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k-BITRANSITIVE AND COMPOUND OPERATORS ON BANACH SPACES

In this this paper, we introduce new classes of operators in complex Banach spaces, which we
call k-bitransitive operators and compound operators to study the direct sum of diskcyclic operators.
We create a set of sufficient conditions for an operator to be k-bitransitive or compound. We give
a relation between topologically mixing operators and compound operators. Also, we extend the
Godefroy-Shapiro Criterion for topologically mixing operators to compound operators.
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INTRODUCTION

A bounded linear operator T on a separable Banach space X is hypercyclic if there is a
vector x ∈ X such that Orb(T, x) = {Tnx : n ≥ 0} is dense in X, such a vector x is called
hypercyclic for T. Similarly, an operator T is called diskcyclic if there is a vector x ∈ X such
that the disk orbit DOrb(T, x) = {αTnx : α ∈ C, |α| ≤ 1, n ∈ N} is dense in X, such a vector x

is called diskcyclic for T. In Banach spaces, hypercyclic (or diskcyclic) operators are identical
to topological transitive (or disk transitive, respectively) [3, 4].

Definition 1. A bounded linear operator T : X → X is called

1. topological transitive, if for any two non empty open sets U and V, there exists a positive
integer n such that TnU ∩ V 6= ∅;

2. disk transitive, if for any two non empty open sets U and V, there exist a positive integer
n and α ∈ C, 0 < |α| ≤ 1, such that TnαU ∩ V 6= ∅.

For more information on hypercyclic and diskcyclic operators the reader may refer to [2, 3,
4, 11].

A sufficient condition for hypercyclicity, the well known Hypercyclicity Criterion, indepen-
dently discovered by Kitai [13] and Gethner and Shapiro [9]. Latter on, Godefroy and Shapiro
[10] created another hypercyclic criterion which is called Godefroy-Shapiro Criterion, that is a
set of sufficient condition in terms of the eigenvalues of an operator to be hypercyclic.

In 1982, Kitai [13] showed that if T1 ⊕ T2 is hypercyclic, then T1 and T2 are hypercyclic.
However, for the converse, Salas constructed an operator T such that both it and its adjoint
T∗ are hypercyclic, and so that their direct sum T ⊕ T∗ is not. Moreover, Herrero asked in [12]
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4 BAMERNI N., KILIÇMAN A.

whether T ⊕ T is hypercyclic whenever T is. De la Rosa and Read [7] showed that the Herrero’s
question is not true by giving a hypercyclic operator T such that T ⊕ T is not. On the other
hand, if T satisfies hypercyclic criterion, then T ⊕ T is hypercyclic [4]. In 1999, Bés and Peris [5]
proved that the converse is also true; that is, if T ⊕ T is hypercyclic, then T satisfies hypercyclic
criterion.

For diskcyclic operators, Zeana proved that if the direct sum of k operators is diskcyclic
then every operator is diskcyclic [14]. However, the converse is unknown. Particularly, we
have the following question:

Question 1. If there are k diskcyclic operators, what about their direct sum?

The main purpose of this paper is to give a partial answer to this question by defining
and studying a new class of operators, namely k-bitransitive operators. We determine condi-
tions that ensure a linear operator to be k- bitransitive which is called k-bitransitive criterion.
We use this criterion to show that in some cases the direct sum of k diskcyclic operators is
k-bitransitive. Then, we define compound operators as a general form of mixing operators [6]
to show that under certain conditions the direct sum of k diskcyclic operators is k-bitransitive.
Then, we studied some properties of compound operators. In particular, we give some suf-
ficient conditions for an operator to be compound which is refer to compound criterion. We
use this criterion to show that not every compound operator is mixing. Finally, we extend
Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing operators to compound operators. In
particular, a special case of Theorem 3 is when p = 1 which is Godefroy-Shapiro Criterion.

1 MAIN RESULTS

In this this paper, all Banach spaces are separable over the field C of complex numbers. We
denote by D the closed unit disk in C, by N the set of all positive integers and by B(X) the set
of all bounded linear operators on a Banach space X.

Let k be a positive integer and Ti ∈ B(X) for all 1 ≤ i ≤ k, and let
T =

⊕k
i=1 Ti :

⊕k
i=1 X →

⊕k
i=1 X then we call each operator Ti a component of T.

Definition 2. An operator T is called k-bitransitive if there exist T1, T2, · · · Tk ∈ B(X) such that
T =

⊕k
i=1 Ti and for any 2k-tuples U1, · · · , Uk, V1, · · · , Vk ⊂ X of nonempty open sets, there

exist some n ∈ N and α1, · · · , αk ∈ D\ {0} such that

Tn
(

k
⊕

i=1

αiUi

)

∩
(

k
⊕

i=1

Vi

)

6= ∅.

It is clear from Definition 2 above that 1-bitransitive is identical to disk transitive which in
turn identical to diskcyclic.

To simplify Definition 2 above, we provide the following definition.

Definition 3. Let r ∈ N be fixed. For each 1 ≤ i ≤ r, let Ti be a bounded linear operator
on a Banach space X, and Ai, Bi be nonempty subsets of X. Assume that T =

⊕r
i=1 Ti, A =

⊕r
i=1 Ai and B =

⊕r
i=1 Bi. The junction set from the set A to the set B under T is defined as

JT(A, B) = {(n, α1, · · · , αr) ∈ N × D
r\ {(0, · · · , 0)} : Tn(

⊕r
i=1 αi Ai) ∩ (

⊕r
i=1 Bi) 6= ∅}.
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In Definition 3 above, we sometimes write JT(A, B) as J(A, B). The next proposition gives
an equivalent definition to k-bitransitivity in terms of junction set.

Proposition 1. Let T =
⊕k

i=1 Ti. Then T is k-bitransitive if and only if for each 1 ≤ i ≤ k and
any nonempty open sets Ui and Vi, there exist αi ∈ D\ {0} and n ∈ N such that

(n, αi) ∈ JTi
(Ui, Vi).

The proof follows immediately by applying the definition of junction sets to Definition 2.
To answer Question 1, we need the following proposition, which gives a set of sufficient

conditions for k-bitransitivity.

Proposition 2 (k-bitransitive criterion). Let T =
⊕k

i=1 Ti, and let {nr}r∈N
be an increasing

sequence of positive integers. Suppose that for each 1 ≤ i ≤ k there exist a sequence
{

λ
(i)
nr

}

⊂

D\ {0}, dense sets Xi, Yi ⊂ X, and a map Si : Yi → X such that for all (x1, · · · , xk) ∈
⊕k

i=1 Xi

and (y1, · · · , yk) ∈
⊕k

i=1 Yi, we have

(i)
∥

∥

∥

⊕k
i=1 λ

(i)
nr Tnr

i (x1, · · · , xk)
∥

∥

∥
→ 0,

(ii)

∥

∥

∥

∥

⊕k
i=1

1

λ
(i)
nr

Snr
i (y1, · · · , yk)

∥

∥

∥

∥

→ 0,

(iii)
⊕k

i=1 Tnr
i Snr

i (y1, · · · , yk) → (y1, · · · , yk)

as r → ∞. Then T is k-bitransitive.

Proof. Let Ui, Vi be open subsets of X for all 1 ≤ i ≤ k, then
⊕k

i=1 Ui and
⊕k

i=1 Vi are open in
⊕k

i=1 X. Also
⊕k

i=1 Xi and
⊕k

i=1 Yi are dense in
⊕k

i=1 X. Let

(x1, · · · , xk) ∈
k
⊕

i=1

Ui ∩
k
⊕

i=1

Xi

and

(y1, · · · , yk) ∈
k
⊕

i=1

Vi ∩
k
⊕

i=1

Yi.

Suppose that zr = (x1, · · · , xk) +
⊕k

i=1
1

λ
(i)
nr

Snr
i (y1, · · · , yk). By (ii), as r → ∞ we have

‖zr − (x1, · · · , xk)‖ =

∥

∥

∥

∥

∥

k
⊕

i=1

1

λ
(i)
nr

Snr
i (y1, · · · , yk)

∥

∥

∥

∥

∥

→ 0. (1)

Since
k
⊕

i=1

λ
(i)
nr Tnr

i (zr) =
k
⊕

i=1

λ
(i)
nr Tnr

i

(

(x1, · · · , xk) +
k
⊕

i=1

1

λ
(i)
nr

Snr
i (y1, · · · , yk)

)

,

then by (i) and (iii), we have

∥

∥

∥

∥

∥

k
⊕

i=1

λ
(i)
nr Tnr

i (zr)− (y1, · · · , yk)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k
⊕

i=1

λ
(i)
nr Tnr

i (x1, · · · , xk)

∥

∥

∥

∥

∥

→ 0, (2)
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as r → ∞. From Equations (1) and (2), there exists N ∈ N such that zN ∈
⊕k

i=1 Ui and
⊕k

i=1 λ
(i)
nr Tnr

i (zN) ∈
⊕k

i=1 Vi, that is,

k
⊕

i=1

λ
(i)
nr Tnr

i

(

k
⊕

i=1

Ui

)

∩
k
⊕

i=1

Vi 6= ∅ for all r ≥ N,

which is equivalent to

(T1 ⊕ · · · ⊕ Tk)
nr(λ

(1)
nr U1 ⊕ · · · ⊕ λ

(k)
nr Uk) ∩ (V1 ⊕ · · · ⊕ Vk) 6= ∅ for all r ≥ N.

That is,
(nr, λ

(i)
nr ) ∈ JTi

(Ui, Vi) for all 1 ≤ i ≤ k.

By Proposition 1, T is k-bitransitive.

The following theorem gives a partial answer to Question 1.

Theorem 1. If k operators satisfy diskcyclic criterion for the same increasing sequence of posi-
tive integers {nr}r∈N

, then their direct sum is a k-bitransitive operator.

Proof. Let Ti ∈ B(X) satisfies diskcyclic criterion with respect to the same increasing sequence
of positive integers {nr}r∈N

for all 1 ≤ i ≤ k [2, Theorem 2.6]. Then for each 1 ≤ i ≤ k, there

exists a sequence
{

λ
(i)
nr

}

r∈N

∈ D\ {0}, two dense sets Di, D′
i and a map Si such that for all

xi ∈ Di and yi ∈ D′
i , we have

∥

∥

∥
λ
(i)
nr Tnr

i xi

∥

∥

∥
→ 0, (3)

∥

∥

∥

∥

∥

1

λ
(i)
nr

Snr
i yi

∥

∥

∥

∥

∥

→ 0, (4)

Tnr
i Snr

i yi → yi (5)

as r → ∞. By Equation (3), we get ∑
k
i=1

∥

∥

∥
λ
(i)
nr Tnr

i xi

∥

∥

∥
→ 0; that is,

∥

∥

∥

∥

∥

k
⊕

i=1

λ
(i)
nr Tnr

i (x1, · · · , xk)

∥

∥

∥

∥

∥

→ 0 (6)

as r → ∞. Also by Equation (4), we get ∑
k
i=1

∥

∥

∥

∥

1

λ
(i)
nr

Snr
i yi

∥

∥

∥

∥

→ 0; that is,

∥

∥

∥

∥

∥

k
⊕

i=1

1

λ
(i)
nr

Snr
i (y1, · · · , yk)

∥

∥

∥

∥

∥

→ 0 (7)

as r → ∞. Finally, by Equation (5), we get (Tnr
1 Snr

1 y1, · · · , Tnr
k Snr

k yk) → (y1, · · · , yk); that is,

k
⊕

i=1

Tnr
i Snr

i (y1, · · · , yk) → (y1, · · · , yk) (8)

as r → ∞. By Proposition 2, we get T =
⊕k

i=1 Ti is k-bitransitive.
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To give another partial answer to Question 1, we define another class of operators which is
called compound operators.

Definition 4. Let T ∈ B(X). Then T is called compound if for any nonempty open sets U and
V, there exist some N ∈ N and a sequence {αn}n∈N

∈ D\ {0} such that

Tn(αnU) ∩ V 6= ∅

for all n ≥ N.

The following theorem gives another partial answer to Question 1. First, we need the fol-
lowing lemma.

Lemma 1. If T ∈ B(X) is diskcyclic, then there exist an increasing sequence of positive integers
{

mj

}

j∈N
and a sequence

{

γmj

}

⊂ D\ {0} such that
{

(mj, γmj
) : j ∈ N

}

⊆ J(U, V) for any

two nonempty open sets U, V ⊂ X.

Proof. Let (n1, α1) ∈ J(U, V), and let W = U ∩ T−n1 1
α1

V. Since W is open set, then there exist
n2 ∈ N and α2 ∈ D such that (n2, α2) ∈ J(W, W), that is,

Tn2 α2U ∩ Tn2−n1
α2

α1
V ∩ U ∩ T−n1

1

α1
V 6= ∅.

It follows that
Tn2 α1α2U ∩ T−n1V 6= ∅.

Now, we have
Tn1+n2α1α2U ∩ V = Tn1(Tn2 α1α2U ∩ T−n1V) 6= ∅,

that is,
(n1 + n2, α1α2) ∈ J(U, V).

By continuing the same process, we get (∑
j
i=1 ni, ∏

j
i=1 αi) ∈ J(U, V) for any j, ni ∈ N and

αi ∈ D. Let mj = ∑
j
i=1 ni and γmj

= ∏
j
i=1 αi for all j ∈ N, then

{

(mj, γmj
) : j ∈ N

}

⊆ J(U, V).

Theorem 2. Let T =
⊕k

i=1 Ti. If every component of T is disk transitive and at least (k − 1) of
them are compound, then T is k-bitransitive.

Proof. Without loss of generality, we suppose that k = 2 and T1 is compound. Let U1, U2, V1, V2

be nonempty open sets, by hypothesis there exist N1, N2 ∈ N, α1 ∈ D\ {0} and a sequence
{βn : n ∈ N} ⊂ D\ {0} such that

TN1
2 α1U1 ∩ U2 6= ∅ and Tn

1 βnV1 ∩ V2 6= ∅

for all n ≥ N2. By Lemma 1, there exist N ∈ N and α ∈ D\ {0} such that

TN
2 αU1 ∩ U2 6= ∅ and TN

1 βNV1 ∩ V2 6= ∅.

It follows that
(T1 ⊕ T2)

N(αU1 ⊕ βNV1) ∩ (U2 ⊕ V2) 6= ∅.

