z}_{+}} n!\left\langle\psi_{n} \mid \phi_{n}\right\rangle_{\mathbb{C}^{d}} \quad \text { and } \quad\|\psi\|_{\Gamma}=\langle\psi \mid \psi\rangle_{\Gamma}^{1 / 2}
$$

called the symmetric Fock space generated by the complex space \mathbb{C}^{d}. The polarization formula (1.6) implies that the set of so-called exponential vectors

$$
\left\{\varepsilon(x)=\bigoplus_{n \in \mathbb{Z}_{+}} \frac{x^{\otimes n}}{n!}: x \in \mathbb{C}^{d}\right\}, \quad x^{\otimes 0}=1
$$

is lotal in the symmetric Fock space $\Gamma\left(\mathbb{C}^{d}\right)$ and

$$
\|\varepsilon(x)\|_{\Gamma}^{2}=\sum_{n \in \mathbb{Z}_{+}} \frac{\|x\|_{\mathbb{C}^{d}}^{2 n}}{n!}=\exp \left(\|x\|_{\mathbb{C}^{d}}^{2}\right)<\infty
$$

lut all elements $x \in \mathbb{C}^{d}$.
Lemma 3.16. For any $(k),(l) \in \mathbb{Z}_{+}^{d}$ such that $|(k)|=|(l)|=n$, we have

$$
\begin{aligned}
\int_{\mathbb{C}^{d}} \frac{x^{(k)} \bar{x}^{(l)}}{\sqrt{(k)!(l)!}} d \mu(x) & =\frac{n!\left\langle\mathfrak{e}_{\{d\}}^{\otimes(k)} \mid \mathfrak{e}_{\{d\}}^{\otimes(l)}\right\rangle_{\otimes_{h}^{n} \mathbb{C}^{d}}}{\sqrt{(k)!(l)!}} \\
& =\frac{(n+m-1)!}{(m-1)!} \int_{U} \frac{\mathfrak{e}_{\{d\}}^{\circ(l)} \bar{e}^{\circ}(d)}{\sqrt{(l)!(k)!}} d \chi \\
& = \begin{cases}1: & k=l, \\
0: & k \neq l .\end{cases}
\end{aligned}
$$

Proof. In fact, for all $x=\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{m}\right) \in \mathbb{C}^{d}$ such that

$$
x=\{\alpha \check{u}: \alpha \in \mathbb{C}, u \in U\}
$$

we have

$$
\begin{equation*}
x^{(k)}=\mathfrak{x}_{1}^{k_{1}} \cdot \ldots \cdot \mathfrak{r}_{m}^{k_{m}}=\left\langle x^{\otimes|(k)|} \mid \mathfrak{e}_{\{d\}}^{\otimes(k)}\right\rangle_{\otimes_{0}^{n} \mathbb{C}^{d}}=\alpha^{|(k)|} \mathfrak{e}_{\{d\}}^{\circ(k)}(u) . \tag{3.30}
\end{equation*}
$$

Io complete the proof of lemma it remains to apply Theorem 3.32.
Theorem 3.17. The mapping

$$
\Xi: \mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right) \ni f \longmapsto \sum_{n \in \mathbb{Z}_{+}} \psi_{n} \in \Gamma\left(\mathbb{C}^{d}\right), \quad \psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}
$$

llefined by the equalities

$$
\Xi\left(x^{(k)}\right)=\mathfrak{e}_{\{d\}}^{\otimes(k)}
$$

for all indexes $(k) \in \mathbb{Z}_{+}^{d}$ produces the anti-linear isometry

$$
\begin{equation*}
\Gamma\left(\mathbb{C}^{d}\right) \simeq \mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right) \tag{3.31}
\end{equation*}
$$

unch that the following Taylor analytic expansion at the origin

$$
\begin{aligned}
f(x) & =\langle\varepsilon(x) \mid \Xi(f)\rangle_{\Gamma}=\sum_{n \in \mathbf{Z}_{+}} \psi_{n}^{*}(x), \\
\psi_{n}^{*}(x) & =\frac{1}{n!} \int_{\mathbb{C}^{d}}\langle x \mid y\rangle_{\mathbb{C}^{d}}^{n} f(y) d \mu(y)
\end{aligned}
$$

holds for all $x \in \mathbb{C}^{d}$.

Proof. By (3.29) for every $f \in \mathcal{H}_{\mu}^{2}$ there exists a unique sequence of elementh $f_{n} \in \mathcal{P}_{11}^{n}$ such that the series $\sum_{n} f_{n}$ is convergent to f in L_{μ}^{2}. By Lemma 3.16 for every $f_{n} \in \mathcal{P}_{n}^{n}$ there exists a unique element $\psi_{n} \in \odot_{h}^{n} \mathbb{C}^{d}$ such that $f_{n}=\psi_{n}^{*}$ and conversely. Therefore, the isometry (3.31) follows from the orthogonal property

$$
\psi_{l}^{*} \perp\left(x^{\otimes n}\right)^{*}
$$

for all $l \neq n$. Applying the n-homogeneity of ψ_{n}^{*}, we obtain

$$
d_{0}^{n} f(x)=\left.\frac{d^{n}}{d \alpha^{n}} \sum \alpha^{n} \psi_{n}^{*}(x)\right|_{\alpha=0}=n!\psi_{n}^{*}(x)
$$

for all $\alpha x \in \mathbb{C}^{d}$ with $\alpha \in \mathbb{C}$. So, the Taylor analytic expansion holds.
3.2.5. Orthogonal decomposition. In this section we denote by \mathcal{H}_{x}^{2} and call the Hardy space on U the L_{x}^{2}-closure of the complex linear span of all complox continuous functions

$$
\mathscr{E}^{\circ}=\left\{\mathscr{E}_{n}^{\circ}: n \in \mathbb{Z}_{+}\right\}, \quad \mathscr{E}_{n}^{\infty}=\left\{\left\{_{\{d\}}^{\mathfrak{e}_{\{ }^{\circ}(k)}:|(k)|=n\right\} .\right.
$$

Theorem 3.18. The system \mathscr{E}° forms an orthogonal basis in \mathcal{H}_{χ}^{2} and the follour ing orthogonal decomposition holds,

$$
\begin{equation*}
\mathcal{H}_{\chi}^{2}=\mathbb{C} \oplus \mathcal{P}_{x}^{1} \oplus \mathcal{P}_{x}^{2} \oplus \ldots \tag{3.32}
\end{equation*}
$$

The reproducing kernel of the Hardy space \mathcal{H}_{χ}^{2} has the form

$$
\begin{align*}
\frac{1}{\left(1-\langle\tilde{v} \mid \bar{u}\rangle_{\mathbf{C}^{d}}\right)^{d}} & =\sum_{n \in \mathbb{Z}_{+}}\binom{n+d-1}{n}\langle\tilde{v} \mid \tilde{u}\rangle_{\mathbf{C}^{d}}^{n} \tag{3.33}\\
& =\sum_{n \in \mathbb{Z}_{+}} \sum_{|(k)|=n} \frac{(n+m-1)!}{(k)!(m-1)!} e_{\{d\}}^{\diamond(k)}(v) \bar{e}_{\{d\}}^{-\diamond(k)}(u)
\end{align*}
$$

for all $u, v \in U$.
Proof. Applying the equality (3.19) in the case of any indexes $(k),(l) \in \mathbb{Z}_{+}^{d}$ such that

$$
n=|(k)| \neq|(l)|=m,
$$

we obtain

$$
\begin{equation*}
\int_{U} \mathfrak{e}_{\{d\}}^{o(k)} \bar{e}_{\{d\}}^{o(l)} d \chi=\frac{1}{2 \pi} \int_{U} e_{\{d\}}^{o(k)} \bar{e}_{\{d\}}^{o(l)} d \chi \int_{-\pi}^{\pi} \exp [\mathrm{i}(|(k)|-|(l)|) \vartheta] d \vartheta=0 . \tag{3.34}
\end{equation*}
$$

This yields the orthogonal property

$$
\mathfrak{e}_{\{d\}}^{\circ(k)} \perp \mathfrak{e}_{\{d\}}^{\delta(l)}
$$

i.e., $\mathcal{P}_{x}^{m} \perp \mathcal{P}_{\chi}^{n}$ in L_{χ}^{2}. As a result, the system \mathscr{E}° forms an orthogonal basis in the Hardy space \mathcal{H}_{χ}^{2}, because every system \mathscr{E}_{n}° forms the same basis in the correspondiung subspace \mathcal{P}_{χ}^{n}.

The first equality in (3.33) is well known (see e.g. [88, 1.4.10]), whereas the second equality follows from (3.27). By Theorem 3.18 every element $f \in \mathcal{H}_{x}^{2}$ is equal to the L_{χ}^{2}-convergent orthogonal series $\sum_{n} f_{n}$, where $f_{n} \in \mathcal{P}_{x}^{n}$ is the orthogomal

Irojection of f in the decomposition (3.32). Applying (3.28) from Theorem 3.15 and the L_{x}^{2}-orthogonal property

$$
\langle\tilde{v} \mid \cdot\rangle_{\mathbb{C}^{d}}^{m} \perp f_{n}
$$

with $n \neq m$, we obtain that for any element $v \in U$ the equalities

$$
\begin{aligned}
\int_{U} \frac{f(u) d \chi(u)}{\left(1-\langle\tilde{v} \mid \tilde{u}\rangle_{\left.\mathbb{C}^{d}\right)^{d}}\right.} & =\int_{U} \sum_{m \in \mathbb{Z}_{+}}\binom{m+d-1}{m}\langle\check{v} \mid \check{u}\rangle_{\mathbf{C}^{d}}^{m} \sum_{n \in \mathbb{Z}_{+}} f_{n}(u) d \chi(u) \\
& =\sum_{n \in \mathbb{Z}_{+}} f_{n}(v)=f(v)
\end{aligned}
$$

luld for all $f \in \mathcal{H}_{\chi}^{2}$. Hence, the kernel (3.33) is reproducing in \mathcal{H}_{χ}^{2}.
3.2.6. Weighted symmetric Fock space. Consider the symmetric Fock subмйсе

$$
\Phi\left(\mathbb{C}^{d}\right)=\left\{\psi=\underset{n \in \mathbb{Z}_{+}}{\bigoplus} \psi_{n} \in \Gamma\left(\mathbb{C}^{d}\right): \psi_{n} \in \bigodot_{\mathfrak{h}}^{n} \mathbb{C}^{d},\|\psi\|_{\Phi}<\infty\right\}
$$

mindowed with the scalar product and norm, respectively

$$
\langle\psi \mid \phi\rangle_{\Phi}=\sum_{n \in \mathbf{Z}_{+}} \frac{n!(d-1)!}{(n+d-1)!}\left\langle\psi_{n} \mid \phi_{n}\right\rangle_{\mathbf{C}^{d}}, \quad\|\psi\|_{\Phi}=\langle\psi \mid \psi\rangle_{\Phi}^{1 / 2}
$$

culled the weighted symmetric Fock space generated by the complex space \mathbb{C}^{d}.
By Proposition 1.28 the system of symmetric tensors $\mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{d}\right)$ forms an orthogonal baseis in $\odot_{h}^{n} \mathbb{C}^{d}$. As a consequence, the system

$$
\mathscr{E}=\left\{\mathscr{E}^{\mathscr{E}}\left(\bigcirc_{n}^{n} \mathbb{C}^{d}\right): n \in \mathbb{Z}_{+}\right\}
$$

lorms an orthogonal basis in the space $\Phi\left(\mathbb{C}^{d}\right)$. Moreover, for any tensor element ${ }_{\{\mid(k)}^{(k)} \in \mathscr{E}$ with $n=|(k)|$,

$$
\begin{align*}
\left\|\mathbb{e}_{\{d\}}^{\otimes(k)}\right\|_{\Phi} & =\left(\frac{n!(d-1)!}{(n+d-1)!}\right)^{1 / 2}\left\|e_{\{d\}}^{\otimes(k)}\right\|_{\otimes_{n}^{n} \mathbb{C}^{d}} \tag{3.35}\\
& =\left(\frac{n!(d-1)!}{(n+d-1)!}\right)^{1 / 2}\left(\frac{(k)!}{n!}\right)^{1 / 2}=\| \|_{\{d d}^{\otimes(k)} \|_{L_{x}^{2}} .
\end{align*}
$$

Thus, applying Lemma 3.16, we obtain the following statement.
Theorem 3.19. The mapping

$$
\Upsilon: \mathcal{H}_{x}^{2} \ni f \longmapsto \sum_{n \in \mathbb{Z}_{+}} \psi_{n} \in \Phi\left(\mathbb{C}^{d}\right), \quad \psi_{n} \in \bigodot_{\mathfrak{h}}^{n} \mathbb{C}^{d}
$$

determined by the equality

$$
\Upsilon\left(\mathfrak{e}_{\{d\}}^{\circ(k)}\right)=\mathfrak{e}_{\{d\}}^{\otimes(k)}, \quad|(k)|=n
$$

produces the following isometric equalities

$$
\mathcal{H}_{\chi}^{2} \simeq \Phi\left(\mathbb{C}^{d}\right), \quad \Upsilon\left(\mathcal{P}_{\chi}^{n}\right) \simeq\left(\odot_{h}^{n} \mathbb{C}^{d},\|\cdot\|_{\Phi}\right)
$$

It is ulso easy to see that the diagonal matrix

$$
\operatorname{diag}\left\{\sqrt{\frac{(d-1)!}{(n+d-1)!}}: n \in \mathbb{Z}_{+}\right\}
$$

isometrically maps the Fock space $\Gamma\left(\mathbb{C}^{d}\right)$ onto the weighted Fock space $\Phi\left(\mathbb{C}^{d}\right)$.
3.2.7. Holomorphic extension. The polarization formula (1.6) implies thut the set of so-called geometric vectors

$$
\left\{\omega(x)=\bigoplus_{n \in \mathbb{Z}_{+}} x^{\bigotimes n}: x \in \mathbb{B}^{m}\right\}, \quad x^{\otimes u}=1
$$

is total in the weighted symmetric Fock space $\Phi\left(\mathbb{C}^{m}\right)$. Note that

$$
\|\omega(x)\|_{\Phi}^{2}=\sum_{n \in Z_{+}} \frac{n!(m-1)!}{(n+m-1)!}\|x\|_{\mathbb{C}^{m}}^{2 n} \leq \frac{1}{1-\|x\|_{\mathbb{C}^{m}}^{2}}<\infty, \quad x \in \mathbb{B}^{m}
$$

Hence, the orthogonal series $\omega(x)$ is absolutely convergent in $\Phi\left(\mathbb{C}^{m}\right)$ for all $x \in \mathbb{B}^{m}$ i.e., the $\Phi\left(\mathbb{C}^{m}\right)$-valued function

$$
\omega: \mathbb{B}^{m} \ni x \longmapsto \omega(x) \in \Phi\left(\mathbb{C}^{m}\right)
$$

is analytic.
Theorem 3.20. For every $f \in \mathcal{H}_{x}^{2}$ there exists a unique element

$$
\Upsilon(f)=\bigoplus_{n \in \mathbb{Z}_{+}} \varphi_{n} \in \Phi\left(\mathbb{C}^{m}\right)
$$

with $\varphi_{n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}$ such that the Cauchy integral formula

$$
\begin{align*}
& \tilde{f}(x)=\int_{U} \frac{f(u) d \chi(u)}{\left(1-\langle x \mid \tilde{u}\rangle_{\mathbb{C}^{m}}\right)^{m}} \\
& \tilde{f}(x):=\langle\omega(x) \mid \Upsilon(f)\rangle_{\Phi}=\sum_{n \in \mathbb{Z}_{+}} \frac{n!(m-1)!}{(n+m-1)!} \varphi_{n}^{\star}(x), \tag{3.36}
\end{align*}
$$

for all $x \in \mathbb{B}^{m}$ uniquely define an analytic function on \mathbb{B}^{m} with the Taylor coefficien/n at the origin

$$
\begin{equation*}
\frac{n!(m-1)!}{(n+m-1)!} \varphi_{n}^{*}(x)=\int_{U}\langle x \mid \check{u}\rangle_{\mathbb{C}^{m}}^{n} f(u) d \chi(u), \quad x \in \mathbb{C}^{m} \tag{3.37}
\end{equation*}
$$

Proof. By Theorem 3.18 for every $f \in \mathcal{H}_{\chi}^{2}$ there exists a unique sequence of cho ments $f_{n} \in \mathcal{P}_{x}^{n}$ such that the series $\sum_{n} f_{n}$ is convergent to f in L_{x}^{2}. By Theorem 3.3\% for every $f_{n} \in \mathcal{P}_{\chi}^{n}$ there exists a unique element $\varphi_{n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}$ such that $f_{n}=\varphi_{n}^{*}$ nnl conversely. Consequently, the equality (3.37) it follows from the orthogonal properly

$$
\varphi_{l}^{*}-L \bar{v}^{* n}
$$

for any $l \neq n$ and the equality (3.28) with using the n-homogeneity of φ_{n}^{*}. Summing (il.37) with respect to n, we get (3.36). It follows in particular that

$$
\widetilde{f}(\alpha \bar{v})=\langle\omega(\alpha \breve{v}) \mid \Lambda(f)\rangle_{\Phi}=\sum_{n \in \mathbb{Z}_{+}} \alpha^{n} \frac{n!(m-1)!}{(n+m-1)!} \varphi_{n}^{\star}(\check{v})
$$

lor any $x=\alpha \breve{v}, \alpha \in \mathbb{B}^{1}, v \in U$. The $\Phi\left(\mathbb{C}^{m}\right)$-valued function ω is analytic on $B^{\prime \prime \prime}$ and \tilde{f} is equal to the composition of $\omega(\cdot)$ with the linear continuous functional $\langle\mid \Upsilon(f)\rangle_{\Phi}$ on $\Phi\left(\mathbb{C}^{m}\right)$. Consequently, \tilde{f} is analytic on \mathbb{B}^{m} as well. Differentiating \tilde{f} in $x=0$ and using the n-homogeneity of derivatives, we obtain

$$
\frac{1}{n!} d_{0}^{n} \tilde{f}=\left.\frac{1}{n!} \frac{d^{n}}{d \alpha^{n}} \sum_{n \in \mathbb{Z}_{+}} \alpha^{n} \frac{n!(m-1)!}{(n+m-1)!} \varphi_{n}^{*}\right|_{\alpha=0}=\frac{n!(m-1)!}{(n+m-1)!} \varphi_{n}^{\star}
$$

for all $\alpha \in \mathbb{B}^{1}$. Hence, the functions φ_{n}^{\star} coincide with the Taylor coefficients of the mualytic function \tilde{f} at the origin, which are uniquely defined on \mathbb{B}^{m}.

Definition 3.21. Following [88, V.6] we define the space of analytic extension iII \mathbb{B}^{m}

$$
\mathcal{H}_{\chi}^{2}\left(\mathbb{B}^{m}\right):=\left\{\tilde{f}=\mathfrak{C}(f): f \in \mathcal{H}_{\chi}^{2}\right\}
$$

Mrlowed with the norm

$$
\|\tilde{f}\|_{\mathcal{H}_{\chi}^{2}\left(\mathbb{B}^{m}\right)}=\sup _{|\alpha|<1}\left(\int_{U}|\tilde{f}(\alpha \tilde{u})|^{2} d \chi(u)\right)^{1 / 2}
$$

Then the well known Cauchy integral formula can be written as the transform

$$
\mathfrak{C}: \mathcal{H}_{\chi}^{2} \ni f \longmapsto \tilde{f} \in \mathcal{H}_{\chi}^{2}\left(\mathbb{B}^{m}\right)
$$

Theorem 3.22. The linear isometry and the anti-linear isometry, respectively

$$
\begin{equation*}
\mathcal{H}_{\chi}^{2} \simeq \mathcal{H}_{\chi}^{2}\left(\mathbb{B}^{m}\right), \quad \mathcal{H}_{\chi}^{2}\left(\mathbb{B}^{m}\right) \simeq \Phi\left(\mathbb{C}^{m}\right) \tag{3.38}
\end{equation*}
$$

produced by the mappings

$$
\mathfrak{C}: f \longmapsto \tilde{f}:=\mathfrak{C}(f), \quad \Upsilon \circ \mathfrak{C}^{-1}: \tilde{f} \longmapsto \Upsilon(f)
$$

hold.
Proof. For any $x=\alpha \check{v}$ with $\alpha \in \mathbb{B}^{1}$ and $v \in U$ from (3.36) it follows that

$$
\tilde{f}(\alpha \check{v})=\int_{U} \frac{f(u) d \chi(u)}{\left(1-\langle\alpha \check{v} \mid \check{u}\rangle_{\mathbb{C}^{m}}\right)^{m}}
$$

IN a function of the variable $v \in U$, belongs to \mathcal{H}_{χ}^{2}. In fact, using the homogenous |roperty of coefficients φ_{n}^{*}, we have

$$
\tilde{f}(\alpha \check{v})=\sum_{n \in \mathbb{Z}_{+}} \alpha^{n} \varphi_{n}^{*}(\check{v})
$$

The equalities (3.28) and (3.33) and the orthogonal property of $\left\{\varphi_{n}^{*}\right\}$ yield

$$
\begin{aligned}
\int_{U}|\tilde{f}(\alpha \check{v})|^{2} d \chi(v) & =\int_{U}\left|\sum_{n \in \mathbb{Z}_{+}} \alpha^{n} \int_{U} \frac{(n+m-1)!}{n!(m-1)!}\langle\check{v} \mid \check{u}\rangle_{\mathbb{C}^{m}}^{n} \varphi_{n}^{*}(\check{u}) d \chi(u)\right|^{2} d \chi(v) \\
& =\int_{U}\left|\sum_{n \in \mathbb{Z}_{+}} \alpha^{n} \varphi_{n}^{*}(\check{v})\right|^{2} d \chi(v)=\sum_{n \in \mathbb{Z}_{+}}|\alpha|^{2 n}\left\|\varphi_{n}^{*}\right\|_{L_{\chi}^{2}}^{2}
\end{aligned}
$$

for all $\alpha \in \mathbb{B}^{1}$. This implies that

$$
\begin{aligned}
\|\tilde{f}\|_{\mathcal{H}_{x}^{2}\left(\mathbb{B}^{m}\right)} & =\sup _{|\alpha|<1} \sum_{n \in \mathbb{Z}_{+}}|\alpha|^{2 n}\left\|\varphi_{n}^{*}\right\|_{L_{x}^{2}}^{2} \\
& =\sum_{n \in \mathbb{Z}_{+}}\left\|\varphi_{n}^{*}\right\|_{L_{x}^{2}}^{2}=\|f\|_{L_{x}^{2}}^{2}
\end{aligned}
$$

for all $f \in \mathcal{H}_{\chi}^{2}$. Hence, the first equality in (3.38) is valid. It is easy to see that

$$
\begin{aligned}
\|\tilde{f}\|_{\mathcal{H}_{\chi}^{2}\left(\mathrm{~B}^{m}\right)} & =\sum_{n \in \mathbb{Z}_{+}}\left\|\varphi_{n}^{*}\right\|_{L_{\times}^{2}}^{2} \\
& =\sum_{n \in \mathbb{Z}_{+}} \frac{n!(m-1)!}{(n+m-1)!}\left\|\varphi_{n}\right\|_{\otimes_{n}^{n} \mathrm{C}^{m}}^{2}=\|\Lambda(f)\|_{\Phi}
\end{aligned}
$$

via (3.19). The theorem is proven.
Corollary 3.23. As a consequence, we get instantly that the following diagran

is commutative.

3.3. Hardy spaces associated with infinite-dimensional unitary groups

3.3.1. Invariant integrals with respect to infinite dimensional groupm. We consider the infinite-dimensional unitary matrix groups:

$$
U(\infty)=\bigcup\{U(m): m \in \mathbb{N}\}, \quad U^{2}(\infty):=U(\infty) \times U(\infty)
$$

where $U(m)$ is the group of unitary $(m \times m)$-matrices which is identified with thw sul)group in $U(m+1)$ fixing the $(m+1)$ th basis vector. In other words, $U(\infty)$ im the group of infinite unitary matrices

$$
u=\left[u_{i j}\right]_{i, j \in \mathbb{N}}
$$

Wh finitely many matrix entries $u_{i j}$ distinct from $\delta_{i j}$. We equip every group $U(m)$ wlh the probability Haar measure χ_{m}. We endow the group $U(\infty)$ with the inductive lonology under embeddings

$$
U(m) \leftrightarrow U(\infty)
$$

Every matrix $u_{m} \in U(m)$ with $m>1$ we write in the block matrix form

$$
u_{m}=\left[\begin{array}{cc}
z_{m-1} & a \\
b & t
\end{array}\right], \quad z_{m-1} \in U(m-1), \quad t \in \mathbb{C}
$$

(orresponding to the partition

$$
(m-1)+1 \times(m-1)+1
$$

Over the group $U(\infty)$ (respectively, $U(m)$) the right action is well defined:

$$
\begin{equation*}
u \cdot g=w^{-1} u v \tag{1.1.39}
\end{equation*}
$$

where u belongs to $U(\infty)$ (respectively, to $U(m)$) and

$$
g=(v, w)
$$

lwlongs to $U^{2}(\infty)$ (respectively, to $U^{2}(m):=U(m) \times U(m)$).
Let us give some basic known facts about invariant integrals with respect to the kroup $U(\infty)$. In [78, Proposition 0.1], [79, Lemma 3.1] it is proven the following rlaim.

Lemma 3.24. The Livšic-type mapping

$$
\pi_{m-1}^{m}: U(m) \longrightarrow U(m-1)
$$

if the form

$$
\pi_{m-1}^{m}: u_{m}=\left[\begin{array}{cc}
z_{m-1} & a \\
b & t
\end{array}\right] \longmapsto u_{m-1}=\left\{\begin{array}{r}
z_{m-1}-a(1+t)^{-1} b: \\
z_{m-1}: \\
t \neq-1 \\
t=-1
\end{array}\right.
$$

(which is not a group homomorphism) is Borel and surjective onto $U(m-1)$, and commutes with the right action of $U^{2}(m-1)$.

Lemma 3.25 ([78, Theorem 1.6]). The pullback of the probability Haar measure γ_{m-1} on $U(m-1)$ under the mapping π_{m-1}^{m} is the probability Haar measure χ_{m} on $\|(m)$, i.e.,

$$
\begin{equation*}
\chi_{m-1} \circ \pi_{m-1}^{m}=\chi_{m} \tag{3.40}
\end{equation*}
$$

Let $U^{\prime}(m) \subset U(m)$ be the subset of unitary matrices which do not have $\{-1\}$ In an eigenvalue. Then $U^{\prime}(m)$ is open in $U(m)$ and the complement $U(m) \backslash U^{\prime}(m)$ In a χ_{m}-negligible set.

Lemma 3.26 ([79, Lemma 3.11]). The restricted mapping

$$
\pi_{m-1}^{m}: U^{\prime}(m) \longrightarrow U^{\prime}(m-1)
$$

in continuous and surjective.

Consider the projective limits, taken with respect to the surjective Borel projece Lions π_{m-1}^{m} and their continuous restrictions $\left.\pi_{m-1}^{m}\right|_{U^{\prime}(m)}$, respectively,

$$
\mathfrak{U}=\lim _{\ddagger} U(m), \quad \mathfrak{U}^{\prime}=\lim _{\ddagger} U^{\prime}(m),
$$

called the spaces of virtual unitary matrices. Notice that \mathfrak{U} is a Borel subset in tlu Cartesian product

$$
\underset{m \in \mathbb{N}}{\times} U(m)=\left\{u=\left(u_{m}\right): u_{m} \in U(m)\right\}
$$

endowed with the product topology, because all mapping π_{m-1}^{m} are Borel. Moreover the canonical projections

$$
\pi_{m}: \mathfrak{U} \longrightarrow U(m), \quad \pi_{m}: \mathfrak{U}^{\prime} \longrightarrow U^{\prime}(m),
$$

such that $\pi_{m-1}=\pi_{m-1}^{m} \circ \pi_{m}$, are surjective by surjectivity of π_{m-1}^{m} and $\left.\pi_{m-1}^{m}\right|_{U^{\prime}(m)}$
Applying the well known Kolmogorov consistent theorem, we uniquely define probability Radon measure χ on \mathfrak{U} ' as the projective limit under the mapping (3.40),

$$
\begin{equation*}
\chi=\lim _{\leftrightarrows} \chi_{m}, \tag{3.41}
\end{equation*}
$$

which satisfies the equality

$$
\chi=\chi_{m} \circ \pi_{m}
$$

for all $m \in \mathbb{N}$. On $\mathfrak{U} \backslash \mathfrak{U}^{\prime}$ the measure χ is zero, because χ_{m} is zero on $U(m) \backslash U^{\prime}(m)$ for all $m \in \mathbb{N}$.

Using (3.39), right actions of the group $U^{2}(\infty)$ on the space of virtual unitary matrices \mathfrak{U} can be defined as follows:

$$
\begin{equation*}
\pi_{m}(u . g)=w^{-1} \pi_{m}(u) v, \quad u \in \mathfrak{U}, \tag{3.42}
\end{equation*}
$$

where m is so large that $g=(v, w) \in U^{2}(m)$.
The canonical dense embedding

$$
\imath: U(\infty) \nleftarrow \mathfrak{U}
$$

to any element $u_{m} \in U(m)$ assigns the unique sequence $u=\left(u_{l}\right)_{l \in \mathbb{N}}$, such that

$$
\begin{aligned}
& \imath: U(m) \ni u_{m} \longmapsto\left(u_{l}\right) \in \mathfrak{U}, \\
& u_{l}=\left\{\begin{array}{cc}
\pi_{l}^{l+1} \circ \ldots \circ \pi_{m-1}^{m}\left(u_{m}\right) & : l<m, \\
u_{m} & : l=m, \\
{\left[\begin{array}{cc}
u_{m} & 0 \\
0 & \mathbb{1}_{l-m}
\end{array}\right]} & : l>m,
\end{array}\right.
\end{aligned}
$$

where $\mathbb{1}_{l-m}$ is the unit in $U(l-m)$. So, the image $\imath \circ U(\infty)$ consists of stabiliziul sequences in \mathfrak{U}.

In what follows, we endow the space of virtual unitary matrices \mathfrak{U} with thr measure (3.41).

Lemma 3.27 ([78, Proposition 3.2]). The measure χ is $U^{2}(\infty)$-invariant under the right actions (3.42) over the space \mathfrak{U}.

Definition 3.28 ([79, Definition 4.5]). A complex function on \mathfrak{U} is called cylinIrical if it has the form

$$
\begin{equation*}
f(u)=\left(f_{m} \circ \pi_{m}\right)(u), \quad u \in \mathfrak{U} \tag{3.43}
\end{equation*}
$$

lur a certain $m \in \mathbb{N}$ and a certain complex function f_{m} on $U(m)$.
Any continuous bounded function f on \mathfrak{U}^{\prime} has a unique χ-essentially bounded nxtension on \mathfrak{U}, because the set $\mathfrak{U} \backslash \mathfrak{U}^{\prime}$ is χ-negligible. Therefore, if the function

$$
U^{\prime}(m) \ni \pi_{m}(u) \longmapsto f_{m}\left[\pi_{m}(u)\right]
$$

III the definition (3.43) is continuous and bounded, then the corresponding cyllindrical limetion f is χ-essentially bounded.

