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k-BITRANSITIVE AND COMPOUND OPERATORS ON BANACH SPACES

In this this paper, we introduce new classes of operators in complex Banach spaces, which we
call k-bitransitive operators and compound operators to study the direct sum of diskcyclic operators.
We create a set of sufficient conditions for an operator to be k-bitransitive or compound. We give
a relation between topologically mixing operators and compound operators. Also, we extend the
Godefroy-Shapiro Criterion for topologically mixing operators to compound operators.

Key words and phrases: hypercyclic operators, diskcyclic operators, weakly mixing operators, di-
rect sums.

1 University of Duhok, 38 Zakho str., 1006 Aj Duhok, Duhok, Iraq
2 Universiti Putra Malaysia, Jalan Upm, 43400 Serdang, Selanor, Malaysia
E-mail: nareen_bamerni@yahoo.com(Bamerni N.), akilicman@yahoo.com (Kilicman A.)

INTRODUCTION

A bounded linear operator T on a separable Banach space X is hypercyclic if there is a
vector x € X such that Orb(T,x) = {T"x:n > 0} is dense in X, such a vector x is called
hypercyclic for T. Similarly, an operator T is called diskcyclic if there is a vector x € X such
that the disk orbit DOrb(T, x) = {aT"x : « € C, |a| < 1,n € N} is dense in X, such a vector x
is called diskcyclic for T. In Banach spaces, hypercyclic (or diskcyclic) operators are identical
to topological transitive (or disk transitive, respectively) [3, 4].

Definition 1. A bounded linear operator T : X — X is called

1. topological transitive, if for any two non empty open sets U and V, there exists a positive
integer n such that T"U NV # &;

2. disk transitive, if for any two non empty open sets U and V, there exist a positive integer
nandwa € C,0 < |a| <1, such that T"aU NV # @.

For more information on hypercyclic and diskcyclic operators the reader may refer to [2, 3,
4, 11].

A sufficient condition for hypercyclicity, the well known Hypercyclicity Criterion, indepen-
dently discovered by Kitai [13] and Gethner and Shapiro [9]. Latter on, Godefroy and Shapiro
[10] created another hypercyclic criterion which is called Godefroy-Shapiro Criterion, that is a
set of sufficient condition in terms of the eigenvalues of an operator to be hypercyclic.

In 1982, Kitai [13] showed that if T; & T, is hypercyclic, then T; and T, are hypercyclic.
However, for the converse, Salas constructed an operator T such that both it and its adjoint
T* are hypercyclic, and so that their direct sum T @ T* is not. Moreover, Herrero asked in [12]
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whether T @ T is hypercyclic whenever T is. De la Rosa and Read [7] showed that the Herrero’s
question is not true by giving a hypercyclic operator T such that T @ T is not. On the other
hand, if T satisfies hypercyclic criterion, then T @ T is hypercyclic [4]. In 1999, Bés and Peris [5]
proved that the converse is also true; that is, if T @ T is hypercyclic, then T satisfies hypercyclic
criterion.

For diskcyclic operators, Zeana proved that if the direct sum of k operators is diskcyclic
then every operator is diskcyclic [14]. However, the converse is unknown. Particularly, we
have the following question:

Question 1. If there are k diskcyclic operators, what about their direct sum?

The main purpose of this paper is to give a partial answer to this question by defining
and studying a new class of operators, namely k-bitransitive operators. We determine condi-
tions that ensure a linear operator to be k- bitransitive which is called k-bitransitive criterion.
We use this criterion to show that in some cases the direct sum of k diskcyclic operators is
k-bitransitive. Then, we define compound operators as a general form of mixing operators [6]
to show that under certain conditions the direct sum of k diskcyclic operators is k-bitransitive.
Then, we studied some properties of compound operators. In particular, we give some suf-
ficient conditions for an operator to be compound which is refer to compound criterion. We
use this criterion to show that not every compound operator is mixing. Finally, we extend
Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing operators to compound operators. In
particular, a special case of Theorem 3 is when p = 1 which is Godefroy-Shapiro Criterion.

1 MAIN RESULTS

In this this paper, all Banach spaces are separable over the field C of complex numbers. We
denote by ID the closed unit disk in C, by IN the set of all positive integers and by 5(X) the set
of all bounded linear operators on a Banach space X.

Let k be a positive integer and T; € B(X) for all 1 < i < k and let
T = @5‘:1 T; : @5‘:1 X — @5‘:1 X then we call each operator T; a component of T.

Definition 2. An operator T is called k-bitransitive if there exist Ty, Ty, - - - Ty, € B(X) such that
T = 695:1 T; and for any 2k-tuples Uy, --- , Uy, Vi, -+, Vi C X of nonempty open sets, there
exist somen € N and ay, - - -, € D\ {0} such that

k k

It is clear from Definition 2 above that 1-bitransitive is identical to disk transitive which in
turn identical to diskcyclic.
To simplify Definition 2 above, we provide the following definition.

Definition 3. Let r € IN be fixed. For each1 < i < r, let T; be a bounded linear operator

on a Banach space X, and A;, B; be nonempty subsets of X. Assume thatT = @] _;T;, A =
i 1Ajand B = @)_ B;. The junction set from the set A to the set B under T is defined as

Jr(A,B) ={(n,aq,--- ,0,) € Nx D"\ {(0,---,0)} : T"(D}_, w;A;) N (Bi_, B;) # &}



k-BITRANSITIVE AND COMPOUND OPERATORS ON BANACH SPACES 5

In Definition 3 above, we sometimes write J7(A, B) as J(A, B). The next proposition gives
an equivalent definition to k-bitransitivity in terms of junction set.

Proposition 1. Let T = @;‘:1 T;. Then T is k-bitransitive if and only if for each1 < i < k and
any nonempty open sets U; and Vj, there exist a; € D\ {0} and n € IN such that

(1’1, “i) € ]Ti(ui’ ‘/1)

The proof follows immediately by applying the definition of junction sets to Definition 2.
To answer Question 1, we need the following proposition, which gives a set of sufficient
conditions for k-bitransitivity.

