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Introduction

This book is intended to be a survey of recent authors’ results in infinite-dimen- 
sional holomorphy.

During last years, various spaces and algebras of analytic functions on Banach 
spaces have been considered by a number of authors. The interplay between function 
theory on infinite-dimensional domains, geometric properties of Banach spaces, and 
Banach and Frechet algebras lead us to investigation of uniform algebras of analytic 
functions, their spectra (sets of characters), homomorphisms and derivations. The 
spectra of such algebras was studied first in [6], [7], [9], [44], [77] by R. Aron, B. Cole, 
T. Gamelin, P. Galindo, D. Garcia, M. Maestre, J. Mujica and others. In particular, 
in [6] it is shown that the spectrum of the algebra of bounded type entire functions 
on a Banach space X  contains the second dual X "  as point-evaluation functionals 
of the Aron-Berner extension of entire functions. However, X "  does not exhaust the 
spectrum in general (see e.g. [9]).

Next vital topic related to infinite-dimensional holomorphy is construction Hardy 
type spaces of analytic functions with infinitely many variables. Integral represen
tations of such Hardy spaces was studied in [30, 83, 80] by B. Cole, T. Gamelin, 

B. 0rted, K. Neeb, D. Pinasco, I. Zalduendo and others. The main difficulty is that, 
in the general case, we have no good enough invariant measure on a ball in a Banach 
space.

The book is organized as follows. Chapter 1 contains a background on infinite
dimensional complex analysis. Chapter 2 is devoted to description of spectra of al
gebras of entire functions on Banach spaces using an approach developed in [96], 
[97]. In Chapter 3 we consider Hilbertian Hardy type spaces associated with various 
infinite-dimensional groups of isometric operators on a separable Hilbert space and 
applications to symmetric Fock spaces. It presents an approach developed in [60], 
[61], [65]. In Chapter 4 we give a general construction of reproducing kernel Hilbert 
space of analytic functions on and their relations to abstract Fock spaces. It mainly 
summarizes the works [56], [59].

Oleh Lopushansky and Andriy Zagorodnyuk, 

Rzeszów - Ivano-Frankivsk, 

September 2013
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I

CHAPTER 1

Мім Ьці ишкі on infinite-dimensional holomorphy

Wi wll li u brief summary of important notions and facts used in the theory
if MyiMHiiliiln міні analytic functions with infinite-dimensional domains in Banach 

•ini II ЦІМНI ||im'I'n; some with proofs, some without.

I I i 'mit limous polynomials and symmetric tensor products

|i| \ inni V lie complex Banach vector spaces. For every positive integer
ЦШІІІИЦ* u ni < II let, X nYm will denote the Cartesian product of n copies of 
ft йіні in t ні V', and xrlyrn will denote the element ( x , ... ,x ,y ,... ,y) from 
і  I w

hu u i N "Iі ili'iiote by У) the vector space of all continuous n-linear
МЦЦіІп» I I.... і V to Y endowed'with the norm of uniform convergence on the

j| ІімІІ ні \ " Дії //-linear mapping F  is called symmetric if

/* (j?iі ■ t • ,xn) — F  . • ,xe(nj) , s £ &n,

ІІМ М ft,, iih'ihin nil permutations

s: {1 ,. .. ,n }  і— >• {s(l),...,s(n)}.

||ц< шіім|іпгі< In J^(nX, Y) of all continuous symmetric n-linear maps will be 
фШнІН liy У A" \, Y). Clearly, J f (nX ,Y ) and i?s(nX, Y) are Banach spaces. Fur- 

IflM Ml R l  JlftivloiiN notations we will not write the index n = 1. In particular, ^f(X ) 
М н ім  Нін йіці'Ьііі of all continuous linear operators and Л?(Х, C) := X ' denotes
Мій iliotl h|m,i u ni X .

HHINiihin I I Let us denote by Д„ the natural embeddings called diagonal

jH pM lf• Гініи V to X n defined as

Д„: X  — > X n

X I— > ( x , . . .  , x ) .

Ą Иій|і|і1мі( /' Інші X  to Y is called a continuous n-homogeneous polynomial if

l ‘(x) = (F o An) (x) for some F € ^ ( nX ,Y).

|#l >*(" \, ) ) ilrimte the vector space of all continuous n-homogeneous polynomials 
umiImwi >i « nli t In1 norm of uniform convergence on the unit ball В of X, i.e.,

||P|| =  sup ||P(x)||
xEB
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with P e V (nX,Y).

THBORKM 1.2. The map

l?a(nX ,Y) —+P(nX ,Y )

F  і— >• F o An

is an isomorphism between the Banach space ^fa(nX, Y) and the normed space 
V(nX, Y ) , and

(1.1) ||FoAn ||<||F||<—  ||FoA„||.

PROOF. The main tool of the proof is the polarization formula (see [35, p. 8]):

(1.2) F (x i,... ,x n) =  —Ц ■•■SnF o  An (  V  6iXj\
1 n■ st=± і і /

By the polarization formula 

1
ІИ І < 2 "n !

n

2 nn\

2 2 sup
i<»<n5i=±i llx<ll<i

2 2 sup
Кі<піі=і1 IM<1

’ °Лп ( 2
' j= i '

° д п f — 2
V j= l '

71

< — ||FoAn||. 
nl

The left-hand side of inequality (1.1) is trivial. □
Corollary 1.3. V(nX ,Y ) is a Banach space and for any P  є V(nX ,Y) there 

is a unique n-linear symmetric map FP Є if ,(nX, Y), so-called the associated with 
P n -linear map, such that P = Fp o An.

For a positive integer n and a Banach space X  let

(1.3) c(n,X ):=  inf { m > 0 : ||F|| < M\\F о Дп|| for all F  Є J*?s(nX, Y)}.

We call c(n,X) the nth polarization constant of X. From (1.1) it follows that

(1.4) 1 < c (n ,X )< ^ r .
n\

It is well known that c(n,£i) = nn/n\ and c(n,i2) — 1 (see [36, p. 45] for details).
We say that a class F(X, Y) of nonlinear mappings from X  to Y admits a 

linearization if there is a vector space Wx and an injective map

J?(x}Y) '■ X  — > Wx

such that for any F  Є F(X, Y) there is a linear operator Lp є  Jf(Wx, Y) such that 
the diagram

(1.5)
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>

n.tim.nl. • I In' map J?(x,Y) is called the canonical map associated with the lin- 

HiiUnlliHi

РйІІИпиі I ion 1.4. The space Л?(пХ, Y) admits a linearization.

|*Ніим I la in >t<> by the vector space of all formal finite sums

... in(a'*i > • • • >x in )i Є C, (aijj, . . . , Хіп ) Є X  .
• liini(»eN

ІИ jfW  ііічініг l lic Hiihspace of generated by the elements

|нк||| I I I lf|fc ł 1 • • • ) 2-tn) — (Xii ) • • • ) Xik ) • • • ) %in) ixil > • • • 1 Xi'k ) • • • ) Xin)l 

( i i (; , Vr,fc, , . . ,Xtn) )• • *,Xikj • • • 1 Xin), 1 ^  k ^  ті, Л Є C.

if)И». Hi# o luli І І111.НОГ product <8>nX  of X  with itself, as the quotient vector space 
/ In  UM put xh ®---®xin := + and denote by Jn the

4|ЙІЙ( Нін|'|'іиК (• < >in X й into ®nX  such that

Jn • (Xi1, . . . , Xin ) I  ̂Xix © • * • © Xin. 

f » чи» u Иінчії mapping F  Є Jźf(nX ,Y ) ,

Ь „ | П (  ^  ^il,";in(Xil ® ' ’ " ® Xin ) j  := 2  ^ii,...,inF{Xin • ■ • 1 Xi„ ) ,
Il l„r N

||*H> Пін тни I» Hull і*. I lence the linear map J* is well defined on <g)nX  and 

'lit(F){xii ® ■' ■ ® Xi„) = F(xix, ,  Xin).

K f c  II / I  \,Y) y { nX,Y), then L f  =  J*(F) and J n x ,Y) = J n • Now in (1.5) 

p i 11... і mi И * -»wnX.  1 □

(ці "in 'і І Ь I'hc space J£(nX ,Y ) is isometńcally isomorphic to the space 
)| ЛМ i ii I hm nr continuous operators from the projective tensor product ©”^  

i|mn I , whnr ©JfX means the completion of ®nX  by the projective tensor

■|*»H - Inf ( 2  II^mII ••• ll*tnl|: w ~ E  xb ®---®.*i„ Є ©n* j ,
' <1. .<..€N *i)..w»n€N '

|Ah« Hit Нфнкіт is taken over all above representations of w Є ®nX.

І и їй • 111111 її * Міг symmetric tensor product QnX  of X  to itself as the subspace 

>*$ §им»м мі nl by the vectors

1 vn
x і 0 ' ■ * © xn := j- /  , £s(i) © • • • © х3(п},

n ' S 6 6 n

•  Ьм»' ł| t N шиї c'<„ is the group of permutations of the set {1,... , n}. For tensor 

|ММИїі« ni vi41 him wi> will use the short notation

n times

a;®" := x © ... © x Є QnX, x Є X.

ІІІИ ev nu i u 'і і Ii projective tensor product ©”X  we define as the closure of © "X  in 

H i .  t|lltl tl Ц ” X  I
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I'm »i'i ini i u in Іь I hr -.(.їй і • • 'Ц .V is complemented in ®%X and the map

•s'»( ^  ® •••»*< „] =  j] ©•••©*<„
'  ib-.ingN

In a contlnuouM projection.

Corollary 1.7. The following isomorphism holds

^ ( Q ^ X ,Y ) ^ ^ s(nX,Y).

From the polarization formula (1.2) and Corollary 1.7 it follows that

<8>n

(1-6) H © ” -©X„ = ~  2  Yl
l<t<n<5i=±l 'j= l '

(see e.g. [41, 1.5]). Therefore for each vector wn Є QnX  there are representations 

wn =  uf n with щ Є X, for which we define an equivalent norm with the projective 
tensor norm,

(1.7) I K I  := inf { J] |H|n: wn = £  u fn Є ®nx\,
*■ ієн ieN '

where the infimum is taken over all such representations. Then for any mapping 
F  Є (П-ЛГ Y)

||F|| = sup ||J:(F)(Wn)|| = ||FoA„||.
»l™n|<l

Thus we have proved the following theorem.

Theorem 1.8. There is an equivalent norm ||| • ||| on ©”X  such that the space 
((©"X, I • І), У) is isometric to V(nX, Y) for every Banach space Y. In particular, 

the following isometry holds

(©"X, |||. Ill ) '~ V n(X).

From the polarization inequality (1.4) and formula (1.7) we have the next polar
ization inequality for tensor products:

(І-8) IHI < ІшIf < c(n,X)||w||, w Є ©”A".

A map P : X  — > Y  is said to be a continuous polynomial of degree n if

P = Po + -Pi + ’ - • + Pn

with

P0 eY, Pk eV (kX ,Y), Pn ± 0.

The space of all continuous polynomials from X  into Y  will be denoted by V(X, Y). 
Usually V(X,Y) endowed with the uniform norm

||P|| - sup \\P(x)\\.
x <1

We will use notations V(-nX ,Y ) and V{-nX) for spaces of У -valued and C- 
valued respectively, all continuous m-degree polynomials on X  with m < n . We will 

shortly denote the spaces V(kX,C) and V(X,C) by V(kX) and V(X) respectively.
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NhIh Ніні /'( V ) in u topological algebra with the locally convex topology of uniform

.... ІРМй.....  mi bounded sets.
WH will il< ilioto by

VW{X,-), Vw(nX ,•). 'Pw(-nX,-)

t l і ні nil polynomials, n-homogeneous, and m-degree polynomials respec- 

V, will* Ii mm' continuous on bounded subsets of X  endowed with the weak topol- 

Hf* N'l \ V1)'
A tt ill im пі / ’ G V(X) is called a polynomial of finite type if it is a finite sum 

|ii • 11 ii in ul linear functionals. More generally, if P  Є V(X,Y), then P

I  I'l'li..... in І ul finite type if for every linear functional h Є Y1 the composition
/■ |« it і" il\iiutiiiiil of finite type. The space of n-homogeneous polynomials of 

l« iłemHcd by Vf{nX, Y). The closure of Vf(nX ,Y ) in the topology of 

IN і "її11 і цічісо on bounded sets is called the space of approximate polynomials 
ЙКМ"< by P„(nX, Y). Each approximable polynomial is weakly continuous on 

І всі» I ІІС following theorem is proved in [10] by Aron and Prolla.

І НП mi m 1,1) The dual space X і has the approximation property if and only 
#I*M|і M I hr ,space Vf(nX ,Y ) coincides with the space of all n-homogeneous 

■йМі иніМімін u і polynomials Vw(nX ,Y ) for an arbitrary Banach space Y.

|| |l IHlklMtwn lines equality

Vf (nX) = vw(nx )

...... I >| H iixliiuitlon property of the dual X і. However, Aron, Cole and Gamelin
■ him i lud il ,V is a reflexive Banach space without the approximation property,

Vf(2X ® X ’) ^  VW{2X ®  X і).

I lie »\ ні..11 ic tensor power QnX ' of a dual Banach space X ' can be endowed

III! Ііф'1'lilve norm

sup
llwll<i

Yi Xi(y I xi)n
j€ N

*»«»

*І»ии I/ < V, ,r j (_ X і, A j Є C. Let ©".Х7 denote the corresponding completion. The

•|M«K miiicides with a subspace in Vn(X) of approximable n-homogeneous
УИІІ in ii 111>> I n mi X which are weakly star continuous on the bounded sets and the

nhIihMIi)|
v?{X) = ® "X ' Vn{X)

|« (inнім і і li (mr e.g. [36, p.112], [41]). Further Ve(X) denotes the algebra of all 
HftfiMiiiinii/i/i polynomials on X  which are weakly star continuous on the bounded 
hiiUmIumI \
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1.2. ІЛш'ііг subspaccs in zeros of polynomials

If X In ми мгЬИіагу complex vector space (not necessarily normed), we define a 
n-homogeneous complex polynomial by the formula

P(x) = {F о An) (x) х Є Х ,

where F is a complex n-linear (not necessarily continuous) functional on X .
It is clear that the kernel (i.e. the set of zeros) of an n -homogeneous complex 

polynomial P  on X, where n > 0 and dimX > 1, consists of one-dimensional 

subspaces. Now we will show that it consists of infinite-dimensional subspaces if 
dimX = oo.

Theorem  1.10. Let X  be an infinite-dimensional complex vector space and P is 
a complex n -homogeneous polynomial on X. Then there exists an infinite-dimensional 
subspace Xo such that

Xq C ker P.

Lemma 1.11. Let Theorem 1.10 be proved for every homogeneous polynomial of 

degree < n . Then for arbitrary homogeneous polynomials Pi,-- ■ , Pm of degree < n 
there exists a subspace

X0 C ker Pi f l ... П ker Pm

such that dim Xo = oo.

P roof . Let X i c  ker Pi with dimXi =  oo. Then there exists a. subspace 
X 2 C X i Пкег P2 such that dim X 2 =  00. Continuing this process, we get the subspace

X0 = X m C X m_i С - - С І1

with Xo C ker Pi П • • • П ker Pm and dim X 0 =  00. □

Proof of Theorem 1.10. We will construct Xo using the induction on n. Evidently 
that the theorem is true for linear functionals. Suppose that it is true for homogeneous 
polynomials of degree < n.

Let xi Є X  is chosen such that P(xі)ф  0 (if such xi does not exist then the 
assertion of theorems is true automatically). By the induction hypothesis and by 
Lemma 1.11 there exists a subspace X i C X  with dim X i — 00, on which each of 
the homogeneous polynomials

PXl(x) := F (x i,x n~l ) ,

Px’ (x) ■■= F (x\,xn~2) ,

V ’W : = F ( x 7l  \x)
vanish for all x Є X\, where F  is the symmetric n-linear functional associated with 
the n-homogeneous polynomial P.

On second step we choose an element x2 Є Xi such that Р(хг) ф 0 (if x2 does 
not exist then X i C kerP and the theorem is proved at once). By the induction



1.3. ANALYTIC FUNCTIONS

.*  till 

•L
lit |h>i Ін ....I 1 iv l emma 1.11 there exists a subspace X 2 C X\ with dim X 2 = oo

IM *1.1. Ii miiIi liumoKcnoous polynomials

i/x) := F  (x\,xl2,xn~k~l) , 0 < k + l < n

Iłu «II і < X'j.
mil Ii....this process in the way written above. If it finishes on the i-th step

l| 0 #*i 4,1 u ), I lien the theorem is proved. If it does not finish then we will get an 

)t(ftHitti Цж|ііічі( г (./■,) consisting of linearly independent terms such that Р(хі)Ф  0 

p| и«му 11 N and

F ^ S x * ’ , . . . ^ 4) = 0

M il. It III liwiat for one fcj.
І іііи.' їм* nl ly, it follows that for any finite sequence of scalars (a*),

= ! > № ) •

Ин» У, »  I ./ / ’(•»'.) for all і Є N. Then P  vanishes on the linear span of elements 

Vl + У—̂ У2, Уз + V—ІУ4,. 2/5 + У —12/6) •

Нн* (ііінп ііі Іи proved. D

і .мі. . і дму 112. For every polynomial functional P  on a complex infinite di-

K мін I vim I. u мріїсе, for which P( 0) =  0, there exists an infinite dimensional linear 

it * N u мін'Іі that X0 c  ker P.

flu. i in Hilary is proved in the same way as Lemma 1.11. Applying Corollary 1.12 
|й І її#* |іні> ін iinlal Px 0(x) = P(x o + x), we obtain the following assertion.

0ИННІ i.AHY 1.13. If P  is a polynomial functional on a complex infinite dimen- 
•ІНННІ v i411 u space and P(x0) =  0, then there exists an infinite dimensional affine 

Л’о C kerP with x0 Є Xo. •

1.3. Analytic functions

l.i’l 12 he a subset of a Banach space X. We say that Cl is finitely open if for 
ній Hull і' dimensional affine subspace V of X, endowed with the Euclidean topology, 
t n i l  In open in V.

I »i і inition 1.14. We say that a map

/: Cl — > Y

liii ii a lianach space Y is G-analytic (Gateaux-analytic), and write /  Є Hg (CI,Y),
ll li u any Unite dimensional affine subspace V (or, equivalently, for any complex line 
I V ) the restriction of /  onto V П Cl is analytic.

A C analytic map / :  Cl — > Y, defined on an open subset Cl C X, is called 
Him li/in , which is written /  Є M(Cl,Y), if /  is continuous.

II W •  X  and /  Є 1i(X,Y) then the function /  is called entire.
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We w ill hlnul. writr = %(•) for spaces of C-valued functions.
I \ 1 і \ tiiuUyl.lt* function /  Є H{$l,Y) can be locally represented by its Taylor’s 

NPI'lt'N t1X|>«Ul0U

/(« + * )=  2  /«(*)• / "W  =
n6Z+

uniformly convergent, on a neighborhood of а Є fi, in which d™f{x) denotes the nth 
Frśchet derivation of /  at a by the direction x Є X  and belongs to the space of 
n-homogeneous polynomials V(nX,Y).

Proposition 1.15. Let (/„) be a sequence of n-homogeneous polynomials such 
that fn Є V(nX ,Y ) for all n Є N. A necessary and sufficient condition for existence 
of a function /  Є 'H{X,Y) such that /„ = d^f/nl is that for any given є > 0 each 
x Є X  has a neighborhood U such that

sup||/„H1/n < є 
u

for n large enough.

Let fi be an open subset of X  and /  Є 7{(fi, Y). The radius of uniform con
vergence Qa(f) of the function /  at а Є fi is defined as a supremum of all number 
Л Є C such that

a -f- Л В d fi

and the Taylor series of /  at a converges to /  uniformly on a + AB, where В is the 
unit ball of X. Note that if X  is an infinite dimensional Banach space, then there 
exists a C-valued entire function /  on X, such that ga(f) < oo for every а Є X  (see 
e.g. [35, p.169]).

The radius of boundedness of /  at а Є fi is defined as a supremum of all А Є C 
such that /  is bounded on a + AS.

Theorem  1.16. The radii of uniform convergence and boundedness of any func
tion f  Є H(£l,Y) at а Є Cl coincide and

Qa(f) =  (limsup ||/„||1/n) ,
'  n—* OO '

where

fn = ~ f ,  ll/n|| = sup||/n(®)||.
n- x€B

Denote by Нь(Х) the space of all entire C -valued functions of bounded type, i.e., 
of all entire complex functions on X  which are bounded on bounded subsets (having 
the radius of boundedness equal to infinity).

The space T-Lb{X) is a Frechet topological algebra endowed with the seminorms

ll/llr =  sup |/(®)|, /  Є Hb(X),
хЄгВ

where r > 0 is a rational number. Consider its dual space 'Нь(Х)'. Each linear 
functional ф Є ’Нь(Х)' is bounded with respect to the norm of uniform convergence 
on some ball in X.



Ми іщііпіч function Іі.(ф) of the functional ф Є 'Нь(Х)' is defined as the infimum 

Utltlibi'Mi r ■ 0 such that ф is bounded with respect to the norm of uniform 
і........ ii ( lit* ball rB.
it* !»y the restriction of ф Є Нь(Х)' to the subspace of n-homogeneous 

nlitlo rrx) .  Then фп is a bounded linear functional on V{nX) and

H0»ll = sup { \ф(Р)\ : p  Є P(nX), ||P|| < l} .

І їй і ні I m 117. The radius function R on the dual space Нь{ХУ is given by

R(<j)) =  limsup \\фп ||1/n.
n—> OO

ГнміИ', Suppose that

0 < t < limsup \\фп\\1/п.
n—too

іііиі In u sequence of homogeneous symmetric polynomials (P,) of degree 
t • mu Ii I,hut ||Pj|| = 1 and |0(Pj)| > tni . If 0 < r < t, then by homogeneity,

||P,||r = sup |Pj(x)| =  rn\
x£rB

1.3. ANALYTIC FUNCTIONS ”*> 11

№(Pj)L> (t/r^WPjWr,

0 |l nul і mitlnuous with respect to the norm of uniform convergence on rB. It 

llml //(</>) > r, and in view of the arbitrary choice of r we obtain

P(<£) > limsup \\фп\\1/п
n—too

U l linw u > limsup ІІ̂ лЦ1/" so that sm > \\фт \\ for m large. Then there is
n—► OO «

І  І він Ii that \\фт|| < csm for every m. If r > s is arbitrary and /  Є Нь(Х) has 

Im ...iiI. m expansion /  =  2nez+ /«> then

rm ||/m || =  ||/m ||r <  H /IId  ■ ГП Є Z + . .

Mmiiw

Ніні «і

Іллі < c( Z
'■mSZ+ '

I him i/i in continuous with respect to the uniform norm on rB, and Я(ф) < r. Since 

і um І і nre arbitrary,

P(</>) < limsup \\фпII1/".
n—too

I lic i henrom is proved. □

і і hinIiler now the dual space V(nX )’ of the space V(nX).



I m і mi m I IN Suppose that </>„ Є P(nX)' for any n Є Z+, and suppose that

\\Фп\\ < CSn

for some e, s ■ (I. Then there is a unique functional ф Є 'Нь(Х)' whose restriction to 
V(nX) coincides with фп for all n € Z+.

1.4. The Aron-Berner extension

Let X  be a complex Banach space and X "  its second dual. Any given continuous 
n-linear mapping F: X  x • • • x X  — » C can be extended to a continuous n-linear 

mapping F : X "  x • • • x X "  — » C as follows

(1.9) F(x'{,...,x") =  lim ...lim F(xa i, . . . ,x an),
ai an

where for each k, (xak) is a net in X  weakly-star converging to x'{,.
Let P  Є V(nX) and Fp Є i f 5("X, C) be the rt-linear symmetric form associated

with P. Then the Aron-Berner extension P  of P  is defined as

P(x) := Fp(x,... ,x), x Є X".

Theorem 1.19. Let (xa) be a net in the unit ball of X  that weakly-star converges
to z Є X " with ||z|| < 1. Then there is a net (yp) in the unit ball В of X  such that 
each yp is an arithmetic mean of a finite number of xa ’s, and

P(yp) -> P(z)

for every polynomial P on X.

Theorem  1.20. Let f  e Чь(Х) and

f =  2  fn

is its Taylor senes expansion. Then there exists f  Є Нь(Х") with the Taylor series 
expansion

f =  Z  I
пЄ2̂ _

such that fn is the Aron-Berner extension of /„. Moreover,

ll/nll =  ||/n|| for every n

and the operator f  \— > f  is a homomorphism between the Frechet algebras Ль(Х) 
and Нь(Х"), i.e.,

Hb(X) ^  Hb(X").

і 11 M їм III! ї ї 1 N l> ON INI1 IN I’I i : D IM ENSIONAL H OLO M O RPH Y



1.4. THE ARON-BERNER EXTENSION '4  13♦ ^

1*1 І і" її н і of indexes and (Хг)гЄх with Xj — X  be a Z-fold family of X. 
Hit* I .  ix , I )  the ^oo-direct sum of X ’s, that is, the space of all elements

(Хі)і£І Є X
І ЄІ

riifH Ihi' «піцичісе (||xt||)i£ l is bounded with the ^-погт

||(ziWlloo := sup ||жі||.

1.1 II lie mi ultrafilter on X and (£i)*ez Є £oo(X,X). We define the ultrapower of
• Hit n i,|u 11 in U as the quotient space £oo(X,X)/Л/ц equipped with the quotient

iHhHIIi where

Mx :={(*<) Є 4o ( В Д :  lim ||жі|| =  o}.

Hilniih Л/it ін a closed vector subspace of £00{X,X). We will denote

tin. nil rnpower X й consists of elements (x,)ц Є £г^(Х,Х)/ЛГц, where x, Є X  
•им у і t- f  and 1

(Zi)it = (Уі)и if limXj = lim Уі

11 и 11111 Ii npuce X.
I lim  hi*' two approaches to construct of ultrapower extensions of polynomials.

Ґ c P("X) and Fp be the? symmetric n-linear forms associated with P.
ł Wf< • I* Iitif an n-linear forms on X й by

FP(xu . . . ,  xn) =  lim ... lim FP .., x £ })
*1 гп,іх \ /

(IV ~  ~
is easy to see that Fp is well defined, Fp is an extension of Fp

•ii»« II/’HI = 11̂ 11- Thus, we can define an extension of P  to X й by

P({xi)u) = Fp((xi)u, ■■■, (Xi)u)•

NhIii 1 hoi If Fp is symmetric, it does not necessary follow that FP is symmetric.

I In' ultrafilter it associated with the weak convergence on the space X  is called 
и /1*1 u/ iiltmfilter on X.

It П In the local ultrafilter on X  then the restriction of P  to the canonical image 
мі S " in Vй coincides with the Aron-Berner extension of P  onto X " .

I 111 < >n i .M 1.21. The following assertions are equivalent:

( I ) For every ultrafilter il and every continuous symmetric bilinear form F on 

V, the ultrapower extension Fp is symmetric.
1 ’) I'or every ultrafilter it and every continuous symmetric n-linear form F on 

V, the ultrapower extension Fp is symmetric.
1 I) Fur local ultrafilter on X  and every continuous symmetric bilinear form F 

on X , the ultrapower extension Fp from X  onto X " is symmetric.
( I) F14 ту continuous symmetric linear operator from X  into X і is weakly com

pact.
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(■ і) I i-ii ч enntmuous symmetric bilinear form on X  extends to a separately _ 
weakly star continuous bilinear form on X " .

A I łd litu h .* 11 u u і * X is siiid to be symmetrically regular if the assertions (l)-(5) of 

Theorem 1.21 hold.

Since every polynomial P Є V(nX) is bounded on bounded nets, we can define

P((zi)u) := lim-P(xi)

and we have ||P|| = ||P||. Note that, in general, P ф P.
A closed subspace У of a Banach space X  is locally complemented in X  if there 

is a constant M  such that whenever E  is a finite-dimensional subspace of Y there 
is a linear map (depending on the given finite-dimensional subspace) T : E  — > X  so 
that ||T|| < M  and Tx = x for all x Є E  П X.

For instance, Lindenstrauss-Rosenthal Principle of Local Reflexivity says that 
every Banach space is locally complemented in its second dual. Also, it is well-known 
that every Banach space is locally complemented in its ultrapowers.

Theorem  1.22. Let Y be a subspace of X. Then there exists a linear extension 
operator

V{nY) —■* V(nX) 

for all (or some) n > 1 if and only if Y is locally complemented in X.

1.5. Concept of regularity

A bilinear form F  on a Banach space X  is called Arens regular if the following 
two extensions of F  onto X "  x X "  coincide:

F{12 ](x",y") =  limlim F(xa,yp,
a p

F[2\]{x",y") =  limlimF(xa, j/^),

where (xa) (resp. (yp) ) is a net in X  weakly-star converging to x" є X "  (resp. 

у" Є X " ). Evidently,

Ą l2](x",y") = F[21](y",x").

Note that F  is Arens regular if and only if the extension F =  F[12j is separately 
weakly-star continuous in each variable.

A Banach space X  is called regular if every continuous bilinear form on X  x X  
is Arens regular.

From Theorem 1.21 it follows that X  is symmetrically regular if and only if 
every symmetric continuous bilinear form F  Є j£?s(2X,C) is Arens regular. In other 
words, if

F(x",y"):=F[12](x",y") and F(y",x") := F[21](x",y")
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■ І Цій *\ iiiinri і ii regularity of X  means that the extension F(x",y") of any sym- 
цННі ииііііиіпіж bilinear form F(x,y) is symmetric. Evidently, if X  is symmetri- 

H f|  Hu'ilui IІимі it is regular.
И (Ivi'ii bilinear form F  є Jt?(2X, C) we consider the linear operator T = TF 

H k  X lu V  det ermined by the formula

F(x,y) =  (Tx I y), x ,y& X ,

й
щ I ill/) - {I'x I y) is the value of Tx Є X ' in у Є X. If F  is a symmetric 
Ийі Imm, (lim T is a symmetric operator, that is

{Tx І у) = {Ту I x), x,y Є X.

I'M' 'і і > 11 u >N 1.23. Let X ,Y  be a Banach spaces. The Cartesian product X xY

■ Ц§міні II шиї only if every map in any of the following four spaces

У {Х ,Х '), X ,Y '), & (Y ,X '), &{Y,Y')

pU M bh  iiimpact.

I'Hhiii Suppose that the above four spaces possess the specified property. Let 

»  111, 11) V x Y — > X ' x Y ' be a continuous linear mapping. Then

'/'(,»,(/) = (Ti(x, 0),0) + Xi((0,7/),0) + (0,T2(x,0)) + (0,T2(0,y))

M  pyefV (#, j/) ' X x Y. We define

I h : X  --+X' by .Ri(x) := li(x ,0), x Є X,

R2 :Y  - 4 Г by R2(y) ■= Гі(0,2/), У Є У,

R3: X - -> Y' by Дз(х) := Т2(х,0), х Є X,

R4:Y  —->Y' by Ri{y) := 72(0,2/), 1/Є У.

il, ,, , IIt (j 1,2,3,4) are weakly compact operators and since

l'(x,y) =  (#i(x),0) + (д2(у),о) + (0 ,Д3(2;)) + (о, Д4(м))

«II (,»',//) є X х Y, the conclusion holds. The adversary implication is clear. □

I i Mli il.LARY 1.24.

11) li X is regular, then X  x X  is regular too.
(U) II .Y is regular, then X  x C is regular too.
I I) If X  is not reflexive, then X  x X ' is not regular.

I'lmiMisi TION 1.25. For a given Banach space X , the Cartesian product X x X

It M'KnIiu il and only if it is symmetrically regular.

Nulr I lint from this propositions it follows that if X  is isomorphic to its square, 
Мн и II In regular if and only if it is symmetrically regular. In [9] is noted that the 
.In..I ul , I u і ncs space is symmetrically regular but it is not regular.

I'br ii given linear operator T from X  to X ' we denote by T* the transposed 
(|il|ulnl) operator, acting from X "  to X і. Throughout further we suppose that each 
M u 11 in Ii npnce is naturally embedded into its second dual. In particularly, it means 
, l»it< /'" In well defined on X  and

Tux = Tx, x Є X.
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. МІІІНЧИ АіІШ /•' < У(*Х , C) corresponds the linear

^ " , и " )  =  ( Т и х " \ у " ) ,

__________________Ь - Л Л  - (JiTux" I y"),

)« lit» QmhmiIi "I piiijoctloii of X і" onto the embedded image of X ' in X і". 

I'NtMiF Hir «•iii'li і 1 V the functional

У" (Tttx І у") = (Tx I y) 

їй hi n l.h  .im unitinuous on X " . Also, for each y", the functional

x" і  ̂(Tux" I y") = {x" І Гу") 

їм wmkly-star continuous on X " . So.

F[i2](x",y") = limlim(Txa | yp) = \vcn.(Tuxa \ y")
a p a

= lim<*e І Гу") =  (Tux" I y")
Ot

and the equation (1.10) is proved.
Similarly, to establish (1.11) is sufficient to observe that for each у E X, the 

functional

x" ► {ĄTux" I y) =  (Tttx" І у) =  (x" I T*!/) 

is weakly-star continuous on X "  and for any fixed x" Є X", the functional

у  _ >  ( J j T » /  I y )

is weakly-star continuous on X " . □

1.6. Hilbert-Schmidt polynomials

Let E be a separable Hilbert complex space with an orthonormal basis (ej)j6N, 
endowed with the scalar product (x \ y)E and the norm

M e  =  (x I 2/)e/2, X,ye  E.

Clearly, for all n Є N the nth tensor power ®nE is defined to be a complex linear 
span of elements

{xi ® ... ® x n : x i , . . . , x n Є E}.

It is well-known (see e.g. [33] p. 351 or [15]) that it is possible to define a norm
II ’ ll®£E on the vector space ®”E such that the corresponding completion (g>̂ E is a 

Hilbert space. More exactly, the scalar product on ®|̂ E is defined by the equality

(xx <s>.. . O xn ІЗ/!® ...®  yn)®nE := (xi І Уі )е ■ ■ ■ (xn \ Уп)E

for all x,,y, Є E. Let {i} denotes a multi-index ( i i , ... ,i„) Є Nn . Since the system
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fan*)* ми їй i Imiiorinal basis in each vector w Є can be represented as the 
Ціннім шЧ'ііИ

= X  Л(»}Є»і ® Л{*} Є CW ■

{i}gNn

ІімІ II' Ini' I he norm

ІНІетЕ = (W I W)1J.L

1/2

|| )• i Inn I hut the above norm, generated by the scalar product, is a cross-norm on 

, l lihat is,

j l ^ i  ®  . . . ®  X n  ||®” E — 11^11| E • • • l l^ n  || E •

I 'in H'OSITION 1.27. There exists a unique continuous orthogonal projection Sn 

Sn (ê j ® ... <8> tin) =  — ^  Єів(

no j; I Hiich that

'Єб„
»d) *»(")•

I'ltooK. The equality 52(го) =  Sn(w) and orthogonality of Sn are evident on a 
Ймни wt of finite sums w =  ^]{i} ® • • • <g> tin. The continuity of Sn follows

ftiitit I lit' inequality ,

Мір l|5'„(u;)||®nE= sup 
II.L'tti* И>ІІ«ПЕ<1 0

»(n)
s€©n {*}

,fup < і  X  ( X l v , .- . -
INI®je<i n- see„ '{«}

= ~r sup n! |MI®£E = 1.
П■ IMUtie<1

1/2

11111< numess of Sn is a consequence of the basis property of (e,) and e*
lim Npaces E and ©JJE, respectively.

1 m 
□

The symmetric Hilbertian tensor product Q^E is defined to be the codomain of 

мі I liogonal projection Sn, setting on the space <8>£Е, that is,

©ftE := 5„(®?E).

We will use the following notations

(fc) := ( k i , fcn) € Z " , |(fc)h=Xfc«’ (ку .-Ц к і]

Proposition 1.28. (i) The system of elements
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Іншім nu orthogonal biusis in ©JJE, at that

(U2> W  " = IW|-
(ii) ГІк* symmetric Hilbertian tensor product ©JJE is the closure in ®{JE of the 

complex linear span of elements

{i®n : i £ E } .

Proof . The assertion (i) see e.g. in [15, 2.2.2].