By \mathcal{L}_{x}^{∞} we denote closure of the algebraic hull of all cylindrical x-cesemthally bounded functions (3.43) with respect to the norm

$$
\|f\|_{\mathcal{L}_{x}^{\infty}}^{\infty}=\underset{u \in \mathscr{U}}{\operatorname{ess} \sup }|f(u)| .
$$

Lemma 3.29. The measure $\chi=\varliminf_{\ddagger} \chi_{m}$ on \mathfrak{U} is a Radon probability measurv nuch that

$$
\int_{\mathfrak{U}} f(u . g) d \chi(u)=\int_{\mathfrak{U}} f(u) d \chi(u)
$$

for all $g \in U^{2}(\infty)$ and $f \in \mathcal{L}_{x}^{\infty}$.
The measure χ has the property: for all compact set K in $U(\infty)$ such that $k^{\prime} \subset U(m)$ with an index $m \in \mathbb{N}$,

$$
\begin{equation*}
(\chi \circ \imath)(K)=\chi_{m}(K) . \tag{3.44}
\end{equation*}
$$

Proof. First recall the known Prohorov criterion (see [21, IX.4.2, Theorem 1] or [98, Theorem 6]). Adapting to our notation, it has the form: there exists a Radon probability measure χ^{\prime} on \mathfrak{U}^{\prime} such that

$$
\begin{equation*}
\chi^{\prime}=\left.\chi_{m} \circ \pi_{m}\right|_{\mathfrak{L}^{\prime}} \quad \text { for all } \quad m \in \mathbb{N} \tag{3.45}
\end{equation*}
$$

If and only if for every $\varepsilon>0$ there exists a compact set \mathcal{K} in \mathfrak{U}^{\prime} such that the Inequality

$$
\left(\chi_{m} \circ \pi_{m}\right)(\mathcal{K}) \geq 1-\varepsilon \text { for all } m \in \mathbb{N}
$$

l(w)ds; in this case χ^{\prime} is uniquely determined by means of the formula

$$
\chi^{\prime}(\mathcal{K})=\inf _{m \in \mathbb{N}}\left(\chi_{m} \circ \pi_{m}\right)(\mathcal{K}),
$$

where \mathcal{K} is a compact set in \mathfrak{U}^{\prime}.
Let $K_{n} \subset U^{\prime}(n)$ be a compact set with a fixed n. Putting

$$
K_{n-1}=\pi_{n-1}^{n}\left(K_{n}\right),
$$

we have

$$
\chi_{n-1}\left(K_{n-1}\right)=\left(\chi_{n-1} \circ \pi_{n-1}^{n}\right)\left(K_{n}\right)=\chi_{n}\left(K_{n}\right) .
$$

On the other hand, if we put

$$
K_{n+1}=\left[\begin{array}{cc}
K_{n} & 0 \\
0 & 1
\end{array}\right]
$$

then viat (3.40),

$$
\begin{aligned}
\chi_{n+1}\left(K_{n+1}\right) & =\left(\chi_{n} \circ \pi_{n}^{n+1}\right)\left(K_{n+1}\right) \\
& =\left(\chi_{n} \circ \pi_{n}^{n+1}\right)\left[\begin{array}{cc}
K_{n} & 0 \\
0 & 1
\end{array}\right]=\chi_{n}\left(K_{n}\right) .
\end{aligned}
$$

As a consequence, the compact set $\mathcal{K}=\left(K_{m}\right)$ in \mathfrak{U}^{\prime}, generated by a compact sel $K_{n} \subset U^{\prime}(n)$ with the help of mappings π_{n-1}^{n}, satisfies the condition:

$$
\begin{equation*}
\chi_{n}\left(K_{n}\right)=\chi_{m}\left(K_{m}\right) \quad \text { for all } \quad m \in \mathbb{N} \tag{3.46}
\end{equation*}
$$

The probability Haar measure χ_{n} is regular on $U(n)$, and the complemen $U(n) \backslash U^{\prime}(n)$ is a negligible set. Hence, if K_{n} runs over all compact sets in $U^{\prime}(n)$, then

$$
\sup _{K_{n} \subset U^{\prime}(n)} \chi_{n}\left(K_{n}\right)=1
$$

Therefore, for every $\varepsilon>0$ there exists a compact set $K_{n} \subset U^{\prime}(n)$ such that

$$
\chi_{n}\left(K_{n}\right) \geq 1-\varepsilon .
$$

From (3.46) it follows that for every $\varepsilon>0$ the compact set $\mathcal{K}=\left(K_{m}\right)$ satisfies thw hypothesis of Prohorov's criterion:

$$
\left(\chi_{m} \circ \pi_{m}\right)(\mathcal{K})=\chi_{m}\left(K_{m}\right) \geq 1-\varepsilon \quad \text { for all } \quad m \in \mathbb{N}
$$

So, in view of this criterion, there exists a unique Radon probability measure χ^{\prime} of \mathfrak{U}^{\prime} which satisfies the condition (3.45). However, on the projective limits

$$
\mathfrak{U}^{\prime}=\lim _{\leftrightarrows} U^{\prime}(m)
$$

there exists a unique $U^{2}(\infty)$-invariant Radon measure χ, determined by the equality (3.41). Using the uniqueness property of projective limits, we obtain

$$
\chi^{\prime}=\chi
$$

The measure χ on $\mathfrak{U} \backslash \mathfrak{U}^{\prime}$ is defined to be zero, because χ_{m} is zero on $U(m) \backslash U^{\prime}(m)$
As a consequence of (3.46), we obtain (3.44), because

$$
\chi(\mathcal{K})=\inf _{m \in \mathbb{N}} \chi_{m}\left(K_{m}\right)=\chi_{n}\left(K_{n}\right) .
$$

By Lemma 3.27 the measure χ is $U^{2}(\infty)$-invariant under the right actions (3.4!) on the space \mathfrak{U}. Hence, for every $f \in \mathcal{L}_{\chi}^{\infty}$, the equality (3.29) holds.

Consider in the space $\mathcal{L}_{\chi}^{\infty}$ the group of shifts

$$
Q_{g} f(u)=f(u . g), \quad g \in U^{2}(\infty) \quad u \in \mathfrak{U}
$$

generated by the right action of $U^{2}(\infty)$ over \mathfrak{U}. Choosing instead of $U(\infty)$ a compme। subgroup $U(m)$ or the compact subgroups

$$
U_{0}=\left\{g_{0}(\vartheta)=\exp (\mathfrak{i} \vartheta): \vartheta \in(-\pi, \pi]\right\}
$$

and

$$
\begin{aligned}
U_{j}(m)= & \left\{g_{m j}(\vartheta)=\mathbb{1}_{j-1} \otimes \exp (\mathfrak{i} \vartheta) \otimes \mathbb{1}_{m-j}: \vartheta \in(-\pi, \pi]\right\} \\
& j=1, \ldots, m
\end{aligned}
$$

WI obtain the corresponding subgroups of shifts Q_{g} with elements $g \in U^{2}(m)$ or with mements $g_{0}(\vartheta) \in U_{0}^{2}$ and $g_{m j}(\vartheta) \in U_{j}^{2}(m)$, respectively. The following lemma is an inlinite-dimensional generalization of integral formulas from Subsection 3.2.1.

Lemma 3.30. For any $f \in \mathcal{L}_{\chi}^{\infty}$ the following equalities:

$$
\begin{align*}
& \int_{\mathfrak{U}} f d \chi=\int_{\mathfrak{U}} d \chi(u) \int_{U^{2}(m)} Q_{g} f(u) d\left(\chi_{m} \otimes \chi_{m}\right)(g), \tag{33.47}\\
& \int_{\mathfrak{U}} f d \chi=\frac{1}{2 \pi} \int_{\mathfrak{U}} d \chi(u) \int_{-\pi}^{\pi} Q_{g(\vartheta)} f(u) d \vartheta \tag{3.48}
\end{align*}
$$

with $g(\vartheta) \in U_{0}^{2}$ or $g(\vartheta) \in U_{j}^{2}(m)$ hold.
Proof. For any $f \in \mathcal{L}_{\chi}^{\infty}$, the function

$$
(u, g) \longmapsto Q_{g} f(u)=f(u . g)
$$

In integrable on the Cartesian product $\mathfrak{U} \times U^{2}(m)$. Applying a standard argument lnsed on the Fubini theorem, we obtain

$$
\begin{aligned}
& \int_{\mathfrak{U}} d \chi(u) \int_{U^{2}(m)} Q_{g} f(u) d\left(\chi_{m} \otimes \chi_{m}\right)(g)= \\
& =\int_{U^{2}(m)} d\left(\chi_{m} \otimes \chi_{m}^{*}\right)(g) \int_{\mathfrak{U}} Q_{g} f(u) d \chi(u)
\end{aligned}
$$

I'his equality yields the required formula (3.47), because the internal integral on the right-hand side is independent of g and

$$
\int_{U^{2}(m)} d\left(\chi_{m} \otimes \chi_{m}\right)=1
$$

III turn, putting instead of $U(m)$ the subgroups U_{0} and $U_{j}(m)$, respectively, we olitain equalities (3.48).
3.3.2. Homogeneous Hilbert-Schmidt polynomials. Consider the countnble orthogonal Hilbertian sum

$$
\mathrm{E}:=\bigoplus_{m \in \mathbb{N}} \mathbb{C}^{m}=\left\{x=\left(x_{m}\right): x_{m} \in \mathbb{C}^{m},\|x\|_{\mathrm{E}}=\left(\sum_{m \in \mathbb{N}}\left\|x_{m}\right\|_{\mathbb{C}^{m}}^{2}\right)^{1 / 2}<\infty\right\}
$$

with the scalar product

$$
\langle x \mid y\rangle_{\mathrm{E}}=\sum_{m \in \mathbb{N}}\left\langle x_{m} \mid y_{m}\right\rangle_{\mathbb{C}^{m}}
$$

Where every coordinate $x_{m} \in \mathbb{C}^{m}$ is identified with its image

$$
\left(0, \ldots, 0, x_{m}, 0, \ldots\right) \in \mathrm{E}
$$

under the embedding $\mathbb{C}^{m} \rightarrow \mathrm{E}$.
As usually, let $\otimes_{\mathfrak{h}}^{n} \mathrm{E}$ stand for the complete nth tensor power of the Hilbert nubspace E, endowed with the Hilbertian norm,

$$
\left\|\psi_{n}\right\|_{\otimes_{n}^{n} \mathrm{E}}=\left\langle\psi_{n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}^{1 / 2}
$$

where $\psi_{n}=\sum_{j} y_{1 j} \otimes \ldots \otimes y_{n j}$ denotes a finite sum with $y_{1 j} \otimes \ldots \otimes y_{n j} \in \otimes_{h}^{n} E$ allil with $\left.x_{t j,}\right\}_{t j} \in \mathrm{E}$ for all $t=1, \ldots, n$. Put $\otimes_{\mathfrak{h}}^{0} \mathrm{E}=\mathbb{C}$.

Replacing the space E by the subspace \mathbb{C}^{m}, we similarly define the tensor producl $\otimes_{h}^{n 1} \mathrm{C}^{\prime \prime \prime}$. There is the unitary embedding

$$
\otimes_{\mathfrak{h}}^{n} \mathbb{C}^{m} \leftrightarrow \otimes_{\mathfrak{h}}^{n} \mathrm{E}
$$

If $m=1$ then $\otimes_{h}^{n} \mathbb{C}=\mathbb{C}$.
For any finite sum $\psi_{n}=\sum_{j} y_{1 j} \otimes \ldots \otimes y_{n j}$ from the space $\otimes_{\mathfrak{h}}^{n} \mathbb{C}^{m}$ (or $\otimes_{\mathfrak{h}}^{n} \mathrm{E}$) wn can to define the finite type n-homogeneous Hilbert-Schmidt polynomials

$$
\begin{equation*}
\mathbb{C}^{m} \ni x \longmapsto\left\langle x^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathbb{C}^{m}}=\sum_{j} \prod_{t=1}^{n}\left\langle x \mid y_{t j}\right\rangle_{\mathbb{C}^{m}} \tag{3.49}
\end{equation*}
$$

Consider the canonical orthonormal bases in \mathbb{C}^{m} and E, respectively,

$$
\begin{aligned}
\mathscr{E}\left(\mathbb{C}^{m}\right) & =\left\{\mathfrak{e}_{m 1}, \ldots, \mathfrak{e}_{m m}\right\} \\
\mathscr{E}(\mathrm{E}) & =\bigcup\left\{\mathscr{E}\left(\mathbb{C}^{m}\right): m \in \mathbb{N}\right\}
\end{aligned}
$$

where $\mathfrak{e}_{m l}=\underbrace{(\overbrace{0, \ldots, 0,1}^{l}, 0, \ldots, 0)}_{m}$.
Also consider the nth symmetric tensor powers $\odot_{h}^{n} \mathbb{C}^{m}$ and $\odot_{h}^{n} \mathrm{E}$. Clearly, $\odot_{h}^{n} \mathbb{C}^{\prime \prime \prime}$ is a closed subspace in $\odot_{\mathfrak{h}}^{n} \mathrm{E}$.

Given a pair of numbers $(m, n) \in \mathbb{N} \times \mathbb{Z}_{+}$, we consider the n-fold tensor power of the canonical mapping $\pi_{m}: \mathfrak{U} \ni u \longmapsto \pi_{m}(u) \in U(m)$,

$$
\begin{equation*}
\mathfrak{U} \ni u \longmapsto \pi_{m}^{\otimes n}(u) \in \mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}\right) \tag{3.50}
\end{equation*}
$$

where

$$
\pi_{m}^{\otimes n}(u):=\underbrace{\pi_{m}(u) \otimes \ldots \otimes \pi_{m}(u)}_{n}
$$

If $n=0$, we put $\pi_{m}^{\otimes 0}(u)=1$ for all $u \in \mathfrak{U}$ and $m \in \mathbb{N}$. The mapping (3.50) is Borll and has a continuous restriction to \mathfrak{U}^{\prime}, because π_{m} has the same property.

Let $\mathfrak{a}_{m} \in \mathbb{C}^{m}$ be an arbitrary fixed element such that $\left\|\mathfrak{a}_{m}\right\| \mathbb{C}^{m}=1$. Then, $\mathfrak{a}_{m}^{\otimes n} \in \odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}$. Using the mapping (3.50), we can write

$$
\left[\pi_{m}^{\otimes n}(u)\right]\left(\mathfrak{a}_{m}^{\otimes n}\right)=\underbrace{\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right) \otimes \ldots \otimes\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right)}_{n} .
$$

To any n-homogeneous Hilbert-Schmidt polynomial (3.49) with $y_{1 j} \otimes \ldots \otimes y_{n j}$ $\otimes_{h}^{n} \mathbb{C}^{m}$, there corresponds the function

$$
\psi_{n}^{*}(u):=\left\langle\left[\pi_{m}^{\otimes n}(u)\right]\left(\mathfrak{a}_{m}^{\otimes n}\right) \mid \psi_{n}\right\rangle_{\otimes_{\mathfrak{h}}^{n} \mathbb{C}^{m}}=\sum_{j} \prod_{t=1}^{n}\left\langle\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right) \mid y_{t j}\right\rangle_{\mathbb{C}^{m}}
$$

of the variable $u \in \mathfrak{U}$. Any cylindrical function of the form

$$
\mathfrak{U} \ni u \longmapsto\left\langle\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right) \mid y_{t j}\right\rangle_{\mathbf{C}^{m}}
$$

lıин a continuous bounded restriction to \mathfrak{U}^{\prime}. Therefore, it is χ-essentially bounded IIII \mathfrak{U}, because $\mathfrak{U} \backslash \mathfrak{U}^{\prime}$ is a χ-negligible set. Consequently, $\psi_{n}^{*} \in L_{\chi}^{\infty}$ and $\left.\psi_{n}^{*}\right|_{\mathfrak{U}^{\prime}}$ is continuous and bounded.

Definition 3.31. We define $\mathscr{P}_{\mathfrak{h}}^{n}\left(\mathbb{C}^{m}\right)$ to be the space of all functions ψ_{n}^{*} of the untrix variable $u \in \mathfrak{U}$, determined by finite type n-homogeneous Hilbert-Schmidt polynomials (3.49).

Lemma 3.32. For any element $\mathfrak{a}_{m} \in \mathbb{C}^{m}$ such that $\left\|\mathfrak{a}_{m}\right\|_{\mathbb{C}^{m}}=1$ the set

$$
\mathrm{S}^{m}=\left\{x=\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right): u \in \mathfrak{U}\right\}
$$

roincides with the unit sphere in \mathbb{C}^{m}. As a consequence, the one-to-one anti-lincur rorrespondence

$$
\begin{equation*}
\odot_{h}^{n} \mathbb{C}^{m} \ni \psi_{n} \rightleftarrows \psi_{n}^{*} \in \mathscr{P}_{\mathfrak{h}}^{n}\left(\mathbb{C}^{m}\right) \tag{3.51}
\end{equation*}
$$

holds, and any function ψ_{n}^{*} is independent of the choice of an elememt $n_{m} \in S^{\prime \prime \prime}$
Proof. Suppose, on the contrary, that there is an element $\psi_{n} \in \bigodot_{5}^{n} \mathbb{C}^{m}$ wuch that $\left\langle x^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{m}}=0$ for all $x=\left[\pi_{m}(u)\right]\left(\mathfrak{a}_{m}\right) \in \mathrm{S}^{m}$ with $u \in \mathfrak{U}$. The mapping

$$
\pi_{m}: \mathfrak{U} \ni u \longmapsto \pi_{m}(u) \in U(m)
$$

In surjective by Lemma 3.24. Hence, the set S^{m} coincides with the unit sphere in C^{m} and is independent on the choice of an element \mathfrak{a}_{m}. By n-homogeneity, we have $\left\langle\mathrm{r}^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{m}}=0$ for all $x \in \mathbb{C}^{m}$.

Similarly as in Theorem 3.13, applying the polarization formula (1.6) for symmetric tensor products, we obtain

$$
\left\langle z_{1} \odot \cdots \odot z_{n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathbb{C}^{m}}=0
$$

for all elements $z_{1}, \ldots, z_{n} \in \mathbb{C}^{m}$. Hence $\psi_{n}=0$, because the subset of all elements $\therefore \odot \cdots \odot z_{n}$ is total in $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}$. As a consequence, the subset

$$
\left\{x^{\otimes n}=\left[\pi_{m}^{\otimes n}(u)\right]\left(\mathfrak{a}_{m}^{\otimes n}\right): u \in \mathfrak{U}\right\}
$$

is also total in $\bigcirc_{h}^{n} \mathbb{C}^{m}$. It immediately yields the correspondence (3.51).
Consider the symmetric Fock space F and its closed subspace F_{m}, where

$$
\begin{aligned}
\mathrm{F} & :=\mathbb{C} \oplus \mathrm{E} \oplus\left(\odot_{\mathfrak{h}}^{2} \mathrm{E}\right) \oplus\left(\odot_{\mathfrak{h}}^{3} \mathrm{E}\right) \oplus \ldots \\
\mathrm{F}_{m} & :=\mathbb{C} \oplus \mathbb{C}^{m} \oplus\left(\odot_{\mathfrak{h}}^{2} \mathbb{C}^{m}\right) \oplus\left(\odot_{\mathfrak{h}}^{3} \mathbb{C}^{m}\right) \oplus \ldots
\end{aligned}
$$

We will use here the following notations:

$$
\begin{aligned}
(m) & :=(m 1, \ldots, m m), & k_{(m)}:=\left(k_{m 1}, \ldots, k_{m m}\right) \in \mathbb{Z}_{+}^{m} \\
\left|k_{(m)}\right| & :=k_{m 1}+\ldots+k_{m m}, & k_{(m)}!:=k_{m 1}!\ldots . k_{m m}!.
\end{aligned}
$$

As is well-known, the system of symmetric tensor elements, indexed by the set $k_{(m)}$,

$$
\mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}\right)=\left\{\mathfrak{e}_{(m)}^{\otimes k_{(m)}}=\mathfrak{e}_{m 1}^{\otimes k_{m 1}} \odot \ldots \odot \mathfrak{c}_{m m}^{\otimes k_{m m}}: k_{(m)} \in \mathbb{Z}_{+}^{m} ;\left|k_{(m)}\right|=n\right\}
$$

forme an orthogonal basis in the subspace $\odot_{\mathfrak{h}}^{n} \mathbb{C}^{m} \subset F_{m}$. We will also use the notationn

$$
\begin{aligned}
& {[m]:=\{(11),(21,22) \ldots,(m 1, \ldots, m m)\},} \\
& \{k\}:=\left\{k_{(1)}, \ldots, k_{(m)}\right\} \in \underset{r=1}{\times} \mathbb{Z}_{+}^{r}, \\
& |\{k\}|:=\left|k_{(1)}\right|+\ldots+\left|k_{(m)}\right|, \\
& \{k\}!:=k_{(1)}!\cdot \ldots \cdot k_{(m)}!.
\end{aligned}
$$

Then, the system of symmetric tensor elements with a fixed n, indexed by the seln [m] and $\{k\}$,

$$
\begin{aligned}
\mathscr{E}_{n} & =\bigcup_{m \in \mathbb{N}}\left\{\mathfrak{e}_{[m]}^{\otimes\{k\}}=\mathfrak{e}_{(1)}^{\otimes k_{(1)}} \otimes \ldots \otimes \mathfrak{e}_{(m)}^{\otimes k_{(m)}}:\right. \\
& \left.\mathfrak{e}_{(1)}^{\otimes k_{(1)}} \in \mathscr{E}\left(\odot_{\mathfrak{h}}^{\left|k_{(1)}\right|} \mathbb{C}\right), \ldots, \mathfrak{e}_{(m)}^{\otimes k_{(m)}} \in \mathscr{E}\left(\odot_{\mathfrak{h}}^{\left|k_{(m)}\right|} \mathbb{C}^{m}\right) ;|\{k\}|=n\right\}
\end{aligned}
$$

forms an orthogonal basis in the subspace $\odot_{\mathfrak{h}}^{n} \mathrm{E} \subset \mathrm{F}$. Thus, the system

$$
\mathscr{E}=\left\{\mathscr{E}_{n}: n \in \mathbb{Z}_{+}\right\}
$$

forms an orthogonal basis in the symmetric Fock space F.
By virtue of the one-to-one mapping (3.51), the system of symmetric tensor eloments $\mathscr{E}\left(\odot_{\mathfrak{h}}^{n} \mathbb{C}^{m}\right)$ uniquely defines the following corresponding system:

$$
\mathscr{E}_{m, n}^{*} \subset \mathscr{P}_{h}^{n}\left(\mathbb{C}^{m}\right)
$$

of χ_{m}-integrable cylindrical functions

$$
\begin{align*}
\mathfrak{e}_{(m)}^{* k_{(m)}}(u) & :=\left\langle\left[\pi_{m}^{\otimes n}(u)\right]\left(\mathfrak{e}_{m 1}^{\otimes n}\right) \mid \mathfrak{e}_{(m)}^{\otimes k_{(m)}}\right\rangle_{\bigotimes_{b}^{n} \mathrm{C}^{m}} \\
& =\prod_{r=1}^{m}\left\langle\left(\pi_{m} \circ u\right)\left(\mathfrak{e}_{m 1}\right) \mid \mathfrak{e}_{m r}\right\rangle_{\mathbb{C}^{m}}^{k_{m r}} \tag{3.52}
\end{align*}
$$

of the variable $u \in \mathfrak{U}$, where we take

$$
\mathfrak{a}_{m}=\mathfrak{e}_{m 1} .
$$

Consider the system of functions of the variable $u \in \mathfrak{U}$,

$$
\begin{aligned}
\mathscr{E}_{n}^{*}= & \bigcup_{m \in \mathbb{N}}\left\{\mathfrak{e}_{[m]}^{*(k\}}=e_{(1)}^{* k_{(1)}} \cdot \ldots \cdot \mathfrak{c}_{(m)}^{* k_{(m)}}:\right. \\
& \left.\mathfrak{e}_{(1)}^{* k_{(1)}} \in \mathscr{E}_{1,\left|k_{(1)}\right|}^{*}, \ldots, e_{(m)}^{* k_{(m)}} \in \mathscr{E}_{m,\left|k_{(m)}\right|}^{*} \text { with fixed }|\{k\}|=n\right\},
\end{aligned}
$$

generated by the system of symmetric tensor elements \mathscr{E}_{n}. All these functions belonig to the space $\mathcal{L}_{\chi}^{\infty}$ by their definition. Denote

$$
\mathscr{E}^{*}=\left\{\mathscr{E}_{n}^{*}: n \in \mathbb{Z}_{+}\right\}, \quad \mathscr{E}_{m}^{*}=\left\{\mathscr{E}_{m, n}^{*}: n \in \mathbb{Z}_{+}\right\}
$$

3.3.3. Hardy-type space. Let L_{x}^{2} be the space of square χ-integrable complим functions f defined on the space of virtual matrices \mathfrak{U}. Since χ is a probibility mensure, the embedding $\mathcal{L}_{\chi}^{\infty} \subset L_{\chi}^{2}$ holds and

$$
\|f\|_{L_{x}^{2}} \leq \underset{u \in \mathfrak{H}}{\operatorname{ess} \sup }|f(u)|, \quad f \in \mathcal{L}_{x}^{\infty}
$$

Lemma 3.33 ($\left[88\right.$, Theorem 5.6.8]). The space $\mathcal{H}_{\chi_{m}}^{2}$ is isomompitac to the clusaí Ilardy space $\mathcal{H}_{\chi_{m}}^{2}\left(\mathrm{~B}^{m}\right)$ of analytic complex functions on the open unil bull

$$
\mathrm{B}^{m}=\left\{x_{m} \in \mathbb{C}^{m}:\left\|x_{m}\right\|_{\mathbf{C}^{m}}<1\right\}
$$

Definition 3.34. The Hardy-type space \mathcal{H}_{χ}^{2} on the npmed of virtunl uniliury matrices \mathfrak{U} is defined to be the L_{χ}^{2}-closure of the complex linemr mpmot of system of cylindrical functions \mathscr{E}^{*}.

Theorem 3.35. The system \mathscr{E}^{*} of all cylindrical functions

$$
\boldsymbol{c}_{[m]}^{*\{k\}}=\dot{e}_{(1)}^{* k_{(1)}} \cdot \ldots \cdot \mathfrak{e}_{(m)}^{* k_{(m)}}
$$

with $m \in \mathbb{N}$, such that $\mathfrak{e}_{(r)}^{* k_{(r)}} \in \mathscr{E}_{r,\left|k_{(r)}\right|}^{*}$ as $r=1, \ldots, m$, forms an orthogonal basis in the Hardy-type spaces $\mathcal{H}_{\underset{\chi}{2}}^{2}$ with norms

$$
\left\|e_{[m]}^{*\{k\}}\right\|_{L_{x}^{2}}=\left(\prod_{r=1}^{m} \frac{(r-1)!(k)_{r}!}{\left(r-1+\left|(k)_{r}\right|\right)!}\right)^{1 / 2} .
$$

Proof. If $|\{k\}| \neq|\{q\}|$, then from (3.55) it follows

$$
\begin{aligned}
\int_{\mathfrak{U}} \mathfrak{e}_{[m]}^{*\{k\}} \cdot \overline{\mathfrak{e}}_{[n]}^{*\{q\}} d \chi & =\int_{\mathfrak{U}} \mathfrak{e}_{[m]}^{*\{k\}}(\exp (\mathfrak{i} \vartheta) u) \cdot \overrightarrow{\mathfrak{e}}_{[n]}^{\{q\}}(\exp (\mathfrak{i} \vartheta) u) d \chi(u) \\
& =\frac{1}{2 \pi} \int_{\mathfrak{U}} \mathfrak{e}_{[m]}^{*\{k\}} \cdot \overline{\mathfrak{e}}_{[n]}^{*\{q\}} d \chi \int_{-\pi}^{\pi} \exp (\mathfrak{i}(|\{k\}|-|\{q\}|) \vartheta) d \vartheta=0
\end{aligned}
$$

So, $\mathrm{e}_{[m]}^{*\{k\}} \perp \mathrm{e}_{[n]}^{*\{q\}}$ in the space L_{χ}^{2} if $|\{k\}| \neq|\{q\}|$ for all indices $[m],[n]$.
Let $|\{k\}|=|\{q\}|$ and $m>n$ for definiteness. If the elements $c_{[m]}^{*(k)}$ and $\varepsilon_{[n]}^{*\{(a)}$ ure different, then there exists a sub-index

$$
m s \in\{11,21,22, \ldots, m 1, \ldots, m m\}
$$

in the block-index $[m]=[(11),(21,22), \ldots,(m 1, \ldots, m m)]$ such that

$$
m s \notin\{11,21,22, \ldots, n 1, \ldots, n n\}
$$

where $[n]=[(11),(21,22) \ldots,(n 1, \ldots, n n)]$. The formula (3.48) implies that for the kroup of shifts $Q_{g_{m s}(\vartheta)}$ generated by elements $g_{m s}(\vartheta) \in U_{s}^{2}(m)$ with the sub-index ms,

$$
\begin{aligned}
\int_{\mathfrak{U}} \mathrm{e}_{[m]}^{*\{k\}} \cdot \overline{\mathrm{e}}_{[n]}^{*\{q\}} d \chi & =\int_{\mathfrak{U}} Q_{g_{m s}(\vartheta)} \mathrm{e}_{[m]}^{*\{k\}} \cdot Q_{g_{m a}(\vartheta)} \overline{\mathrm{e}}_{[n]}^{*\{q\}} d \chi \\
& =\frac{1}{2 \pi} \int_{\mathfrak{U}} \stackrel{\mathrm{e}}{[m]}_{*[k\}}^{[k]} \cdot \overrightarrow{\mathrm{e}}_{[n]}^{*\{q\}} d \chi \int_{-\pi}^{\pi} \exp \left(\mathrm{i} k_{m s} \vartheta\right) d \vartheta=0 .
\end{aligned}
$$

Hence, $\mathfrak{e}_{[m]}^{*\{k\}} \perp \mathfrak{e}_{[n]}^{*\{q\}}$ in L_{χ}^{2}.
Let now $|\{k\}|=|\{q\}|$ and $m=n$. If $\mathrm{e}_{[m]}^{*\{k\}} \neq \mathrm{e}_{[n]}^{*\{q\}}$, then $\{k\} \neq\{q\}$. Hence, thern exists r sub-index $r s$ in the block-index $[m]=[n]$ such that $k_{r s} \neq q_{r s}$. Similarly as previous mentioned, applying the formula (3.48) to the group of shifts $Q_{g_{r s}(i)}$ generated by elements $g_{r s}(\vartheta) \in U_{s}^{2}(r)$ with the sub-index $r s$, we get

$$
\int_{\mathfrak{U}} \mathfrak{e}_{[m]}^{*\{k\}} \cdot \overline{\mathfrak{e}}_{[n]}^{*}\{q\} \quad d \chi=\frac{1}{2 \pi} \int_{\mathfrak{U}} \mathfrak{e}_{[m]}^{*\{k\}} \cdot \vec{e}_{[n]}^{*\{q\}} d \chi \int_{-\pi}^{\pi} \exp \left(\mathfrak{i}\left(k_{r s}-q_{r s}\right) \vartheta\right) d \vartheta=0 .
$$

Let $g_{r}=\left(\mathbb{1}_{r}, w_{r}\right) \in U^{2}(r)$ and $u \in \mathfrak{U}$. Using (3.42) and (3.52), we have

$$
\begin{aligned}
& \int_{U^{2}(r)} Q_{g_{r}} \mid{ }_{\left.e_{(r)}^{*(k)_{r}}\right|^{2}(u) d\left(\chi_{r} \otimes \chi_{r}\right)\left(g_{r}\right)=}^{=\int_{U(r)} \prod_{l=1}^{r}\left|\left\langle\left[w_{r}^{-1} \pi_{r}(u)\right]\left(\mathfrak{e}_{r 1}\right) \mid \mathfrak{e}_{r l}\right\rangle_{\mathbf{C}^{r}}^{k_{r l}}\right|^{2} d \chi_{r}\left(w_{r}\right)}
\end{aligned}
$$