Proposition 2 (k-bitransitive criterion). Let T = @5{:1 T;, and let {n,},.n be an increasing
sequence of positive integers. Suppose that for each 1 < i < k there exist a sequence {)\Sr)} C

D\ {0}, dense sets X;,Y; C X, and amap S; : Y; — X such that for all (x1,--- ,x¢) € @, X;
and (y1,- - ,Yx) € @;{:1 Y;, we have

() | @A T (|| = 0

(ii) H@ T k)

Afj,
(i) D TSI (y1, -+ ye) = (1, -+, Yk)
asr — oo. Then T is k-bitransitive.

Proof. Let U;, V; be open subsets of X forall 1 < i < k, then @le U; and 695-‘:1 V; are open in
BF | X. Also @*_, X; and @*_, Y; are dense in BF_; X. Let

k k
(x1,---,x) e PUNEP X;
i=1 i=1
and
k k
(]/1;" : /yk) € @‘/lm@yl
i=1 i=1

Suppose that z, = (x1, -, ;) + @5, ﬁs?f (y1,- -+ ,yx)- By (ii), as r — oo we have

k
1
llzr — (%1, -, x0) || = @T.)S?r(yl,- Yk (1)
i=1 /\n,
Since )
1
@Anr T?’lr Zr @Anr Tn" ( X1, P k)‘}'@wszl’(yl/ /yk)> ,
i=1 "‘n,
then by (i) and (iii), we have
k _ k .
@Ai(/llr)Tlnr(Zi’> - (}/1/ te /yk) @)\i(’lzy)Tz‘nr(xll o ,Xk> —0, (2)
] i=1
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as r —> oo From Equations (1) and (2), there exists N € IN such that zy € @, U; and

D nr Tn’( N) € @D |V, that is,
k ) k k
@AS)TP (@ Uz‘) NEPV; # @ forallr > N,
i=1 i=1 i=1

which is equivalent to

(e aT)" AU e - eAPu)ynvie - -ev) £2 forall r>N.

That is,
(nr, ) €Jr(U;,V;) forall 1<i<k

By Proposition 1, T is k-bitransitive.

The following theorem gives a partial answer to Question 1.

Theorem 1. If k operators satisty diskcyclic criterion for the same increasing sequence of posi-

tive integers {n, },., then their direct sum is a k-bitransitive operator.

Proof. Let T; € B(X) satisfies diskcyclic criterion with respect to the same increasing sequence
of positive integers {”r}re]N forall1 < i < k[2, Theorem 2.6]. Then for each 1 < i < k, there

exists a sequence {A,(li,) }re]N € D\ {0}, two dense sets D;, D! and a map S; such that for all

x; € D;jand y; € D!, we have

— 0,

4

’ )L,(llr) Tlﬁ’xi
_S;”lryl

1
A

(i)

ny

T"S!"y; — v

as v — co. By Equation (3), we get Zle ) )\Sj} TZ.”’ x;|| — 0O; that is,

k

@ 1y an ’ /xk)

=1

—0

as r — oo. Also by Equation (4), we get Y5, A%pS?’yi — 0; that is,
| 1
P T-)S?’(ylr L yk)|| — 0
i=1 /\n,

as r — oo. Finally, by Equation (5), we get (T;"S{"y1, -+, T,"S;"yx) — (Y1, -

k

BT S wa,ye) = Wi k)
i=1

as r — oo. By Proposition 2, we get T = @%_, T; is k-bitransitive.

3)
(4)
(5)

(6)

(7)

,Yx); that s,

(8)
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To give another partial answer to Question 1, we define another class of operators which is
called compound operators.

Definition 4. Let T € B(X). Then T is called compound if for any nonempty open sets U and
V, there exist some N € N and a sequence {a,}, . € D\ {0} such that

T (a,U) NV # &
foralln > N.

The following theorem gives another partial answer to Question 1. First, we need the fol-
lowing lemma.

Lemma 1. If T € B(X) is diskcyclic, then there exist an increasing sequence of positive integers
{mf}je]N and a sequence {’ij} C D\ {0} such that {(m]-,'ymj) j € IN} C J(U,V) for any
two nonempty open sets U, V C X.

Proof. Let (n1,a1) € J(U,V),andlet W =UNT™ ™ {XllV. Since W is open set, then there exist
ny € N and ay € D such that (np,ap) € J(W, W), that is,

1
T2aUN T M2V AUNT ™M=V # 2.
01 251
It follows that
T2a0,UNT MV #£ @,
Now, we have
T aaU NV = T (TPaaUN T MV) # 2,

that is,
(ny +ny, ) € J(U, V).

By continuing the same process, we get (Z{Zl n, [T_,a;) € J(U,V) for any j,n; € N and

a; € D. Letm; = Z; 1 niand Ymj = ]—H:l a; for all j € IN, then

{Omj,vm) :j €N} € (U, v),
UJ

Theorem 2. Let T = @*_, T;. If every component of T is disk transitive and at least (k — 1) of
them are compound, then T is k-bitransitive.

Proof. Without loss of generality, we suppose that k = 2 and T; is compound. Let Uy, Uy, V1, V>
be nonempty open sets, by hypothesis there exist Nj, N, € N, a1 € D\ {0} and a sequence
{Bn :n € N} C D\ {0} such that

Tleleul N U, # @ and T{’,anl NV, # 2
for all n > Nj. By Lemma 1, there exist N € IN and « € D\ {0} such that
TNalyNU, # @ and TNBNVI NV, # .

It follows that
(Tl ©® TQ)N(Déul ©® [SNV1) N (UQ ©® Vg) #+ .

Hence T is 2-bitransitive. O
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It is clear that every compound operator is diskcyclic. A special case of compound operator
iswhenwa, = 1foralln > N, and it is called mixing operators (see [6]). Therefore every mixing
operator is compound. However, not every compound operator is mixing as shown in the
following example. First, we need the following proposition which give sufficient conditions
for an operator to be compound.

Proposition 3. Let T € B(X), suppose that there exist a sequence {A,},.n C D\ {0}, two
dense sets D1 and D; in X, and a sequence of maps S, : D, — X and such that

(i) |[AnT"x|| — O for any x € D,

(i) |55y

’ — 0 foranyy € Dy,
(iii) T"Sp,y — y for any y € D,
asn — oo. Then T is compound and it is called compound with respect to the sequence {A, }.