Hence T is 2-bitransitive.
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It is clear that every compound operator is diskcyclic. A special case of compound operator
is when αn = 1 for all n ≥ N, and it is called mixing operators (see [6]). Therefore every mixing
operator is compound. However, not every compound operator is mixing as shown in the
following example. First, we need the following proposition which give sufficient conditions
for an operator to be compound.

Proposition 3. Let T ∈ B(X), suppose that there exist a sequence {λn}n∈N
⊂ D\ {0}, two

dense sets D1 and D2 in X, and a sequence of maps Sn : D2 → X and such that

(i) ‖λnTnx‖ → 0 for any x ∈ D1,

(ii)
∥

∥

∥

1
λn

Sny
∥

∥

∥
→ 0 for any y ∈ D2,

(iii) TnSny → y for any y ∈ D2

as n → ∞. Then T is compound and it is called compound with respect to the sequence {λn}.

Proof. Suppose that U and V be two nonempty open sets. Let x ∈ U ∩ D1 and y ∈ V ∩ D2. Let
N be a large positive integer such that z = x + 1

λN
SNy, then by hypothesis we get

‖z − x‖ =

∥

∥

∥

∥

1

λN
SNy

∥

∥

∥

∥

→ 0 and
∥

∥

∥
λNTNz − y

∥

∥

∥
=
∥

∥

∥
λNTN x

∥

∥

∥
→ 0.

Thus TnλnU ∩ V 6= ∅ for all n ≥ N. So, T is compound.

The following proposition gives another criterion for compound operators without the
need of the scalar sequence.

Proposition 4. Let T ∈ B(X). If there exist two dense sets D1 and D2 in X, and a sequence of
maps Sn : D2 → X such that

(i) ‖Tnx‖ ‖Sny‖ → 0 for all x ∈ D1 and y ∈ D2,

(ii) ‖Sny‖ → 0 for all y ∈ D2,

(iii) TnSny → y for all y ∈ D2

as n → ∞. Then T is compound.

The proof of Proposition 4 is followed by showing that both compound criteria in Proposi-
tions 3 and 4 are equivalent by using the same lines in [2, Proposition 2.8].

Example 1. Let T be a bilateral forward weighted shift on ℓp, 1 ≤ p < ∞, with the weight
sequence

wn =

{

R1, if n ≥ 0,

R2, if n < 0,

where R1, R2 ∈ R
+; 1 < R1 < R2. Then T is compound not mixing.
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Proof. By applying [3, Corollary 2.15] and taking {nr}r∈N
= {n}n∈N

, we get

lim
n→∞

n

∏
k=1

1

w−k
= lim

n→∞

n

∏
k=1

1

R2
= lim

n→∞

1

Rn
2
= 0

and

lim
n→∞

(

n

∏
k=1

wk

)(

n

∏
k=1

1

w−k

)

= lim
n→∞

(

n

∏
k=1

R1

)(

n

∏
k=1

1

R2

)

= lim
n→∞

(Rn
1 )(

1

Rn
2
) = 0.

It follows that T satisfies diskcyclic criterion with respect to the sequence {n}n∈N
. Then, by

Proposition 4, T is compound. Now, since

lim
n→∞

(

n

∏
k=1

wk

)

= ∞,

then by [8, Theorem 3.2] T is not topological transitive and so not mixing.

The following theorem extends the Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing
operators to compound operators.

Theorem 3. Let T ∈ B(X). If there exists a positive integer p ≥ 1 such that

A = span {x ∈ X : Tx = αx for some α ∈ C; |α| < p}

and
B = span {y ∈ X : Ty = λy for some λ ∈ C; |λ| > p}

are dense in X, then T is compound.

Proof. Let U and V be nonempty open sets in X. Since A and B are dense, then there exist
x ∈ A ∩ U and y ∈ B ∩ V. Then x = ∑

k
i=1 aixi and y = ∑

k
i=1 biyi, where ai, bi ∈ C for all

1 ≤ i ≤ k. Also, Txi = αixi and Tyi = λiyi, where |αi| < p and |λi| > p for all 1 ≤ i ≤ k. Let
c ∈ C be a scalar such that p ≤ |c| < |λi| for all 1 ≤ i ≤ k, and let

zn =
k

∑
i=1

bi(
c

λi
)nyi for all n ≥ 0.

Then
1

cn
Tnx =

k

∑
i=1

ai(
αi

c
)nxi → 0 and zn → 0 as n → ∞.

Also, 1
cn Tnzn = y for all n ≥ 0. It follows that there is a positive integer k such that for all n ≥ k,

we have

x + zn ∈ U and
1

cn
Tn(x + zn) =

1

cn
Tnx +

1

cn
Tnzn ∈ V for all n ≥ k.

Therefore, 1
cn TnU ∩ V 6= ∅ for all n ≥ k. It follows that T is compound.

Note that in the above theorem, if p = 1, then it will be a Godefroy-Shapiro criterion for
mixing operators [1, Theorem 1.3].
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Бамернi Н., Кiлiцман А. k-бiтранзитивнi оператори та оператори сполучення у банахових про-

сторах // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 3–10.

В цiй статтi ми вводимо новi класи операторiв у комплексних банахових просторах, якi ми
називаємо k-бiтранзитивними операторами i операторами сполучення для вивчення прямих
сум дискциклiчних операторiв. Запропоновано набiр достатнiх умов для того, щоб опера-
тор був k-бiтранзитивним чи оператором сполучення. Також встановлено зв’язок мiж опе-
раторами топологiчного змiшування i операторами сполучення. Також розширено критерiй
Ґодефруа-Шапiро для операторiв топологiчного змiшування на випадок операторiв сполуче-
ння.

Ключовi слова i фрази: гiперциклiчнi оператори, дискциклiчнi оператори, оператори слаб-
кого змiшування, прямi суми.
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PERIODIC WORDS CONNECTED WITH THE FIBONACCI WORDS

In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of

type 2), that are connected with the Fibonacci words. The properties of the families are investigated.
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INTRODUCTION

The Fibonacci numbers Fn are defined by the recurrence relation Fn = Fn−1 + Fn−2, for

all integer n > 1, and with initial values F0 = 0 and F1 = 1. These numbers and their gen-

eralizations have interesting properties. Different kinds of the Fibonacci sequence and their

properties have been presented in the literature, see, e.g., [1, 6, 11].

Many properties of Fibonacci numbers require the full ring structure of the integers. How-

ever, generalizations to the ring Zm and groups have been considered, see, e.g., [3, 5, 14, 16].

The sequence Fn (mod m) is periodic and it repeats by returning to its starting values because

there are only a finite number m2 of pairs of possible terms. Therefore, we obtain the repeating

of all the sequence elements.

In analogy to the definition of the Fibonacci numbers, one defines the Fibonacci finite words

as the concatenation of the two previous terms fn = fn−1 fn−2, n > 1, with initial values f0 = 1

and f1 = 0 and defines the infinite Fibonacci word f , f = lim fn [2]. It is the archetype of a

Sturmian word [7]. The properties of the Fibonacci infinite word have been studied extensively

by many authors, see, e.g., [7, 8, 9, 10, 12, 15].

Using Fibonacci words, in the present article we shall introduce some new kinds of the

infinite words, namely FLP-words, and investigate some of their properties.

For any notations not explicitly defined in this article we refer to [4, 6, 7].

1 FIBONACCI SEQUENCE MODULO m

The letter p, p > 2, is reserved to designate a prime, m may be arbitrary integer, m > 2.

Let F∗
n (m) denote the n-th member of the sequence of integers Fn ≡ Fn−1 + Fn−2 (mod m),

for all integer n > 1, and with initial values F0 = 0 and F1 = 1. We reduce Fn modulo m taking

the least nonnegative residues, and let k(m) denote the length of the period of the repeating

sequence F∗
n (m).

УДК 512.624.5
2010 Mathematics Subject Classification: 08A50, 11B39, 11B83.

c© Barabash G.M., Kholyavka Ya.M., Tytar I.V., 2016
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The problem of determining the length of the period of the recurring sequence arose in

connection with a method for generating random numbers. A few properties of the function

k(m) are in the following theorem [14].

Theorem 1. In Zm the following statements hold.

1. Any Fibonacci sequence modulo m is periodic.

2. If p ≡ ±1 (mod 10), then k(p)|(p − 1). If p ≡ ±3 (mod 10), then k(p)|2(p + 1).

3. If m has prime factorization m =
n

∏
i=1

pei
i , then k(m) = lcm(k(pe1

1 ), . . . , k(pen
n )).

4. If k(p2) 6= k(p), then k(pi) = pi−1k(p) for i > 1.

The results in Theorem 1 give upper bounds for k(p) but there are primes for which k(p) is

less than the given upper bound.

Let h(m) denote the length of the period of the repeating sequence 2Fn (mod m) and ϕ(m)

be Euler’s totient function.

Theorem 2. Let m be odd and m > 1. Then h(m)|k(ϕ(m)).

Proof. This follows from Euler’s theorem: if m and a are coprime positive integers, then

aϕ(m) ≡ 1 (mod m). When reducing the power of a a modulo m, one needs to work mod-

ulo ϕ(m) in the exponent of a: if x ≡ y (mod ϕ(m)) then ax ≡ ay (mod m).

Corollary 1. Let p ≥ 3. Then h(p)|k(p − 1).

2 FIBONACCI WORDS

Let f0 = 1 and f1 = 0. Now fn = fn−1 fn−2, n > 1, the concatenation of the two previous

terms. The successive initial finite Fibonacci words are:

f0 = 1, f1 = 0, f2 = 01, f3 = 010,

f4 = 01001, f5 = 01001010, f6 = 0100101001001,

f7 = 010010100100101001010, f8 = 0100101001001010010100100101001001, . . .

(1)

The infinite Fibonacci word f is the limit f = lim fn. It is referenced A003849 in the On-line

Encyclopedia of Integer Sequences [13] and is certainly one of the most studied examples in the

combinatorial theory of infinite words. The combinatorial properties of the Fibonacci infinite

word are of great interest in some aspects of mathematics and physics, such as number theory,

fractal geometry, cryptography, formal language, computational complexity, quasicrystals etc.

(see [7]).

We denote as usual by | fn| the length (the number of symbols) of fn (see [7]). The following

proposition summarizes basic properties of the Fibonacci words [7, 10].

Theorem 3. The infinite Fibonacci word and the finite Fibonacci words satisfy the following

properties.

1. The words 11 and 000 are not subwords of the infinite Fibonacci word.
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2. For all n > 1 let ab be the last two symbols of fn, then we have ab = 01 if n is even and

ab = 10 if n is odd.

3. The concatenation of two successive Fibonacci words is “almost commutative”, i.e.,

fn fn−1 and fn−1 fn differ only by their last two symbols for all n > 1.

4. For all n | fn | = Fn+1.

5. The number of 0 and 1 in fn equals Fn and Fn−1, respectively.

3 PERIODIC FLP-WORDS

Let us start with the classical definition of periodicity on words over arbitrary alphabet

{a0, a1, a2, . . . } (see [4]).

Definition 1. Let w = a0a1a2 . . . be an infinite word. We say that w is

1) a periodic word if there exists a positive integer t such that ai = ai+t for all i ≥ 0. The

smallest t satisfying the previous condition is called the period of w;

2) an eventually periodic word if there exist two positive integers k, p such that ai = ai+p,

for all i > k;

3) an aperiodic word if it is not eventually periodic.

Theorem 4. The infinite Fibonacci word is aperiodic.

This statement is proved in [10]. We consider the finite Fibonacci words fn (1) as numbers

written in the binary system and denote them by bn. Denote by dn the value of the number bn

in usual decimal numeration system. We write bn = dn meaning that bn and dn are writing of

the same number in different numeration systems.

Example.

f0 = 1, f1 = 0, f2 = 01, f3 = 010, f4 = 01001, f5 = 01001010, f6 = 0100101001001, . . . ,

b0 = 1, b1 = 0, b2 = 1, b3 = 10, b4 = 1001, b5 = 1001010, b6 = 100101001001, . . . ,

d0 = 1, d1 = 0, d2 = 1, d3 = 2, d4 = 9, d5 = 74, d6 = 2377, . . . .

Formally, for arbitrary n > 1 fn coincide with the bn, taken with prefix 0: fn = 0bn.

Theorem 5. For any finite Fibonacci word fn, n > 1, in decimal numeration system we have

dn = dn−12Fn−1 + dn−2, where d0 = 1 and d1 = 0. (2)

Proof. One can easily verify (2) for the first few n : d2 = b2 = 1 = 0 + 1 = d1 + d0,

d3 = b3 = 10 = 10 + 0 = d221 + d1, d4 = b4 = 1001 = 1000 + 01 = d322 + d2,

d5 = b5 = 1001010 = 1001000 + 010 = d423 + d3. Statement (2) follows from Theorem 3

(statement 4) and the equality dn = bn = bn−1 0 . . . 0
︸ ︷︷ ︸

Fn−1

+bn−2 = dn−12Fn−1 + dn−2.

Theorem 6. Let p > 3. The sequence dn (mod p) has period T(p) = p · h(p).
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Proof. By Theorem 1 we have gcd(k(p − 1), p) = 1. By Corollary 1 we have h(p)|k(p − 1).

Therefore gcd(h(p), p) = 1. From (2) it follows that for arbitrary integer i, 0 ≤ i < h(p), if

j runs from 0 to p − 1 then numbers di+jh(p) (mod p) runs all residues mod p or stationary.

Then sequence dn (mod p) has period p · h(p).

Let d0(m) = 1, w0(m) = 1 and for arbitrary integer n, n ≥ 1, dn(m) = dn (mod m)

in binary numeration system, wn(m) = wn−1(m)dn(m). Denote by w(m) the limit w(m) =

limn→∞ wn(m).

Definition 2. We say that

1. wn(m) is a finite FLP-word of type 1 by modulo m;

2. w(m) is a infinite FLP-word of type 1 by modulo m.

Theorem 7. The infinite FLP-word of type 1 w(m) is periodic.

Proof. The statement follows from (2) and Theorem 2 because there are only a finite number

of dn (mod m) and 2Fn−1 (mod ϕ(m)) possible, and the recurrence of the first few terms of

sequence dn (mod m) gives recurrence of all subsequent terms.

Theorem 8. Let p > 3. The sequence subwords dn(p) of the infinite FLP-word w(p) of type 1

has period T(p) = p · h(p).

Proof. The proof is a direct corollary of Theorem 6.