However, the previous integral with the Haar measure χ_{r} is independent of elementm $\pi_{r}(u) \in U(r)$. It follows that

$$
\begin{aligned}
\int_{U^{2}(r)} Q_{g_{r}}\left|e_{(r)}^{*(k)_{r}}\right|^{2}(u) d\left(\chi_{r} \otimes \chi_{r}\right)\left(g_{r}\right) & =\int_{U(r)} \prod_{l=1}^{r}\left|\left\langle w_{r}^{-1}\left(\mathfrak{e}_{r 1}\right) \mid \mathfrak{e}_{r l}\right\rangle_{\mathbb{C}^{r}}^{k_{r l}}\right|^{2} d \chi_{r}\left(w_{r}\right) \\
& =\frac{(r-1)!(k)_{r}!}{\left(r-1+\left|(k)_{r}\right|\right)!}=\left\|\mathfrak{e}_{(r)}^{*(k)_{r}}\right\|_{L_{\chi_{r}}^{2}}^{2}
\end{aligned}
$$

by the well-known formula [88, 1.4.9]. Using the formula (3.47) m-times for $r=$ $1, \ldots, m$, we get

$$
\begin{aligned}
\int_{\mathfrak{U}}\left|\mathfrak{e}_{[m]}^{*\{k\}}\right|^{2} d \chi & =\int_{\mathfrak{U}} d \chi(u) \prod_{r=1}^{m} \int_{U^{2}(r)} Q_{g_{r}}\left|e_{(r)}^{*(k)_{r}}\right|^{2}(u) d\left(\chi_{r} \otimes \chi_{r}\right)\left(g_{r}\right) \\
& =\prod_{r=1}^{m}\| \|^{* k_{(r)}}(r) \|_{L_{\chi_{r}}^{2}}^{2},
\end{aligned}
$$

because $\int_{\mathfrak{U}} d \chi=1$. It follows that

$$
\left\|e_{[m]}^{*\{k\}}\right\|_{L_{\chi}^{2}}^{2}=\prod_{r=1}^{m}\| \|_{(r)}^{* k_{(r)}} \|_{L_{\chi_{r}}^{2}}^{2}=\prod_{r=1}^{m} \frac{(r-1)!(k)_{r}!}{\left(r-1+\left|(k)_{r}\right|\right)!}
$$

for all basic elements $\mathbb{e}_{[m]}^{*\{k\}}=\boldsymbol{e}_{(1)}^{* k_{(m)}} \cdot \ldots \cdot \mathfrak{e}_{(m)}^{* k_{(m)}}$.
As is known, the system \mathscr{E}_{m} of symmetric tensors $\boldsymbol{e}_{(m)}^{\otimes(k)_{m}}$ with a fixed m formin an orthogonal basis in the space F_{m} with norms

$$
\left\|\mathrm{e}_{(m)}^{\otimes(k)_{m}}\right\|_{\mathrm{F}_{m}}=\left(\frac{(k)_{m}!}{\left|(k)_{m}\right|!}\right)^{1 / 2}
$$

Mimilarly, the system \mathscr{E} of all symmetric tensors

$$
\mathbf{e}_{[m]}^{\otimes\{k\}}=\hat{\varepsilon}_{(1)}^{\otimes(k)_{1}} \odot \ldots \odot \varepsilon_{(m)}^{\otimes k_{(m)}}
$$

with all $m \in \mathbb{N}$, such that $\mathfrak{e}_{(r)}^{\otimes(k)_{r}} \in \mathscr{E}_{r,\left|(k)_{r}\right|}$ as $r=1, \ldots, m$, forms an orthogomal luwis in the symmetric Fock space F with norms

$$
\left\|e_{[m]}^{\otimes\{k\}}\right\|_{F}=\left(\frac{\{k\}!}{|\{k\}|!}\right)^{1 / 2}
$$

Combining Lemmas $3.32-3.33$ and Theorems 3.35 , we obtain the followlngs
ThEOREM 3.36. Anti-linear extensions of the one-to-one. mappinge lefuren unlionormal bases

$$
\begin{aligned}
& \frac{\mathfrak{e}_{(m)}^{\otimes(k)_{m}}}{\left\|\boldsymbol{e}_{(m)}^{\otimes(k)_{m}}\right\|_{\boldsymbol{F}_{m}}} \rightleftarrows \frac{\boldsymbol{e}_{(m)}^{*(k)_{m}}}{\left\|\boldsymbol{e}_{(m)}^{*(k)_{m}}\right\|_{L_{X m}^{2}}}, \\
& \frac{\mathbf{e}_{[m]}^{\otimes\{k\}}}{\left\|\boldsymbol{e}_{[m]}^{\otimes\{k]}\right\|_{F}} \rightleftarrows \frac{\boldsymbol{e}_{[m]}^{*\{k\}}}{\left\|\boldsymbol{e}_{[m]}^{*\{k\}}\right\|_{L_{X}^{2}}}
\end{aligned}
$$

uniquely define the corresponding antt-linear isometric isomorphisms

$$
\mathrm{F}_{m} \simeq \mathcal{H}_{\chi_{m}}^{2}\left(\mathrm{~B}^{m}\right), \quad \mathrm{F} \simeq \mathcal{H}_{\chi}^{2}
$$

Theorem directly implies several corollaries. From (3.41) and (3.52) it follows that

$$
\left\|e^{*(k)}(k)\right\|_{L_{X m}^{2}}^{2}=\int_{U(m)}\left|e_{(m)}^{*(k)} \circ \pi_{m}^{-1}\right|^{2} d \chi_{m}=\int_{\mathfrak{U}}\left|\mathfrak{e}_{(m)}^{*(k)}\right|^{2} d \chi=\left\|\mathbb{e}_{(m)}^{\left.*(k)_{m}\right)}\right\|_{L_{\chi}^{2}}^{2} .
$$

Hence, the following isometrical embeddings

$$
\mathcal{H}_{\chi_{m}}^{2}\left(\mathrm{~B}^{m}\right) \leftrightarrow \mathcal{H}_{\chi}^{2}, \quad \bigoplus_{m \in \mathrm{~N}} \mathcal{H}_{\chi_{m}}^{2}\left(\mathrm{~B}^{m}\right) \leftrightarrow \mathcal{H}_{\chi}^{2}
$$

hold.
Reasoning by analogy with the proof of Theorem 3.10, it is easy to show that the Ilardy space \mathcal{H}_{x}^{2} possesses the reproducing kernel of a Cauchy type

$$
\begin{aligned}
\mathfrak{C}(v, u) & =\sum_{n \in \mathbb{Z}_{+}} \sum_{|\{k\}|=n} \frac{\mathfrak{e}_{[m]}^{*\{k\}}(v) \overline{\mathfrak{e}}_{[m]}^{*\{k\}}(u)}{\left\|\mathfrak{e}_{[m]}^{*\{k\}}\right\|_{L_{X}^{2}}^{2}} \\
& =\prod_{m=1}^{\infty}\left(1-\left\langle\left(\pi_{m} \circ v\right)\left(\mathfrak{e}_{m 1}\right) \mid\left(\pi_{m} \circ u\right)\left(\mathfrak{e}_{m 1}\right)\right\rangle_{\mathbf{E}}\right)^{-m}
\end{aligned}
$$

with $u, v \in \mathfrak{l}$, where the sum $\sum_{|\{k\}|=n}$ is over all indices

$$
\{k\} \in\left\{\underset{r=1}{\mathrm{X}} \mathbb{Z}_{+}^{r}: m \in \mathbb{N}\right\}
$$

such that $|\{k\}|=n$. As a consequence, the integral representation of any function $f \in \mathcal{H}_{x}^{2}$,

$$
f(\lambda v)=\int_{\mathfrak{U}} f(u) \mathfrak{C}(\lambda v, u) d \chi(u)
$$

gives a unique analytic extension in the complex variable $\lambda \in \mathrm{B}^{1}$ for all elementm $v \in \mathfrak{U}$ such that

$$
\sum_{m \in \mathbb{N}} m\left\|\left(\pi_{m} \circ v\right)\left(\mathfrak{e}_{m 1}\right)\right\|_{\mathbb{C}^{m}}^{2}<\infty
$$

Moreover, there exists the isomorphism

$$
\mathcal{H}_{\chi}^{2} \ni\{f(u): u \in \mathfrak{U}\} \in \longmapsto\left\{f_{\lambda}(v): v \in \mathfrak{U}\right\} \in \mathcal{H}_{\chi}^{2}\left(\mathrm{~B}^{1}\right)
$$

for all $\lambda \in \mathrm{B}^{1}$ and elements $v \in \mathfrak{U}$ such that

$$
\sum_{m \in \mathbb{N}} m\left\|\left(\pi_{m} \circ v\right)\left(\mathfrak{e}_{m 1}\right)\right\|_{\mathbb{C}^{m}}^{2}<\infty
$$

3.4. Hardy spaces on irreducible orbits of locally compact groupn

3.4.1. Polynomial orthogonal systems on irreducible orbits. Let E stanil for a complex separable Hilbert space and let \mathcal{G} stand for a locally compact seconil countable group. Suppose that there exists a unitary representation

$$
U: \mathcal{G} \ni x \longmapsto U_{x} \in \mathcal{L}^{0}(\mathrm{E})
$$

which is weakly continuous.
Fix an element $\hbar \in E$ with $\|\hbar\|_{\mathbf{E}}=1$ and consider its orbit

$$
\mathrm{G}:=\left\{U_{x} \hbar=\zeta \in \mathrm{E}: x \in \mathcal{G}\right\}
$$

which as a topological space we identify with the factor-space $\mathcal{G} / \mathcal{G}_{\hbar}$, where \mathcal{G}_{\hbar} : : $\left\{v \in \mathcal{G}: U_{v} \hbar=\hbar\right\}$. The closed unit ball in E endowed with the weak topology, wi will denote by K . The weak continuity of U implies that the embedding $G \rightarrow \rightarrow \mathrm{~K} \mathrm{~m}$ continuous. Further we denote by $C(\mathrm{~K})$ the uniform algebra of continuous complex functions on K.

Recall that a measure χ on the orbit G is \mathcal{G}-invariant if for any $x \in \mathcal{G}$ its shff $\chi \circ U_{x^{-1}}$ is equal to χ, i.e., if

$$
\begin{equation*}
\int_{G} f(\zeta) d \chi\left(U_{x^{-1}} \zeta\right)=\int_{G}\left(f \circ U_{x}\right)(\zeta) d \chi(\zeta)=\int_{G} f(\zeta) d \chi(\zeta) \tag{3.53}
\end{equation*}
$$

for all $x \in \mathcal{G}$ and χ-integrable complex function f on G . As is well known (see [66]|), for any locally compact second countable group \mathcal{G} an invariant measure χ on an orbit G exists and the equality

$$
\begin{equation*}
\int_{G} d \chi\left(U_{x} \hbar\right) \int_{\mathcal{G}_{n}} \varphi(x v) d v=\int_{\mathcal{G}} \varphi(x) d x \tag{3.54}
\end{equation*}
$$

uniquely connects it with a Haar measure $d x$ on \mathcal{G}. Here φ is any integrable complun function on \mathcal{G} and $d v$ denotes a Haar measure on \mathcal{G}_{\hbar}. Clearly, the choice of a $\dot{\cup}$. invariant measure χ on G depends on the element $\hbar \in S$.

In what follows we suppose that an element $\hbar \in S$ and the corresponding \mathcal{G} livariant measure χ on its orbit G are fixed, and that the representation codomain $\|_{0}$ of a group \mathcal{G} contains the complex cyclic subgroup \mathbb{T}. Let L_{x}^{2} stand for the Hilbert space of all quadratically χ-integrable complex functions on the orbit G.

First we recall an auxiliary integral formulas which follow from Fubini's theorem und our assumptions about the group. Namely, if χ is a \mathcal{G}-invariant messure on G Hen the equalities

$$
\begin{equation*}
\int_{G} f d \chi=\frac{1}{2 \pi} \int_{G} d \chi(\zeta) \int_{-\pi}^{\pi} f\left(e^{i \vartheta} \zeta\right) d \vartheta, \quad \int_{G} \zeta d \chi(\zeta)=0 \tag{3.55}
\end{equation*}
$$

with χ-integrable complex function f on G hold.
As previously, $\otimes_{\mathfrak{h}}^{n} \mathrm{E}$ and $\odot_{h}^{n} \mathrm{E},(n \in \mathbb{N})$ denote the complete nth tonnor nul symmetric tensor Hilbertian power of E, respectively. The corresponding nymmerio Fock space is defined to be $F=\mathbb{C} \oplus E \oplus\left(\odot_{h}^{2} \mathrm{E}\right) \oplus\left(\odot_{h}^{3} \mathrm{E}\right) \oplus \ldots$ We use

$$
E^{*}=\left\{\zeta^{*}:=\langle\cdot \mid \zeta\rangle_{E}: \zeta \in E\right\}
$$

10) denote the Hermitian dual space for E. Recall the isometries $\left(\Theta_{h}^{n} E\right)^{\circ}=\Theta_{h}^{n} E^{*}$ and $\left(\odot_{h}^{n} \mathrm{E}\right)^{*}=\odot_{h}^{n} \mathrm{E}^{*}$. So, for every element $\psi_{n} \in \odot_{h}^{n} \mathrm{E}$ uniquely assists the functional $\psi_{n}^{*}:=\left\langle\cdot \mid \psi_{n}\right\rangle_{\mathrm{F}}$ belonging to $\odot_{\mathfrak{h}}^{n} \mathrm{E}^{*}$, which further we identify with the n-homogeneous Hilbert-Schmidt polynomial

$$
\psi_{n}^{*}: \mathrm{E} \ni \xi \longmapsto \psi_{n}^{*}(\xi):=\left\langle\xi^{\otimes n} \mid \psi_{n}\right\rangle_{\mathrm{F}}
$$

For each n-homogeneous polynomial ψ_{n}^{*} with $\psi_{n} \in \odot_{h}^{n} \mathrm{E}$ we assign the polynomial function

$$
\hbar_{n}\left[\psi_{n}\right](\zeta)=\delta_{\zeta}\left(\psi_{n}^{*}\right)
$$

of the variable $\zeta=U_{x} \hbar$ with $x \in \mathcal{G}$, generated on the orbit G by all \mathcal{G}-shifts of the proint evaluation character

$$
\delta_{\hbar}\left(\psi_{n}^{*}\right)=\psi_{n}^{*}(\hbar)
$$

In this section let \mathcal{H}_{χ}^{2} denote the closure in the space L_{χ}^{2} of all Hilbert-Schmidt polynomials over E and call the Hardy type space on the orbit G.

Theorem 3.37. Let an element $\hbar \in \mathrm{S}$ be fixed in such way that the antilinear operators

$$
\hbar_{n}: \odot_{\mathfrak{h}}^{n} \mathrm{E} \ni \psi_{n} \longmapsto \hbar_{n}\left[\psi_{n}\right] \in L_{\chi}^{2}, \quad(n \in \mathbb{N})
$$

are well defined and have the bounded norm $\left\|\hbar_{n}\right\|=\left\|\hbar_{n}\right\|_{\mathscr{L}\left(\odot_{h}^{n}, L_{x}^{2}\right)}$, and let

$$
\mathrm{E}_{\mathfrak{h}}^{n}:=\odot_{\mathfrak{h}}^{n} \mathrm{E} \ominus \operatorname{ker} \hbar_{n}, \quad \mathrm{~F}_{\mathfrak{h}}:=\mathbb{C} \oplus \mathrm{E}_{\mathfrak{h}}^{1} \oplus \mathrm{E}_{\mathrm{h}}^{2} \oplus \mathrm{E}_{\mathfrak{h}}^{3} \oplus \ldots
$$

Then:
(i) the corresponding restricted mapping

$$
\hat{\hbar}_{n}: E_{h}^{n} \ni \psi_{n} \longmapsto \hat{\psi}_{n}:=\widehat{\hbar}_{n}\left[\psi_{n}\right] \in L_{\chi}^{2}, \quad \hat{\hbar}_{n}:=\frac{\hbar_{n}}{\left\|\hbar_{n}\right\|}
$$

is an isometry between the subspace E_{h}^{n} and its image $\mathcal{H}_{n}^{2}:=\hat{\hbar}_{n}\left(\mathrm{E}_{h}^{n}\right)$, so

$$
\begin{equation*}
\int_{\mathrm{G}} \hat{\psi}_{n} \overline{\hat{\omega}}_{n} d \chi=\left\langle\omega_{n} \mid \psi_{n}\right\rangle_{\mathrm{F}}, \quad \psi_{n}, \omega_{n} \in \mathrm{E}_{h}^{n} \tag{3.56}
\end{equation*}
$$

(ii) the antilinear mapping

$$
\begin{equation*}
\hat{\hbar}: \mathrm{F}_{\mathrm{h}} \ni \psi=\sum_{n \in \mathbf{Z}_{+}} \psi_{n} \longmapsto \hat{\psi}:=\sum_{n \in \mathbf{Z}_{+}} \hat{\hbar}_{n}\left[\psi_{n}\right] \in \mathcal{H}_{\chi}^{2}, \quad \hat{\hbar}:=\left(\hat{\hbar}_{n}\right) \tag{3.57}
\end{equation*}
$$

where $\hat{\psi}_{0}=\bar{\psi}_{0}$ with $\psi_{0} \in \mathbb{C}$, is an isometry between the subspace F_{h} and its image $\mathcal{H}_{\chi}^{2}:=\widehat{\hbar}\left(\mathbf{F}_{\mathfrak{h}}\right)$, so

$$
\begin{equation*}
\int_{G} \widehat{\psi} \overline{\hat{\omega}} d \chi=\langle\omega \mid \psi\rangle_{F}, \quad \psi, \omega \in \mathrm{~F}_{\mathfrak{h}} \tag{3.58}
\end{equation*}
$$

(iii) the following orthogonal decomposition holds:

$$
\mathcal{H}_{\chi}^{2}=\mathbb{C} \oplus \mathcal{H}_{1}^{2} \nrightarrow \mathcal{H}_{2}^{2} \oplus \mathcal{H}_{3}^{2} \oplus \ldots
$$

Proof. Due to boundedness of \hbar_{n} the following integral

$$
\int_{G} \hbar_{n}\left[\psi_{n}\right] \overline{\hbar_{n}\left[\omega_{n}\right]} d \chi=\int_{J_{G}}\left(\psi_{n}^{*} \circ U_{x}\right)(\hbar) \overline{\left(\omega_{n}^{*} \circ U_{x}\right)}(\hbar) d \chi\left(U_{x} \hbar\right)
$$

is an Hermitian continuous form on the Hilbert space $\odot_{\mathfrak{h}}^{n} E$, which is antilinear loy $\psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$ and linear by $\omega_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$. Therefore, there exists a bounded positive linent operator $A_{n} \in \mathscr{L}\left(\odot_{h}^{n} \mathrm{E}\right)$ for which

$$
\begin{equation*}
\left\langle\omega_{n} \mid A_{n} \psi_{n}\right\rangle_{\mathrm{F}}=\int_{\mathrm{G}} \hbar_{n}\left[\psi_{n}\right] \overline{\hbar_{n}\left[\omega_{n}\right]} d \chi \tag{3.59}
\end{equation*}
$$

Similarly as in the proof of Theorem 3.13 from the \mathcal{G}-invariance properties (3.53) If follows that A_{n} commutates with all diagonal unitary representations of the for"m $\left\{U_{y}^{\otimes n} \in \mathscr{L}\left(\odot_{\mathfrak{h}}^{n} \mathrm{E}\right): y \in \mathcal{G}\right\}$, i.e., the equality

$$
A_{n} \circ U_{y}^{\otimes n}=U_{y}^{\otimes n} \circ A_{n}, \quad y \in \mathcal{G}
$$

holds, where $U_{y}^{\otimes n}=U_{y} \otimes \ldots \otimes U_{y}$ denotes the nth tensor power. In fact, we have

$$
\begin{aligned}
& \left\langle\omega_{n} \mid\left(A_{n} \circ U_{y}^{\otimes n}\right) \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}}= \\
& =\int_{\mathbf{G}}\left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid U_{y}^{\otimes n} \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}} \overline{\left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid \omega_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}}} d \chi\left(U_{x} \hbar\right)
\end{aligned}
$$

The \mathcal{G}-invariancy of the measure χ on G implies that

$$
\begin{aligned}
& \int_{G}\left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid U_{y}^{\otimes n} \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}} \overline{\left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid \omega_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}} d \chi\left(U_{x} \hbar\right)=} \\
& =\int_{G}\left\langle\left(U_{y^{-1} x} \hbar\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}} \overline{\left\langle\left(U_{y^{-1} x} \hbar\right)^{\otimes n} \mid U_{y^{-1}}^{\otimes n} \omega_{n}\right\rangle} \\
& =\int_{\otimes_{\mathrm{G}}^{n} \mathrm{E}} d \chi\left(U_{x} \hbar\right) \\
& \left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}} \overline{\left\langle\left(U_{x} \hbar\right)^{\otimes n} \mid U_{y^{-1}}^{\otimes n} \omega_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}} d \chi\left(U_{x} \hbar\right) .
\end{aligned}
$$

As a result, we obtain

$$
\left\langle\omega_{n} \mid\left(A_{n} \circ U_{y}^{\otimes n}\right) \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}=\left\langle U_{y^{-1}}^{\otimes n} \omega_{n} \mid A_{n} \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}=\left\langle\omega_{n} \mid\left(U_{y}^{\otimes n} \circ A_{n}\right) \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}
$$

On the other hand, for any $n \in \mathbb{N}$ the set $\left\{\left(U_{x} \hbar\right)^{\otimes n}: x \in \mathcal{G}\right\}$ is total in How subspace $\mathrm{E}_{\mathfrak{h}}^{n}$ under its definition. Hence, the corresponding representations $U_{y}^{\otimes n}$ ure

Irruducible over E_{h}^{n}. By the well-known Schur property [51, Theorem 21.30] the rentriction $\left.A_{n}\right|_{E_{h}^{n}}$ is proportional to the identity operator $\mathbf{1}_{\mathrm{E}_{b}^{n}}$ on $\mathrm{E}_{\mathrm{h}}^{n}$, i.e.,

$$
\left.A_{n}\right|_{\mathrm{E}_{b}^{n}}=\aleph_{n}^{-2} 1_{\mathrm{E}_{b}^{n}}
$$

for a constant $\aleph_{n}^{2} \in \mathbb{C}$. Hence, we can rewrite (3.59) as follows

$$
\begin{equation*}
\left\langle\omega_{n} \mid \psi_{n}\right\rangle_{\mathrm{F}}=\aleph_{n}^{2} \int_{\mathrm{G}} \hbar_{n}\left[\psi_{n}\right] \overline{\hbar_{n}\left[\omega_{n}\right]} d \chi, \quad \psi_{n}, \omega_{n} \in \mathrm{E}_{h}^{n} \tag{3.60}
\end{equation*}
$$

This yields in particular the equalities

$$
\left\|\hbar_{n}\right\|=\sup _{\left\|\psi_{n}\right\|_{\odot_{n}^{n} \mathrm{E}}=1}\left\|\hbar_{n}\left[\psi_{n}\right]\right\|_{L_{\chi}^{2}}=\frac{1}{\aleph_{n}^{\prime}}
$$

By formula (3.55), we obtain

$$
\int_{G} \widehat{\psi}_{n} \overline{\hat{\omega}}_{m} d \chi=\frac{1}{2 \pi} \int_{G} \hat{\psi}_{n} \overline{\hat{\omega}}_{m} d \chi \int_{-\pi}^{\pi} e^{\mathrm{i}(n-m) \vartheta} d \vartheta=\left\{\begin{array}{c:c}
0 & n \neq m \\
\left\langle\omega_{n} \mid \psi_{n_{n}}\right\rangle_{F} & n=1 \prime \prime
\end{array}\right.
$$

for any $\psi_{n} \in \mathrm{E}_{h}^{n}$ and $\omega_{m} \in \mathrm{E}_{h}^{m}$. Hence, $\hat{\psi}_{n} \perp \hat{\omega}_{m}$ in L_{x}^{2} if $n \neq m$. Tlum, The orthogonal decomposition (iii) holds.

Now we will analyze two important cases where operators \hbar_{n} are bounded.
First consider the case when $\mathrm{E}=L_{\mu}^{2}(\mathcal{Q})$ is the Lebesgue space of quadrutidally Integrable complex functions on a measure space (\mathcal{Q}, μ) with a positive memsure $\boldsymbol{\mu}$,

Proposition 3.38. Let $\mathrm{E}=L_{\mu}^{2}(\mathcal{Q})$ be a Hilbert space of quadratically integruble complex functions on a measure space (\mathcal{Q}, μ) and the element $\hbar \in S$ satisfies the condition

$$
\begin{equation*}
c_{n}=\underset{y_{1}, \ldots, y_{n} \in \mathcal{Q}}{\operatorname{ess} \sup _{\mathscr{G}}} \int_{i=1} \prod_{i=1}^{n}\left|U_{\mathrm{g}} \hbar\left(\mathrm{y}_{i}\right)\right|^{2} d \chi\left(U_{\mathrm{g}} \hbar\right)<\infty, \quad n \in \mathbb{N} \tag{3.61}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\left|\int_{\mathfrak{G}}\left(\psi_{n}^{*} \circ U_{\mathrm{g}}\right)(\hbar) \overline{\left(\omega_{n}^{*} \circ U_{\mathrm{g}}\right)}(\hbar) d \chi\left(U_{\mathrm{g}} \hbar\right)\right| \leq c_{n}\left\|\psi_{n}\right\|_{\otimes_{\mathrm{g}}^{n} \mathrm{E}}\left\|\omega_{n}\right\|_{\otimes_{n}^{n} \mathrm{E}} \tag{3.62}
\end{equation*}
$$

holds for all $\psi_{n}, \omega_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$.
Proof. Let $\mathbf{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right), \mathbf{z}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{n}\right) \in \mathcal{Q}^{n}$, where $\mathcal{Q}^{n}:=\mathcal{Q} \times \ldots \times \mathcal{Q}$. Due Fubini's theorem and Schwarz's inequality, we have

$$
\begin{aligned}
& \left|\int_{\mathcal{B}}\left\langle\left(U_{\mathrm{g}} \hbar\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\odot_{\mathfrak{h}}^{n}} \overline{\left\langle\left(U_{\mathrm{g}} \hbar\right)^{\otimes n} \mid \omega_{n}\right\rangle_{\bigodot_{\mathfrak{h}}^{n} \mathrm{E}}} d \chi\left(U_{\mathrm{g}} \hbar\right)\right| \leq \\
& \leq \int_{\mathscr{C}} d \chi\left(U_{\mathrm{g}} \hbar\right) \int_{\mathcal{Q}^{n}} \prod_{i=1}^{n}\left|U_{\mathrm{g}} \hbar\left(\mathrm{y}_{i}\right) \overline{U_{\mathrm{g}} \hbar}\left(\mathbf{z}_{i}\right) \psi_{n}(\mathbf{y}) \bar{\omega}(\mathbf{z})\right| \prod_{i=1}^{n} d \mu\left(\mathbf{y}_{i}\right) d \mu\left(\mathbf{z}_{i}\right) \\
& =\int_{\mathcal{Q}^{n}}\left|\psi_{n}(\mathbf{y}) \bar{\omega}(\mathbf{z})\right| \prod_{i=1}^{n} d \mu\left(\mathrm{y}_{i}\right) d \mu\left(\mathbf{z}_{i}\right) \int_{\mathcal{G}^{2}} \prod_{i=1}^{n}\left|U_{\mathbf{g}} \hbar\left(\mathrm{y}_{i}\right) \overline{U_{\mathrm{g}} \bar{\hbar}}\left(\mathrm{z}_{i}\right)\right| d \chi\left(U_{\mathbf{g}} \hbar\right) \\
& \leq\left\|\psi_{n}\right\|_{\odot_{n}^{n}} \mathrm{E}\left\|\omega_{n}\right\|_{\odot_{h}^{n} \mathrm{E}} \underset{y_{1}, \ldots, y_{n} \in \mathcal{Q}}{\operatorname{ess}} \sup _{\mathscr{O}_{i}} \prod_{i=1}^{n}\left|U_{\mathrm{g}} \hbar\left(\mathrm{y}_{\mathrm{i}}\right)\right|^{2} d \chi\left(U_{\mathbf{g}} \hbar\right)
\end{aligned}
$$

for all $\psi_{n}, \omega_{n} \in \odot_{h}^{n} E$.
Phoposition 3.39. In the case when $\mathcal{Q}=\mathcal{G}$ let $\mu=\chi$ be a Haar measure (in the locally compact group \mathcal{G} and $\mathrm{E} \subset L_{\chi}^{2}(\mathcal{G})$. Let

$$
\hbar \in \mathrm{S} \cap L_{\chi}^{\infty}(\mathcal{G}), \quad U_{\mathrm{g}} f(\mathrm{q})=f\left(\mathrm{~g}^{-1} \mathrm{q}\right), \quad f \in \mathrm{E}
$$

with $\mathrm{g}, \mathrm{q} \in \mathcal{G}$, i.e., the group representation U is regular. Then the inequality (3.6'2) holds with the constant

$$
c_{n}=c^{n-1}, \quad c=\underset{\mathbf{g} \in \mathcal{G}}{\operatorname{esssup}}|\hbar(\mathrm{g})| .
$$

Proof. Modifying reasons of the previous proof, we obtain

$$
\begin{aligned}
& \left|\int_{\mathcal{G}}\left\langle\left(U_{\mathbf{g}} \hbar\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\odot_{h}^{n} \mathrm{E}} \overline{\left(\left(U_{\mathbf{g}} \hbar\right)^{\otimes n}\left|\omega_{n}\right\rangle_{\odot_{h}^{n} \mathrm{E}}\right.} d \chi(\mathbf{g})\right| \leq \\
& \leq \int_{\mathcal{G}} d \chi(\mathrm{~g}) \int_{\mathcal{G}^{2 n}} \prod_{l=1}^{n}\left|\hbar\left(\mathrm{~g}^{-1} \mathbf{y}_{l}\right) \bar{\hbar}\left(\mathrm{g}^{-1} \mathbf{z}_{l}\right) \psi_{n}(\mathbf{y}) \bar{\omega}_{n}(\mathbf{z})\right| \prod_{l=1}^{n} d \chi\left(\mathrm{y}_{l}\right) d \chi\left(\mathrm{z}_{l}\right) \\
& =\int_{\mathcal{G}^{2 n}}\left|\psi_{n}(\mathbf{y}) \bar{\omega}_{n}(\mathbf{z})\right| \prod_{l=1}^{n} d \chi\left(\mathbf{y}_{l}\right) d \chi\left(\mathbf{z}_{l}\right) \int_{\mathcal{G}} \prod_{l=1}^{n}\left|\hbar\left(\mathrm{~g}^{-1} \mathbf{y}_{l}\right) \bar{\hbar}\left(\mathrm{g}^{-1} \mathbf{z}_{l}\right)\right| d \chi(\mathrm{~g}) \\
& \leq\left\|\psi_{n}\right\|_{\mathbf{F}}\left\|\omega_{n}\right\|_{\mathbf{F}} \underset{\mathbf{y}, \mathbf{z} \in \mathcal{G}^{n}}{ } \int_{\mathcal{G}} \prod_{l=1}^{n}\left|\hbar\left(\mathrm{~g}^{-1} \mathbf{y}_{l}\right) \bar{\hbar}\left(\mathrm{g}^{-1} \mathbf{z}_{l}\right)\right| d \chi(\mathrm{~g}) \\
& \leq c^{n-1}\left\|\psi_{n}\right\|_{\mathrm{F}}\left\|\omega_{n}\right\|_{\mathrm{F}} \operatorname{sess} \sup _{y_{1}, z_{1} \in \mathcal{G}} \int_{\mathcal{G}}\left|\hbar\left(\mathrm{g}^{-1} \mathrm{y}_{1}\right) \hbar\left(\mathrm{g}^{-1} \mathrm{z}_{1}\right)\right| d \chi(\mathrm{~g}) \\
& \leq c^{n-1}\left\|\psi_{n}\right\|_{F}\left\|\omega_{n}\right\|_{\mathrm{F}} \underset{\mathrm{y}_{1}, \mathrm{z}_{1} \in \mathcal{G}}{\operatorname{ess} \sup _{\mathcal{G}}}\left(\int_{\mathcal{G}}\left|\hbar\left(\mathrm{g}^{-1} \mathrm{y}_{1}\right)\right|^{2} d \chi(\mathrm{~g})\right)^{1 / 2}\left(\int_{\mathcal{G}}\left|\hbar\left(\mathrm{g}^{-1} \mathrm{z}_{1}\right)\right|^{2} d \chi(\mathrm{~g})\right)^{1 / 2} \\
& \leq c^{n-1}\left\|\psi_{n}\right\|_{F}\left\|\omega_{n}\right\|_{F}
\end{aligned}
$$

for all $\psi_{n}, \omega_{n} \in \odot_{h}^{n} \mathbf{E}$, since for the convolution

$$
\left(\mathbf{1}_{\mathcal{G}} *|\hbar|^{2}\right)\left(\mathrm{y}_{1}\right)=\int\left|\hbar\left(\mathrm{g}^{-1} \mathrm{y}_{1}\right)\right|^{2} d \chi(\mathrm{~g})
$$

with the identically unit $\mathbf{1}_{\mathcal{G}} \in L_{\chi}^{\infty}(\mathcal{G})$, we have

$$
\left\|\mathbf{1}_{\mathcal{G}} *|\hbar|^{2}\right\|_{L_{\mathfrak{x}}^{\infty}} \leq\left\|\mathbf{1}_{\mathcal{G}}\right\|_{L_{x}^{\infty}}\left\||\hbar|^{2}\right\|_{L_{\mathfrak{x}}^{1}}=1
$$

with the norms in the Lebesgue spaces $L_{\chi}^{\infty}(\mathcal{G})$ and $L_{\chi}^{1}(\mathcal{G})$.
Using Proposition 3.38 we will prove that the inequality (3.62) with a finite corl stant is satisfied for the Schrödinger representation of reduced Heisenberg groupm, Clearly, it is satisfied for any finite-dimensional unitary groups, as well.
3.4.2. Cauchy type formula and radial boundary values. Now we estab)lish the Cauchy type formula

$$
\begin{equation*}
\mathfrak{C}[f](\xi)=\int_{G} \mathfrak{C}(\xi, \zeta) f(\zeta) d \chi(\zeta), \quad \xi \in \mathrm{B} \tag{3.63}
\end{equation*}
$$

which for every function $f \in \mathcal{H}_{x}^{2}$ produces its unique analytic extensions $\mathbb{C}|f|$ on the open unit ball B in E . Also, we describe the Taylor coefficients and the npuce of boundary values of these analytic extensions. Namely, we establish that the rudlal boundary values of $\mathfrak{C}[f]$ are equal to f for every function $f \in \mathcal{H}_{x}^{2}$. AN mи eximiple, we consider a reduced Heisenberg group.