(ii) The system ж®" Є ©[J E with

x{i} =  ЯіЄіі ”Ь • • • "b SnCin Є E,

where {г} Є Nn and Si =  ±1, is total in ©jJE. Indeed, using the polarization formula

(1.2), we have

« ю ’ - г Ь І І  2  « . • • • • • ■ W ”  * w >  " = i w i .
i=15i=±l

If an element ipn Є ©£E satisfies the conditions (x®" | = 0 for all {г} Є N"

then <e®(}fc) | ipn)®^E = 0 for all indexes {г} Є Nn and (k) є Z" such that |(fc)| = n.

However, elements e®^ form a basis in ©JJE, hence фп = 0. Thus, the set ж®" is 

total in the space ©ГЕ, if {г} runs all such indexes. □

Using the Riesz theorem, the Hermitian dual of a Hilbert space E we can to define 
by the relation

E* =  {y* ■■= (• | г/)є: У Є E}.

Since the natural unitary isometries

№ ) *  = ©£e*, (©£e)* =  ©;je*

hold, the similar argument allows us to note

= I™* :=: (' I w )®%e : w Є ®£E},

©£E* ={w* := (-|«;)e;E:u»€©JE}.

Then the restriction w* хЄе} of any w* Є ©{,‘E*, which we denote as

PW'(x) = (x®n | w)®nE, x Є E, 

is an n-homogeneous polynomial on E. Since

|^V(x)| < ||ty*ll®|;E*|l*®n|l«»JE = ІНІ«?і? И е> iS E ,

the polynomial Pw. is bounded and so Pw* Є V(nE).

Let us denote by Vb; (nE) the subspace of all гг-homogeneous continuous polyno- 
mials {Pw.: w Є ©JJE} with the norm



■
»lil< li mi' lulled Hilbert-Schmidt polynomials. For any Hilbert space Y the У - valued 
Mttlvimмііімі /’ Є V{nE, Y) is called Hilbert-Schmidt n-homogeneous polynomial if

i/>oPGPb{n E)

nvciy »/’ i Y*. The previous notes can be precisely formulated as follows.

I'm»rosmoN 1.29. The Hermitian dual space ©JJE* is isometrically isomorphic 

Id (і мііЬнрасе P(|(”E) of the space V(nE) of all n-homogeneous continuous polyno- 

luliiln (III E.

I'ltooi'. Proposition 1.28(H) implies that the system {a:®"-: iS E }  is total in
■ і j|l Гііін yields the one-to-one linear mapping

Ф^-Рф

ІН'І with ®[JE* and Рц(пE). Hence, ©£E* is isometric to Pt,(nE). □

I bus, for any element w Є ©JJE uniquely assists the continuous linear functional 

ці* ||i ( I w),gijjE belonging to ©Jj'E*, which can be identified with the n-homogeneous 

Mill м і I Schmidt polynomial Pw*. Further we will use the short notation

Pw-: E 3 x і— > w*(x) :=■ (x®n \ w)®je-

II In clear that every polynomial of finite type is Hilbert-Schmidt. Moreover, since

HH \ element w Є ©£E has a form w i= £{*} © • • • © e*„, it is a limit of finite

linn No, every Hilbert-Schmidt polynomial is approximated by polynomials of finite 
H i u Tims, if P  is a Hilbert-Schmidt polynomial then P  is weakly continuous on

PHIIiiIcd sets [8]. The converse is not true.

I ’in (POSITION 1.30. There is a polynomial which is weakly continuous on bounded 

мім ii і id not Hilbert-Schmidt.

I’HOOF. It is known that if E* has the approximation property then the space of
ii Intmogeneous weakly continuous polynomials on bounded sets Pw(nE) is isomorphic 
in I lie injective symmetric tensor product ©”E* of E* [36, p. 112]. On the other 

ІШІМІ, * '

П (ПЕ) = (©£E)* c  ©"E* = Vw{nE).

111U embedding is proper because (©JJE)* =  ©{JE is a reflexive space but ©"E* is 
iml, More exactly, the adjoint space to the injective symmetric tensor product of the 
11111 nil space is the symmetric projective tensor product of the Hilbert space [36, p. 

11'.’I which contains a copy of . Note that since Р^(пE) contains all polynomials of 
Hull і' type and it is a proper subspace of Vw(nE), the closure of (”E) in V(nE) 

nilneldes with Vw(nE). □

A polynomial P  is said to be an integral polynomial if there exists a regular Borel 
імените /і of finite variation on B*, endowed with the weak star topology, and such

I lint.

II 13) P(x)=  f  (Ф(х))п d/z(0)
Jb*
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Im ції # 1 fc, totiHH + • II' німі II' і . tin і I....... I null bull of E*. The space of all
0 і ' і і ш н н і  п і ш і »  і н і . ц і н і  | m h  i u u 11 in b« w ith  i h i ’ n o r m

||/'ii і ini J || / • || /і In u 11 ні і In і Hull). Ilord measure satisfying (1.13) j

In iIkiiuIhiI liy /'/|*ї),

I * Hi Н'пчі I |u n  I II II її' м|ш<ч’ Л/("Е) is a proper dense subspace of Vf, ("E).

I ’m u u S11 u • * Ґ/ (" I ) ((•>'* E)* and ©{JE is a proper subspace of ©"E, thus

/'(("I I i" u іm>|mm шііжрасо of (©{JE)* = ^ ("E ). The density of P/(nE) follows

1 mill 11 h ■ fail 11 in I Pi(n E) contains all polynomials

r / і ®(fe)\ . ®(fc) & і
І Є{і} /® ”Е ’ Є{і} 6 ®n i

that form an orthonormal basis in the Hilbert space

©^E*~P„("E)

and their linear span as well. □

Therefore Proposition 1.30 and Proposition 1.31 imply that the space of Hilbert- 
Schmidt polynomials lies strictly between the space of integral and weakly (sequen
tially) continuous polynomials.

1.7. Reproducing kernels

Let Q be an abstract set and H be a Hilbert space of complex valued functions 
on Q equipped with the scalar product (• | -)u-

D efinition 1.32. A function K(x,z) defined on Q x Q is called reproducing 
kernel of a closed subspace Нк C H if:

(i) for any fixed z Є Q, the kernel K(x, z) belongs to Нк  as a function of 
x Є Q;

(ii) for any /  Є Нк  and for any z Є Q,

f(z) =  </(•) I K(.,z))n .

The space Нк is called a reproducing kernel Hilbert "space.

Theorem 1.33. If a H-valued function h : Q — > H is such that 

f(x) = (/(•) I h{x))H, x є Q 

for every f  Є Нк, then the function

K(x, z) = (h(z) I h{x))n , x Є Q 

is a reproduction kernel of Нк-
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I i i i  O H  K M  1.34. For a Hilbert space H of functions

Q 9 x і—> /(x)

thin rim I* a reproducing kernel K  (x, z) о/ % if and only if for any point x Є Q the 
ffiiinl mutilation

*x :/ — ►/(*), / Є Н  

I* <i iniilmuous linear functional on H.

I In1 next theorems deliver some elementary properties of reproducing kernels.

I in (iiiiim 1.35. If a reproducing kernel Hilbert space Hk is a subspace of H,

thm

/0*0 = (/(') I K(-,x))n, x& Q

f i t )m  i i invjection from H onto Hk-

І iii і iltilM 1.36. For any subspace Ho of a reproducing kernel Hilbert space H к . 

lb m KrtMU the reproducing kernel Kq(x,z) for Ho and it is given by

K0(x,z) = (P0K(-,z) I K(x ,-))Hk

/..» IIі і orthogonal projection Pq from Hk onto Ho-

Nnic also that the sum K\ +K2 of reproducing kernels K\ and K? for the spacos 
Mi йн<I Hi is a reproducing kernel for the orthogonal Hilbertian sum H\®H2 and the 
(it.- і,, і Л', . K2 is a reproducing кегцеї for the Hilbertian tensor product Hi ®i, H2.

Null's and remarks. For general theory of analytic functions on Banach and 
ItlHilh convex spaces we refer the reader to [1, 35, 36, 44, 50, 76].

Wr essentially use some classical results. Among them the relationship between
ft Ii....... polynomials and n-linear mappings with the following application to
Hit' I itylur series, established by A.D. Michael and his successors [71, 72, 73], based 
ftn (In' polarization formula, which has been independently established by R. Martin 
l«T| міні by S. Mazur and W. Orlicz [68, 69]. Detailed descriptions can be found in 
I In* 11(utnie book [52] and in the historical notes [74].

The spectral theory of algebras of analytic functions developed in this book essen- 
||mII\ uses a nonlinear version of the Hahn-Banach theorem, which was established in 

|4i \ relationship between the continuity and local boundedness, using in the theory
ні I нмішісчі type analytic functions, was proved in [18].

I 'mill's of basic properties of polynomials and tensor products can be find in [36]. 
I heiiiein 1.10 was proved in [85]. In [6] was introduced the radius function of linear 

film llnimls on Hb{X) and proved Theorem 1.17 and Theorem 1.18. Theorem 1.19 

MH<I I hemem 1.20 are partial cases of results in [32]. Extensions of polynomials to 
nil 1111 m iwers were investigated in [54]. Propositions 1.23, 1.25, 1.26 and Corollary 1.24 

Wei e proved in [9].
Apparently, first applications of the Hilbert-Schmidt type analytic functions ap-

I
Mftrml in [39]. The abstract reproducing kernel theory was developed by N. Aronzajn
II ee also Saitoh book [90] for proofs of Theorems 1.33, 1.34, 1.35 and 1.36.



CHAPTER 2

Descriptions of topological spectra and applications

Let A be a complex commutative topological algebra. Let us denote by M(A) 
the topological spectrum (set of continuous characters, which also are called con

tinuous complex-valued homomorphisms) of A. It is well-known from the theory ol 
commutative algebras that there is a bijective correspondents between maximal ideals 
of A  and its complex continuous homomorphisms. So, we can identify M(A) with 
the set of all closed maximal ideals of A.

Recall that A is a semisimple algebra if the complex homomorphisms in M(A) 
separate points of A. Let A  be a semisimple commutative Frechet algebra. Then A 
is isomorphic to some subalgebra of continuous functions on M(A) endowed with a 
natural topology. More exactly, for every a € A  there exists a function

a: M(A) — > C, а(ф) := ф(а)

with ф Є M(A). The weakest topology on M(A) such that all functions a with 
а Є A  are continuous is called the Gelfand topology. The Gelfand topology coincides 
with the weak-star topology of the strong dual space A ' , restricted to M(A). If A 
is a Banach algebra, M(A) is a weak-star compact subset of the unit ball of A'.

The map

А з а ^ > а Є С ( М ( А ) )

is called the Gelfand transform of A, where C(M(A)) is the algebra of all continuous 
functions on M(A).

If A is a uniform algebra of continuous complex functions /  on a metric space 
Q then for every x Є Q the point evaluation functional

Sx■ /  і— > f(x) (denoted also as S(x) := Sx)

belongs to M(A).
Let us consider several important examples of spectra. Let Q be a metric spaces 

and Cb(Q) be the uniform Banach algebra of all bounded continuous functions on 
Q. Then the topological spectrum of С ь {0)  coincides with the the Czech-Stone com- 
pactification PQ of Q. That is, every function /  Є Cb(Q) can be extended to a 

continuous function /  on /3Q and for every point x Є (3Q the map

/  ► /(*) 

ін a complex homomorphism of Сь(0).
Let ,4(fi) be a uniform algebra of all analytic functions on an open domain О C 

C" which are continuous on the closure O. Then M(A(Sl)) is the polynomially convex 
hull [S2] of П (see [43] for details), where [O] is defined as a subset of all point x Є Cn

22
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W/to I luii f«u' ••very polynomial p e V(Cn), the inequality |p(a:)| < supzen \p{z)\ holds. 
Д «■' In i in I i/nomially convex if it coincides with its polynomially convex hull.

II I/ In convex, then its polynomially convex hull [fi] coincides with the closure
0  In pm I leular, if Cl = C", then Л(П) is the algebra Щ С71) of all entire functions 
gD <'" niul its topological spectrum coincides with all point evaluation functionals 

4(ł) iIuIIiiihI by x Є C".
Pluvious examples show that we can think the topological spectrum of a uniform 

•In* 'Inn nn a maximal natural domain such that all elements of this algebra can be 

|інімІ'Іі'і"іІ ius a continuous function on this domain.
'I'IiIh chapter is devoted to study of spectra in the case of uniform algebras of 

iinui'l' v mmlytic functions with domains in infinite-dimensional Banach spaces.

2.1. Spectra of algebras of polynomials

l.l.MMA 2.1. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let
t 111__ _ /„) be a map from Y to C" such that the restriction of each fj to any

і dimensional subspace of Y is a polynomial. Then the closure of the range of F 

it nn nli/ebraic variety.

I 'in >OF. Let Y0 be a finite dimensional subspace of Y. It is well known to algebraic

ГNlli*l ry that the closure F(Y0)~ of F(Y0) is an irreducible algebraic variety of 
IH'MNlon k < n . Without loss of generality, we can assume that Yq is chosen so that 
Hit' illmcnsion k of F(Yq)~ is a maximum. If Yj is any finite dimensional subspace 

Hf V Nuch that

Yi DYq

llii'ii l'(Yi)~ is also an irreducible algebraic variety of dimension k, which contains 
b'()ii) . It follows that

В Д Г  = F(Yo)~,

п ін  I we conclude that F(Y0)~ =  F(Y)~. □

Th e o r e m  2.2. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let A 
In mi algebra of functions on Y such that the restriction of each f  Є A to any finite 
ihim iisional subspace of Y is an analytic polynomial. Let J  be a proper ideal in A. 

Then there is a net (ya) in Y such that

f(Va) -* 0 for all f  Є J.

I ’ r o o f .  Suppose that the conclusion fails. Then there are (Д ,. . . ,  / „ )  Є J  such
that

max(|/i(y)|,...,|/„(y)|) > 1, yeY .

h i I1' be the map from Y  to C" having components f i , . . . , f n- Let V be an algebraic 
Vnrlcty which does not contain 0. Hence there is a polynomial p on Cn such that 
p •  0 on V and p(0) =  1. Since the functions p together with the coordinate functions 
•• і , . . . ,  z„ have no common zero, the ideal generated by them in the polynomial ring
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cm In uni proper (vin Ніс 11іПнмt Nullst.ellonBatz). So, there exist polynomials 

«/u, i/i, ,,. ,(/„ on C" (Uch tlint.

PflO + *i9lH--- 1- znqn = 1 onC",

implying

Z\qx +"- + znqn = 1 on V.

Now let у і ,. .. ,gn Є A be the compositions of q i,... ,qn with F, respectively. Then

f i 9 i  H---------- h f n 9 n  —  1)

and the ideal J  is not proper. □

Corollary 2.3. Let ф be any (possibly discontinuous) complex-valued homo
morphism on the Frechet algebra of entire C-valued functions 'Нь(Х) on the Banach 
space X. Then there is a net (xa) in X  such that

P(xa) -+ ф(Р)

for all analytic polynomials P  on X.

For a given algebra A of continuous functions on a Banach space X  we define an 
A-topology on X  as the weakest topology such that all functions of A  are continuous. 
That is -4-topology is the restriction of the Gelfand topology to X.

We say that a net xa is .Д-convergent (notation xa Л  ф) if f(xa) is convergent 
for every /  Є A.

P roposition 2.4. Let Vq(X) be a subalgebra of the algebra V(X) on the Banach 
space X. Then for every bounded Vq-convergent net (xa) Є X  there is a continuous 
complex-valued homomorphism ф on Vq(X) such that

P{xa) ф(Р)

for each P  є Vo(X).

P roof . It is easy to see that

ф{Р) := limP(a;Q)
a

is a complex-valued homomorphism on Vo(X). From the boundedness of (xa) it 
follows that ф is continuous. □

Theorem 2.5. Let Vo(X) be a subalgebra of V(X) with unity which contains 
all finite type polynomials. Let J  be an ideal in Vq(X) which is generated by a finite 
sequence of polynomials P i, . . . ,  Pn Є Vo(X). If the polynomials P i, ... . Pn have no 
common zeros, then J  is not proper.

Proof . According to Lemma 2.1 there exists a finite dimensional subspace Yq = 
Cm C X  such that

F(Y0)~ = F(X)~,

where F(x) = (P i(x ),...Pn{x)).

Let C i,...,em be a basis in Y0 and e*,. . . ,  e*n be the coordinate functionals.
І )ічloto by I\ |y0 the restriction of Ą  to Y0. Since dim Y0 = m < oo, there exists a
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і її її їм projection T: X  — > Yo. So, any polynomial Q Є V ( Y o )  can be extended 

u polynomial Q  є V o ( X )  by the formula

Q(x) =  Q(T(x)).

i j  belongs to V o ( X )  because it is a finite type polynomial. Let us consider the

G(x) = (P i(x),. . . ,  P„(x), el(®),. . . ,  C (x )) : X  — > Cm+n. 

ili'lliill ion of G,  we have G ( X ) ~  = G(Yo)_ -
Suppose that J  is a proper ideal in V o ( X ) ,  and so, J  is contained in a maximal

11 I m . Let ф be a complex homomorphism such that

Jm = ker ф.

IIv Theorem 2.2 there exists a Vq-convergent net (xQ) such that

ф(Р) = limP(xQ)
a

vvcry P e V o ( X ) .  Since G ( X ) ~  =  G(Yo)-> there is a net (zp) C VJ) such that

limG(xa) = lim G(zg).
a p

I, hat each polynomial Q  Є V ( Y o )  is generated by the coordinate functionals.
%

lim Q(zp) =  limQ(xa) =  ф{(3).
/З сж

ДІМ)

limPfe \Yo (zp) -  limPk(xa) = ф(Рк)
P a

Ini к 1 ,..., n. On the other hand, every Vo -convergent net on a finite dimensional 
«ulmpace is weakly convergent and so it converges to a point xo Є Yo C  X .  Thus,

Pjt(xo) =  0, 1 < к < n

I lint, contradicts the assumption that P i,. . . ,  P„ have no common zeros. □

Note that we also proved that each complex homomorphism

ф: V o ( X )  — ► C

Іи 11 local evaluation, which means that for a given P\,... ,Pn E Vq(X) there exists 

i u і X such that

Ф(Рк) ~ Pk(x0), к — 1, . . . , Tl.

For an ideal J  C  V o ( X ) ,  let V(J) C  X  denotes the zero of J, that is, the common 
net of zeros of all polynomials belonging to J.

Let G be a subset of X  and 1(G) denotes the hull of G, that is, a set of all 
polynomials in V o ( X )  which vanish on G.

The set Rad J  C V ( X )  is called the radical of J  C V o ( X )  if Р к Є J  for some 
positive integer k implies P Є Rad J.
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А іH>|viniinml / ’ ( /’(A') is (billed a radical if it can be represented by a product 
ul 111111111111 у і lllli Ti'iit. irroducible polynomials. In this case Rad P  is generated by P,
u ,

Rad P  = (P).

Л subalgobra Ad of an algebra A is called factorial if for every /  є Ao the 

equality /  f\fi implies that f\ Є Ao and /2 Є До-
Using a standard idea from Algebraic Geometry, now we can prove the next 

theorem which is a generalization of the well known Hilbert Nullstellensatz for algebras 
of polynomials of infinitely many variables.

Theorem 2.6. Let Vo(X) be a factorial subalgebra in V(X) which contains all 
polynomials of finite type and J  be an ideal in Vo(X) which is generated by a finite 
sequence of polynomials P\,..., Pn £ Vo(X). Then

Rad J  C Vo(X)

and the equality

I[V{J)} =  Rad J

holds in V0(X).

Proof . Since Vo(X) is factorial,

Rad J  C Vo(X)

for every ideal J  C Vo(X). Evidently, I[V(J)} D Rad J. Let P  Є Vo(X) and P(x) =
0 for every x Є V(J). Let у Є C be an additional “independent variable” which is 
associated with a basis vector e of an extra dimension. Consider a Banach space

X  ®Ce = {x + ye: x Є X, у € C}.

We denote by V o ( X )  <g> V ( C )  the algebra of polynomials on X  ®  Ce such that every 
polynomial in Vq(X)<S>'P(C)  belongs to V o ( X )  for arbitrary у Є C. The polynomials 
P i,. . . ,  Pn, Py — 1 have no common zeros. By Theorem 2.5 there are polynomials 

Q i ,  ■■■, Q n + 1 Є 'Po(^) ® V(C) such that
П

X  piQi + (Py - i)<3n+i =  1. 
i=i

Since it is an identity, it will be still true for all vectors x such that P(x) ф 0, if we 
substitute у = l/P(x). Thus

Tl

Pi(x)Qi(x, l/P{x)) = 1.
t=i

Taking a common denominator, we find that for some positive integer N,

(2.1) 2  Рі{хШ х)Р-м{х) =  1 or J  Pi(x)Q'Or) =  P N(x),
t=i t=i

where Q\x) = Q(x,P~1)P N(x) Є Vq(X). The equality (2.1) holds on an open 

subset X\ ker P, so it holds for every x Є X. But it means that P N belongs to J. 
So, P  Є Rad J. □
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< i ilu m i ary 2.7. Suppose that ker P  with P  є V{X) contains a linear subspace
І  ні m .dimension one. Then there exists a polynomial Q  Є V(X) and a linear

fimt III unii L such that

P  =  QL.

I'HOOF. Let L be a linear functional on X  such that kerL = Z. By Theorem
III I, divides PN for some positive integer N. So, L divides P. □

<'(HIOLLARY 2.8. Suppose that kerP with P  Є V(X) is a union of a finite 
М|ІІінісе of linear subspaces. Then P  is a product of a finite sequence of linear 
Пий I lonals.

I'lioOK. From the Hahn-Banach Theorem it follows that kerP  is contained in ii 

Hull.' union of one codimensional linear subspaces. So, P  is a factor of a product ol' 
Йііі'мі limctionals. Thus, P  is a product of a finite sequence of linear fund ionnls. I I

I iii iOREM 2.9. Let Vo(X) be a factorial subalgebra in V(X) which contains all 
pilynnmials of finite type and has the following property: if Q Є Vo(X) and

Q =  Qi H--------------------- f  Qn

m Ilu', (necessary unique) representation of Q by homogeneous polynomials, then all
Qi he long to Vo(X).

If P Є V(X) is continuous in the weakest topology on X, with respect to which 
§11 polynomials in Vq(X) are continu&us, then P  Є Vo(X).

I ’hoof. Without loss of generality, we can assume that P  Є V(X) is m-
InHiH igneous and irreducible. By theorem assumptions, the polynomial P  must be 

liiiiiuded on the set

{ xGX :  |P!(x)| < 1,...,|P„(*)| < 1}

Willi Home P i,. . . , P n Є Vq(X). *
l,ct J  be an ideal generated by P i,. . . ,  Pn. If Xq є V (J), then tx о Є V (J) for

I'vi'iy number t. So, P is bonded on the subspace {txo: t Є €}. But this is possible

niilv і I P is an identical zero on this subset. Hence,

V ( J )  C kerP.

Denote by Ao  a minimal factorial algebra which contains Vq{X) and P. By

ГІнюгет 2.6 there are Q\,.. . ,  Qn Є Ao  such that

PiQ i + • • • + PnQn — P-

W<< can assume that Qk with k =  1,... ,n are homogeneous and

Г deg Qk + deg Pk =  m if deg Pk < m

\ Qk = 0 if deg Pk > m.

Indeed, let Qk = Q{ is the decomposition of Qk by j-homogeneous polynomials.

I lien

2  PkQk =  j ]  pkQT~des Pk + S  Pk E  Qi =  R
к= 1 k= 1 k= 1 j/=m —deg Pk
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X >  £  Qi
k=  1 j/=m -deg  Pk

11 ml ii і і is no m-homogeneous polynomials and deg P = m, we obtain

z  Q i =  o.
fc=l j/= m —deg Pfc

Putting Qk = Q™_degPfc, we have the required restrictions for Qfe. Since P is irre
ducible and degQfc < degP = to, the polynomial Qfc belongs to Po(X) c  Aq for 
every k. Therefore P Є Vo(X). □

We say that a set V C  X  is an algebraic set of finite type if V is the set of 
common zeros of some finite sequence of polynomials P i,... ,P„ Є V(X). V is called 
an algebraic variety of finite type if the ideal (P i,. . . ,  Pn), generated by P i,. . . ,  Pn, 
is prime.

Let V = V(P\,. . . ,  P„) be an algebraic set of finite type. We can define an algebra 
of polynomials on V as a quotient algebra

P(V) :=V{X)/I(V).

From Theorem 2.6 it follows that a polynomials P  is the identical zero in V(V) if 
and only if P N є (P i,. .. ,P n) for some N  and V{V) is an integral domain if and 
only if the ideal (P i,. . . ,  Pn) is prime.

Theorem 2.10. Let ф be a complex homomorphism (possible discontinuous) of 
V(y). Then there is a net (xa) C  V such that

ф(Р) =  limP(xQ)
a

for every P  Є V(y).

Proof . Note first that each complex homomorphism of V(V) is a local eva
luation at V. Indeed, if ф is a complex homomorphism of P(V), then ф may be 
considered as a complex homomorphism of V(X) which vanishes on I(V). As we have 
indicated, ф must be a local evaluation at points of x, that is, for every polynomials 
P i,. . . ,  Pn Є V(X) there exists xo Є X  such that

ф(Рк) =  Pfc(xo).

Since ф vanishes on /(V), we have xq є V. Thus, for every Q i, . . . ,Q n Є V{V) there 
exists xo Є V such that ф((2к) = <3fc(x0) with 1 < k < n.

Consider the set of zeros of all finitely generated ideals in V(V):

\va =  f )  ker [Pa,fc - ф{Ра,к)]: Pa,k Є P(X)1.
^ k=  1 >

Kuch V,, is nonempty and the set {V^} is naturally ordered by inclusion. Let (xQ) C
V !>»> ii net such that xa Є Va. It is clear, ф(Р) = lima P(xa) for every P Є V(V). □
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2.2. Applications for symmetric polynomials

I (/' be a group of linear isometries of a Banach space X. A subset V of X  is 
mM In In' G -symmetric if it is invariant under the action of G on X. A function with 

я U ну u і metric domain is G -symmetric if

f{a(x)) = f(x)

I'M I'vrry a  € G, where x Є X. It is clear that the kernel of a (/-symmetric polynomial 
|a {.■ му m metric. We consider the question: under which conditions a polynomial with 

я U nvmmetric set of zeros is £ -symmetric?
Hint we observe that if P  Є "P(X) is an irreducible polynomial then P on  ін 

ІГМ'їІні'ІЬІе for every а  Є G- Indeed, if P(o(x)) =  P\(x)P2(x), then

P(x) = Pi(<7~1(x))P2(cr~1(x)), x Є X.

Ilocall that a group homomorphism from G to S1 =  {p"’ : 0 < i9 < 27t} is culled 

я chnmcter of G-

Proposition 2.11. Suppose that G has no nontrivial characters. If P  Є V(X) 
In iiulical and кетP  is a (/-symmetric set, then P  is a (/-symmetric polynomial.

Proof . Since

ker P =  ker(P o a)

for every а  Є G, then, by Theorem 2i6, P  = c(P o a) for some constant c = c(a). 
Ili'cause a is an isometry, |c| =  1. If сф  1, then c = c(a) is a nontrivial character of 

Q, So, c =  1. і □

Suppose for example that G = S1, i.e., the group acts on X  as follows x el'Jx. 
I’hun a homogeneous polynomial is (/-symmetric only if it is a constant. However, 
/сі ї) set of any homogeneous polynomial is S1 -symmetric.

Note that the subset of all (/-symmetric polynomials is a subalgebra in V(X).

Theorem 2.12. Suppose that the algebra of G -symmetric polynomials on X  is 
factorial and G has no nontrivial characters. Then the kernel of a G -symmetric 
polynomial P  is G -symmetric if and only if P is G -symmetric.

Proof . Let k i,. . . ,k n Є N and

P _ Р^І pkn
r  — r \ • • * ГП »

where P i, . . . ,P n are mutually different irreducible polynomials, Then the product 
/’i ... P„ has the same set of zero that P. So, if ker P  is (/-symmetric, then P\.. .Pn 
In G-symmetric by Proposition 2.11. On the other hand, by the theorem assumption, 
all polynomials P i, . . . ,P n must be (/-symmetric. So, P  is (/-symmetric as well. □

Note that if there exist a (/-symmetric polynomial P = P1P2 such that Pi is 
not (/-symmetric, then Р^Рі is a not (/-symmetric polynomial with a (/-symmetric 

kernel.
If X  is the infinite-dimensional space (p, (1 < p < 00) of sequences

X =  (Zi)ieN C C
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шиї 11 In I lie ці ni i| i ni і mm'mutations of basis elements, then it is not difficult to see that

11 u1 іііці’1 u m ul (/' му її її in 'І гіс polynomial is factorial and Q has no nontrivial characters. 
I in uiiy Inin і' іИіш'іініоіиіІ space there exists a nonsymmetric polynomial which has 
a symmetric kernel. For example, the polynomial

P(x) = x\x2 .. .x n

has a symmetric kernel in C", but it is not symmetric if n > 1.
Note that the algebra ’P„(fp) of symmetric polynomials on the space £p with 

respect to the group of permutations of basis elements (e*,) C £p does not satisfy the 
conditions of Theorem 2.6. However, this theorem is still true for this algebra. For 
simplicity we consider the case of £\ -space.

Theorem 2.13. The elementary symmetric polynomials (0j)jgN,

0г(х) ^ ] xkl •.. xjZi, x = Хі і̂ Є £i , fci,. . . ,  kn € N.
кіК-Ккі ie N

form an algebraic basis in the algebra Vs(£i)- It means that every symmetric polyno
mial Q Є Vs(£i) can be represented by the way

(2.2) Q(x) =q (Q 1(x ) , .. . ,e n(x)),

where q is a polynomial in V(Cn) and (Q;)ieN, are algebraically independent, that 
is, if p(0 !(x ),.. . , 0„(x)) = 0 for some p Є ^(C"), then p = 0.

Proof. It is well known from Algebra (see [94]) that for any symmetric complex 

polynomial Q e  P„(Cm) with deg<3(m) = n there is a polynomial q Є V(Cn) 
such that

Q(m>(x) = ę (0 (m)(x ),...,0 ^> (x )),

where
m

0-m)(x)= Yi xk l. . .x ki.

Let Vm =  spanjei,. . . ,  em} is the m-dimensional subspace in spanned by the basis 
elements {ei,. . . ,  em}. We set

m

Tm : ^ ] Xiti І У X{Ci
i6N i= 1

the projection from £i to Vm. Let Q Є Vs(£i), degQ = n. Then there exists a
polynomial q Є V(Cn) such that for every m >  n and for every х Є £\

Q{Tm(x)) = q (©jm^(x),. . . ,  0^m^(x)) .

Taking the limit as m —► oo we obtain (2.2).

To show that Qj are algebraically independent, we observe that for every

(6> • • •, £n) Є C* there exists a vector x̂  = (xi, . . . ,  x„, 0,0...) Є £\ such that

(2.3) ©i(®«) = £b--->©n(*{) = Іп-

Indeed, according to the Vieta formula, the solutions of the equation

* n “  £l® n_1 + • • • ( - l ) nfn  =  0
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MIIhIv I Ik* conditions ©»(хі,... , x„) =  £» and so x  ̂= (x i,. . . ,x„) is as required. If

(in Home Є V(Cn). Let us suppose that at some point £ Є C’\ £ (£i,...
tut which <7і(£) =  0. Then there is xę Є £\ such that ©i(xo) = & («'<' formula 2.И). 
No, the common set of zeros of all gi is empty. Thus, by the Hilbert NullHtdlrimal / 

I lirrr are polynomials q\,.. . ,  qm such that

We need some technical results about tensor products of tensor product spaces 
and polynomials on tensor products. Let X  be a complex Banach space.

Let P  Є V(kmX) for some positive integers m and k. Let Fp Ьй the symmetric 
multilinear form associated with the polynomial P. Consider Fp(x™,... , x™) for 

йоте x i , . . . , x k  Є X. For any fixed

Fp{xj1, ..., x f , ..., x™) is an m-homogeneous polynomial of Xj Є X  and so it can 

he expressed as a value of a continuous linear functional on Q™X at the point x®m. 
Since it is true for every 1 < j  < k, there is a continuous symmetric multilinear map

■fi, .Ć«)^ 0 for some (£ i,...,£„ ) Є Cn, then P(©i(x5) ,. . . ,@„(xs)) ф 0. □

( 'iiHOLLARY 2.14. Let P i, . . . ,P m Є Vs(£i) be such that

ker Pi П • • • П ker Pm =  0.

Tin'll there are Q і , . . . ,  Q m  Є Vs{h) such that
m

i=l

I ’HOOF. Let n = maxi(degPi)- We may assume that

P i ( x )  = f l ,i ( © l ( x ) , - - - . © n ( ^ ) )

771

1 = 1

I'Ut Qi(x) = &(©i(x ),...,0„(x )). □

2.3. Polynomials on tensor products

can see that

(2.4) ІИ І < ll-P(m)l|.

Note that we have natural embeddings
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І ' і ii' lie nn element In <->kwmX. Consider following norms for w. Let ||u;|| be th( 
|ii()Ji i tlv(' ItMinor norm on That ia,

M^)eN"fc=l {jleN- J

where ii k in and Infimum ін taken under all above representations of w. Ąccordinj 
to (1.7) we can define

II' := i n f ^ l M * ™ : ^ ^ ® * " 1},
v  i C N  óczN J* j€N j€N

where n = km and the infimum is taken over all representations of w. Also, we set

k

s /[j Xijl © ■- © Xijm
I {j}€Nm i6N

W
/ \ 'j

= 2  ( 2  ХіІі © ‘ ‘ ‘ © Xijm J Г I
{j}€Nm 'i€ N  '  J

r k / \ ®АЛ

IIHII(m) := inf < I 2 4 m , 2 > § m)
I j€N i€N je N  ̂i€N '  )

and finally,

Hi(k)(m):= mf 2  (  S  П м ) -  ( Y  П і — 0
{ j } € N m \ { i j 6 N fc;= i  /  V { j } e N fci= 1  /

where the infimum is taken over all representations

X h j m  J  © • ’ • © (  £  X *kjl(2.5) w =  2  ( Ц
/ЛсМт

xiljl © ■ • ■ © Xiljm I © • • • ©
{j}€Nm \jl€N / 4u GN

Let us observe that the representation

( \ ®k 

S 4 ”)
ieN '

is a partial case of the representation

iji 0***0

O • • • © x,

(2.6) w
ji,-Jm€N Ч єN

So, |M|(m) < IIIwIII(m). Let

/ \ <8> k 

—  £  (  £  X i j l  ©  ’ ’ ’ ©  X i j m J
■i,... i—PN '

(2.7) — £  Xiji © • • • © Xijm.
iCN

Then by the polarization inequality (1.8),

IN I  = inf 2  H1^  u • • •
<6N

c(m,X) l « J ,



Мнім 1.1 if infimum is taken over all representations (2.7). Combining (2.6) and (2.7), 

*<■ мім i.oo that |MI(m) > |w||{m ) / [ c ( m , X ) ] k or

I M I ( m )  ^  III^III(m) ^  H m ,X )]k\\w\\{m).

Nnw we observe that the representation

(I Ił) w = 2  f Yi xm O ' - ' Q X i j

{j}6Nm i€N

I* u іmtt.ial case of (2.5). So,

(a III) I MI ( f c ) ( m)  < I M I ( m )  < c(k, Q™X) | M I ( k ) ( m ) .

On the other hand, the representation given by (2.5) is a partial caso of

W  =  Y  X j 1 ©  • • • ©  X j n .

{j}€ N"

lienee, for some constant sk,m,

(V. 11 )  I M I  <  I N I ( k ) ( m )  <  Sfc , m|H|.

Combining formulas (2.8),(2.10),(2.11) and taking into account 

IMI - III will < c(km, X)\\w\\, 

we have the following inequality:

I N I  < c(km,X)\lw\l(m).

Note that from formula (2.4) it follows that

M (m ) < HI-

So, we have the following theorem.
«

Theorem 2.15. Let w e ©£mX  and, P  Є V(^mX). Then 

H I M  < INI < c{km,X)l\wl\{m)

and

\\P\\<\\P{m)\\<c(km,X)\\P\\.

Let now n = k\ + 2k2 + • • • + mkm for some k i,. . . ,k m Є N and P  be an 
/1 - homogeneous polynomial. We define a form Fki km on the Cartesian product

X  x Q lX  x • • ■ x Q™X 

such that Fku km (x i,x f2, . . . ,x f j , . . . ,x®m) is a k j-homogeneous polynomial of 

the variable x fJ for any 1 < j  < m if x\,. . . ,  Xj_1, Xj+i, . . . ,  xm are fixed and 

(2-12) Fkl tkm (ж, x®2, . . . ,  x®m) = P(x).