Proof. Suppose that U and V be two nonempty open sets. Let x € UNDjandy € V N D;. Let
N be a large positive integer such that z = x + ﬁs NY, then by hypothesis we get

|z — x| = H%SNy‘ —0 and HANTNz—yH = HANTNxH — 0.

Thus T"A,U NV # @ foralln > N. So, T is compound. O

The following proposition gives another criterion for compound operators without the
need of the scalar sequence.

Proposition 4. Let T € B(X). If there exist two dense sets D1 and D, in X, and a sequence of
maps Sy, : Dy — X such that

(i) ||T"x|| ||Sny|| — 0 forall x € Dy andy € D,
(ii) ||Sny|| — 0 for ally € D»,

(iii) T"Sy,y — y forally € D,

asn — oo. Then T is compound.

The proof of Proposition 4 is followed by showing that both compound criteria in Proposi-
tions 3 and 4 are equivalent by using the same lines in [2, Proposition 2.8].

Example 1. Let T be a bilateral forward weighted shift on {,,1 < p < oo, with the weight
sequence

Rl/ ifn 2 0,
wn —
Ry, ifn <0,

where Ry, Ry € RT;1 < Ry < Ry. Then T is compound not mixing.
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Proof. By applying [3, Corollary 2.15] and taking {7, },.y = {1},en, We get

limﬁi— limﬁi— limi—O
noeol TW_f o n—eo; T Ry n—e RY

iy (I ) (1155 ) = i (1100 (I, ) = et o

k=1 k=1 k=1

It follows that T satisfies diskcyclic criterion with respect to the sequence {n}, . Then, by
Proposition 4, T is compound. Now, since

n
(1) =
then by [8, Theorem 3.2] T is not topological transitive and so not mixing. O

The following theorem extends the Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing
operators to compound operators.

Theorem 3. Let T € B(X). If there exists a positive integer p > 1 such that
A =span{x € X : Tx = ax for some « € C; |a| < p}

and
B =span{y € X : Ty = Ay for some A € C; |A| > p}

are dense in X, then T is compound.

Proof. Let U and V be nonempty open sets in X. Since A and B are dense, then there exist
x € ANUandy € BNV. Then x = Zi'(:l aix;jand y = Zi'(:l biy;, where a;,b; € C for all
1 <i <k Also, Tx; = a;x; and Ty; = A;y;, where |a;| < pand |A;| > pforall1 <i < k. Let
¢ € Cbe ascalar such that p < |c| < |A;| forall1 <i <k, and let

zn =y bi(=)"y; forall n>0.

Then

1
—T”x—X:aZ 'x;—0 and z,—0 as n— oo.

Also, % T"z, = y forall n > 0. It follows that there is a positive integer k such that for alln > k,
we have

1 1 1
x+z,eU and —T"(x+z,)=—T'x+—-T"2z,€V forall n>k
ch ch ch

Therefore, C%T”LI NV # @ for all n > k. It follows that T is compound. O

Note that in the above theorem, if p = 1, then it will be a Godefroy-Shapiro criterion for
mixing operators [1, Theorem 1.3].
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bamepsni H., Kininman A. k-6impansumusni onepamopu ma onepamopu cnoiyueHHs Yy 6aHaxosux npo-
cmopax // KapmaTceki MareM. my6a. — 2016. — T.8, Nel. — C. 3-10.

B mitt cTaTTi MM BBOAMMO HOBi KAACK OIIEPaTOPiB y KOMIIAEKCHMX HaHaXOBMX IPOCTOpaXx, sIKi MI
HasMBaeMO k-6iTPaH3UTUBHVMY OIlepaTOPaMy i oIlepaTopaMyl CIIOAYYEHHSI AAST BUBUEHHS TPSIMIIX
CyM AVMICKIIMKAIUHMX OIIepaTopiB. 3aIlpOIIOHOBaHO Habip AOCTAaTHIX YMOB AAsI TOTO, 106 orepa-
TOp 6YB k-6iTPaH3UTMBHMM UM OIEPAaTOPOM CIOAYYeHHsI. TakoXX BCTAaHOBAEHO 3B'sI30K MiX olle-
paTopaMy TONOAOTIYHOTO 3MilllyBaHHsI i oepaTopaMM CIOAYyYeHHs. TakoXX pO3IIMpeHO KpUTepin
T'oaedppya-Illanipo AAsI OepaTOpiB TOMOAOTIUHOTO 3MILITyBaHHS HA BUNAAOK OIIEPATOPIB CLIOAYUe-
HHSL.

Kontouosi csi08a i hpasu: TiMepIMKAIYHI OIlepaTOpy, AUCKIVIKAIUHI OllepaTOpH, olepaTopu cAab-
KOTO 3MiIllyBaHHsI, IPSIMi CyMI.
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PERIODIC WORDS CONNECTED WITH THE FIBONACCI WORDS

In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of
type 2), that are connected with the Fibonacci words. The properties of the families are investigated.
Key words and phrases: Fibonacci number, Fibonacci word.
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INTRODUCTION

The Fibonacci numbers F, are defined by the recurrence relation F, = F,_1 + F,_p, for
all integer n > 1, and with initial values Ffy = 0 and F; = 1. These numbers and their gen-
eralizations have interesting properties. Different kinds of the Fibonacci sequence and their
properties have been presented in the literature, see, e.g., [1, 6, 11].

Many properties of Fibonacci numbers require the full ring structure of the integers. How-
ever, generalizations to the ring Z,, and groups have been considered, see, e.g., [3, 5, 14, 16].
The sequence F, (mod m) is periodic and it repeats by returning to its starting values because
there are only a finite number m? of pairs of possible terms. Therefore, we obtain the repeating
of all the sequence elements.

In analogy to the definition of the Fibonacci numbers, one defines the Fibonacci finite words
as the concatenation of the two previous terms f, = f,_1fy,—2, n > 1, with initial values fy =1
and f; = 0 and defines the infinite Fibonacci word f, f = lim f, [2]. It is the archetype of a
Sturmian word [7]. The properties of the Fibonacci infinite word have been studied extensively
by many authors, see, e.g., [7, 8, 9, 10, 12, 15].