Using Fibonacci words (1) we define periodic FLP-word w∗(m) (infinite FLP-word of type 2

by modulo m). We denote as usual by ε the empty word [7]. First we define words w∗
n(m). Let

w∗
n(m) be the last F∗

n+1(m) symbols of the word fn. If F∗
n+1(m) = 0 for some n, then w∗

n(m) = ε.

Since F∗
n (m) is periodic sequence with period k(m), the sequence |w∗

n(m)| is periodic with the

same period.

Theorem 9. The word length |w∗
n(m)| coincides with F∗

n+1(m).

Proof. This is clear by construction of w∗(m).

Theorem 10. The word w∗
n(m) coincides with the word w∗

n+k(m)(m).

Proof. Since fn = fn−1 fn−2, the last Fn−1 symbols of the word fn coincide with the word fn−2,

and therefore the last Fn elements of the word fn+2k coincide with the word fn−2 for any natural

number k. The period k(m) is an even number [14], so the last F∗
n+1(m) elements of the words

fn and fn+k(m) are equivalent.

Let f ∗0 (m) = 1 and for arbitrary integer n, n ≥ 1, f ∗n (m) = f ∗n−1(m)w∗
n(m). Denote by w∗(m)

the limit w∗(m) = limn→∞ f ∗n (m).

Definition 3. We say that

1) f ∗n (m) is a finite FLP-word of type 2 by modulo m;

2) w∗(m) is a infinite FLP-word of type 2 by modulo m.

Theorem 11. The infinite FLP-word w∗(m) of type 2 is a periodic word and sequence subwords

w∗
n(m) of w∗(m) has period k(m).

Proof. The proof is a direct corollary of Theorem 10.
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We study the Riemann zeta-function ζ(s) by a Fourier series method. The summation of log |ζ(s)|
with the kernel 1/|s|6 on the critical line Re s = 1

2 is the main result of our investigation. Also we

obtain a new restatement of the Riemann Hypothesis.
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INTRODUCTION

It is known that the integral
∞
∫

−∞

log |ζ
(

1
2 + it

)

|dt, where ζ(s) is the Riemann zeta-function,

diverges. M. Balazard, E.Saias, M. Yor [1] summed log |ζ(s)| on the critical line with the kernel

1/|s|2. Using the fact that f (z) = z
1−z ζ

(

1
1−z

)

, |z| < 1, belongs to the Hardy space H
1
3 and the

result of Bercovici and Foias [2] on the factorization of f (z), they have proved the following

theorem.

Theorem ([1]).

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|2 |ds| = ∑

Re ρj>
1
2

log

∣

∣

∣

∣

∣

ρj

1 − ρj

∣

∣

∣

∣

∣

,

where {ρj} is the sequence of non-trivial zeroes of ζ(s).

In particular, the Riemann Hypothesis holds if and only if

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|2 |ds| = 0.

A. Kondratyuk, P. Yatsulka [6], using the method of Fourier series, have established the

following fact.

Theorem ([6]). Let {ρj} be the sequence of non-trivial zeroes of ζ(s). Then

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|4 |ds| = 1 − γ + 2 ∑

Re ρj>
1
2

log

∣

∣

∣

∣

∣

ρj

1 − ρj

∣

∣

∣

∣

∣

+ ∑
Re ρj>

1
2

(|ρj |2 − Reρj)(2Reρj − 1)

|ρj(ρj − 1)|2 ,
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where γ is the Euler constant. The Riemann Hypothesis holds if and only if

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|4 |ds| = 1 − γ.

We make the next step studying the behaviour of the Riemann zeta-function on the critical

line. The summation of log |ζ(s)| with the kernel 1/|s|6 on the critical line Re s = 1
2 is the main

result of our research.

1 SECTION WITH RESULTS

Our result is the following.

Theorem 1. Let {ρj} be the sequence of non-trivial zeroes of ζ(s). Then

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|6 |ds| = 7

2
− 4γ +

γ1 − γ2

2
+ 6 ∑

Re ρj>
1
2

log

∣

∣

∣

∣

∣

ρj

1 − ρj

∣

∣

∣

∣

∣

+ 4 ∑
Re ρj>

1
2

(|ρj |2 − Reρj)(2Reρj − 1)

|ρj(ρj − 1)|2

+
1

2 ∑
Re ρj>

1
2

Re(|ρj |2 − ρj)
2(2Reρj − 1)(2|ρj |2 − 2Reρj + 1)

|ρj(ρj − 1)|4 ,

(1)

where γ is the Euler constant,

γ1 = − lim
N→∞

(

∑
m≤N

1

m
log m − log2 N

2

)

.

Also we obtain a new restatement of the Riemann Hypothesis.

Theorem 2. The Riemann Hypothesis holds if and only if

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|6 |ds| = 7

2
− 4γ +

γ1 − γ2

2
. (2)

Proof of Theorem 1. Observe that the conformal map z = 1 − 1/s transforms the domain
{

s : Re s > 1
2

}

onto the unit disc {z : |z| < 1}. Consider the function

f (z) = (s − 1) ζ(s) =
z

1 − z
ζ

(

1

1 − z

)

.

We have

(s − 1) ζ(s) = 1 + γ(s − 1) + γ1(s − 1)2 + · · ·+ γk(s − 1)k+1 + . . . , (3)

where

γk =
(−1)k

k!
lim

N→∞

(

∑
m≤N

1

m
logk m − logk+1 N

k + 1

)

, k ∈ N,

([5, p.4]). Therefore f (z) is holomorphic in the unit disk. It was showed in [3] that the function

f (z) belongs to the Hardy class Hp, 0 < p < 1. Earlier it was established in [1] and [2] that the
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function f (z) belongs to the Hardy class H
1
3 and σ = 0, where σ is the singular measure from

the factorization (see [4])

f (z) = B(z) · exp(iC) · exp

(

− 1

2π

∫ 2π

0

eiϕ + z

eiϕ − z
dσ(ϕ)

)

exp

(

1

2π

∫ 2π

0

eiϕ + z

eiϕ − z
log | f (eiϕ)| dϕ

)

,

(4)

where

B(z) = ∏
j

|aj|
aj

aj − z

1 − ajz

is the Blaschke product, {aj} is the sequence of zeros of f (z) and C = Im f (0) is a real constant.

Consider the Fourier coefficient of log | f (reiθ )|:

ck(r, f ) =
1

2π

∫ 2π

0
e−ikθ log | f (reiθ)|dθ, r ≤ 1.

Note that c−k(r, f ) = ck(r, f ).

It follows from (3) that f (0) = 1, and (4) yields

c0(1, f ) = − log |B(0)| = ∑
j

log
1

|aj |

and

log | f (reiθ )| = log |B(reiθ)|+ 1

2π

∫ 2π

0
Re

eiϕ + reiθ

eiϕ − reiθ
log | f (eiϕ)| dϕ. (5)

In some neighborhood of the origin, the function F(z) = log f (z), log f (0) = 0, is holomor-

phic. Let F(z) = A1z + A2z2 + . . . be its Maclaurin expansion. According to (3)

A1 = γ; A2 =
γ1 − γ2

2
.

On the other hand,

log | f (reiϕ)| = Re log f (reiϕ) =
F + F

2
=

γr(eiϕ + e−iϕ)

2
+

(γ1 − γ2)r2(e2iϕ + e−2iϕ)

4
+ . . . ,

where r is sufficiently small.

The relation (5) implies, for small r,

γ1 − γ2

4
r2 = c−2(r, B) + r2 c−2(1, f ).

In [7], the expression for the Fourier coefficient of the Blaschke product was obtained

c−2(r, B) =
r2

4

∞

∑
j=1

1

a 2
j

(

|aj|4 − 1
)

for r < |a1|. Thus,

c−2(1, f ) =
γ1 − γ2

4
− 1

4

∞

∑
j=1

1

a 2
j

(

|aj|4 − 1
)

. (6)
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Note that

c−2(1, f ) =
1

4
+

1

2π

∫ 2π

0
e2iθ log

∣

∣

∣

∣

ζ

(

1

1 − eiθ

)
∣

∣

∣

∣

dθ. (7)

Return to the variable s. Taking (6) and (7) into account, we obtain

1

4
+

1

2π

∫

Re s= 1
2

(

1 − 1

s

)2 log |ζ(s)|
|s|2 |ds|

=
γ1 − γ2

4
+

1

4 ∑
Re ρj>

1
2

ρ 2
j (2Reρj − 1)(2|ρj |2 − 2Reρj + 1)

(ρj − 1)2 |ρj|4
.

(8)

Taking the real parts of both sides (8), we get

1

4
+

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|2 |ds| − 1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|4 |ds|+ 1

2π

∫

Re s= 1
2

Re
(

s 2
) log |ζ(s)|

|s|6 |ds|

=
γ1 − γ2

4
+

1

4 ∑
Re ρj>

1
2

Re(|ρj |2 − ρj)
2(2Reρj − 1)(2|ρj |2 − 2Reρj + 1)

|ρj(ρj − 1)|4 .

Note that

∫

Re s= 1
2

Re
(

s 2
) log |ζ(s)|

|s|6 |ds| = 2
∫ ∞

0

(

1

4
− t2

) log
∣

∣

∣
ζ
(

1
2 + it

)
∣

∣

∣

(

1
4 + t2

)3
dt

= −2
∫ ∞

0

log
∣

∣

∣
ζ
(

1
2 + it

)
∣

∣

∣

(

1
4 + t2

)2
dt +

∫ ∞

0

log
∣

∣

∣
ζ
(

1
2 + it

)
∣

∣

∣

(

1
4 + t2

)3
dt

= −
∫

Re s= 1
2

log |ζ(s)|
|s|4 |ds|+ 1

2

∫

Re s= 1
2

log |ζ(s)|
|s|6 |ds|.

Using the results from [1] and [6], we obtain (1). The proof is completed.

Proof of Theorem 2. If the Riemann Hypothesis is true, then the series at the right hand side of

(1) are absent, and we have (2)

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|6 |ds| = 7

2
− 4γ +

γ1 − γ2

2
.

Now assume that relation (2) holds. If the Riemann Hypothesis is not true, then in (1)

6 ∑
Re ρj>

1
2

log

∣

∣

∣

∣

∣

ρj

1 − ρj

∣

∣

∣

∣

∣

+ 4 ∑
Re ρj>

1
2

(|ρj |2 − Reρj)(2Reρj − 1)

|ρj(ρj − 1)|2 > 0.

Examine carefully the series

∑
Re ρj>

1
2

Re(|ρj |2 − ρj)
2(2Reρj − 1)(2|ρj |2 − 2Reρj + 1)

|ρj(ρj − 1)|4 .
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We are interested in when all terms of this series are positive. The following conditions

appear

Re(|ρj |2 − ρj)
2
> 0.

If 0 < Re ρj < 1 and | Im ρj | > 1
2 +

1√
2
, then Re(|ρj |2 − ρj)

2
> 0.

It is known (see [8]) that the first 10 22 + 1 non-trivial zeros of the Riemann zeta-function lie

on the critical line. In particular, Im ρ1 = 14, 1347 . . . .

These facts imply Re(|ρj |2 − ρj)
2
> 0 for all non-trivial zeros ρj that lie inside the critical

strip 0 < Re s < 1.

Hence, if the Riemann Hypothesis is not true, then

1

2π

∫

Re s= 1
2

log |ζ(s)|
|s|6 |ds| > 7

2
− 4γ +

γ1 − γ2

2
.

This is a contradiction with (2) which finishes the proof.
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INTRODUCTION

Optimal control of determined systems governed by partial differential equations (PDEs)

is currently of much interest. Optimal control problems for PDEs are most completely studied

for the case in which the control functions occur either on the right-hand sides of the state

equations, or the boundary or initial conditions [8, 22, 26]. So far, problems in which control

functions occur in the coefficients of the state equations are less studied.

The main ideas and methods of solving different optimal control problems for systems

governed by evolutionary equations and variational inequalities are considered in monograph

[18]. Problem, where control functions occur in the coefficients of the state equations, is given

as only one among many other problems which were considered there by author.

A lot of various generalizations of this problem were investigated in many papers, includ-

ing [1, 2, 4, 5, 10–13, 15, 20, 21, 24, 25], where the state of controlled system is described by the

initial-boundary value problems for parabolic equations.

In [1,21,24,25] the state of controlled system is described by linear parabolic equations and

systems, while in [1] and [21] control functions appears as coefficients at lower derivatives,

and in [24, 25] the control functions are coefficients at higher derivatives. In [21] the existence

and uniqueness of optimal control in the case of final observation was shown and a necessary

optimality condition in the form of the generalized rule of Lagrange multipliers was obtained.

In paper [1] authors proved the existence of at least one optimal control for system governed by

a system of general parabolic equations with degenerate discontinuous parabolicity coefficient.

In papers [24, 25] the authors consider cost function in general form, and as special case it

includes different kinds of specific practical optimization problems. The well-posedness of

the problem statement is investigated and a necessary optimality condition in the form of the

generalized principle of Lagrange multiplies is established in this papers.

УДК 517.9
2010 Mathematics Subject Classification: 35K10, 49J20, 58D25.
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In papers [2, 10–13, 15, 20] authors investigate optimal control of systems governed by non-

linear PDEs. In particular, in [2] the problem of allocating resources to maximize the net benefit

in the conservation of a single species is studied. The population model is an equation with

density dependent growth and spatial-temporal resource control coefficient. The existence of

an optimal control and the uniqueness and the characterization of the optimal control are es-

tablished. Numerical simulations illustrate several cases with Dirichlet and Neumann bound-

ary conditions. In [11] the optimal control problem is converted to an optimization problem

which is solved using a penalty function technique. The existence and uniqueness theorems

are investigated. The derivation of formula for the gradient of the modified function is ex-

plained by solving the adjoint problem. Paper [15] presents analytical and numerical solutions

of an optimal control problem for quasilinear parabolic equations. The existence and unique-

ness of the solution are shown. The derivation of formula for the gradient of the modified cost

function by solving the conjugated boundary value problem is explained. In [16] the authors

consider the optimal control of a degenerate parabolic equation governing a diffusive popula-

tion with logistic growth terms. The optimal control is characterized in terms of the solution of

the optimality system, which is the state equation coupled with the adjoint equation. Unique-

ness for the solutions of the optimality system is valid for a sufficiently small time interval due

to the opposite time orientations of the two equations involved. In paper [20] optimal control

for semilinear parabolic equations without Cesari-type conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are described

by problems without initial conditions or, other words, Fourier problems for nonlinear para-

bolic equations.