The map Fki km is well defined and

2.3. POLYNOM IALS ON TENSOR PRODUCTS \  33
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І.И ii1 ' " V Then by Theorem 2.15

IN I* , .  : = i n f (  2  11**1 II') ( 2  11^2II2)  • • • ( 2  llXi
»l€N ' M2GN '

< c(ki, X)c(2k2, X)--- c(mkm, X)||to||,

when' the inlinunn taken over all representations

/  \  ®fcl /  \  ®fc2 /  \

( 2> f )  •■•(£*£■) • 
il €N /  ' i 2€N '  VimeN J

Therefore, the next corollary is proved.

COROLLARY 2.16. Let P  Є V(nX) and k\ H--- h km = m. Then

ІИІ < K , . . . tkJ  <c(k 1,X)c{2k2,X)-^c(mkm,X)\\P\\.

2.4. The spectrum of T-Lb(X) endowed w ith the Gelfand topology

Let X  be a complex Banach space. Let us denote by An(X) the closure of the 
algebra, generated by polynomials from V(-nX) with respect to the uniform topology 
on bounded subsets of X. It is clear that

A1(X )n V (nX) =  Va(nX)

and An{X) is a Frechet algebra of entire analytic functions on X  for every n Є N.
Recall that T-Lb{X) coincides with the closure of algebra of all polynomials V(X) 

with respect to the uniform topology on bounded subsets X.
Denote by /H^C(B) the closure of algebra of all polynomials V(X) with respect 

to the uniform topology on the unit ball В  c  X. Then %^C(B) is the algebra of all 
analytic functions on В , which are uniformly continuous on B.

We will use short notations Мь and Muc for the topological spectra M (7іь(Х)) 

and M  (%“ (£?)), respectively.

Lemma 2.17. Let a functional ф Є Ль(Х)' is such that ф(Р) = 0 for every 
P  Є V(mX) П Am-i(X), where m is a fixed positive integer and фт is the nonzero 
restriction of ф € Нь(X)’ to V(mX).

Then there is a linear multiplicative functional xji Є Мь such that its restrictions 
•фк to V(kX) satisfy the conditions: грк = 0 for all k < m and фгп = фт . Moreover, 
the radius function of ф is calculated by the formula

||<M1/m < Щ )  < eMmW1/™.

PROOF. Since фт ф 0, there is an element w є (Q™X)", w ф 0 such that for 
any in-homogeneous polynomial P,

Ф(Р) = Фт{Р) = P(m){w), IMI = ||0m||,
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*ІИ'І P I (m) is the Aron-Berner extension of linear functional P ( m ) from to
UP ,Y)". For an arbitrary n-homogeneous polynomial Q Є V(nX) we set

HIS) ФІО) =  I  if n = mk for some k > 0
\ 0 otherwise,

phfrd Q(m) is the Aron-Berner extension of the A:-homogeneous polynomial Q(m)

I..... ©"*X to (Q™X)".
I/Ot (ua) be a net from Q™X which converges to w in the weak-star topology 

where a belongs to an index set 21. We can assume that every u0 luw 

K M'|ire«entation

Ua = Y xf,a for some Xj,a Є X '
j€ N

Now we will show that

1>(PQ) = ф{Р)ф(С}) 

liit мну homogeneous polynomials P  and Q. Let us suppose first that

deg(PQ) - mr + I

Im Home integers r > 0 and m > I > 0. Then P  or Q has degree equal to mk + s, 

k • 0, m > s > 0. Thus, by the definition, ф(РС}) = 0 and ф(Р)ф(0) — 0. Suppose 

now that

deg(PQ) = mr «

for some integer r > 0. If deg P = mk and deg Q =  mn for k , n>  0, then deg(PQ) = 

nt(k + n) and

Ф(РО) =  (PQ)h(b>) = P(m)(w)Q{m)H = Ф(Р)Ф№)-

Lot at last deg P = тпк + I and deg Q = mn + r, I, r > 0, l + r =  m. Write

_________1_________ 1

(degP + degQ)! (m(k + n + 1))!’

I )(‘iiote by FpQ the symmetric multilinear map, associated with PQ. Then

PpQ (^1) • • • ї xm(k+n+l)')

= V E  Fp (xa(\}, . . . тХа̂ щк+І)) l*Q (x„(rnk+l+l), • • • iXo(rn(k+n+l))) і 
<’€6m(i+n+1)



wIii'H' 0 ,M(* і >i і і) In I lie group of permutations on { 1 , . . .  ,m(k + n + 1)}. Thus, for 

.............«Ним i < 'Л we have

tl'UV) (R J )(m )(  « 0 -  FpQ(m)(uai,...,U ak+n+1)
Qti i.i.|ftfc+n+ l

DESCRIPTIONS OF T OPO LO G IC A L  SPECTRA

-...^ - . ( 2 *®”...............£ « - ■ )

=  u V  lim
_rt -̂J a<r(l).-.«<r(Hn+i)

<TfcOm(fc + n + 1)

S  (■Ci»(l)>0t<7(l) ’ ' " " ,a 'J<7(fc)>a <T(fc), ‘Ci<T(fc + l)>a <r(fc + l ) )  X
J i i —iifc+n+i€N

X Fn (xr- x™ X 771 ^^  у Зо{к + \) »®(r(fc+l) ’ J«T(fc+2) »а «т(А:+2) ł 5 J«7(fc+n+l) »**<7(fc+n+l) у

Fix some а  Є 6 TO(k+n+i) and fix all Xj„(i),a„(i) for г < fc and for г > fc + 1. Then

E  ajjjSi) ’ • ’XJ<r(fc).<*»(!.)>XJa(fc+i).“<r(fc+i)) x
Ji... jfc+n+i€N <'(fc+1)

X  /vi і 7*̂ - T™  т™  і — 0
^  \ J<r(fc+l)><*<7(k+l)’ Ja (fc+ 2)^ a(n + 2) ’ * * * ’ J<r(fc+n+l) «a<r(fc+n+l) / ’

because for a fixed Xk ,і):С*а(і), г < fc,

РЛ у):=  E  , w - ’xZ m ,a„W’yl)
j l i  — ,jk  іІИ+2і —Jfc + n+l€N

is an /-homogeneous polynomial and for fixed <*„(ł), i > fc + 1,

i l l —ijk iik+2i—iik+n+l€N

is an r-homogeneous polynomial. Thus, P^Qcr Є Лто_і(Х). Hence,

lim(P<7g <7)(m)(ua) = %l)(PaQ„) = 0
a  v 7

for every fixed a. Therefore, ip(PQ) =  0. On the other hand, ip(P)xp(Q) =  0 by the
definition of xjj. So,

xP(PQ) =  rP(P)rP(Q).

Thus, we have defined the multiplicative function ip on homogeneous polynomials. 
We can extend it by linearity and distributivity to a linear multiplicative functional
on the algebra of all continuous polynomials V{X).

If ipn is the restriction of ф to V(nX), then ||̂n|| = ||w||n/m if n/m  is a positive 
integer and HV'nll = 0 otherwise. Hence, the series

ф =  E
riGN

is a continuous linear multiplicative functional on 'Нь(Х) by Theorem 1.18 and the 
radius function of ip can be computed by

R(ip) = limsup \\ipnу1/” > limsup ||ги||"/т” = =  \\фт \\1̂ гп.



B|t Hh1 other hand,

Ш  =  sup \̂n{P)\ = sup |P(rn)H | .
||р||=1 IIPII=1

ЧІІММ

|Р(т)ИІ < ||w|r/m||P(m)|| < c(n,X)\\w\\n'm\\P\\,

(И< І ніvc

Ш  < c(n,X)|H|"/m < J lk | | n/m = ^ \\Фт\\П/т•
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R W  < е\\фт\\1/т.

□
For each fixed element x Є X  the translation operator Tx is defined on Н ь ( Х )  

to be
(Txf)(y) = f(y + x), f e n b(X).

It is not complicated to check that Txf  Є ' Н ь( Х )  and for fixed ф Є 'Hb(X)1 the 

function

X  з  x і— > Ф(ТХf)

belongs to ' Н ь ( Х )  (see [6]). For fixed ф,в Є ' Н ь ( Х )1 the convolution product ф*9 in 

Hi,(X) is defined to be

(Ф*Є)(/) =  Ф(Є(ТХ/)), feH b (X ).

Let now ф,9 Є Мь. By Corollary 2.3, there exist nets (xa), (yp) C X  such that

(2.14) ф{Р) =  limP(xa), 9(P) =  lim P(yp)
a p

V
for every polynomial P  Є V(X), or in according to our previous notations, xa н> ф 

and у/з -» 9. Thus, for every polynomial P  Є V(X) we have

(ф * 9)(P) = lim lim P(xa + yp).
& Ot

Note that the spectrum Mb is a semigroup with respect to the convolution product 

and

ф * 9 ф 9 * ф

in general (see [9, Remark 3.5]). We denote ф\ * ■ ■ ■ * фп briefly by

71
*  Фк- 

k= 1

Let Ik be the minimal closed ideal in the algebra 7ib(X), generated by all m- 
liomogeneous polynomials V(-kX ) , where 0 < m < k. Evidently, Ik is a proper ideal 
(contains no unit). So, it is contained in a closed maximal ideal (see [76, p. 228]). 

Let

Фк := {ф Є Мь: кетф D 4 } , к € N.

We set Фо := Мь- Note that the functional <5(0), that is point evaluation at zero, 

belongs to Фk for every k Є N.



IN I >1 s< HIP TIONS OF T O O PO LO G IC A L  PECTRA

1.1 ммл 2. IN. If for some m Є N, .tions on { l , ,

Ат (Х )ф А

lin n Him n  isi* a linear multiplicative func+i Rpq(m) {u(jn_ 1 such that ip £ Фт .

PROOF. I P  Є V(mX) and P £ Am y i xęm : Am-i(X ) is a closed sub
space of 'Hh(X), by the Halm-Banach Theo ’ ^  J’afc+ndsts a linear functional ф € 
'Нь(Х)1 such that ф(С)) = 0 for every Q Є , 3 d ф(Р) ф 0. So, the restric
tion фк = 0 for k < m and фт (Р) ф 0. Bj 7 there exists ф є  M& such

that грк = Фк for k = 1,..., m. Thus ф e Ф t  Фт - □

Note that in particular cases of known c7(i) > • • • > xj , (k ch spaces X  we have 

Ai(co) = An(co) fo eN,

but for кф m *+2),«a(fc+2)’ •

Ak(tp) =  Л,(0 for і < к 

if and only if к < p and m < p. m
Moreover, if the Banach space X  admit'' ’ хі«(к),а<т(к1й[ which is not weakly se

quentially continuous, then the chain of algel i} does not stabilize and if
X  contains i\, then (see [47, 34])

А к( Х ) ф А т( Х )

,x

Lemma 2.19. If ф, ф є Mb and ip є Фк~: m

ф*іР(Р) =  ф(рХмі)’а,,Щ' "  

for every P  Є V{kX). I xK{i),<*aW,

P roof . Let (xa) and (yp) be nets in X  ^ 2)Л(в+!)г Д  ф and yp -Д в. For any

fixed yp and 0 < n < к, the continuous syn. linear form Fp(xk~n,y%)

associated with the polynomial P  Є V(kX), ь Є An-1 (^homogeneous polynomial.

ф {Fp(xk~n, ynp)) = limр Ф{РаЯа) = l= o.

mi r r „ a the other haii
Therefore, for every P  є V(X) ,

ф*ф(Р) = lim P(xa + yp) ty(Q).
P,a

iction 'Ф on hi: v

= Z  5“ ^ p(*S,»™)= y toa l inear^OC?/™))
n+m=k ,Q n H(.Y).

= lim^limFp(a;a, ... ,xa) + \\Фп\\ = IMl)) = ф(Р) + ф(Р).

That it was necessary to prove. □

Lemma 2.20. If P  є V(kX) and фj є Ф^_ very m > k,

k on ' Нь ( Х)  by
*  фі ( Р )  =  *  <; 

j = i  j= і

PROOF. In fact, since фj Є Ф^-і, we have < \ every j  > k. □



oo
( !iven a sequence {фп)™=\ C Мь with фп £ Фп-ь the infinite convolution *  фп

71= 1
>1 <*s a linear multiplicative functional on the algebra of all polynomials V(X) such

Hint
OO k і
*  фп(Р) =  *  фп(Р) if P £ 7>(fcX)

71=1 71=1

(їм mii arbitrary fc Є N. This multiplicative functional uniquely determines a functional
° °  \

In Mi, (which we denote by the same symbol *  </>„) if it is continuous.
71=1

The point evaluation operator 6 maps X  into Мь by 

x і—> S(x), 6(x){f) =  f(x)

|i ii every x £ X.

The operator 6 is the extension of <5 onto X", i.e.

6(x")(f) =  f(x")

Im every x" Є X " .

Theorem 2.21. There exists a sequence of dual Banach spaces , шиї u

4 1/ucnce of maps

SM : En — ¥ Mb

turh that

E i= x " ,  En = p ( nx y m £ _ 1, 6 ^  =  6

mul such that an arbitrary complex homomorphism ф £ Мь has a representation
OO / \

('<1,15) ф -  *  6̂ n\un)
71=1

fur some un £ En, n =  1,2,..., where is denoted

:= є Нь(Х)’ : u(f) =  0 for all f  £ J ^ } .

Proof . Put E\ = X " . Then

8(l\x") =  8(x ")eM b, x " e X ”.

Suppose that spaces Ek and maps 6 ^  are constructed for fc < n . Denote

En ■ — {7гn(0) • Ф £ Фп—і})

where 7тп(ф) = фп is the restriction of ф onto subspace V(nX). In other words, 
the space En consists of linear continuous functionals on V(nX) that vanish on 

nil polynomials in V(nX) П An-i- If An = An-1, then En =  0. Otherwise, by 
l.einma 2.18, there are nonzero points in En.

By Lemma 2.19, for P £ V{nX) and ф,гр £ Фп-і C Мь,

тгп(ф * ip)(P) = ф *  гр(Р) = Ф(Р) + Ф(Р) = 7Гпф{Р) + ПпФІР).

( 'niisequently,

7Гп{ф * V) = 7Гп{ф) + 7Гп(гр).

For an arbitrary complex number a, we have аф Є 'Нь(Х)' and nк(аф) =  апк(Ф). 
So, аф vanishes on all homogeneous polynomials of degree fc less than n. By Lemma

2.4. THE SPECTRUM OF Н ь (Х ) 4  39
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•' 17 І ІН'...... і/1 Є Mi, such that ipk = афк for 1 < к < n. Thus, гр Є Ф„_і and

«'An V'ii в l ‘‘n‘
lli'ii''■. / '„ is u vector space and polynomials from V(nX) are acting on En as 

linear fniH'l lonnll, Put

Wn = V(nX ) / ( ln. 1DV(nX)).

Then Wn is a Banach space of linear functionals on En and the functionals from Wn 
separate points of E„.

Let us define a norm || • ||„ on En, as the supremum of values of a vector from 
En on the unit ball of Wn. Therefore,

Wn = [v(nX ) l ( ln-i П V(nX ) ) )  =  V(nx y  П D En.

On the other hand, if u Є V(nX y  П then by Lemma 2.17 u = тгп(ф) for 
some ф Є Мь- So, u Є En. Therefore,

En = W'n.

For a given w Є En let us define

6^(w)(Q) =  p Q )

on homogeneous polynomials Q by formula (2.13) and extend it to the unique complex 

homomorphism on ~Нь(Х) as in Lemma 2.17. So, maps En into Mh. For any 
ф Є Мь put

ui :=  фі Є X "  =  Ei, u2 :=  ф2 ~ ^ ( ^ ^ ( u i ) ) .

It is clear that u2 Є E2.

Suppose that we have defined Uk Є Ek with k < n. Set

(2.16) un := фп - 7Г„ 5{k\uk)̂ j .

Let us show that un Є En. It is enough to check that for every P  Є V(nX) such that 

P = PkPm with deg Pk — кф  0 and deg Prl =  пф  0 implies un(P) =  0. Note that 
for every n-homogeneous polynomials Pn,

Фп - ( ”* / (fc)(«k)) (P n )  =Фп-  V  SW (U k ) (P n ) .

From the multiplicativity of ф and Lemma 2.20 it follows that 

Un(P) = Фп(РкРт) ~ *  S('j ) (uj )(PkPm)
3 =  1

= Фк(Рк)Фт(Рт) - ( V « W)(«>)(Ą))

= (t*fc(Ą) + (um(Pm)+ V  № (Uj)(Pm))

- (д а^К Х Р*)) ( j / (i)K)(Pm)) =o.



■ l  ііГіі equality holds, because by the induction assumption, uk Є Ек, um Є Em 

•tul Іичісе, by Lemma 2.19,

(M 17) и к ( Р к) + V  S ^ ( U j) ( P k) =  *  S ^ ( U j) ( P k)
j = і  j = i

him I

U m ( P m ) +  m*  6(j \ U j) ( P m ) =  *  № ( Uj) ( P m ).  
j=1 j=1

OO . .4
Lrfc us consider the functional *  Since Uk Є Ek, by Lemma 2.19,

j=i

*  <5Ш (« і)(/) =  /(0) + £  *  *W («j)(/n),
J=1 n6NJ=1

OO r .»
wlmre f  =  Y i f n  is the Taylor series of / .  Hence, Ж <5̂ ' ( i i j )  is well defined oil P (.V ).

j =  і
I in the other hand, applying (2.16) and (2.17) we obtain

(V-  *  ^ ( U j ) 4) ( P n ) =  фп ( Р п ) -  *  № ( U j) ( P n )
\  j = 1 )  j = l

=  Un( p )  + n* x s ^ ( u j ) ( p n ) -  *  aw K ) ( P n )  =  o 
j= l i= l

•

for arbitrary P„ Є V{nX). Thus ф =  *  <^>(u,) on P(X). Hence 0 =  *  S^>(uj)
j = і  j = i

nil Wb(X). ‘ D

Let us denote by E°° the space of all finite sequences u = (u\ , . . . , Um, 0, . . .) 

With uk Є Ek. According to Theorem 2.21, every finite sequence (ub ... ,um,0 ,...)

• Irlines a character ,

фи =  *  óW(uk) Є Мь. 
k= 1

Tims, E°° C Мь and for every u, о Є E°°, we obtain
* /

0U+O є Mfc.

Moreover, from the density of polynomials in 'Нь(Х) it follows that E°° is dense in 
Mi, with respect to the Gelfand topology. So, we have proved the following theorem.

Theorem 2.22. The spectrum Мь contains the dense vector subspace E00 of all 

Jinite subsequences (u1;. . . ,  um, 0,...) with uk Є Ek.

We will use also notation Em for the Banach space which is the direct sum of 

Ern, i.e.,

Em : = £ i ® . . . ®  Em.

It is clear Em C E°° for every m. Note that Em coincides with the set of maximal 

Ideals of Am(X).
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J.N I In- (inlfand transformation and linear structures on Мь

I ' n і 111I In1 (їсіГмікі transformation, every element of a commutative Frechet alge- 

l)i'n run lir іrpi'rM'iitod by a continuous function on the topological spectrum. We will 
consider Miidi representations for functions of the algebra НьіХ) on a Banach com
plex space X Since t he space X  is naturally embedded into the topological spectrum 
Мь we can say about extensions of functions from X  onto Мь-

A given function /  Є 'Нь(Х) by /  we denote its Gelfand transformation. Since 

E m C  Мь, we can use notation .., um) instead f (u i , . . .,  um, 0,0...).

Theorem 2.23. Let P  є V(nX). Then for every fixed, m e  N and positive
integers k i,. . . ,k m such that k\ + 2k2 H---1-mkm = n there exists a map

Pku...,km: Я?1 x ’ •' x E fr  — ► C

such that for every 1 < j  < n,

Fki,...,km (^1) • • • , U\, . . . , Uj, . . . , Uj, . . . , Um, . .і . , Urn)

ki kj km

is a kj -homogeneous polynomial of Uj for fixed u i , . . . ,  Uj-i, Uj+1, . . . ,  urn and 

P(u\,... ,um) — 2  Fkl....fcm(ul> • • • ,®m).
fci+2fc2-| h mkrn=n

Moreover,

||-p£... fcm|| ^  c(k1,X)c{2k2,X)---c{mkm,X)\\P\\.

P roof . For m = 1 it is trivially true. Suppose that the theorem is true for 
m — 1. Then

P(uI , . . . , um) =  *  S^\uj)(P) 
j=i

=  [ (  * « (m)(« m )](P )  =  S ^ ( u m) ( 5 > ( tti) r . ( P ) )

=  6™(um) ( 2  E  («!>•••- «m-1) + P (* )) ,
* =0  k iH |-(m— l)fcm_ i = n —і '

where

tx(p )(z) =  2  в д  =  ( n  7  * ) * >  (*"-*,

is an (n—i)-homogeneous polynomial by 2 for any fixed x, the functional *  S^\uj)
i= i

is linear, and Fk‘...km_i (uj, . . . ,  um_i) is an i-homogeneous polynomial of a: for all

І = 1,... ,n  — 1 with fixed u\,.. . ,  um_ і.
Иу the definition of 5m(um),

(um) (̂ Fk̂  . . . ,



I* mi (i/m)-homogeneous polynomial if (i/m) is integer and zero otherwise. Si
milarly, 6m(um)(P) is a (n/m)-homogeneous polynomial if (n/m) is integer and 

#i<i 11 otherwise. Therefore, if і = kmm, then we can put

Fki,...,km{u li • • • і um) :== 8 (um) (uli • • • і “ m—l) )

... I If n = fcmm, then

FoP...fi,km(Ul, • ■ ■ > um) := ^ (tlm)(P)-

Since Ej is a subspace of (Q^X)", for every Uj Є Ej there exists a net (wJa .) C 

,,{X  such that

IK J I  < IN I and K . ^ U j

In the weak-star topology of (&^X)". Thus,

і . • • • , « m )  =  U p  - • • і ™ F k u ...,km K , . • • • . < J  ,
OC l OCm

whore Fj^ km is defined by (2.12). So, via Corollary 2.16

\\K,..,kJ = I K ...U l  <c(*bX)c(2fc2,X)...c(mfcm,X)||P||,

mt was to be shown. □

C o ro lla ry  2.24. Let /  Є Ч ь ( Х )*. Then for every Ek the restriction /\вк of f  

In  Ek belongs to 'Нь(Ек).
■(

Proof . Let

/ ( * ) =  2  Pn 
n€Z+

lie the Taylor series of /. By Theorem 2.23 «

||P„M  < ||F**|| <c(mk,X)\\Pn\\,

where mk = ra. So each polynomial Pn\Ek is continuous and the radius of boundedness 

of

f\Ek =  £  
гаЄ2+

pquals infinity. □

A given positive integer ra let p(n) be the number of positive solutions of the 

Diophantine equation

fci + 2k2 -\--- 1- nkn = ra.

11 is known from Combinatorics that p(n) is equal to the number of all partitions on 

n and asymptotically

„)г^/2п/3

(J.18)
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........... . 2,2Г’' Ш  (Uk)^  be a Sequence such that ик Є Ek for every k. Then

Ф =  J i * W (u *)

m a continuous complex homomorphism in Mb if and only if

sup lM l17* < oo.

In this case 

( 2 ' 1 9 )

*6N

« Ї  5 1 ;  pa iti,e  r- Th“  «“*11 < For

Hn(P)l\ = W(P)|| = ||p(lli,...,u„)|

where

< Z  ^ku...,kn (ui ,. . .,Un) II
*1+2 &2H hnkn II

~  k  4 .9 t  ^к\-\-2к2-\-- [-пкп=п II

Z  і м *і ---і м ч
кі+2к2-\----f- nkn=n

< mn

=
ki+2k™*nkn=n П к^ х )ф к 2, X)--- с(ткт , X)1.

We observe that

<?Sl . . . asn
mn < max -i--- £™_

сі л ----- hsn = n  5т I . . .  о I
So, via the Sterling formula, n

lim sup m\ln < e.

Therefore, "~>°°

Д(0) — i™sup \\фп\\1/п < elimsup (p(n)rkl+2k2~\— i-nfcn-)1/"
П-+ОС /

= er lim sup (p(n))1/n,
n->oo

w e lve  t t f  the ”Umber 0f paltiti0“  ° f "• “ "S the asymptotical form„,a (2.18),

т < е г  = евпр\\ик\̂ к <00.

S o ,  ф Є M6. fc€N

IJ'° 0ther hand' S ІІЛ-ІІ for every positive integer m. Hence 

sup IM I1/* < limsup ||0*|| V* _

Hence, the inequalities (2.19) are proved
□
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Irl u = (ui,u2, ...), 0 = (v\,v2 ,...) be sequences with uk, vk Є Ek for every 

k t  N and

sup |KH1/fe <  00, sup \\vk\\1,k < OO.
keN feeN

(Іній, there are complex homomorphisms of Т-Іь(Х) of the forms

фи= *  6{k\uk), ф„= *  ó{k\vk).
k= 1 k= 1

( Corollary 2.26. For any фи, ф„ є Мь and a constant с > 0, we have

Фи+t, =  *  ^ к\ик +vk) Є Мь, Фси= *  <5(fc)(cufc) Є Мь. 
к=1 к= 1

So, the spectrum Мь may be identified with a sequence space

E°° := { (ui,tt2, ...) : uk Є Ek, sup ||ufc||1/fc < oo}.
fceN >

Proposition 2.27. The function

p(u,t>) := sup \\uk -vk ||1/A'
fceN

in m metric on E°°, which is invariant with respect to translations.

PROOF. From the definition of p it follows

p(u - 0, 0) =  p(u,o).

11 Is enough to check the triangle inequality. Since

I N  +  Vfc||1/fe <  (IllXfcll +  ||Ufc||)1/fc <  H t t f c l l +  llVfcll1^ ,

we have

sup|N + vk\\1/k < sup(||ufc||1/fc + |M|1/fc) < sup||ufc||1/fc +sup||^||1/j
fc€N fceN fceN j€ N

and

p(u + t>,0) < p(u, 0) + p(t>, 0).

It is necessary to do replacement u by u — TO and 0 by tt> — D. □
* *

The following proposition easily follows from the completeness of each Ek. 

Proposition 2.28. The metric space

E°° = (E°°, p) =  { (ui,U2 , • • •): uk Є Ek, sup \\uk\\1/k < oo) 
t fee N >

Ih complete.

Note that in the general case both the Gelfand topology and the topology gener

al ed by p are not linear. We consider this situation in the next section.

Given a sequence of Banach spaces (En, || • ||n)n=1 and 0 < p < oo the Kothe

sequence space A1 (Kp\ (En)) with Kp = {(rn)^L1: 0 < r < p} is defined to be the

hrśchet vector space

Uxn)n=i Є X  En: рг((ж„)“=1) := £  IW k " < oo for all r Є (0,p) j ,
 ̂ neN »eN >
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cudowni with the topology given by seminorms {pr}o<r<p- It is clear that

A1 ( K px ;(£„)) DA1 (K p , ;(£„)) if Pl <  p 2

mid the topology induced by A 1(KPl-,(En)) on A1 (KP2; (£„)) is weaker than the 

original topology of A1 (KP2 \ (En)). We define on the union

( J  A1 (KP\ (En))
p >  o

the topology of inductive limits of the K5the spaces respectively above continuous 
embeddings, that is denoted

E°° := limjnd A1 (Kp; (En)).

T h e o r e m  2.29. The map

, u2, ■..), Uk Є Ek,
fc= 1

produces a bijection from Мь onto E°°. The inductive topology of E°° is stronger than 
the Gelfand topology transferred by this bijection from Мь, i.e., the bijective mapping

E°° — >• Mb

is continuous. The space E°° is a Hausdorff locally convex vector space.

P r o o f . Let ф = *  S^iuk) Є Мь. Then by Theorem 2.25 
fc=i

sup ||1/fe < oo. 
fe€ N

So, there is some 0 < q  < oo such that

limsup ||ufc||1/fe < g.
fc—► OO

By Cauchy-Hadamard’s formula

V  ||u„||rn <oo for 0 < r < -.
neN  в

So> (ufe)feti C A 1(Kp; (En)), where p = l/g.

Now in the opposite side, let (ufc)^ C A 1(Kp-(En)). Then by the Cauchy- 
Hadamard formula

limsup||ufc||1/,fc < -, consequently, sup||itfe||x/fc < oo.
fc-+oo p fee N

Let /  Є 7ii,(X). By Corollary 2.24 the restriction of /  to each space Ek is 

continuous. So, /  is continuous on E°°. Since the Gelfand topology is the weakest 

topology such that all functions /  with /  Є Нь(Х) are continuous, it also is weaker

I lian the topology of E°°. As a consequence, the inductive limits of Kothe spaces E°° 
is a Hausdorff topological space, thus it is a locally convex vector space. □
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C o r o l l a r y  2.30. For every /  є Нь(Х) the Gelfand transform /  belongs to 

«*( IK') and the mapping

а д з / м / є % ( р )

In continuous, where 7іь(E°°) means the space of all entire C-valued functions of 

bounded type on the locally convex space E°° endowed with the topology of uniform 

imnvcrgence on bounded sets.

2.6. Linearity of topologies on spectra

We have proved that (E°°,p) is a complete metric space. If Hi,{ X ) . 41 ( \ ).
I lien E°° is isometrically isomorphic to the second dual X " . However, in the кпичиї
i a«c, E°° is not a topological vector space.

T h e o re m  2.31. If the sequence of algebras An(X) dai s not stabih <. then lin n 
insts u = (ui,u2, ...) Є Мь such that the operation of multiplication by <i соннішії

A Au = (Aui, Агі2, ...), А Є C

M discontinuous as a function from C to (E°°, p).

Proof . Let u = (u i,u2,...)  Є Mb such that \\uk\\ = 1 for every А: є N. Then

for each 0 < A < 1,

p(0, Au) =  supA1/fc||ufc||1/fc = 1.
fcSN

In particular, if A„ —̂ 0, 0 < A„ < 1, then p(0, Anu) = 1 but p(0,Ou) = 0. □

Corollary 2.32. Let u = (ui,u2,...)  Є Mb such that \\uk\\ =  1 for every k.

I lien the linear map

C З А і— > Au Є (E°°,p)

In discontinuous at every А Є C.

Proof . Let A„ -> Ao Є C as n -> oo. Then Xn - X tends to 0 as n -> oo but

(A„ — A)u does not. П

Proposition 2.33. The multiplication by a constant

(A,u) Au = (Aui, Xu2, ...), А є C, u є Мь

Ін jointly continuous in the Gelfand topology.

Proof . Let An -»• A0 in C as n -> oo, ua ->• u0 in the Gelfand topology and 

/ € /Нь{Х). If /  = Efc fk is the Taylor series of /, then / (AnuQ) =  X*fk(ua) and

lim lim V  X*fk(ua) = V  A5/k(u0) = lim lim ^  Лп/к(и«)-
n —¥oc a  L—i J <x n —►oo

keZ+ k€Z+ keZ+

Since it is true for every /  Є 'Нь(Х), the multiplication by a constant is jointly

continuous in the Gelfand topology. □
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l.i't Xp be the Banach space X  endowed with the finest topology Г, which 
coincides on bounded sets with the Gelfand topology of Мь restricted to X. Since 
every function in 'Н.ь(Х) can be approximated by polynomials uniformly on bounded 
scls, I' is the finest topology which coincides on bounded sets with the weakest 
topology on X  such that all polynomials in V(X) are continuous. We consider the 
question: Under which conditions the operation of sum (x, y) x + y is jointly 
continuous in Xp 9

It is not difficult to check that the operation of sum is separately continuous in 
the space Xp.

Theorem  2.34. If the operation of sum is jointly continuous in X f , then &^X 
is symmetrically regular for every positive integer n.

PROOF. Suppose that 0%X is not symmetrically regular for some n. Then there
are u",v" Є (Q"X)" and nets ua,vp Є Q™X such that ua u", vp -»• v" in the 
weak-star topology of (©£X)" and

1іт1ітР(иа ,г>й) ф lim lim F(ua,vp) 
a /3 /3 a

for a symmetric bilinear form F  on Q™X. Let

(2-20) ua =  2  х 1̂ O • • • ® xl£

and

(2-21) vp =  2  i/fi ® ® yft

І1 ,—,ir.€N

be some representations of ua and vp respectively, where xla,y^ Є X. According to

the definition of the projective tensor product series (2.20) and (2.21) are absolutely
convergent. So, if Ф є (©"ХУ, then

ф(Ур) =  ф (  ^  y>p1 ® - - - ® y > p A =  T  ф ІУр1 ® - - - ® У р " ) -
' І і ......J "6 N  '  i i,- .. ,J„ € N

For a fixed index a, F(ua, •) is a linear functional on Q^X. Thus,

= lim lim ^  £  F  (xa ®---®xia,Vjp1 ®---®yjpn) .
{i}€Nn {j}6N"

Since the series

2 j 2  F (Xa ® ■■■®Xa ’Ур1 ® - "® y :>prl)
{i}€N" {j}eNn 

absolutely converges, we have

limF(ua, ^ ) =  ^  J] HmltaiWa# ®---®xij ,y j)1 ®---®yj/3n) . 
{ < } 6 N n { J } Є N ” “



2.6. L IN E AR IT Y  O F  TOPOLOG IES ON SPECTRA 49

ІІиит, for some {г} Є Nn {j} Є Nn,

lim limF 0  ■ ■ ■ 0  x1" , 0  • • • 0  yft ) ф

Ф lim lim F  0  • • • 0>x'” ,yft 0  • • • 0  .

Let Pb (x) '■= B(x 0  • • • 0  x,x 0  • • • 0  x). From the Polarization formulas (1.2) 
ШНІ ( 1.6) it follows that there are constants a*, bk,Ck,dk,hk such that

/ П П \

F p B  ( x ' a  , . . . , X %£  ,  У р 1, . . . , 1 —2  CfcPfi ( ak 2  d " m X a '  2  ^ n i l / f i  J  >
k '  m =l m =l '

where FpB is the symmetric n-linear form associated with Рц and I lie гікііі Imml 

uni contains a finite number of terms. Since,

FPb (4V-->*a .2# .•••>$*) = ^ ( * e  0 , " ® * e .» J ‘

(ні Home fc,

/ П П \

lim lim Psfofc 2  2  hmypm) ^
'  m = l  m = l  '

/ n n \
^  lim Km Pb ( afc 2  + bk 2  Іг™Урп J •

P  a  \ m = i  m = l  '

I lei ice the sum is discontinuous in Xp. □

P r o p o s it io n  2.35. If 0 "X  is symmetrically regular for every n, then the oper

ni Ion of convolution of complex homomorphisms in Мь is commutative.

P r o o f . Let P  be an n-homogeneous polynomial and FP be the‘correspondent
ii linear form, associated with P. Let g be an arbitrary functional in X ', g ф 0. 

( lonsider a map

Bg(x®n,y®n) := 2  РР(хк,уп-к)дп-к(х)дк(у), 
k=i

where x®n, y®n Є ©"X. It is clear that Bg(x®n,y®n) defines a symmetric bilinear 
form ©"X. Let ф and ф be the restriction of some arbitrary characters to V(nX) 

мисі xa and ya be corespondent nets which converge in Xr to ф and ф respectively. 
I'hen *f» , y fn Є Q™X are weakly-star convergent to some elements in (Q™X)". 

Since ©”X  is symmetrically regular,

B m B ,( x r ,» f " ) = U m B ,(x r ,» f " ) -

If we put yp instead typ with t Є C we get

2  tk (innFp (xka,yy k)  -  Hm Fp (a ;^,y^-fc) )  gn-k(xa)gk(yp) =  0.



SIik■<> it Ih true for every t Є C and g Є X ', we have

for an arbitrary A;. Taking into account that

Ml 2. DESCRIPT IONS OF T O PO LO G IC A L  SPECTRA

Р(Ха + Ур) = У , ( n , ]Fp(xa , . . . , x a ,y p ,.. . ,y p )  
to  Vn "  fc/

and that

ф * ф(Р) =  lim lim P (xa + yp),
a  /9

we have that the convolution is commutative. □

2.7. Discontinuous complex homomorphisms and Michael’s

problem

E.Michael [75] posed the following problem in 1952 which is still open:

Is every complex homomorphism of a commutative Prechet algebra continuous?