Using Fibonacci words, in the present article we shall introduce some new kinds of the
infinite words, namely FLP-words, and investigate some of their properties.

For any notations not explicitly defined in this article we refer to [4, 6, 7].

1 FIBONACCI SEQUENCE MODULO m

The letter p, p > 2, is reserved to designate a prime, m may be arbitrary integer, m > 2.

Let F;; (m) denote the n-th member of the sequence of integers F, = F,_1 + F,_» (mod m),
for all integer n > 1, and with initial values Fy = 0 and F; = 1. We reduce F, modulo m taking
the least nonnegative residues, and let k(m) denote the length of the period of the repeating
sequence F,; (m).
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The problem of determining the length of the period of the recurring sequence arose in
connection with a method for generating random numbers. A few properties of the function
k(m) are in the following theorem [14].

Theorem 1. In Z,, the following statements hold.
1. Any Fibonacci sequence modulo m is periodic.

2. If p = +1 (mod 10), thenk(p)|(p — 1). If p = £3 (mod 10), then k(p)|2(p + 1).

3. If m has prime factorization m = ﬁ pi, then k(m) = lem(k(p7'), ..., k(pi")).

i=1
4. Ifk(p*) # k(p), thenk(p') = p'~'k(p) fori > 1.

The results in Theorem 1 give upper bounds for k(p) but there are primes for which k(p) is
less than the given upper bound.

Let h(m) denote the length of the period of the repeating sequence 2 (mod m) and ¢(m)
be Euler’s totient function.

Theorem 2. Let m be odd and m > 1. Then h(m)|k(p(m)).

Proof. This follows from Euler’s theorem: if m and a are coprime positive integers, then
a?m) =1 (mod m). When reducing the power of a a modulo 71, one needs to work mod-
ulo ¢(m) in the exponent of a: if x =y (mod ¢(m)) then a* = a¥ (mod m). O

Corollary 1. Let p > 3. Then h(p)|k(p — 1).

2 FIBONACCI WORDS

Let fo = 1and f; = 0. Now f, = f,_1fu—2, n > 1, the concatenation of the two previous
terms. The successive initial finite Fibonacci words are:

fo=1, fi=0, f,=01, f;=010,
f2=01001, f5= 01001010, f, = 0100101001001, (1)
f7 = 010010100100101001010, ~ f3 = 0100101001001010010100100101001001, . ..

The infinite Fibonacci word f is the limit f = lim f,,. It is referenced A003849 in the On-line
Encyclopedia of Integer Sequences [13] and is certainly one of the most studied examples in the
combinatorial theory of infinite words. The combinatorial properties of the Fibonacci infinite
word are of great interest in some aspects of mathematics and physics, such as number theory,
fractal geometry, cryptography, formal language, computational complexity, quasicrystals etc.
(see [7]).

We denote as usual by | f,;| the length (the number of symbols) of f, (see [7]). The following
proposition summarizes basic properties of the Fibonacci words [7, 10].

Theorem 3. The infinite Fibonacci word and the finite Fibonacci words satisty the following
properties.

1. The words 11 and 000 are not subwords of the infinite Fibonacci word.
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2. For alln > 1 let ab be the last two symbols of f,, then we have ab = 01 if n is even and
ab = 10 if n is odd.

3. The concatenation of two successive Fibonacci words is “almost commutative”, i.e.,
fufn—1 and f,_1 fu differ only by their last two symbols for alln > 1.

4. Foralln |fy| = Fy11.

5. The number of 0 and 1 in f, equals F, and F,,_1, respectively.

3 PERIODIC FLP-WORDS

Let us start with the classical definition of periodicity on words over arbitrary alphabet
{110, ai,az,... } (See [4])

Definition 1. Let w = apaya; ... be an infinite word. We say that w is

1) a periodic word if there exists a positive integer t such that a; = a; for alli > 0. The
smallest t satisfying the previous condition is called the period of w;

2) an eventually periodic word if there exist two positive integers k, p such that a; = a;,,
foralli > k;

3) an aperiodic word if it is not eventually periodic.
Theorem 4. The infinite Fibonacci word is aperiodic.

This statement is proved in [10]. We consider the finite Fibonacci words f,; (1) as numbers
written in the binary system and denote them by b,,. Denote by d,, the value of the number b,
in usual decimal numeration system. We write b, = d,, meaning that b, and d,, are writing of
the same number in different numeration systems.

Example.
fo=1 fi=0, =01, f3 = 010, f4 = 01001, fs = 01001010, fs = 0100101001001, ...,
bp=1, b1 =0, b =1, b3 = 10, by = 1001, bs = 1001010, bg = 100101001001, ...,
dy=1,d,=0,dy=1,d3=2,dy,=9, ds =74, de =2377,....
Formally, for arbitrary n > 1 f, coincide with the b, taken with prefix 0: f,, = 0b,,.

Theorem 5. For any finite Fibonacci word f,, n > 1, in decimal numeration system we have
dy =d,_12"1+d,_,, wheredy =1 and d; = 0. (2)

Proof. One can easily verify (2) for the first few n : dy = b, = 1 = 04+ 1 = d; +do,

dy = b3 = 10 = 1040 = d2' +dy, dy = by = 1001 = 1000 + 01 = d322 + dy,

ds = bs = 1001010 = 1001000 + 010 = d423 + d3. Statement (2) follows from Theorem 3

(statement 4) and the equality d, = b, = b,_10...0+b,_» = dy_12Fn=1 4+d, . O
Fy1

Theorem 6. Let p > 3. The sequence d, (mod p) has period T(p) = p - h(p).
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Proof. By Theorem 1 we have ged(k(p — 1), p) = 1. By Corollary 1 we have h(p)|k(p —1).
Therefore ged(h(p), p) = 1. From (2) it follows that for arbitrary integer i, 0 < i < h(p), if
j runs from 0 to p — 1 then numbers d;_ j,(,) (mod p) runs all residues mod p or stationary.
Then sequence d, (mod p) has period p - h(p). O

Let do(m) = 1, wo(m) = 1 and for arbitrary integer n, n > 1, d,(m) = d, (mod m)
in binary numeration system, wy,(m) = w,_1(m)d,(m). Denote by w(m) the limit w(m) =
limy, s 00 wy, (m).