The problem without initial conditions for evolution equations describes processes that

started a long time ago and initial conditions do not affect on them in the actual time mo-

ment. Such problem were investigated in the works of many mathematicians (see [3,7,23] and

bibliography there).

As we know among numerous works devoted to the optimal control problems for PDEs,

only in papers [4,5] the state of controlled system is described by the solution of Fourier prob-

lem for parabolic equations. In the current paper, unlike the above two, we consider optimal

control problem in case when the control functions occur in the coefficients of the state equa-

tion. The main result of this paper is existence of the solution of this problem.

The outline of this paper is as follows. In Section 1, we give notations, definitions of func-

tion spaces and auxiliary results. In Section 2, we prove existence and uniqueness of the solu-

tions for the state equations. Furthermore, we construct a priori estimates for the weak solu-

tions of the state equations. In Section 3, we formulate the optimal control problem. Finally,

the existence of the optimal control is presented in Section 4.

1 PRELIMINARIES

Let n be a natural number, R
n be the linear space of ordered collections x = (x1, . . . , xn)

of real numbers with the norm |x| := (|x1|
2 + . . . + |xn|2)1/2. Suppose that Ω is a bounded

domain in R
n with piecewise smooth boundary Γ. Set S := (−∞, 0], Q := Ω × S, Σ := Γ × S.

Denote by L∞
loc(Q) the linear space of measurable functions on Q such that their restrictions

to any bounded measurable set Q′ ⊂ Q belong to the space L∞(Q′).

Let X be an arbitrary Hilbert space with the scalar product (·, ·)X and the norm ‖ · ‖X.
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Denote by L2
loc(S; X) the linear space of measurable functions defined on S with values in X,

whose restrictions to any segment [a, b] ⊂ S belong to the space L2(a, b; X).

Let ω ∈ R, α ∈ C(S) be such that α(t) > 0 for all t ∈ S, γ = α or γ = 1/α, and let X be as

above. Put by definition

L2
ω,γ(S; X) :=

{

f ∈ L2
loc(S; X)

∣

∣

∣

∫

S

γ(t)e
2ω

t
∫

0

α(s)ds

‖ f (t)‖2
X dt < ∞

}

.

This space is a Hilbert space with respect to the scalar product

( f , g)L2
ω,γ(S;X) =

∫

S

γ(t) e
2ω

t
∫

0

α(s) ds

( f (t), g(t))X dt

and the norm

‖ f‖L2
ω,γ(S;X) :=

(

∫

S

γ(t) e
2ω

t
∫

0

α(s) ds

‖ f (t)‖2
X dt

)1/2
.

Denote by C1
c (a, b), where −∞ ≤ a < b ≤ +∞, the linear space of continuously differen-

tiable functions on (a, b) with compact supports.

Let H1(Ω) := {v ∈ L2(Ω) | vxi
∈ L2(Ω) (i = 1, n)} be a Sobolev space, which is a Hilbert

space with respect to the scalar product (v, w)H1(Ω) :=
∫

Ω

{
n

∑
i=1

vxi
wxi

+ vw
}

dx and the corre-

sponding norm ‖v‖H1(Ω) :=
(

∫

Ω

{
n

∑
i=1

|vxi
|2 + |v|2

}

dx
)1/2

. Under H1
0(Ω) we mean the closure

in H1(Ω) of the space C∞
c (Ω) consisting of infinitely differentiable functions on Ω with com-

pact supports. Denote by

K := inf
v∈H1

0 (Ω), v 6=0

∫

Ω

|∇v|2 dx

∫

Ω

|v|2 dx
, (1)

where ∇v = (vx1 , . . . , vxn), |∇v|2 =
n

∑
i=1

|vxi
|2.

It is well known that the constant K is finite and coincides with the first eigenvalue of the

following eigenvalue problem:

−∆v = λv, v|∂Ω = 0. (2)

From (1) it clearly follows the Friedrichs inequality
∫

Ω

|∇v|2 dx ≥ K
∫

Ω

|v|2 dx for all v ∈ H1
0(Ω). (3)

Also define ∂0z = z, ∂jz = zxj
if j ∈ {1, . . . , n}. Further, an important role will be played

by the following statement.

Lemma 1. Suppose that a function z ∈ L2(t1, t2; H1
0(Ω)), where t1, t2 ∈ R (t1 < t2), satisfies

the identity

t2
∫

t1

∫

Ω

{

− zψϕ′ +
n

∑
i=0

gi∂iψϕ
}

dxdt = 0, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (t1, t2), (4)
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for some gi ∈ L2(t1, t2; L2(Ω)) (i = 0, n). Then

(i) the function z belongs to the space C([t1, t2]; L2(Ω)) and for every θ ∈ C1([t1, t2]) and

for all τ1, τ2 ∈ [t1, t2] (τ1 < τ2) we have

1

2
θ(t)

∫

Ω

|z(x, t)|2 dx
∣

∣

∣

t=τ2

t=τ1

−
1

2

τ2
∫

τ1

∫

Ω

|z|2θ′ dxdt +

τ2
∫

τ1

∫

Ω

{

n

∑
i=0

gi∂iz
}

θ dxdt = 0; (5)

(ii) the derivative zt of the function z in the sense D′(t1, t2; H−1(Ω)) (the distributions

space) belongs to L2(t1, t2; H−1(Ω)), furthermore

t2
∫

t1

‖zt(·, t)‖2
H−1(Ω) dt ≤

n

∑
i=0

‖gi‖
2
L2(Ω×(t1,t2))

. (6)

Proof. The first statement follows directly from Lemma 2 of [6]. Let us prove the second state-

ment. Firstly note that the following continuous and dense embeddings hold

H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω). (7)

Let C∞
c (t1, t2) be the space of functions on (t1, t2) which are infinitely continuously dif-

ferentiable and have compact supports. Under D′(t1, t2; H−1(Ω)) we mean the space of dis-

tributions which are defined on C∞
c (t1, t2) with values in H−1(Ω) (see, for example, [14]).

Since the spaces L2(t1, t2; H1
0(Ω)), L2(t1, t2; H−1(Ω)) can be identified with subspaces of the

space of distributions D′(t1, t2; H−1(Ω)), then it allows us to speak about derivatives of func-

tions from L2(t1, t2;H1
0(Ω)) in the sense D′(t1, t2;H−1(Ω)) and their belonging to the space

L2(t1, t2;H−1(Ω)).

Let us rewrite equality (4) in the form

−

t2
∫

t1

∫

Ω

zψϕ′ dxdt = −

t2
∫

t1

∫

Ω

n

∑
i=0

gi∂iψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (t1, t2). (8)

According to the definition of the derivative of distributions from D′(t1, t2; H−1(Ω)), (8) im-

plies that zt belongs to the space L2(t1, t2; H−1(Ω)), and for almost all t ∈ (t1, t2)

< zt(·, t), ψ(·) >H1
0(Ω)= −

∫

Ω

n

∑
i=0

gi(x, t)∂iψ(x) dx,

where < · , · >H1
0(Ω) denotes the canonical scalar product in H−1(Ω) × H1

0(Ω). From this,

using the Cauchy-Schwarz inequality, for almost all t ∈ (t1, t2) we obtain

| < zt(·, t), ψ(·) >H1
0 (Ω) | ≤

n

∑
i=0

‖gi(·, t)‖L2(Ω)‖∂iψ(·)‖L2(Ω)

≤
( n

∑
i=0

‖gi(·, t)‖2
L2(Ω)

)1/2
‖ψ(·)‖H1(Ω).

(9)

From (9) it follows that for almost all t ∈ (t1, t2) the following estimate is valid

‖zt(·, t)‖2
H−1(Ω) ≤

n

∑
i=0

‖gi(·, t)‖2
L2(Ω),

which easily implies (6).
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2 WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR NONLINEAR

PARABOLIC EQUATIONS

Consider the equation

yt −
n

∑
i=1

d

dxi
ai(x, t, y,∇y) + a0(x, t, y,∇y) = f (x, t), (x, t) ∈ Q, (10)

where y : Q → R is an unknown function and data-in satisfies following conditions:

(A1) for every i ∈ {0, 1, . . . , n}

Q × R × R
n ∋ (x, t, s, ξ) 7→ ai(x, t, s, ξ) ∈ R

is the Caratheodory function, i.e., ai(x, t, ·, ·) : R × R
n → R is the continuous function

for a.e. (x, t) ∈ Q, and ai(·, ·, s, ξ) : Q → R is the measurable function for every (s, ξ) ∈

R × R
n; moreover, ai(x, t, 0, 0) = 0 for a. e. (x, t) ∈ Q;

(A2) for every i ∈ {0, 1, . . . , n}, for every (s, ξ) ∈ R × R
n, and for a.e. (x, t) ∈ Q the following

estimate is valid |ai(x, t, s, ξ)| ≤ C1

(

|s| + |ξ|
)

+ hi(x, t), where C1 = const > 0, hi ∈

L2
loc(S; L2(Ω));

(A3) for every (s1, ξ1), (s2, ξ2) ∈ R × R
n and for a.e. (x, t) ∈ Q the following inequality holds

n

∑
i=1

(

ai(x, t, s1, ξ1)− ai(x, t, s2, ξ2)
)

(ξ1
i − ξ2

i )

+
(

a0(x, t, s1, ξ1)− a0(x, t, s2, ξ2)
)

(s1 − s2) ≥ α(t)|ξ1 − ξ2|2,

where α ∈ C(S) such that α(t) > 0 for all t ∈ S;

(F ) f ∈ L2
loc(S; L2(Ω)).

Additionally, we impose the boundary condition

y
∣

∣

Σ
= 0 (11)

on a solution of equation (10).

Definition 1. The function y is called a weak solution of equation (10) satisfying boundary

condition (11) if it belongs to L2
loc(S; H1

0(Ω)) ∩ C(S; L2(Ω)) and the following integral equality

holds

∫∫

Q

{

− yψϕ′ +
n

∑
i=0

ai(x, t, y,∇y)∂iψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0).

(12)
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There may exist many weak solutions of equation (10) satisfying boundary condition (11).

To ensure uniqueness of the weak solution of equation (10) satisfying condition (11), we have

to impose some additional conditions on solutions, for instance, some restrictions on their

behavior as t → −∞. We will consider the problem of finding a weak solution of equation (10)

satisfying boundary condition (11) and the analogue of the initial condition

lim
t→−∞

e
ω

t
∫

0

α(s)ds

‖y(·, t)‖L2 (Ω) = 0, (13)

where ω ∈ R. We will briefly call this problem by problem (10), (11), (13), and the function y is

called the weak solution of problem (10), (11), (13).

Lemma 2. Let ω < K, where K is a constant defined in (1), and conditions (A1)–(A3) are

satisfied. Then two following statements are true.

(i) If y is a weak solution of problem (10), (11), (13) and

f ∈ L2
ω,1/α(S; L2(Ω)), (14)

then y ∈ L2
ω,α(S; H1

0(Ω)) and the following estimates hold:

e
2ω

τ
∫

0

α(s) ds

‖y(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (15)

‖y‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)), (16)

where C1, C2 are positive constants depending on K and ω only.

(ii) If y1 and y2 are two weak solutions of problem (10), (11), (13) with f = f1 and f = f2

correspondingly, and

fk ∈ L2
ω,1/α(S; L2(Ω)) (k = 1, 2), (17)

then the following estimates hold:

e
2ω

τ
∫

0

α(s) ds

‖y1(·, τ)− y2(·, τ)‖2
L2(Ω)

≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f1(·, t)− f2(·, t)‖2
L2(Ω) dt, τ ∈ S,

(18)

‖y1 − y2‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f1 − f2‖L2
ω,1/α(S;L2(Ω)), (19)

where C1, C2 are positive constants such as in (15) and (16).

Proof. First we prove statement (ii). For function z : Q → R let us denote

ai(z)(x, t) := ai(x, t, z(x, t),∇z(x, t)), (x, t) ∈ Q, i = 0, n. (20)

From (12) for difference y12 := y1 − y2 we get such an integral identity
∫∫

Q

{

− y12ψϕ′ +
n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iψϕ
}

dxdt

=
∫∫

Q

f12ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0),

(21)
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where f12 := f1 − f2. According to Lemma 1, (21) implies that

1

2
θ(t)

∫

Ω

|y12(x, t)|2 dx
∣

∣

∣

t=τ2

t=τ1

−
1

2

τ2
∫

τ1

∫

Ω

|y12|
2θ′ dxdt

+

τ2
∫

τ1

∫

Ω

[ n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iy12

]

θ dxdt =

τ2
∫

τ1

∫

Ω

f12y12θ dxdt,

(22)

where θ ∈ C1(S) and τ1, τ2 ∈ S (τ1 < τ2) are arbitrary. Using Cauchy inequality with ε:

ab ≤
ε

2
a2 +

1

2ε
b2, a, b ∈ R, ε > 0, (23)

let us estimate the right side of equality (22) as follows:

∣

∣

∣

τ2
∫

τ1

∫

Ω

f12y12θ dxdt
∣

∣

∣
≤

ε

2

τ2
∫

τ1

∫

Ω

α|y12|
2θ dxdt +

1

2ε

τ2
∫

τ1

∫

Ω

[α]−1| f12|
2θ dxdt, (24)

where ε > 0 is arbitrary. From condition (A3) we obtain following
τ2
∫

τ1

∫

Ω

[ n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iy12

]

θ dxdt ≥

τ2
∫

τ1

∫

Ω

α|∇y12|
2θ dxdt, (25)

where ∇y := (yx1 , . . . , yxn). According to (24) and (25), (22) implies the inequality

1

2
θ(τ2)

∫

Ω

|y12(x, τ2)|
2 dx −

1

2
θ(τ1)

∫

Ω

|y12(x, τ1)|
2 dx −

1

2

τ2
∫

τ1

∫

Ω

|y12|
2θ′ dxdt

+

τ2
∫

τ1

∫

Ω

α|∇y12|
2θ dxdt ≤

ε

2

τ2
∫

τ1

∫

Ω

α|y12|
2θ dxdt +

1

2ε

τ2
∫

τ1

∫

Ω

[α]−1| f12|
2θ dxdt,

where ε > 0 is arbitrary.