Recall, that in Chapter 3.2 it was proved that if \mathcal{G} is the full unitury groun of linear operators over the m-dimensional complex space $\mathbb{C}^{m}(m \in \mathbb{N})$, ondowed will the probability Haar measure, then for any $\hbar \in \mathbb{C}^{m}$ such that. $\|\hbar\|_{\mathrm{c} m}=1$ the Cinuly kernel with the variables $\xi \in \mathbb{C}^{m},\|\xi\|_{\mathbb{C}^{m}}<1$ and $\zeta \in \mathbb{C}^{m},\|\zeta\|_{\mathbf{c}^{m}}=1$ hus the lorm (see $[\mathbf{8 8}, 1.4 .9]$)

$$
\mathfrak{G}(\xi, \zeta)=\sum_{n \in \mathbb{Z}_{+}} \frac{(m-1+n)!}{(m-1)!n!}\langle\xi \mid \zeta\rangle_{\mathbb{C}^{m}}^{n} \quad \text { with } \quad \aleph_{n}^{2}=\frac{(m-1+n)!}{(m-1)!n!}
$$

where the condition

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\aleph_{n}^{2}}=1
$$

in satisfied. This fact justifies that the following kernel

$$
\begin{equation*}
\mathfrak{C}(\xi, \zeta)=\sum_{n \in \mathbb{Z}_{+}} \aleph_{n}^{2}\langle\alpha \xi \mid \zeta\rangle_{\mathrm{E}}^{n}, \quad \aleph_{n}^{2}=\frac{1}{\left\|\hbar_{n}\right\|^{2}} \tag{3.64}
\end{equation*}
$$

with $\|\xi\|_{E}<1$ and $\|\zeta\|_{E} \leq 1$, for which there exists the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{\aleph_{n}^{2}}=1 / \alpha \quad \text { for some constant } \quad \alpha \geq 0 \tag{3.65}
\end{equation*}
$$

we can mean the Cauchy type kernel in more general cases. Now we are going to consider this more carefully.

Put for simplicity $E=E_{h}^{1}$ and denote

$$
B:=\left\{\xi \in E:\|\xi\|_{\mathrm{E}}<1\right\}, \quad \mathrm{S}:=\left\{\xi \in \mathrm{E}:\|\xi\|_{\mathrm{E}}=1\right\}
$$

Proposition 3.40. If the condition (3.65) is satisfied then the kernel $\mathfrak{C}(\xi, \zeta)$ with $\zeta \in \mathrm{K}$ is an analytic $C(\mathrm{~K})$-valued function by the variable $\xi \in \mathrm{B}$.

Proof. Calculating a uniform norm by $\zeta \in \mathrm{K}$ of the power series (3.64), we obtain

$$
\|\mathfrak{C}(\xi, \cdot)\|_{C(K)} \leq \sum_{n \in \mathbb{Z}_{+}} \aleph_{n}^{2}\|\alpha \xi\|_{\mathbb{E}}^{n}<\infty
$$

for all $\xi \in \mathrm{B}$. Hence, $\mathfrak{C}(\xi, \cdot)$ is an analytic $C(\mathrm{~K})$-valued function by $\xi \in \mathrm{B}$.
Proposition 3.41. Let the assumptions of Theorem 3.37 be satisfied. Then for nny fixed $r \in[0,1 / \alpha)$ the integral operator

$$
\begin{equation*}
\mathfrak{C}[f](\xi)=\int_{G} \mathfrak{C}(\xi, \zeta) f(\zeta) d \chi(\zeta), \quad f \in \mathcal{H}_{\chi}^{2} \tag{3.66}
\end{equation*}
$$

with $\xi=r \lambda,(\lambda \in G)$ belongs to the algebra $\mathscr{L}\left(\mathcal{H}_{\chi}^{2}\right)$. The function

$$
\mathfrak{C}[f]_{r}: G \ni \lambda \longmapsto \mathbb{C}[f](r \lambda)
$$

with $r \in[0,1 / \alpha)$ belongs to \mathcal{H}_{χ}^{2} and

$$
\|f\|_{L_{\chi}^{2}}=\sup _{r \in[0,1 / \alpha)}\left(\int_{G}|\mathbb{C}[f](r \lambda)|^{2} d \chi(\lambda)\right)^{1 / 2}
$$

Proof. Let $\left(\varphi_{j, n}\right)_{j \in \mathbb{N}}$ be an orthonormal basis in the space E_{h}^{n} with $n \in \mathbb{N}$, Then the system $\left(\hat{\varphi}_{j, n}\right)_{j \in \mathbb{N}}$ is an orthonormal basis in \mathcal{H}_{n}^{2}. Indeed, substituting in (3.60) $\omega_{n}=\varphi_{j, n}$ and $\psi_{n}=\varphi_{i, n}$ with $j \neq i$ we have

$$
\int_{G} \hat{\varphi}_{j, n} \overline{\hat{\varphi}}_{i, n} d \chi=\left\langle\varphi_{i, n} \mid \varphi_{j, n}\right\rangle_{F}=0
$$

i.e., $\hat{\varphi}_{j, n} \perp \hat{\varphi}_{i, n}$ in L_{χ}^{2}. So, the system $\left(\hat{\varphi}_{j, n}\right)$ is orthonormal in the space L_{χ}^{2}. If $\xi^{\otimes n}=\sum_{j}\left\langle\xi^{\otimes n} \mid \varphi_{j, n}\right\rangle_{F} \varphi_{j, n}$ denotes the Fourier expansions under $\left(\varphi_{j, n}\right)$ of an element. $\xi \in \mathrm{E}$ then we have

$$
\mathfrak{C}_{n}(\xi, \zeta):=\aleph_{n}^{2}\left\langle\alpha^{n} \xi^{\otimes n} \mid \zeta^{\otimes n}\right\rangle_{F}=(r \alpha)^{n} \sum_{j \in \mathbb{N}} \hat{\varphi}_{j, n}(\lambda) \overline{\widehat{\varphi}}_{j, n}(\zeta)
$$

i.e., $\mathfrak{C}_{n}(\xi, \zeta)=(r \alpha)^{n} \mathfrak{C}_{n}(\lambda, \zeta)$ with $\zeta=U_{y} \hbar, \lambda=U_{x} \hbar \in \mathrm{G}$ for all $x, y \in \mathcal{G}$ and $\xi=r \alpha \lambda,\left(r \alpha=\|\xi\|_{\mathrm{E}}\right)$. So,

$$
\mathfrak{C}(\xi, \zeta)=\sum_{n \in \mathbf{Z}_{+}}(r \alpha)^{n} \sum_{j \in \mathbb{N}} \hat{\varphi}_{j, n}(\lambda) \overline{\hat{\varphi}}_{j, n}(\zeta)=\sum_{n \in \mathbf{Z}_{+}}(r \alpha)^{n} \mathfrak{C}_{n}(\zeta, \lambda) .
$$

Theorem 3.37 implies that

$$
\int_{G} \hat{\varphi}_{j, n}(\zeta) \mathfrak{C}_{n}(\xi, \zeta) d \chi(\zeta)=\hat{\varphi}_{j, n}(\xi) \int_{G} \hat{\varphi}_{j, n}(\zeta) \overline{\hat{\varphi}}_{j, n}(\zeta) d \chi(\zeta)=\hat{\varphi}_{j, n}(\xi)
$$

for all $\varphi_{j, n}$ and $\xi \in G$. Since $\left(\hat{\varphi}_{j, n}\right)$ is an orthonormal basis in \mathcal{H}_{n}^{2}, the integral operator with kernel \mathfrak{C}_{n} produces the identity mapping on \mathcal{H}_{n}^{2}.

Let $f=\sum_{n \in \mathbb{Z}_{+}} f_{n} \in \mathcal{H}_{\chi}^{2}$ with $f_{n} \in \mathcal{H}_{n}^{2}$. Using that $f_{n} \perp \mathfrak{C}_{m}$ at $n \neq m$ in L_{χ}^{2}, wo obtain

$$
f(\xi)=\sum_{n \in \mathbf{Z}_{+}} \int_{G} \mathfrak{C}_{n}(\xi, \zeta) f_{n}(\zeta) d \chi(\zeta)=\int_{G} \mathfrak{C}(\xi, \zeta) f(\zeta) d \chi(\zeta)
$$

for all $\xi \in G$. It follows that the series $\mathfrak{C}[f](\xi)=\sum_{n \in \mathbb{Z}_{+}} \mathfrak{C}\left[f_{n}\right](\xi)$ with

$$
\begin{aligned}
\mathfrak{C}\left[f_{n}\right](\xi) & =\int_{G} \mathfrak{C}_{n}(\xi, \zeta) f_{n}(\zeta) d \chi(\zeta)=\aleph_{n}^{2} \int_{G}\langle\alpha \xi \mid \zeta\rangle_{\mathbb{E}}^{n} f_{n}(\zeta) d \chi(\zeta) \\
& =(r \alpha)^{n} \int_{G} \mathfrak{C}_{n}(\lambda, \zeta) f_{n}(\zeta) d \chi(\zeta)=(r \alpha)^{n} f_{n}(\lambda)=f_{n}(\xi)
\end{aligned}
$$

In convergent in \mathcal{H}_{x}^{2} by the variable $\lambda \in \mathrm{G}$, uniformly by $r \in[0, \varepsilon]$ with $0<\varepsilon<1 / \alpha$. Applying that $\mathfrak{C}_{n} \perp f_{m}$ and $f_{n} \perp f_{m}$ at $n \neq m$ in L_{χ}^{2}, we have

$$
\begin{aligned}
\left\|\mathfrak{C}_{r}[f]\right\|_{L_{x}^{2}}^{2} & =\int_{G}\left|\sum_{n \in \mathbb{Z}_{+}}(r \alpha)^{n} \int_{G} \mathfrak{C}_{n}(\lambda, \zeta) f_{n}(\zeta) d \chi(\zeta)\right|^{2} d \chi(\lambda) \\
& =\int_{G}\left|\sum_{n \in \mathbb{Z}_{+}}(r \alpha)^{n} f_{n}(\lambda)\right|^{2} d \chi(\lambda) \\
& =\left\|\sum(r \alpha)^{n} f_{n}\right\|_{L_{\chi}^{2}}^{2}=\sum_{n \in \mathbb{Z}_{+}}(r \alpha)^{2 n}\left\|f_{n}\right\|_{L_{X}^{2}}^{2}
\end{aligned}
$$

for any $r<1 / \alpha$. It follows that

$$
\sup _{r \in[0,1 / \alpha)} \sum(r \alpha)^{2 n}\left\|f_{n}\right\|_{L_{x}^{2}}^{2}=\sum\left\|f_{n}\right\|_{L_{x}^{2}}^{2}=\|f\|_{L_{i}^{2}}^{2}
$$

By the Cauchy-Schwarz inequality, we have

$$
\left\|\mathfrak{C}_{r}[f]\right\|_{L_{x}^{2}} \leq \frac{1}{\left(1-r^{2} \alpha^{2}\right)^{1 / 2}}\left(\sum_{n \in Z_{+}}\left\|f_{n}\right\|_{L_{x}^{2}}^{2}\right)^{1 / 2}=\frac{\|f\|_{L_{X}^{2}}}{\left(1-r^{2}\left(\alpha^{2}\right)^{1 / 2}\right.}
$$

for all $f \in \mathcal{H}_{\chi}^{2}$. Hence, the operator (3.66) belongs to $\mathscr{L}\left(\mathcal{H}_{\chi}^{2}\right)$.
Theorem 3.42. Let the assumptions of Theorem 3.37 and the condition (3.65) are simultaneously satisfied. Then for any $f=\sum_{n \in Z_{+}} f_{n} \in \mathcal{H}_{x}^{2}$ with $f_{n} \in \mathcal{H}_{n}^{2}$ the integral transform (3.63) with the Cauchy type kernel (3.64) is a unique analytic extension of the function f on the open ball B with the Taylor coefficients at the origin

$$
\begin{equation*}
\frac{d_{0}^{n} \mathfrak{C}[f](\xi)}{n!}=\aleph_{n}^{2} \int_{J_{G}}\langle\alpha \xi \mid \zeta\rangle_{\mathrm{E}}^{n} f_{n}(\zeta) d \chi(\zeta), \quad \xi \in \mathrm{E} \tag{3.67}
\end{equation*}
$$

For each analytic function $\mathfrak{C}[f]$ its radial boundary values on the orbit G are equal to \int in the following sense

$$
\begin{equation*}
\lim _{r \rightarrow 1 / \alpha} \int_{G}\left|\mathfrak{C}_{r}[f]-f\right|^{2} d \chi=0, \quad r \in[0,1 / \alpha) \tag{3.68}
\end{equation*}
$$

Proof. By Proposition $3.40 \mathfrak{C}(\xi, \cdot)$ is an analytic $C(\mathrm{~K})$-valued functon by $\xi \in \mathrm{B}$. Hence, the function $\mathfrak{C}[f]$ determined by (3.63) is also analytic of $\xi \in \mathrm{B}$ in view of $[\mathbf{5 0}, 3.1 .2]$. Differentiating at the origin, we obtain

$$
\frac{d_{0}^{n} \mathbb{C}[f](\xi)}{n!}=\aleph_{n}^{2} \int_{G}\langle\alpha \xi \mid \zeta\rangle_{\mathrm{E}}^{n} f_{n}(\zeta) d \chi(\zeta)=\mathfrak{C}\left[f_{n}\right](\xi), \quad \xi \in \mathrm{B}
$$

By the Cauchy-Schwarz inequality,

$$
\left|\mathfrak{C}\left[f_{n}\right](\xi)\right| \leq \aleph_{n}^{2} \int_{G}\left|\langle\alpha \xi \mid \zeta\rangle_{E}^{n} f_{n}(\zeta)\right| d \chi(\zeta) \leq \aleph_{n}^{2}\|\alpha \xi\|_{\mathrm{E}}^{n}\left\|f_{n}\right\|_{L_{\chi}^{2}}
$$

for all $\xi \in \mathrm{E}$. Hence, any $\mathfrak{C}\left[f_{n}\right]$ is a n-homogenous polynomial on E , which takes the form (3.67). As is well known [50, 2.4.2], continuous Taylor coefficients uniquely
define the analytic function $\mathfrak{C}[f]$ on B . So, the uniqueness of the analytic extension $\mathfrak{C}[f]$ is proved. Finally, using the orthogonal property we have

$$
\int_{G}\left|\mathfrak{C}_{r}[f]-f\right|^{2} d \chi=\sum_{n \in \mathbb{Z}_{+}}\left(r^{2 n} \alpha^{2 n}-1\right)\left\|f_{n}\right\|_{L_{\chi}^{2}}^{2} \longrightarrow 0
$$

if $r \rightarrow 1 / \alpha$. The theorem is proved.
The space of analytic extensions of functions from \mathcal{H}_{χ}^{2}, defined by the formuln (3.63), we denote by

$$
\mathcal{H}_{\chi}^{2}(\mathrm{~B}):=\left\{\mathfrak{C}[f]: f \in \mathcal{H}_{\chi}^{2}\right\}
$$

and endow with the norm

$$
\|\mathfrak{C}[f]\|_{\mathcal{H}_{\chi}^{2}}=\sup _{r \in[0,1 / \alpha)}\left(\int_{G}|\mathfrak{C}[f](r \lambda)|^{2} d \chi(\lambda)\right)^{1 / 2}
$$

Corollary 3.43. The following antilinear isometry

$$
\mathcal{H}_{\chi}^{2}(B) \simeq F_{\mathfrak{h}}
$$

holds.
Proof. Since $\|\mathbb{C}[f]\|_{\mathcal{H}_{x}^{2}}=\|f\|_{L_{\chi}^{2}}$ for all $f \in \mathcal{H}_{\chi}^{2}$, the isometry $\mathcal{H}_{\chi}^{2}(B) \simeq \mathcal{H}_{\chi}^{2}$ holds. So, the required isometry instantly follows from Theorem 3.37.
3.4.3. Example of a reduced Heisenberg group. In what follows, we pul $\mathcal{G}=\mathbb{H}$, where the Cartesian product

$$
\mathbb{H}=\mathbb{R}^{2} \times \mathbb{T}
$$

stands for the reduced Heisenberg group with the multiplication

$$
\left(x, y, e^{\mathrm{i} \vartheta}\right) \cdot\left(u, v, e^{\mathrm{i} \eta}\right)=\left(x+u, y+v, e^{\mathrm{i}(\vartheta+\eta)} e^{\mathrm{i}(x v-y u) / 2}\right)
$$

endowed with the Haar measure $d x d y d \tau$, where $\tau=e^{i \vartheta} \in \mathbb{T}$ and $d \tau=\frac{d \vartheta}{2 \pi}$. We refur to [91] for detail about Heisenberg groups.

Let $E=L_{\mathbb{R}}^{2}$ be the Hilbert space of quadratically integrable complex function f on \mathbb{R} endowed with the norm $\|f\|_{L_{\mathbb{R}}^{2}}=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}$. Consider in $L_{\mathbb{R}}^{2}$ thu orthonormal basis

$$
\varphi_{j}: \mathbb{R} \ni t \longmapsto \frac{e^{-t^{2} / 2}}{\sqrt[4]{\pi}} \frac{\phi_{j-1}(t)}{\sqrt{2^{j-1}(j-1)!}}, \quad \phi_{j-1}(t)=(-1)^{j-1} e^{t^{2}} \frac{d^{j-1}}{d t^{j-1}} e^{-t^{2}}
$$

where $j \in \mathbb{N}$ and ϕ_{j-1} is the Hermite $(j-1)$-degree polynomial. Note that the spacm $L_{\mathbb{R}^{n}}^{2}=\otimes_{\mathfrak{h}}^{n} L_{\mathbb{R}}^{2}$ coincides with the closure of complex linear span of functions

$$
\left\{\xi_{1}\left(t_{1}\right) \ldots \xi_{n}\left(t_{n}\right): \xi_{1}, \ldots, \xi_{n} \in L_{\mathbb{R}}^{2},\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}\right\}
$$

Therefore, $\odot_{\mathfrak{h}}^{n} L_{\mathbb{R}}^{2}$ is the closed subspace in $L_{\mathbb{R}^{n}}^{2}$ of symmetric functions with respect to the permutations of n scalar variables. By (1.12) the following system

$$
\psi_{(j)}^{\otimes(k)}:=\varphi_{j_{1}}^{\otimes k_{1}} \odot \ldots \odot \varphi_{j_{n}}^{\otimes k_{n}}
$$

with all $(j)=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}, j_{1}<\ldots<j_{n}$ and $(k)=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ such that. $k_{1}+\cdots+k_{n}=n$ forms an orthogonal basis in $\odot_{h}^{n} L_{\mathrm{R}}^{2}$, which is non-orthonormal and $\left\|\varphi_{(j)}^{\otimes(k)}\right\|_{\bigodot_{n}^{n} L_{\mathbf{R}}^{2}}=\sqrt{(k)!/ n!}$, where $(k)!:=k_{1}!\ldots k_{n}!$.

The Schrödinger representation U of the group \mathbb{H} into $\mathscr{L}\left(L_{\mathbb{R}}^{2}\right)$ is given by

$$
U_{x, y, \tau} \xi(t)=\tau e^{i x y / 2} e^{\mathrm{i} y t} \xi(t+x), \quad x, y, t \in \mathbb{R}, \quad \tau \in \mathbb{T}, \quad \xi \in L_{\mathbb{R}}^{2}
$$

which is unitary and irreducible. It is easy to see that the codomain of U combulnm the complex cyclic group, since

$$
\mathbb{T}=\left\{U_{0,0, \tau}:(0,0, \tau) \in \mathbb{H}\right\}
$$

Remark 3.44. By the Stone-von Neumann Theorem every irrulucible unilnty representation V of \mathbb{H} over any Hilbert space E, satisfying the condit ion

$$
V(0,0, \tau) \xi=\tau \xi
$$

for all $\tau \in \mathbb{T}$ and $\xi \in \mathbb{E}$, is unitarily equivalent to the Schrödinger reprementmlon $\|_{\text {, }}$
The Gauss density function

$$
\left.\hbar: \mathbb{R} \ni t \longmapsto \pi^{-1 / 4} e^{-t^{2} / 2} \quad \text { (i.e. } \quad \hbar=\varphi_{1}\right)
$$

belongs to the unit sphere $\mathrm{S} \subset L_{\mathbf{R}}^{2}$. The \mathbb{H}-orbit of \hbar

$$
\begin{aligned}
\mathrm{G} & =\left\{U_{x, y, \tau} \hbar \in L_{\mathbb{R}}^{2}:(x, y, \tau) \in \mathbb{H}\right\} \\
& =\left\{g_{x, y, \tau}(t)=\pi^{-1 / 4} \tau e^{\mathrm{i} x y / 2} e^{\mathrm{i} y t} e^{-(t+x)^{2} / 2}:(x, y, \tau) \in \mathbb{H}, t \in \mathbb{R}\right\}
\end{aligned}
$$

contains in S , as a function of the variable t for any fixed $(x, y, \tau) \in \mathbb{H}$. In fact, for any fixed $(x, y, \tau) \in \mathbb{H}$ we have

$$
\left\|U_{x, y, \tau} \hbar\right\|_{L_{\mathbb{R}}^{2}}=\left(\int_{\mathbb{R}}\left|\pi^{-1 / 4} e^{-t^{2} / 2}\right|^{2} d t\right)^{1 / 2}=1
$$

The stationary subgroup $\left\{(x, y, \tau) \in \mathbb{H}: U_{x, y, \tau} \hbar=\hbar\right\}$ coincides with the group unit $(0,0,1) \in \mathbb{H}$, hence the equality (3.54) has the form

$$
\int_{G} f d \chi=\int_{H}\left(f \circ U_{x, y, \tau}\right)(\hbar) d x d y d \tau
$$

where the \mathbb{H}-invariant measure χ on G is defined by the Haar measure $d x d y d \tau$ on \mathbb{H} and $f \circ U$ is an integrable complex function on \mathbb{H}.

Consider the diagonal nth tensor power of Schrödinger's representation

$$
\mathbb{H} \ni(x, y, \tau) \longmapsto U_{x, y, \tau}^{\otimes n} \in \mathscr{L}\left(\odot_{h}^{n} L_{\mathbb{R}}^{2}\right), \quad n \in \mathbb{N}
$$

and put $U_{x, y, \tau}^{\otimes 0}=1$. Let L_{χ}^{2} be the corresponding Hilbert space of quadratically χ-integrable complex functions on the orbit G. Each function

$$
\hbar_{n}\left[\varphi_{(j)}^{\otimes(k)}\right]: \mathbb{H} \ni(x, y, \tau) \longmapsto\left\langle\left(U_{x, y, \tau} \hbar\right)^{\otimes n} \mid \varphi_{(j)}^{\otimes(k)}\right\rangle_{L_{R^{n}}^{2}}
$$

with $k_{1}+\cdots+k_{n}=n$, belongs to L_{χ}^{2} and the following operator

$$
\hbar_{n}: \odot_{\mathfrak{h}}^{n} L_{\mathbb{R}}^{2} \ni \varphi_{(j)}^{\otimes(k)} \longrightarrow \hbar_{n}\left[\varphi_{(j)}^{\otimes(k)}\right] \in L_{\chi}^{2}, \quad(j) \in \mathbb{N}^{n}
$$

is well-defined. In fact, calculating the Fourier transformation by the variable $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\hbar_{1}\left(\varphi_{j}\right)(x, y, \tau) & =\frac{\tau e^{\mathrm{i} x y / 2}(-1)^{j-1}}{\sqrt{2^{j-1} \pi(j-1)!}} \int_{\mathbb{R}} e^{\mathrm{i} y t} e^{-(x+t)^{2} / 2} e^{t^{2} / 2} \frac{d^{j-1}}{d t^{j-1}} e^{-t^{2}} d t \\
& =\frac{\tau e^{\mathrm{i} x y / 2}(-1)^{j-1}(x-\mathrm{i} y)^{j-1}}{\sqrt{2^{j-1}(j-1)!}} e^{\left(-x^{2}-2 \mathrm{i} x y-y^{2}\right) / 4}
\end{aligned}
$$

for any φ_{j}. For all (k) such that $k_{1}+\cdots+k_{n}=n$ it follows

$$
\begin{aligned}
\left|\hbar_{n}\left(\varphi_{(j)}^{\otimes(k)}\right)\right| & =\prod_{l=1}^{n}\left|\hbar_{1}\left(\varphi_{j_{l}}\right)(x, y, \tau)\right|^{k_{l}} \\
& =e^{-\frac{n}{4}\left(x^{2}+y^{2}\right)} \prod_{l=1}^{n}\left(\frac{\left(x^{2}+y^{2}\right)^{j_{l}-1}}{2^{j_{l}-1}\left(j_{l}-1\right)!}\right)^{k_{l} / 2}
\end{aligned}
$$

Since,

$$
\begin{aligned}
\int_{0}^{\infty} e^{-n u} \prod_{l=1}^{n}\left(\frac{u^{j_{l}-1}}{\left(j_{l}-1\right)!}\right)^{k_{l}} d u & =\prod_{l=1}^{n} \frac{m!}{\left(j_{l}-1\right)!^{k_{l}}} \int_{0}^{\infty} e^{-n u} \frac{u^{m}}{m!} d u \\
& =\prod_{l=1}^{n} \frac{m!}{\left(j_{l}-1\right)^{k_{l}}} \frac{1}{n^{m}} \int_{0}^{\infty} e^{-u n} \frac{(u n)^{m}}{m!} d u \leq \frac{1}{n}
\end{aligned}
$$

with $m=\sum_{l=1}^{n}\left(j_{l}-1\right) k_{l}$ and

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(\frac{x^{2}+y^{2}}{2}\right) d x d y=4 \int_{0}^{\infty} \int_{0}^{\pi / 2} f(u) d u d \vartheta=2 \pi \int_{0}^{\infty} f(u) d u
$$

where $x^{2}=2 u \cos ^{2} \vartheta$ and $y^{2}=2 u \sin ^{2} \vartheta$, we obtain that each such function $\hbar_{n}\left[\varphi_{(j)}^{\otimes(k)} \mid\right.$ belongs to L_{χ}^{2} and the following estimation holds

$$
\begin{equation*}
\int_{\mathbb{H}}\left|\hbar_{n}\left[\varphi_{(j)}^{\otimes(k)}\right]\right|^{2} d x d y d \tau \leq \frac{2 \pi}{n} \tag{3.69}
\end{equation*}
$$

Any element $\psi_{n} \in \odot_{\mathfrak{h}}^{n} L_{\mathbb{R}}^{2}$ with $\left\|\psi_{n}\right\|_{\odot_{\mathfrak{k}}^{n} L_{\mathbb{R}}^{2}} \leq 1$ may be presented in the form of its Fourier decomposition

$$
\psi_{n}=\sum_{(k),(j)} \alpha_{(j)}^{(k)} \varphi_{(j)}^{\otimes(k)} \sqrt{\frac{n!}{(k)!}}, \quad k_{1}+\cdots+k_{n}=n, \quad \sum_{(k),(j)}\left|\alpha_{(j)}^{(k)}\right|^{2} \leq 1
$$

Applying the inequality (3.69), we have

$$
\begin{aligned}
\left\|\sum_{(k),(j)} \alpha_{(j)}^{(k)} \hbar_{n}\left[\varphi_{(j)}^{\otimes(k)}\right] \sqrt{\frac{n!}{(k)!}}\right\|_{L_{x}^{2}} & \leq \sum_{(k),(j)}\left|\alpha_{(j)}^{(k)}\right| \sqrt{\frac{n!}{(k)!}}\left\|\hbar_{n}\left[\varphi_{(j)}^{\otimes(k)}\right]\right\|_{L_{x}^{2}} \\
& \leq \sum_{(k),(j)}\left|\alpha_{(j)}^{(k)}\right| \sqrt{\frac{n!}{(k)!} \frac{2 \pi}{n}}
\end{aligned}
$$

It follows that

$$
\left\|\hbar_{n}\left[\psi_{n}\right]\right\|_{L_{\chi}^{2}}^{2} \leq 2 \pi(n-1)!\left\|\psi_{n}\right\|_{\bigodot_{0}^{n} L_{R}^{2}}^{2} \quad \text { or } \quad\left\|\hbar_{n}\right\| \leq \sqrt{2 \pi(n-1)!}
$$

If $(j)=\left(1, j_{2}, \ldots, j_{n}\right)$ and $(k)=(n, 0, \ldots, 0)$ we have that $\varphi_{(j)}^{\otimes(k)}=\varphi_{1}^{\otimes n}$ und

$$
\begin{aligned}
\int_{\mathbb{H}}\left|\hbar_{n}\left[\varphi_{1}^{\otimes n}\right]\right|^{2} d x d y d \tau & =\int_{\mathbb{H}}\left|\hbar_{1}\left[\varphi_{1}\right](x, y, \tau)\right|^{2 n} d x d y d \tau \\
& =\int_{\mathbb{R}^{2}}\left|e^{-\left(x^{2}+2 i x y+y^{2}\right) / 4}\right|^{2 n} d x d y=\frac{2 \pi}{1}
\end{aligned}
$$

Since $1=\left\|\varphi_{1}^{\otimes n}\right\|_{\odot_{n}^{n} L_{\mathbf{R}}^{2}}=\sqrt{\frac{n}{2 \pi}}\left\|\hbar_{n}\left[\varphi_{1}^{\otimes n}\right]\right\|_{L_{x}^{2}}$, we have that $\varphi_{1}^{\otimes \infty n}$ quir Λ_{n}. Thim yioliln

$$
\left\|\hbar_{n}\right\|=\sup _{\left\|\psi_{n}\right\|_{\cap_{n}^{n} L_{R}^{2} \leq 1}}\left\|\hbar_{n}\left[\psi_{n}\right]\right\|_{L_{x}^{2}} \geq\left\|\hbar_{n}\left[\varphi_{1}^{(8 n}\right]\right\|_{L_{x}^{2}}=\sqrt{\frac{2 \pi}{n}}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\kappa_{n}^{2}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n}{2 \pi}}=1
$$

and the Cauchy type kernel has the form

$$
\begin{aligned}
\hat{\mathfrak{C}}\left(\xi, U_{x, y, \tau} \hbar\right) & =1+\sum_{n=1}^{\infty} \aleph_{n}^{2}\left\langle\xi \mid U_{x, y, \tau} \hbar\right\rangle_{L_{\mathbb{R}}^{2}}^{n} \\
& =1+\sum_{n=1}^{\infty} \aleph_{n}^{2}\left(\frac{\tau e^{i x y / 2}}{\sqrt[4]{\pi}} \int_{\mathbb{R}} \xi(t) e^{\mathrm{i} y t-(t+x)^{2} / 2} d t\right)^{n}
\end{aligned}
$$

which is a L_{x}^{2}-valued analytic function by the variable $\xi \in \mathrm{B}$, where $\mathrm{B} \subset L_{\mathrm{R}}^{2}$ is n nonempty open subset in the unit ball of $L_{\mathbb{R}}^{2}$. Thus, for any $f \in \mathcal{H}_{\chi}^{2}$ and $\xi \in \mathrm{B}$ we have

$$
\begin{aligned}
& \hat{\mathfrak{C}}[f](\xi)=\int_{\mathbb{H}} \widehat{\mathfrak{C}}\left(\xi, U_{x, y, \tau} \hbar\right)\left(f \circ U_{x, y, \tau}\right)(\hbar) d x d y d \tau \\
& \lim _{r \rightarrow 1} \int_{\mathbb{H}}\left|\widehat{\mathfrak{C}}_{r}[f](x, y, \tau)-\left(f \circ U_{x, y, \tau}\right)(\hbar)\right|^{2} d x d y d \tau=0,
\end{aligned}
$$

where the functions

$$
\widehat{\mathfrak{C}}[f]_{r}: \mathbb{H} \ni(x, y, \tau) \longmapsto \widehat{\mathfrak{C}}[f]\left(r U_{x, y, \tau} \lambda\right)
$$

with $r \in[0,1)$ belong to \mathcal{H}_{χ}^{2} for any $\lambda \in \mathrm{S}$.