Definition 2. We say that
1. wy(m) is a finite FLP-word of type 1 by modulo m;

2. w(m) is a infinite FLP-word of type 1 by modulo m.
Theorem 7. The infinite FLP-word of type 1 w(m) is periodic.

Proof. The statement follows from (2) and Theorem 2 because there are only a finite number
of d, (mod m) and 2f»-1 (mod ¢(m)) possible, and the recurrence of the first few terms of
sequence d, (mod m) gives recurrence of all subsequent terms. O

Theorem 8. Let p > 3. The sequence subwords d,(p) of the infinite FLP-word w(p) of type 1

has period T(p) = p - h(p).

Proof. The proof is a direct corollary of Theorem 6. O
Using Fibonacci words (1) we define periodic FLP-word w*(m) (infinite FLP-word of type 2

by modulo m). We denote as usual by ¢ the empty word [7]. First we define words w};(m). Let

wy,(m) be the last F;; ; (m) symbols of the word f,,. If F,;; (m) = 0 for some 7, then wj;(m) = e.

Since F;(m) is periodic sequence with period k(m), the sequence |w;;(m)| is periodic with the

same period.

Theorem 9. The word length |wj;(m)| coincides with F}; ;(m).

Proof. This is clear by construction of w* (m). O

Theorem 10. The word w},(m) coincides with the word w’, k() (m).

Proof. Since f;, = f,_1fn—2, the last F,_; symbols of the word f,, coincide with the word f,,_»,
and therefore the last F,, elements of the word f,, o coincide with the word f,,_» for any natural
number k. The period k() is an even number [14], so the last F;;_ ; (m) elements of the words
fnand f,, k() are equivalent. O

Let f5 (m) = 1 and for arbitrary integer n, n > 1, f (m) = f;;_, (m)wj,(m). Denote by w*(m)
the limit w* (m) = lim, .« f,; (m).

Definition 3. We say that
1) f;i(m) is a finite FLP-word of type 2 by modulo m;

2) w*(m) is a infinite FLP-word of type 2 by modulo m.

Theorem 11. The infinite FLP-word w*(m) of type 2 is a periodic word and sequence subwords
*

w; (m) of w*(m) has period k(m).
Proof. The proof is a direct corollary of Theorem 10. O
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FOURIER COEFFICIENTS ASSOCIATED WITH THE RIEMANN ZETA-FUNCTION

We study the Riemann zeta-function {(s) by a Fourier series method. The summation of log |{(s)|
with the kernel 1/|s|® on the critical line Re s = % is the main result of our investigation. Also we
obtain a new restatement of the Riemann Hypothesis.
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INTRODUCTION

It is known that the integral [ log|{ <% + it) |dt, where {(s) is the Riemann zeta-function,

diverges. M. Balazard, E.Saias, M. Yor [1] summed log |((s)| on the critical line with the kernel
1/|s|*. Using the fact that f(z) = 1% (f:) ,|z] < 1, belongs to the Hardy space H3 and the

4
result of Bercovici and Foias [2] on the factorization of f(z), they have proved the following

theorem.

Theorem ([1]).

1 log ()],
27T/Res:% ‘5‘2 |t7lS| = Z log

where {p;} is the sequence of non-trivial zeroes of {(s).
In particular, the Riemann Hypothesis holds if and only if

1 log|C(s)| |, _
27T/Re 1 |s|2 ’dS‘—O.

A. Kondratyuk, P. Yatsulka [6], using the method of Fourier series, have established the
following fact.

Theorem ([6]). Let {p;} be the sequence of non-trivial zeroes of {(s). Then

1 loglis)l .,
27T/Res:;_ B ds| =1—7+2 Z log

LY (l0j|* — Repj)(2Rep; — 1)
! loj(pj — 1)I?

4

YAK 517.53
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where 7 is the Euler constant. The Riemann Hypothesis holds if and only if

L 10g|€()| sl 1

27T JR ]5]4

We make the next step studying the behaviour of the Riemann zeta-function on the critical
line. The summation of log |¢(s)| with the kernel 1/ s|® on the critical line Re s = 3 is the main
result of our research.

1 SECTION WITH RESULTS

Our result is the following.

Theorem 1. Let {p;} be the sequence of non-trivial zeroes of {(s). Then

1 / log |£(s)| 7 -7 Pj
|ds| =z —4y+ ———+6 lo
27t Jresmt |5 2 2 Re§>% &1 =,
— Rep;)(2Rep; — 1
y4 Z |P] epj)( 62'.0] ) )
Repe] loj(oj — 1)
1 Re(|oj|> —p;)?(2Rep; — 1)(2|pj|* — 2Rep; + 1)
> ey~ 1P '
Rep;>1 Pi\P;
where 7 is the Euler constant,
= — lim leo m—lOgZN
= N—oo m<nN ™M & 2 '
Also we obtain a new restatement of the Riemann Hypothesis.
Theorem 2. The Riemann Hypothesis holds if and only if
1 log |0(s)| T-7
— ds| = = — 4y + ——. 2
27T /Res—% ‘ ‘6 ’ ‘ Y 2 ( )
Proof of Theorem 1. Observe that the conformal map z = 1 — 1/s transforms the domain

{s :Res > %} onto the unit disc {z : |z| < 1}. Consider the function

f(z):(s—l)g(s):1izg<1iz>'

We have
(s—1)C6)=1+96-1) +91(s =12+ +y(s —1)F1 4., 3)
where ) -
(=1)" .. log * N
’yk:—hm —lgk ,kEN,
k! N—o0 m;N

([5, p-4]). Therefore f(z) is holomorphic in the unit disk. It was showed in [3] that the function
f(z) belongs to the Hardy class H?, 0 < p < 1. Earlier it was established in [1] and [2] that the
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function f(z) belongs to the Hardy class H 5 and o = 0, where ¢ is the singular measure from
the factorization (see [4])

. 1 271 i 1 27 plp .
f(z) = B(z) - exp(iC) - exp <—E/O Zi(Pi—sz(go)) exp(E/O Zi‘/’ i— i log |f(e'?)] dqo) ,
(4)

is the Blaschke product, {a;} is the sequence of zeros of f(z) and C = Im f(0) is a real constant.
Consider the Fourier coefficient of log | f(re')|:

2m )
ck(r, f) = %/0 e log|f(re®)|de, r < 1.