From this taking θ(t) = 2e
2ω

t
∫

0

α(s) ds

, t ∈ S, we obtain

e
2ω

τ2
∫

0

α(s) ds∫

Ω

|y12(x, τ2)|
2dx − e

2ω
τ1
∫

0

α(s) ds∫

Ω

|y12(x, τ1)|
2dx

− 2ω

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|y12|
2dxdt + 2

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt

≤ ε

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|y12|
2 dxdt +

1

ε

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt.

(26)

Due to (26) using (3) we obtain

e
2ω

τ2
∫

0

α(s) ds ∫

Ω

|y12(x, τ2)|
2 dx − e

2ω
τ1
∫

0

α(s) ds ∫

Ω

|y12(x, τ1)|
2 dx

+ χ(K, ω, ε)

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt ≤

1

ε

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt,

(27)
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where χ(K, ω, ε) := (2(K − ω)− ε)/K if 0 < ω < K, and χ(K, ω, ε) := (2K − ε)/K if ω ≤ 0.

Taking ε = K if ω ≤ 0, and ε = K − ω if 0 < ω < K in (27), we obtain

e
2ω

τ2
∫

0

α(s) ds ∫

Ω

|y12(x, τ2)|
2 dx − e

2ω
τ1
∫

0

α(s) ds ∫

Ω

|y12(x, τ1)|
2 dx

+ C3

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt ≤ C4

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt,

(28)

where C3, C4 are positive constants depending on K and ω only.

From (13) it easily follows the condition

e
2ω

t
∫

0

α(s)ds ∫

Ω

|y12(x, t)|2 dx → 0 as t → −∞. (29)

Taking into account (29) and (17), we let τ1 → −∞ in (28). As a result, adopting τ2 = τ ∈ S,

we obtain

e
2ω

τ
∫

0

α(s) ds ∫

Ω

|y12(x, τ)|2 dx + C3

τ
∫

−∞

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt

≤ C4

τ
∫

−∞

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt.

(30)

Hence, using inequality (3), we easily obtain estimates (18) and (19).

Now let us prove statement (i). Using the condition (A1) one can easily see that y = 0

is a weak solution of problem (10), (11), (13) with f = 0, thus estimates (18) and (19) with

y1 = y, f1 = f and y2 = 0, f2 = 0 imply estimates (15) and (16). Estimate (16) implies that

y ∈ L2
ω,α(S; H1

0(Ω)).

Lemma 3. If ω ≤ K, where K is a constant defined by (1), then problem (10), (11), (13) has at

most one weak solution.

Proof. Assume the opposite. Let y1, y2 be two weak solutions of problem (10), (11), (13). In case

ω < K according to Lemma 2 we obtain the equality

e
2ω

τ
∫

0

α(s) ds∫

Ω

|y1(x, τ)− y2(x, τ)|2 dx = 0 for all τ ∈ S. (31)

From proof of Lemma 2 it follows that estimate (31) is correct in case ω = K also. Indeed, if

ω = K, then in (27) and (30) we have χ(K, ω, ε) = 0 and C3 = 0, correspondingly, and its easily

follows from the proof that estimate (18) is correct.

Equality (31) implies equality y1(x, t)− y2(x, t) = 0 for a. e. (x, t) ∈ Q, that is, y1(x, t) =

y2(x, t) = 0 for a. e. (x, t) ∈ Q. The resulting contradiction proves our statement.
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Remark 1. Functions yc(x, t) = cv(x)e−Kt, (x, t) ∈ Q (c ∈ R), where v is an eigenfunction of

problem (2) corresponding to the first eigenvalue, are weak solutions of equation (10) satisfy-

ing condition (11), when ai = ξi (i = 1, n), a0 = 0 and f = 0. In this case we have α(t) = 1,

therefore condition (13) takes on the form: eωt‖y(·, t)‖L2(Ω) −→
t→−∞

0. Obviously in this case for

nonzero solutions we have eKt‖yc(·, t)‖L2(Ω) −→
t→−∞

C = const 6= 0, eωt‖yc(·, t)‖L2(Ω) −→
t→−∞

+∞ if

ω < K, and eωt‖yc(·, t)‖L2(Ω) −→
t→−∞

0 if ω > K. This means that the condition ω ≤ K is essen-

tial for ensuring the uniqueness of the weak solution of problem (10), (11), (13), i.e., it cannot

be simplified.

Theorem 1. Suppose that conditions (A1)–(A3) hold, and ω < K, where K is a constant

defined in (1), and

f ∈ L2
ω,1/α(S; L2(Ω)). (32)

Then there exists a unique weak solution of problem (10), (11), (13), it belongs to the space

L2
ω,α(S; H1

0(Ω)) and estimates (15) and (16) are correct.

Proof. Lemma 3 gives us a uniqueness of a weak solution of problem (10), (11), (13). It remains

to prove the existence of a weak solution of this problem.

For each m ∈ N we define fm(·, t) := f (·, t), if −m < t ≤ 0, and fm(·, t) := 0, if t ≤ −m,

and consider the problem of finding a function ym ∈ L2(−m, 0; H1
0(Ω))∩ C([−m, 0]; L2(Ω))

satisfying the initial condition

ym(x,−m) = 0, x ∈ Ω, (33)

(as an element of space C([−m, 0]; L2(Ω))) and equation (10) in Qm in the sense of the following

integral identity

∫∫

Qm

{

− ymψϕ′ +
n

∑
i=0

ai(ym)∂iψϕ
}

dxdt =
∫∫

Qm

fmψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−m, 0).

The existence and uniqueness of the solution of this problem easily follows from the known

results (see, for example, [14]). For every m ∈ N we extend ym by zero for the entire set Q and

keep the same notation ym for this extension. Note that for each m ∈ N, the function ym

belongs to L2(S; H1
0(Ω)) ∩ C(S; L2(Ω)) and satisfies integral identity (12) with fm substituted

for f , i.e.,

∫∫

Q

{

− ymψϕ′ +
n

∑
i=0

ai(ym)∂jψϕ
}

dxdt =
∫∫

Q

fmψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (34)

Consequently, we have shown that ym is a weak solution of problem (10), (11), (13) with fm

substituted for f . Then, in particular, statement (i) of Lemma 2 implies estimates

e
2ω

τ
∫

0

α(s) ds

‖ym(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (35)

‖ym‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)), (36)
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where C1, C2 are positive constants such as in estimates (15), (16).

Let us take identity (34) with alternately m = k and m = l, where k, l are arbitrary positive

integers, l > k, and apply statement (ii) of Lemma 2. As a result, we obtain estimates similar

to (18), (19), i.e.

e
2ω

τ
∫

0

α(s) ds

‖yk(·, τ)− yl(·, τ)‖2
L2(Ω) ≤ C1

−k
∫

−l

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (37)

‖yk − yl‖L2
ω,α(S;H1

0(Ω)) ≤ C2

−k
∫

−l

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt. (38)

Condition (32) implies that the right-hand sides of inequalities (37) and (38) tend to zero when

k and l tend to +∞. This means that the sequence {ym}∞
m=1 is a Cauchy sequence in the space

L2
ω,α(S; H1

0(Ω)) and C(S; L2(Ω)). Consequently, we obtain the existence of the function y ∈

L2
ω,α(S; H1

0(Ω)) ∩ C(S; L2(Ω)) such that

ym −→
m→∞

y strongly in L2
ω,α(S; H1

0(Ω)) and C(S; L2(Ω)). (39)

Note that (39) implies

∂iym −→
m→∞

∂iy strongly in L2
loc(S; L2(Ω)), i = 0, n. (40)

Condition (A2) and estimate (36) gives us for each t1, t2 ∈ S(t1 < t2) the following:

t2
∫

t1

∫

Ω

|ai(ym)|
2 dxdt ≤ C5

t2
∫

t1

∫

Ω

(

|ym|
2 + |∇ym|

2 + |hi|
2
)

dxdt ≤ C6, (41)

where C5 and C6 are positive constants independent on m.

Hence, from (41) we obtain that ai(ym) is bounded in L2
loc(S; L2(Ω)). This and (40) yield

that there exists a subsequence of {ym}∞
m=1 (still denoted by {ym}∞

m=1) and functions χi ∈

L2,loc(S; L2(Ω)) (i = 0, n) such that

∂iym −→
m→∞

∂iy a.e. on Q, i = 0, n, (42)

ai(ym) −→
m→∞

χi weakly in L2,loc(S; L2(Ω)), i = 0, n. (43)

Condition (A1) and (42) yield

ai(ym) −→
m→∞

ai(y) a.e. on Q, i = 0, n. (44)

According to [17, Lemma 1.3], from (43) and (44) we obtain

ai(ym) −→
m→∞

ai(y) weakly in L2,loc(S; L2(Ω)), i = 0, n. (45)

Let us show that the function y is a weak solution of problem (10), (11), (13). To do this, we

let m → ∞ in identity (34), taking into account (40), (45) and the definition of the function fm.

As a result we obtain identity (12). Now, taking into account (39), we let m → +∞ in (35). From

the resulting inequality and condition (32), we obtain condition (13). Hence, we have proven

that y is a weak solution of problem (10), (11), (13).
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3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM AND THE MAIN RESULT

Let U := L∞(Q) be a space of controls and U∂ :=
{

v ∈ U
∣

∣

∣
v ≥ 0 a. e. in Q

}

be the set

of admissible controls. We assume that the state of the investigated evolutionary system for a

given control v ∈ U∂ is described by a weak solution of the equation

yt −
n

∑
i=1

d

dxi
ai(x, t, y,∇y) + a0(x, t, y,∇y) + v(x, t)y = f (x, t), (x, t) ∈ Q, (46)

satisfying conditions (11) and (13) (this problem is similar to problem (10), (11), (13)). This

means that y is a function belonging to the space L2
loc(S; H1

0(Ω)) ∩ C(S; L2(Ω)) and satisfying

the integral identity

∫∫

Q

{

− yψϕ′ +
n

∑
i=0

ai(x, t, y,∇y)∂iψϕ + vyψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0),

(47)

and condition (13) under assumptions (A1)–(A3), (F ).

A weak solution y of the specified problem will be called a weak solution of problem (46),

(11), (13) for control v, and will be denoted by y(v), or y(x, t), (x, t) ∈ Q, or y(x, t; v), (x, t) ∈ Q.

Further, we assume that condition (32) and the inequality ω < K hold. From the previous sec-

tion (see Theorem 1), we immediately obtain the existence and uniqueness of a weak solution

of problem (46), (11), (13) (for a given v ∈ U∂) and its estimates (15), (16).

We assume that the cost functional has the form

J(v) = ‖y(·, 0; v) − z0(·)‖
2
L2(Ω) + µ‖v‖L∞ (Q), v ∈ U, (48)

where z0 ∈ L2(Ω), µ > 0 are given.

We consider the following optimal control problem: find a control u ∈ U∂ such that

J(u) = inf
v∈U∂

J(v). (49)

We briefly call this problem (49), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.

Theorem 2. Problem (49) has a solution.

4 PROOF OF THE MAIN RESULT

Proof of Theorem 2. Since the cost functional J is bounded below, there exists a minimizing se-

quence {vk} for J in U∂, i.e., J(vk) −→
k→∞

inf
v∈U∂

J(v). This and (48) imply that the sequence {vk} is

bounded in the space L∞(Q), that is

ess sup
(x,t)∈Q

|vk(x, t)| ≤ C7 for all k ∈ N, (50)
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where C7 is a constant, which does not depend on k.

Since for each k ∈ N the function yk := y(vk) (k ∈ N) is a weak solution of problem (46),

(11), (13) for v = vk, the following identity holds:

∫∫

Q

{

− ykψϕ′ +
n

∑
i=0

ai(yk)∂iψϕ + vkykψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0).

(51)

According to Lemma 2 for each k ∈ N we have the estimates

e
2ω

τ
∫

0

α(s) ds

‖yk(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (52)

‖yk‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)) , (53)

where constants C1, C2 are independent on k ∈ N. From (A2) and (53) it follows

τ2
∫

τ1

∫

Ω

n

∑
i=0

|ai(yk)|
2 dxdt ≤ C8

τ2
∫

τ1

∫

Ω

(

|yk|
2 + |∇yk |

2 + |hi|
2
)

dxdt ≤ C9, (54)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, and C8, C9 are positive constants independent on k.

Taking into statement (ii) of Lemma 1, from (51) for arbitrary τ1, τ2 ∈ S (τ1 < τ2) and k ∈ N

we obtain
τ2
∫

τ1

‖yk,t‖
2
H−1(Ω) dt ≤

τ2
∫

τ1

∫

Ω

( n

∑
i=0

|ai(yk)|
2 + |vkyk − f |2

)

dxdt. (55)

Taking into account condition (32), (50) and (54), estimate (55) implies

τ2
∫

τ1

‖yk,t‖
2
H−1(Ω) dt ≤ C10 for all k ∈ N, (56)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, C10 > 0 is a constant which depends on τ1 and τ2, but

does not depend on k.

According to the Compactness Lemma (see [19, Proposition 4.2]), and the compactness of

the embedding H1
0(Ω) ⊂ L2(Ω) (see [18] c. 245), estimates (50), (53), (54), (56) yield that there

exists a subsequence of the sequence {vk, yk} (still denoted by {vk, yk}) and functions u ∈ U∂,

y ∈ L2
ω,α(S; H1

0(Ω)) and χi ∈ L2
loc(S; L2(Ω)) (i = 0, n) such that

vk −→
k→∞

u ∗ -weakly in L∞(Q), (57)

yk −→
k→∞

y weakly in L2
ω,α(S; H1

0(Ω)), (58)

yk −→
k→∞

y strongly in L2
loc(S; L2(Ω)), (59)

ai(yk) −→
k→∞

χi weakly in L2,loc(S; L2(Ω)), i = 0, n. (60)
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Note that (58) implies the following

∂iyk −→
k→∞

∂iy weakly in L2
loc(S; L2(Ω)), i = 0, n. (61)

Let us show that (57) and (59) yield

∫∫

Q

ykvkψϕ dxdt −→
k→∞

∫∫

Q

yuψϕ dxdt for all ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (62)

Indeed, let g := ψϕ and t1, t2 ∈ S be such that supp ϕ ⊂ [t1, t2]. Then we have

∫∫

Q

ykvkg dxdt =

t2
∫

t1

∫

Ω

(ykvk − yvk + yvk)g dxdt =

t2
∫

t1

∫

Ω

yvkg dxdt +

t2
∫

t1

∫

Ω

(yk − y)vk g dxdt. (63)

From (50) and (59) it follows

∣

∣

∣

t2
∫

t1

∫

Ω

(yk − y)vk g dxdt
∣

∣

∣
≤

(

t2
∫

t1

∫

Ω

|vkg|2 dxdt
)1/2(

t2
∫

t1

∫

Ω

|yk − y|2 dxdt
)1/2

−→
k→∞

0. (64)

Thus, using (64) and (57), (63) implies (62). Similarly to (62) it can be easily shown that (57) and

(59) yield
∫∫

Q

|yk|
2vk ϕ dxdt −→

k→∞

∫∫

Q

|y|2uϕ dxdt for all ϕ ∈ C1
c (−∞, 0). (65)

Using (61), (62), and letting k → ∞ in (51), we obtain

∫∫

Q

{

− yψϕ′+
n

∑
i=0

χi∂iψϕ+ uyψϕ
}

dxdt =
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (66)

According to Lemma 1, identity (66) implies that y ∈ C(S; L2(Ω)).