Notos and Remarks. If Ω is a domain in a complex Banach space then the Hardy spuce $\mathcal{H}^{\infty}(\Omega)$ which is the uniform algebra of bounded analytic functions on Ω is a standard object of infinite-dimensional complex analysis and was investigated by many authors (see for example $[6,7,26,30,32,44]$ and others). Integrul representations of Hardy spaces $\mathcal{H}^{p}(p \geq 1)$ with infinitely many variables were \quad u object of research in $[\mathbf{3 0}, 80,83]$.

The Hardy type spaces $\mathcal{H}^{2}(d \varsigma)$ associated with compact groups were investigated in [61]. A more general case of Hardy type spaces associated with locally compary groups were introduced in [60]. Section 3.2 is a special case of the results from [60,65]. Theorem 3.13 are proved in [65]. Ibid Theorems 3.13, 3.18, and 3.40, establishing an antilinear isomorphism between unitary Hardy spaces and symmetric Fock spaces, are proved. A classic theory of Hardy spaces in the unit ball of \mathbb{C}^{d} muy be find in [88, Section 1.4.10]. The Segal-Bargmann space $\mathcal{H}_{\mu}^{2}\left(\mathbb{C}^{d}\right)$ been studied in [12, 14].

We also analyze the case of unitary Hardy type spaces, which are associated with the the infinite-dimensional unitary matrix group $U(\infty)$ following to [65]. N()tice that considered here the infinite-dimensional unitary group $U(\infty)$ is one of the basic examples of big groups whose irreducible representations depend on infinitely many parameters. General principles of harmonic analysis on this group developed by G. Olshanski [79]. The space of virtual unitary matrices \mathfrak{U} was studied by Y. Neretin [78] and G. Olshanski [79]. The notion of a virtual space relates to D. Pickrell's space of virtual Grassmannian [82] and to S. Kerov, G. Olshanski, and A. Vershik's space of virtual permutations [53]. Various spaces of integrable functions with respect to mensures that are invariant under infinite-dimensional groups have been widely applied in stochastic processes [20], infinite-dimensional probability [98, 95] etc.

The space of analytic functions $\mathcal{H}_{\chi}^{2}(B)$ with a Haar measure χ on an abstracl locally compact group \mathcal{G} were considered in $[60,64]$, where some of its propertien was described. An application theory of these spaces to Heisenberg groups were given in [63]. Note that in this section we analyze a more general case when a \mathcal{G}-invariant measure χ is defined on a unitary orbit G of a locally compact second countable group \mathcal{G} acting in an infinite-dimensional Hilbert space E.

CHAPTER 4

Reproducing kernel spaces of analytic functions

Effective methods for the study of Hardy type spaces on infinite-dimenalomal domains is representations of analytic functions by means of reproducing kernel null representing measures. In this chapter we analyze various special canem ииd cxпmplen of such spaces.

4.1. Abstract Hardy spaces

4.1.1. Representing measures and abstract Hardy spaces. Let \mathcal{Q} be n compact Hausdorff space. We denote by $C_{r}(\mathcal{Q})$ and $C(\mathcal{Q})$ the uniform algebras of all continuous real and complex valued functions on \mathcal{Q} respectively. Let \mathfrak{M} be the class of non-negative Baire measures μ on ${ }^{\circ} \mathcal{Q}$ that is isometrically isomorphic to the dual $C_{r}(\mathcal{Q})^{\prime}$. Note that for every Baire measure μ from \mathfrak{N} there exists a unique regular Borel extension. This is an unique regular Borel measure on \mathcal{Q} that agrees with μ on the Baire sets of \mathcal{Q}.

Throughout this section a subspace of $C_{r}(\mathcal{Q})$ or $C(\mathcal{Q})$ means a vector subspace containing the constant functions, but not necessarily closed.

Let \mathcal{V} be a subspace of $C_{r}(\mathcal{Q})$ or $C(\mathcal{Q})$, and $x \in \mathcal{Q}$. We define $\mathfrak{R}_{x}(\mathcal{V})$ to be the subset of \mathfrak{M} consisting of all measures μ on \mathcal{Q} with

$$
\int f d \mu=f(x), \quad f \in \mathcal{V}
$$

Then $\mathfrak{M}_{x}(\mathcal{V})$ is a convex, weak-star compact and always non-empty set, since it must contain at least the point evaluation functional $\delta_{x}: \mathcal{V} \ni f \longmapsto f(x)$.

Let \mathcal{Q}_{0} be a subset of \mathcal{Q}. It is defined by

$$
\widehat{\mu}\left(\mathcal{Q}_{0}\right)=\inf \mu(U)
$$

where U runs over all open Baire sets that contains \mathcal{Q}_{0}. We define

$$
\imath_{\mathcal{V}}\left(\mathcal{Q}_{0}\right):=\left\{y \in \mathcal{Q}: f(y)=f(x) \text { for some } x \in \mathcal{Q}_{0} \text { and all } f \in \mathcal{V}\right\}
$$

If \mathcal{V} is a subspace of either $C_{r}(\mathcal{Q})$ or $C(\mathcal{Q})$, the Choquet boundary of \mathcal{V}, denoted by $\partial \mathcal{V}$, is defined to consist of those points x in \mathcal{Q} which are such that any $\mu \in \mathfrak{M}_{x}(\mathcal{V})$ satisfies the condition

$$
\widehat{\mu}(\imath \nu(x))=1
$$

The Choquet boundary is not necessarily closed (or even Borel) subset of \mathcal{Q}. From the definition it follows that if the subspace \mathcal{V} separates points of \mathcal{Q} and $x \in \partial \mathcal{V}$,
then the point evaluation functional δ_{x} has a unique representing measure that is the atomic measure concentrated at $x \in \mathcal{Q}$.

If \mathcal{V} is a subspace of $C(\mathcal{Q})$, we will denote by \mathcal{V}_{r} the subspace of $C_{r}(\mathcal{Q})$, consisting of real parts of the functions in \mathcal{V}. It is known [16] that

$$
\partial \mathcal{V}_{\tau}=\partial \mathcal{V} \quad \text { and } \quad \mathfrak{M}_{x}\left(\mathcal{V}_{r}\right)=\mathfrak{M}_{x}(\mathcal{V}), \quad \forall x \in \mathcal{Q}
$$

If \mathcal{V} is a subspace of $C_{\tau}(\mathcal{Q})$ or $C(\mathcal{Q})$ and μ and ν are in \mathfrak{M}, we write $\nu \prec \mu$ il

$$
\int f d \nu=\int f d \mu \quad \text { and } \quad \int f^{2} d \nu \leq \int f^{2} d \mu, \quad \forall f \in \mathcal{V}_{r}
$$

We say that a measure μ is maximal for a measure ν, if $\nu \prec \mu$ imply $\nu=\mu$.
Let \mathcal{V} be a subspace of $C_{\tau}(\mathcal{Q})$ or $C(\mathcal{Q})$. From Zorn's Lemma it follows that for each ν in \mathfrak{M} there exists a maximal measure $\mu \in \mathfrak{M}$ such that $\nu \prec \mu[16]$.

Let \mathcal{A} be a uniform closed subalgebra of $C(\mathcal{Q})$ that separating point of \mathcal{Q} and contains the identically unit functions 1 .

A subset \mathcal{Q}_{0} of Ω is said to be a boundary for \mathcal{A} if for each $f \in \mathcal{A}$ there is somu $y \in \mathcal{Q}_{0}$ with

$$
|f(y)|=\|f\| .
$$

Proposition 4.1. Let \mathcal{A} be a uniform closed subalgebra of $C(\mathcal{Q})$, which sepnrates point of \mathcal{Q} and contains the constant functions 1 . Then the Choquet boundary $\partial \mathcal{A}$ of \mathcal{A} is a boundary and if \mathcal{Q} is metrizable, then $\partial \mathcal{A}$ contained in any boundary of \mathcal{A}.

Theorem 4.2. Let \mathcal{A} be as in Proposition 4.1 and \mathfrak{S} the σ-ring generated by $\partial \mathcal{A}$ and the Baire sets of \mathcal{Q}. Then each linear functional ϕ from the dual \mathcal{A}^{\prime} has a representation of the form

$$
\phi(f)=\int_{\partial \mathcal{A}} f d \mu, \quad f \in \mathcal{A}
$$

where a corresponding measure μ on \mathfrak{S} is such that $\mu\left(\mathcal{Q}_{0}\right)=0$ for every $\mathcal{Q}_{0} \in \mathbb{N}$ disjoint from $\partial \mathcal{A}$. Furthermore, μ can be chosen to be non-negative if and only if

$$
\phi(1)=\|\phi\| .
$$

Let \mathcal{A} be an abstract complex commutative uniform Banach algebra with identity 1 and let $M(\mathcal{A})$ be the space of its maximal ideals (complex continuous homomorphisms) endowed with the Gelfand topology. Using the Gelfand transform

$$
\mathcal{A} \ni f \longmapsto \hat{f} \in C(M(\mathcal{A})),
$$

we can consider \mathcal{A} as a closed subalgebra of the algebra $C(M(\mathcal{A}))$ of all continuoum functions on the compact Hausdorff space $M(\mathcal{A})$ and

$$
\|f\|_{\mathcal{A}}=\sup _{\phi \in M(\mathcal{A})}|\hat{f}(\phi)|, \quad \hat{f}(\phi):=\phi(f)
$$

Since, $\phi(1)=1=\|\phi\|$ for every $\phi \in M(\mathcal{A})$, we get the following.

Corollary 4.3. For every $\phi \in M(\mathcal{A})$ there is a probability measure μ (so-called, representing) on Choquet boundary $\partial \mathcal{A} \subset M(\mathcal{A})$ such that

$$
\phi(f)=\int_{\partial \mathcal{A}} \hat{f} d \mu, \quad f \in \mathcal{A}
$$

Note, for example that the disk algebra $\mathcal{A}(D)$, where D is the closed unit dink of \mathbb{C}, admits a unique maximal measure which represents the atomic mensure δ_{11} concentrated at the origin. This measure is a probability Lebesgue mensure of the unit circle [44, p. 38].

A point $x \in M(\mathcal{A})$ is called the peak point if there is a function $\int \in \mathcal{A}$ mult thot

$$
\hat{f}(x)=1 \quad \text { and } \quad|\hat{f}(y)|<1
$$

for all $y \in M(\mathcal{A})$ such that $y \neq x$. A closed subset Z of $M(\mathcal{A})$ in called the pronk sit if there exists a function $f \in \mathcal{A}$ such that

$$
\hat{f}(x)=1 \quad \text { for } \quad x \in Z \quad \text { and } \quad|\hat{f}(y)|<1 \quad \text { for } \quad y \in M(\mathcal{A}) \backslash Z
$$

An intersection of peak sets is called the p-set. A point $x \in M(\mathcal{A})$ is called the p-point if $\{x\}$ is a p-set.

Let \mathfrak{P} be the set of p-points of \mathcal{A}. It is well-known that Choquet boundary of \mathcal{A} coincides with the set of p-points of \mathcal{A}, i.e.,

$$
\begin{equation*}
\partial \mathcal{A}=\mathfrak{P} \tag{4.1}
\end{equation*}
$$

Let μ be representing on $\partial \mathcal{A}$ of the complex homomorphism $\phi \in M(\mathcal{A})$. According to [43] the abstract Hardy space $\mathcal{H}^{p}(\mu)$ is the closure of \mathcal{A} in the space $L_{\mu}^{p}(\partial \mathcal{A})$ for $1 \leq p<\infty$ and the abstract Hardy space $\mathcal{H}^{\infty}(\mu)$ is the weak-star closure of \mathcal{A} in the Banach algebra $L_{\mu}^{\infty}(\partial \mathcal{A})$.

The functions in $\mathcal{H}^{\infty}(\mu)$ can be regarded as continuous functions on the maximal ideal space $M=M\left(L_{\mu}^{\infty}(\partial \mathcal{A})\right)$ of the Banach algebra $L_{\mu}^{\infty}(\partial \mathcal{A})$.

Since $\mathcal{H}^{\infty}(\mu)$ is closed under uniform convergence, $\mathcal{H}^{\infty}(\mu)$ becomes a uniform algebra on the quotient space obtained by identifying all points of M which are identified by all functions in $\mathcal{H}^{\infty}(\mu)$.

Each measure μ on $\partial \mathcal{A}$ determines a unique measure $\widetilde{\mu}$ on M that is representing measure of the given homomorphism ϕ which is well defined on $\mathcal{H}^{\infty}(\mu)$. It is easy to check that we can identify spaces $L_{\mu}^{p}(\partial \mathcal{A})$ and $L_{\tilde{\mu}}^{p}(\partial \mathcal{A})$ for every $p \geq 1$. In particular, we obtain the following.

Proposition 4.4. For every $1 \leq p \leq \infty$,

$$
\mathcal{H}^{p}(\widetilde{\mu})=\mathcal{H}^{p}(\mu)
$$

via the natural identification.
In what follows we will in particular concentrate on cases of abstract Hardy spaces $\mathcal{H}^{2}(\mu)$ for uniform Banach algebras \mathcal{A} of analytic complex functions on open balls of infinite dimensional complex Banach spaces.
4.1.2. Abstract Hardy spaces for algebras $\mathcal{A}_{a}(B)$. For a given Banach space X with the unit open ball B let $\mathcal{A}_{w}(B)$ be a subalgebra of $\mathcal{H}_{u c}^{\infty}(B)$, consisting of weakly uniformly continuous functions on B and let $\mathcal{A}_{a}(B)$ be the subalgebra of $\mathcal{A}_{w}(B)$ generated by approximable polynomials $\mathcal{P}_{a}(X)$. In other words, $\mathcal{A}_{a}(B)$ is the completion of $\mathcal{A}_{1}(X)$ with respect to the norm of uniform convergence on B.

If X^{\prime} has the approximation property, then

$$
\mathcal{A}_{w}(B)=\mathcal{A}_{a}(B)
$$

If $X=c_{0}$, then by the Littlewood-Bogdanowicz-Pełczyński theorem [81],

$$
\mathcal{A}_{a}(B)=\mathcal{H}_{u c}^{\infty}(B)
$$

An another space, for which these algebras coincide, is the Tsirelson space [6].
Note that every bounded analytic function on B can be extended to a bounded analytic function \hat{f} on open unit ball $B_{X^{\prime \prime}}$ in the second dual $X^{\prime \prime}$, where \hat{f} is the Aron-Berner extension of f (see [36] for details). Moreover, since B is weak-star dense in $B_{X^{\prime \prime}}$ and all functions in $\mathcal{A}_{a}(B)$ are continuous on $B \subset B_{X^{\prime \prime}}$ with respect to the weak-star topology on $X^{\prime \prime}$, the operator of Aron-Berner extension

$$
\mathcal{A}_{a}(B) \ni f \longmapsto \hat{f} \in C\left(\bar{B}_{X^{\prime \prime}}\right)
$$

coincides with the Gelfand transform on $\mathcal{A}_{a}(B)[7]$.
From results of Chapter 2 easily follows that the spectrum $M_{a}:=M\left(\mathcal{A}_{a}(B)\right)$ of $\mathcal{A}_{a}(B)$ consists of point evaluation functionals on the unit closed ball $\bar{B}_{X^{\prime \prime}}$ of the second dual $X^{\prime \prime}$. Hence,

$$
\begin{equation*}
M_{a}=\bar{B}_{X^{\prime \prime}} \tag{4.2}
\end{equation*}
$$

if $\bar{B}_{X^{\prime \prime}}$ is endowed with the weak-star topology of $X^{\prime \prime}$.
A probability measure μ, defined on the spectrum M_{a}, is said to be norming (on $\mathcal{A}_{a}(B)$, if

$$
\|f\|_{\mu}:=\left(\int|\widehat{f}|^{2} d \mu\right)^{1 / 2}, \quad f \in \mathcal{A}_{a}(B)
$$

is a norm over $\mathcal{A}_{a}(B)$. Clearly, each norming measure μ defines on $\mathcal{A}_{a}(B)$ the scalur product

$$
\left\langle f_{1} \mid f_{2}\right\rangle_{\mu}:=\int \hat{f_{1}} \overline{\hat{f}_{1}} d \mu, \quad f_{1}, f_{2} \in \mathcal{A}_{a}(B)
$$

Proposition 4.5. Let μ be a norming measure on $\mathcal{A}_{a}(B)$. Then

$$
\|f\|_{\mu} \leq\|f\|_{\mathcal{A}_{a}(B)}, \quad f \in \mathcal{A}_{a}(B)
$$

Proof. Since the probability measure μ is norming on $\mathcal{A}_{a}(B)$, the natural embedding of $\mathcal{A}_{a}(B)$ into the Lebesgue space $L_{\mu}^{2}\left(\bar{B}_{X^{\prime \prime}}\right)$ is injective. Moreover,

$$
\|f\|_{\mu}^{2}=\int|\hat{f}|^{2} d \mu \leq \sup _{x \in B_{X^{\prime \prime}}}|\hat{f}(x)|^{2} \mu\left(B_{X^{\prime \prime}}\right)=\|f\|_{\mathcal{A}_{a}(B)}^{2}
$$

as required.

Via the identity (4.2), the space of all complex continuous functions on the space. of maximal ideals M_{a} coincides with the space $C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$ of all weakly-star continuous functions on $\bar{B}_{X^{\prime \prime}}$. By the Stone-Weierstrass Theorem the system of finite sums $h=\sum \hat{f}_{n} \overline{\hat{g}}_{m}$ is dense in $C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$, where f_{n}, g_{m} are homogeneous polynomials in $\mathcal{A}_{a}(B)$ and $\overline{\hat{g}}_{m}$ is the complex conjugate of \hat{g}_{m}.

A measure μ on $\bar{B}_{X^{\prime \prime}}$ is called circular or scalar invariant if it is invariant with respect to the scalar group

$$
\bar{B}_{X^{\prime \prime}} \ni x \longmapsto e^{\mathrm{i} \vartheta} x \in \bar{B}_{X^{\prime \prime}}, \quad \vartheta \in(-\pi, \pi]
$$

that is

$$
\int h\left(e^{i \vartheta} x\right) d \mu(x)=\int h(x) d \mu(x), \quad x \in \bar{B}_{X^{\prime \prime}}
$$

for every $h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$.
We denote by \mathcal{H}_{n}^{\prime} with $n \in \mathbb{N}$ the completion in $L_{\mu}^{2}\left(\bar{B}_{X^{\prime \prime}}\right)$ of all npproximimbe n-homogeneous polynomials $\mathcal{P}_{a}\left({ }^{n} X\right)$.

Proposition 4.6. A norming measure μ on $\bar{B}_{X^{\prime \prime}}$ is circular if and only if \mathcal{H}_{m}^{\prime} is orthogonal to \mathcal{H}_{n}^{\prime} for $m \neq n$. Moreover, in this case the following decomponition formula holds

$$
\begin{equation*}
\int h(x) d \mu(x)=\frac{1}{2 \pi} \int d \mu(x) \int_{-\pi}^{\pi} h\left(e^{\mathrm{i} \vartheta} x\right) d \vartheta, \quad h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right) \tag{4.3}
\end{equation*}
$$

and μ is necessary representing for origin evaluation complex homomorphism δ_{0} over the algebra $\mathcal{A}_{a}(B)$.

Proof. Suppose that \mathcal{H}_{m}^{\prime} is orthogonal to \mathcal{H}_{n}^{\prime} for $m \neq n$. Let h be a finite sums $\sum \hat{f}_{n} \dot{\bar{g}}_{m}$. By the orthogonality $\hat{f}_{n} \perp \hat{g}_{m}$ we have for every $\vartheta \in\{0,2 \pi)$,

$$
\begin{aligned}
\int h(x) d \mu(x) & =\sum_{n, m \in \mathbb{Z}_{+}} \int \hat{f}_{n}(x) \overline{\hat{g}}_{m}(x) d \mu(x)=\sum_{n \in \mathbb{Z}_{+}} \int \hat{f}_{n}(x) \overline{\hat{g}}_{n}(x) d \mu(x) \\
& =\sum_{n \in \mathbb{Z}_{+}} \int \hat{f}_{n}(x) \overline{\widehat{g}}_{n}(x) e^{\mathrm{i}(n-n) \vartheta} d \mu(x) \\
& =\sum_{n \in \mathbb{Z}_{+}} \int \hat{f}_{n}\left(e^{\mathrm{i} \vartheta} x\right) \overline{\hat{g}}_{n}\left(e^{\mathrm{i} \vartheta} x\right) d \mu(x) \\
& =\sum_{n, m \in \mathbb{Z}_{+}} \int \hat{f}_{n}\left(e^{\mathrm{i} \vartheta} x\right) \overline{\hat{g}}_{m}\left(e^{\mathrm{i} \vartheta} x\right) d \mu(x)=\int h\left(e^{\mathrm{i} \vartheta} x\right) d \mu(x) .
\end{aligned}
$$

In general, approaching any $h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$ by the finite sums $\sum \hat{f}_{n} \overline{\hat{g}}_{m}$ and using the continuity of integration of functions in $C_{w^{-}}\left(\bar{B}_{X^{\prime \prime}}\right)$ we obtain the equality

$$
\int h(x) d \mu(x)=\int h\left(e^{\mathrm{i} \vartheta} x\right) d \mu(x)
$$

for any $h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$. So, the measure μ is circular. For every $h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$ the function $(\vartheta, x) \longmapsto h\left(e^{\mathrm{iv}} x\right)$ is continuous on $(-\pi, \pi] \times \bar{B}_{X^{\prime \prime}}$. By the Fubini Theorem
we have

$$
\int d \mu(x) \int_{-\pi}^{\pi} h\left(e^{\mathrm{i} \vartheta} x\right) d \vartheta=\int_{-\pi}^{\pi} d \vartheta \int h\left(e^{\mathrm{i} \vartheta} x\right) d \mu(x)
$$

However, the second integral of the right hand does not depend of $\vartheta \in(-\pi, \pi]$ and $h \circ e^{\mathrm{i} \vartheta} \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$ for every $h \in C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$. Taking into account the equality $\int_{-\pi}^{\pi} d \vartheta=2 \pi$ we get (4.3). If $f \in \mathcal{A}_{a}(B)$, then $t \longmapsto f(t x)$ is an analytic function oll the unit disk $D \in \mathbb{C}$. Thus,

$$
\int \hat{f}(x) d \mu(x)=\frac{1}{2 \pi} \int d \mu(x) \int_{-\pi}^{\pi} \hat{f}\left(e^{i \vartheta} x\right) d \vartheta=f(0)
$$

So, the measure μ is representing over $\mathcal{A}_{a}(B)$.
Conversely, let the measure μ be circular. Suppose that $f_{n} \in \mathcal{P}\left({ }^{n} X\right)$ and $g_{m} \epsilon$ $\mathcal{P}\left({ }^{m} X\right)$. Then

$$
\begin{aligned}
\int \hat{f}_{n}(x) \overline{\hat{g}}_{m}(x) d \mu & =\int \hat{f}_{n}\left(e^{\mathbf{i} \vartheta} x\right) \overline{\hat{g}}_{m}\left(e^{\mathbf{i} \vartheta} x\right) d \mu \\
& =\frac{1}{2 \pi} \int \hat{f}_{n}(x) \overline{\hat{g}}_{m}(x) d \mu(x) \int_{-\pi}^{\pi} e^{\mathbf{i}(n-m) \vartheta} d \vartheta=0
\end{aligned}
$$

if $m \neq n$. So, \mathcal{H}_{m}^{\prime} is orthogonal to \mathcal{H}_{n}^{\prime}.
Via the equality (4.2), the Choquet boundary $\partial \mathcal{A}_{a}(B)$ of the algebra $\mathcal{A}_{a}(B)$ is a subset of $\bar{B}_{X^{\prime \prime}}$. Note that Arenson [3] for more general case has shown the equality

$$
\begin{equation*}
\partial \mathcal{A}_{a}(B)=\operatorname{ext}_{\mathbb{C}} \bar{B}_{X^{\prime \prime}} \tag{4.4}
\end{equation*}
$$

where $\operatorname{ext}_{C} \bar{B}_{X^{\prime \prime}}$ means the set of complex-extreme points of $\bar{B}_{X^{\prime \prime}}$, that is, all point. $x \in \bar{B}_{X^{\prime \prime}}$ not belonging to the relative interior of any set $\mathbb{C}(x, y) \cap \bar{B}_{X^{\prime \prime}}$ with $y \neq x$. Here $\mathbb{C}(x, y):=\{(1-\lambda) x+\lambda y: \lambda \in \mathbb{C}\}$ for any $x, y \in X^{\prime \prime}$.

Theorem 4.7. Let X be a separable Banach space. Then there exists a probability measure μ, which is defined on the Choquet boundary $\partial \mathcal{A}_{a}(B)$ of the uniform algebrrs $\mathcal{A}_{a}(B)$ and represents its origin evaluation functional δ_{0}, and which is norming on $\mathcal{A}_{a}(B)$.

Proof. Let $\left(y_{n}\right)_{n \in \mathbb{Z}_{+}}$be a dense sequence in the unit sphere $S_{\boldsymbol{X}}$ of X. Then $\left(y_{n}\right)$ is weak-star dense in $B_{X^{\prime \prime}}$. For every y_{n} we consider the unit circle $e^{i \vartheta} y_{n}$ with $-\pi<\vartheta \leq \pi$. Put $\chi_{n}=2^{-n} \chi$, where χ is the normalized Lebesgue measure on this unit circle. Let U be a Borel subset of $B_{X^{\prime \prime}} \subset M_{a}$. We set

$$
\nu(U)=\sum_{n \in \mathbb{Z}_{+}} \chi_{n}\left(U \cap\left\{e^{i \vartheta} y_{n}: 0 \leq \vartheta<2 \pi\right\}\right)
$$

Let f be a nonzero function in $\mathcal{A}_{a}(B)$ and \hat{f} be its Aron-Berner extension. Since \hat{f} is weakly-star continuous on $B_{X^{\prime \prime}}$, there is a weakly-star open subset $O \subset X^{\prime \prime}$ such that $|\hat{f}(x)|^{2}>0$ for every $x \in O \cap B_{X^{\prime \prime}}$. So,

$$
\int|\hat{f}|^{2} d \nu \geq \int_{O \cap B_{X^{\prime \prime}}}|\hat{f}|^{2} d \nu>0, \quad f \in \mathcal{A}_{a}(B)
$$

On the other hand, since

$$
\int \hat{f} d \nu=\sum_{n \in \mathbf{Z}_{+}} \frac{1}{2^{n}} f(0)=f(0), \quad f \in \mathcal{A}_{a}(B)
$$

the measure ν is representing for δ_{0} over $\mathcal{A}_{a}(B)$. Moreover, the relation $\nu \succ \delta_{0}$ is satisfied. But, there is a maximal representing measure μ for δ_{0} over $\mathcal{A}_{a}(B)$ with respect to the order $\nu \succ \delta_{0}$. Via Corollary 4.3 such maximal measure $\mu \succ \delta_{0}$ is concentrated on the Choquet boundary $\partial \mathcal{A}_{a}(B)$ and it is norming on the algebra $\mathcal{A}_{a}(B)$, because

$$
\int|\hat{f}|^{2} d \mu \geq \int|\hat{f}|^{2} d \nu, \quad f \in \mathcal{A}_{a}(B)
$$

by the maximality. Thus, the statement is proved.
Definition 4.8. We define the abstract Hardy space $\mathcal{H}_{a}^{2}(\mu)$ to be the closure in the Lebesgue space $L_{\mu}^{2}\left(\bar{B}_{X^{\prime \prime}}\right)$ with respect to a probability measure μ on the Choquet boundary $\partial \mathcal{A}_{a}(B)$, norming on $\mathcal{A}_{a}(B)$, and which represents the origin evaluation functional δ_{0} over $\mathcal{A}_{a}(B)$.

Suppose that X is a Banach complex space with the separable dual X^{\prime}.
Let here E is defined to be the completion of X^{\prime} in the abstract Hardy space $\mathcal{H}_{a}^{2}(\mu)$ endowed with the induced norm $\|\cdot\|_{\mu}$ and the scalar product $\langle\cdot \mid \cdot\rangle_{\mu}$. As usually, E^{\prime} denotes its dual. It is clear that the weakly-star dense embedding of E into $X^{\prime \prime}$ holds. By Proposition 4.5,

$$
\|x\|_{\mu} \leq\|x\|_{X^{\prime}} \quad \text { or } \quad\|y\|_{X^{\prime \prime}} \leq\|y\|_{\mu}
$$

for all $x \in X^{\prime}$ and $y \in \mathrm{E}^{\prime}$. It means that the embeddings

$$
X^{\prime} \uparrow \mathrm{E}=\mathrm{E}^{\prime} \leftrightarrow X^{\prime \prime}
$$

are norm continuous, and every open set of E with respect to the norm $\|\cdot\|_{X^{\prime \prime}}$ is also open relatively of $\|\cdot\|_{\mu}$.

Let $\left(\mathfrak{e}_{j}\right)_{j \in \mathbb{N}}$ be an orthonormal basis in E. Since X^{\prime} is a dense subspace of E, we can suppose that

$$
\mathfrak{e}_{j} \in X^{\prime} \quad \text { for every } \quad j \in \mathbb{N}
$$

Thus, the weakly continuous linear extension of $\mathfrak{e}_{j} \in X^{\prime}$,

$$
\mathfrak{e}_{j}: X^{\prime \prime} \ni x \longmapsto \mathfrak{e}_{j}(x)
$$

is also continuous over E. As a consequence, the restriction $\left.\mathfrak{e}_{j}\right|_{\mathrm{E}}$ belongs to E via the Riesz theorem. These restrictions uniquely define the linear functionals

$$
\mathfrak{e}_{j}^{\prime}:=\left\langle\cdot \mid \mathfrak{e}_{j}\right\rangle_{\mu} \in \mathrm{E}^{\prime} \subset X^{\prime \prime}, \quad j \in \mathbb{N}
$$

which form an orthonormal basis in E^{\prime} of continuous linear functionals over E.
Consider the system of polynomials

$$
\mathfrak{E}=\bigcup_{n \in \mathbb{Z}_{+}}\left\{e_{\{i\}}^{(k)}:\{i\} \in \mathbb{N}^{n},(k) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\}
$$

with all multi-indexes $(k)=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $\{j\}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ such that. $j_{1}<\cdots<j_{n}$, where

$$
\mathbf{e}_{\{j\}}^{(k)}(x):=\mathbf{e}_{j_{1}}^{k_{1}}(x) \ldots \mathfrak{e}_{j_{n}}^{k_{n}}(x), \quad x \in X^{\prime \prime}
$$

Denote by $C_{w^{*}}^{0}\left(X^{\prime \prime}\right)$ the dense subspace of $C_{w^{*}}\left(\bar{B}_{X^{\prime \prime}}\right)$, which consists of all finite sums $h=\sum_{n, m \in \mathbb{Z}_{+}} \hat{f}_{n} \overline{\hat{g}}_{m}$, where homogeneous polynomials $f_{n} \in \mathcal{P}_{a}\left({ }^{n} X\right)$ and $g_{m} \in \mathcal{P}_{a}\left({ }^{m} X\right)$ are considered as expanded on $X^{\prime \prime}$.