In [76, p. 240] Mujica proved that the Michael problem can be reduced to the 
case of the algebra Кь(Х) for an arbitrary Banach space X  with a Schauder basis. 
However, a dense subalgebra of 'Нь(Х) may admit a discontinuous complex homo
morphism. Dixon [37] has given an example of an algebra of polynomials of infinitely 
many variables which admits discontinuous scalar-valued homomorphisms. In [42] 
Galindo et al. gave a construction of a discontinuous scalar-valued homomorphism of 
algebra of polynomials on arbitrary infinite-dimensional Banach space. Their idea is 
to take a discontinuous functional on X ' and extend it to a functional on V(X). The 
next proposition shows that the restriction of a discontinuous complex homomorphism 
on An{X) П V{X) can be continuous for every n Є N.

P r o p o s it io n  2.36. If the sequence of algebras An(X) does not stabilize, then 
there is a discontinuous complex homomorphism (  on V(X) such that the restriction 
of £ on An{X) П V(X) is a continuous complex homomorphism for every n Є N.

P r o o f . By Corollary 2.18 and Theorem 2.21 there exists an infinity sequence 

(ufc)feLі w'th Uk Є Ek, Uk ф 0. Since each Ek is a vector space, we can choose Uk 

such that supfc ||ttfc||̂ fc = oo. If

£ = *  ó(k)(uk) then C(/) =  *  <5(k4uk)(f) 
fc=i k=i

for every /  Є An(X). So, ( is well defined and continuous on Лп(Х) П V{X). If £ is 

continuous on V(X), then it can be extended to a continuous complex homomorphism 
on Hi,(X). But it contradicts Theorem 2.25. □

Л discontinuous complex homomorphism of 7іь(Х) (if it exists) eventually, need 
not to be discontinuous on V(X).



2.8. CONTINUOUS HOM OM ORPHISM S 51

I’HOPOSITION 2.37. If there exists a discontinuous complex homomorphism ф of 
), then there exists a discontinuous complex homomorphism xp of 'Н ь ( Х )  such

I hat the restriction of ф on X '  is discontinuous.

I'ROOF. Let ( f n ) be a sequence in Н ь ( Х )  such that ||/n||r —> 0 as n —> oo for 

[ iV»'ry r > 0 and

I I  ФІІn )> 4 n.

I.«<( (*„) be a normalized basis sequence in X  with a normalized biorthogonal se-
II tic ■ nee (e*) C  X .  Put

F (x) := 2  4 / « ( x)e"-
n€N

I  |l In easy to check that F  Є Н ь ( Х , Х ) .  So, the composition operator

T F : f ^ f o F

In ii continuous homomorphism from 'Нь(Х) to itself. We set rp := ф о  I T hen  V’ In 

m complex homomorphism of 'Нь(Х) and

</>(/n) >  2".
2n

l li nce, ip is & discontinuous complex homomorphism of Н ь ( Х ) .  □

2.8. Continuous hom om orphism s

Recall that E" C E°° C Мь, where

E" := Ex x ••• x En =  {(щ ,... ,un): uk Є Ek, 1 < k < n}.

Proposition 2.38. Let 0  be a continuous homomorphism from 'Нь(Х) to itself. 

Then for every positive integer n there exists a map

Fn : E" — ► En

иіігіі that for every /  є An(X),

Q ( f ) = f ° F n.

P r o o f . If u = (щ ,.. .,u n) Є E”. Then

Фи ° 0  = *  5 ^ (щ )  о © є  Mb. 
k= 1

Hy Theorem 2.21 there exists a point о =  (г>і, v2, ■ • •) Є Мь such that

Фи ° ©(/) =  /(в)-

If /  Є An(X), then f(t>) = f(v i , . . . ,v n). So, we can assume that о Є En. Put 
/■'„(u) := 0. Thus, we have constructed the required mapping u i— > Fn(u) with the 

property 0 (/ )  = f o F n. □
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We notice that the above map Fn need not to be analytic in E71. For example, 
lei II / itj ( H'2 and g be a linear functional on X. We define F: X  — у E2 by 

F(x) :* \Ju(x)u. Then

0 f(/)(* ) := /  o F(x) = Y  (9{x))nf2n{u2),
n€  Z+

for an arbitrary Taylor series /  =  ^ / „  € ' Нь( Х) .  It is easy to see that 6 f  is н 
continuous homornorphism of 'Н.ь(Х)  to itself but F  is not holomorphic.

A homomorphism © from Н ь { Х )  to itself is called A B -composition homomor
phism [23] if there exists F  Є Н ь ( Х " ,  X " )  such that

вЦ)(х") =  f(F(x")), x "e X " ,  

where /  is the Aron-Berner extension of /.

T h e o r e m  2.39. Every polynomial on X  is approximable if and only if every 
homomorphism on Н ь { Х )  is an A B  -composition homomorphism.

P r o o f . Suppose that every polynomial on X  is approximable. Then 'Н ь ( Х )  = 
Ai (X). By Proposition 2.38 for every homomorphism

©: 'Нь(Х) — > HbiX) 

there exists a mapping F : X "  — > X "  such that

© (/)  =  Z 0 F  =  f  o F ,  f E H b ( X ) .

In particular, for every /  є X ' , we have foF  £ 7іь(Х). So, we can say that F  is weak- 
star analytic map on X " . By a classical result of Dunford [38] and Grothendieck [49] 

on weak-star analytic mappings, we obtain that F  is analytic on X " . Since /  o F  is 
bounded on bounded sets of X "  for every /  є X і and weak-star boundedness implies 
boundedness, we have F  Є Нь{Х", X").

Suppose now that Ап(Х )ф  A i(X) for some n. Let us choose un Є En with 
un ф 0 and І Є X ' with І ф 0. Put

F(x) := l{x)un, &(f)(x) := f(F(x)), x Є X.

Since F  Є 7 і ь ( Х , E"), we obtain that Q ( f ) ( x )  Є 7 і ь ( Х ) .  But © is not an A B -  
composition homomorphism, because 0 ^ 0  and ©(/) = 0 for every /  є A \ .  □

Since the approximation property of X ' implies that every weakly continuous on 
bounded sets polynomial is approximable [10], we have the following corollary.

C o ro lla ry  2.40. (c.f. [23]). Let X ' have the approximation property. Then 
every polynomial on X  is weakly continuous on bounded sets if and only if every 
homomorphism on 'Н.ь(Х)  is an A B  -composition homomorphism.

The result of Theorem 2.39 can be improved for a reflexive Banach space.

THEOREM 2.41. (Mujica [77]). If V(X) = Va(X) for a reflexive Banach space 
X , Hu n. for every continuous homomorphism

0 :  H b( X )  — > ' Н ь ( Х)
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ця і* a unique map F Є T-Lb(X,X) such that

© (/) =  f o F .

( 'oROLLARY 2.42. Let X  be a reflexive Banach space with V(X) = Va(X) and
t і Hi,(X,X). Suppose that 0 (/) = f  o F  is an isomorphism of 'Нь(Х). Then F  is

liivi'i t ib le  and F-1 e  Hb(X ,X).

I'HOOF. By Theorem 2.41 there exists a map G Є 'Нь(Х,Х) such that 0 -1(/) =
f  h (!, It is easy to see that G = F -1. □

2.9. Continuous derivations

Let Uk Є Ek. According to Theorem 2.21 we can define a complex homomorphism

ф =  *<*>(«*) Є M b, <t>(f) =  Kuk)

Ini every /  Є T-LbiX), where /  denotes the Gelfand transform of /.
However, the element Uk belongs to (©£X)" and so there is an another natural 

Way to define a linear functional on Нь{Х), associated with Uk- Let

в = в(ик) =  J]  вт е П ь(ХУ
m€Z+

«uch that 9k(P) =  P(uk) if P  Є V(kX) and 0m = 0 if т ф  k. Recall that here 6m 
In the restriction of в to V(mX). It is easy to see that 9 is not a homomorphism if 

Uk ф 0. We define a linear operator d(k){uk) on Нь(Х) by

d(k)(uk)(f)(x) :=  0(ик) o Tx(f) , f  Є Пь(Х).

For the multilinear form Fp associated with an n -homogeneous polynomial P  

we denote by Fp (xn~k, Uk) the value of the Gelfand transform of the fc-homogeneous 

polynomial Ек В uk '—► Fp (xn~k, •) with a fixed x Є X.

T h e o r e m  2.43. Let uk Є Ek- The operator д(к)(ик) is a continuous derivation 

on n b(X),

(2.22) d{k](uk)(P)(x) =  (  nk ^Fp (xn~k,uk) , x Є Х

for every P Є V(nX) and

(2.23) 6W (uk) ( f ) (x )=  2  S ^ ) ( « * ) ( / ) ( * ) .
m€Z+ (ГПК>-

for every f  Є Ub(X).
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I’ ROOK. To prove the formula (2.22) we observe that

P(z + x) = 2  (  nm ^Fp (xn_m, zm) .
m=0 ' '

So, for а fixed x Є X, we obtain

e(k)(uk)(P)(x) = 9{uk)(P(z + x)) =  ^ ” ^FP (хп~к,ик) .

Note that if degP < к, then д(к)(ик){Р)(х) = 0 for every x Є X  by the defmitic 
Of 5(fc)(Ufc).

Let P  Є V(nX) and Q Є V(rnX). The multilinear form Fpq (xnm~k, zk) assi 
dated with PQ  can be represented by

Fpq (xnm~k,zk) = Ppg (xnm~k,zk) + F2pq (xnm~k,zk)+ F lQ (xnm~k,zk), 

where

F lPQ (xn~k, zfc) := Pp (x"-fe, zfc) PQ (xm) ,

FpQ [xn~k, zk) := Pp (xn) PQ (zfc, xm“fc)

and

F£q (x""*,**) := ^  2  Pp (x”-sz5) PQ (zfc-s,xm-fc+5) .
S=1

If n < k (resp. m < k), then F 1pq (resp. Fpq ) is equal to zero. By definitions i 
9(uk) and uk, we have

9(uk)Fj,Q (xn~k,zk) =  0

for any fixed x Є X. So,

dik)(uk )(PQ)(x) = aw (Ufc)(P)(x)Q(x) + P(x)aw (Ti*)(Q)(*).

Since d(k)(ut) is linear, it is a differentiation on the algebra 'Нь(Х). The continuit 
of д(к)(ик) follows from the continuity of 9(uk) and the translation Tx.

Let P є V(nX) and n = km. From (2.22) we have that

- ( T ) ( MV  4 ) -  ( t )*«»> - P  <“ (-.)(«•
Thus,

m€Z+ 4 '

so, the formula (2.22) is proved. [

This approach can be generalized by the following way. Let vp ф 0 be an arbitrar 
clement in Ep for some positive integer p. Denote by Tv the following operator o
Нь(Х),

Tvp(f) ■= /(• + Vp).
We can write

®(k,p){uk) ( / ) (vp) := 9(uk) o TVp(f).



Repeating arguments of Theorem 2.43, we can see that for every P  Є V (kmX ) ,  

d{k,k)(uk) (P ) (v k) = mFp (y?-\uk) .

Moreover, if /  = 2 /n  Є 'Нь(Х), then

j- ч V і ^{k,k)(Uk)(fkm)(Vk)
f(vk +uk)=  ^  ------- ------.

m€Z+

Aron, Cole and Gamelin in [6] considered the operation d(k)(uk) for the case 
When k =  1 and so u k =  щ  = z for some z Є X " . They used notation

(z)Txf  = (*z)f(x)

liiHlead our d(i)(z)f(x). For this special case using this notation formulu '.’.'t eiui lie 

rewritten as

№ (z ) f  =  S(z)f =  2  - W m = exp(*z).
"I.
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2.10. Ball algebras of analytic functions

% *

In this section we consider maximal ideals of uniform algebras of analytic complex 
limctions on the ball rB  for some r > 0, where В  is the unit open ball of a Banach 
.... iplex space X. We will analyze the following uniform algebras:

H°°(rB), H~(rB), and U?(rB),

where /H°°(rB) is the algebra of all bounded analytic complex functions on rB, 
H™.(rB) is the algebra of all uniformly continuous analytic complex functions on rB, 
and 4^(rB )  is the algebra of all bounded analytic complex functions on rB, which 

me continuous on the closure rB. It is clear that

Hb(X) C ? C (rB) C Uf{rB ) C H°°(rB).

It is easy to check at once that H^c(rB) precisely consists with the uniform limit 

on rB of functions from 'Нь (Х) .
Since the set of ф е  Мь,  satisfying the inequality В,(ф) < r, is the 7 і ь ( Х )  -convex 

hull of rB in Мь,  we obtain the following theorem.

Theorem 2.44. For each fixed r > 0, the compact set

{фе Mb: R{4>) < r}  

coincides with the spectrum of in particular,

М ( Н ™ с( В ) )  =  { ф Є М ь : Н ( ф ) <  1 } .

C o r o l l a r y  2.45. The spectrum of ?i™(B) contains unit balls of Ek for every 

positive integer k.
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I ri now H l>e a uniform algebra such that

UZ{rB) С П  C Н°°(гВ)

міні \Іц lir iln spectrum. There is a natural projection

i\ Mh — > Mb

such that i.(ip) in the restriction of тр e  MH to Нь(Х).
Now we expand the definition of the radius function R to any functional гр Є Мц 

by declaring R(xp) to be the smallest value of r, 0 < r < 1, such that xp is continuoiw 
with respect to the norm of uniform convergence on rB.

T h e o r e m  2.46. Let H be a uniform algebra between 'H^.(B) and /H°°(B). The 
image і(М-ц) of the projection l precisely coincides with the set

{фе Mb-. #(<£) < l}.

P r o o f .  If гр e  MH and

И /)|  < sup I/I for all f e H ,
rB

then this inequality holds, in particular, for all /  Є 'Нь(Х). Therefore,

R ^ W )  < В-{Ф) f°r all Ф Є М-ц.

Suppose that ф e  Mb satisfies Я(ф) < 1 . Then ф is continuous on Нь(Х) with 
respect to the norm of uniform convergence on И(ф)В. Each /  є 4°° (В) is a uniform 
limit on any ball rB, 0 < r < 1 of the partial sums of its Taylor series. Hence, ф 
extends uniquely to f  and determine a unique гр Є Mu such that i(xp) =  ф and 
R{ip) < 1. As a consequence, we obtain that

Я{ф) =  R(rP).

Suppose now that ф Є Мь satisfies the equality К{ф) — 1. Let

Ф=  *  <s(fc)M  
k=і

for some (Uk)• For |£| < 1, consider the homomorphism

tffi := *  óW(ęUk). 
k= 1

Since Я(ф^) =  |£| < 1, the homomorphism ф̂  extends to a homomorphism in М-ц- 
If гр is any cluster point in Mn  of the extension of фї as £ —У 1 with |£| < 1, then

і{ф) = ф and Д(<Д) = R(rp).

Thus, the image of і is precisely coincided with {ф Є Мь'. И(ф) < l}. □

Comparing Theorem 2.46 and Theorem 2.44 we can see that if H = T~L̂C(B), then 
the projection і is one-to-one.

THEOREM 2.47. Let H be a uniform algebra between H^C(B) and ,H(X>(B). Then 
Ilu1 natural pivjection of the spectrum Mn of H onto

{фе Мь-. R ^ )  < 1} 

is one-to-one if and only if H =  'H’̂ >C(B).
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I’ROOF. Suppose that /  Є 'H is not uniformly continuous. Then there are є > 0,

I aequences (xn) and (y„) in В  such that ||xn-y„|| -+ 0, while \f(xn)- f(yn)\ > є 
nil n € N. A subnet (хПа) converges in Мь to some ф satisfying В,(ф) < 1. The 

I (//,,„) then also converges in Мь to ф. Since \f(xn)—f(yn)\ > £, we see that (хПа) 
шиї (j/n„) have cluster points 9 and 9' in MH such that f(9)ф  f{9'). However, 9 
h i d  I (f both coincide with ф on H™(B), that is 9 and 9' both project onto ф. □

We notice that in [6] is proved that if X  is an infinite-dimensional Banach space,

I Ill’ll

Н % (В )ф Н ?(В ).

2.11. C*-algebras of continuous functions

l or a given complex Banach space X  we denote by X m ii Banach нраее which 
Milne Ides with X  as a point set but endowed with the real structure'. In the otliei 
wni'ds, X й is X  where we allow real scalar multiplication only. Evidently X  X n> ми 
topological spaces and each continuous function /  on X  is well defined and continuom 

mi X й. We will denote by f R the act of /  on Х ш.

D e f in it io n  2.48. A mapping Q : X  — > C is called an n-degree *-polynomial if 
: X ^  — > C is a complex-valued polynomial of n degree on the real Banach space

,v*.
We denote by V*(X) the algebra of all ^-polynomials on X  and by C-p(B) 

I lie completion of V*(X) in the uniform topology on the open unit ball В of X. 
Cp(B) contains all continuous polynomials on X  and all continuous anti-polynomials 

mi X, where anti-polynomials are just complex conjugates to polynomials. Let us 
ilcnote by Ca(B) a minimal closed subalgebra of C-p(B) which contains all continuous 
polynomials on X  and all continuous anti-polynomials. Notice that C-p(B) ф Ca{B) 
In the general case. For example it is easy to check that a *-polynomial Q on £2,

Q f ^  ̂ xntn
N

belongs to C-p(B) but does not belong to Ca(B).

T h e o r e m  2.49. The spectrum M(Ca(B)) of Ca(B) consists of all characters ф 

of 4 fc(B) for which there are nets (xa) C В such that

(2.24) ф(Р)=  lim P{xa), V PeV (X ).
OL

P r o o f . Let ф є ’H'̂ C{B) such that (2.24) holds for some (xa) c  B. Then 

ф(Р) := ф(Р) is well defined for every P  Є V(X). If Q is in an algebraic span 
of polynomials and antipolynomials, |0(<3)| ^  siipQ |Q(xq)| < ||Q||. So, ф can be 
extended by continuity to a character on Ca{B).

Let now ф be a character on Ca(B). Since Ca(B) is a C*-algebra, M(Ca(B)) 
is the Czech-Stone compactification of В  in the Gelfand topology of Ca(B) on B.

J — ^ ] XnXr 
'  neN
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Німії г, П is dense in /ЗВ = M(Ca(B)), that is, there exists a net (xQ) C В  such that 
!/>(/) lim,, f(xa) for every /  Є Ca(B). So (2.24) holds. □

I tv ( lie theorem we can write M(Ca(B)) c  M(H™(B)). Since, M(H™(B)) ~ 

{</) і Л//,: И(ф) < l}, we can apply Theorem 2.21 and Theorem 2.25.

COROLLARY 2.50. Let ф Є M(Ca(B)). Then there exists a sequence (ufc)£l,, 

Uk є Ek Buch that sup* ЦицЦ1/* < e and

ф(/) = *  6M(uk)(f) and 0(/) = *  SW(uk)(f) 
k—l k= 1

for every /  6 H™(B).

A given positive integer m we denote by Qm a *-polynomial on i2m as

Qm(x) = Q m ( Z  ХПЄп) =  £  O n  •
'  n€N '  n€N

Let xa be a weakly polynomially zero net in £2m with ||xa|| = 1, where a belongs 
to an index set 21. Let ^  be a free ultrafilter on 21. We set

'Ф(Ґ) = ima/(a:a).

It is clear that ^ (/) =  /(0) if /  Є Ca(B) but =  1. So we can see that
Ca(B) ф C-p(B) in i 2m and there exists a character ip in M(C-p{B)) which vanishes 
on homogeneous polynomials of Ca(B).

Notes and Remarks. The problem of description of the spectrum of Нь(Х) 
was first studied by Aron, Cole and Gamelin [6 , 7]. Using the Aron-Berner extension 
operation [4, 32], they showed, in particular that X "  belongs to the spectrum of 
Hb(X). In [9] it is proved that this inclusion is proper if there exists a polynomial on 
X  which is not weakly continuous on bounded sets. This approach was generalized 
for algebra-valued analytic functions by Garcia et al. in [46]. Some analytic structure 
on the set of maximal ideals was considered in [9] (a generalization for functions with 
values in an algebra is given in [45]). In [77] Mujica investigated ideals of analytic 
functions of bounded type on Tsirelson’s space T and showed that each character 
on Hb{T) is a point evaluation functional. Homomorphisms of Hb was studied by 
Carando, Garcia and Maestre in [23]. Further developing in this direction is in 
[5, 24, 25, 70].

Main results of this chapter were basically obtained in [96, 97]. Some of them 
were generalized for Wiener type algebras generated by (p, q) -polynomials by Va- 
sylyshyn in [93].

Note that in [2, 27, 28, 29] were investigated spectra of algebras of symmetric 
analytic functions on i v using some another approach. Locally convex algebras of 
analytic functions on nuclear spaces were investigated in [58, 62].



CHAPTER З

Hardy spaces associated with topological groups

The classic theory of unitary Hardy spaces of complex analytic function»

{ / :  sup Г \f(re'*)\2 dxi.e1*) < ool,
І. гЄ [0 ,1 ) J t  )

ilrlined on the 1-dimensional open complex ball B, essentially uses of invariimt |»n>|> 

•rties of probability Haar’s measure x on the complex cyclic group

T =  {є**: Є [0,2tt)}

Irrcducibly and unitarily acting in C. The T-invariancy provides that Л 2 (B) is uni- 

I mry equivalent to the Hermitian dual (?* of the (? -space Taylor coefficients (dfif/nl) 

nt the origin i.e.,

нЦ  в )~ е2*.

Moreover, every function /  Є (B) can be uniquely defines by its radial bound

ary values on T with the help of the integral Cauchy formula

/ ( 0 =  f (el* - £ r 1/(ei*)dx(eW), KI<1- /
J t

There is a natural question: is it possible to replace in this theory the cyclic group 
T by a infinite-dimensional topological group? The purpose of this chapter is to show 

I hat this is possible in many cases.
Namely, we analyze various cases of infinite-dimensional topological groups Q that 

have an unitary representation over an infinite-dimensional Hilbert complex space E. 
For these groups we give definitions of appropriate unitary Hardy spaces V?x defined 
by G-invariant probability measures x> which coincide in the 1-dimensional case with 
I lie classic unitary Hardy space. These spaces V?x consist of complex functions that 
have unique analytic extensions on a domain in E.

Also, we show that for infinite-dimensional cases instead of the space I2* of Taylor 
coefficients (dof/n\) it is necessary to use the Hermitian dual F* of the symmetric
Fock space F generated by a given Hilbert space E. Similarly as in the 1-dimensional
case, the integral Cauchy type formulas use reproducing kernels which are generated 
by an orthogonal basis of the symmetric Fock space F associated with E.

59
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.4.1. Hardy spaces on compact infinite-dimensional group orbits

3.1.1. Hilbert spaces of compact group representations. Denote by 
M(nr) Mu* group of all linear unitary operators in an nr -dimensional complex Hilbert 
space C"' with the scalar product (• | -)с„г and an orthonormal basis

& r '■= { e> ( l ) >  • • • > CJ r - ( n r ) } -

A given subsequence {nr : r Є N} of natural numbers we correspond the Cartesian 
product

g := X %  = [u  =  (Ur): Ur Є ЧеЛ,
r6N

endowed with the product’s topology, which is an infinite-dimensional compact topo
logical group. As is well known (see e.g. [51]), the compact group Q can be unitary 
represented on the countable orthogonal Hilbertian sum

E := Ą,

^1 = 0  Er =\x = (xr): xr Є C\  ||ж|| := ( 2  IW Ic ^ )  < oo
rgN I  Vr6N J

endowed with the scalar product (x | y) := (xr І Уг)c«r > where {Er : r Є N} is н
sequence of ^-irreducible subspaces such that

Er P] Es =  {0} for all r ^ s

and each Er is unitary equivalent to C”r for the corresponding r Є N. For simplicity 
we identify any element хт Є C"r with its image (0,..., 0, xr, 0,...) Є Er under the 
canonical embedding

О  E.

So, we can consider in E the orthonormal basis

S  := ( J  Sr = {e,-}i6N
r€N

indexed such that j  < i for all tj Є Er and є* Є Er+x. Let В =  {x Є E: ||x|| < 1} 
denote the open Hilbertian ball.

The symmetric tensor elements

Sn := { efi}fc) := efikl ' • • •' efnn : 0 '}€ N n, (k)e Z", |(fc)|=n}

form an orthogonal basis in ©£E. If n =  |(fc)| = 0, we set =  1. So,

So =  {1} and S\ = S.

In I,lie symmetric Fock space F = 0 n (®£E), generated by the Hilbert space E, the 
system

S i= {Sn : n Є Z+ } 

forms an orthogonal basis (see Proposition 1.28).
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We also consider the corresponding basis of Hilbert-Schmidt homogeneous poly

nomials

S* := {S*: n Є Z+J,

K  ■■= { «g f =  Ф  . ■ • . £ •  є Vh(nE) : eg}fc) Є <?„, |(fc)| =  n}, 

gnnurated by generated by S, where

Г  <^®“  I * ’ >«4* -  <* I •»•>■* • - • <* I
( 'Icarly such polynomials form an orthogonal basis in the Hermitian dual symmetric 

Iі nek space F*.

3.1.2. Representing invariant measures. Consider the Banach space

= ( x =  (xr) Є X  : ||i||«° = sup ||*r||c»r < oo}

ninl the compact metric spaces

Sg := X Sr, Sr := {хт Є C"-: ||zr||c»r = 1},
r6N

Kg’ :=  X Kr, Kr :=  {xr Є Cn-: ||*r||c»r < l},
reN

endowed with the product topologies. It is easy to see that Kg3 coincides with a 
norm closed unit ball of i'g endowed with the weak-star topology. The contractive 

embedding

E q-» ||x||*« < ІИІ, x Є E

Imlds. A norm open unit ball in £g we denote by

В2Г := { х Є ^ : | И « - < і} .

As well we consider the uniform algebra of all continuous complex functions xp 

on Kg\

C(K“ ) with the norm |Мс(кг>) =  SUP | (̂aj) |.

( ’Icarly C'(Kg’) contains the unity function 1k“  •

R e m a r k  3.1. Note that each linear functional e* є S’* can be uniquely extended
lo a weak-star continuous linear functional on i'g which we denote by the same 

Nvmbol. Up to this extension we can write

S* C C (Kg»).

Let .4(Kg3) be a closure in C(Kg?) of the complex linear span of extended 

Hilbert-Schmidt polynomials S*. Clearly, -4(Kg3) is a uniform subalgebra in the 

nlgebra C(Kg’).

Recall that an element x Є Kg’ is a peak point if there is a function /  Є Л(К“ ) 

Huch that /(x) = 1 and |/(y)| < 1 for all у € Kg’ if уф x.



1’noi’osrriON 3.2. Let ф  be the set of peak points and dA denotes the Choquet, 
boundary o f-4(Кдр). Then

s;? =  q3 =  dA.

For the uniform algebra

-A(Sgr) := A (Kg’) |s? 

endowed with the uniform norm sup \f(x)\ the isometry

(3.1) Д(К§Г) = A{S$)

holds.

P r o o f . A s is well-known (see [6], [44])), the algebra -Д(КдР), as an uniform 
closure of the linear span of finite type continuous polynom ials, consists of complex 
analytic functions in  the norm open unit ball having the form

Bg? = X  Br, Br := |x r Є C”r : ||xr ||c"r < l } .
r6N

Hence, if а Є ф , then а Є Sg? via Maximum Principle for analytic functions. There
fore, ф  C Sg3.

In the other hand, for every fixed ar Є Sr there exists an analytic in Br and 
continuous on Br function fr such that

fr(ar) =  1, and |/r(#r)| < 1 for all xr Є Kr \ {ar}

(see e.g. [43]). Then for each а Є Sg? such that the orthogonal projection of a onto 
the subspace Er ~ СПг is equal to a fixed ar , the analytic function

f  =  fr- П  h z W g )
j€N\{r}

satisfies the conditions

f(a) =  1, and |/(x)| < 1 for all x Є Kg? \ {a},

where 1 j denotes the identically unit function on Kj , Hence, a 6 ф  and the em
bedding SgP С ф  is proved. Therefore, ф  =  Sg? and so we have the isometrical 
isomorphism (3.1).

Finally, since is a compact metric separable space, the set of peak points ф 

of A (Kg’) is a Gg -subset in Kg’. Hence the equality

дА = У

in also true (for detail see [43, Section 11.11.2]). □

As is well-known there exists a probability Haar measure \ on the group Q exist н 
її probability Haar measure \ (respectively, there exists a probability Haar measure
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y, nu the subgroup %г) for which

ХІФ) := f Ф(и) dX{U)
J g

= f фіуи) dX(U) =  f </>{UV) dX(U)
Jg Jg

with all U,V Є G and ф Є C(Q such that x{Q) — ІІХІІ) where C(Q) stands for the 
till I form algebra of continuous complex functions on Q (similarly for the measure Хі

ніні the uniform algebra C(^fr) ) .
The unitary group Q on the compact set Sg3 acts continuously. This group 

generates a group of linear operators on the algebra C(Sg°):

C (S^) 3 4>i->4>oU.

I ni ti fixed а Є Sg5 the mapping G 3 U 1— > Ua Є Sg3 is continuouH and Hurjoctlve 

llmce, the function U i— > (ipoU)(a) belongs to C(G) for all ip Є C(SJ') І Іп м l( »i • •,

sup |(y> o U)(a)\ =  sup Iv>(i)|. 
uag xzsf

ТІ»! Riesz representation theorem implies that the Haar measure x uniquely defines a 
probability £ -invariant measure ę on the 5 -orbit S'g = {Ua: U € G} by the formula

C$.2) ę(y>) := f <p ds =  f v{Ud) dX(U), ip Є C (S^),
Jsg3 Jg

where ę does not depend on a via transitivity of Q on the G-orbit. Recall that a
probability measure ę on Sg3 is ©-invariant, if ę satisfies the relation ę =  ę o U for

nil ueg.
For a given Er let

Er := {x = [xm) e£g‘:x r =  0}.

Then i'g — Ê- ® Er and for every а Є i'g we have

a — â r + ar Є i ’g1,

where â r Є Ê -, ar Є Er and a i— > ar is a projection.
For a given nr -dimensional subgroup the mappings

а і— > Ur(ar) + a^ with Ur Є

Henerate the linear operators

Tr4>(a) :=ip(Ur{aT) + a^), <p Є C(S^)

acting in the algebra C(Sj?). We will use the following useful formulas.

Proposition 3.3. For any r\,... ,rm Є N  the equality
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hołdu. Thereto, for any compact subgroup Qo C Q with the probability Haar measure 
so the equality

(3.4) f  < p d ę = f  dę(a) Г ip(Ua) dę0(U), ip Є C'(SgP)
Js? Jsp Jg0

holds.

P r o o f . For each ip є C(SgP) the function

(a, Uri, . . . , Urm) і > Tri • •  ТГт<р(а) 

is continuous on the Cartesian product

Sg3 x ^ ri x ... x fyrrn.

By the Fubini theorem, we have

r* T fl n 771 л  я

а д П  T r M a ) dxn = П  dXn TrM a) ds{a).
J S? ,=1 %

However, the internal integrals on the right side does not depend of Tri, . . . ,  ТГуп, 
Therefore, taking into account that \ój/ dxn = 1, we obtain (3.3). The formula (3.4) 

can be proved similarly. □

P r o p o s it io n  3.4. The -invariant measure ę represents the character So(f) : 
/ ( 0) of the algebra -Д(Кд?) i.e. it satisfies the following relation

(3-5) S0(f) =  f  /  dę, f e A (Kg’).
J s~

P r o o f . By the formula (3.4) for any Є S* we obtain

Js- eS ) *  =  h  Is »  * (a) Jo ew ( exp(W)a) M

1 Г
= 2n J eW )(a) exp(im?)a di9

{0 : пф  0
1 : n = 0.

Uniformly approaching any function /  є A(Kg3) by polynomials S* and using the 

linearity and continuity on .4(Kg?) of the integral with the measure ę, we come to 
the formula (3.5). □

3.1.3. Hardy spaces on orbits of compact groups. Let the probability Q 
invariant measure ę, defined by the formula (3.2), be given. Then the functional

1/2



In ii Hilbertian norm on the space C(SgP). Indeed, let /  be a nonzero function in 

f'(S^) and

~  I/I2-
II we suppose that ę(<p) =  0 then (3.2) implies that for a fixed а Є SgP,

(ip o U)(a) a=' 0, U e G

Wll h respect to the Haar measure x defined on Q . The function

U і— > (ipoU)(a)

belongs to C(Q), hence (ipo U)(a) =  0 as a function of U Є Q . Since the mapping

G 3 U ^  U(a) Є Sg

In surjective, we obtain =  0 on Sg?. Consequently /  = 0 on Sq wlii» 11 еопі.пиііеїн 

I lie assumption.
Consider the Hilbert space L2 = L2(dq) of all quadrat.ically ę-inUy.mble eoniplex 

lunctions with the scalar product

(/ I 5)r,a =  Г fS  <k, f , g e L ż{dę).
ę J S“

Definition 3.5. The Hardy type space H2(dq) we define as a closure of the 

dlgtibra -4(Kg?) (or -4(Sg?), that is the same) in the space L2(dq) endowed with the 

/,4J-norm.

Note that the embedding -4(Kg?) °r* H2{d<;) is continuous, since 

(.4.6) ll/IU? < n/llc(sr ) , /Є Д (К ^ ).
For a fixed n Є Z+ let H^ be a closure in the space L2(dq) of the complex 

linear span of homogenous Hilbert-Schmidt polynomials S* (extended on Kg’) and 

Щ '= С .

Theorem 3.6. The sequence of homogeneous Hilbert-Schmidt polynomials S* 
Jnnns an orthogonal basis in H2(dę). In particular, the subsequence S* forms the 

name basis in H?n for any n Є Z+ and
nj2 і nj2 
П п  - L  П п і

in. H2(dq) whenever пф m.

Proof . Every element a =  ei (a)£* є can be written as

a =  aj- + e*(a)e„,

where denotes a projection of a onto the complementing subspace 

e ^ - := { a € ^ :e * (a )= 0}, s £N .

Consider the 1-dimensional subgroups in Q of linear transformations

L/S(tf)a :=  ехр(іг?)е*(а)е, + aj-,

£/o(#)a := exp(ii9)a

3.1. H AR DY  SPACES ON COMPACT INFIN ITE-DIM ENSIONAL G ROU P 65



(1(1 3. H ARDY SPACES ASSOCIATED W IT H  TOPO LO G ICA L GROUPS

with 11 < Sg and $ Є (—7г,7г]. We assign to these transformations the 1-parameter 

KioupH of linear operators on the algebra C(Sgp)

t i ^ T s(d)f := f(U a(d)a),

6 Т о Ш  := f(Uo(0)a) 

with /  Є C(Sg') and а Є Sg3. The formulas (3.3) and (3.4) imply that

(3.7) f /  = i-  f dę(a) Г  T(&)f(a) d#
Js~ 27Г JSex>

for any T Є {To,^: s Є N}. If |(fc)|=̂  |(Z)| then from (3.7) it follows that 

f  <*, CW  ' *$} d ę  =  f  еШ ) ( exP(il?)a) e*{i} ( exp(W)a) <fc(o)
JSę3 ''Sg'

= Ł f  еш  ‘ i {i}) dq f  exP (»(!(* )! -  KOI)’?) M = o-
JSgP J — 7Г

So, in L2(dę) if |(fc)|̂  |(Z)| for all {j},{z}sN n .

If |(fc)| = \(l)\ and the corresponding elements with {j} = ( j i , ... , jn) і 

e $  with {г} = (г'х,. . . , im) are different, then there exists an index j s Є {j i , .. . , j „ } 

such that j s ^ { i i , . N o w  (3.7) implies that

L ' o ?  •*») w «s? *

= Ł  L  ei}  ■ *  J exp ^ = °’JOg J —TC

hence, e $  ± in L2(dę) as well.

Further in this section we use the following notations.

Let {j}r := (jr(i) ,.. • , j r(nr)) Є Nnr denote a sub-index of the multi-index {j} 

(il, ■ • -,jn) є N" such that j r{1) < . . . <  j r(„r).

Let (k)r := (fcr(i) ,. . . , fcr(nr)) Є Z"r stand for a sub-index of the index (fc) 
( f c i , kn) Є Z" with nr < n.

As is usual, |(fc)r| := fcr(1) + • • • + fcr(„r) and (fc)r! := fcr(1)! ... fcr(nr)!.