Now let us show that the equality

∫

Ω

{ n

∑
i=0

χi∂iψ
}

dx=
∫

Ω

{ n

∑
i=0

ai(y)∂iψ
}

dx (67)

is valid for every ψ ∈ H1
0(Ω) and for a. e. t ∈ S. For this we use the monotonicity method

(see [17]). Let us take an arbitrary functions w ∈ L2,loc(S; H1(Ω)) and θ ∈ C1
c (−∞, 0), θ(t) ≥ 0

for all t ∈ (−∞, 0). Using condition (A3) for every k ∈ N we have

Wk :=
∫∫

Q

{ n

∑
i=0

(ai(yk)− ai(w))(∂iyk − ∂iw)
}

θ dxdt ≥ 0.

From this we obtain

Wk =
∫∫

Q

n

∑
i=0

ai(yk)∂iykθ dxdt −
∫∫

Q

n

∑
i=0

[

ai(yk)∂iw + ai(w)(∂iyk − ∂iw)
]

θ ≥ 0, k ∈ N. (68)
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According to Lemma 1, (51) implies

−
1

2

∫∫

Q

|yk|
2θ′ dxdt +

∫∫

Q

{ n

∑
i=0

ai(yk)∂iyk + vk|yk|
2
}

θ dxdt =
∫∫

Q

f ykθ dxdt. (69)

From (68), using (69), we obtain

Wk =
∫∫

Q

{1

2
|yk|

2θ′+
(

f yk−vk|yk|
2
)

θ
}

dxdt

−
∫∫

Q

n

∑
i=0

[

ai(yk)∂iw + ai(w)(∂iyk − ∂iw)
]

θ dxdt ≥ 0, k ∈ N.

(70)

Taking into account (59) and (65) we have

lim
k→∞

∫∫

Q

{1

2
|yk|

2θ′+
(

f yk−vk|yk|
2
)

θ
}

dxdt =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt. (71)

By (60), (61) and (71) from (70) we get

0 ≤ lim
k→∞

Wk =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt

−
∫∫

Q

n

∑
i=0

[

χi∂iw + ai(w)(∂iy − ∂iw)
]

θdxdt.

(72)

From (66), using Lemma 1, we obtain

∫∫

Q

n

∑
i=0

χi∂iyθ dxdt =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt. (73)

Thus, (72) and (73) imply that

∫∫

Q

{ n

∑
i=0

(χi − ai(w))(∂iy − ∂iw)
}

θ dxdt ≥ 0. (74)

Substituting w = y − λψ in the above inequality, where ψ ∈ H1
0(Ω), λ > 0 are arbitrary, and

dividing the obtained inequality by λ we get

∫∫

Q

{ n

∑
i=0

(χi − ai(u − λψ))∂iψ
}

θ dxdt ≥ 0. (75)

Letting λ → 0+ in (75), using condition (A2) and the Dominated Convergence Theorem

(see [9, p. 648]), we have

∫∫

Q

{ n

∑
i=1

(χi − ai(y))∂iψ
}

θ dxdt = 0. (76)
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Since ψ ∈ H1
0(Ω), θ ∈ C1

c (−∞, 0) are arbitrary functions, then (76) impliest (67).

Therefore y is a weak solution of equation (46), satisfying boundary condition (11). Hence,

the function y is a weak solution of equation (46) for v = u, satisfying boundary condition (11).

Let us show that y satisfies condition (13). First, we prove the following convergence:

for all τ ∈ S : yk(·, τ) −→
k→∞

y(·, τ) strongly in L2(Ω). (77)

For this purpose, we subtract identity (51) from identity (47) with v = u, ψ ∈ H1
0(Ω),

ϕ ∈ C1
c (−∞, 0):

∫∫

Q

{

− (y − yk)ψϕ′ +
n

∑
i=0

(

ai(y)− ai(yk)
)

∂iψϕ + uy − vkyk

}

dxdt = 0. (78)

To the resulting identity (78), we apply Lemma 1 with θ(t) = 2(t − τ + 1), τ1 = τ − 1,

τ2 = τ, where τ ∈ S is any fixed. Consequently, we get

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx −

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

+

τ
∫

τ−1

∫

Ω

[ n

∑
i=0

(

ai(y)− ai(yk)
)

∂i(y − yk) + (uy − vkyk)(y − yk)
]

θ dxdt = 0.

(79)

From (79), taking into account condition (A3) we obtain:

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤

τ
∫

τ−1

∫

Ω

[

|y − yk|
2 −(uy − vkyk)(y − yk)θ

]

dxdt. (80)

Inequality (80) implies

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤ 2

τ
∫

τ−1

∫

Ω

[

(1+vk)|y − yk|
2 + |y||u − vk||y − yk|

]

dxdt. (81)

Using (50) and Cauchy-Schwarz inequality, from (81) we obtain

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤ C11

([

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

]1/2
+

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

)

, (82)

where C11 > 0 is a constant which does not depend on k. From (82), according to (59), we

get (77). Taking into account (77), let k → ∞ in (52). The resulting inequality, according to

condition (32), implies

lim
τ→−∞

e
2ω

τ
∫

0

α(s) ds∫

Ω

|y(x, τ|2 dx = 0, (83)

that is condition (13) holds. Hence, we have shown that y = y(u) = y(x, t; u), (x, t) ∈ Q, is the

state of the controlled system for the control u.
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It remains to prove that u is a minimizing element of the functional J. Indeed, (77) implies

‖yk(·, 0)− z0(·)‖
2
L2(Ω) −→k→∞

‖y(·, 0)− z0(·)‖
2
L2(Ω). (84)

Also, (57) and properties of ∗-weakly convergent sequences yield

lim
k→∞

inf ‖vk‖L∞(Q) ≥ ‖u‖L∞(Q). (85)

From (48), (84) and (85), it easily follows that lim
k→∞

J(vk) ≥ J(u). Thus, we have shown that

u is a solution of problem (49).
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2016. — Т.8, №1. — C. 21–37.

Дослiджено задачу оптимального керування системами, стан яких описується задачею

Фур’є для нелiнiйних параболiчних рiвнянь. Керування входить як коефiцiєнт в рiвняннi ста-

ну системи. Доведено iснування оптимального керування у випадку фiнального спостереже-

ння.

Ключовi слова i фрази: оптимальне керування, задача без початкових умов, нелiнiйне пара-

болiчне рiвняння.
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CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO

ON THE SPACE (L∞)2

We introduce block-symmetric polynomials on (L∞)2 and prove that every continuous block-

symmetric polynomial of degree at most two on (L∞)2 can be uniquely represented by some “ele-

mentary” block-symmetric polynomials.

Key words and phrases: block-symmetric polynomial, symmetric function on L∞.
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INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and

Semenov in [5]. Authors considered functions on ℓp and Lp spaces. Some of their results were

generalized by González, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant

function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on

ℓ1-sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorod-

nyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space

L∞ is studied in detail and its spectrum is described.

A map P : X → C, where X is a complex Banach space, is called an n-homogeneous poly-

nomial if there exists an n-linear symmetric form AP : Xn → C, such that P(x) = AP(x, n. . ., x)

for every x ∈ X. Here “symmetric” means that

AP(xτ(1), . . . , xτ(n)) = AP(x1, . . . , xn)

for every permutation τ : {1, . . . , n} → {1, . . . , n}. Note that AP is called the symmetric n-

linear form associated with P. It is known (see e.g. [4], Theorem 1.10) that AP can be recovered

from P by means of the so-called Polarization Formula:

AP(x1, . . . , xn) =
1

n!2n ∑
ε1,...,εn=±1

ε1 . . . εnP(ε1x1 + . . . + εnxn). (1)

In the case n = 2 formula (1) can be written as

AP(x1, x2) =
1

4

(
P(x1 + x2)− P(x1 − x2)

)
. (2)

It is also convenient to define 0-homogeneous polynomials as constant mappings.

УДК 517.98
2010 Mathematics Subject Classification: 46J20, 46E15.
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A mapping P : X → C is called a polynomial of degree at most m if it can be represented

as

P = P0 + P1 + . . . + Pm,

where Pj is a j-homogeneous polynomial for j = 0, . . . , m.

Let L∞ be the complex Banach space of all Lebesgue measurable essentially bounded comp-

lex-valued functions x on [0, 1] with norm

‖x‖∞ = ess supt∈[0,1]|x(t)|.

Let Ξ be the set of all measurable bijections of [0, 1] that preserve the measure. A function

F : L∞ → C is called Ξ-symmetric (or just symmetric when the context is clear) if for every

x ∈ L∞ and for every σ ∈ Ξ

F(x ◦ σ) = F(x).

The functions Rn : L∞ → C defined by

Rn(x) =
∫ 1

0
xn(t) dt

for every n ∈ N ∪ {0} are called the elementary symmetric polynomials. In [1] it is shown that for

each continuous Ξ-symmetric polynomial P : L∞ → C of degree at most m there is a unique

finitely many variables polynomial q such that

P(x) = q(R0(x), . . . , Rm(x))

for every x ∈ L∞.

Let (L∞)2 be the Cartesian square of the space L∞, endowed with norm

‖(x, y)‖ = max{‖x‖∞, ‖y‖∞}. Clearly, (L∞)2 is a complex Banach space. A function

F : (L∞)2 → C we call block-symmetric if for every (x, y) ∈ (L∞)2 and for every σ ∈ Ξ

F((x ◦ σ, y ◦ σ)) = F((x, y)).

We restrict our attention to continuous block-symmetric polynomials of degree at most two on

(L∞)2. In Section 1 we prove that every such a polynomial can be uniquely represented as an

algebraic combination of the polynomials

R0((x, y)) = 1, R10((x, y)) = R1(x), R01((x, y)) = R1(y),

R20((x, y)) = R2(x), R11((x, y)) =
∫ 1

0
x(t)y(t) dt, R02((x, y)) = R2(y),

which we call the elementary block-symmetric polynomials of degree at most two.

1 THE MAIN RESULT

By 1E we denote the characteristic function of a set E ⊂ [0, 1]. We also define functions

1 = 1[0,1] and r = 1[0, 1
2 ]
− 1[ 1

2 ,1].
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Theorem 1. Every continuous block-symmetric polynomial P = P0 + P1 + P2, where Pj is a

j-homogeneous polynomial for j = 0, 1, 2, can be represented as

P = a0R00 + a10R10 + a01R01 + a20R20 + a11R11 + a02R02 + a1010R2
10 + a1001R10R01 + a0101R2

01,

where

a0 = P0, a10 = P1((1, 0)), a01 = P1((0, 1)),

a20 = P2((r, 0)), a11 = AP2
((r, 0), (0, r)), a02 = P2((0, r)),

a1010 = P2((1, 0))− P2((r, 0)), a1001 = AP2
((1, 0), (0, 1)) − AP2

((r, 0), (0, r)),

a0101 = P2((0, 1))− P2((0, r)).

Here we denote by AP2
the symmetric bilinear form, associated with P2.

Proof. It can be easily checked that

P0((x, y)) = P((0, 0)), P1((x, y)) =
1

2

(
P((x, y))− P((−x,−y))

)
,

P2((x, y)) = P((x, y)) − P1((x, y))− P0((x, y))

for every (x, y) ∈ (L∞)2. This implies that P0, P1 and P2 are continuous and block-symmetric.

By the linearity of P1

P1((x, y)) = P1((x, 0) + (0, y)) = P1((x, 0)) + P1((0, y)).

Let f1(x) = P1((x, 0)) for x ∈ L∞. Clearly, f1 is a continuous linear Ξ-symmetric functional on

L∞. It is known (see [1, 6]) that every such a functional f can be represented as

f (x) = f (1)R1(x). (3)

Therefore f1(x) = f1(1)R1(x), i. e. P1((x, 0)) = P1((1, 0))R1(x). Analogously, P1((0, y)) =

P1((0, 1))R1(y). Thus

P1((x, y)) = P1((1, 0))R1(x) + P1((0, 1))R1(y) = a10R10((x, y)) + a01R01((x, y)).

Since AP2
is bilinear and symmetric, it follows that

P2((x, y)) = AP2
((x, 0), (x, 0)) + 2AP2

((x, 0), (0, y)) + AP2
((0, y), (0, y)).

We define following bilinear forms:

BI(x1, x2) = AP2
((x1, 0), (x2, 0)), BI I(x1, x2) = AP2

((x1, 0), (0, x2)),

BI I I(x1, x2) = AP2
((0, x1), (0, x2)),

(4)

where x1, x2 ∈ L∞. Note that BI and BI I I are symmetric. By the formula (2)

AP2
((x1, y1), (x2, y2)) =

1

4

(
P2((x1 + x2, y1 + y2))− P2((x1 − x2, y1 − y2))

)
.

Therefore by the symmetry of P2

AP2
((x1 ◦ σ, y1 ◦ σ), (x2 ◦ σ, y2 ◦ σ)) = AP2

((x1, y1), (x2, y2)) (5)
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for every σ ∈ Ξ and (x1, y1), (x2, y2) ∈ (L∞)2. By (5) we have that

Bj(x1 ◦ σ, x2 ◦ σ) = Bj(x1, x2), (6)

for every j ∈ {I, I I, I I I}, x1, x2 ∈ L∞ and σ ∈ Ξ.