Note that c_(r, f) = ck(7, f).
It follows from (3) that f(0) = 1, and (4) yields

(1, f) = —log |B(0)] = zlog@
)

and
, , 1 27 i¢ 4 peif ‘
0y — i0 - ip
log | f(re”)| = log |B(re)| + 7 [ Re So—""r10g |f(e')] d. ©

In some neighborhood of the origin, the function F(z) = log f(z), log f(0) = 0, is holomor-
phic. Let F(z) = Ajz + Apz? + ... be its Maclaurin expansion. According to (3)

)
A1=7;A22%2’Y :
On the other hand,
) ) T ip —ig A2\ 2(2ip —2ig
log]f(re“P)\:Relogf(rel‘P):F;F:,W(e ;—e )+(’Yl ’)/)rie re >—|—...,

where r is sufficiently small.
The relation (5) implies, for small 7,

2

n-r ; T2 c_o(r,B) +1*c_»(1, f).

In [7], the expression for the Fourier coefficient of the Blaschke product was obtained

2 o0 1
c_o(r,B) = % ) — <’g]-‘4 — 1)

j=17%]
for r < |ay|. Thus,

- 1& 1
ea(1,f) = P =7 Y =5 (It - 1). ©
j=1%

1S
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1 1 por o, 1
c-2(L, f) = Z+E/() ¢ log C(l—e“’)

Return to the variable s. Taking (6) and (7) into account, we obtain

e [ ()

Note that

6. )

Res=3 . , (8)
_m-7r 1 y p; (2Rep; —1)(2oj|" — 2Rep; + 1)
- S _1)2 0.4
4 4 Reped (0 = 1)% lojl
Taking the real parts of both sides (8), we get
11 log [Z(s)] 1 log [Z(s)| 1 log [Z(s)|
4+2n/Res_% s 2n/Resl B |d|+2n/Res_%Re<s> B Sl sl
oy =1 Re(|p;|* —p;)*(2Rep; — 1)(2|pj|* — 2Rep; + 1)
Ta ik it~ DF '
Rep;>3 I
Note that
1 .
/ ke (5 >1og|€6 ||d|_2/ < >log‘é<2~l—;t)‘dt
Res—l | | <%+t2)
o log |C (1 +it o log (g (1 +it
ek, ),
0 1 0 14
(3+#) (1+#)
log|2(s)| log |Z(s)|
S ds| + ~ / ds
froouy oSl g [ B s
Using the results from [1] and [6], we obtain (1). The proof is completed. O

Proof of Theorem 2. 1f the Riemann Hypothesis is true, then the series at the right hand side of
(1) are absent, and we have (2)

1 log |3(s)| 71—
27.[/1{51 ||6 ’d‘— 4y + R

Now assume that relation (2) holds. If the Riemann Hypothesis is not true, then in (1)

6210g

Rep;>

fa Y (lojI> — Rep;)(2Rep; — 1)

> 0.
loj(o; —1)?

Re p; >
Examine carefully the series

y Re(|oj|* —p,)*(2Rep; — 1)(2p;|* — 2Rep; + 1)
Repr) lj(oj =1
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We are interested in when all terms of this series are positive. The following conditions

appear
Re(Jo; > = p,)? > 0.
If0 <Repj <land|Imp;|> 3+ \%, then Re(|o;|? —ﬁj)z > 0.
It is known (see [8]) that the first 102% 4 1 non-trivial zeros of the Riemann zeta-function lie
on the critical line. In particular, Im p; = 14,1347 ...
These facts imply Re(|pj|* — ﬁj)z > 0 for all non-trivial zeros p; that lie inside the critical

strip0 < Res < 1.
Hence, if the Riemann Hypothesis is not true, then

1 log |¢(s)| 7 -7
— ——d ~—4 —_
27T/R s:% |S|6 | S| >2 v+ >
This is a contradiction with (2) which finishes the proof. 0
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bactox IO.B., Tapactox C.I. Koegiyicnmu ®yp’e, acoyiiiosari 3 03ema-pynxyicto Pimana // Kapmarcbki
MaTeM. my6a. — 2016. — T.8, Nel. — C. 16-20.

Mu BuB4aeMo A3eTa-pyHkuito PiMaHa {(s), BUKOPUCTOBYIOUN MeToA KoeditienTis @yp’e. TTia-
cymosyBanHs log [{(s)| 3 stapom 1/s|® Ha xpuTuuHii mpsmiit Re s = 1 e rorosrnM pesyabraTom
HaILIOTO AOCAiAXKeHHS. TakoX OoTpMMaAM TBepAKeHHsI, PiBHOCMABHe rinoresi PiMaHa.

Kntouosi crosa i ppasu: xoedpiienTn Qyp’e, AseTa-pyHkuisa Pimana, rimoresa Pimana.
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OPTIMAL CONTROL PROBLEM FOR SYSTEMS GOVERNED BY NONLINEAR
PARABOLIC EQUATIONS WITHOUT INITIAL CONDITIONS

An optimal control problem for systems described by Fourier problem for nonlinear
parabolic equations is studied. Control functions occur in the coefficients of the state equations.
The existence of the optimal control in the case of final observation is proved.
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INTRODUCTION

Optimal control of determined systems governed by partial differential equations (PDEs)
is currently of much interest. Optimal control problems for PDEs are most completely studied
for the case in which the control functions occur either on the right-hand sides of the state
equations, or the boundary or initial conditions [8,22,26]. So far, problems in which control
functions occur in the coefficients of the state equations are less studied.

The main ideas and methods of solving different optimal control problems for systems
governed by evolutionary equations and variational inequalities are considered in monograph
[18]. Problem, where control functions occur in the coefficients of the state equations, is given
as only one among many other problems which were considered there by author.