T h e o r e m  3.7. If a Hilbert-Schmidt polynomial

,*(*
CU)

is of the form

вЙ}) ве л ‘ W e r ,  (fc) Є z ; ,  I(fc)|=n

- * ( fc) _  * ( fc)r ( l )  * ( fc)r(t)
Ш  {j}r(D {i}r(t)

!ігі<Л block-indexes {j} =  ({j}r(i), • • •, 0}r(t)) and (fc) = ((fc)r(i) , . . . ,  (k)r(t)) such 
that

nr(l) + . . . + 4̂ r(t) =
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whnr

{ ejV(i) > • • • > C3r(»r) } — { ЄІ1 ’ ' ' • ’ ej n  } P| Er
U ml t € N stands for the number of all such sub-indexes in { j} , then

M 8)
r -г (nr - l)!(fc)r!

P r o o f . Use that

Tr\^;\2(a) =  \t*$;\2(Ur(ar))

|iit niiy a — (ar) Є Sg5 with ar Є Sr . As is well-known [88, 1.4.9],

f r r|e*^|2(a) dX r=  f |еЙ М > г ( а г)) dXr(Ur)
JWr JWr

K  -  l ) ! ( f c ) r !

(nr - 1 + |(fc)r|)!

with the Haar measure Xr on . Thus formula (3.3) immediately implies (3.8). I 1

3.1.4. Cauchy kernels for compact group orbits. Let us define the following 

nuxiliary Banach space, associated with the group Q,

Є\г := jx  = (xr) Є X  СПг : IM k r := 2  "rlNrllcr < oo j .
 ̂ r€N r€N

Note that tj Є fg fl^nr f°r j  Є N and the group

Q 9 U — > Ux =  (t/rxr)r6N 

nets isometrically in both dg and £\r . Since the embedding

C  'b  ą

U continuous, the set Bg? (Vnr is °Pen and the set KgP fVnr is closed in t\T.
Let us examine the Cauchy type kernel

(3.9)
Є (Х ,а ):_Д ( 1 - ( ^ | а г)СПг) - ’ a € S ^

which is a priori Gateaux analytic mapping of x running over the finitely open ball

[J Bi x ... x Br
r€N

wit h values in the uniform algebra .A(SgP).

Proposition 3.8. The Cauchy type kernel £ is a well defined analytic -4(Sg°) -

valued mapping

В 2 Г Г Ю  * — ► *(* , a), a e S e-
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I'KOOK. For every g є (0,1) the series

ь < і - с г  = - г Е ?  =  - * Е ^ .  ^“ I, n n
n€N nGN

is convergent absolutely for all |(| < g. Therefore the estimation 

(3.10) |ln(l-C)‘ r| < cer|C| for all |d < в

with

<  OO

n€N

holds. Denote by B*r and K*r the open and the closed unit balls in the space i\r 
respectively. Consider the 1-parametr families of balls

к- » еК« П  г г ;  ><!.,• 

В- » ЄВГ П І Г 7 В1

with є Є (0,1). Clearly, K£ and B£ are closed and open sets in the space £\ 
respectively, because the embedding

C  *+ tg

is continuous.
Let x =  (xr) Є Кє and o = (ar) Є Sg3. Then we obtain for instance 

sup I (xr I ar)Cnr I < — < 1.
Il“r|| = l

Hence, the inequality (3.10) implies

1

nr

£
reN

In
(1 (xr І Яг)с"г-)П:

— ^ ] ĝ(r) nr (Xr j йг)спг 
r€N

with p(r) := — . Since cg(r) < сє for any r Є N, it follows that

sup 2
ll“ll<g==1r€N

ln Тл--/--і--\-- - C£ SUP X! nr (Xr I ar)c"r( l- < * r I ar)cnr)^  ||a||£y - lr̂

^  Ce Tlr  S lip (Xr  I 0>r)^nr

r£N llar ||cnr =1

= ce nr\\xr||cnr = сє\\х\\еіпг. 
rE N

Consequently, the series of .4 (SgP)-valued functions

(З.П) K .3 I ^ S ' " (1 _ ( l r |V)c. , ) - , ^ ( s r ) .  a e S g
r€N
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ЦЖ verges absolutely and uniformly on K£. Hence, its sum represents a bounded con
tinuous .A(Sgp) -valued function on K£ for any є Є (0,1). Moreover, one is Gateaux- 
llinlytic on the open domain B£, since its restriction to any 1-dimensional affine 
Itllmet is obviously analytic. Thus, the function (3.11) is analytic on B£. By the 

«imlyticity of the exponential function, the following map

Cl 12) KE3 i M  Єе(д,а) := exp 2  In (і _  (Xr \ar)cn )nr 6 ^ ( Sg )

|и ii hounded continuous function, which is analytic on Be. As is easy to see, for any 

u і Sg' and x Є B£ we have

{X,a) |аг>Спг)Пг'r€N

If fi < £”2 then Bei C B£2 and the function C£l defined on Bfl has н unique iinnlytle 

*X tension Ce2 on Be2 such that

iB.j = I

l»y virtue of Uniqueness Principle for analytic functions. Therefore, the Cauchy kernel 
tf, defined by (3.9), has a unique A(Sg>)-valued analytic extension on the open 

domain

в ? Г К =  U  B-
£€(0,1)

which we also denote by Є. П

3.1.5. Hilbertian extensions of Cauchy kernels. Now we define a Hilbert 

■pace, associated with Q,

-={x = (xr) Є Х С Пг: H*||a_ := ( E  "rjj*r |lc-r) 7 <
r€N  ̂ r€N * }

where the group Q acts isometrically. The inequality

Лг||®г||спг — ( V^vlkrllc-r- j ^  )
reN VeN ' VeN '

Implies that the following continuous embedding is true

(!onsider the Banach space 

with the norm

IWI/Jg = max |||x||f~, ІМІ£_}- 

In each of the above spaces Q acts isometrically. Since, the embedding

In continuous, the set Bg3 p| is open and the set Kg’ П ^ 7  is closed in
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I’HOPOSITION 3.9. The Cauchy kernel C possesses a unique analytic «4(S*»)• 
valued extension

В ^ П  а Є Sg\

I’llOOh. Let x =  (xT) Є i'g with xr Є Er and we denote

£ := (xr) with xr '■= vTxT, vr =
у/Е /У '

Note that if x = (xr) Є Sg? with xr Є Sr then x Є i j ^  and

n*nk = E  L\\xr\\bnr = i.
r€N

Consider the linear mapping

The mapping £> is continuous, since

v: і?? З х і— >• x Є £%-.

r€N

Moreover, from

NI?sp =  sup||xr||£„r < V  nr||xr||̂ „r =  \\x\\2p 
5 r%  ^  

we come to the continuous embedding

Note that the restriction v |*2_  maps continuously from i^~ into i\r . In fact, 

from the Cauchy-Schwartz Inequality it follows that

ll*ll/lr =  2  Î‘||xr ||cnrt>r < ||x||̂ 2_, 
r€N

since XireNnrvr =  1 and ||i||fg> < ||я||/°°. Hence, the mapping 

is continuous as well. By Proposition 3.8 the mapping

Bę? P) i\r 3 z і— >• £(z, a) with a € S

is an analytic "H2(dę)-valued function. Hence, putting z — x with an element x € 

Bf? П %  ) we obtain that the mapping

Вд3 P) 3 x i ■> €(x, a)

ін also analytic. Note that

1 1
( 1  (X r  І ® г )с п г ) Пг' ( 1  ( X r  І Йг ) р Пг) Пг
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ТІИІН we have the following equalities

1.1 13)
т)спг)"г

П (1 _  (Xr І аг)с„г)Пг =  Є(х,а),
r€N

Mich is true for all x Є BgP and for a suitable vector such that the right side

product in (3.13) converges. Let us check that it converges for every a 6 S j . Using 
notations from the proof of Proposition 3.8 and the Cauchy-Schwartz Inequality we 
obtain

sup 2
llaIU|P —1 r6N

In
(1 (xr І йг)с"г)Пг

<  Ce SUp У '  7lr | (x r І її, )(чі, 

Hall'S1 =1 r€N 

/ \ ‘ /2
— *-£ ( 2  ,гг||а'г|ІС’‘'- j

V rCN ''r€N 

= Ce\\x\\qK_

tor all a = (ar) 6 Sg? and x =  (xr) Є f l £K<f with є Є (0,1).

Prom the density of v(Sg’) in it follows that the previous inequality has a 

unique continuous extension to Sg? i.e.,

sup Y  
M ^ =1r€N

In
(1 (xr І аг)с„г)Пг

< c£||x||/2_

for all a = (ar) Є SgP and x = (xr) Є ^ : П єКа5 with є e (° .1)- Consequently, the 

following product of -4(Sg?) -valued functions

^ П ' К Г  |a r)c J7

1
П  (1 _  {Xr I ar)c„r)n. e *4 (S^ )

with a Є Sg? converges absolutely and uniformly. Finally, this product represents 

a bounded continuous *4(Sg?) -valued function on f°r all є Є (0,1) and

t herefore it has a unique analytic A(Sg:) -valued extension on the open domain

Е Г П & ”  U & ;ГИ Г.
e€(0,l)

which we also denote by C. The proposition is proved. □
3.1.6. The Cauchy integral formula on compact group orbits. Now we

can already formulate and prove a first main result of this section.
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TllKOREM 3.10. Every function

f  = T  ї пЄ ^ 2(dę) with fn Є
n€Z+

has an analytic extension onto the open domain Bg? can be represented

by the Cauchy type, integral formula

(3.14) £[/](*):=[ f(a)£(x,a) dę(a),
J  s«,

The corresponding Cauchy type kernel £ can be represented, in turn, by the senes

е*{к)(х)Ґ<'к)(а)
(3.15) €(x,a)=  2  £n(x,a), <Ln(x,a) := ^  Tj Ь>

«єz+ (fc)ez" {j}em  ||e{j} \\L 2
|(fc)|=n

with а Є Sg?, weakly convergent in /H2(rfę) for all x Є Bg3 P| The Taylor

coefficients at origin are uniquely defined by the formula

(3.16) =  f  fn{a)<tn(x,a) dę(e),
Til J$oo

P r o o f . For any /  є W2(dę) the linear functional

sf : H2(dę) 3 g \— > J fg dę

is continuous. Since €[f](x) =  Sf o <£(x, •), the function £[/] defined by the formula
(3.14) is analytic on Bg3 П via Proposition 3.9.

Let a = (ar) Є Sg3 with ar Є Sr and x =  (xr) Є В wi th xr Є C"' ,

Consider the polynomial Є S* of the form

. *(k) _  „*(fc)rt
Є{Л - '{J}-! ' ‘ ‘ e{j}-t ’

cited in Theorem 3.7. Since

Xr = ejr(i)(Xr)eJV(D + • • • + e l(nr)(ir)ejr(nr), 

and ||xr||c"r < 1 , ||ar||c"r =  1 , we obtain

________ I________ __ (nr - 1 + n)! „

(1 — (хг I aP)c„r)n'- n̂ + (nr — l)!n! ' r 1 r'c"r

(nr — 1 + n)\ (

nez+

у  у  (ПГ - 1 + П ) !  .(» )r/ 4g»(fc)rf ч
Z j Z j fŁ _ i W M ! eO b W C tór W

1'aking into account Theorem 3.7, it follows that

€(x,a) = П ( 1 , i a \ w = T  ^n(x,a)
r€NU \xr I aT)c»r) n€Z+



3.1. H ARDY  SPACES ON COM PACT INFINITE-DIMENSIONAL GROU P 73

with

I  m  <£ (x  -  V  V  е ш ( з : ) ^ - } ) ( а )  (J. 17) (£n(x,a) — 2-і 2-і м *(fc)||2
{j}€N" <*>ez£ ||e{j} ||L2|(k)|=n

V  П  ( П г і  ~ 1 +  n)! ( x  \ i*(fc)r4 a  )L I I  (nr„ -  l)!(fc)r t 'b'b* (n r — l)!(A:)r .!
({j}n ... {j}r,)6N" »=1  ̂ r> ’ V M!(*)»•! | + ... + |(fc)rt|=n

On t he other hand, the equality (3.17) implies that for any x Є П^/л,.

e{i})(а) Є'"(х’a) = e{j}} є •L
Since S* forms an orthogonal basis in 7 ^ , the kernel £n produces I,lie identity

mapping in Hn- It follows that for any /„ Є Hf,

fn(x) =  f /„(a) €n(x,a) dę(a), x Є ̂  П  $ ‘г'

Using that fn ± £;(x,•) at I, we obtain

£[/](*)= f f(a)£(x,a) dę(a) = ^  £n/n(y)
> n€Z+

lor all x = єу Є i'g П with |]y||̂ ,oc =  1 and є Є [0,1). Now the equality
V Vn»*

(3 181 f w - і в і
fn{y> - n\ de» e=0

Implies that f n is a Taylor coefficient of £[/].
Finally, the relation

C[/](a:) =  ę / °  £ (* , •)

With x Є B ^ f l( /n; implies that for any /  Є H2(<k) the series (3.15) is pointwise by 

x Є B’g П weakly convergent in TL2(d<,), as a function of the variable а Є S'g . 

Clearly, doC[/] in (3.18) can be extended on i f  П ^ ; ,  as a continuous polynomial. 

I'lms, the formula (3.16) is true.
dn£\f]

It remains to note that Taylor coefficients -- ;— = f n uniquely define the ana-
n\

lytic function £[/] on the open domain Bg3 П . □

C o r o l l a r y  3.11. For every і є В д  П{/?гт. the point-evaluation functional

« » ( / ) : / — >/(*)

In continuous on 'H2{d<;).

PROOF. From Theorem 3.10 we have

M / )  = /(*) = <*(*. •)!/(•)>*»(*)

iind Proposition 3.9 implies that <£(x, ■) eA{St~) CV.2(dę). □



H KM ARK 3.12. In the partial case if nT = 1 for all r € N, the ball Kg3 has м 
polydisk form. For this case the Cauchy type formula has been established in [80].
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3.2. Sym m etric Fock spaces associated w ith  m atrix  un itary  group»

3.2.1. Unitarily-invariant integral. We consider the compact group

U = 17(d), d e N

of unitary (d x d) -matrices with the unit 1 =  1^, equipped with the probability Haar 

measure x- On U we define the right action

u.g = w~luv, u eU, g =  (v,w) Є U x U.

Recall some known invariant properties under the right action of integrals over unitary 
groups.

Let C(U) denote the space of continuous functions /: U — » C endowed with 

the uniform norm ||/||c(t/) =  suPuec/ |/(w)|. Consider in C(U) the group of shifts

Ggffa) = f (u-9)

generated by the right action. The unitary invariance of x instantly yields the equalit y

f  f d X =  f  egf(u)dX(u), f  Є C{U).
Ju Ju

The application of Fubini’s theorem for double integrals leads to the following 
factorization formulas under various scalar-type matrix subgroups in U . Namely, for 
the scalar matrix subgroup

= {gW  = exp(ii?)l : і? Є (—7Г, 7г]}

we have

£ f d x = Ł  \vdx^  J
Let Uz C U (i = 1,..., m) mean the subgroup of (г x i) -matrices with the unit 1, 

equipped with the probability Haar measure X l. Consider the corresponding matrix 
subgroups

=  {&($) = l.- i <8>exp(itf) (g> l d_t : д Є (-7г,7г]} 

for all indexes i = 1, . . . ,  d.

Similarly, the unitary invariance of x% yields the equalities

f f d x =  f dx{u) Г Ogf(u)d{xt<S>Xi){g),
Ju Ju Ju,xut

for all elements g Є Ut x U% and indexes i = I , .. . ,d.
Let L2y stand for the space of square x-integrable complex functions /  on t he

1 /9
compact space U with the norm ||/||l2 =  (S[/I/I2dx) • Since X is a probability

measure, the contractive embedding C(U) Я-» L2 holds, i.e.,

W fhl Ś \\f\\c(u), f  e C{U).



3.2.2. Homogenous polynomial functions. We endow the d-dimensional 

14implex space

Cd = {x =  (yi,.. ., j d) : У, Є C, i = 1,..., d]

with the Euclidean norm ||z||Cd =  (x \ x)1̂  and the corresponding scalar product 

(• I -)Cd ■ Consider in the complex space Cd the canonical orthonormal basis
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d) =  {*i, — , ed} , e, =  (0,. . . ,0, l  ,0,... ,0) Є Cd.

Гін) unit sphere and open ball in Cd we denote by

Sd = {x Є Cd: ||x||Cd = 1} , Bd =  {x Є Cd: ||x||Cd < 1} .

Let 8>jJCd be the nth tensor power of the complex space Cd endowed with the 

H0rm Hn\\®nCd = (фп І Фп)®пСл for all elements фп = £,Z/i« <8>... <8> ym , where 

I/,, ® ... (8» yni e <8>{JCd with yu Є Cd at t =  1, .. .,  n. Put <8>{JC =  1. If d =  1 then

WfC = C.

Let us define the nth symmetric tensor power ©£Cd as the image of the mapping

Sn : 8>£<Cd 3 xi 8> • • • © xn \— > x\ © ... © xn,

linearly extended to the whole space (see Proposition 1.29).

Let us use the short notations (fc) = (k\ , . . . ,  kjji ) Є Z%, |(fc)| — k\ -f ... +

(A')! = k\\- ...■ km\, xW := r f‘ {d} =  {1,... ,d}.
Proposition 1.28 implies that the system of symmetric tensor elements with a 

llxed n, indexed by (k),

S  (©SCd) = {efj}fc) := effc‘ © ... © e f  -: (k) Є Zd ; |(fc)| =  n} ,

lurins an orthogonal basis in ©jJCd such that *llg^c* = (^)-/n"«

Fix an element а Є §d. Then for any element фп = i, © .. .  0  Є <8>{JCd we 
can define the n-homogeneous Hilbert-Schmidt polynomial

71

Ф І - . & З Х ^  І фп) ^ сл =  2  П  I * • >  c -  •
" t t= l

With this polynomial is uniquely associated the corresponding n-homogenous com

plex function

Фп'-U 3 U I--► (й®п І фп )^сл = 2  П  (“W  I Vu)c* ’
* . t= l

where an arbitrary element of U -orbit of а Є §(i is denoted by

й := u (a) Є §d.

We denote by

I lie space of all functions ф° on U with a fixed integer n Є Z+ endowed with the

L\ -norm.
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Гін' following theorem is main in this section.

Til ICO REM 3.13. Every function ф° Є V™ is independent of an element а Є 8|( 
and the one-to-one anti-linear correspondence

V I 9 Гп ^  Фп Є ©£Cd

satisfying the equality

(3-19) + <Іп 1 j  £  Ф Ж  dx =  {'Фп Фп),'®?Cd > 1Фп,ФпЄ ©?Cd

(3.20)

holds. As a consequence, the subspace V™ is closed in the space L2 and the follouiiiiii 
system of n -homogenous complex functions on the group U ,

<C = {e$> = e f 1 •. .. • e f “ : e fi}fe) Є ^ C d; \(k)\ =  n} , 1

=  {1},

forms an orthogonal basis in V? .

Proof. First verify that the sesquilinear form defined by the above integral w 
continuous. The probability property of x yields the inequalitiesIIФ пФ^х < sup

ueU ® " C d

<  s u p  ||u||Cd ||0n||®"Cd Ш І ® “
uEU

Cd

— \\Фп II® IIV’n||®JC<i 

for all фп,фп Є ©£Cd. Hence, there exists a linear operator An over ©^Cd such thal

(Ап(фп) І фп)^пc<i =  f Фп 4>n dX- 
” J u

Let us show that this operator An commutes with all operators

{v®n Є JSf (®£Cd) : v Є U}

defined by the formula v®n(x®n) = [u(x)]0n. The unitarily-invariant property of 
Haar’s measure X under the right action yields

((An  о У®п)(фп) І Фп)% с < =  £  <й®" I Фп>в ;с , (й®" І У®»(фп))^сЛ х(и ) 

=  f  ([« "‘ (й)]®" I ( v - T nt t n ) ) ^ cd <[«-Чй)]®п I ^ n U cddx(u)
JU  **i> ч

= £  <й®" І (у~')®П(Фп))^С* № п І Фп)^СЛх(и)

=  (Ап(фп) І ( у ~ Т п(Ф п ))^ сЛ 

= ((v®n о Ап)фп І Фп)0пСЛ 

for all elements фп,фп Є . Hence, the equality 

(3.21) An o v<g>n v®n o An
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Інiliїм for any v Є U . Let us check that the operator An , satisfying (3.21), is propor- 
I Im ml to the identity operator l 0 nCd on ©̂ <Cd. For this goal we form the n-fold 

Itiwor power of the unitary group U = U(d),

U®n =  {г;®п Є JSf (©£Cd) : v Є U} , t/®° = 1,

Ihvariantly acting on the space ©jJ<Cd by the formula

v®n(x\ © ... © Xn) = v(xi) © ... © v(xn)

Im all Xi ® ... <8 xn Є OfiCd. Clearly, U®n is a unitary group over ©{JC(i an a re 

«І і id ion of the unitary group U®n , acting over (g>£Cd. Check that the соггснршиїііік 

unitary representation

|S.22) U 5 v і— > v®n є (©£Cd)

in irreducible. This means that there is no subspace ©{J<Cd other than (II) шиї ll»' 

whole space which is invariant under the action of UC'JU.
Suppose, on the contrary, that there is an element грп Є ©{JC'* such that the 

ми responding n-homogenous complex function satisfies the equality

for all elements v = v (а) Є Sd dependent on the variable v Є U. The unitary group
V acts surjectivity over the unit sphfere §d. Hence, by n-homogeneity of > we 
obtain

Ii >r all elements x Є Cd. Let us apply the polarization formula for symmetric tensor 

products (see (1.6))

for all z i , . . . ,z n Є Cd. It follows that ipn =  0, because the set of elements 
.‘ I © • • • © zn is total in 0 ^Cd. As a consequence, the unitary representation (3.22) 

In irreducible.
Now we can apply to the unitary representation (3.22) the well known Schur 

I ,emma [51, Theorem 21.30]: a non-zero matrix which commutes with all of the 
matrices of an irreducible representation is a constant multiple of the unit matrix. 
So, we obtain that the operator An , satisfying the equality (3.21), is proportional to 

I lie identity operator on i.e.

<x®n I ^»>®-o» =  0

71

Лн a result, we obtain

(Z\ ©  • • • ©  Zn  І 0п)®п(С<і — 0  
I)

An  =  Oln l©n£d

with a constant an > 0. In other words, we have
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It yields in particular that the system of functions <££ forms an orthogonal basin 
in tin1 s|)iw4) P ", because the system of tensors §  (©^Cd) forms an orthogonal basin 

in the s|)ii<4*s ©JJCrf. The subspace V™ in L2X is closed, because it is isometric to the 

complete врасе ©?Cd.

Taking into account (1.12), we can choose

Фп = Фп =  e f i ^  

with I (A;) I = n in (3.23). As a result, we obtain

I n\

w

(3.24) —
71!

ff li

o (fc) 
e{d}

L I
|(fc)| = neZ .+ •

Using the well known formula [88 , 1.4.9] for the unitary d-dimensional group U ,

,o(k)
z(d)

2 (fc)I(d — 1)! 

ą  ~ (n + d-1 ) ! ’
I (A) I =  n,

we see that the constant an does not depend on indexes (fc) such that |(fc)| = n and

(3.25) Otn
П

(fc)ŁJLo(fc)

C{d} dx =  71^
n\ (k)l(d — 1)! n!(d — 1)!

(fc)! (n + d -І)! (n + d - 1)!’

Thus, the isometry (3.19) is proven. □
Using the fact that any function i/>̂  Є is independent of an element a € S'1, 

in what follows in (3.20) we take

o = ed

and denote

e{d})(u) := (K^)]®  I efi}}L cd =  П  (u ̂  I iT)cd
Г= 1

for all (fc) Є  7L\ so that |(fc)| = n.

C o r o l l a r y  3.14. Symmetric tensors S' ( © £ C d) uniquely define the system A’" 
of n-homogeneous polynomial functions of the variable u & U with norms

(3.26)

In particular,

<g>(k)
■{d}

n + d - 1\ 1̂ 2 

n
o (fc) 

’{£} LI

\[d

for all i = l , . . . ,  d.

The dimension of the space is equal to

x n\{d — 1)! V nrn-
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3.2.3. Polynomial reproducing kernels. Let the orbits in the space ©^Cd of 

Hit' last basis element td Є &(<Cd) under the unitary representation (3.22) is denoted 

liy

{й®": u =  u(Cd), u Є U} .

N<•1.0 that it is total in 0 {JCd.

Lemma 3.15. The reproducing kernel of the space V™ endowed with the L2X -norm 
h<w the form

(n+: x) i «>* = e  11 єй>} 11 єй>} (u)
(3.27) l(fc)l=n

y , (n + m -  !)! °(i), wo|n, ,

- || . w r n r “ M^ w
Jor all u,v Є U .

Proof . Expand any vector й e Sd into the sum of the basis elements

й = Ti cj(u)ei-
.j€N

Then the Tensor Multinomial Theorem yields the Fourier expansion

I  =  ( E  « ?< «).,) M -  2  щ і - Й ’ м С
j€N l(fc)l=n V ' '

wit h respect to the orthogonal basis S’ (©^Cd) in the space Q^Cd. Using the equality 

(1.12), we obtain

(v\u)ncd = ( ^ п \ й ^ сл

у  /  ® ( k )  , ® ( f e ) \

L  { (ky J  \e{d} l e{d} 4 „c/{d} W e{d} w

|(fc)|=n

l’i ir all n Є Z+. Multiplying both sides by

(n + d — 1 \̂ _  (n + d — 1)!

~~ n!(d — 1)! ’( " T 1)-
we get the equality (3.27).

Via Theorem 3.32 the system £%(U) forms an orthogonal basis in the space V” . 

Ilciice, applying the equality (3.27), we have

n + d — 

n
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lor nil n c U , i.e., the integral operator with the kernel (3.27) acts as the identily
mapping over P ” . So, the equality

(3.28) ^  + dn ^  £  {v I u)ęd ф°п{и) dx(u) = v Є U

holds for all V'n e • Consequently, the kernel (3.27) is reproducing in P™. IJ

3.2.4. Scgal-Bargmann space. Consider the standard Gaussian measure ii on 
the complex space Cd, centered at 0 and normalized so that ^(Cd) = 1. In terms of 
the Lebesgue measure dx = dpdq (x = p + iq with p,q Є Rn) on the correspondiiiK 
real space R2n ~ Cd we can write

dp,(x) =  7r~dexp(-||x||^) dx, x = (?i ,. .. ,?d) Є Cd.

Let L2 be the space of square ^-integrable complex functions /  on Cd with the

norm ||/||l2 = (JCd . As is well-known [40, Theorem 1.63]

J  x^x^dfi(x ) = I
(fc)! : k = I, 

0 : к ф І

for any (k), (І) Є Z+.

Recall that the the Segal-Bargmann space /H2ll(Cd) (see e.g. [12, 14]) is defined 

to be the subspace in L2 of all entire analytic functions. It is well known that % 2 (C'() I 

is the L2 -closure of all polynomials in the variables f i , ... Є C. The reproducinn 

and normalized reproducing kernels of the space H2fl have the forms, respectively

Ky(x) = exp(x I y)Cd,

ky{x) ~ 7 Ш  = exp ( ( l 1 y)ci “  ^

for all x,y Є Cd.

The space of all n-homogenous polynomials on Cd, generated by the system

{z(,5): |(fc)|=n, x e C d}

with a fixed n Є Z+ and endowed with the L2-norm, we denote by P " . Clearly, 

this system forms an orthogonal basis in P ". Whereas, the system {x ^ }  forum 

an orthogonal basis in the whole Segal-Bargmann space 'Hfl(Cd). So, the followinu 
orthogonal decomposition holds

(3.29) Ul(Cd) = C ® P l ® P l ® . . . .

Consider the Hilbertian orthogonal sum

r(Cd) =  b =  0  фп: фп Є ©£Cd,
V n€ Z+

endowed with the scalar product and norm, respectively

(Ф  І Ф)г =  2  n! {Фп І Фп)Сл and  ІІ^ІІГ =  {Ф І Ф)У\
n€ Z+

r < oo
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lldd the symmetric Fock space generated by the complex space Cd. The polarization 
ir inula (1.6) implies that the set of so-called exponential vectors

T<8n )

' M -  ©  " і г : і є С  '
n€Z+ '

total in the symmetric Fock space T(Cd) and

n €  Z +

= exp (||x||̂ ) < oo

hi all elements x Є Cd.

Lemma 3.16. For any (k),(l) є Z+ such that |(fc)| = |(Z)| = n, tnr hnvr 

rW asW  n ! ( e f i }fe) I e f f f b g c *Г xWzW

L v m ) i M{x) vwuv.
m — 1)! Г

(m -  1)! Jt
/  1: fc =  I,

~ \ 0 : fc^ Z.

, , -V, r
(n + m -  1)! f c(,/}c|./}

v ( i ) m
dx

Proof. In fact, for all x =  (pi,. . . ,  ym) Є Cd such that

x =  {ай: а  Є C, u Є U}

we have

(3.30) x(fc) =  yj1 •. . .  • =  (x®Kfc)l I efi}fc))0„cd =  Q'(fc)le{d})(u)-

To complete the proof of lemma it remains to apply Theorem 3.32. 

Theorem 3.17. The mapping

S: ^ ( C d) з /  — ► 2  І Є  r(Cd), </>n Є ©£Cd
n€Z+

ticfined by the equalities
®(fe)

e{d}S (*<*>)

for all indexes (fc) Є Z+ produces the anti-linear isometry

(3.31) T(Cd) ~ НЦCd)

nuch that the following Taylor analytic expansion at the origin 

f{x) =  (є{х) I S(/))r = J]
n€ Z+

t,'«(*) =  f  (* I v)cd f(y) My)n\ JCd

holds for all x e C d.

□
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I 'ROOK. By (3.29) for every /  Є 'Hfl there exists a unique sequence of elemenl 

/ті < PJl such that the series Ymfn is convergent to /  in L2̂. By Lemma 3.16 fin 

every fn € V’l there exists a unique element фп Є Q^Cd such that /„ = ail 

conversely. Therefore, the isometry (3.31) follows from the orthogonal property

■ФЇ 1  (x®n)*

for all Іф n. Ajjplying the n-homogeneity of ip* , we obtain

<*№ ) =  £ r S “ n< (* )  l«=o= nWn(z)

for all ax Є Cd with а  Є C . So, the Taylor analytic expansion holds.

3.2.5. Orthogonal decomposition. In this section we denote by Hx and call 

the Hardy space on U the -closure of the complex linear span of all complr 
continuous functions

= {«C: n Є Z+} , <C = {e$> : |(fc)| =  n} .

T heorem  3.18. The system forms an orthogonal basis in T~L2X and the foliom 
ing orthogonal decomposition holds,

(3.32) U\ =  C 0  V\ 0  ® .. ..

The reproducing kernel of the Hardy space TLX has the form

(3.33)
(1 - {v I u)Cd)

_ = s  /n  + d - Л  _}„d

ПЄ2+ V П /

у  у  (п + m - l) !  o(t) o(fc)
Z j  Z j  (*)!(m  -  1)! eW  W  eW  W

n€ Z+ |(fc)|=n

for all u ,v€U .

Prook. Applying the equality (3.19) in the case of any indexes (&), (І) Є Z+ sucli

n =  IW IФ KOI =  m,

that

we obtain 

(3.34)
I  e°{d} i\d} d x = ^ t  £  4 2 dx J _ exp k i w i  ~ i w n  м = °-

This yields the orthogonal property

,*(*) і eo(0 
e{d} -Le{d}’

i.e., V™ -L Vx in l?x. As a result, the system S’0 forms an orthogonal basis in Hi 

Hardy space ~HX, because every system forms the same basis in the correspomlin 
subspace Vx .

The first equality in (3.33) is well known (see e.g. [8 8 , 1.4.10]), whereas ll 
second equality follows from (3.27). By Theorem 3.18 every element f  Є is «ці 

to the L 2X -convergent orthogonal series £ ] „ /„ ,  where /„  Є V™ is the orthogon
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projection of /  in the decomposition (3.32). Applying (3.28) from Theorem 3.15 and 

llic -orthogonal property

(v I -)cd -L fn

With пф m, we obtain that for any element v Є U the equalities

I f{u)dx(u)

(1 - {v I u)c*Y
= [  Z  ( m+n, 4  < » ! * > £  E  fn(u)dx(u)

U rn€Z+ '  '  n€Z+

= Yj fn(v) = f(v) 
ne Z+

□hold for all /  Є . Hence, the kernel (3.33) is reproducing in .

3.2.6. Weighted symmetric Fock space. Consider the symmetric Fock sub- 
ipace

"  J' Цф < 00<&(Cd) = L =  r(Cd) : фп Є ©^Cd,
 ̂ n€ Z+

('Ф І Ф)ф =  2  7 ^ 7 1 — т ії (V'n І Фп)C“ . M *  =  (V» І ^ ) ф 2,
(n + d-1)!

endowed with the scalar product and norm, respectively

n\(d — 1)!

Tl€Z_|_
» 1 , 

called the weighted symmetric Fock space generated by the complex space C .
By Proposition 1.28 the system of symmetric tensors £  (©^Cd) forms an orthog

onal baseis in ©^Cd. As a consequence, the system

g =  {<?(©”Cd) : n Є Z+ } 

forms an orthogonal basis in the space $>(Cd). Moreover, for any tensor element
.«(*)
I'M

(.135)

with n = I (fc) I,

0 (fc) _ (  n\(d — 1)! N <g>(fc)
C{d} Ф \(n + d-  1)!, e{d] ®”Cd

Ud-n\(d

(n + d

-1)! \ 1/2 /(fc) ! \ 1/2 _  

- i ) 0  U u

,o(k)
’{<M Ll

Thus, applying Lemma 3.16, we obtain the following statement. 

T h e o r e m  3.19. The mapping

T: U\ 9 /  ► £  V’n Є $(Cd), фп Є 0 ^Cd
n€Z+

determined by the equality

т № ) =e f f ’ 

l>mduces the following isometric equalities

П\ s  Ф(С<І), T (p£) ~ (©£Cd, II • ||ф).
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It is also easy to see that the diagonal matrix

diaS{ V (n + d - l ) ! : n € Z + }

isometrically maps the Fock space r(Cd) onto the weighted Fock space 4>(Cd) .

3.2.7. Holomorphic extension. The polarization formula (1.6) implies thilt 
the set of so-called geometric vectors

(w(®)= ®
^ n€Z+ J

x®u = 1

is total in the weighted symmetric Fock space Ф(Ст ) . Note that

i m*>iiI - s г н щ : < » ’ *e»”•

Hence, the orthogonal series ш(х) is absolutely convergent in Ф(Ст ) for all x Є 
i.e., the Ф(<Сто)-уа1иегі function

u: Вт 3 і м ш ( і )  є Ф(Ст )

is analytic.

T h e o re m  3.20. For every f  є there exists a unique element

T(/) =  0  4>n Є Ф (ст )
n€ Z+

with tpn Є O^Cm such that the Cauchy integral formula

f(u) dx(u)
fix) = f
п )  )u  ( 1 - ( х | й ) с - ) т ’

 ̂  ̂ ~ „  nUm  _ 1 V
/(*):=  И * )  І Т(/))ф = X! (n + m - i) !^ ) »

n€Z+

for all x Є Bm uniquely define an analytic function on Bm with the Taylor coefficient* 
at the origin

irUrn — IV r
(3-37) (n + m — i) !^ " (a:) =  У 1 1 й>с~ /(«) dx(«), X є Cm.

P roof . By Theorem 3.18 for every /  є there exists a unique sequence of clr 

incuts /„ Є P” such that the series fn  is convergent to /  in . By Theorem 3.32 
for every f n Є V™ there exists a unique element <pn є 0^Cm such that /„ = y>* ami 

conversely. Consequently, the equality (3.37) it follows from the orthogonal propci i \

4>i -L v *n
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tor any І ф n and the equality (3.28) with using I ho n-homogeneity of ip*n . Summing

(,1.17) with respect to n, we get (3.36). It follows in particular that

/  (mi) = (u (av) І Л(/))ф = а П ^
7,ez+ + m Ч-

lui any x = av, а  Є В1 , v Є U . The <£(<Cm)-valued function ш is analytic on 

B"1 and /  is equal to the composition of w(-) with the linear continuous functional 

(' І Т ( / ) ) ф  on Ф(СШ). Consequently, /  is analytic on Bm as well. Differentiating /  

nl x = 0 and using the n -homogeneity of derivatives, we obtain

1 rn7 I d "  у  n!(m — 1)! n\(m — 1)!

n! 0 n\ dan -4  ̂ (n + m — 1)! " a=o (n + m — 1)! ”пЄZ+ 4 7 v 7

fbr all а  Є В1 . Hence, the functions ip* coincide with the Taylor coefficients of the 

mialytic function /  at the origin, which are uniquely defined on Bm. □
I

Definition 3.21. Following [8 8 , V.6] we define the space of analytic extension 

nil Bm

n 2x(Bm) := { /  = <£(/):/ Є Ч 2Л
* 1

іч к lowed with the norm

/  f  ~  2 \  X/2 I
ll/llw»(B“ ) = sup /(ай) dx(u)

|а|<1 \JU /

Then the well known Cauchy integral formula can be written as the transform

£ : ^ 3 / ^ / g ^ ( B m).