Let QI be the restriction of BI to the diagonal. By the continuity of BI and by (6) we have

that QI is a continuous 2-homogeneous Ξ-symmetric polynomial. It is known (see [1]) that

every continuous 2-homogeneous Ξ-symmetric polynomial Q on L∞ can be represented as

Q = αR2
1 + βR2. (7)

It can be easily checked that α = Q(1)− Q(r) and β = Q(r). Note that

QI(x) = AP2
((x, 0), (x, 0)) = P2((x, 0)).

Thus

AP2
((x, 0), (x, 0)) =

(
P2((1, 0))− P2((r, 0))

)
R2

1(x) + P2((r, 0))R2(x)

= a1010R2
10((x, y)) + a20R20((x, y)).

Analogously

AP2
((0, y), (0, y)) = a0101R2

10((x, y)) + a02R20((x, y)).

The bilinear form BI I can be represented as the sum of the symmetric and the antisymmet-

ric forms

Bs
I I(x1, x2) =

1

2

(
BI I(x1, x2) + BI I(x2, x1)

)

and

Ba
I I(x1, x2) =

1

2

(
BI I(x1, x2)− BI I(x2, x1)

)

respectively. Let us prove that Ba
I I(x1, x2) = 0 for every x1, x2 ∈ L∞.

Lemma 1. Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = 0.

Proof. Let σ(t) = 1 − t. By (6) Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = Ba
I I(1[0, 1

2 ]
◦ σ, 1[ 1

2 ,1] ◦ σ) = Ba
I I(1[ 1

2 ,1], 1[0, 1
2 ]
). On

the other hand, since Ba
I I is antisymmetric, it follows that

Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = −Ba
I I(1[ 1

2 ,1], 1[0, 1
2 ]
).

Therefore Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = 0.

Lemma 2. Ba
I I(1E, 1F) = 0 for every measurable sets E ⊂ [0, 1

2 ] and F ⊂ [1
2 , 1].

Proof. For every x ∈ L∞ we define x̂ ∈ L∞ by

x̂(t) =

{
x(2t), if t ∈ [0, 1

2 ],

0, if t ∈ (1
2 , 1].

Let z ∈ L∞ be such that its restriction to [0, 1
2) is constant. Let fz(x) = Ba

I I(x̂, z), where x ∈ L∞.

Clearly, fz is a continuous linear functional on L∞. Let us prove that fz is Ξ-symmetric. For

every σ ∈ Ξ let

σ̃(t) =

{ 1
2 σ(2t), if t ∈ [0, 1

2 ],

t, if t ∈ (1
2 , 1].
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Clearly, σ̃ ∈ Ξ and z ◦ σ̃ = z. It can be checked that x̂ ◦ σ = x̂ ◦ σ̃. Therefore by (6)

fz(x ◦ σ) = Ba
I I(x̂ ◦ σ, z) = Ba

I I(x̂ ◦ σ̃, z ◦ σ̃) = Ba
I I(x̂, z) = fz(x).

Thus fz is Ξ-symmetric. By (3) fz(x) = fz(1)R1(x), i. e. Ba
I I(x̂, z) = Ba

I I(1̂, z)R1(x). Since

1̂ = 1[0, 1
2 ]

, 1̂2E = 1E and R1(12E) = 2µ(E), where 2E = {2t : t ∈ E}, it follows that

Ba
I I(1E, z) = Ba

I I(1[0, 1
2 ]

, z)2µ(E).

Analogously it can be proven that Ba
I I(u, 1F) = Ba

I I(u, 1[ 1
2 ,1])2µ(F), where u ∈ L∞ such that its

restriction to (1
2 , 1] is constant. Therefore

Ba
I I(1E, 1F) = Ba

I I(1[0, 1
2 ]

, 1F)2µ(E) = Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1])4µ(E)µ(F) = 0

by Lemma 1.

Lemma 3. Ba
I I(1E, 1F) = 0 for disjoint measurable sets E, F ⊂ [0, 1] such that µ(E) ≤ 1

2 and

µ(F) ≤ 1
2 .

Proof. By [1, Proposition 1.2] there exists σE,F ∈ Ξ such that 1E = 1[0,a] ◦ σE,F and 1F = 1[a,a+b] ◦

σE,F, where a = µ(E) and b = µ(F). Let

σ1(t) =





t − a + 1
2 , if t ∈ [a, a + b],

t − 1
2 + a, if t ∈ [1

2 , 1
2 + b],

t, otherwise.

Clearly, σ1 ∈ Ξ, 1[0,a] = 1[0,a] ◦ σ1 and 1[a,a+b] = 1[ 1
2 , 1

2+b] ◦ σ1. Therefore 1E = 1[0,a] ◦ σ1 ◦ σE,F and

1F = 1[ 1
2 , 1

2+b] ◦ σ1 ◦ σE,F. By (6) and by Lemma 2

Ba
I I(1E, 1F) = Ba

I I(1[0,a] ◦ σ1 ◦ σE,F, 1[ 1
2 , 1

2+b] ◦ σ1 ◦ σE,F) = Ba
I I(1[0,a], 1[ 1

2 , 1
2+b]) = 0.

Lemma 4. Ba
I I(1E, 1F) = 0 for every disjoint measurable sets E, F ⊂ [0, 1].

Proof. If µ(E) = µ(F), then µ(E) and µ(F) cannot be greater than 1
2 and Ba

I I(1E, 1F) = 0

by Lemma 3. Note that Ba
I I(1E, 1F) = 0 if µ(E) = 0 or µ(F) = 0. Let µ(E) > µ(F) >

0. Let N =
⌊

µ(E)
µ(F)

⌋
. We can choose disjoint measurable subsets E1, . . . , EN ⊂ E such that

µ(E1) = . . . = µ(EN) = µ(F). Set E0 = E \ ∪N
j=1Ej. Then

Ba
I I(1E, 1F) =

N

∑
j=0

Ba
I I(1Ej

, 1F) = Ba
I I(1E0

, 1F).

Since µ(E0) < µ(F) < 1
2 , it follows that Ba

I I(1E0
, 1F) = 0 by Lemma 3.

Lemma 5. Ba
I I(1E, 1F) = 0 for every measurable sets E, F ⊂ [0, 1].

Proof. Note that E = (E \ F) ⊔ (E ∩ F) and F = (F \ E) ⊔ (E ∩ F). Therefore

Ba
I I(1E, 1F) = Ba

I I(1E\F, 1F\E) + Ba
I I(1E\F, 1E∩F) + Ba

I I(1E∩F , 1F\E) + Ba
I I(1E∩F, 1E∩F) = 0

by Lemma 4 and by the antisymmetry of Ba
I I.
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Proof of the Theorem 1 (continuation). For the simple measurable functions x1, x2 ∈ L∞ we have

Ba
I I(x1, x2) = 0 by the bilinearity of Ba

I I. Since the set of simple measurable functions is dense

in L∞, the continuity of Ba
I I leads to Ba

I I(x1, x2) = 0 for every x1, x2 ∈ L∞. Thus BI I = Bs
I I, i.

e. BI I is symmetric. Let QI I be the restriction of BI I to the diagonal. QI I is a continuous 2-

homogeneous Ξ-symmetric polynomial. Therefore by (7) QI I(x) = (QI I(1) − QI I(r))R2
1(x) +

QI I(r)R2(x).

By (2) BI I(x, y) = 1
4

(
QI I(x + y)− QI I(x − y)

)
. Since

BI I(x, y) = AP2
((x, 0), (0, y)), QI I(1) = AP2

((1, 0), (0, 1)), QI I(r) = AP2
((r, 0), (0, r)),

R2
1(x + y)− R2

1(x − y) = 4R1(x)R1(y), R2(x + y)− R2(x − y) = 4
∫ 1

0
x(t)y(t) dt,

it follows that

AP2
((x, 0), (0, y)) = (AP2

((1, 0), (0, 1)) − AP2
((r, 0), (0, r))) R1(x)R1(y)

+ AP2
((r, 0), (0, r))

∫ 1

0
x(t)y(t) dt = a1001R10((x, y))R01((x, y)) + a11R11((x, y)).
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A method of “almost optimal” continuous approximation of capacities on a metric compactum

with possibility measures, necessity measures, or with capacities on a closed subspace, is presented.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different

theories. Spaces of upper semicontinuous capacities on compacta were systematically studied

in [2]. In particular, in the latter paper functoriality of the construction of a space of capac-

ities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of

capacities on a metric compactum were introduced. Needs of practice require that a capacity

can be approximated with capacities of simpler structure or with some convenient properties.

It was shown in[3] that each normalized capacity on a compactum is the value of a so-called

∪-capacity (or possibility measure) on the space of ∩-capacities (necessity measures) under

the multiplication mapping of the capacity monad. Nevertheless it is impossible to represent

every capacity in this manner using only capacities of one of the two mentioned classes. We

can discuss only approximation of an arbitrary capacity with ∪- or ∩-capacities. A construc-

tion of the capacity from the class of ∪- or ∩-capacities that is the closest to the given one w.r.t.

the Prokhorov metric was described in [4]. A method of optimal approximation of a capacity

with a capacity on a closed subspace was also presented there. Although the proposed ap-

proximations are optimal (belong to the optimal ones), they does not depend continuously on

the original capacity. In this paper we consider the problem of continuous approximation. It

is proved that the space MX of subnormalized capacities on a metric compactum X is an I-

convex compactum, hence all elements of MX can be approximated with “almost optimal”

precision with elements of an arbitrary closed I-convex subset X0 ⊂ MX, in particular, with

∪-capacities, ∩-capacities, or capacities on a fixed closed subspace X0 ⊂ X, so that the approx-

imation is continuous w.r.t. the original capacity and the chosen “tolerance”.

1 BASIC FACTS AND DEFINITIONS

We follow the terminology and notation of [2] and denote by exp X the set of all non-empty

closed subsets of a compactum X. The set exp X is considered with the Vietoris topology. If

УДК 515.12+512.58
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c©Hlushak I.D., Nykyforchyn O.R., 2016



CONTINUOUS APPROXIMATIONS OF CAPACITIES. . . 45

a metric d on X is admissible, then the Hausdorff metric d̂ is admissible on exp X. For a point

x in (X, d) and a non-empty subset S ⊂ X we denote d(x, S) = inf{d(x, x′) | x′ ∈ S}, and I is

the unit segment [0, 1].

We call a function c : exp X ∪ {∅} → I a capacity on a compactum X if the three following

properties hold for all subsets F, G ⊂
cl

X:

1. c(∅) = 0;

2. if F ⊂ G, then c(F) ≤ c(G) (monotonicity);

3. if c(F) < a, then there is an open subset U ⊃ F such that for all G ⊂ U the inequality

c(G) < a is valid (upper semicontinuity).

If, additionally, c(X) = 1 (or c(X) ≤ 1) holds, then the capacity is called normalized (resp.

subnormalized).

We denote by MX and MX the sets of all normalized and of all subnormalized capacities

respectively. It was shown in [2] that MX carries a compact Hausdorff topology with the sub-

base of all sets of the form

O−(F, a) = {c ∈ MX | c(F) < a}, where F ⊂
cl

X, a ∈ I,

and

O+(U, a) = {c ∈ MX | c(U) > a}

= {c ∈ MX | there is a compactum F ⊂ U, c(F) > a}, where U ⊂
op

X, a ∈ I.

The same formulae determine a subbase of a compact Hausdorff topology on MX and

therefore MX ⊂ MX is a subspace.

We consider the following subclasses of MX.

1. M∩X is the set of the so-called ∩-capacities (or necessity measures) with the property:

c(A ∩ B) = min{c(A), c(B)} for all A, B ⊂
cl

X.

2. M∪X is the set of the so-called ∪-capacities (or possibility measures) with the property:

c(A ∪ B) = max{c(A), c(B)} for all A, B ⊂
cl

X.

3. Class MX0 of capacities defined on a closed subspace X0 ⊂ X. We regard each capacity c0

on X0 as a capacity on X extended with the formula c(F) = c0(F ∩ X0), F ⊂
cl

X.

Analogous subclasses are defined in MX, with the obvious denotations. It was proved in

[3] that the subsets M∩X, M∪X, and MX0 are closed in MX, hence for a compactum X they are

compacta as well.

From now on we restrict to MX, results for MX are quite analogous. We consider the metric

on the set MX of subnormalized capacities on a metric compactum (X, d) :

d̂(c, c′) = inf{ε > 0 | c(Ōε(F)) + ε ≥ c′(F), c′(Ōε(F)) + ε ≥ c(F), ∀F ⊂
cl

X}.

Here Ōε(F) is the closed ε-neighborhood of a subset F ⊂ X. This metric is admissible [2].

Recall some definitions and well-known facts on compact topological semilattices and compact

idempotent semimodules.
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A poset (X,≤) is called an upper semilattice is pairwise suprema x ∨ y exist for all x, y ∈ X.

A subset Y of an upper semilattice Y is called an upper subsemilattice if the supremum of each

two elements of Y is in Y. Then Y is an upper semilattice as well, and suprema of all finite

non-empty subsets of Y in X and in Y exist and are equal.

An upper semilattice (X,≤) is called topological if a topology is fixed on X such that the pair-

wise supremum x ∨ y depends on x, y ∈ X continuously.

A topological semilattice is called Lawson [7] if in each its point it possesses a local base

consisting of subsemilattices.

An upper semilattice is complete if each it non-empty subset has the least upper bound. It is

well-known that any compact topological upper semilattice is complete and contains agreatest

element [6]. A compact Hausdorff topological upper semilattice X is Lawson if and only if

the mapping sup : exp X → X that assigns the least upper bound to each non-empty closed

subset A ⊂ X is continuous w.r.t. the Vietoris topology.

We call (X,⊕,⊛) a (left idempotent) (I, max, ∗)-semimodule if X is a set with operations

⊕ : X × X → X, ⊛ : I × X → X such that for all x, y, z ∈ X, α, β ∈ I the following holds:

1. x ⊕ y = y ⊕ x;

2. (x ⊕ y)⊕ z = x ⊕ (y ⊕ z);

3. there is a unique 0̄ ∈ X such that x ⊕ 0̄ = x for all x;

4. α ⊛ (x ⊕ y) = (α ⊛ x)⊕ (α ⊛ y), max{α, β}⊛ x = (α ⊛ x)⊕ (β ⊛ x);

5. (α ∗ β)⊛ x = α ⊛ (β ⊛ x);

6. 1⊛ x = x;

7. 0⊛ x = 0̄.