Let $l \in X^{\prime} \subset \mathrm{E}$. Then $l^{\prime}:=\langle\cdot \mid l\rangle_{\mu} \in \mathrm{E}^{\prime} \subset X^{\prime \prime}$. We say that a measure μ on $\bar{B}_{X^{\prime \prime}}$ is circular with respect to $l \in X^{\prime}$ if

$$
\int h\left(x-l(x) l^{\prime}+e^{\mathrm{i} \vartheta} l(x) l^{\prime}\right) d \mu(x)=\int h(x) d \mu(x)
$$

for every $h \in C_{w^{*}}^{0}\left(X^{\prime \prime}\right)$ and $\vartheta \in(-\pi, \pi]$.
Repeating our previous arguments with Fubini's theorem we have that if μ is circular with respect to $l \in X^{\prime}$, then

$$
\int h(x) d \mu(x)=\frac{1}{2 \pi} \int d \mu(x) \int_{-\pi}^{\pi} h\left(x-l(x) l^{\prime}+e^{\mathrm{i} \vartheta} l(x) l^{\prime}\right) d \vartheta
$$

Theorem 4.9. The system of polynomials \mathfrak{E} forms an orthogonal basis in the abstract Hardy space $\mathcal{H}_{a}^{2}(\mu)$ if and only if the measure μ is circular with respect to the basis functional $\mathfrak{e}_{j} \in X^{\prime}$ for every $j \in \mathbb{N}$.

Proof. Suppose that μ is circular with respect to $\mathfrak{e}_{j} \in X^{\prime}$ for every j. Show that polynomials \mathfrak{E} are orthogonal. Suppose that $\{i\} \neq\{j\}$. Then there exists an index $j \in \mathbb{N}$ such that

$$
\mathfrak{e}_{\{i\}}^{(k)}=\mathfrak{e}_{i_{1}}^{k_{1}} \ldots \mathfrak{e}_{j}^{m} \ldots \mathfrak{e}_{i_{s}}^{k_{s}} \quad \text { and } \quad \mathfrak{e}_{\{j\}}^{(q)}=\mathfrak{e}_{j_{1}}^{q_{1}} \ldots \mathfrak{c}_{j}^{n} \ldots \mathfrak{e}_{j_{1}}^{q_{1}}
$$

for some $m \neq n$. Thus,

$$
\mathfrak{e}_{\{i\}}^{(k)}\left(x-\mathfrak{e}_{j}(x) \mathfrak{e}_{j}^{\prime}+e^{\mathbf{i} \vartheta} \mathfrak{e}_{j}(x) \mathfrak{e}_{j}^{\prime}\right)=x_{i_{1}}^{k_{1}} \ldots\left(e^{\mathbf{i} m \vartheta} x_{j}^{m}\right) \ldots x_{i,}^{k_{s}}=e^{\mathbf{i} m \vartheta} e_{\{i\}}^{(k)}(x)
$$

and by the same reason

$$
\mathfrak{e}_{\{j\}}^{(q)}\left(x-\mathfrak{e}_{j}^{\prime}(x) \mathfrak{e}_{j}+e^{\mathbf{i} \vartheta} \mathbf{c}_{j}^{\prime}(x) \mathbf{e}_{j}\right)=e^{\mathbf{i} n \vartheta} \mathfrak{e}_{\{j\}}^{(q)}(x), \quad x \in X^{\prime \prime},
$$

where $x_{j}:=\mathfrak{e}_{j}^{\prime}(x)$. Since $m \neq n$, we have

$$
\int \mathfrak{e}_{\{i\}}^{(k)}(x) \overline{\mathfrak{e}_{\{j\}}^{(q)}}(x) d \mu(x)=\frac{1}{2 \pi} \int \mathfrak{e}_{\{i\}}^{(k)}(x) \overline{\mathfrak{e}_{\{j\}}^{(q)}}(x) d \mu(x) \int_{-\pi}^{\pi} e^{\mathbf{i}(m-n) \vartheta} d \vartheta=0
$$

Hence, $\mathfrak{e}_{\{i\}}^{(k)} \perp \mathfrak{e}_{\{j\}}^{(q)}$ in the space $\mathcal{H}_{a}^{2}(\mu)$.
Now we prove that \mathfrak{E} is a basis in $\mathcal{H}_{a}^{2}(\mu)$. Since $\mathfrak{e}_{j} \in X^{\prime}$ for every $j \in \mathbb{N}$, it follows that $\mathfrak{e}_{\{j\}}^{(k)} \in \mathcal{A}_{a}(B)$ and so $\mathfrak{e}_{\{j\}}^{(k)} \in \mathcal{H}_{a}^{2}(\mu)$ for all polynomials $\mathfrak{e}_{\{j\}}^{(k)} \in \mathfrak{E}$. Let $\mathcal{H}_{\mathbb{e}}$ be a closed linear span of all polynomials \mathfrak{E} in $\mathcal{H}_{a}^{2}(\mu)$.

Each function $f \in \mathcal{H}_{a}^{2}(\mu)$ can be approximated by functions from $\mathcal{A}_{a}(B)$ in the norm of $\mathcal{H}_{a}^{2}(\mu)$. In turn, each function from $\mathcal{A}_{a}(B)$ can be approximated by
polynomials of finite type in the uniform norm, so in the norm of $\mathcal{H}_{a}^{2}(\mu)$ as well. Therefore, if $\mathcal{H}_{\mathfrak{E}} \neq \mathcal{H}_{a}^{2}(\mu)$ then there exists Ω nonzero polynomial of the form

$$
P=l_{1} l_{2} \ldots l_{m}
$$

where l_{1}, \ldots, l_{m} is a finite sequence linear functionals in X^{\prime}, such that $P \perp \mathcal{H}_{\mathscr{E}}$ in $\mathcal{H}_{a}^{2}(\mu)$. Via Proposition 1.4 the corresponding lineal functional f_{P} belongs to the dual space $\left(\odot_{\pi}^{m} \mathrm{E}^{\prime}\right)^{\prime}$ and possesses the orthogonal property $f_{P} \perp \odot_{\pi}^{m} \mathrm{E}^{\prime}$, since the generalizing of $\mathcal{H}_{\mathbb{E}}$ system

$$
\left\{\mathfrak{e}_{\{i\}}^{(k)}:\{i\} \in \mathbb{N}^{m},(k) \in \mathbb{Z}_{+}^{m},|(k)|=m\right\}
$$

is total in $\odot_{\pi}^{m} \mathrm{E}^{\prime}$. It follows that $f_{P}=0$ and so $P=0$, that gives a contradiction. Hence, $\mathcal{H}_{\mathfrak{E}}=\mathcal{H}_{a}^{2}(\mu)$.

Conversely, suppose that the system \mathfrak{E} forms an orthogonal basis in $\mathcal{H}_{a}^{2}(\mu)$. Then every function $h \in C_{w^{*}}^{0}\left(X^{\prime \prime}\right)$ can be presented in a form

$$
h=\sum_{\{i\},\{j\},(k),(q)} \lambda_{\{i\}\{j\}}^{(k)(q)} e_{\{i\}}^{(k)} \overline{e_{\{j\}}^{(q)}}, \quad \lambda_{\{i\}\{j\}}^{(k)(q)} \in \mathbb{C},
$$

where $\mathfrak{e}_{\{i\}}^{(k)}, \mathbb{e}_{\{j\}}^{(q)} \in \mathfrak{E}$. It follows that

$$
\begin{aligned}
& \int h(x) d \mu(x)=\sum_{\{i\},\{j\},(k),(q)} \cdot \int \lambda_{\{i\}\{j\}}^{(k)(q)} e_{\{i\}}^{(k)}(x) \overline{e_{\{j\}}^{(q)}}(x) d \mu(x), \\
& =\sum_{\{i\},(k)} \int \lambda_{\{i\}\{i\}}^{(k)(k)} e_{\{i\}}^{(k)}(x) \overline{e_{i j\}}^{(k)}}(x) d \mu(x) \\
& =\sum_{\{i\},(k)} \int \lambda_{\{i\}\{i\}}^{(k)(k)} \mathfrak{e}_{\{i\}}^{(k)}(x) \overline{\mathfrak{e}_{\{i\}}^{(k)}}(x) \exp [\mathrm{i}(m-m) \vartheta] d \mu(x) \\
& =\sum_{\{i\},(k)} \int \lambda_{\{i\}\{i\}}^{(k)(k)}\left|\mathfrak{e}_{\{i\}}^{(k)}\left(x-\mathfrak{e} e_{j}^{\prime}(x) e_{j}+e^{\mathbf{i} \theta} \boldsymbol{e}_{j}^{\prime}(x) \mathfrak{e}_{j}\right)\right|^{2} d \mu(x) \\
& =\sum_{\{i\},\{j\},(k),(q)} \int \lambda_{\{i\}\{j\}}^{(k)(q)} e_{\{i\}}^{(k)}\left(x-\mathfrak{e}_{j}^{\prime}(x) \mathfrak{e}_{j}+e^{\mathbf{i} \vartheta} e_{j}^{\prime}(x) e_{j}\right) \times \\
& \times \overline{\mathfrak{e}_{\{j\}}^{(q)}}\left(x-\mathfrak{e}_{j}^{\prime}(x) \mathfrak{e}_{j}+e^{\mathfrak{i} \vartheta \mathfrak{e}_{j}^{\prime}}(x) \mathfrak{e}_{j}\right) d \mu(x) \\
& =\int h\left(x-\mathfrak{e}_{j}^{\prime}(x) \mathfrak{e}_{j}+e^{\mathrm{i} \vartheta} \mathfrak{e}_{j}^{\prime}(x) \mathfrak{e}_{j}\right) d \mu(x)
\end{aligned}
$$

for every $h \in C_{w^{*}}^{0}\left(X^{\prime \prime}\right)$. Hence, μ is circular with respect to $\mathfrak{e}_{j}^{\prime}$ with any $j \in \mathbb{N}$.
Note that some non-circular representing measures on the unit ball of \mathbb{C}^{2} were discussed in [89].

Now we consider question: Does exist an open subset \mathcal{Q} in E such that every $f \in \mathcal{H}_{a}^{2}(\mu)$ can be expressed as an analytic function on \mathcal{Q} ? We do not know the answer in the general case. Let us observe that each function in $\mathcal{A}_{a}(B)$ has the AronBerner extension to an analytic function on $B_{X^{\prime \prime}}$. On the other hand, the natural
domain for linear functionals from $\mathcal{H}_{a}^{2}(\mu)$ is E . So, if an open set \mathcal{Q} exists, it min be a subset of $B_{X^{\prime \prime}} \cap \mathrm{E}$.

For every $x=\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i} \in \mathrm{E}$ with $x_{i} \in \mathbb{C}$ we consider a formal power series

$$
\begin{equation*}
\eta(x)=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathcal{Z}_{n}^{n} \\|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} \bar{x}_{\{i\}}^{(k)} e_{\{i\}}^{(k)} \tag{4.5}
\end{equation*}
$$

where is denoted

$$
c_{\{i\}}^{(k)}:=\frac{1}{\left\|\varepsilon_{\{i\}}^{(k)}\right\|_{\mu}^{2}}, \quad x_{\{i\}}^{(k)}:=x_{i_{1}}^{k_{1}} \ldots x_{i_{n}}^{k_{n}}
$$

Theorem 4.10. Let X be a complex Banach space with separable dual and μ br norming representing measure for $\mathcal{A}_{a}(B)$ such that the system \mathfrak{E} form an orthogunc basis in $\mathcal{H}_{a}^{2}(\mu)$ for some $\left(\mathfrak{e}_{j}\right)_{j \in \mathbb{N}}$ in X^{\prime}. Then the following statements are equivalcnl
(i) There exists an open subset $\mathcal{Q} \subset \mathrm{E}$ such that series (4.5) is convergent in $\mathcal{H}_{a}^{2}(\mu)$ for every $x \in \mathcal{Q}$.
(ii) $\mathcal{H}_{a}^{2}(\mu)$ is a reproducing kernel space with the reproducing kernel

$$
K(x, z)=\langle\eta(x) \mid \eta(z)\rangle_{E},
$$

which is defined on $\mathcal{Q} \times \mathcal{Q}$ for some open subset $\mathcal{Q} \subset \mathrm{E}$.
(iii) For every x in an open subset $\mathcal{Q} \subset \mathrm{E}$ the linear functional $x \longmapsto f(x)$ continuous on $\mathcal{H}_{a}^{2}(\mu)$ and each element $f \in \mathcal{H}_{a}^{2}(\mu)$ is an analytic funclion on \mathcal{Q}.
Proof. Suppose that (4.5) converges on an open subset \mathcal{Q} of E. Then

$$
\left\langle e_{\{i\}}^{(k)} \mid \eta(x)\right\rangle_{\mathrm{E}}=c_{\{i\}}^{(k)} x_{\{i\}}^{(k)}\left\|e_{\{i\}}^{(k)}\right\|_{\mu}^{2}=x_{\{i\}}^{(k)}=\mathfrak{e}_{\{i\}}^{(k)}(x), \quad x \in \mathrm{E}
$$

So, $\langle f \mid \eta(x)\rangle_{\mathrm{E}}=f(x)$ if $f \in \mathcal{A}_{a}(B)$ and we can put

$$
f(x)=\langle f \mid \eta(x)\rangle_{\mathbf{E}}
$$

for every $f \in \mathcal{H}_{\mathrm{a}}^{2}(\mu)$ and $x \in \mathcal{Q}$. Since $\eta(x)$ is an element in $\mathcal{H}_{a}^{2}(\mu)$ for any fixeil $x \in \mathcal{Q}$, it follows that the linear functional

$$
\langle\cdot \mid \eta(x)\rangle_{E}: f \longmapsto f(x)
$$

is continuous on $\mathcal{H}_{a}^{2}(\mu)$ for every $x \in \mathcal{Q}$. By [90, p. 34],

$$
K(x, z)=\langle\eta(z) \mid \eta(x)\rangle_{\mathrm{E}}
$$

is a reproducing kernel of $\mathcal{H}_{a}^{2}(\mu)$, which is defined on $\mathcal{Q} \times \mathcal{Q}$. So, (i) implies (ii).
According to [90, p. 40], the map $K(x, z)$ is continuous on $\mathcal{Q} \times \mathcal{Q}$. So, $x \longmapsto \eta^{\prime}(i)$ is continuous on \mathcal{Q} as well. On the other hand, from (4.5) we have that the linwer functional

$$
\eta^{\prime}(x):=\langle\cdot \mid \eta(x)\rangle_{\mathrm{E}}, \quad x \in \mathcal{Q}
$$

on $\mathcal{H}_{a}^{2}(\mu)$ can be expressed by a convergent power series

$$
\eta^{\prime}(x)=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{n}^{n} \\|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} e_{\{i\}}^{(k)}, \quad x \in \mathcal{Q}
$$

Hence η^{\prime} is G-analytic on $\mathcal{Q}[31$, p. 201]. The both G-analyticity an continuity of η^{\prime} implies that η^{\prime} is an analytic map on \mathcal{Q} (see [31, p. 198]). Hence, for every $f \in \mathcal{H}_{a}^{2}(\mu)$,

$$
\mathcal{Q} \ni x \longmapsto f(x)
$$

is a composition of the analytic map $\mathcal{Q} \ni x \longmapsto \eta^{\prime}(x)$ and the linear functionnl $\eta^{\prime}(x)(f)=f(x)$. So, it must be analytic and (ii) implies (iii).

Let now every $f \in \mathcal{H}_{a}^{2}(\mu)$ be an analytic function on an open set $\mathcal{Q} \subset \mathbf{E}$ nul for every $x \in \mathcal{Q}$ the x-evaluation linear functional $x \longmapsto f(x)$ with $f \in \mathcal{H}_{a}^{2}(\mu)$ be well defined and continuous. But this functional coincides with $\eta^{\prime}(x)$ on the bumburm functions \mathfrak{E}. Hence,

$$
f(x)=\langle f \mid \eta(x)\rangle_{E}
$$

for every $x \in \mathcal{Q}$ and so (4.5) is convergent. It follows that (iii) impliew (i),
Problem. Let μ be a norming circular representing measure for $\mathcal{A}_{11}(B)$ mid \mathcal{X}^{\prime} is separable. Does necessary exist an orthonormal basis $\left(e_{j}^{\prime}\right)$ in E^{\prime} such thut μ in circular with respect to e_{j}^{\prime} for every j ?

4.1.3. Examples of abstract Hardy spaces.

Example 4.11. Let $X=c_{0}$ with the standard basis $\left(\mathfrak{e}_{i}\right)_{i \in \mathbb{N}}$. Then

$$
\mathcal{H}_{\grave{u} c}\left(B_{c_{0}}\right)=\mathcal{A}_{a}\left(B_{c_{0}}\right) .
$$

Denote by μ a measure on the open in ℓ_{∞} unit ball $B_{\ell_{\infty}}$, which is the infinity product of one-dimensional Lebesgue probability measures on intervals $[-1,1]$. It is easy to check that coordinate functionals $\left(\mathfrak{e}_{i}\right)_{i \in \mathbb{N}}$ over ℓ_{∞} form an orthogonal basis in E and

$$
\begin{aligned}
\left\|\mathfrak{e}_{\{i\}}^{(k)}\right\|_{\mu}^{2} & =\int_{[-1,1]^{n}}\left|\mathfrak{e}_{i_{1}}\right|^{2 k_{1}} \ldots\left|\mathfrak{e}_{i_{n}}\right|^{2 k_{n}} d t_{i_{1}} \ldots d t_{i_{n}} \\
& =\int_{[-1,1]^{n}} d t_{i_{1}} \ldots d t_{i_{n}}=1
\end{aligned}
$$

So,

$$
\eta(x)=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{\uparrow} \\|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} x_{\{i\}}^{(k)} e_{\{i\}}^{(k)}, \quad x \in B_{\ell_{\infty}}
$$

The space E coincides with the completion of the linear span of $\left(\mathfrak{e}_{i}\right)$ in the ℓ_{2}-norm and the domain \mathcal{Q} of η is defined by

$$
\mathcal{Q}=\left\{x=\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i} \in \mathrm{E}:\left|x_{i}\right|<1\right\}=\ell_{2} \cap B_{\ell_{\infty}}
$$

The corresponding space $\mathcal{H}_{a}^{2}(\mu)$ consists of all analytic functions on \mathcal{Q} which can be expressed by

$$
f(x)=\langle f \mid \eta(x)\rangle_{\mathrm{E}}=\int f \overline{\eta(x)} d \mu
$$

Evidently that μ is circular and all polynomials $\varepsilon_{\{i\}}^{(k)}$ together with 1 form an orthogonal basis.

Let $\phi \in M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$ and $\left(x_{\alpha}\right)$ be a net in X such that $\phi(P)=\lim _{\alpha} \phi\left(x_{\alpha}\right)$ for every polynomial P. Such net exists according to [6]. A given $t \in \mathbb{C}$ let us consild the net $\left(t x_{\alpha}\right)$. If $|t| \leq 1$, then the net $\left(t x_{\alpha}\right)$ determines an element in $M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$ which we denote by $t * \phi$, and

$$
t * \phi(f)=\sum_{n \in \mathbf{Z}_{+}} t^{n} \phi\left(f_{n}\right), \quad f=\sum_{n \in \mathbf{Z}_{+}} f_{n} \in \mathcal{H}_{u c}^{\infty}(B),
$$

where f_{n} are n-homogeneous polynomials. Let $t=e^{i \vartheta}$ with $-\pi<\vartheta \leq \pi$ and χ lin the Lebesgue probability measure on the unit circle

$$
S^{1} \phi=e^{i \vartheta} * \phi \subset M\left(\mathcal{H}_{u c}^{\infty}(B)\right) .
$$

Denote by μ_{ϕ} the extension of χ to Borel subsets of $M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$,

$$
\mu_{\phi}(U)=\chi\left(U \cap S^{1} \phi\right) .
$$

Then μ_{ϕ} represents the point evaluation functional δ_{0} and

$$
\int g d \mu_{\phi}=\int_{-\pi}^{\pi} g\left(e^{\mathrm{i} \vartheta} * \phi\right) d \chi(\vartheta)
$$

for every continuous function g on $M\left(\mathcal{H}_{u c}^{\infty}(B)\right)$. However, μ_{ϕ} is not norming.
The following example contains some nontrivial representing measure for thw space $\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)$ which is trivial on the subalgebra $\mathcal{A}_{a}\left(B_{\ell_{p}}\right)$, where $B_{\ell_{p}}$ denotes then open unit ball in ℓ_{p}. Note that we do not know does exist a norming representlink measure on the set of maximal ideals of $\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)$.

Example 4.12. (Cf. [2, Examle 3.1]). Let $X=\ell_{p}$ for some positive integul $p>1$ with the standard basis $\left(\mathfrak{e}_{i}\right)_{i \in \mathbb{N}}$. For every $n \in \mathbb{N}$, put

$$
v_{n}=\frac{1}{n^{1 / p}}\left(\mathfrak{e}_{1}+\cdots+\mathfrak{e}_{n}\right) .
$$

Since $\left\|v_{n}\right\|_{\ell_{p}}=1$, the point evaluation functional $\delta_{v_{n}}: f \longmapsto f\left(v_{n}\right)$ belongs to the moll of maximal ideals of $\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)$. By the compactness of $M\left(\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)\right)$, there is nn accumulating point $\phi \in M\left(\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)\right)$ of the sequence $\left(\delta_{v_{n}}\right)$. On the other hamul, $\left(v_{n}\right)$ is a weakly-zero sequence. Hence,

$$
\phi(f)=\lim _{n \rightarrow \infty} f\left(v_{n}\right)=f(0)=\delta_{0}(f)
$$

for every weakly continuous function, in particular for every $f \in \mathcal{A}_{a}\left(B_{\ell_{p}}\right)$. Let μ_{p} be the δ_{0}-representing measure associated with ϕ, which is introduced above. Thir support of this measure coincides with the set

$$
\begin{aligned}
& \left\{e^{\mathrm{i} \vartheta} * \phi: \vartheta \in(-\pi, \pi]\right\}= \\
& =\left\{\psi \in M\left(\mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)\right): \psi(f)=\lim _{n \rightarrow \infty} f\left(e^{\mathrm{i} \vartheta} v_{n}\right), f \in \mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right), \vartheta \in(-\pi, \pi]\right\}
\end{aligned}
$$

Since ($e^{\mathrm{i} \vartheta} v_{n}$) is a weak-zero sequence for each ϑ, the Gelfand transform of every function $f \in \mathcal{A}_{a}\left(B_{\ell_{p}}\right), \hat{f}$ vanishes on the support of μ_{ϕ}. Hence,

$$
\int|\hat{f}|^{2} d \mu_{\phi}=f(0)
$$

if $f \in \mathcal{A}_{a}\left(B_{\ell_{p}}\right)$ and $\mu_{\phi}=\delta_{0}$ on $\mathcal{A}_{a}\left(B_{\ell_{p}}\right)$.
But the situation is different if a function is not weakly continuous. For example, let

$$
Q_{p}\left(\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i}\right):=\sum_{i \in \mathbb{N}} x_{i}^{p} \in \mathcal{H}_{u c}^{\infty}\left(B_{\ell_{p}}\right)
$$

Then we have

$$
\phi\left(Q_{p}\right)=\lim _{n \rightarrow \infty} \delta_{v_{n}}\left(Q_{p}\right)=1 \neq \delta_{0}\left(Q_{p}\right)
$$

Moreover, the following equality holds

$$
\int\left|\hat{Q}_{p}\right|^{2} d \mu_{\phi}=\int_{-\pi}^{\pi} e^{\mathbf{i} p \vartheta} e^{-\mathbf{i} p \vartheta} \phi\left(\hat{Q}_{p}\right) \overline{\phi\left(\hat{Q}_{p}\right)} d \chi(\vartheta)=1
$$

4.2. Hilbert-Schmidt analytic functions

Let in this section E means an complex separable Hilbert space with the scalar product $\langle x \mid y\rangle_{\mathrm{E}}$ and the norm $\|x\|_{\mathrm{E}}=\langle x \mid x\rangle_{\mathrm{E}}^{1 / 2},(x, y \in \mathrm{E})$, in which be fixed an orthonormal basis $\left\{\mathfrak{e}_{j} \in \mathbb{E}: j \in \mathbb{N}\right\}$. Denote

$$
\mathrm{B}:=\left\{x \in \mathrm{E}:\|x\|_{\mathrm{E}}<1\right\}, \quad \mathrm{S}:=\left\{x \in \mathrm{E}:\|x\|_{\mathrm{E}}=1\right\} .
$$

Here, the symmetric Fock space is defined to be the orthogonal sum

$$
F:=\bigoplus_{n \in \mathbb{Z}_{+}}\left(\odot_{h}^{n} E\right)=\mathbb{C} \oplus E \oplus\left(\odot_{h}^{2} E\right) \oplus\left(\odot_{h}^{3} E\right) \oplus_{i} \ldots
$$

with the scalar product and the Hilbertian norm, respectively

$$
\langle\psi \mid \omega\rangle_{\mathrm{F}}=\sum_{n \in \mathbb{Z}_{+}}\left\langle\psi_{n} \mid \omega_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}}, \quad\|\psi\|_{\mathrm{F}}=\langle\psi \mid \psi\rangle_{\mathrm{F}}^{1 / 2}
$$

where $\psi=\oplus_{n} \psi_{n}, \omega=\oplus_{n} \omega_{n} \in \mathrm{~F}$ and $\psi_{n}, \omega_{n} \in \bigodot_{\mathfrak{b}}^{n} \mathrm{E}$. By Proposition 1.28 the system

$$
\begin{aligned}
\mathscr{E} & =\left\{\mathscr{E}_{n}: n \in \mathbb{Z}_{+}\right\} \\
\mathscr{E}_{n} & =\left\{\mathfrak{e}_{\{j\}}^{\otimes(k)} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}:\{j\} \in \mathbb{N}^{n},(k) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\}
\end{aligned}
$$

forms an orthogonal basis in F. Here $e_{\{j\}}^{\otimes(k)}=1$ if $|(k)|=0$.
Proposition 4.13. For each $x \in \mathrm{E}$ a Fourier decomposition of element $x^{\Phi n}$ in $\odot_{h}^{n} \mathrm{E}$ by the orthogonal basis \mathscr{E}_{n} has the form

$$
\begin{equation*}
x^{\otimes n}=\sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!}\left\langle x^{\otimes n}\right| \overbrace{\{j\}}^{\otimes(k)} / \mathcal{F} \mathrm{e}_{\{j\}}^{\otimes(k)} . \tag{4.6}
\end{equation*}
$$

As a F -valued function by the variable $x \in \mathrm{~B}$, the series of geometric vectors

$$
\omega(x)=\bigoplus_{n \in \mathbb{Z}_{+}} x^{\otimes n}=1 \oplus x \oplus x^{\otimes 2} \oplus x^{\otimes 3} \oplus \ldots
$$

is un analytic function with the Fourier decomposition

$$
\omega(x)=\bigoplus_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{n}^{n} \\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!}\left\langle x^{\otimes n} \mid \mathfrak{e}_{\{j\}}^{\otimes(k)}\right\rangle_{F} \mathbb{e}_{\{j\}}^{\otimes(k)}
$$

Phoof. Since $x=\sum_{t \in \mathbb{N}} \mathfrak{e}_{t}\left\langle x \mid \mathfrak{e}_{t}\right\rangle_{\mathrm{E}}$, we have $\|x\|_{\mathrm{E}}^{2}=\sum_{t \in \mathbb{N}}\left|\left\langle x \mid \mathfrak{e}_{t}\right\rangle_{\mathrm{E}}\right|^{2}$. So, H Fourier decomposition has a form of the series

$$
x^{\otimes n}=\left(\sum_{t \in \mathbb{N}} e_{t}\left\langle x \mid e_{t}\right\rangle_{E}\right)^{\otimes n}=\sum_{|(k)|=n} \sum_{\{j\}} \frac{n!}{(k)!}\left\langle x^{\otimes n} \mid e_{\{j\}}^{\otimes(k)}\right\rangle_{F} e_{\{j\}}^{\otimes(k)},
$$

which is convergent in $\odot_{h}^{n} \mathrm{E}$. The last fact follows from the orthogonality of elemonlo $\mathfrak{e}_{\{j\}}^{\otimes(k)}$ in $\odot_{h}^{n} \mathrm{E}$ and the equalities

$$
\begin{aligned}
\left\|x^{\otimes n}\right\|_{\mathrm{F}}^{2} & =\sum_{|(k)|=n} \sum_{\{j\}} \frac{n!^{2}}{(k)!^{2}}\left|\left\langle x^{\otimes n} \mid \mathfrak{e}_{\{j\}}^{\otimes(k)}\right\rangle_{\mathrm{F}}\right|^{2}\left\|\mathfrak{e}_{\{j\}}^{(k)}\right\|_{\mathrm{F}}^{2} \\
& =\sum_{|(k)|=n} \sum_{\{j\}} \frac{n!}{(k)!}\left|\left\langle x^{\otimes n} \mid \mathfrak{e}_{\{j\}}^{\otimes(k)}\right\rangle_{\mathrm{F}}\right|^{2}=\left(\sum_{t \in \mathbb{N}}\left|\left\langle x \mid \mathfrak{e}_{t}\right\rangle_{\mathrm{E}}\right|^{2}\right)^{n} .
\end{aligned}
$$

So, $x^{\otimes n}$ is a continuous n-homogenous $\odot_{\mathfrak{h}}^{n} \mathrm{E}$-valued polynomials by $x \in \mathrm{E}$.
On the other hand, using the orthogonal property $x^{\otimes n} \perp x^{\otimes m}$ at $n \neq m$ in । we obtain the following equalities

$$
\begin{aligned}
\|\omega(x)\|_{\mathrm{F}}^{2} & =\langle\omega(x) \mid \omega(x)\rangle_{\mathrm{F}} \\
& =\sum_{n \in \mathbf{Z}_{+}}\left\|x^{\otimes n}\right\|_{\mathrm{F}}^{2}=\sum_{n \in \mathbf{Z}_{+}}\|x\|_{\mathrm{E}}^{2 n}=\frac{1}{1-\|x\|_{\mathrm{E}}^{2}}
\end{aligned}
$$

Thus, the series $\oplus_{n} x^{\otimes n}$ is absolutely and uniformly convergent in the space F for all $\|x\| \leq 1-\varepsilon$ with $\varepsilon \in(0,1)$. The Taylor coefficients of $\omega(x)$ at origin are equal to $x^{\otimes n}$. Then, as is well-know [50 , Proposition 2.4.2], the F-valued function $\omega(x)$ is analytic by $x \in \mathrm{~B}$. Now it remains to substitute instead of coefficients $x^{\otimes n}$ theli Fourier decompositions.

Recall that if all Taylors coefficients of an analytic complex function on B nru homogeneous Hilbert-Schmidt polynomials then it means Hilbert-Schmidt analyfii function (see e.g. [39]).

Applying Proposition 1.27, we can identify the continuous linear form

$$
\psi_{n}^{*}:=\left\langle\cdot \mid \psi_{n}\right\rangle_{\Theta_{h}^{n} \mathrm{E}}, \quad \psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}
$$

which belongs to the Hermitian dual space $\odot_{h}^{n} E^{*}$, with the n-homogeneous Hilbert Schmidt polynomial

$$
\psi_{n}^{*}: \mathrm{E} \ni x \longmapsto \psi_{n}^{*}(x):=\left\langle x^{\otimes n} \mid \psi_{n}\right\rangle_{\Theta_{n}^{n} \mathrm{E}^{\prime}}
$$

Proposition 4.14. For each $\psi=\Theta_{n \in Z_{t}} \psi_{n} \in \mathcal{F}$ with $\psi_{n} \in \bigodot_{\mathfrak{h}}^{n} \mathrm{E}$ assigns the unique Hilbert-Schmidt analytic function on the open ball B , bounded on any balls $\{\varepsilon \mathrm{B}: 0<\varepsilon<1\}$,

$$
\psi^{*}(x):=\langle\omega(x) \mid \psi\rangle_{\mathrm{F}}=\sum_{n \in \mathbf{Z}_{+}} \psi_{n}^{*}(x), \quad x \in \mathrm{~B}
$$

with the Taylor coefficients at origin

$$
\psi_{n}^{*}(x)=\sum_{\substack{(k) \in \mathrm{Z}^{n}+\\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!} \mathfrak{e}_{\{j\}}^{*(k)}(x)\left\langle e_{\{j\}}^{(k)} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}, \quad x \in \mathrm{E} .
$$

Proof. It is enough to use the previous Proposition 4.13. In fact, any function ψ^{*} is the composition

$$
\psi^{*}(x)=\left(\psi^{*} \circ \omega\right)(x)
$$

of corresponding linear continuous functional $\psi^{*}=\langle\cdot \mid \psi\rangle_{\mathrm{F}}$ over F and F -valued analytic function by $x \in \mathrm{~B}$. Hence, it is also analytic on B (see [50 , Proposition 3.1.2]).