Theorem  3.22. The linear isometry and the anti-linear isometry, respectively

(3.38) U\ ~ H2X(Bm), U\(Bm) ~ Ф(Ст ) , '

{induced by the mappings

£ : / _ > / := < £ ( / ) ,  Т о Г 1: / И Т ( / ) ,

hold.

Proof. For any x = av with а  є В1 and v є U from (3.36) it follows that

?,-л _  f /(«) dx(«)
) Jy  (1 - (аг і|й )с" .)т ’

hm a function of the variable v Є U , belongs to H2 . In fact, using the homogenous 

property of coefficients , we have

/(ай) =  2  а п<̂ * (й).

n6Z+
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The equalities (3.28) and (3.33) and the orthogonal property of {(£>*} yield

I  | /M )f dxM  = £  I « " і  (У - ~ 1)І>! 1 і>г- *<■*> dxM dx(v)

=  f I S  I dx(v)= Yi \*\2пш ь х
•*U ' n€Z+ ' neZ+

for all a € B1. This implies that

||/||«.(в») = sup 2  |a|2"|K||£,
l“ l<1neZ+

= 2 ш ь х =  \ \ f w k
n€Z+

for all /  Є . Hence, the first equality in (3.38) is valid. It is easy to see that

n£Z+

=  2  -  І | л ( / ) “* 
nez+ K '

via (3.19). The theorem is proven. I I

C o r o l l a r y  3.23. As a consequence, we get instantly that the following diagram

Ф(Ст )

Hi

is commutative.

3.3. Hardy spaces associated w ith infinite-dimensional unitary

groups

3.3.1. Invariant integrals with respect to infinite dimensional groupr*.
We consider the infinite-dimensional unitary matrix groups:

U(oo) =  (J {U[m) : m Є N} , f/2(oo) := U(oo) x U(oo),

where U(m) is the group of unitary (m x m)-matrices which is identified with Uw 
subgroup in U(m+ 1) fixing the (m + l)th basis vector. In other words, U(oo) In 
the group of infinite unitary matrices
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with finitely many matrix entries Uij distinct from Sij. We equip every group U(m) 
wll li the probability Haar measure Xm • We endow the group U(oo) with the inductive 
lopology under embeddings

U(m) 4-> f/(oo).

Every matrix um e U(m) with m > 1 we write in the block matrix form

•2-771— 1 ĆZ
Ь t

zm-i Є U(m - 1), t Є C

corresponding to the partition

(m - 1) + 1 X  (m — 1) + I- 

Over the group U(oo) (respectively, U(m)) the right action is well defined:

(3.39) u.g = w~luv,

where u belongs to U(oo) (respectively, to U(m)) and

9 =  (v, w)

belongs to U2(oo) (respectively, to U2(m) := U(m) x U(m)).
Let us give some basic known facts about invariant integrals with respect to the 

group f/(oo). In [78, Proposition 0.1], [79, Lemma 3.1] it is proven the following 

Haim.

Lemma 3.24. The Livsic-type mapping 

of the form

— a(l + t)~1b: іф  — 1Zm—1 &
1 • 7̂71 - b t 1  ̂ 7̂71—1 — 1

/ 1

(which is not a group homomorphism) is Borel and, surjective onto U(m — 1), and 

commutes with the right action of U2(m — 1).

Lemma 3.25 ([78, Theorem 1.6]). The pullback of the probability Haar measure 
Vm-i on U(m— 1) under the mapping 7r™_j is the probability Haar measure Xm on 

V(m), i.e.,

(3.40) Xm—1 ° t C _ j  =  Xm-

Let U'(m) C U(m) be the subset of unitary matrices which do not have {—1} 
an an eigenvalue. Then U'(m) is open in U(m) and the complement U(m) \ U'(m) 

In a Xm-negligible set.

Lemma 3.26 ([79, Lemma 3.11]). The restricted mapping

n Z _ 1: U '( m )- + U '(m - l)

in continuous and surjective.



NN 3. H ARDY SPACES ASSOCIATED W IT H  T O PO LO G ICA L GROUPS

(N insider the projective limits, taken with respect to the surjective Borel projec
tions jrJII . ] aild their continuous restrictions тг™_1 \u'(m) I respectively,

il = ^mJ7(m), il' =  l̂ m U'(m),

called the spaces of virtual unitary matrices. Notice that il is a Borel subset in thr 
Cartesian product

X  u{m) = {u = (um) : um Є U(m)}
m€ N

endowed with the product topology, because all mapping are Borel. Moreover,
the canonical projections

7rm: 11 —> t/(m), 7rm: il' — ¥ U'(m),

such that 7rm_i = тг^_1о-кт , are surjective by surjectivity of n"ll_ 1 and |t/'(r„),
Applying the well known Kolmogorov consistent theorem, we uniquely define n 

probability Radon measure x on il' as the projective limit under the mapping (3.40),

(3-41) X =

which satisfies the equality

X =  Xm °

for all m Є N. On il \ Я' the measure \ is zero) because Xm is zero on U(m) \ U'(m) 
for all m Є N.

Using (3.39), right actions of the group C/2(oo) on the space of virtual unitary 
matrices il can be defined as follows:

(3.42) nm(u.g) = 'W-17rm(u)u, u Є il,

where m is so large that g =  (v,w) Є U2(m).
The canonical dense embedding

i : U(oo) il

to any element um Є U(m) assigns the unique sequence u — such that

(щ) Є И,

Щ = \

i : U(m) 9 um \— >•

- ! +1 O.. . O 7r™ 1( m —1 V

Um
Um 0

Б

F=(

O

: I =  m, 

: I > m,

where l/_m is the unit in U(l — m). So, the image і o U(oo) consists of stabili/імд 
sequences in il.

In what follows, we endow the space of virtual unitary matrices il with 11 in 
measure (3.41).

Lemma 3.27 ([78, Proposition 3.2]). The measure \ is U2(oo) -invariant undrt 
the right actions (3.42) over the space il.
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Definition 3.28 ([79, Definition 4.5]). A complex function on 11 is called cylin
drical if it has the form

(3.43) f{u) =  (fm O 7Tm) (tt), u є 11

lor a certain m Є N and a certain complex function fm on U(m).

Any continuous bounded function /  on 11' has a unique x -essentially bounded 
extension on 11, because the set il\ii' is x-negligible. Therefore, if the function

U'(m) 3 7rm(u) і—» fm [тгш(гі)]

In the definition (3.43) is continuous and bounded, then the corresponding cylindi icnl 
limction /  is x-essentially bounded.

By we denote closure of the algebraic hull of all cylindrical \-cnwiiItally 

bounded functions (3.43) with respect to the norm

||/IU°° = esssup|/(u)|.
u€ll

Lemma 3.29. The measure x — lim Xm on U is a Radon probability mcasuiv 
nurh that

f  f(u-9) dx(u) = f  / (u ) dx(u)
Ju > Ju

for all g Є U2(oo) and f  Є .

The measure x has the property: for all compact set K  in U(oo) such that 
K C U(m) with an index m Є N,

(3.44) (X °i)(K ) =  Xm(K).

Proof . First recall the known Prohorov criterion (see [21, IX.4.2, Theorem 1] 

nr [98, Theorem 6]). Adapting to our notation, it has the form: there exists a Radon 
probability measure x' on 11' such that

(3.45) x' =  Xm ° TTm lit' for all m Є N

II and only if for every є > 0 there exists a compact set K. in 11' such that the 
Inequality

(Xm 0 TTm)(£) > 1 — є for all пі Є N 

holds; in this case x' is uniquely determined by means of the formula

x !iK )=  inf (Xm°7Tm)(£),
mGN

where /С is a compact set in It'.

Let Kn c  U'in) be a compact set with a fixed n. Putting

we have

Xn-l(-Kn-l) =  ( X n - l ° C l )  ( ^ n )  =  X n { K n ).

()n the other hand, if we put

-̂ 71+1 —
Kn 0

0 1
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then via (3.40),

Xn+i(Kn+i) =  (xn °  K +1) (K n+ i)

=  (xn  o тг£+1) K0n J

As a consequence, the compact set JC = (Km) in il', generated by a compact нгі 
Kn C U'(n) with the help of mappings 7r” _ 1 , satisfies the condition:

(3.46) Xn(Kn) = Xm(Km) for all m <E N.

The probability Haar measure Xn is regular on U(n), and the complement 
U(n) \ U'{n) is a negligible set. Hence, if Kn runs over all compact sets in U'(n), 
then

sup Xn(Kn) =  1.
K„CU ’(n)

Therefore, for every є > 0 there exists a compact set Kn C U'(n) such that

Xn(^n) £•

Prom (3.46) it follows that for every є > 0 the compact set K. = (Km) satisfies tin' 
hypothesis of Prohorov’s criterion:

(Xm °TTm)(£) = Xm(Km) > 1 “ Є for all Ш Є N.

So, in view of this criterion, there exists a unique Radon probability measure x' °4 
U' which satisfies the condition (3.45). However, on the projective limits

il' = ^m U'(m)

there exists a unique U2(oo)-invariant Radon measure x> determined by the equality 
(3.41). Using the uniqueness property of projective limits, we obtain

x ' =  X-

The measure x on il\-11' is defined to be zero, because Xm is zero on U(m)\U'(m), 
As a consequence of (3.46), we obtain (3.44), because

X(IC) =  inf' Xm{Km) = Xn(Kn). 
m€N

By Lemma 3.27 the measure x is U2(oo)-invariant under the right actions (З. Г.’) 
on the space il. Hence, for every /  Є , the equality (3.29) holds.

Consider in the space C“  the group of shifts

Qgfiu) = f(u-g), 9 Є U2{oo) u Є il

generated by the right action of U2(oo) over il. Choosing instead of U(oo) a compact 
subgroup U(m) or the compact subgroups

Uo = {go{ti) =  exp(ii?) : і? € ( 7Г, 7r]} ,

and

Uj(m) =  {gmj(ti) =  l j- i <8> exp(ii?) <S> 1 m-j ■ V Є (—7r,7г]} , 

j  =  l,...,m ,



wr obtain the corresponding subgroups of shifts Qfl with elements g Є U2(m) or with 

•laments g0(tf) Є Uq and gmj{ti) Є Uj(m ), respectively. The following lemma is an 
lnlinite-dimensional generalization of integral formulas from Subsection 3.2.1.

L e m m a  3.30. For any f  e the following equalities:

(3.47) f /  d\ =  f d\{u) f Qgf(u)d(Xm®Xm){g),
JU Ju JU3(m)

(3.48) £  /  dx =  J  Qg(#)f(u) dd

with g(&) Є Uq or д(д) Є U2(m) hold.

P r o o f . For any /  є , the function

(u,g) h—> Qgf(u) = f(u.g)

In integrable on the Cartesian product 11 x U2(m). Applying a standard argument 

based on the Fubini theorem, we obtain
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dx(“) Qgf{u)d{Xm®Xm)(g) =
Jil JU 2(m)

=  I d(Xm ® Xm)(g) Q g f{u )dx (u ).
JU 2(m) JU

This equality yields the required formula (3.47), because the internal integral on the 

rlnht-hand side is independent of g and

L
d(Xm ® Xm) — 1-

W2(m)
■
In turn, putting instead of U(m) the subgroups Uq and Uj(m), respectively, we 

obtain equalities (3.48). □

3.3.2. Homogeneous Hilbert-Schmidt polynomials. Consider the count

able orthogonal Hilbertian sum

E := 0  Cm = \x = (xm) : xm Є Cm, ||z||E =  ( £  ||sm||£m) ̂  < oo}
m€N ^ mGN '

with the scalar product

{x І У)E = 2  І Ут)ст ,
m€ N

where every coordinate xm Є Cm is identified with its image

(0,..., 0, xTO,0,...) Є E

under the embedding Cm °г-> E.
As usually, let ®£E stand for the complete nth tensor power of the Hilbert 

Mibspace E, endowed with the Hilbertian norm,

IIV'nllginE = I ^n)®JE '
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whin1 V» Yj, Vij ® • • • ® Vnj denotes a finite sum with yij 0 ... 0  ynj- Є 0 jJE ami 

wit h ./V/, j/tj Є E for all t =  1,... ,n . Put 0 ,jE = C.
Replacing the space E by the subspace Cm, we similarly define the tensor product 

OOjJC"', There is the unitary embedding

0 £<Cm 0 {JE.

If m = 1 then 0 {,‘C = C.

For any finite sum ipn = £] • Vij ® • • • ® Vnj from the space 0 {JCm (or 0 JJE) we 
can to define the finite type n-homogeneous Hilbert-Schmidt polynomials

(3.49) Г З ї М  (я®» I </>n >0„cm = 2  П  (x I ytj)cm ■
" j  t= і

Consider the canonical orthonormal bases in Cm and E, respectively,

<o(Cm) =  {eTOi , . . . ,  cmm}  ,

<f (E) = ( J  {<?(Cro) : m Є N} ,

(

where emJ =  (0, . . . ,  0, 1,0, . . . ,  0).
4-------- V---------'

m
Also consider the nth symmetric tensor powers ©ЦС7” and ©jj'E. Clearly, ©jJC" 

is a closed subspace in ©]JE.

Given a pair of numbers (m, n) € N x Z+, we consider the n-fold tensor powei 
of the canonical mapping 7rm: il 9 u >— У 7rTO(tt) Є U(to) ,

(3.50) il 9 u і— > 7r®n(u) Є JSf (©£Ст ) 

where

КтП(и) := ^m(«) ® • • • ® VTm(u) .
4---------V--------- '

71

If n = 0, we put 7Г®°(и) = 1 for all u Є il and то Є N. The mapping (3.50) is Borel 

and has a continuous restriction to i l ' , because 7rm has the same property.

Let am Є Cm be an arbitrary fixed element such that ||aTO||cm = 1. Then, 
a®ra Є ©£Cm. Using the mapping (3.50), we can write

№ ( « ) ]  (“ ! " )  =  [»m («)] (am) 0  . . .  <8» [7rm(u)] (am) .
1 V  —

n

To any n-homogeneous Hilbert-Schmidt polynomial (3.49) with yij 0  ... 0  ynj 6 
0 |JCm, there corresponds the function

Г М  := < K » ]  « )  І ^>0„ст =^n<W «)]W  І Уц)ст
* j  t= і

of the variable u є il. Any cylindrical function of the form
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Iiiin a continuous bounded restriction to 11'. Therefore, it is x-essentially bounded 
nu il, because il\il' is a x-negligible set. Consequently, Є and %f)* |ц/ is 
mutinuous and bounded.

D e f in it io n  3.31. We define ,^^(Cm) to be the space of all functions яр* of the 
limtrix variable u Є il, determined by finite type n-homogeneous Hilbert-Schmidt 
|»nlynomials (3.49).

L e m m a  3.32. For any element am Є Cm such that ЦотЦс"* = 1 the set

Sm = {ж =  [7rm(u)] (am) : wel l}

Kirncides with the unit sphere in Cm. As a consequence, the one-to-om anti liimn 
correspondence

(Ш )  &X(cm)

holds, and any function is independent of the choice of an element. n,„ ( S’"

P r o o f . Suppose, on the contrary, that there is an element ipn fe ©L‘C "  sucli 

that (x®n I V’n)lglnCm = 0 for all x =  [nm(u)] (am) Є Sm with u e i l .  The mapping

7TTO: it Ви  і— > 7rTO(u) Є U (m)
%

In surjective by Lemma 3.24. Hence, the set Sm coincides with the unit sphere in 
Cm and is independent on the choice of an element am. By n-homogeneity, we have 

(,c®n I ^ n)®"cm = 0 for all x Є Cm.

Similarly as in Theorem 3.13, applying the polarization formula (1.6) for sym
metric tensor products, we obtain

(zi 0  • • • © zn І фп)0пСт =  0

li ir all elements z\,. . . ,  zn Є Cm. Hence tpn = 0, because the subset of all elements 
г і 0  • ■ • © zn is total in ©^Cm. As a consequence, the subset

{*® "=[тг® » ]  (a®n) : и Є il}

In also total in ©ЇС” . It immediately yields the correspondence (3.51). □

Consider the symmetric Fock space F and its closed subspace Fm, where 

F := C © E © (©j|E) © (©j|E) © . . .,

Fm := C © Cm 0  (©^Cm) © (©^Cm) © .. . .

We will use here the following notations:

(771) := (fill, . . . , mm) , ^(m) *= (^mlj • • * ? kmm) £ )

|̂ (m) I ,= ^ml + . • • + kmm? (̂m)* *= ^ml* * ... * k-mm• •

As is well-known, the system of symmetric tensor elements, indexed by the set fc(m) ,

«  (©?Cm) - { $ < “> =  e®iml © ... © : k{m) є Z+; |fc(m)| = n}
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forms an orthogonal basis in the subspace ©[‘Cm c Fm. We will also use the notation» 

[m] := {(11), (21, 22) . . . ,  (m l,. . . , mm) },
771

{fc} := {fc(l), . . • , fc(m)} Є x  z +>
Г= 1

|{fc}| |fc(i)| + .. .+  |fc(m)|,

{fc}! := fc(!)! • . .. • fc(m)!.

Then, the system of symmetric tensor elements with a fixed n, indexed by the set * 
[m] and {fc},

=  ( J  j  e®{,fc} =  e®*(1) © . . .  © e?k(m) :I eH  ~  e(l) ®  ®  e(m)
771Є N ^

Є (® f(1)lc ) , . . . ,  Є (© f'-ї'с™) ; |{fc}| = „ J

forms an orthogonal basis in the subspace ©JEcF.  Thus, the system

$  — {Sji : n Є Z+}

forms an orthogonal basis in the symmetric Fock space F.

By virtue of the one-to-one mapping (3.51), the system of symmetric tensor ele
ments $  (©^Cm) uniquely defines the following corresponding system:

C ,n c  & £(cm)

of Xm -integrable cylindrical functions

* $ ■ »  :=  ( K " M ]  ( O  I C r )
(3.52)

= П  ((Жт ° (*ml) I Єтг>£Г
r = l

of the variable u Є il, where we take

Qm = ^ml*

Consider the system of functions of the variable u Є il,

Є[т] -Є(1) ••• (m) •«  -  u  { ■
m€N **

Єа Г  e ^W )l>  • • • ’ С Г  6 m̂,|fe(m)l with fixed |{*}| = » } . I

generated by the system of symmetric tensor elements Sn . All these functions belong 
to the space by their definition. Denote

r  =  K * : n € Z +}, »€ Z+ } .
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3.3.3. Hardy-type space. Let L2 be the space of square x-integrahle ..... pin*

lunctions /  defined on the space of virtual matrices it. Since x 11 |>■ <>lxil>llli v 
liieiisure, the embedding ££° C  L 2X holds and

\L 2 < esssup|/(u)|, f e e
* «ЄН

Denote by 'HXm the -closure of complex linear spans of the виїжувіет Л’*

Lemma 3.33 ([88, Theorem 5.6.8]). The space is isomoiyhic to tin i /nun 

llnrdy space 'HXrn( Bm) of analytic complex functions on the open unit hull

Bm = {xm Є Cm: ||xm||Cm < 1}.

D efin ition  3.34. The Hardy-type space 'Hx on the spuee <>l vliliml nulltuv 

matrices H is defined to be the Lx-closure of the complex linem ьрші nl die \ - і. m 
of cylindrical functions S*.

Theorem  3.35. The system S* of all cylindrical functions

.*{*} _  -**<"*>
M  ~  e( i)  • • • '  e(m)

і pith m e  N, such that e*̂ <r) Є S*\k( as r = 1,... ,m , forms an orthogonal basis in 

the Hardy-type spaces T-Сі with normsл %

\ (r-l)!(fe)r! У 7'

-i (r - 1 + l(fc)r|)!y '

Proof . If |{/c}| Ф |{<7}|, then from (3.55) it follows

Ju eH } ‘ #]*> dx =  £ eM } (exP(WH ' 5[n{]?} (exp(W)u) dX(u)

I  = Ł  I I  eH } ' dx J_ exp O O W I _  M  =  °-

So, c*^} JL e * ^  in the space Lx if |{fc}| ф |{<z}| for all indices [m],[n].

Let |{fc}| =  |{gr}| and m > n for definiteness. If the elements and

are different, then there exists a sub-index

ms Є {11, 21, 22, . . . ,  m l , . . . ,  mm]

in the block-index [m] = [(11), (21, 22) , . . . ,  (m l,. . . ,  mm)\ such that

ms £ {11, 21,22, . . . ,  n l , . . . , nn} ,

where [n] =  [(11), (21,22)..., (n l , . . . ,  nn)]. The formula (3.48) implies that for die 

«roup of shifts Qgme(0 ) generated by elements 3ms ($) Є U2 (m) with the sub-index

- (
[m]

ч  V
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Hence, e 1,1,5і 1 e[J> in L\.

Let now |{fc}| = |{q}| and m — n. If ф , then {fc} ф {ę}. Hence, there 

exists a Kul)-index rs in the block-index [m] =  [n] such that krs ф qrs. Similarly 
as previous mentioned, applying the formula (3.48) to the group of shifts Qgr,(t>\ 

generated by elements grs{fl) Є U2(r) with the sub-index rs, we get

Ju e[m]} • CH * dX =  £  C  ■ e $ } dX J  ^ exp ( і (fcrs - qrs) i?) dd =  0.

Hence, in this case also -L under the measure x-

Let дг = (1г,гиг) Є U2 {r) and u £ 11. Using (3.42) and (3.52), we have

2I Q9r |C(r) iu ) d,(xr ® Xr){9r) =

Г  r
П  ( K ^ r f a ) ]  (er l )  Є н )

M r)  г=і N '
dxr{wr).

However, the previous integral with the Haar measure Xr is independent of element s 
ttt (u ) є U(r). It follows that

f
JU 2(r)

Q9r

y*(k)r
'(r) (u) d(Xr ® X rX ffr ) =  f П  ( “ r 1 (er i)  ЄГЛ  r!

M r) ' 'C*

(r — l)!(fc)r!

dXr(w r)

( r - l  + |(fc)r|)!
*(fc)r

V )
L lr

by the well-known formula [8 8 , 1.4.9]. Using the formula (3.47) m-times for r -
1, . . .  ,m, we get

f  |CH }| d x =  Г ^Х(«) f l  [ Q ar 
Ju ' Ju r=l Ju2(r)

"(r) (u) d (x r® X r)(9 r)

П
.*fcM I 
*(r)

Г= 1 " Xr

because dx =  1 • It follows that

.{fc}
= ПL2  X X II ( r )  

x r= l LXt
= n - ^ —M  (r - 1

(r - l)!(fc)r!

l ( r - l  + |(fc)r|)!

for all basic elements еГ ^ =  •... ■ e?4 m).
[m] (1) (m)

As is known, the system Sm of symmetric tensors e®^)m with a fixed to form» 

an orthogonal basis in the space Fm with norms

(fc)m! 4 1/2®(fc)r,
'(m)
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Similarly, the system £  of all symmetric tensors

b( l )  « ' • • • « '  L(m)

With all m Є N, such that e®^r Є <?r,\(k)r\ as r =  1,. . . ,m , forms an orthogonal 

ha,sis in the symmetric Fock space F with norms

'M
/ W !  V /2 

f \ IW Iv  '

Combining Lemmas 3.32 - 3.33 and Theorems 3.35 , we; obtain I lic IuIIowIiik

T h e o r e m  3.36. Anti-linear extensions of the one-to-one mappim/* brtwn-u m 
thonormal bases

®(fc) r,
4m)

*(fc)n
(m )

(m)

®{fc}
M

[m] II

1H

[m ] I

uniquely define the corresponding antt-linear isometric isomorphisms

Theorem directly implies several corollaries. From (3.41) and (3.52) it follows
I hat

'(m)
■JL

*(fc) _ i  
J (m ) 0 7 r m dXr

Hence, the following isometrical embeddings

- 1 *
(*)
m) d\ =

*(.k)r
'(nf)

m6N

hold.

Reasoning by analogy with the proof of Theorem 3.10, it is easy to show that the 
Hardy space 7ЇІ possesses the reproducing kernel of a Cauchy type

пЄ2+ |{fc}|=n ||e*{*}||2 
(m) IIL*

00
J[ J[ ((̂ m ° (̂ ml) I (ĵ m ° u)
m= 1

with u,v Є il, where the sum 2|{*.}|=п over indices

{fc} Є I  X  Z+: ™ g n |



such that |{fc}| = n. As a consequence, the integral representation of any function

/ є н ; ,

/ ( \v)= C f(u)<t(\v,u)dx(u)
J u

gives a unique analytic extension in the complex variable А Є В1 for all element n 
v Є il such that

2  m||(7rmot;)(eroi)||cm <00.
m€N

Moreover, there exists the isomorphism

U\ 9 { / ( « ) : u Є il} &— > { fx (v ) : v Є il} Є Н Ц В 1) 

for all А Є В1 and elements v Є il such that

2  m \\(nm °w)(eml)|lc- < 0 0

me N

3.4. Hardy spaces on irreducible orbits of locally compact groupb

3.4.1. Polynomial orthogonal systems on irreducible orbits. Let E stand
for a complex separable Hilbert space and let Q stand for a locally compact second 
countable group. Suppose that there exists a unitary representation

U: G 3 x ► Ux Є JSf(E),

which is weakly continuous.
Fix an element h Є E with ||й ||е = 1 and consider its orbit

G := {Uxh =  С є Е : х є £ } ,

which as a topological space we identify with the factor-space Q/Qn, where Gh ’-m 

{t> Є G : Uvh = h ) . The closed unit ball in E endowed with the weak topology, wn 
will denote by K. The weak continuity of U implies that the embedding G Ч-» K In 
continuous. Further we denote by C(K) the uniform algebra of continuous complex 
functions on K.

Recall that a measure \ on the orbit G is (/-invariant if for any x Є G its shill 

X ° Ux- 1 is equal to x> і-Є-> if

(3.53) Г / (C )  dx(Ux-iC ) = f (/ o ux){0 dx(0 = f /(0 dx(o
JG JG J g

for all x Є G and x-integrable complex function /  on G. As is well known (see [6(l|),
for any locally compact second countable group G an invariant measure x on an orbit
G exists and the equality

(3.54) J dX(Uxh) j <p(xv) dv =  f ip(x) dx
J  G JQ

uniquely connects it with a Haar measure dx on G■ Here <p is any integrable complex 
function on G and dv denotes a Haar measure on Gh- Clearly, the choice of a U- 
invariant measure x on G depends on the element ft Є S.
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In what follows we suppose that an element fie  S and the corresponding Q- 

Invariant measure x on its orbit G are fixed, and that the representation codomain 
Vq of a group Q contains the complex cyclic subgroup T. Let Lx stand for t he 
llllbert space of all quadratically x-integrable complex functions on the orbit G.

First we recall an auxiliary integral formulas which follow from Fubini’s theorem 

nud our assumptions about the group. Namely, if x is a (/-invariant measure on G 
I lien the equalities

(.4.55) / ,dX =  i-  J  dX(C) f  fie™C) M, J  C dX(C) = 0

wit h x-integrable complex function /  on G hold.
As previously, ®£E and ©£E, (n Є N) denote the complete i/lli Іенміи мімі 

Kymmetric tensor Hilbertian power of E, respectively. The com'spumlin^ л тин im
I ock space is defined to be F = C ® E ® (©^B) ® (©jjE) ф __  We ііье

E* =  {C* :=  <• I O e : C Є E} 

to denote the Hermitian dual space for E. Recall the isometrics (c-:[JE)* E*

mid (O^E)* =  ©JJE*. So, for every element фп Є ©£E uniquely assists the functional 

V’n (’ І Фп)ї belonging to ©JJE*, which further we identify with the n-homogeneous
II ilbert-Schmidt polynomial

ф*п: Е з ^ ф 'п ( 0  := ( Є п \Фп)г

For each n-homogeneous polynomial ф*, with фп Є ©{JE we assign the polyno
mial function

Ьп[Фп№ = ó(m

of the variable £ =  Uxh with x Є G, generated on the orbit G by all £7-shifts of the 
point evaluation character •

* * « )  =  < (« ).

In this section let 'Hx denote the closure in the space Lx of all Hilbert-Schmidt 
polynomials over E and call the Hardy type space on the orbit G.

Theorem  3.37. Let an element h є S be fixed in such way that the antilinear
operators

hn: ©£ E 9 фп і—> К[фп] Є L\, (n Є N) 

we well defined and have the bounded norm ||ftn|| = і і^п іі^^е  l 2) > ant  ̂^

E£ := ©JJE © ker hn, Ff, := C © Ej ф Ef; ® EjJ ® --

Then:

(i) the corresponding restricted mapping

hn : E£ 3  фп i—ł  фп := Пп[фп] Є L2X, hn := 

is an isometry between the subspace EjJ and its image := hn(E£), so
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(ii) the antilinear mapping

(3.57) ^  Фп '—> Ф ■= 2  [̂Фп\ Є Hx, П~ (П п),
uęZ_|_ n€Z+

where фо =  Фо with фо Є С, is an isometry between the subspace F(, ami

its image Kx fi(Ff,), so

(3.58) J ^ u id x  =  ( u  I ф )^, ф,ш£ Fh;

(iii) the following orthogonal decomposition holds:

'1/2 — (P ДЛ /іу2 /т-ч 0/2 0/2 /тчПх — 'U U7 / Lі 47 /Т-2 чІ7 /І3 Ш • • • •

P r o o f . Due to boundedness of the following integral

f К[ФпЖ[ип\йх= f (Фп ° Ux)(h)(u* 0 Ux)(h) dx(Uxh)
JG J  G

is an Hermitian continuous form on the Hilbert space ©£E, which is antilinear by

фп Є GjJE and linear by uin Є GfE. Therefore, there exists a bounded positive linour

operator An € E) for which

(3.59) (yin І Апфп)^ — I fin[Фп]̂ п[̂ n] dx-
J  G

Similarly as in the proof of Theorem 3.13 from the ^-invariance properties (3.53) II 
follows that A n commutates with all diagonal unitary representations of the form 
{U®n Є.5?(©£ Е ):ує£ /} , i.e., the equality

An oU fn =  U fn oAn, у e g

holds, where U®n = Uy © ... © Uy denotes the nth tensor power. In fact, we have

(wn I (A n о  и ® п)ф п ) ^  =

=  f  ( ( U xh )® n I I u n ) 9 nE dX (U xfi).
J G u 1

The £/-invariancy of the measure X on G implies that

J ((uxh)®n 1 I un)9«Edx(uxK) =

= £  <(^у-іяй)®" І фп)%Е((иу-1хН)®” I uf*u ,n)9 »EdX(uxh)

= f ((Uxh)®n І фп) ((Uxh)®" І и *»Шп) dX(UxH).
J  G 11 59 li

As a result, we obtain

( u n I (A n  о  и ® п )ф п ) % Е  =  (U ® nlU n  І А п ф п ) 9 „ Е =  ( u n  I (U ® n  о А п )ф п) ^ Е.

On the other hand, for any n Є N the set {(Uxh)®n : x Є G} is total in Mi* 

subspace E'jJ under its definition. Hence, the corresponding representations U®n ari



3.4. H A R D Y  SPACES ON IR RED U C IB LE  ORBITS 101

Irreducible over E£. By the well-known Schur property [51, Theorem 21.30] the 

restriction An |Ej is proportional to the identity operator 1E« on EJJ, i.e.,

A n  |e" =  N“ 21 E" 

for a constant є C. Hence, we can rewrite (3.59) as follows

(3.60) (w„ I il>n)f =  f  K[̂ n}frn[un\ dx, ^n,wn Є ETh*.
G

This yields in particular the equalities

ll^nll =  sup ||М^п]||гї = ГГ-.
ІІіМІ0ПЕ=1 * l' n

By formula (3.55), we obtain

L L S m d x = ^ L * ' “ m d x L eK" ~ m) 9d* = { ( « . m '  : » t z

for any ipn Є EJJ and u)m Є E™. Hence, трп ± u)m in L2 If u / in I'Iiiim, (lie 

orthogonal decomposition (iii) holds. I I

Now we will analyze two important cases where operators h„ are bounded 
First consider the case when E = L2 (̂Q) is the Lebesgue space of quadntUenllv 

Integrable complex functions on a measure space (Q, fx) with a positive measure //

P r o p o s it io n  3.38. Let E = L2 (̂Q) be a Hilbert space of quadratically int<wnhlc 

complex functions on a measure space (Q, ц) and the element h e  S satisfiow I lie 
condition

л П

(3.61) cn =  esssup П і В Д у О І  dx(Ugh) < oo, n Є N.
У і ,— ,У п € в  J ©  i= i 

I hen the inequality

5: C-n HV’raІІ®?Е ||^п |І0пE(3.62) I f  «  O Ut)(H) (w* O ug)(h) dX(U6h)
I J<3

holds for all 'фп^п Є ©{JE.

P r o o f . Let у  =  ( y i , . . . , y „ ) , z  =  (zb . . . , z n) є Qn, where Qn : =  Q x ... x Q. 
Due Fubini’s theorem and Schwarz’s inequality, we have

I f <(£/вЙ)®" І грп) ((Ugh ) ^  I Un) dx(Ugh) <
U© » W|>

r r 71 n
< dx{Ugh)\ PJ|f/gft(yi) tp (z i)ł/>n(y)w(z)| Y[dn(yi) dn(zi)

J® JQ n i= i i=\
л ТЬ л TL

= |^n(y)w(z)| Y[d^i)dn{zi)\  Yl\Ugh(yi)U^h(zi)\dx(Ugh)
JQ n i= i  J® i= і
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for all ipn,wn є ©{JE. □

PROPOSITION 3.39. In the case when Q = Q let /x = \ be a Haar measure cm 
the locally compact group Q and E C (£/). Let

heS nL ~ (g ), Ugf(q) =  /(g-1q), /Є  E

with g ,q€5 , i.e., the group representation U is regular. Then the inequality (3.6'2) 
holds with the constant

cn = cn_1, c = esssup|fi(g)|.
g € S

P r o o f . Modifying reasons of the previous proof, we obtain

І f ((Ugh)®*1 1 ipn) ((ugh)®n I ojn) dx(g) <
I Ję  ь ь

<  Г ^ x (g ) Г YllH&^yriHg^zrt^niy^ni^lYldxMdxizi)
Jg 1=1 i=i

= f |^n(y)w„(z)|PJdx(yi)^x(zi) [ n i % _ 1y ;)% _ 1zOHx(g)
Jg2n i=i Jg i=i

r n
<  IIV’nllFllWnllFeSSSUp П  |ft(g_1y()ft(g_ lz i)| dx(g)

y ,z e » "  Jg  t=\

<Cn || ||f ||̂ n ||F eSS
У1

ssup f |ft(g 1Уі)Л(§ 1zi)| dx(g) 
>Z1 £G Jn

< cn ^iV'nllFlKHpesssup |ft(g 1yi)|2rfx(g)) ( J  |%  ^ i^ d x ig ^ j

< СП_1||^пІНк„||р 

for all tpn,un Є ©£E, since for the convolution

( l ę  * |Й|2)(уі) =  J |%-1yi)|2dx(g)

with the identically unit 1 д  £ L^(Q), we have

||is*N 2IL? <l|ialU~|||fi|2||Li = i

with the norms in the Lebesgue spaces L^(G) and Llx{Q). Q

Using Proposition 3.38 we will prove that the inequality (3.62) with a finite con 
stant is satisfied for the Schrodinger representation of reduced Heisenberg group*, 
Clearly, it is satisfied for any finite-dimensional unitary groups, as well.



3.4.2. Cauchy type formula and radial boundary values. Now we estab
lish the Cauchy type formula

(3-63) <t[/](0 = J  C(f, 0 / (0  <*x(0, £ Є в

which for every function /  e produces its unique analytic extensions <T[/] on l.lic 
open unit ball В in E. Also, we describe the Taylor coefficients and the space <>l 
boundary values of these analytic extensions. Namely, we establish that I lie radial 
boundary values of €[f] are equal to /  for every function /  £ 'Hix. As an example, 
we consider a reduced Heisenberg group.