A lot of various generalizations of this problem were investigated in many papers, includ-
ing [1,2,4,5,10-13,15, 20, 21, 24, 25], where the state of controlled system is described by the
initial-boundary value problems for parabolic equations.

In [1,21,24,25] the state of controlled system is described by linear parabolic equations and
systems, while in [1] and [21] control functions appears as coefficients at lower derivatives,
and in [24,25] the control functions are coefficients at higher derivatives. In [21] the existence
and uniqueness of optimal control in the case of final observation was shown and a necessary
optimality condition in the form of the generalized rule of Lagrange multipliers was obtained.
In paper [1] authors proved the existence of at least one optimal control for system governed by
a system of general parabolic equations with degenerate discontinuous parabolicity coefficient.
In papers [24, 25] the authors consider cost function in general form, and as special case it
includes different kinds of specific practical optimization problems. The well-posedness of
the problem statement is investigated and a necessary optimality condition in the form of the
generalized principle of Lagrange multiplies is established in this papers.

YAK 517.9
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In papers [2,10-13, 15,20] authors investigate optimal control of systems governed by non-
linear PDEs. In particular, in [2] the problem of allocating resources to maximize the net benefit
in the conservation of a single species is studied. The population model is an equation with
density dependent growth and spatial-temporal resource control coefficient. The existence of
an optimal control and the uniqueness and the characterization of the optimal control are es-
tablished. Numerical simulations illustrate several cases with Dirichlet and Neumann bound-
ary conditions. In [11] the optimal control problem is converted to an optimization problem
which is solved using a penalty function technique. The existence and uniqueness theorems
are investigated. The derivation of formula for the gradient of the modified function is ex-
plained by solving the adjoint problem. Paper [15] presents analytical and numerical solutions
of an optimal control problem for quasilinear parabolic equations. The existence and unique-
ness of the solution are shown. The derivation of formula for the gradient of the modified cost
function by solving the conjugated boundary value problem is explained. In [16] the authors
consider the optimal control of a degenerate parabolic equation governing a diffusive popula-
tion with logistic growth terms. The optimal control is characterized in terms of the solution of
the optimality system, which is the state equation coupled with the adjoint equation. Unique-
ness for the solutions of the optimality system is valid for a sufficiently small time interval due
to the opposite time orientations of the two equations involved. In paper [20] optimal control
for semilinear parabolic equations without Cesari-type conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are described
by problems without initial conditions or, other words, Fourier problems for nonlinear para-
bolic equations.

The problem without initial conditions for evolution equations describes processes that
started a long time ago and initial conditions do not affect on them in the actual time mo-
ment. Such problem were investigated in the works of many mathematicians (see [3,7,23] and
bibliography there).

As we know among numerous works devoted to the optimal control problems for PDEs,
only in papers [4,5] the state of controlled system is described by the solution of Fourier prob-
lem for parabolic equations. In the current paper, unlike the above two, we consider optimal
control problem in case when the control functions occur in the coefficients of the state equa-
tion. The main result of this paper is existence of the solution of this problem.

The outline of this paper is as follows. In Section 1, we give notations, definitions of func-
tion spaces and auxiliary results. In Section 2, we prove existence and uniqueness of the solu-
tions for the state equations. Furthermore, we construct a priori estimates for the weak solu-
tions of the state equations. In Section 3, we formulate the optimal control problem. Finally,
the existence of the optimal control is presented in Section 4.

1 PRELIMINARIES

Let n be a natural number, R” be the linear space of ordered collections x = (x1,...,X,)
of real numbers with the norm |x| := (|x{|> + ... + |x,4]?)!/2. Suppose that Q is a bounded
domain in R"” with piecewise smooth boundary I'. Set S := (—00,0], Q:=Q x §, X :=T x S.

Denote by L{° (Q) the linear space of measurable functions on Q such that their restrictions

to any bounded measurable set Q" C Q belong to the space L*(Q’).
Let X be an arbitrary Hilbert space with the scalar product (-,-)x and the norm || - ||x.
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Denote by L? (S; X) the linear space of measurable functions defined on S with values in X,
whose restrictions to any segment [a,b] C S belong to the space L?(a, b; X).

Letw € R, a € C(S) be such that a(t) > 0forallt € S, = a ory = 1/a, and let X be as
above. Put by definition

12,,(5X) = {feuxsx\/ﬁ Pt < eo).

This space is a Hilbert space with respect to the scalar product

()13, 5%) = /# 0 0, g0 a
and the norm

fa(s)ds 1/2
1£112,,5:x) = /7 o) at)

Denote by Cl(a,b), where —co < a < b < +oo, the linear space of continuously differen-
tiable functions on (a, b) with compact supports.
Let H(Q) := {v € L(Q) | vy, € Lo(Q) (i = 1,n)} be a Sobolev space, which is a Hilbert

n
space with respect to the scalar product (v, w) 1 (q) := [ { L vxwy, +vw} dx and the corre-
O =1
n 1/2 l
sponding norm |[v]| 1 () == (f { ¥ |ox, >+ [0]*} dx) . Under H}(Q) we mean the closure
O i=1

in H1(Q) of the space C®(Q)) consisting of infinitely differentiable functions on () with com-
pact supports. Denote by

[ Vo] dx
K:= inf 2 1
veH}(Q), 020 [ [0?dx M
@)

where Vo = (vy,,...,0y,), |Vo> = Z |0y, |2

It is well known that the Constant K is finite and coincides with the first eigenvalue of the
following eigenvalue problem:
—Av = Av, 0|y =0. (2)

From (1) it clearly follows the Friedrichs inequality

/|Vv|2dx > K/ I0[2 dx for all v € HY(Q). 3)

Also define dpz =z, 9djz = Zx; if j € {1,...,n}. Further, an important role will be played
by the following statement.