For any $x=r a \in \mathrm{~B}$ with $\|a\|_{\mathrm{E}}=1$ and $r \in[0,1)$ we have

$$
\psi_{n}^{*}(a)=\left.\frac{1}{n!} \frac{d_{0}^{n} \psi^{*}(r a)}{d r^{n}}\right|_{r=0}
$$

So, the polynomial ψ_{n}^{*} is a Taylor coefficient of the analytic function ψ^{*}. Now its Fourier decomposition follows from (4.6).

The Hilbert space of complex Hilbert-Schmidt analytic functions in the open ball B and bounded on subballs $\{\varepsilon B: 0<\varepsilon<1\}$,

$$
\mathcal{H}^{2}=\left\{\psi^{*}: \psi \in \mathrm{F}\right\} \quad \text { with the Fock norm } \quad\left\|\psi^{*}\right\|_{\mathcal{H}^{2}} \stackrel{\iota}{=}\|\psi\|_{\mathrm{F}}
$$

we mean the dual symmetric Fock space, associated with E. Respectively, the subspace of all n-homogeneous Hilbert-Schmidt polynomials

$$
\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right):=\left\{\psi_{n}^{*}: \psi_{n} \in \bigodot_{\mathfrak{h}}^{n} \mathrm{E}\right\} \leftrightarrow \mathcal{H}^{2}
$$

we equip by the induced norm

$$
\left\|\psi_{n}^{*}\right\|_{\mathcal{H}^{2}}=\left\|\psi_{n}\right\|_{\otimes_{6}^{n} \mathrm{E}}
$$

Consider in more details the system of homogeneous Hilbert-Schmidt polynomials

$$
\begin{aligned}
\mathscr{E}^{*} & :=\left\{\mathscr{E}_{n}^{*}: n \in \mathbb{Z}_{+}\right\} \\
\mathscr{E}_{n}^{*} & :=\left\{e_{\{j\}}^{*(k)}:\{j\} \in \mathbb{N}^{n},(k) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\}
\end{aligned}
$$

generated by \mathscr{E}, where

$$
\mathfrak{e}_{\{j\}}^{*(k)}(x):=\left\langle x^{\circledast n} \mid \mathfrak{e}_{\{j\}}^{\otimes(k)}\right\rangle_{\otimes_{n}^{n} \mathrm{E}}=\left\langle x \mid \mathbf{e}_{j_{1}}\right\rangle_{\mathrm{E}}^{k_{1}} \ldots\left\langle x \mid \mathbf{e}_{j_{n}}\right\rangle_{\mathrm{E}}^{k_{n}}, \quad x \in \mathrm{E} .
$$

Proposition 4.15. Let $\psi=\oplus_{n \in \mathbf{Z}_{+}} \psi_{n} \in \mathrm{~F}$ with $\psi_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$. The antilinmm mapping

$$
\begin{equation*}
\left.{ }^{*}: \mathrm{F} \ni \psi \longmapsto \psi^{*} \in \mathcal{H}^{2} \quad \text { (resp. } \quad *: \odot_{\mathfrak{h}}^{n} \mathrm{E} \ni \psi_{n} \longmapsto \psi_{n}^{*} \in \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)\right) \tag{4.7}
\end{equation*}
$$

is an isometry onto the space \mathcal{H}^{2} (resp. onto $\mathcal{P}_{\mathbf{h}}\left({ }^{n} \mathrm{E}\right)$) with the scalar product

$$
\begin{equation*}
\left\langle\psi_{1}^{*} \mid \psi_{2}^{*}\right\rangle_{\mathcal{H}^{2}}=\left\langle\psi_{2} \mid \psi_{1}\right\rangle_{F}, \quad \psi_{1}, \psi_{2} \in \mathrm{~F} \tag{4.8}
\end{equation*}
$$

and the orthogonal basis \mathscr{E}^{*} (resp. \mathscr{E}_{n}^{*} in $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$). The operators

$$
\begin{align*}
\psi^{*} \longmapsto \mathcal{C}\left[\psi^{*}\right]:=\left\langle\psi^{*} \mid \mathcal{C}(x, \cdot)\right\rangle_{\mathcal{H}^{2}} \\
\psi_{n}^{*} \longmapsto \mathcal{C}\left[\psi_{n}^{*}\right]:=\left\langle\psi_{n}^{*} \mid x^{* n}\right\rangle_{\mathcal{H}^{2}}, \tag{4.9}
\end{align*}
$$

generated by the kernel

$$
\begin{aligned}
\mathcal{C}(x, y) & :=\langle\omega(x) \mid \omega(y)\rangle_{F}=\left\langle\omega\left(y^{*}\right) \mid \omega\left(x^{*}\right)\right\rangle_{\mathcal{H}^{2}} \\
& =1+y^{*}(x)+y^{* 2}(x)+\ldots
\end{aligned}
$$

for all $x \in \mathrm{~B}$ and $y \in \mathrm{~B} \cup \mathrm{~S}$ (being Hilbert-Schmidt analytic by $x \in \mathrm{~B}$ and ant। analytic by $y \in \mathrm{~B}$) and by the kernel

$$
y^{* n}(x)=\left\langle y^{* n} \mid x^{* n}\right\rangle_{\mathcal{H}_{h}^{2}}=\sum_{\substack{(k) \in \mathbb{Z}_{+}^{n}+\\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!} e_{\{j\}}^{*(k)}(x) \overline{e_{\{j\}}^{*(k)}}(y)
$$

for all $x, y \in \mathrm{E}$ are the identity mappings in \mathcal{H}^{2} and $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$, respectively.
Proof. The one-to-one anti-linear mappings (4.7) directly follow from Proponttion 1.28. The antilinear isometry $*$ is a consequence of the norm $\|\cdot\|_{\mathcal{H}^{2}}$ definition Consequently, the set $\mathfrak{e}_{\{j\}}^{*(k)}$ with $|(k)|=n$ and all $\{j\}$ forms an orthogonal basis II। $\mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$. Using (4.6), we obtain

$$
\begin{aligned}
\mathcal{C}(x, y) & =\langle\omega(x) \mid \omega(y)\rangle_{\mathrm{F}}=\sum_{n \in \mathbb{Z}_{+}}\left\langle x^{\otimes n} \mid y^{\otimes n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}} \\
& =\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\
|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!} \boldsymbol{c}_{\{j\}}^{*(k)}(x) \overline{\boldsymbol{e}_{\{j\}}^{*(k)}}(y)
\end{aligned}
$$

where the series is convergent for all $x \in B$ and $y \in B \cup S$, since

$$
|\mathcal{C}(x, y)| \leq \sum_{n \in \mathbb{Z}_{+}}\left|\langle x \mid y\rangle_{E}\right|^{n}=\frac{1}{1-\left|\langle x \mid y\rangle_{E}\right|}
$$

This implies that $\mathcal{C}(x, y)$ is analytic by $x \in \mathrm{~B}$ and anti-analytic by $y \in \mathrm{~B}$. Substitut luy the above expression for $\mathcal{C}(\cdot, \cdot)$ in (3.14) and using the orthogonal property $\psi_{n}^{*} \perp x^{* \prime \prime \prime}$ at $n \neq m$ in \mathcal{H}^{2}, we have

$$
\psi^{*}(x)=\sum_{n \in \mathbf{Z}_{+}}\left\langle\psi_{n}^{*} \mid x^{* m}\right\rangle_{\mathcal{H}^{2}}=\left\langle\psi^{*} \mid \mathcal{C}(x, \cdot)\right\rangle_{\mathcal{H}^{2}}
$$

for all $x \in \mathrm{~B}$. In particular,

$$
\left\langle\mathfrak{e}_{(j)}^{*(k)} \mid x^{* n}\right\rangle_{\mathcal{H}^{2}}=\frac{n!}{(k)!} e_{(j)}^{*(k)}(x)\left\langle\mathfrak{e}_{(j)}^{*(k)} \mid \mathfrak{e}_{(j)}^{*(k)}\right\rangle_{\mathcal{H}^{2}}=\mathfrak{e}_{(j)}^{*(k)}(x)
$$

for all $\boldsymbol{e}_{(j)}^{\otimes(k)} \in \mathscr{E}_{n}$, hence $\mathcal{C}(\cdot, \cdot)$ produces the identity mapping in \mathcal{H}^{2}.
Theorem 4.15 can also be treated as some functional generalization of the Cauchy type integral formula for analytic functions. This can be formulated as follows.

Corollary 4.16. Each analytic function $\psi^{*} \in \mathcal{H}^{2}$ can be uniquely written in the Cauchy type form

$$
\mathcal{C}\left[\psi^{*}\right](x)=\left\langle\psi^{*} \mid \mathcal{C}(x, \cdot)\right\rangle_{\mathcal{H}^{2}}, \quad x \in \mathrm{~B} .
$$

Corollary 4.17. Each analytic function $\psi^{*} \in \mathcal{H}^{2}$ can be uniquely written in the Poisson type form

$$
\begin{equation*}
\mathscr{P}\left[\psi^{*}\right](x)=\left\langle\psi^{*} \mid \mathscr{P}(x, \cdot)\right\rangle_{\mathcal{H}^{2}}, \quad x \in \mathrm{~B} \tag{4.10}
\end{equation*}
$$

with the kernel

$$
\mathscr{P}(x, y):=\frac{1-\|x\|_{\mathrm{E}}^{2}}{\left|1-\langle x \mid y\rangle_{\mathrm{E}}\right|^{2}}>0, \quad y \in \mathrm{~B} \cup \mathrm{~S}
$$

Proof. If we put

$$
\phi^{*}(y):=\frac{\mathcal{C}(y, x)}{\mathcal{C}(x, x)} \psi^{*}(x)
$$

then $\phi^{*} \in \mathcal{H}^{2}$ and $\phi^{*}(x)=\psi^{*}(x)$ for all $x \in \mathrm{~B}$. Hence, we have

$$
\mathscr{P}\left[\psi^{*}\right](x)=\left\langle\phi^{*} \mid \mathcal{C}(x, \cdot)\right\rangle_{\mathcal{H}^{2}}=\left\langle\psi^{*} \mid \mathscr{P}(x, \cdot)\right\rangle_{\mathcal{H}^{2}}
$$

since

$$
\mathscr{P}(x, y)=\frac{1-\|x\|_{\mathrm{E}}^{2}}{\left|1-\langle x \mid y\rangle_{\mathrm{E}}\right|^{2}}=\frac{\mathcal{C}(x, y) \mathcal{C}(y, x)}{\mathcal{C}(x, x)}
$$

for all $x \in \mathrm{~B}$ and $y \in \mathrm{~B} \cup \mathrm{~S}$.
The Hardy class $\mathcal{H}^{2}(d \varsigma)$ from the Section 3.1 and the Hermitian dual of symmetric Fock space

$$
\mathcal{H}^{2}=\mathrm{F}^{*}
$$

possesses the same orthogonal basis \mathscr{E}^{*} (see Theorem 3.6).
Proposition 4.18. Let $f=\sum_{n \in \mathbb{Z}_{+}} f_{n} \in \mathrm{~F}$ with $f_{n} \in \odot_{\mathfrak{h}}^{n} \mathrm{E}$. Every element

$$
f^{*}=\sum_{n \in \mathbb{Z}_{+}} f_{n}^{*} \in \mathcal{H}^{2} \quad \text { with } \quad f_{n}^{*} \in \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)
$$

generates the analytic function on the Hilbertian open ball B

$$
\begin{equation*}
\mathfrak{F}\left[f^{*}\right](x):=f^{*}\left(\bigoplus_{n \in \mathbb{Z}_{+}} x^{\otimes n}\right)=\sum_{n \in \mathbb{Z}_{+}} f_{n}^{*}(x), \quad x \in \mathrm{~B} \tag{4.11}
\end{equation*}
$$

with the Taylor series at the origin

$$
f_{n}^{*}(x)=\sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \frac{n!}{(k)!} e_{\{j\}}^{*(k)}(x)\left\langle e_{\{j\}}^{(k)} \mid f_{n}\right\rangle_{\otimes_{h}^{n} \mathrm{E}^{\prime}}, \quad x \in \mathrm{E}
$$

and the point-evaluation functional

$$
\delta_{x}^{F}: f^{*} \mapsto \mathfrak{F}\left[f^{*}\right](x)
$$

is continuous for every $x \in \mathrm{~B}$.
Proof. In fact, since

$$
\mathfrak{F}\left[f^{*}\right](x)=\langle\omega(x) \mid f\rangle_{\mathrm{F}}
$$

and $\omega(x) \in \mathrm{F}$ for every $x \in \mathrm{~B}$, the functional δ_{x}^{F} is continuous on the space $\mathcal{H}^{\prime 2}$ endowed with the norm induced by F.

Proposition 4.19. In the case if

$$
n_{r}=1 \quad \text { for all } \quad r \in \mathbb{N}
$$

the following contractive dense embeddings

$$
\begin{equation*}
\mathcal{H}^{2}(d \varsigma) \leftrightarrow \mathcal{H}^{2} \quad \text { and } \quad \mathcal{H}_{n}^{2} \leftrightarrow \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right) \tag{4.12}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+}$hold.
Proof. By Proposition 1.28 the system \mathscr{E} forms an orthogonal bases in thin symmetric Fock space F and

$$
\left\|\mathfrak{e}_{\{j\}}^{\otimes(k)}\right\|_{\mathrm{F}}^{2}=\left\|\mathfrak{e}_{\{j\}}^{\otimes(k)}\right\|_{\otimes_{n}^{n} \mathrm{E}}^{2}=\frac{(k)!}{n!}, \quad n=|(k)| \quad \text { for all } \quad\{j\} \in \mathbb{N}^{n}
$$

Now from Theorem 3.7 it follows, that

$$
\left\|\mathfrak{e}_{\{j\}}^{\otimes(k)}\right\|_{F}^{2} \leq 1=\left\|\mathfrak{e}_{\{j\}}^{*(k)}\right\|_{L_{\varsigma}^{2}}^{2} .
$$

Via Theorem 3.6 for every function $f_{n}^{*} \in \mathcal{H}_{n}^{2}$ there exists a Fourier decomposition

$$
f_{n}^{*}=\sum_{\substack{(k) \in \mathcal{Z}_{q}^{n} \\|(k)|=n}} \sum_{\{j\} \in \mathbb{N}^{n}} \alpha_{\{j\}}^{(k)} \mathfrak{e}_{\{j\}}^{*(k)} \quad \text { in } \quad \mathcal{H}_{n}^{2}
$$

with the coefficients $\alpha_{\{j\}}^{(k)} \in \mathbb{C}$. It follows, that

$$
\begin{aligned}
\left\|f_{n}\right\|_{\otimes_{b}^{n} \mathrm{E}}^{2} & =\sum_{|(k)|=n} \sum_{\{j\} \in \mathbb{N}^{n}}\left|\alpha_{\{j\}}^{(k)}\right|^{2} \frac{(k)!}{n!} \\
& \leq \sum_{|(k)|=n} \sum_{\{j\} \in \mathbb{N}^{n}}\left|\alpha_{\{j\}}^{(k)}\right|^{2}=\left\|f_{n}^{*}\right\|_{L_{\varsigma}^{2}}^{2}
\end{aligned}
$$

Hence, the embedding $\mathcal{H}_{n}^{2} \rightarrow \mathcal{P}_{\mathfrak{h}}\left({ }^{n} \mathrm{E}\right)$ is contractive for all n. Therefore

$$
\|f\|_{\mathrm{F}}^{2}=\sum_{n \in \mathbb{Z}_{+}}\left\|f_{n}\right\|_{\otimes_{h}^{n} \mathrm{E}}^{2} \leq \sum_{n \in \mathbb{Z}_{+}}\left\|f_{n}^{*}\right\|_{L_{\varsigma}^{2}}^{2}=\left\|f^{*}\right\|_{L_{\varsigma}^{2}}^{2}
$$

for all $f^{*}=\sum_{n} f_{n} \in \mathcal{H}^{2}(d \varsigma)$ with $f_{n}^{*} \in \mathcal{H}_{n}^{2}$ und the embeddings (4.12) are proved. Since the system \mathscr{E}_{n}^{*} forms an orthogonal basis in \mathcal{H}_{n}^{2} for all n, the embeddings (4.12) are dense.

THEOREM 4.20. Let $x \in \mathrm{~B} \bigcap \mathrm{~B}_{\mathcal{G}}^{\infty}$ and $f^{*} \in \mathcal{H}^{2} \bigcap \mathcal{H}^{2}(d \varsigma)$. Then

$$
\mathfrak{C}\left[f^{*}\right](x)=\mathfrak{F}\left[f^{*}\right](x)
$$

for any integer sequence $\left(n_{r}\right)$.
Proof. We observe that

$$
\mathfrak{C}\left[f^{*}\right](x)=\delta_{x}\left(f^{*}\right), \quad \mathfrak{F}\left[f^{*}\right](x)=\delta_{x}^{\mathbb{F}}\left(f^{*}\right)
$$

and both δ_{x} and δ_{x}^{F} are continuous if $x \in \mathrm{~B} \bigcap \mathrm{~B}_{\mathcal{G}}^{\circ \circ}$. So they coincide on the common domain if they are equal each to other on basis functions. But

$$
\begin{aligned}
\delta_{x}\left(\mathfrak{e}_{\{j\}}^{* \otimes(k)}\right) & =\mathfrak{e}_{j_{1}}^{* \otimes k_{1}}(x) \cdot \mathfrak{e}_{j_{2}}^{* \otimes k_{2}}(x) \cdot \ldots \cdot \mathfrak{e}_{j_{n}}^{* \otimes k_{n}}(x) \\
& =\delta_{x}^{\mathrm{F}}\left(\mathfrak{e}_{\{j\}}^{* \otimes(k)}\right)
\end{aligned}
$$

for all multi-indexes (k) and $\{j\}$. So,

$$
\mathfrak{C}\left[f^{*}\right](x)=\mathfrak{F}\left[f^{*}\right](x)
$$

for every $f^{*} \in \mathcal{H}^{2} \bigcap \mathcal{H}^{2}(d \varsigma)$ and $x \in \mathrm{~B} \bigcap \mathrm{~B}_{\mathcal{G}}^{\infty}$.
The following proposition gives a natural isomorphism between \mathcal{H}^{2} and $\mathcal{H}^{2}(d \varsigma)$ for any integer sequence $\left(n_{r}\right)$.

Proposition 4.21. Let J be a linear operator from \mathcal{H}^{2} to $\mathcal{H}^{2}(d \varsigma)$ defined on the basis functions by the following way

$$
J\left(\mathfrak{c}_{\{j\}}^{* \otimes(k)}\right)=\sqrt{\frac{(k)!}{n!}} \frac{\mathfrak{e}_{\{j\}}^{* \otimes(k)}}{\sqrt{\left\{\mathfrak{c}_{\{j\}}^{* \otimes(k)} \mid \mathfrak{e}_{\{j\}}^{* \otimes(k)} /\right.} / L_{\text {c }}^{2}}, \quad n=|(k)|
$$

Then J is an isometrical isomorphism.
Proof. From the definition of J we have that

$$
J\left(\frac{e_{\{j\}}^{* \otimes(k)}}{\left\|e_{\{j\}}^{\otimes(k)}\right\|_{\mathbf{F}}}\right)=\frac{e_{\{j\}}^{* \otimes(k)}}{\left\|e_{\{j\}}^{* \otimes(k)}\right\|_{L_{\varsigma}^{2}}}
$$

That is, J maps one-to-one the orthonormal basis of \mathcal{H}^{2} onto the orthonormal basis of $\mathcal{H}^{2}(d \varsigma)$. So J is an isometrical isomorphism.

Note that if $n_{r}=1$ for all $r \in \mathbb{N}$, then

$$
J\left(e_{\{j\}}^{* \otimes(k)}\right)=\sqrt{\frac{(k)!}{n!}} e_{\{j\}}^{* \otimes(k)}
$$

4.3. Holomorphicity and generalized symmetric Fock spaces

4.3.1. Generalized symmetric Fock spaces. Let E means an complex sep arable Hilbert space in which is fixed an orthonormal basis $\left\{\mathfrak{e}_{i} \in \mathrm{E}: i \in \mathbb{N}\right\}$. For any Fourier expansion $x=\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i}$ with $x_{i} \in \mathbb{C}$ convergent in E we have thon $x_{i}=\left\langle x \mid \mathfrak{e}_{i}\right\rangle_{\mathbf{E}}$. In the algebraic direct sum

$$
\mathbb{C}+\mathrm{E}+\odot^{2} \mathrm{E}+\cdots+\odot^{n} \mathrm{E}+
$$

we consider the system

$$
\mathscr{E}=\bigcup_{n \in \mathbb{Z}_{+}}\left\{\mathfrak{e}_{\{i\}}^{\otimes(k)}:\{i\} \in \mathbb{N}^{n},(k) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\}
$$

where $\{i\}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ such that $i_{1}<\cdots<i_{n}$ and $\mathfrak{e}_{\{i\}}^{(k)} \equiv 1$ if $|(k)|=0$. It In also clear that $\mathfrak{e}_{\{i\}}^{\otimes(k)} \in \odot^{n} \mathrm{E}$ and for all $x \in \mathrm{E}$ we have

$$
\mathbb{e}_{\{i\}}^{*(k)}(x)=\left\langle x^{\otimes n} \mid \mathbf{c}_{\{i\}}^{\otimes(k)}\right\rangle_{\Theta_{b}^{n} \mathrm{E}}, \quad n=|(k)| .
$$

Then we can consider the system

$$
\mathscr{E}^{* *}=\bigcup_{n \in \mathbb{Z}_{+}}\left\{\mathfrak{e}_{\{i\}}^{*(k)}:\{i\} \in \mathbb{N}^{n},(k) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\}
$$

of Hilbert-Schmidt polynomials over E,

$$
e_{\{i\}}^{*(k)}(x)=x_{\{i\}}^{(k)}, \quad x_{\{i\}}^{(k)}:=x_{i_{1}}^{k_{1}} \ldots x_{i_{n}}^{k_{n}}
$$

where $\{i\}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ such that $i_{1}<\cdots<i_{n}$ and $\mathfrak{e}_{\{i]}^{(k)} \equiv 1$ if $|(k)|=0$.
We say that a Hilbert space F_{η} with an arbitrary norm $\|\cdot\|_{\eta}$ is an (generalizel) symmetric Fock space over E if the system \mathscr{E} forms an orthogonal basis in F_{η} (nou necessarily, orthonormal).

Evidently, the norm $\|\cdot\|_{\eta}$ is completely defined by its value on the basis vectors \mathcal{f}. Hence, setting $\left\|\mathfrak{e}_{[i\}}^{\otimes(k)}\right\|_{\eta}$ by arbitrary positive numbers, we can get various symmetrlc' Fock type space over E. Let $\langle\cdot \mid \cdot\rangle_{\eta}$ be the scalar product in F_{η}. Put

$$
c_{\{i\}}^{(k)}:=\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{-2}, \quad c_{\{i\}}^{(k)}=\left\{\begin{array}{ll}
1 & : n=|(k)|=0, \\
1 & : n=|(k)|=1
\end{array} \quad \text { for all }\{i\}=i \in \mathbb{N} .\right.
$$

Let us consider a formal power series

$$
\begin{equation*}
\eta(x)=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} \mathfrak{e}_{\{i\}}^{\otimes(k)}, \quad x \in \mathrm{E} \tag{4.13}
\end{equation*}
$$

Theorem 4.22. Suppose, that there are constants $c>0$ and $M>0$ such that for all multi-indexes $\{i\} \in \mathbb{N}^{n}$ and $(k) \in \mathbb{Z}_{+}^{n}$ inequalities

$$
\begin{equation*}
c_{\{i\}}^{(k)} \leq c M^{2 n} \frac{n!}{(k)!}, \quad n=|(k)| \in \mathbb{N} \tag{4.14}
\end{equation*}
$$

hold. Then there exists an open zero neighbourhood $\mathcal{Q} \subset \mathrm{E}$ such that:
(i) the series (4.13) is convergent for every $x \in \mathcal{Q}$ and η is an analytic map from \mathcal{Q} into $\mathrm{F}_{\eta} ;$
(ii) for every $\phi \in \mathrm{F}_{\eta}$ the map

$$
f_{\phi}(x)=\langle\eta(x) \mid \phi\rangle_{\eta}, \quad x \in \mathcal{Q}
$$

is an analytic function on \mathcal{Q};
(iii) the function $\left\langle\eta(x) \mid \mathbb{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\eta}$ is an n-homogeneous polynomial and

$$
\left\langle\eta(x) \mid \mathfrak{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\eta}=x_{\{i\}}^{(k)}, \quad x \in \mathrm{E}
$$

Proof. Evidently, $\eta(0)=1$. For any fixed $n \in \mathbb{Z}_{+}$let

$$
\eta_{n}(x)=\sum_{\substack{(k) \in L^{n} \\|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} e_{\{i\}}^{(\varepsilon)(k)}, \quad x \in \mathrm{E}
$$

It is clear that $\eta_{n}(x)$ is an n-homogeneous Hilbert-Schmidt polynomial from E to F_{η}. For every $x \in \mathrm{E},\|x\|_{\mathrm{E}} \leq 1$ we can write

$$
\begin{aligned}
& \left\|\eta_{n}(x)\right\|_{\eta}^{2}=\sum_{\substack{(k) \in \mathbb{Z}_{\neq}^{n} \\
\mid(k)=n}} \sum_{\{i\} \in \mathbb{N}^{n}}\left\langle c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} \mathbb{e}_{\{i\}}^{\otimes(k)} \mid c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} \mathbf{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\eta} \\
& =\sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}}\left(c_{\{i\}}^{(k)}\right)^{2}\left|x_{\{i\}}^{(k)}\right|^{2}\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|^{2}=\sum_{\eta} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n}+\\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)}\left|x_{\{i\}}^{(k)}\right|^{2} \\
& \leq \sum_{\substack{(k) \in \mathbb{Z}^{n} \neq\{ \\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c M^{2 n} \frac{n!}{(k)!}\left|x_{\{i\}}^{(k)}\right|^{2} \\
& =c M^{2 n}\left(\sum_{i \in \mathbb{N}}\left|x_{i}\right|^{2}\right)^{n}=c M^{2 n}\|x\|_{\mathbb{E}}^{n} .
\end{aligned}
$$

Thus, we obtain

$$
\sup _{\|x\| \leq 1}\left\|\eta_{n}(x)\right\|_{\eta} \leq \sqrt{c} M^{n}\|x\|_{\mathrm{E}}^{\mathrm{n}}
$$

Hence, the radius of uniform convergence of η at zero is equal to

$$
\varrho_{0}(\eta)=\left(\limsup _{n \rightarrow \infty}\left\|\eta_{n}\right\|_{\eta}^{1 / n}\right)^{-1} \geq\left(\limsup _{n \rightarrow \infty}\left(\sqrt{c} M^{n}\right)^{1 / n}\right)^{-1}=\frac{1}{M}
$$

Thus η is an analytic map in an open neighborhood of zero of radius $1 / M$. Denote by \mathcal{Q} the domain of analyticity of η in E .

Let $\phi \in \mathrm{F}_{\eta}$. Then the $\operatorname{map} f_{\phi}$ is the composition of the analytic maps $\eta(x)$ und ϕ and so it is analytic (see [50]). Also, we can see

$$
\begin{aligned}
\left\langle\eta(x) \mid \mathfrak{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\eta} & =\left\langle\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} x_{\{j\}}^{(k)} e_{\{j\}}^{\otimes(k)} \mid \mathfrak{e}_{(i)}^{\otimes(k)}\right\rangle_{\eta} \\
& =c_{\{i\}}^{(k)} x_{\{i\}}^{(k)}\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2}=x_{\{i\}}^{(k)}=x_{i_{1}}^{k_{1}} \ldots x_{i_{n}}^{k_{n}}
\end{aligned}
$$

for any $x \in \mathcal{Q}$, that it was necessary to prove.

Let us denote \mathcal{H}_{η} the Hilbert space of analytic function

$$
f_{\phi}=\langle\eta(\cdot) \mid \phi\rangle_{\eta}, \quad \phi \in \mathrm{F}_{\eta}
$$

that is Hermitian dual to F_{η}. We will use the same symbol $\langle\cdot \mid \cdot\rangle_{\eta}$ for the scal product in \mathcal{H}_{η}. Define an involution in F_{η} respectively $\langle\cdot \mid \cdot\rangle_{\eta}$, using the comple conjugation in \mathcal{H}_{η}. Thus, $\bar{f} \in \mathrm{~F}_{\eta}$ is such that $f=\langle\cdot \mid \bar{f}\rangle_{\eta}$ for all $f \in \mathcal{H}_{\eta}$. particularly, $f(x)=\langle\eta(x) \mid \bar{f}\rangle_{\eta}$, thus $f_{\bar{f}}=f$. Also for any $g \in \mathrm{~F}_{\eta}$ we mean function from \mathcal{H}_{η} such that $g=\langle\cdot \mid \bar{g}\rangle_{\eta}$.

Proposition 4.23. A map $K: \mathrm{E} \times \mathrm{E} \longrightarrow \mathbb{C}$ defined by

$$
K(x, z)=\langle\bar{\eta}(z) \mid \bar{\eta}(x)\rangle_{\eta}=\langle\eta(x) \mid \eta(z)\rangle_{\eta}
$$

is a reproducing kernel for \mathcal{H}_{η}.
The proof immediately follows from Theorem 1.33 for $h(x):=\bar{\eta}(x)$.
Example 4.24. For a fixed positive integer m set

$$
\begin{aligned}
\eta(x) & =\sum_{k \in \mathbb{Z}_{+}} \frac{(m-1+k)!}{(m-1)!k!} x^{\otimes k}=\sum_{k \in \mathbb{Z}_{+}} \frac{(m-1+k)!}{(m-1)!k!}\left(\sum_{k \in \mathbb{Z}_{+}} x_{i} \mathbf{e}_{i}\right)^{\otimes k} \\
& =\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}} \frac{(m-1+k)!|(k)|!}{(m-1)!k!} \frac{(x)!}{(k)!} \mathbf{e}_{\{i\}}^{\otimes(k)} \\
& =\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\
|(k)| \mid=n}} \sum_{\{i\} \in \mathbb{N}^{n}} \frac{(|(k)|!+m-1)!}{(m-1)!(k)!} \mathbb{e}_{\{i\}}^{\otimes(k)} x_{\{i\}}^{(k)}
\end{aligned}
$$

It follows that

$$
c_{\{i\}}^{(k)}=\frac{(|(k)|!+m-1)!}{(m-1)!(k)!}
$$

We can show directly that η is an analytic map from the unit open ball $\mathrm{B} \subset$ to F_{η} for every $m \in \mathbb{N}$. Indeed, since

$$
\frac{1}{(1-t)^{m}}=\frac{1}{(m-1)!}\left(\frac{1}{1-t}\right)^{(m-1)}=\sum_{k \in Z_{+}} \frac{(m-1+k)!}{(m-1)!k!} t^{k}
$$

where t is an independent variable and $\left(\frac{1}{1-t}\right)^{(m-1)}$ is the $(m-1)$ th derivation $\frac{1}{1-t}$. So,

$$
\|\eta(x)\|_{\eta}^{2}=\sum_{k \in \mathrm{Z}_{+}} \frac{(m-1+k)!}{(m-1)!k!}\|x\|_{\mathrm{E}}^{2 k}=\frac{1}{\left(1-\|x\|_{\mathrm{E}}^{2}\right)^{m}}
$$

Thus η is well defined on B and locally bounded. Moreover η is a G-analytic map o B as an absolutely convergent power series on B intersected with an arbitrary finit. dimensional subspace. Hence, η is analytic and \mathcal{H}_{η} is a Hilbert space of analyt function on B. Note that \mathcal{H}_{η} coincides with the classical Hardy space on the un ball if (and only if) $\operatorname{dim} E=m$.