Recall, that in Chapter 3.2 it was proved that if G is the full unitary ктир "I 
linear operators over the m-dimensional complex space Cm (in < N), endowed with 
the probability Haar measure, then for any h Є Cm such that. ||Л||("" I 1 be ( 'ant b\

kernel with the variables £ Є Cm , ||£||c"> < 1 and £ Є Cm, ||C||cm I hn t he I......
(нее [8 8 , 1.4.9])

<f(c r \  V  (m  -  1 + n ) ! u  і r \ n чи v>2 ( m - 1 +п)!
= J  ^ _ 1)!n! f t lO c -  wtb I» .-  (ro_ i )ln, .

where the condition

lim
n —►oo v "

in satisfied. This fact justifies that the following kernel 

(3-64) £ (£, 0 =  E  H  I Oe > <  =  j X l
n€Z+

with IÎ He < 1 and ||C||e < 1 , for which there exists the limit 

(3.65) lim = 1/a for some constant a > 0,
71—Ї  OO

we can mean the Cauchy type kernel in more general cases. Now we are going to 
consider this more carefully.

Put for simplicity E = Ej and denote

В := {£ Є E: ||£||E < l} , S := {£ Є E: ||£||E = l} .

Proposition 3.40. If the condition (3.65) is satisfied then the kernel £(£,0 
with £ є K is an analytic C(K)-valued function by the variable £ Є В.

Proof . Calculating a uniform norm by £ є K of the power series (3.64), we 
obtain

І|С«,0ІІС(К)< E  К пК ІІЕ<°°

for all £ Є В. Hence, £(£, •) is an analytic C(K)-valued function by £ Є В. □

Proposition 3.41. Let the assumptions of Theorem 3.37 be satisfied. Then for 
any fixed r £  [0,1 /a) the integral operator
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(3.66) €[/] (0  = J e(€,0/(0«*x(0. /єя



with £ = rA, (А Є G) belongs to the algebra _Sf("H£). The function

€[f]r : GB \ *->€[/] (rA) 

with r Є [0,1/a) belongs to %2 and

II/IIlj = sup ( f |C[/](rA)|2dx(A)) ' ■
гЄ[0,1/а) V JG  У

P r o o f . Let (y>j,n) jeN be an orthonormal basis in the space with n є  N, 

Then the system (0j,n)jeN is an orthonormal basis in %2. Indeed, substituting in

(3.60) uin =  and фп = (pi<n with j  ф i we have

J” V’t.n dX = (vi.n І iPj,n)p = 0)

i.e., ± фі)П in Z,£. So, the system (<fij,n) is orthonormal in the space L2 . II

^  ^®n j <pj<n)Fipj n denotes the Fourier expansions under (<£?>) of an element, 
£ Є E then we have

Cn(f,C) := «1{*пЄ п I C®">p = (ra)n 2
je  N

i.e., £„(£,C) = (ra)nCn(A,() with £ = Uyh, A =  t/xft Є G for all x,y Є Q and 
£ = raA, (ra =  ||£||E). So,

c(e,c)= 2  (™)n 2  &,n(A)^,„(0 = ^N X ((,A ).
n€Z+ j€N n6Z+

Theorem 3.37 implies that

f  £j,.»(CK„(£>C)dx(C) = <PjA0 f  <Pj,n(QVj,n(0dx(0 = <PjA0
J  G JG

for all <pjtn and ( € G. Since (<Pj,n) is an orthonormal basis in %2, the integral 

operator with kernel <£„ produces the identity mapping on li\.

Let /  = 2  f n ^ U l  with fn e Tin- Using that fn ±€m at пф m in £ 2, wci
n e  z+

obtain

/ (0 =  2  f e»(M)fn(C)dx « )=  f c(C,C)/(C)dx(0
n€Z+ J g Jg

for all £ Є G. It follows that the series £[/](£) = ^  <£[/«](£) with

c[/»](0 = £  Cn((,C)fn(0  dx(C) = H2 J  <c* I c)e/»(C) dx(C)

= (ra)n J  £n(A,C)/n(C) <*x(C) = (ra)"/n(A) = /„(*)
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In convergent in by the variable А Є G, uniformly by r Є [0, є] with 0 < є < l / a . 

Applying that £n i. fm and fn ± fm at пф m in Lx, we have
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=  f  I s  (m )n f  ^ O U O d x iC )
X JG  I nez+ Jg

dxW

- L

2

dxW2  (™гш
’ n€Z+

= I S(ra)"/n 2 = 2  M 2"II/«lib
II ą  neZ+

for any r < 1/a. It follows that

sup £ (r a )2n||/n||£, = 2  II/„lib = II/IIJ.».
г Є [ 0 ,1 / а ) ^  x '

Uy the Cauchy-Schwarz inequality, we have

-  ( 1  _ r 2a 2 ) l / 2  (  Ш і Ц )  =  ( !  _  r 3a 3 ) l / 4

for all /  Є Hx- Hence, the operator (3.66) belongs to □

T h e o r e m  3.42. Let the assumptions of Theorem 3.37 and the condition (3.65) an 
simultaneously satisfied. Then for any /  = ^  Є % 2 with /„ Є the integral

transform (3.63) with the Cauchy type kernel (3.64) is a unique analytic extension of 
the function f  on the open ball В with the Taylor coefficients at the origin

(3.67) .,W ](0  =  K  Г K  I C)i /„(C) dX(C), £ Є E.
n - J g

For each analytic function £[/] its radial boundary values on the orbit G are equal to 
f  in the following sense

(3.68) lim f I £r[/] - / I2 dx =  0, r e  [0,1/a). 
•-fl/a J r

P r o o f . By Proposition 3.40 £(£,•) is an analytic C(K)-value<l function by 
( Є В. Hence, the function £[/] determined by (3.63) is also analytic of £ • H in 
view of [50, 3.1.2]. Differentiating at the origin, we obtain

<$*[/] ( 0
n\

By the Cauchy-Schwarz inequality,

= K2 J  (<* I Oe Ш  dX(C) = £[/»]«), £ є В.

ІО Д (0 І  < K f  | К  І 0S/»(C)|dx(0 < І̂|аЄ||Е||/„|
J  G

L l

for all £ Є E. Hence, any £[/„] is a n-homogenous polynomial on E, which takes 
t he form (3.67). As is well known [50, 2.4.2], continuous Taylor coefficients uniquely
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define the analytic function €[f] on B. So, the uniqueness of the analytic extension 
£[/] is proved. Finally, using the orthogonal property we have

1
I<M/] -  / I2 dx = 2  (r2”a2n - l) ll/nllij — »■0

nEZ+

if r —> 1/a. The theorem is proved. I

The space of analytic extensions of functions from , defined by the formula 
(3.63), we denote by

H2X(B) := {<£[/]:/ є  ft2}

and endow with the norm

||£ [/] ||W2 = sup (  f |ir[/](rA)|2dx(A)) •
гЄ[0,1/а) \ Jg /

C o r o l l a r y  3.43. The following antilinear isometry

B) ~ Fh

holds.

P roo f. Since ||C[/]||W2 =  ||/||l2 for all /  є H\, the isometry 'Hx(B) ~ W* 

holds. So, the required isometry instantly follows from Theorem 3.37. I I

3.4.3. Example of a reduced Heisenberg group. In what follows, we pul 
Q = H, where the Cartesian product

И = M2 x T

stands for the reduced Heisenberg group with the multiplication

(x , y, eW ) • (U , V, eirl) =  ( x +  U, у + V, eW +ri)ei(xv-yu)/2) >

dd
endowed with the Haar measure dxdydr, where r = exi} Є T and dr =  — . We refer 

r if* 2tt
to [91] for detail about Heisenberg groups.

Let E = Lj| be the Hilbert space of quadratically integrable complex functioim
1 /2

/  on 1  endowed with the norm | | / | |L2 =  ( \f{x)\2 dx) . Consider in L^ thn 
orthonormal basis

: r  з  Фі-i(t) = ( - 1  r  v
f2/2 Фі-ijt) ,_ i t2 dP- l

re -r

V 2 i-1 (j- 1 )!’ dp - 1

where j  Є N and фj-\ is the Hermite (j — 1)-degree polynomial. Note that the spare 
Ljĵ n = coincides with the closure of complex linear span of functions

{£i(M  •••£«(*«): 6 , . . . , 6 , Є Lj|, (<Ь . . . , ( „ ) Є Г } .

Therefore, ©£Lj| is the closed subspace in Lj|n of symmetric functions with respwt 

to the permutations of n scalar variables. By (1.12) the following system

« С  ;==< l Q



with all (j) =  (j i , . . . ,  j n) є Nn , j i  < . . .  < j n and (k) = (fcb .. . , kn) є Z" such that 

A'i H--- h kn = n  forms an orthogonal basis in , which is non-orthonormal and

ll^0')fe)H©JLR =  V W !/n !- where (fc)! :=  fci!...fcn!.

The Schrodinger representation U of the group 11 into (L^) is given by

Ux,y,A{t) = reixy/2eiyt£(t + x), x, y, t Є R, т Є T, £ 6 /,£

which is unitary and irreducible. It is easy to see that the codomain of V еоміаіпи
I he complex cyclic group, since

T = { 0 oat: (0, 0, t) ЄИ}.

R e m a r k  3.44. By the Stone-von Neumann Theorem every irreducible millais 
representation V of H over any Hilbert space E, satisfying the emidil am

F(0 ,0,r)£ = r£

for all r  Є T and £ Є E, is unitarily equivalent to the Schrodinger г<>|менец|.аІInn I і

The Gauss density function

h: R В 11— > n~1/4e~t / 2 (i.e. H =

belongs to the unit sphere S C . The H-orbit of h

G = {их,у'ТИ Є L (х,у,т) Є H}

= {gXtViT(t) =  7r-i/4Teixy' 2eiyte-(t+xf ' 2: (х,у,т) Є H, t Є R}

contains in S, as a function of the variable t for any fixed (х,у,т) Є H. In fact, for 
any fixed (x, у, r) Є H we have a 2 \

t 7Г_ 1 /4 Є_ ‘2/2 dtj =  1.

The stationary subgroup {(x, у, r) Є H: UXtViTh =  ft} coincides with the group 
unit (0,0,1) Є H, hence the equality (3.54) has the form

f d x =  \ (f °UXiytT)(h)dxdydT,
G

where the H-invariant measure \ on G is defined by the Haar measure drdyih on 
H and /  o U is an integrable complex function on H .

Consider the diagonal nth tensor power of Schrodinger’s representation

И 3 (x, y, t) — ► C/®« т Є Sf (®ZL2) , n 6  N

and put U®y T = 1. Let L?x be the corresponding Hilbert space of quadratically 
X-integrable complex functions on the orbit G. Each function

hn[ ^ k)]: И 9 (x,»,r) — > {(Ux,y,rh)®n I

with ki H-- + kn = n, belongs to L2 and the following operator

K : ©£ L2 В ipf™  — ► K  [<p®«] Є L2x, (j) Є N"
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is well-defined. In fact, calculating the Fourier transformation by the variable t Є И, 
we have

hi :i!/t e - ( * + t ) 2/ 2 e t 2 / 2 i L L - t 2 d t

IПп К Г ) I = її Ifii ip* )(х’У’т) I *

= r e ^ C - i y  1 J-x2_2ixv_v2)/4

у/У-х{} - 1)!

for any (fij. For all (fc) such that fci H--- h kn = n it follows

\ n i y p j , ) \ x , y , T ) ikl
/=1

_  c-?(x2+i/2) + У2)31-1 ̂

Since,

Г°° - n . n /  ГТ ™! Г°°

Jo '  П  VOi - і)! J  [ I  ( , _ ! ) ,  J o  e m!

, (uri)r=п m! - ГЦ  0'i -  l)!fci nm Jo ml
du<  —

n

n

with m — J](ji - l)ki and
/=i

roc poo /  2 , 2 \  r o c  гтг/2 r c c

J f y — 2— Jdxdy =  4 j J f(u) dudd = 2tt J f(u)du,

where x2 = 2w cos2 1? and y2 =  2u sin2 d , we obtain that each such function hn [vfj) 11 
belongs to L2 and the following estimation holds

(3.69) JLKwn
2 27Г
dxdy dr < — .

Any element tpn Є © £Lr with ||̂n||©;*Lj[ —  ̂ таУ be presented in the form <>l 

its Fourier decomposition

*■- S  «8 М Г '-
(k),a) V

Applying the inequality (3.69), we have

ki + ■ ■ ■ + kn =  n, 2  la (j) і
(fc) |2 < 1 .

2  “o’M C ’l- 
<»),«)

І ПІ

w * S  M O
L2 (fe).O) V ' '' 4

I n! 27Г 

(fc)! n ’



It follows that

llfinfaM lii < 2тг(n - 1)!||̂ п|||пі,’ ог HM  ^  л/27Г(« - !)!•

If (? ) = • • • , j n )  and (fc) = (n ,0, ... ,0) we have that = V’f "  and

f  \ftn[pfn]\2 d x  dy  d r  =  { \hi[<fii\(x,y,T)\2n d x d y d r  
Jh Jh

=  f  |e- (*2+2ixv+i/3)/4 2nd x d y  2n

JR2 I n

Since 1 = || f̂” ||©nL| = ^ | | f i„ K n]||L2x . we have that <pf" </ k.-f h„ Thin %!• ЬІ».
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HM  = sup WhnbPnlh* > ||*і»M 4”] II, * \/*
/2rr

W nlle^g^......................... * " ̂  v П ■

Hence,

lim -\A*f < lim л Др- = 1
n—>oo п—юо у 27Г

nnd the Cauchy type kernel has the form

OO

Є K ,u x,y,Th)  = 1 + 2 ^ ( £ |  u x ,y,Th )nL l  
» = 1  R 

°0 /T p\xy/2 r \n

= 1 + £  K2 JR£(*)ei!/t-(t+x) /2dij

which is a L 2 -valued analytic function by the variable £ Є В, where В C  ін a 

nonempty open subset in the unit ball of L|. Thus, for any /  € and £ Є В we 
have

£[/](£) = f  Є UXty,Th) ( f  oUx,yiT)(fi) dxdydr,
J  H

lim ї  \<tr[f](x,y,r) - (fo  Ux,ytT)(h) dxdydr = 0, 
r_> Jn

where the functions

€[f]r : I  3 (x, у, т) i— >• £[f](rUx,y,r A) 

with r Є [0,1) belong to H 2 for any А Є S.



Not,oh and Remarks. If П is a domain in a complex Banach space then the 
Manly space ft°°(fł) which is the uniform algebra of bounded analytic functions on 
П is a st andard object of infinite-dimensional complex analysis and was investigate! I 
by many authors (see for example [6 , 7, 26, 30, 32, 44] and others). Integral 
representations of Hardy spaces W> (p > 1) with infinitely many variables were an 
object of research in [30, 80, 83].

The Hardy type spaces ft2(c£ę) associated with compact groups were investigated 
in [61]. A more general case of Hardy type spaces associated with locally compact 
groups were introduced in [60]. Section 3.2 is a special case of the results from 
[60, 65]. Theorem 3.13 are proved in [65]. Ibid Theorems 3.13, 3.18, and 3.4(1, 
establishing an antilinear isomorphism between unitary Hardy spaces and symmetric 
Fock spaces, are proved. A classic theory of Hardy spaces in the unit ball of Cd me,у 
be find in [8 8 , Section 1.4.10]. The Segal-Bargmann space 'Hfl(Cd) been studied in 

[12, 14].
We also analyze the case of unitary Hardy type spaces, which are associated 

with the the infinite-dimensional unitary matrix group U(oo) following to [65]. No
tice that considered here the infinite-dimensional unitary group U(oo) is one of the 
basic examples of big groups whose irreducible representations depend on infinitely 
many parameters. General principles of harmonic analysis on this group developed by 
G.Olshanski [79]. The space of virtual unitary matrices Я was studied by Y. Neret.in 
[78] and G. Olshanski [79]. The notion of a virtual space relates to D. Pickrell’s space 
of virtual Grassmannian [82] and to S. Kerov, G. Olshanski, and A. Vershik’s space of 
virtual permutations [53]. Various spaces of integrable functions with respect to men 
sures that are invariant under infinite-dimensional groups have been widely applied 
in stochastic processes [20], infinite-dimensional probability [98, 95] etc.

The space of analytic functions ft2 (B) with a Haar measure x on an abstract 
locally compact group Q were considered in [60, 64], where some of its propertiew 
was described. An application theory of these spaces to Heisenberg groups were given 
in [63]. Note that in this section we analyze a more general case when a -invariant 

measure x is defined on a unitary orbit G of a locally compact second countable 
group ę acting in an infinite-dimensional Hilbert space E.

I KI 3. H ARDY SPACES ASSOCIATED W ITH  T OPO LO G IC A L  GROUPS



CHAPTER 4

Reproducing kernel spaces of analytic functions

Effective methods for the study of Hardy type spaces on inlitiil<■ «іііім ч ш іін м іі 

domains is representations of analytic functions by means of герпкіїк іпк kernel шиї 
representing measures. In this chapter we analyze various special сн.чеп шиї ечмпфіеп 
of such spaces.

4.1. Abstract Hardy spaces

4.1.1. Representing measures and abstract Hardy spaces. Let Q 1>с и
compact Hausdorff space. We denote by Cr(Q) and C(Q) the uniform algebras of all 
continuous real and complex valued functions on Q respectively. Let 9Л be the class 

of non-negative Baire measures ц on Q that is isometrically isomorphic to the dual 
Cr(Q)'. Note that for every Baire measure ц from there exists a unique regular 
Borel extension. This is an unique regular Borel measure on Q that agrees with fi 
on the Baire sets of Q.

Throughout this section a subspace of Cr(Q) or C(Q) means a vector subspace 
containing the constant functions, but not necessarily closed.

Let V be a subspace of Cr(Q) or C(Q), and x Є Q. We define 9KX(V) to be the 
subset of 9Я consisting of all measures ц on Q with

J /  dfi = f(x), f  Є V.

Then 9Jtx(V) is a convex, weak-star compact and always non-empty set, since it must 
contain at least the point evaluation functional Sx: V 9 /  i— > f(x)-

Let Qo be a subset of Q. It is defined by

Д(2о) = inf n(U), 

where U runs over all open Baire sets that contains Qo- We define

M 2o) := [у Є f iv ) =  f i x) for some x Є Qo and all /  Є vj.

If V is a subspace of either Cr(Q) or C(Q), the Choquet boundary of V, denoted 
by dV, is defined to consist of those points x in Q which are such that any /і є ®lx(V) 
satisfies the condition

ji(iv(x)) =  1.

The Choquet boundary is not necessarily closed (or even Borel) subset of Q. From 
the definition it follows that if the subspace V separates points of Q and x Є dV,

in
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then the point evaluation functional Sx has a unique representing measure that is tlu< 
atomic measure concentrated at x Є Q.

If V in a subspace of C(Q), we will denote by Vr the subspace of Cr(Q), con
sisting of real parts of the functions in V. It is known [16] that

dVr = dV and ®tx(Vr) = 97tx(V), Vx Є Q.

If V is a subspace of Cr(Q) or C(Q) and fj, and v are in 971, we write u < fi il

J fdu = J/d/x and J / 2 dv < J / 2 dpi, V/ Є Vr.

We say that a measure /z is maximal for a measure u, if v -< ц imply v =  /і.
Let V be a subspace of Cr(Q) or C(Q). FYom Zorn’s Lemma it follows that for 

each v in Ш there exists a maximal measure ц Є Ш such that v ■< fj, [16].
Let A be a uniform closed subalgebra of C(Q) that separating point of Q and 

contains the identically unit functions 1.

A subset Qo of Q is said to be a boundary for A  if for each /  є A there is sonic 
у Є Qo with

l/(tf)l =  ll/ll-
P r o p o s it io n  4.1. Let A be a uniform closed subalgebra of C{Q), which sepa

rates point of Q and contains the constant functions 1. Then the Choquet boundary 
dA of A is a boundary and if Q is metrizable, then dA contained in any boundary 
of A.

T h e o r e m  4.2. Let A be as in Proposition Ą.1 and & the a-ring generated by 
dA and the Baire sets of Q. Then each linear functional ф from the dual A! has a 
representation of the form.

ф { / ) = [  fdn, f € A ,
JdA

where a corresponding measure ц on & is such that fi(Qo) =  0 for every Qo Є 0 
disjoint from dA. Furthermore, fi can be chosen to be non-negative if and only if

Ф( 1) = Ml-

Let A be an abstract complex commutative uniform Banach algebra with identity 
1 and let M(A) be the space of its maximal ideals (complex continuous homomor- 
phisms) endowed with the Gelfand topology. Using the Gelfand transform

A 3  f  і—* /  Є C(M(A)),

we can consider A as a closed subalgebra of the algebra C(M(A)) of all continuous 
functions on the compact Hausdorff space M (*4) and

ll/IU= sup |/(0 )|, /(ф) := </>(/).
<t>€M(A)

Since, 0(1) = 1 = Ц0ІІ for every ф Є M(A), we get the following.
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C o r o l l a r y  4.3. For every ф є M(A) there is a probability measure ц (so-called,
i-еpresenting) on Choquet boundary dA C M(A) such that

Ф( І ) =\ fdn , f e A .
JdA

Note, for example that the disk algebra A(D), where D is the closed unit dink 
of C, admits a unique maximal measure which represents the atomic іпсмшііг Лм 
concentrated at the origin. This measure is a probability Lebesgue lnensuie on I lie 
unit circle [44, p. 38].

A point x Є M(A) is called the peak point if there is a function /  і .-І шн її ' І їмi

f(x) =  1 and \f(y)\ < 1

for all у Є M(A) such that уф x. A closed subset Z of M(A) is culled I lie ,»«<<A •.< I
if there exists a function f  Є A  such that

/(x) = 1 for x e Z  and \f(y)\ < 1 for y&M(A)\Z.

An intersection of peak sets is called the p-set. A point x Є M(A) ін callod I hr 
p-point if {x} is a p-set.

Let ф  be the set of p-points of A. It is well-known that Choquet boundary ol 
A coincides with the set of p-points of A, i.e.,

(4.1) дА =  ф.

Let /і be representing on dA of the complex homomorphism ф Є M(A). Accord
ing to [43] the abstract Hardy space 7ір(ц) is the closure of A in the space L^(dA)

for 1 < p < oo and the abstract Hardy space is the weak-star closure of A in
the Banach algebra L^(dA).

The functions in -H°°(/x) can be regarded as continuous functions on the maximal 

ideal space M  = M  (L™(dA)) of the Banach algebra L^(dA).
Since H°°(/i) is closed under uniform convergence, ’Hx (p) becomes a uniform 

algebra on the quotient space obtained by identifying all points of M  which are 
identified by all functions in

Each measure ц on dA determines a unique measure Д on M  that is representing 
measure of the given homomorphism ф which is well defined on 'Нао(ц). It is easy to 
check that we can identify spaces LP(dA) and LT~(dA) for every p > 1. In particular, 

we obtain the following.

P r o p o s it io n  4.4. For every 1 < p < oo,

=  Hp(/z)

via the natural identification.

In what follows we will in particular concentrate on cases of abstract Hardy spaces 
К2(ц) for uniform Banach algebras A of analytic complex functions on open balls of 
infinite dimensional complex Banach spaces.
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4.1.2. Abstract Hardy spaces for algebras Aa(B). For a given Banadi 
space X  with the unit open ball В  let AW(B) be a subalgebra of fL^c(B), consisting 
of weakly uniformly continuous functions on В  and let Aa{B) be the subalgebra of 
AW(B) generated by approximable polynomials Va{X). In other words, Aa{B) is tin* 
completion of A\ (X) with respect to the norm of uniform convergence on B.

If X ' has the approximation property, then

Aw(B) = Aa{B).

If X  — Co, then by the Littlewood-Bogdanowicz-Pełczyński theorem [81],

Aa(B)=H~(B ).

An another space, for which these algebras coincide, is the Tsirelson space [6].
Note that every bounded analytic function on В can be extended to a bounded 

analytic function /  on open unit ball Bx" in the second dual X", where /  is the 
Aron-Berner extension of /  (see [36] for details). Moreover, since В  is weak-star 
dense in Bx" and all functions in Aa{B) are continuous on В  C Bx" with respei I 
to the weak-star topology on X " , the operator of Aron-Berner extension

M B )  3 /  — ► /  Є c  (BX")

coincides with the Gelfand transform on Aa(B) [7].
From results of Chapter 2 easily follows that the spectrum Ma := M (Aa(B)) 

of Aa{B) consists of point evaluation functionals on the unit closed ball Bx" of the 
second dual X". Hence,

(4.2) Ma = BX" ,

if Bx" is endowed with the weak-star topology of X " .
A probability measure ц, defined on the spectrum Ma, is said to be norming on

M B ) ,  if

ll/IU :=  ( J V l 2^ )  - f e A a(B)

is a norm over Aa(B). Clearly, each norming measure ц defines on Aa(B) the scalar 
product

(fi I h )n  ■■= J  f i f i  d/x, / і ,  / 2 Є M B )- 

P ro p o s it io n  4.5. Let fj, be a norming measure on Aa{B). Then 

ll/IU < ll/IU(B), /  є Aa(B).

P r o o f . Since the probability measure /j, is norming on A„(B), the natural eni 
bedding of Aa(B) into the Lebesgue space (Bx") is injective. Moreover,

ll/ll2 = f \f\2 d^<  sup \f(x)\2n(Bx») =  ||/||3ia(B)>
J xEBX"

as required.
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X  Є Bx"

Via the identity (4.2), the space of all complex continuous functions on the space 

of maximal ideals Ma coincides with the space Cw* (Bx") of all weakly-star contin

uous functions on Bx"- By the Stone-Weierstrass Theorem the system of finite sums 

ft = 2  fndm is dense in Cw. (BX" ) , where fn, gm are homogeneous polynomials in 

Aa(B) and gm is the complex conjugate of gm.

A measure fx on Bx>> is called circular от scalar invariant if it is invariant wllli 
respect to the scalar group

Bx" 3 x і— > e'^x Є Bx", Є (—7Г, 7г]

that is

J ft (êx) d[i(x) = J*h(x) dfx(x),
for every ft Є Cw* (B x ").

We denote by 'H'n with n є N the completion in L* (Bx") of nil п|>|>гпхІпніІ>І<' 

n-homogeneous polynomials Va(nX).

P r o p o s it io n  4.6. A norming measure ц on B\" is circular if and only 11 //'„ 
is orthogonal to U'n for тпф n. Moreover, in this case the following decomposition 
formula holds

(4.3) J h(x) dfi(x) = J dfi(x) J ft (e'̂ x) dd, ft Є Cw• (Bx")
and /і is necessary representing for origin evaluation complex homomorphism <50 over 
the algebra Aa(B).

P r o o f . Suppose that ,H'm is orthogonal to H'n for тпф n. Let ft be a finite 

sums ^  fndm • By the orthogonality /„ _L gm we have for every д Є [0,27г),

\h(x)dn(x)= 2  \ fn(x)gm{x)dn(x) = J]  \ fn(x)gn(x) dn(x)
J  n,m€Z+ n€Z+

= Yi f/n(z)5n(z)e,(n_n),9d/x(x) 
nez+ J

=  2  f  fn {el*x) gn (e'^x) dn(x)
n€Z+ J

= 2  \ fn (є1**) 9m d^{x) = f ft (ewz) dn(x).
■n . J JTi,m£Z+

In general, approaching any ft Є Cw* (BX") by the finite sums Xi fndm an(l using the 

continuity of integration of functions in Cw- (Bx") we obtain the equality

J  h(x) d/j,(x) =  J* ft (e,1?x) d/n(x)

for any ft Є  Cw- (BX" ) . So, the measure /і is circular. For every ft Є  Cw> (Bx") the 

function (і?, x) і— > h(eu)x) is continuous on (—7Г, 7Г] x Bx" • By the Fubini Theorem
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we have

J dfi(x) J h (e^x) dti = J dd J h (e'^x) d/x(x).

However, the second integral of the right hand does not depend of д Є (—7Г, 7г] and 
/ іое " ’ Є Cw* (Bx") for every h Є CW*(BX"). Taking into account the equality 

П,г dfi = 2tt we get (4.3). If /  Є Aa(B), then t <— > /(£x) is an analytic function on 
the unit disk D Є C. Thus,

J /(*) Ф(*) = ^  J Ф0*0 J / (eWx) eh? = /(0).
So, the measure ц is representing over Aa(B).

Conversely, let the measure /і be circular. Suppose that /„ Є V(nX) and gm ( 
V{mX). Then

J fn(x)gm(x) dn = J /„ (ei,?x) gm (ei,?x) d/i

= 2“  |/п(х)5т (х)ф (х) J gi(n—m)t? d?? =  0

if m ̂  ті. So, is orthogonal to □

Via the equality (4.2), the Choquet boundary 6 Aa{B) of the algebra Aa(B) is 
a subset of Bx"- Note that Arenson [3] for more general case has shown the equality

(4.4) dAa(B) = extc BX",

where extcBx" means the set of complex-extreme points of BX", that is, all point,s 
x Є Bx" not belonging to the relative interior of any set C(x, у) П B\" with у ф x, 
Here C(x,y) := {(1 - A)x + Xy: А Є C} for any x,y Є X " .

T h e o r e m  4.7. Let X  be a separable Banach space. Then there exists a probability/ 
measure ц, which is defined on the Choquet boundary dAa(B) of the uniform algebm 
Aa(B) and represents its ońgin evaluation functional <5o, and which is norming on 
Aa(B).

P r o o f . Let (yn)n&z+ be a dense sequence in the unit sphere Sx of X. Then 

(yn) is weak-star dense in Bx". For every yn we consider the unit circle with

—7Г < і? < 7Г. Put Xn = 2~nx, where x is the normalized Lebesgue measure on this 
unit circle. Let U be a Borel subset of Bx" C Ma. We set

v{U)= 2  Xn(t/n{eiV : 0 < t ? < 27r}). 
n€Z+

Let /  be a nonzero function in Aa(B) and /  be its Aron-Berner extension. Since / 
is weakly-star continuous on Bx", there is a weakly-star open subset O C X "  such 

that |/(x) |2 > 0 for every x Є О Л Bx". So,

f|/l2^ > f  \f\2 du>0, f  Є Aa(B)
joob v/f



4.1. ABSTRACT ПЛІШ У STACKS 117

On the other hand, since

f / ^ =  2  ^ / ( 0 )  =  / ( 0 ) ,  f e A a (B ) ,

J  n€Z+

the measure v  is representing for <5o over A a (B ) .  Moreover, the relation v  x  <5o is 
satisfied. But, there is a maximal representing measure /і for So over A a (B )  with 

respect to the order v У Sq. Via Corollary 4.3 such maximal measure /і X <5o is 
concentrated on the Choquet boundary d A a (B )  and it is norming on the algebra 
A a {B ) , because

j \ j f d n >  j\ f\2 dv , f  Є A a { B )

by the maximality. Thus, the statement is proved. □

D e f in it io n  4.8. We define the abstract Hardy space to be the closure in
the Lebesgue space L2 (Bx") with respect to a probability measure fi on the Choquet 
boundary 8 Aa{B), norming on Aa(B), and which represents the origin evaluation 
functional Jo over Aa(B).

Suppose that X  is a Banach complex space with the separable dual X і.
Let here E is defined to be the completion of X ' in the abstract Hardy space 

/H2a{p) endowed with the induced norm || • ||M and the scalar product (• | -)M. As 
usually, E' denotes its dual. It is clear that the weakly-star dense embedding of E 
into X "  holds. By Proposition 4.5,

IWU ^  IMU' or h\\x" < IMU 

for all x Є X ' and у Є E'. It means that the embeddings

I % E  =  E'<HX"

are norm continuous, and every open set of E with respect to the norm || • ||x" is also 
open relatively of || • ||M.

Let (ej)jgN be an orthonormal basis in E. Since X ' is a dense subspace of E, we 
can suppose that

Cj Є X ' for every j  Є N.

Thus, the weakly continuous linear extension of tj Є X і,

t j : X "  9 x і— >

is also continuous over E. As a consequence, the restriction t j  |e belongs to E via 
the Riesz theorem. These restrictions uniquely define the linear functionals

t'j := (• і t j)„ Є Е 'С  X", j  Є N,

which form an orthonormal basis in E' of continuous linear functionals over E. 
Consider the system of polynomials

U {e(i}: {i}€N",(*)GZ!*,|(fc)| = n}
to£Z-|-
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with all multi-indexes (k) =  (k i,. . . ,  kn) Є Z" and {j} = ( j i , ... , jn) є N" such that 

j i  <■■■ <jn ,  where

<?}(*) :=e*>).. .e* ;(* ) , i a " .

Denote by . (X") the dense subspace of Cw- [Bxn) , which consists of all 

finite sums h = 2 n,mez+ /nSmi where homogeneous polynomials /„ Є Va(nX) and 

Sm Є Po(m^ )  are considered as expanded on X " .
Let І Є X і C E. Then I' := (• | 1)̂  Є E' C X " . We say that a measure /і on Bx" 

is circular with respect to I € X ' if

J  h[x — l(x)l' + el^l(x)l') dfj,(x) = J  h(x) d/i{x)

for every h, Є (X") and і) Є (—7Г, 7г].
Repeating our previous arguments with Fubini’s theorem we have that if fi ін 

circular with respect to І Є X ', then

J h(x) dfi(x) =  J dfi(x) J h(x — l(x)l' + el^l(x)l') dd.

Theorem 4.9. The system of polynomials € forms an orthogonal basis in the 
abstract Hardy space Ті-Цц) if and only if the measure ц is circular with respect to 
the basis functional Cj Є X ' for every j  Є N.

Proof . Suppose that ц is circular with respect to tj Є X ' for every j. Show 
that polynomials £ are orthogonal. Suppose that {*} ф {j}. Then there exists an 
index j  Є N such that

e(fc) J=i em ks j (q) _  qi n qi
{<} eH • • • Ь  • • ■ Єі.  anQ  Є{і} “  ej l  ■ ■ • ■ ■ ■ Cji

for some т ф  n. Thus,

eg} (x - Ф Х  + є ^ Ф Х )  = X* . . . (e™»x?) ... **• =  eim«e$\(x) 

and by the same reason

еШ (x ~ г'Ах)гі + = ein^\f}(x), x Є X",

where Xj := e'j(x). Since т ф  n, we have

J  c{i}(x )e{ i} (x ) d̂ )  =  ^  J  *{*}(*)*{?}(*) Мх) J  ei(m~n)i) d'd = 0 . j

Hence, e g  _L e[J} in the space

Now we prove that £  is a basis in НЦр). Since tj Є X ' for every j  Є N, it, 

follows that e g  Є Aa(B) and so e g  Є 'Н'І(ц) for all polynomials egj Є <£. Let Wt 

be a closed linear span of all polynomials <£ in

Each function /  є can be approximated by functions from Aa(B) in
the norm of "Hg(/i). In turn, each function from Aa(B) can be approximated by
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polynomials of finite type in the uniform norm, ho in the norm of 'Н^(ц) as well. 
Therefore, if He ф %а(м) then there exists a nonzero polynomial of the form

P  = 1\І2 • • • L i

where is a finite sequence linear functionals in X', such that P  _L %<* in
Via Proposition 1.4 the corresponding lineal functional fp belongs to the 

dual space (©™E')' and possesses the orthogonal property fp  X ©”lE', since the 
generalizing of He system

{eg : Й Є Г ,  (fc)eZ?, |(fc)| = m}

is total in ©™E'. It follows that fp =  0 and so P — 0, that gives a contradiction. 
Hence, He =

Conversely, suppose that the system € forms an orthogonal basis in Then
every function h Є C° , (X ") can be presented in a form

(*0(g) e(fc)e(g) і(*0(<г)
h ~ 2  А{<}{і}'{<}'Ш’ Л« Ш

where e g , e^j Є £. It follows that

f  Ф) M*) = 2  * f  А{і}(ш ew  (x ) em  (x ) dv(x) •

=  2  f « • S w B w exp [ ^ m  ~  m ^ ]
{*}.(*)J

= 2  f AWW |e(0  (x ~ eej(x)eJ +

2  f  A{i}{j}e{8  (x  ~ eH x ) eJ + eWe J ( * ) e j ) x
J.1 /л-\ /ІЛ J

хеШ “  ej(x)ci + e,,?ej(x)ej) Ф (х)

= J/ i(x - t'j(x)tj -I- e’n}e'j (x)ej) dfx(x) 

for every h є (X"). Hence, /і is circular with respect to e' with any j  Є N. □

Note that some non-circular representing measures on the unit ball of C2 were 
discussed in [89].