Lemma 1. Suppose that a function z € L?(t1,tp; H{(Q)), where t,t, € R (# < t2), satisfies
the identity

//{—ZW +Zg18¢<v}dxdt—0 Y € Hy(Q), ¢ € Cl(t, t2), (4)

t1 Q)
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for some g; € L%(t1,t2; L>(Q)) (i = 0,n). Then
(i) the function z belongs to the space C([t1,t]; L>(Q)) and for every 6 € C'([t1,t2]) and
forallt,p € [t1, 1] (11 < T2) we have

/\z x, t) lzdxt e -5 /]2\29'dxdt+//{2g18 z}0dxdt = 0; (5)
T

10 710 -

(i) the derivative z; of the function z in the sense D'(t1,ty; H~1(Q)) (the distributions
space) belongs to L?(ty,tp; H~1(Q)), furthermore

/ Izt (s ) mr ey t < 2 18R 110 ©)

Proof. The first statement follows directly from Lemma 2 of [6]. Let us prove the second state-
ment. Firstly note that the following continuous and dense embeddings hold

H(Q) c L2(Q) c HYQ). 7)

Let C(ty,t2) be the space of functions on (t1,t,) which are infinitely continuously dif-
ferentiable and have compact supports. Under D’(t;,tp; H-1(Q))) we mean the space of dis-
tributions which are defined on C®(t;,t,) with values in H1(Q) (see, for example, [14]).
Since the spaces L2(t1,tp; H{(Q)), L*(t1,t2; H1(Q))) can be identified with subspaces of the
space of distributions D'(t1, tp; H=1(Q))), then it allows us to speak about derivatives of func-
tions from L?(t1,t;H{(Q))) in the sense D'(t1,t;;H Q1)) and their belonging to the space
Lz(tl,tz;Hil(Q».

Let us rewrite equality (4) in the form

//21/J¢ dxdt = // Zgla Yodxdt, e HO( ), ¢ € C}(tl,tz). (8)

t1 Q) fQZ

According to the definition of the derivative of distributions from D’(t,t,; H~1(Q)), (8) im-
plies that z; belongs to the space L?(t1, to; H-1(Q))), and for almost all t € (t1, t5)

< zi(-, 1), 9(+) >Hi(Q /Zgl x, 1) (x

where < -, - > H(Q) denotes the canonical scalar product in H~1(Q) x H}(Q). From this,
using the Cauchy-Schwarz inequality, for almost all t € (t1,t) we obtain

| <z 1), 9() >mia !<Z|!gz, M2l ()l 2

< (Ll 0lEe) 19O ooy

From (9) it follows that for almost all t € (¢, t) the following estimate is valid

n
[EAON] N Zng ot

which easily implies (6). ]

)
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2 WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR NONLINEAR
PARABOLIC EQUATIONS

Consider the equation
Yt — Z i (x,t,y,Vy) +ao(x, t,y, Vy) = f(x,t), (x,t)€Q, (10)

where y : Q — R is an unknown function and data-in satisfies following conditions:
(Ap) foreveryie€ {0,1,...,n}
QxR xR"> (x,t,5,&) —aj(x,ts,¢) €ER

is the Caratheodory function, i.e., a;(x,t,-,-) : R x R” — R is the continuous function
fora.e. (x,t) € Q,and a;(-,-,5,&) : Q — R is the measurable function for every (s,{) €
R x R"; moreover, a;(x,t,0,0) = 0 fora. e. (x,t) € Q;

(Ap) foreveryi e {0,1,...,n}, forevery (s,¢) € R x R", and for a.e. (x,t) € Q the following
estimate is valid |a;(x,t,5,8)] < Ci(Js| + |&]) + hi(x, t), where C; = const > 0, h; €
(S;L*(Q));
loc

(A3z) forevery (s1,&l), (s2,¢%) € R x R" and for a.e. (x,t) € Q the following inequality holds

n

Y (ai(x,t,51,8") — ai(x,t,52,8%)) (& — &F)
i—1
+ (a0 (x,t,51,81) — ao(x,£,52,6%)) (51 = 52) > a(B)[" = &2,
where a € C(S) such that a(t) > 0 forallt € S;
(F) f € L, (S L2(Q)).
Additionally, we impose the boundary condition
ylg =0 (11)
on a solution of equation (10).

Definition 1. The function y is called a weak solution of equation (10) satistfying boundary
condition (11) if it belongs to L2 (S; H}(€Q)) N C(S; L?(QY)) and the following integral equality
holds

loc

//{ _W/’qo’ + iai(x, t,y, Vy)azlqu)} dxdt
’ - (12)
= //fl[)q)dxdt, P e H%(Q), ¢ € Ccl(—OO,O).

Q
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There may exist many weak solutions of equation (10) satisfying boundary condition (11).
To ensure uniqueness of the weak solution of equation (10) satisfying condition (11), we have
to impose some additional conditions on solutions, for instance, some restrictions on their
behavior as t — —oo. We will consider the problem of finding a weak solution of equation (10)
satisfying boundary condition (11) and the analogue of the initial condition

-

) w [a(s)ds
lim e © ly( Dll2() =0, (13)

t——o0

where w € R. We will briefly call this problem by problem (10), (11), (13), and the function y is
called the weak solution of problem (10), (11), (13).

Lemma 2. Let w < K, where K is a constant defined in (1), and conditions (A;)-(A3) are
satisfied. Then two following statements are true.

(i) If y is a weak solution of problem (10), (11), (13) and

f S Lw 1/0((5; LZ(Q))f (14)
theny € L2, ,(S; H)(Q)) and the following estimates hold:

T T £

2w [a(s)ds ) . 2w [ a(s)ds
e 0 DRy <G [T 0 I Rt TES, (15)
||]/||L§,l“(s,-H3( < CZ”fHLZ L(SL2 ()7 (16)

where C1, C; are positive constants depending on K and w only.

(ii) If y; and y, are two weak solutions of problem (10), (11), (13) with f = fi and f = f
correspondingly, and

fe € Loa/a(SL2(Q)) (k=1,2), (17)
then the following estimates hold:
2w frrx(s) ds
e 1 1)~ 6 D)lk6
. 1 wafrx(s) ds (18)
<G [RO1e 0 IACGH = AEDE g TES,
1 =v2lliz, (smpc0)) < Callfi = £olliz | sz (19)
where Cy, C; are positive constants such as in (15) and (16).
Proof. First we prove statement (ii). For function z : Q — IR let us denote
a;(z)(x, t) == a;(x,t,z(x,t), Vz(x