Theorem 4.22 admits the next generalization. Let

$$
\begin{equation*}
\left.\eta(x)=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{n} \\\{(k) \mid=\pi}} \sum_{\{i\} \in \mathbb{N}^{n}} b_{\{i\}}^{(k)} x_{\{i\}}^{(k)}\right\}_{\{i\}}^{\otimes(k)}, \quad b_{\{i\}}^{(k)} \in \mathbb{C} \tag{4.15}
\end{equation*}
$$

be a formal power series with $x=\sum_{i \in \mathbb{N}} x_{i} \mathfrak{e}_{i} \in \mathrm{E}$ and $\left(x_{i}\right) \in \ell_{2}$. Denote by \mathcal{N} the set of pairs of multi-indexes $(\{i\},(k))$ such that $b_{\{i\}}^{(k)}=0$. Let

$$
\mathrm{V}_{\mathcal{N}}=\operatorname{span}_{\mathrm{C}}\left\{\mathrm{e}_{\{i\}}^{\otimes(k)}:(\{i\},(k)) \in \mathcal{N}\right\}
$$

The linear space $F / V_{\mathcal{N}}$ is spanned on the all vectors $\mathfrak{e}_{\{i\}}^{\otimes(k)}$ with $(\{i\},(k)) \notin \mathcal{N}$. We define a norm on F / V_{N} by

$$
\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2}=\frac{1}{\left|b_{\{i\}}^{(k)}\right|}
$$

assuming that such $\left(e_{\{i\}}^{\otimes(k)}\right)$ forms an orthogonal basis in $\left(F / V_{\mathcal{N}},\|\cdot\|_{\eta}\right)$. Denote by F_{η} the completion of $F / V_{\mathcal{N}}$ by such $\|\cdot\|_{\eta}$. Notice that power series (4.15) is an analytic map if and only if

$$
\mathcal{Q}_{\mathcal{N}} \ni x \longmapsto \sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathcal{Z}^{n}+\\|(k)|=\boldsymbol{n}}} \sum_{\{i\} \in \mathbb{N}^{n}}\left|b_{\{i\}}^{(k)}\right| x_{\{i\}}^{(k)} \mathfrak{e}_{\{i\}}^{\otimes(k)}
$$

is an analytic map in an open domain $\mathcal{Q}_{\mathcal{N}} \subset \mathrm{E}$ and

$$
\left\langle\eta(x) \mid \mathfrak{e}_{\{i\}}^{\otimes(k)}\right\rangle_{\eta}=\frac{b_{\{i\}}^{(k)}}{\left|b_{\{i\}}^{(k)}\right|} x_{\{i\}}^{(k)}, \quad x \in \mathcal{Q}_{\mathcal{N}}
$$

4.3.2. Hilbert spaces of entire functions. In this section we consider the case when $\mathcal{H}_{\eta}=\mathrm{F}_{\eta}^{*}$ consists with entire functions on a separable Hilbert complex space E with an orthonormal basis

$$
\left\{\mathfrak{e}_{i} \in \mathrm{E}: i \in \mathbb{N}\right\}
$$

Proposition 4.25. Suppose that there exists a constant $c>0$ and a sequence of positive numbers $\left(M_{n}\right), M_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that

$$
c_{\{i\}}^{(k)} \leq c M_{n}^{2 n} \frac{n!}{k!}
$$

for all indexes $(k) \in \mathbb{Z}_{+}^{n}$ so that $n=|(k)|$, where

$$
c_{\{i\}}^{(k)}=\left\|e_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{-2}
$$

and $\mathfrak{e}_{\{i\}}^{\otimes(k)} \in \mathscr{E}$ is an orthogonal basis in F_{η}. Then

$$
\mathcal{H}_{\eta}=\mathrm{F}_{\eta}^{*}
$$

is a Hilbert space of entire functions of bounded type on E.

Proof. Repeating the proof of Theorem 4.22 we can see that the series

$$
\eta(x)=\sum_{n \in \mathbf{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}^{n} \\ 1(k) \mid=n}} \sum_{\{i\} \in \mathbb{N}^{n}} c_{\{i\}}^{(k)} x_{\{i\}}^{(k)} e_{\{i\}}^{\otimes(k)}
$$

is an analytic map with the radius of uniform convergence

$$
\varrho_{0}(\eta)=\limsup _{n \rightarrow \infty} \frac{1}{M_{n}}=\infty .
$$

Hence η is an entire map of bounded type from \mathbf{E} into F_{η}. Thus, every function $f \in \mathcal{H}_{\eta}$ is an entire function of bounded type on E , as a composition of bounded typr entire map and linear continuous functional.

The next proposition gives another test for \mathcal{H}_{η} to be a space of entire functionm,
Proposition 4.26. Suppose that

$$
\lim _{n \rightarrow \infty} \frac{\left\|\eta_{n+1}\right\|_{\eta}}{\left\|\eta_{n}\right\|_{\eta}}=0
$$

Then \mathcal{H}_{η} consists with bounded type entire functions.
Proof. By the ratio test the power series $\sum_{n \in \mathbb{Z}_{+}}\left\|\eta_{n}\right\| t^{n}$ is absolutely convergen for every $t \in \mathbb{C}$. Thus, by the Cauchy-Hadamard formula,

$$
\limsup _{n \rightarrow \infty}\left(\left\|\eta_{n}\right\|^{1 / n}\right)^{-1}=\infty
$$

and η is hence an entire mapping.
Example 4.27. Let

$$
\eta(x)=\sum_{n \in \mathbb{Z}_{+}} \frac{x^{\otimes n}}{n!}, \quad x \in \mathrm{E}
$$

Denote by $\mathcal{H}^{2}(E)$ the corresponding space \mathcal{H}_{η}. It is easy to see that $\mathcal{H}^{2}(E)$ consist. with bounded type entire functions on E and

$$
\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2}=(k)!, \quad n=|(k)| .
$$

The reproduction kernel of this space is

$$
\begin{aligned}
K(z, x) & =\langle\eta(x) \mid \eta(z)\rangle_{\eta}=\sum_{n \in \mathbb{Z}_{+}} \frac{\left\langle x^{\otimes n} \mid z^{\otimes n}\right\rangle_{\eta}}{(n!)^{2}} \\
& =\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{n}^{n} \\
\mid(k)=n}} \sum_{\{i\} \in \mathbb{N}^{n}} \frac{1}{n!}\left(\frac{n!}{(k)!}\right)^{2}\left\|\mathbb{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2} x_{\{i\}}^{(k)} z_{\{i\}}^{(k)} \\
& =\sum_{n \in \mathbb{Z}_{+}} \frac{n!}{(k)!} x_{\{i\}}^{(k)}=\sum_{n \in \mathbb{Z}_{+}} \frac{\langle x \mid z\rangle_{E}^{n}}{n!}=e^{\langle x \mid z\rangle_{\mathbb{E}}}
\end{aligned}
$$

and for every function from $\mathcal{H}^{2}(\mathrm{E})$ there exists a unique $w \in \mathrm{~F}_{\eta}$ such that

$$
\begin{equation*}
f_{w}(x)=\langle\eta(x) \mid w\rangle \tag{4.16}
\end{equation*}
$$

On the contrary, for any vector $w \in \mathrm{~F}_{\eta}$ we have $f_{w} \in \mathcal{H}^{2}(\mathrm{E})$. According to [80] $\mathcal{H}^{2}(E)$ is an infinite tensor product of

$$
\mathcal{H}^{2}(\mathbb{C})=\left\{f \in \mathcal{H}(\mathbb{C}): \int_{\mathbb{C}}|f(z)|^{2} e^{-|z|^{2}} d z<\infty\right\}
$$

4.3.3. More examples of reproducing function. Let \mathbb{D} be the open unit disk in \mathbb{C}. Denote by $\Gamma_{r}, 0<r \leq \infty$ the set of all analytic functions on $r \mathbb{D}$ if $r<\infty$, and on \mathbb{C} if $r=\infty$,

$$
r \mathbb{D} \ni t \longmapsto \gamma(t)=\sum_{n \in \mathbb{Z}_{+}} \gamma_{n} t^{n}, \quad \gamma_{n}>0
$$

Let Ω be a stand for both $r \mathbb{D}$ and \mathbb{C}. Evidently, Γ_{r} is an open convex subset of the Fréchet space of all analytic functions $\mathcal{H}^{2}(\Omega)$ on Ω.

Proposition 4.28. For a given $\gamma \in \Gamma_{r}$ and a Hilbert space \mathbf{E} the function

$$
r \mathrm{~B} \ni x \longmapsto \eta[\gamma](x)=\sum_{n \in \mathbb{Z}_{+}} \gamma_{n} x^{n}
$$

is an analytic map from the ball $r \mathrm{~B} \subset \mathrm{E}$ (where $r \mathrm{E}=\mathrm{E}$ if $r=\infty$) to F_{η} and

$$
\begin{equation*}
\|\eta[\gamma](x)\|_{\eta}^{2}=\langle\eta[\gamma](x) \mid \eta[\gamma](x)\rangle_{\eta[\gamma]}=\gamma\left(\|x\|_{\mathbb{E}}^{2}\right) \tag{4.17}
\end{equation*}
$$

for every $x \in r \mathrm{~B}$.
Proof. By the Cauchy-Hadamard formula

$$
\limsup _{n \rightarrow \infty}\left(\gamma_{n}\right)^{1 / n} \leq 1 / r
$$

On the other hand,

$$
\begin{equation*}
\eta[\gamma](x)=\sum_{n \in \mathbb{Z}_{+}} \gamma_{n} x^{n}=\sum_{n \in \mathbb{Z}_{+}} \sum_{\substack{(k) \in \mathbb{Z}_{\begin{subarray}{c}{n} }}^{|(k)|=n}}\end{subarray}} \sum_{\{i\} \in \mathbb{N}^{n}} \gamma_{n} \frac{n!}{(k)!} \mathfrak{e}_{\{i\}}^{\otimes(k)} x_{\{i\}}^{(k)} . \tag{4.18}
\end{equation*}
$$

We can apply Theorem 4.22 for $M_{n}=\gamma_{n}$. Calculating we have

$$
\begin{aligned}
\|\eta[\gamma](x)\|_{\eta}^{2} & =\langle\eta[\gamma](x) \mid \eta[\gamma](x)\rangle_{\eta[\gamma]}=\sum_{n \in \mathbb{Z}_{+}} \gamma_{n}^{2}\langle x \mid x\rangle_{\mathrm{E}}^{n} \\
& =\sum_{n \in \mathbb{Z}_{+}} \gamma_{n}^{2} \sum_{\substack{(k) \in \mathbb{Z}_{+}^{\eta} \\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}}\left(\frac{n!}{(k)!}\right)^{2}\left|x_{\{i\}}^{(k)}\right|^{2}\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2}
\end{aligned}
$$

Since $\gamma_{n} \frac{n!}{(k)!}=\frac{1}{\left\|\mathbf{e}_{\{i\}}^{(k)}\right\|_{\eta}^{2}}$, we obtain

$$
\begin{aligned}
\|\eta[\gamma](x)\|_{\eta}^{2} & =\sum_{n \in \mathbb{Z}_{+}} \gamma_{n} \sum_{\substack{(k) \in \mathbb{Z}^{n}+\\
|(k)|=n}} \sum_{\{i\} \in \mathbb{N}^{n}}\left(\frac{n!}{(k)!}\right)^{2}\left|x_{\{i\}}^{(k)}\right|^{2} \\
& =\sum_{n \in \mathbb{Z}_{+}} \gamma_{n}\|x\|^{2 n}=\gamma\left(\|x\|^{2}\right)
\end{aligned}
$$

Hence, the equation (4.17) is proved.
We say that η is generated by γ. Note, that the reproducing function η III Example 4.24 is generated by

$$
\gamma(t)=\frac{1}{(1-t)^{m}}
$$

and in Example 4.27 is generated by $\gamma(t)=e^{t}$.
It is clear that operations of addition and multiplication of functions preserve tho set Γ_{r}. The proof of next technical lemma directly follows from definitions.

Lemma 4.29. Let η_{1} and η_{2} be reproducing functions with the same domain $\mathcal{Q} \subset \mathrm{E}$. Then

$$
\eta=\frac{\eta_{1}+\eta_{2}}{2}
$$

is a reproducing function with domain \mathcal{Q} and

$$
\begin{equation*}
\left\|\mathbb{e}_{\{i\}}^{\otimes(k)}\right\|_{\eta}^{2}=\frac{2}{\left\|\mathfrak{e}_{\{i\}}^{\otimes(k)}\right\|\left\|_{\eta_{1}}^{-2}+\right\| \mathfrak{e}_{\{i\}}^{\otimes(k)} \|_{\eta_{2}}^{-2}} \tag{4.19}
\end{equation*}
$$

Corollary 4.30. Let γ_{1} and γ_{2} belongs to Γ_{r}. Then the reproducing function

$$
\eta\left[\frac{\gamma_{1}+\gamma_{2}}{2}\right]
$$

which is defined by $\frac{\gamma_{1}+\gamma_{2}}{2}$ is coincides with

$$
\frac{\eta\left[\gamma_{1}\right]+\eta\left[\gamma_{2}\right]}{2}
$$

where η_{1} and η_{2} are defined to be $\eta\left[\gamma_{1}\right]$ and $\eta\left[\gamma_{2}\right]$, respectively. Hence, norms ol basic vectors of \mathcal{H}_{η} can be computed by (4.19).

Let $\gamma, \tau \in \Gamma_{r}, \gamma(t)=\sum_{n \in \mathbf{Z}_{+}} t^{n} \gamma_{n}$, and $\tau(t)=\sum_{n \in \mathbf{Z}_{+}} t^{n} \tau^{n}$. Then $\xi(t):=$ $\gamma(t) \tau(t) \in \Gamma_{r}$ and

$$
\xi_{n}=\sum_{k=0}^{n} \gamma_{k} \tau_{n-k}=\sum_{l+m=n} \gamma_{l} \tau_{m}
$$

Let $\{i\} \in \mathbb{N}^{N}$ and $(k) \in \mathbb{Z}_{+}^{N}$. Comparing (4.18) with (4.13) for

$$
x=\mathfrak{e}_{i_{1}}+\cdots+\mathfrak{e}_{i_{N}}
$$

where $c_{\{i\}}^{(k)}:=\left\|e_{\{i\}}^{\otimes(k)}\right\|_{\eta\{\gamma]}^{-2}$, we have for arbitrary $(k) \in \mathbb{Z}_{+}^{N}$ such that $|(k)|=l_{\text {, }}$, $\gamma_{l}=\frac{(k)!}{l!\| e_{\{i\}}^{\otimes(k)} \ddot{\|}_{\eta[\gamma]}^{2}}$. By the same reasons, for any $(p) \in \mathbb{Z}_{+}^{N}$ such that $|(k)|=m_{\text {, }}$ $\tau_{m}=\frac{(p)!}{m!\left\|\mathbf{e}_{\{i\}}^{(p)}\right\|_{\eta[\tau]}^{2}}$. Hence, we have $\xi_{n}=\sum_{l+m=n} \frac{(k)!(p)!}{l!m!\left\|e_{\{i\}}^{(k)}\right\|_{\eta \mid \gamma]}^{2}\left\|e_{\{i\}}^{(p)}\right\|_{\eta[\tau]}^{2}}$. On the other
hand, for $(q) \in \mathbb{Z}_{+}^{N}$ such that $|(k)|=l+m=n$, and $\xi_{n}=\frac{(q)!}{n!\left\|e_{\{i\}}^{(q)}\right\|_{\eta[\xi]}^{2}}$ and so

$$
\begin{equation*}
\left\|\mathfrak{e}_{\{i\}}^{(q)}\right\|_{\eta[\xi]}^{2}=\frac{(q)!}{|(q)|!}\left(\sum_{|(k)|+|(p)|=|(q)|} \frac{(k)!(p)!}{|(k)|!|(p)|!\left\|\boldsymbol{e}_{\{i\}}^{(k)}\right\|_{\eta \mid \gamma]}^{2}\left\|e_{\{i\}}^{(p)}\right\|_{\eta[\tau]}^{2}}\right)^{-1}, \tag{4.20}
\end{equation*}
$$

where the sum taken over all multi-indexes $(k),(p) \in \mathbb{Z}_{+}^{N}$ such that

$$
\mathbf{e}_{\{i\}}^{\otimes(k)} \odot \mathbf{c}_{\{i\}}^{\otimes(p)}=\mathbf{c}_{\{i\}}^{\otimes(q)} .
$$

Therefore we have proved the following assertion.
Proposition 4.31. If γ and τ belongs to Γ_{r}, then $\gamma \tau$ belongs to Γ_{r} and (4.20) holds.

Let now $\gamma \in \Gamma_{r}$ and $\tau \in \Gamma_{d}$. Denote by

$$
\gamma \otimes \tau(t, s):=\gamma(t) \tau(s)
$$

the tensor product of functions. Set

$$
\eta[\gamma \otimes \tau](x, y):=\sum_{k, m \in \mathbb{Z}_{+}} \gamma_{k} \tau_{m} x^{\otimes k} y^{\otimes m}
$$

where $x \in \mathrm{E}_{1}$ and $y \in \mathrm{E}_{2}$ for some Hilbert spaces E_{1} and E_{2}. Let (\mathfrak{e}_{k}) be an orthonormal basis in E_{1} and $\left(\mathrm{a}_{k}\right)$ an orthonormal basis in E_{2}.

Proposition 4.32. The function $\eta[\gamma \otimes \tau]$ is reproducing with the domain $r B_{\mathrm{E}_{1}} \times t B_{\mathrm{E}_{2}}$ and

$$
\left\|e_{\{i\}}^{(k)} a_{\{j\}}^{(m)}\right\|_{\eta[\gamma \otimes \tau]}=\left\|e_{\{i\}}^{(k)}\right\|_{\eta[\gamma]}\left\|a_{\{j\}}^{(m)}\right\|_{\eta[\tau]}
$$

Proof. Let $x=\mathfrak{e}_{i_{1}}+\cdots+\mathfrak{e}_{i_{n}}$ and $y=\mathfrak{a}_{j_{1}}+\cdots+\mathfrak{a}_{j_{l}}$. Then the proof it follows from Theorem 4.22 and the representation

$$
\eta[\gamma \otimes \tau](x, y)=\sum_{(k),(m),\{i\},\{j\}} \gamma_{|(k)|} \tau_{|(m)|} \frac{|(k)|!|(m)|!}{(k)!(m)!} \mathfrak{e}_{\{i\}}^{(k)} \mathfrak{a}_{\{j\}}^{(m)} x_{\{i\}}^{(k)} y_{\{j\}}^{(m)},
$$

where the sum taken over all multi-indexes $(k) \in \mathbb{Z}_{+}^{n},(m) \in \mathbb{Z}_{+}^{l},\{i\} \in \mathbb{N}^{n}$, and $\{j\} \in \mathbb{N}^{l}$.

Notes and Remarks. In [16] E. Bishop and K. De Leeuw introduced and investigated representing measures on subspaces and subalgebras of algebra $C(\mathcal{Q})$ and proved Theorem 4.2. Abstract Hardy spaces were investigated by T.Gamelin. In particular, Proposition 4.4 is in [43]. In Section 4.2 we present some specification of statements from [56] (other interpretation of these statements was given in [83, Theorem 2.6]). Proposition 4.14 is proved in [56]. Notice that an approach to Hilbertian Hardy type classes, being reproducing kernel spaces on infinite-dimensional balls, which generally not having form of a polydisk, using the Bishop-De Leeuw theorem about representing measures, have been proposed in [59]. Other examples of reproducing kernel Hilbertian Hardy type spaces were studied in [55, 57]. Theorem 4.20 is proved in [61].

Bibliography

[1] R. Aron, An introduction to polynomials on Banach spaces, Extracta Mathematics, 17 (3), (2002), 303-329.
[2] R. Alencar, R. Aron, P. Galindo and A. Zagorodnyuk, Algebra of symmetric holomorpher functions on ℓ_{p}, Bull. Lond. Math. Soc. 35, (2003), 55-64.
[3] E.L. Arenson, Gleason parts and the Choquet boundary of a function algebra on a conve, compactum, J. Math. Sci., 29(6), (1983), 1832-1834.
[4] R.M. Aron and P.D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France, 106, (1978), 3-24.
[5] R.M. Aron, D. Carando, T.W. Gamelin, S. Lasalle and M. Maestre, Cluster Values of Analytio Functions on a Banach space, Math. Ann., 353, (2012), 293-303.
[6] R.M. Aron, B.J. Cole and T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math., 415, (1991), 51-93.
[7] R.M. Aron, B.J. Cole and T.W. Gamelin, Weak-star continuous analytic funtions, Can. J Math., 47, (1995), 673-683.
[8] R.M. Aron, C. Hervês and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal., 52, (1983), 189-204.
[9] R.M. Aron, P. Galindo, D. Garcia and M. Maestre, Regularity and algebras of analytic function in infinite dimensions, Trans. Amer. Math. Soc., 348, (1996), 543-559.
[10] R.M. Aron and J.B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math., 313, (1980), 195-216.
[11] N. Aronzajn, Teory of reproducing kernels, Trans. Amer. Math. Soc., 68, (1950), 337-404.
[12] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14, (1961), 187-214.
[13] V. Bargmann, Remarks on a Hilbert space of analytic functions, Proc. Nat. Acad. Sci. U.S.A., 48, (1962), 199-204.
[14] C.A. Berger and L.A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc., 301, (1987), 813-829.
[15] Yu.M. Berezanski and Yu.G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysio, Kluwer Acad. Publ., Dordrecht, 1995.
[16] E. Bishop and K.De Leeuw, The representations of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier, 9, (1959), 305-331.
[17] P. Biström, J.A. Jaramillo and M. Lindström, Polynomial compactness in Banach spacen, Rocky Mont. J. Math., 28, (1998), 1203-1225.
[18] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Mathematica, 39, (1970), 59-76.
[19] J. Bonet and A. Peris. Hypercyclic operators on non-normable Fréchet space, J. Funct. Anal., 159, (1998), 387-395.
[20] A. Borodin and G. Olshanski, Harmonic analysis on the infinite-dimensional unitary grous, and determinantal point processes, Ann. Math., 161, (2005), 1319-1422.
[21] N. Bourbaki, Integration II, Springer, Berlin, 2004.
[22] F. Cabello, Sánchez, R. Garcia and I. Villanueva, Extension of multilinear operators on Banach spaces, Extracta Math., 15, (2000), 291-334.
[23] D. Carando, D. Garcia and M. Maestre, Homomorphisms and composition operators on algebras of analytic functions of bounded type, Adv. Math., 197(2), (2005), 607-629.
[24] D. Carando, D. Garc M. Maestre and P. Sevilla-Peris, A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions, Topology, 48, (2009), 54-65.
[25] D. Carando and P. Sevilla-Peris, Spectra of weighted algebras of holomorphic functions, Math. Z., 263(4), (2009), 887-902.
[26] T.K. Carne, B. Cole and T.W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc., 314, (1989), 639-659.
[27] I. Chernega, P. Galindo and A. Zagorodnyuk, Some algebras of symmetric analytic functionn and their spectra. Proc. Edinburgh Math. Soc., 55, (2012), 125-142.
[28] I. Chernega, P. Galindo and A. Zagorodnyuk, The convolution operation on the njectirn of algebras of symmetric analytic functions, J. Math. Anal. \& Appl., 395(2), (2012), hili-1177.
[29] I. Chernega, P. Galindo and A. Zagorodnyuk, The multiplicative convolution on the apertm of algebras of symmetric analytic functions, Rev. Mat. Complut. In press. D) (): 10.1007/w131013-013-0128-0
[30] B. Cole and T.W. Gamelin, Representing measures and Hardy spaces for the infinite prolydinh algebra, Proc. London Math. Soc., 53, (1986), 112-142.
[31] S.B. Chae, Holomorphy and calculus in normed spaces, Pure and Applied Mnthommiten, 1

[32] A.M. Davie and T.W. Gamelin, A theorem on polynomial-star approximation, Pruc. Anser. Math. Soc., 106, (1989), 351-356.
[33] A. Defant and K. Floret, Tensor norms and operator ideals, Mathematics Studiem, vol. 1711, North-Holland, Amsterdam, 1993.
[34] V. Dimant and R. Gonzalo, Block diagonal polynomials, Trans. Amer. Math. Soc., 353, (20)(11), 733-747.
[35] S. Dineen, Complex analysis in locally convex spaces, Mathematics Studies, vol. 57, NurlhHolland, Amsterdam, 1981.
[36] S. Dineen, Complex analysis on infinite dimensional spaces, Monographs in Mathemallem, Springer, 1999.
[37] P. Dixon, Scalar homomorphisms on algebras of infinetely long polynomials with an application. to automatic continuity theory, J. London Math. Soc., 19(2), (1979), 488-496.
[38] N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc., 44, (1938), 305-356.
[39] T.A.W. Dwyer, Partial differential equations in Fischer-Fock spaces for the Hilbert- Schmidi holomorphy type, Bull. Amer. Math. Soc., 77(5), (1971), 725-730.
[40] G.B. Folland, Harmonic analysis in phase space, Princeton, 1989.
[41] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note di Matematica, 17, (1997), 153-188.
[42] P. Galindo, D. Garcia, M. Maestre and J. Mujica, Extension of multilinear mappings on Banach spaces, Studia. Math., 108, (1994), 55-76.
[43] T.W. Gamelin, Uniform algebras, 2nd ed., Chelsea - New York, 1984.
[44] T.W. Gamelin, Analytic functions on Banach spaces, in Complex Function Theory, Ed. (inuthier and Sabidussi, Kluwer Academic Publishers, Amsterdam, (1994), 187-223.
[45] D. Garcia, M.L. Lourenço, M. Maestre and L.A. Moraes, The spectrum of analytic mappib!ys of bounded type, J. Math. Anal. \& Appl., 245, (2000), 447-470.
[46] D. García, M.L. Lourenço, L.A. Moraes and O.W. Paques, The spectra of anme ulyrlirun of analytic mappings, Indag. Mathem., 10, (1999), 393-406.
[47] R. Gonzalo, Multilinear forms, subsymmetric polynomials, and spreadiny monlrin un llınuch spaces, J. Math. Anal. App., 202, (1996), 379-397.
 (N.S.), 36, (1999), 345-381.
[49] A. Grotendieck, Sut certains espaces do fonctions holomorphes, J. Reine Ausew, Mıll, IId. (1953), 35-64.
[50] M. Hervé, Analyticity in infite dimensional spaces, de Gruyter Stud. in Mnlf, rul |l|, Ifullı, 1989.
[51] E. Hewitt and K.A. Ross, Abstract harmonic analysis, vol. 2, Springer, Berlin 1970.
[52] E. Hille and R. Phillips, Functional Analysis and Semi-groups, AMS reprint, 2000.
[53] S. Kerov, G. Olshanski and A. Vershik, Harmonic analysis on the infinite symmetric group deformation of regular representation, C.R.Acad.Sci. Paris Ser. Math., 316, (1993), 773-774,
[54] M. Lindström and R.A. Ryan, Applications of ultraproducts to infinite dimensional holomorphy, Math. Scand., 71, (1992), 229-242.
[55] O. Lopushansky and A. Zagorodnyuk, Groups of isometries of Hardy-type spaces of analytiv functionals in unit ball of the space L1, J. Math. Sci., 107(1), (2001), 3570-3676.
[56] O. Lopushansky and A. Zagorodnyuk, Hilbert spaces of analytic functions of infinitely many variables, Ann. Pol. Math., 81(2), (2003), 111-122.
[57] O. Lopushansky and A. Zagorodnyuk, Hilbert spaces of functions of infinitely many variablea, Methods Funct. Anal. \& Topology, 10(2), (2004), 13-20.
[58] O. Lopushansky and S. Sharyn, Polynomial ultradistributions on cone \mathbb{R}_{+}^{d}, Topology, 48(1), (2009), 80-90.
[59] O. Lopushansky and A. Zagorodnyuk, Representing measures and infinite-dimensional holomorphy, J. Math. Anal. \& App., 333(2), (2007), 614-625.
[60] O. Lopushansky, Hardy spaces for irreducible representations of locally compact groups, Topology, 48, (2009), 169-177.
[61] O. Lopushansky and A. Zagorodnyuk, Hardy type spaces associated with compact unitary groups, Nonlinear analysis, 74(2), (2011), 556-572.
[62] O. Lopushansky, Polynomial ultradistributions: differentiation and Laplace transformation, Banach Center Publ., 88, (2010), 195-209.
[63] O. Lopushansky and M. Oleksienko, A Poisson type formula for Hardy classes on Heisenberg'n group, Carpathian Math. Publ., 2(1), (2010), 87-95.
[64] O. Lopushansky and M. Oleksienko, Hardy type spaces on infinite dimensional group orbits, Methods Funct. Anal. \& Topology, 17 (3), (2011), 225-234.
[65] O. Lopushansky, Hardy-type space associated with an infinite-dimensional unitary matris group, Abstract \& Appl. An., ID 810735 (2013), 1-7.
[66] G. W. Mackey, Induced representations of locally compact groups, i,ii, Ann. Math. 55 (1952), 101-139, \& 58, (1953), 193-221.
[67] R. S. Martin, Contributions to the theory of functionals, Ph.D. thesis, University of Californin, 1932.
[68] S. Mazur and W. Orlicz, Grundlegende eigenschaften der polynomischen operationen I, I, Studia Math., 5, (1935), 50-68, 179-189.
[69] S. Mazur and W. Orlicz, Sur la divisibilite des polynomes absraits, C. R. Acad. Sci. Parie, 207, (1936), 621-623.
[70] L.A. Moraes and A.F. Pereira, The spectra of algebras of Lorch analytic mappings, Topology, 48, (2009), 91-99.
[71] A.D. Michal and A.H. Clifford, Fonctions analytiques implicites dans des espaces vectoriels abstraits, C. R. Acad. Sci. Paris., 197, (1933), 735-737.
[72] A.D. Michal and R.S. Martin, Some expansions in vector spaces, J. Math. Pures. Appl., 13(9), (1934), 69-91.
[73] A.E. Taylor, Additions to the theory of polynomials in normed linear spaces, Tohoku Math Journal, 44, (1938), 302-318.
[74] A.E. Taylor, Notes on the history of the uses of analyticity in operator theory, Amer. Math. Monthly, 78, (1971), 331-342.
[75] E. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc., 11, Providence, 1952.
[76] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam, 1986.
[77] J. Mujica, Ideals of holomorphic functions on Tsirelson's space, Archiv der Mathematik, 7B, (2001), 292-298.
[78] Y. Neretin, Hua type integrals over unitary groups and over projective limits of unitary groupn, Duke Math. J., 114(2), (2002), 239-266.

BHHI．ITHIIAIIIY

 Funct．Analysis，205，（2003），464－524．

［81］A．Petczyński，A property of multilinear operviturn，Sludiu Mall，10，（14if），171 Imd．
 （1987），323－356．
 480－497．
 spaces，J．Math．Anal．\＆Appl．，308，（2005），159－174．
［85］A．Plichko and A．Zagorodnyuk，On automatic continuity and thrve prvhlerman＂f＂Tho Anullinh Book＂concerning the boundedness of polynomial functional，J．Mnll．Aunl \＆$\Lambda_{p l l}$ ，dall （1998），477－494．
［86］C．J．Read．The invariant subspace problem for a class of Banach spacen．II．Hypervyilor 川⿲二丨日月 erators，Israel J．Math．，63，（1988），1－40．
［87］M．Reed and B．Simon，Methods of Modern Mathematical Physics，Vol．II．Academic P＇reme， New York， 1975.
［88］W．Rudin，Function theory in the unit ball of \mathbb{C}^{n} ，Springer，Berlin， 1980.
［89］W．Rudin，Some representing measures for the ball algebra，Michigan Math．J．，27，（1980）， 315－320．
［90］S．Saitoh，Integral Transforms，Reproducig Kernels and Their Applications，Pitman Research Notes in Math．Ser．，vol．369，Longman， 1997.
［91］S．Thangavelu，Harmonic analysis on the Heisenberg group，Progress in Math．159，Birkhauser， Boston， 1998.
［92］A．Ülger，Weakly compact bilinear forms and Arens regularity，Proc．Amer．Math．Soc．，101， （1987），697－704．
［93］T．V．Vasylyshyn，Description of spectra and derivations of Wiener type algebras of functions generated by（ p, q ）－polynomials on Banach spaces，Carpathian Math．Publ．，4（2），（2012）， 212－228．
［94］B．L．van der Waerden，Modern Algebra，Ungar， 1964.
［95］Y．Yamasaki，Projective limit of Haar measures on $O(n)$ ，Publ．RIMS，Kyoto Univ．，8， （1972／73），141－149．
［96］A．Zagorodnyuk，Spectra of algebras of entire functions on Banach spaces，Proc．Amer．Math． Soc．，134，（2006），2559－2569．
［97］A．Zagorodnyuk，Spectra of algebras of analytic functions and polynomials on Banach spaces， Function spaces，Contemp．Math．，435，（2007），381－394
［98］E．Tomas，On Prohorov＇s criterion for projective limits，Operator Theory：Adv．Appl．，168， （2006），251－261．