Now we consider question: Does exist an open subset Q in E such that every 
f  Є can be expressed as an analytic function on Q? We do not know the
answer in the general case. Let us observe that each function in Aa(B) has the Aron- 
Berner extension to an analytic function on B\" ■ On the other hand, the natural



120 4. REPRO DU C IN G  KERNEL SPACES OK ANALYTIC FUNCTIONS

domain for linear functionals from is E. So, if an open set Q exists, it миші
be a subset of Bx" П E.

For every x = SieN XiCi Є E with Хі Є C we consider a formal power series

(4.5) Ф )  =  E S  E I
гаєZ+ <«0ez” {г}єК"

|(fc)|=n

where is denoted

%} — ||#(fc)||2 ’ W •“ *<»

T h e o r e m  4.10. Lei X  be a complex Banach space with separable dual and fi In it 
norming representing measure for Aa(B) such that the system (5 form an orthogotm 

basis in 'Н̂ (іл) for some (Cj)jeN in X і. Then the following statements are equivalent,

(i) There exists an open subset Q C E such that senes (Ą.5) is convergent Itt

for every x Є Q.

(ii) Hail1) a reproducing kernel space with the reproducing kernel

K{x, z) = (n(x) I q(z))E,

which is defined on Q x Q for some open subset Q C E.
(iii) For every x in an open subset Q C E the linear functional x \— > f(x) Ii 

continuous on W-lip) and each element f  Є 'Н.2 (ц) is an analytic fund mu 
on Q.

P r o o f . Suppose that (4.5) converges on an open subset Q of E. Then

<*m I ^ x))e =  cm xS  em  = xu\ =  cm (x)’ x є E-"{і} І '/W/E ~~ °{i}X{i}

So, ( /  I rj(x))E = f(x) if /  Є Aa(B) and we can put

f{x) = ( f  I q(s))E

for every /  E 'Н2 (ц) and x Є Q. Since r/(x) is an element in 'На(м) f°r апУ 
x Є Q, it follows that the linear functional

(■ |»/(*))E: /■—>/(*)

is continuous on 'Ha(^) for every x Є Q. By [90, p. 34],

K(x,z) = (r](z) І ф ) ) Е

is a reproducing kernel of %2(/л), which is defined on Q x Q. So, (i) implies (ii).
According to [90, p. 40], the map K(x, z) is continuous on QxQ. So, x i— ► »/'( r) 

is continuous on Q as well. On the other hand, from (4.5) we have that the lini'Kf 
functional

rj'(x) := (• І т]{х))Е, x e Q  

on 'HlifJ.) can be expressed by a convergent power series

I'M  - E L S  - € a
n6Z+ <*)€Z« {i}eN"

|(fc)|=n
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Hence T]' is G'-analytic on Q [31, p. 201]. The both G-analyticity an continuity 
of r[ implies that т/ is an analytic map on Q (see [31, p. 198]). Hence, for every

/  є
Q B x  i— »■ f(x)

is a composition of the analytic map Q 3 x i— > v'(x) and the linear functional 
r]'{x)(f) = f(x). So, it must be analytic and (ii) implies (iii).

Let now every /  є 'H'i(fJ-) be an analytic function on an open set Q < І м і н і  

for every x Є Q the ^-evaluation linear functional x i— ► f(x) with /  ( I"'
well defined and continuous. But this functional coincides with ?/(./■) on the IhimIn 
functions (£. Hence,

f{x) = ( /  І ф ) ) Е

for every x Є Q and so (4.5) is convergent. It follows that (iii) implies (i)

P r o b l e m . Let /і  be a norming circular representing meiusiire I'm A„( II) шиї Л' 
is separable. Does necessary exist an orthonormal basis (e' ) in E' such that // Is 

circular with respect to e' for every j  ?

4.1.3. Examples of abstract Hardy spaces.

E x a m p l e  4.11. Let X  = cq with the standard basis (ег)гЄк. Then

T-Luc(BCo) = Aa(BCo).

Denote by /і a measure on the open in unit ball В(ш, which is the infinity product 
of one-dimensional Lebesgue probability measures on intervals [—1,1]. It is easy to 
check that coordinate functionals (et)teN over form an orthogonal basis in E and

,(*)
eW

/[-1,1]"

^  dti1... dtin — 1.

t

'[-Ml"

So,

Ф )  =  S E E  *{<}*{<}•
neZ+  (fc)ez" {*}£№*

|((t)|=n

The space E coincides with the completion of the linear span of (e*) in the £2-norm 
and the domain Q of 77 is defined by

= 1 x =  2  Xiti є E: Iх*! < 1 f = n Bea
t€N J

The corresponding space НЦц) consists of all analytic functions on Q which can be 
expressed by

f(x) = ( /  I r/(x))E = J fr)(x)dn.

Evidently that /і is circular and all polynomials eg} together with 1 form an orthog

onal basis.
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Let ф Є M(H^C{B)) and (xa) be a net in X  such that ф(Р) = \іта ф(хп) lot
every polynomial P. Such net exists according to [6]. A given t Є C let us consiil< i
the net (txa). If |£| < 1, then the net (txa) determines an element in
which we denote by і * (/>, and

t * «/>(/) =  ^  *> (/„), / =  £  /пЄ
n£Z+

where fn are n-homogeneous polynomials. Let t = et1? with — 7r < t) < tt and \ Iii 
the Lebesgue probability measure on the unit circle

sV = eM*KM(c(B))-
Denote by the extension of \ to Borel subsets of M(T-L̂ C(B)),

цф{U) = x { u n s V ).

Then ^0 represents the point evaluation functional <5o and

J 9 йЦф =  J g (e" 3 * ф) dx(d)

for every continuous function g on M{H^C(B)). However, Цф is not norming.
The following example contains some nontrivial representing measure for III* 

space (Bfp) which is trivial on the subalgebra Aa (Bep) , where Bt denotes llin 
open unit ball in i v. Note that we do not know does exist a norming represent Ііц 

measure on the set of maximal ideals of H^c (B(p) .

E x a m p l e  4.12. (Cf. [2, Examle 3.1]). Let X  = i v for some positive intrust 
p > 1 with the standard basis (е*)іЄм- For every n Є N, put

Vn = ^  («і + ' •' + »n) ■

Since \\vn\\tp = 1, the point evaluation functional 8Vn : /  i— > f(vn) belongs to the и«і 

of maximal ideals of (Bep) . By the compactness of M (ji^c (B(p) ), there ім nil 

accumulating point ф Є M(H™C (Bfp) ) of the sequence (<S«„). On the other ha in I, 
(vn) is a weakly-zero sequence. Hence,

Ф(Л = hm f(vn) = / ( 0) = S0 (f)
П—УОО

for every weakly continuous function, in particular for every /  Є Aa (Bep) ■ Let /і* 
be the So -representing measure associated with ф, which is introduced above. Tlin 
support of this measure coincides with the set

je ,1? *</>:$£ (— 7Г, 7г]| =

= {ф Є M (U Z (ВЄр) ): W )  = Jim  /(е‘Ч ) ,  /  Є ? С  (**„), * Є (-«-.тг]}.

Since (e'^Vn) is a weak-zero sequence for each $, the Gelfand transform of every 

function f  Є Aa {Bfp) , /  vanishes on the support of Цф. Hence,



if /  Є Aa (В(р) and Цф = So on Aa (Btp).
But the situation is different if a function is not weakly continuous. For example,

let

£ * < • * )  (Be,).
' І Є  N '  ІЄ N

Then we have

ФІЯр) =  lim SVn (Qp) = 1 ф S0 (QP).
П—ІОО

Moreover, the following equality holds

J \Qp\2 d ^  =  £  e ^ e - ^ U (Q p )^ p )d x W  =  1.
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4.2. Hilbert-Schmidt analytic functions

Let in this section E means an complex separable Hilbert space with the scalar 

product (x I y)e and the norm ||x||e =  (x | x)]/2, (x, у Є E), in which be fixed an 

orthonormal basis {ej Є E: j  Є N}. Denote

В : = { іЄ  E: ||x||e < l} , S := {x Є E: ||x||e = l}.

Here, the symmetric Fock spaće is defined to be the orthogonal sum

F:= 0 № )  = C 0 E 0 (©2E)® (©?e)®4..
n€Z+

with the scalar product and the Hilbertian norm, respectively

(Ф I W)f =  Y l  І Шгг)^ Е , IIV’IIf =  (Ф І ^>р/2,

where ф =  0 n фп, ш = @n ujn є F and фп,ип Є ©£E. By Proposition 1.28 the 
system

& = {<^n: n Є Z+^,

** = {efAfc> є ° h E: {j} Є N", (k) Є Z ", |(A:)| = n},

forms an orthogonal basis in F. Here = 1 if |(fc)| = 0.

P r o p o s it io n  4.13. For each i s E a  Fourier decomposition of element ж1-0’1 in 
©JJE by the orthogonal basis Sn has the form

i!
Щ  1 ЧЛ /F(4.6) *®” = 2  2

(»)€z» {j}eNn
|(fc)|=n

As a F-valued function by the variable x Є В, the series of geometric vectors 

ш(х) =  0  x®n =  1 © x © x ® 2 © x ® 3 © • • •
n  6Z+
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ін an analytic function with the Fourier decomposition

" M  =  ©  2  2  т ш ^ і О р С -  j
neZ+ (k)ez" { j}£N " K

|(fc)|=n

Proof. Since x = 2 t6Nct(x | et)E, we have ||x||§ =  £ teN|(x І є*)е|2- So, я 
Fourier decomposition has a form of the series

ч*єм / m\=n{j}K) '

which is convergent in ©jJE. The last fact follows from the orthogonality of element» 

еШ *n and the equalities

_  V  V  -2ІІІ/»®” I i2ii.«ii?
2  2 ш н і <*®ч С > рі іі' 8 і 

i(«i-»0 i v >'

-  2  2  щ ї К 1 ® "  І ‘ ш ’ >pl2 =  ( 2  K* і ' * Г ) ”
I C f c M = n  / i l  Vі / \ f i = N  /|(fc)|=n{j} 4 teN

So, x®n is a continuous л-homogenous G^E-valued polynomials by x Є E.

On the other hand, using the orthogonal property x®n ± x®m at n ф m in p, 
we obtain the following equalities

IMx)||2 =  (w(x) j w(x))F

-  2  II*®Tf -  2  wit” = rrbp-
nez+  n e  z+ 11 He

Thus, the series © n x®n is absolutely and uniformly convergent in the space F Ini 
all ||x|| < 1 — є with є Є (0,1). The Taylor coefficients of u>(x) at origin are eqiml 
to x®n. Then, as is well-know [50, Proposition 2.4.2], the F-valued function uj(j ) 
is analytic by x Є B. Now it remains to substitute instead of coefficients x®ra thrli 
Fourier decompositions.

Recall that if all Taylors coefficients of an analytic complex function on В art 
homogeneous Hilbert-Schmidt polynomials then it means Hilbert-Schmidt analytic 
function (see e.g. [39]).

Applying Proposition 1.27, we can identify the continuous linear form

Фп := (’ І E) Фп Є ©(j E,

which belongs to the Hermitian dual space ©£E*, with the n-homogeneous Hilbert 
Schmidt polynomial

« : Е З Х И « ( Х )  :=



-s
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P r o p o s it io n  4.14. For each гр =  ® n( 7 \pn Є F with грп Є © £ E  assigns the 

unique Hilbert-Schmidt analytic function on the open ball B, bounded on any balls 

{єВ: 0 < є < 1},

■ф*(х) :=  (w (x)  I xp)f  =  Y  C W .  ^ B ,
n€Z+

with the Taylor coefficients at origin

v»;(*)= Ц  Ц  тйу еш )(х)(ей}1 х є Е -
{ j} € N „ w-

|(fc)|=n

Proof . It is enough to use the previous Proposition 4.13. In fact, any function 

%p* is the composition

il>*(x) — (гр* o uj)(x )

of corresponding linear continuous functional xp* =  (• | xp)f over F and F-valued 
analytic function by x  Є В. Hence, it is also analytic on В (see [50, Proposition 
3.1.2]).

For any x  = ra  Є В with ||o||e = 1 and r Є [0,1) we have

1 doil>*(ra)
C(a)«= n! drn r = 0

So, the polynomial is a Taylor coefficient of the analytic function ip*. Now its 
Fourier decomposition follows from (4.6). ’ □

The Hilbert space of complex Hilbert-Schmidt analytic functions in the open ball 

В and bounded on subballs {єВ: 0 < є < 1},

U 2 = [гр*: ір Є F} with the Fock norm ||̂*||-h2 =  IIV'IIfi

we mean the dual symmetric Fock space, associated with E. Respectively, the subspace 
of all n-homogeneous Hilbert-Schmidt polynomials

7V"E) := 

we equip by the induced norm

m \ w  =  ii^niiejE-

Consider in more details the system of homogeneous Hilbert-Schmidt polynomials 

<T := { C : n e Z +},

*»:= {еШ : {j} Є N"’ (VęZ+’ Kfc)l=”}-
generated by where
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P r o p o s it io n  4.15. Let xp =  ® „eZ+ xpn e F with tpn є ©JJE. The antiliniw 
mapping

(4.7) *: F в xp і— > гр* Є H 2 (resp. *: V„{nE))

is an isometry onto the space V.2 (resp. onto P|,(nE)) with the scalar product 

(4-8) (грі I xp*2 ) n 2  = (xp2 I ipi)r  V -b^eF

and the orthogonal basis S* (resp. S* in V^(nE)). The operators

, . Г ^ С [ Г ] : = ( Г \ С ( х , . ) ) п 2

Г п ^ С { Г п] := (Г п \х*п)н„

generated by the kernel

C(x,y) := (w(x) | w(y))f =  (w(y*) \ u(x*))w  

=  l  + y*(x) + y*2(x) + ...

for all x € В and у Є В U S (being Hilbert-Schmidt analytic by х Є В and ant I 

analytic by у Є В) and by the kernel

» '"(*) =  <»•" I *•”>*• -  2  £  ( E r ' S ’w ^ w  I
( k ) € Z «  { j } e N "  v
|(fc)|=n

for all x,y Є E are the identity mappings in H2 and Тц (nE), respectively.

P r o o f . The one-to-one anti-linear mappings (4.7) directly follow from Propiml 
tion 1.28. The antilinear isometry * is a consequence of the norm || • ||^2 definition 

Consequently, the set with |(fc)| = n and all {j} forms an orthogonal basis In 

■P(,("E). Using (4.6), we obtain

C(x,y) =  (u(x) |w(y))F= 2  (**" І У®">®»е
n6Z+ "

n€Z+ W ez" {j}eNn 
1(41=»

where the series is convergent for all x Є В and y e  В U S, since

| C ( x , y ) | <  Y  l(x  I 2/)e|” ~  1 _ , / д
пЄ Z+ І(ж I 2/>e |*

This implies that C(x, y) is analytic by x  Є В and anti-analytic by у є  В. Substituting 
the above expression for C(-, •) in (3.14) and using the orthogonal property xp* 1 
at пф m in H2, we have

xp*(x)= 2  (Гп\х*т ) п 2  = ( Г  |C(x,.)>
7lGZ-|_

n 2



for all x Є В. In particular,

/-*(*) I r *n\ _  Л І _  /-*■(*=) I _  , * W ( X )
\c(j) \x /W  ~ fa)] U) W  Ve(j) I *0) /ті* “  e(i) W

for all Є S’n, hence C(-, •) produces the identity mapping in H2. □
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Theorem 4.15 can also be treated as some functional generalization of the Cauchy 
type integral formula for analytic functions. This can be formulated as follows.

Corollary 4.16. Each analytic function ip* є H 2 can be uniquely written in 

the Cauchy type form

С[Г](х) =  ( Г  \C{x,-))H3, x€B.

Corollary 4.17. Each analytic function ip* є V.2 can be uniquely written in 
the Poisson type form

(4.10) &[ф*](х) = (гр* I &>{x,-))n2, x Є В 

with the kernel

0>{x,y) := 1 7 И Ц  > 0, у Є BUS.
|1 - (x І у)ЕІ2

Proof . If we put *

then ф* Є H2 and ф*(х) =  гр*(х) for all x Є В. Hence, we have

я т ю  =  (ф* I c{x, -))H2 =  ( p  і &(x,-))w ,

since •

& (x y) -  1 - INIIi = C(x,y)C(y,x) -
|1 -  (x | у )е \2 C (x , x )

for all x Є В and j/ 6 BuS. □

The Hardy class T-L2(d<;) from the Section 3.1 and the Hermitian dual of symmetric 

Fock space

H2 = F*
possesses the same orthogonal basis S* (see Theorem 3.6).

Proposition 4.18. Let /  = 2 „ eZ+ /*» є F with /*» Є ©£E. Every element

f * = Y i f : t ' H 2 with /* Є P[,(nE)

generates the analytic function on the Hilbertian open ball В

(4.11) ff[/*](x) := Г  (  0  x®") = 2  /»(*). ^ B
'  n€Z+ '  n€Z+



128 4. RE PRO DU C IN G  KERNEL SPACES OK ANALYTIC FUNCTIONS

with the Taylor series at the origin

2 2 xeE
<*)«+ {j'}€Nn "
|(fc)|=n

and the point-evaluation functional

is continuous for every X  Є В.

P roof . In fact, since

?[/*](*) = ("(*) I / ) F

and w(x) є F for every ж Є B, the functional is continuous on the space H1 
endowed with the norm induced by F. 9

Proposition 4.19. In the case if

nr = 1 for all r є N, 

the following contractive dense embeddings

(4.12) T-L2 (dq) H2 and ^ < b ^ ( " E )

for all n € Z+ hold.

P roof. By Proposition 1.28 the system & forms an orthogonal bases in thn 
symmetric Fock space F and

l O M l « SE = f .  fora11 « €N”-
Now from Theorem 3.7 it follows, that

N ®(fc)||2 < i _  ||c*(fc) II2
ІІеШ  IIf s  1 -  ІІеШ  Wą-

Via Theorem 3.6 for every function /* є У.2 there exists a Fourier decomposition

f n =  2  2  4 Ї С  in
mez* {jjem
|(fc)|=n

with the coefficients a g j Є C. It follows, that

Ak) |2 (k)\
n/nii|»E - 2  2  Іа ш . n,

|(k)|=n{j}eN"

^ 2 2  l“ m l2 = ll/nlli? - 
|(fc)|=n {j}eN"

Hence, the embedding H 2 4-> V^(nE) is contractive for all n. Therefore

ii/Hf = 2  n/niilSE< 2  шіі? = илі£?
ti£Z_|_ tiGZ+
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for all /* = 2 „ /n  є H 2(dę) with f* € 'H'i and the embeddings (4.12) are proved. 
Since the system S* forms an orthogonal basis in 7i2 for all n, the embeddings (4.12) 

are dense. П

Theorem 4.20. Let x є BpIBg3 and f* € Tl2 C\U2 (ds). Then

£[/*](*) =  3 № )

for any integer sequence (nr).

P roof . We observe that

«[/•](*) =  *»(/*), 3Г[Л (*) = ^ ( Л

and both Sx and Ŝ . are continuous if x Є В ("| BgP. So they coincide on the common 

domain if they are equal each to other on basis functions. But

s, ) = <;?*■ w ■ (*>••••• 'if"  (*>

for all multi-indexes (fc) and {j}. So,

Є[Л(х) =  ЗІЛ (х)

for every /* є H2 Г) ft2(dę) and Bf] Bg3. □
« і

The following proposition gives a natural isomorphism between H 2 and H2 (dę)

for any integer sequence (nr ) . і

Proposition 4.21. Let J  be a linear operator from H 2 to ft2(c?ę) defined on 

the basis functions by the following way

J
/(fc)!

*®(k)

еш
V n!

\ /  \  ш  | е ш  / L?

= j m  ^  „ = KU),.
\  /  V 77.! / /  *6S(k) і \

Then J  is an isometrical isomorphism.

P roof . From the definition of J  we have that

*<g>(fc) \
e{i) \ =  6Ш

ii <2>(fe) II I || ii ’
\\e{j} IlF)  l|e{j} ||L?

That is, J  maps one-to-one the orthonormal basis of V? onto the orthonormal basis 

of H2 (d<;). So J  is an isometrical isomorphism. □

Note that if nr = 1 for all r Є N, then

T(  *®(k)\ I (fc)! *<8>(*Q 

) -  V n\
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4.3. Holomorphicity and generalized symmetric Fock spaces

4.3.1. Generalized symmetric Fock spaces. Let E means an complex sop 
arable Hilbert space in which is fixed an orthonormal basis {є* Є E: і £ N}. For 
any Fourier expansion x =  with £ C convergent in E we have tlml
Хі = (x І Єі)е- In the algebraic direct sum

C 4- E + ©2E 4--- (- ©nE+

we consider the system

*  = U { * w ): {<}€№*, (fc) є Z " , |(fc)|=n},
n6Z+

where {i} = ( i i , . . . , t „ )e N "  such that ii < ••• < i n and eg  =  1 if |(fc)| = 0. It Ія

also clear that e®^ Є ©"E and for all x £ E we have

.$>(*) = <X®" I „ = |(*)|. I
Then we can consider the system

*̂ = U {ew : WeN”, {k)£ Zl, I(fe)|=n},
neZ+

of Hilbert-Schmidt polynomials over E,

— T(fc) r (fc) -- Tk 1
e { i }  \x > ~  X { i} ’ x { i }  •“  x h  ■ ■ -x i n і

where {i} =  ( i i , ... ,i„) £ N” such that ii < • • • < i„ and eg  = 1 if |(fc)| =  0.

We say that a Hilbert space Fr( with an arbitrary norm || • ||̂ is an (generalized) 
symmetric Fock space over E if the system §  forms an orthogonal basis in Fr( (mil 
necessarily, orthonormal).

Evidently, the norm || • Ц,, is completely defined by its value on the basis vectors fi,
• (X) (k}

Hence, setting eгД by arbitrary positive numbers, we can get various symmetricI J jj

Fock type space over E. Let (• | -)v be the scalar product in F .̂ Put

: n =  |(fc)| = 0,

: n =  |(A;)j = 1 for all {і} =  і Є N.
M  .. 
с {і } -

®(fc) -2
-(*) _  /

ew )
4 c{i} - \

Let us consider a formal power series

(4.13) rj(x) =  2  2  2  cg XW eWfc)’ x € E
п Є Z +  ( * ) € Z £  { , } e N "

|(fc)|=n

T h e o r e m  4.22. Suppose, that there are constants c > 0 and M  > 0 such tluil 
for all multi-indexes {г} Є N” and (к) £ Z" inequalities

(4.14) e g  < n = |(fe)| Є N

hold. Then there exists an open zero neighbourhood Q C E such that:
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(i) the senes (4.13) is convergent for even) x Є Q and r] is an analytic map 

from Q into F,,;
(ii) for every ф £ Fv the map

/</>(*) = ( Ф )  І Ф)^ X ^ Q

is an analytic function on Q;

(iii) the function (r](x) I e f «  ) is an n -homogeneous polynomial and

( Ф )  Ie®f)>, =  xg{, ХЄЕ.

P roo f. Evidently, 77(0) = 1. For any fixed n Є Z+ let

■*.<*)- £  £  « І Ш У .  i e E -
W e z ”  { i } 6 N "
|(fc)| = n

It is clear that г]п{х) is an n-homogeneous Hilbert-Schmidt polynomial from E to 

F .̂ For every x Є E, ||x||e <1  we can write

i f e w i i ; -  £  £  ( « « Й 4
W €Z » { i } e N "
|(fc)|=n

(fc) (fc) ®(fc)\

£  £  (48)’И8
(k)ez" {i}em
l(*)l=n

®(fc)

Є{і} = £  £  4 ‘ !
(fc)ez^ {i}€N"
|(fc)|=n

.(*)
C{i}

Wez" {г}єМ"
|(fc)|=n

T(*)
X{i}

= cM2n(£N !)“ =
4«€N 7

сМ 2п||а;||р.

Thus, we obtain

sup ||ł7n(x)||T/ < л/сМ"||х|ІЕ.
II*II<1

Hence, the radius of uniform convergence of 77 at zero is equal to

eofa) =  (limsup Цт7п|іУп) > ( n^ ŝ P (V~cMn)1/n ) =  ~-

Thus 77 is an analytic map in an open neighborhood of zero of radius 1/M. Denote 

by Q the domain of analyticity of 77 in E.
Let ф Є Frr Then the map f<p is the composition of the analytic maps 77(1 ) and 

ф and so it is analytic (see [50]). Also, we can see

<g>(fc)\

n€Z+ (*)ez£ {i}£N"
|(fc)| =  n

e(i) // r,

®(fc)
e{i}

-  x { iy -  Xh  .--x in

for any x Є Q, that it was necessary to prove. □
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Let us denote H n the Hilbert space of analytic function

/</> = ivi') І Ф)гіі Ф Є

that is Hermitian dual to F,(. We will use the same symbol (• | -)v for the scali 
product in Hrv Define an involution in Fr) respectively (• | -)r?, using the comph 

conjugation in Hv■ Thus, /  є F4 is such that /  = (• | /}v for all /  є 'Hr). I 
particularly, f(x) =  (r)(x) | f ) n, thus f j  = /. Also for any g Є Fv we mean 

function from Hri such that g = {■ \ g)v-

Proposition 4.23. A map K : E x E — >■ C defined by

K(x,z) = (r){z) I fj(x))v = ( ф )  177(^)>Ty

is a reproducing kernel for 7i,r

The proof immediately follows from Theorem 1.33 for h(x) fj(x).

Example 4.24. For a fixed positive integer m set

у  ( m - l  + fc)! 0fc_  у  (m — 1 + k)\ /  у  \

у  y i У  (m - 1 + k)\ |(fc)|! 0 (fc)

п Й + Д { і ^ п  ( r a  -  ! ) !fc! ( * ) !  {i}
|(fc)|=n

(|(fc)[! + m -  l) !ca(fc)j ( fc)

Yt Z  S  (m — l)!(fc)! '<*> ‘‘'W
n£Z+ (*)€Z" {i}6Nn V K 1

|(fc)|=n

It follows that
(fc) (l(fc)|! + m — 1)!

(m — l)!(fc)!

We can show directly that r] is an analytic map from the unit open ball В C 
to Fv for every m Є N. Indeed, since

1 _  1 /  1 V "  ^  _  у  (m ~ 1 + k)l k
(1 - t )m (to — l)!Ar! ’

where t is an independent variable and ( ^ ) (т ^ is the (m — l)th derivation < 

l - t  • ® °>

Thus rj is well defined on В and locally bounded. Moreover 77 is a G-analytic map 0 
В as an absolutely convergent power series on В intersected with an arbitrary finit< 
dimensional subspace. Hence, rj is analytic and Hn is a Hilbert space of analyti 
function on B. Note that Hr, coincides with the classical Hardy space on the un 
ball if (and only if) dim E = m.



Theorem 4.22 admits the next generalization. Let

(4.15) ,( * )=  S E E  ‘ 8 М Ї №  * « €C
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r»eZ+ (fc)eẑ  {i}gN"
|(fc)| =  n

be a formal power series with x =  XlteN Xlti є E an(l (xi) Є (-2 - Denote by N  the set 

of pairs of multi-indexes ({*}, (fc)) such that bgj = 0. Let

=  span {e®(}fc): ({*}, (fc)) Є Л/'}.

The linear space F/ Vjv- is spanned on the all vectors c®^ with ({*}, (fc)) AT. We 

define a norm on F/Vyy by
1®(fe)

eW

assuming that such forms an orthogonal basis in (F/N/V, || • \\v) . Denote by

Fr( the completion of F/Vjv by such || • ||„. Notice that power series (4.15) is an 

analytic map if and only if

Q j jB x  і—> J] X j X j |bW
n€Z+ W ez" {j}gNn 

l(*)l="

(fc) ®(fc) 
Х{І}Є{<}

is an analytic map in an open domain Qx  C E and

^(fe)

Ш 1 1« \  - x 6 Qm- •
\bw
I °{i}

4.3.2. H ilbert spaces of entire functions. In this section we consider the 

case when Hn =  F* consists with entire functions on a separable Hilbert complex 

space E with an orthonormal basis

{є, Є E: і Є N}

P roposit ion  4.25. Suppose that there exists a constant c > 0 and a sequence 

of positive numbers (Mn), Mn —» 0 as n —> oo such that

,<*> < cM 2n —
C{ i }  -  C M n  feJ

for all indexes (fc) Є Z” so that n = |(fc)|, where

®(fc)

Є{і}

- 2

V

and e®(}fc) Є & is an orthogonal basis in Fr(. Then

is a Hilbert space of entire functions of bounded type on E.
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P roof . Repeating the proof of Theorem 4.22 we can see that the series

®(k 
Є{і}* * >  =  £  £  £  4 К ! ' Г

n€Z+ (fc)ez" {i}€N"
|(fc)|=n

is an analytic map with the radius of uniform convergence

q0 (t]) = limsup -1- = oo.
n —>00

Hence f] is an entire map of bounded type from E into Fr;. Thus, every fund,inn 
f  Є /HV is an entire function of bounded type on E, as a composition of bounded type 
entire map and linear continuous functional. I I

The next proposition gives another test for Hv to be a space of entire function*

P roposition 4.26. Suppose that

lim iM iJk = o. 
n-yo° WvnU

Then Hv consists with bounded type entire functions.

P roof . By the ratio test the power series 2nez+ is absolutely convergent

for every t Є C. Thus, by the Cauchy-Hadamard formula,

limsup (\\rjn||1/n) =oo
71—ЮО '  '

and T] is hence an entire mapping. I )

Example 4.27. Let
x®n

»»(*) =  2  -тп-> х є Е -
n 6Z+ П!

Denote by H2(E) the corresponding space Hrr It is easy to see that H 2{E) consist 
with bounded type entire functions on E and

2 = (fc)!, n = |(*)|. 
v

The reproduction kernel of this space is

(x®n I z®n)

®(fc)

e{i}

K(z,x) = (r1(x)\r1(z))tt=  Y  , n [ ) 2

-  £  £  £  h(w)
n€Z+ (k)ez^ {i}€Nn П- \ W - /

2 2 ®(fc)
C{i}

=  V  - 2 L ; ( fc> =  V
Z j  (U)\X{*} L J n ! Є >

n€Z+ W ’ n€Z+ П-

and for every function from H2 (E) there exists a unique w g F ,  such that

(4.16) fw(x) = (r)(x) I w).
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On the contrary, for any vector w Є F,( we have є ’W2(E). According to [80] 

H2(E) is an infinite tensor product of

7*2 ( 0  =  | / e H(C): Jc \f(z)\2e~ ^dz  < oo j .

4.3.3. More examples of reproducing function. Let D be the open unit 
disk in C. Denote by Гг, 0 < r < oo the set of all analytic functions on rD if r < oo, 
and on C if r — oo,

rD 9 11—ł 7 (t) = 7ntn, 7n > 0.
пЄХ+

Let Г2 be a stand for both rD and C. Evidently, Гг is an open convex subset of the 

Frechet space of all analytic functions H2 (Q) on fi.

P r o p o s it io n  4.28. For a given 7  є Гг and a Hilbert space E the function

rB 3 x 1—¥ T][y](x) = Y  7r»zn
n€Z+

is an analytic map from the ball rB C E (where rE =  E if r =  00) to F,, and

(4-17) ІМ7](*)НЇ =  (vh](x) I *?[7](*))чН =  7 (IMli)

for every x Є rB.

P r o o f . By the Cauchy-Hadamard formula

limsup(7„)1/n < 1/r.
n—>00

On the other hand,

(4.18) ф\(х) =  Y  7„xn = Z E E  1 пЩ\еІ l}fc)x{i}-
n€Z+ n€Z+ W ez"

|(fc)|=n

We can apply Theorem 4.22 for Mn = yn. Calculating we have

IM7](*)||J=<»7[7](*)l»7[7](*)>l|pr]= E  7n(x I x)e
nGZ+

S i S  Ї  (m Y
ez+ Wez" {j}€N"

\(k)\=n

( n! V -(*)
2 ®(k)

x{i} eW

n\
Since 7п 77TT = -, we obtain

<*>' H u l ls ’

IWmwiiJ = S ’» S  Z  (щт)
716Z+ (k)SZJ {»}6Nn r /

x (fc) 
X{i}

|<fc)|=r*

= E  7 n M 2" = 7 ( M 2).
n€ Z+
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Hence, the equation (4.17) is proved. P

We say that r] is generated by 7 . Note, that the reproducing function 7; In 
Example 4.24 is generated by

= (1-t)™’ 1

and in Example 4.27 is generated by 7 ( t )  = e4.
It is clear that operations of addition and multiplication of functions preserve the 

set Гг. The proof of next technical lemma directly follows from definitions.

Lemma 4.29. Let rj 1 and щ be reproducing functions with the same domain 
Q C E. Then

Vi +V2 

77 2
is a reproducing function with domain Q and

2 2
(4.19)

®(k)

J{i} ®(fc)ii-2  . 
e{i} ІІЧ1 e { i }  11 >72

Corollary 4.30. Let 71 and 72 belongs to Гг. Then the reproducing function

’7 1 + 72"
V

which is defined by 7lt 72 is coincides with

Vlli] + Ф 2]

where rji and % are defined to be 77(71] and [̂72], respectively. Hence, norms of 
basic vectors of 'Hri can be computed by (4.19).

L e t  7 , t  Є  Г г , 7 ( t )  =  2 n6Z+ t » 7 n , a n d  r ( t )  =  H neZ+ t n r n . T h e n  £ ( t )  : •  

7 ( t ) r ( t )  Є  Г г a n d

П

£n ~  IkTn-k =  7 lT~m-
k=0 l+m=n

Let {г} Є and (k) Є Z+. Comparing (4.18) with (4.13) for

X  =  Єіі + ----1- Сід,,

2
where c[k] := ®(fc)

e{ i }

l l  =
[k)\

, we have for arbitrary (k) Є Z+ such that |(/c)| = /,

I {i} llr/[7]

. By the same reasons, for any (p) Є Z+ such that |(fc)| = 111,

7~m. —

“ Ч І'Й ІІЗ м

-. On the othoi



(<?)!

4.3. H OLO M O RPH IC IT Y  AND GENERA LIZED  SYM M ET RIC  FOCK SPACES
"V

137

hand, for (q) Є Z+ such that \(k)\ = I + m = n, and £n =
n !||e (r9 ) 'i2

‘{i} "*?[«]

(4.20) .(«) 2 _  (9)! /
cw »)[£] l(9)|! \

and so

-і

where the sum taken over all multi-indexes (fc), (p) Є lĄ_ such that

®(fc) ~  ®(p) _  ®(?)
«

Therefore we have proved the following assertion.

P r o p o s it io n  4.31. If 7  and r  belongs to Гг, then 7 т belongs to ГГ and (4.20) 

holds.

Let now 7  Є ГГ and т Є IV  Denote by

7 ® r(i,s) := 7 (t)r(s) 

the tensor product of functions. Set

7j[7® т](х,у) := 2  7 кТтх®кУ®т ,
fc,m€Z+

where і  Є Ei and у Є E2 for some Hilbert spaces Ei and E2. Let (є*,) be an 
orthonormal basis in Ex and (a*) an orthonormal basis in E2.

P r o p o s it io n  4.32. The function 77(7 <g> r] is reproducing with the domain 

rBEl x Ше2 and
Лк)Лт) ,(fc)
{*} {І} ??[7<g>r] ew »)[7] am vM

P r o o f . Let x =  -I-----b ein and у =  cl,-, H-----1- oJ r  Then the proof it follows
from Theorem 4.22 and the representation

r „ 1/ \ |(fc)|!|M|! (fc) (m) (fc) (m)
Ф ®r}(x,y)= 2] t iw h m i  (m m V  e{i}aw x{i}y{j}'

where the sum taken over all multi-indexes (fc) Є Z ", (m) Є Z+, {і} Є N", and 

{j} Є N*. * □

Notes and Remarks. In [16] E. Bishop and K. De Leeuw introduced and in
vestigated representing measures on subspaces and subalgebras of algebra C(Q) and 
proved Theorem 4.2. Abstract Hardy spaces were investigated by T.Gamelin. In 
particular, Proposition 4.4 is in [43]. In Section 4.2 we present some specification 
of statements from [56] (other interpretation of these statements was given in [83, 
Theorem 2.6]). Proposition 4.14 is proved in [56]. Notice that an approach to Hilber- 
tian Hardy type classes, being reproducing kernel spaces on infinite-dimensional balls, 
which generally not having form of a polydisk, using the Bishop-De Leeuw theorem 
about representing measures, have been proposed in [59]. Other examples of repro
ducing kernel Hilbertian Hardy type spaces were studied in [55, 57]. Theorem 4.20 

is proved in [61].
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