In the sequel we use a shorter term “I-semimodule” for (I, max, ∗)-semimodule.

A triple (X,⊕,⊛) is called a compact Hausdorff Lawson I-semimodule if (X,⊕,⊛) is an I-

semimodule and a compact Hausdorff topology is fixed on X that makes it a compact Lawson

upper semilattice with ⊕ being pairwise supremum (hence the partial order is defined as

x ≤ y ⇔ x ⊕ y = y), and the multiplication ⊛ is continuous.

For all points x1, x2, . . . , xn ∈ X and coefficients α1, α2, . . . , αn ∈ I such that

max{α1, α2, . . . , αn} = 1 we define the I-convex combination of a finite number of elements α1 ⊛

x1 ⊕ α2 ⊛ x2 ⊕ . . . ⊕ αn ⊛ xn, which from now on is denoted simply as α1x1 ⊕ α2x2 ⊕ . . . ⊕ αnxn.

It can be calculated stepwise using pairwise convex combinations of the form x ⊕ αy, which in

fact are values of a mapping X × I × X → X.

If the mentioned pairwise I-convex combination is continuous, then (X,⊕,⊛) is called

an I-convex compactum [5]. Hence an I-convex compactum is a compact Hausdorff space X

with a Lawson continuous pairwise I-convex combination (x, α, y) 7→ x ⊕ αy, X × I × X → X,

which (for α = 1) makes X a compact Hausdorff Lawson upper semilattice.

In compact Hausdorff Lawson I-semimodules we can define an I-convex combination of

an infinite number of elements using finite combinations as follows:

⊕
i∈I

αixi = inf{sup
i∈I1

αi ⊛ sup
i∈I1

xi ⊕ . . . ⊕ sup
i∈In

αi ⊛ sup
i∈In

xi | n ∈ N, I = I1 ∪ I2 ∪ . . . ∪ In}.
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Observe that the above I-convex combination does not depend on αixi such that the respec-

tive αi are equal to zero. Theorem [5, 5.9.2] implies an important property of the mapping that

sends each collection of elements with coefficients to their I-convex combination.

Lemma 1. Let (X,⊕,⊛) be an I-convex compactum and exp1(X × I) ⊂ exp(X × I) the sub-

space of all closed subsets of X × I that contain at least one pair of the form (x, 1). Then

the mapping h : exp1(X × I) → X defined for A ⊂
cl

X × I by the formula

h(A) = ⊕
i∈I

{αixi|(xi, αi) ∈ A}

is continuous.

2 SOME MAPPINGS IN METRIC I-CONVEX COMPACTA

We need some auxilliary statements. Let S ⊂ X be a non-empty closed I-convex subset

of a metric I-convex compactum (X,⊕,⊛), i.e. S contains all I-convex combinations of its

elements. Then S is known [5] to be an I-convex compactum as well. For the product topology

on X × R the metric ρ((x1, a1), (x2, a2)) = max{d(x1, x2), |a1 − a2|} is admissible.

For an element x ∈ X consider the set Fx = {(x′, a)|x ∈ S, d(x, x′) ≤ a ≤ diam X}.

Proposition 1. The set Fx ⊂ S × [0, diam X] is closed and the mapping

f : X → exp(S × [0, diam X]) that assigns Fx to each x ∈ X is continuous.

The proof relies on the two following lemmas.

Lemma 2. Let (X, d) be a metric compactum, then for all x ∈ X the set

Fx = {(x′, a)|x′ ∈ X, d(x, x′) ≤ a ≤ diam X} is non-empty and closed in X × [0, diam X].

Proof. Obviously (x′, diam X) ∈ Fx for all x′ ∈ X, hence the set in question is non-empty.

We show that the complement X × [0, diam X] \ Fx is open. Let a point (x′, a) belong to

the complement, i.e. d(x, x′) > a. Put ε =
d(x, x′)− a

2
. Then ε > 0 and for any point

(y, b) in the ε-neighborhood of (x′, a), which is a ball Bε(x′) × (a − ε, a + ε), the inequalities

d(y, x) ≥ d(x′, x)− d(x′, y) > (a + 2ε)− ε = a + ε > b are valid. Hence the ε-neighborhood of

the point (x′, a) is contained in the set X × [0, diam X] \ Fx.

Therefore the set Fx = Fx ∩ (S × I) is non-empty and closed in S × [0, diam X] as well.

Lemma 3. Let (X, d) be a metric compactum and S its non-empty closed subset, then the map-

ping f from X to the space exp(S× [0, diam X]) of all non-empty closed subsets with the Haus-

dorff metric that sends each x ∈ X to the set Fx, is non-expanding.

Proof. Let x, y ∈ X, x 6= y, hence r = d(x, y) > 0. If (x′, a) ∈ Fx, i.e. d(x, x′) ≤ a, put

b = min{a+ r, diam X}. Thus |b− a| = ρ((x′, a), (x′, b)) ≤ r and d(y, x′) ≤ d(x, y)+ d(x, x′) =

d(x, x′) + r. Taking into account d(y, x′) ≤ diam X we deduce d(y, x′) ≤ b, hence (x′, b) ∈ Fy.

Thus for each point (x′, a) ∈ Fx there is a point (x′, b) ∈ Fy at a distance ≤ r, and vice

versa. Thus the Hausdorff distance ρH between Fx and Fy does not exceed r = d(x, y), i.e. f is

non-expanding. This completes the proof.
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Assign to all x ∈ X and ε > 0 the set Gx ⊂ S × I of the form

Gx =

{

(x′, α)|x′ ∈ S, α ∈ I, α ≤ max

{

0, 1 −
d(x, x′)− d(x, S)

ε

}}

.

Observe that a point (x′, α), with α > 0, can belong to Gx only if x′ ∈ S, d(x, x′) < d(x, S) + ε.

Proposition 2. The following statements hold:

(1) the set Gx is closed in S × I;

(2) the mapping g : X × (0,+∞) → exp(S × I) that assigns Gx to each element x ∈ X and

ε > 0 is continuous;

(3) for all x ∈ X, ε > 0 the equality max{α ∈ I | (x′, α) ∈ Gx for some x′ ∈ S} = 1 is valid.

Proof. The set Gx ⊂ S × I is the image of the set Fx ⊂ S × [0, diam X], namely Gx = (1X ×

θx,ε)(Fx), where θx,ε : [0, diam X] → I is defined by the formula

θx,ε(a) = max{1 −
a − d(x, S)

ε
, 0}. Hence Gx is closed as the image of a closed set under

a continuous mapping of compacta (1). Moreover Fx and θx,ε depend on x and ε continuously,

therefore the same holds for Gx (2). Compactness of S ⊂ X implies existence of x′ ∈ S such

that d(x, x′) = d(x, S), hence (x′, 1) ∈ Gx (3).

Proposition 3. The mapping Φ : X × (0,+∞) → S defined as

Φ(x, ε) = ⊕
i∈I

{αixi|(xi, αi) ∈ Gx}

is continuous.

Proof. Continuity of Φ is a corollary of Proposition 2 and Lemma 1 because Φ is the composi-

tion of the continuous mappings g and h (cf. Lemma 1).

3 CONSTRUCTION OF ALMOST OPTIMAL APPROXIMATIONS OF CAPACITIES

Consider the space MX of subnormalized capacities. For reader’s convenience we present

and prove properties of MX [5] in the following statement.

Proposition 4. The triple (MX,∨,∧) is a (I, max, min)-convex compactum, if the operations

∨ : MX × MX → MX and ∧ : I × MX → MX are defined by the formulae:

c1 ∨ c2(F) = max{c1(F), c2(F)}, α ∧ c(F) = min{α, c(F)}

for c1, c2 ∈ MX, α ∈ I, F ⊂
cl

X.

Proof. It is almost obvious that the defined above functions c1 ∨ c2 : exp X → I,

α ∧ c : exp X ∪ {∅} → I are capacities on X. Put ⊕ = ∨, ⊛ = ∧ and set the zero element

0̄ ∈ MX to the “zero capacity” with the values 0̄(F) = 0 for all F ⊂
cl

X. It is easy to observe that

axioms (1)—(7) from the definition of semimodule hold. Thus (MX,∨,∧) is a (left idempotent)

(I, max, min)-semimodule. Recall (see [2]) that the subbase of all sets of the form O−(F, a) and

O+(U, a), for A ⊂
cl

X, U ⊂
op

X, a ∈ I, determines a compact Hausdorff topology τ on MX.
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It a partial order at MX is defined as

c1 ≤ c2 ⇔ c1 ∨ c2 = c2 ⇔ c1(F) ≤ c2(F), for all F ⊂
cl

X,

then the pairwise suprema are calculated argumentwise: c1 ∨ c2(F) = max{c1(F), c2(F)}, and

MX is an upper semilattice with the least element 0̄. It was proved in [5] that (MX,≤) is

a topological (i.e. the pairwise supremum c1 ∨ c2 depends on c1 and c2 continuously w.r.t.

the topology τ) upper Lawson semilattice (because subbase elements O−(F, a) and O+(U, a)

are subsemilattices), and τ is the Lawson topology.

The function c1 ∨ αc2 : exp X ∪ {∅} → I defined by the formula

c1 ∨ αc2(F) = c1 ∨ (α ∧ c2)(F) = max
{

c1(F), min{α, c2(F)}
}

is a subnormalized capacity on X, and the mapping MX × I × MX → MX that assigns c1 ∨ αc2

to (c1, α, c2) is continuous. Hence MX is a compact Hausdorff space with a Lawson continuous

pairwise I-convex combination which makes it a compact Hausdorff Lawson upper semilat-

tice, i.e. (MX,∨,∧) is an I-convex compactum.

If a compact topology on X is determined with an admissible metric d, then (MX, d̂) is

a metric compactum and the defined above metric d̂ on MX is admissible, i.e. (MX,∨,∧) is

a metric I-convex compactum. The following property of d̂ is crucial.

Lemma 4. Let (X, d) be a metric compactum, c0, ci ∈ MX for i ∈ I are capacities such

that d̂(c0, ci) ≤ ε for some ε ≥ 0 and all i. Then for arbitrary coeficients αi ∈ I such that

supi∈I αi = 1 the inequality d̂(c0,
∨

i∈I
αici) ≤ ε is valid.

For a finite number of ci the inequality is straightforward, and by continuity we extend it

to infinite combinations.

Remark. Since MX ⊂ MX is a closed subsemimodule, everything said above on MX applies

also to MX.

Therefore the above statements can be used to approximate a capacity c ∈ MX (or c ∈ MX)

with capacities from a closed I-convex subspace S ⊂ MX (resp. S ⊂ MX). The convexity

means that S contains all I-convex combinations of the form ∨
i∈I

(αi ∧ ci), where ci ∈ S, αi ∈ I,

max{αi|i ∈ I} = 1. For simplicity consider a more general case of MX.

For a capacity c ∈ MX and a number ε > 0 construct the set

Gc =

{

(c′, α)|c′ ∈ S, α ∈ I, α ≤ max

{

0, 1 −
d̂(c, c′)− d̂(c, S)

ε

}}

,

which is closed in S × I due to Proposition 2.

Define a capacity c̃ε with the formula c̃ε = ∨
i∈I

{αi ∧ ci|(ci, αi) ∈ Gc}. Equivalently c̃ε can be

defined as

c̃ε(F) = sup

{

(1 −
d̂(c, c′)− d̂(c, S)

ε
) ∧ c′(F)|c′ ∈ S, d̂(c, c′) ≤ d̂(c, S) + ε

}

(1)

for all F ⊂
cl

X. Although c̃ε is not the closest to c ∈ MX in the subspace S, it is “almost

the closest” in the sense of the following theorem.
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Theorem 1. For a capacity c ∈ MX, a number ε > 0 and a closed I-convex subspace S ⊂ MX

the capacity c̃ε belongs to S and satisfies the inequality d̂(c, c̃ε) ≤ d̂(c, S) + ε. The mapping

Φ : MX × (0, diam MX] → S defined as Φ(c, ε) = c̃ε is continuous.

Proof. Continuity of Φ and c̃ε ∈ S follow from Proposition 3. By the equality (1) the capacity

c̃ε is an I-convex combination of capacities c′ ∈ S such that d̂(c, c′) ≤ d̂(c, S) + ε, hence by

Lemma 4 the inequality d̂(c, c̃ε) ≤ d̂(c, S) + ε is valid as well.

Remark. Obviously an analogous theorem is valid for MX.

It is easy to verify that the subspaces M∩X and MX0 are closed and I-convex subsets of

the semimodule (MX,∨,∧) (M∪X is I-convex if the I-convex combination on (MX,∨,∧) is de-

fined in a dual manner, cf. [5]). Methods of calculating of the distances d̂(c, M∩X), d̂(c, M∪X),

d̂(c, MX0) were presented in [4]. Thus we can use the latter theorem to construct approxima-

tions of an arbitrary subnormalized capacity c on X with ∪-capacities, ∩-capacities or capaci-

ties on X0 ⊂ X that are ε-closed to optimal and depend on c, ε continuously.
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GREENHOE D.J.

PROPERTIES OF DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES

Metric spaces provide a framework for analysis and have several very useful properties. Many of
these properties follow in part from the triangle inequality. However, there are several applications
in which the triangle inequality does not hold but in which we may still like to perform analysis.
This paper investigates what happens if the triangle inequality is removed all together, leaving what
is called a distance space, and also what happens if the triangle inequality is replaced with a much
more general two parameter relation, which is herein called the “power triangle inequality”. The
power triangle inequality represents an uncountably large class of inequalities, and includes the tri-
angle inequality, relaxed triangle inequality, and inframetric inequality as special cases. The power
triangle inequality is defined in terms of a function that is herein called the power triangle func-
tion. The power triangle function is itself a power mean, and as such is continuous and monotone
with respect to its exponential parameter, and also includes the operations of maximum, minimum,
mean square, arithmetic mean, geometric mean, and harmonic mean as special cases.

Key words and phrases: metric space, distance space, semimetric space, quasi-metric space, tri-
angle inequality, relaxed triangle inequality, inframetric, arithmetic mean, means square, geometric
mean, harmonic mean, maximum, minimum, power mean.

Communications Engineering Department, National Chiao-Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
E-mail: dgreenhoe@gmail.com

1 INTRODUCTION AND SUMMARY

Metric spaces provide a framework for analysis and have several very useful properties.
Many of these properties follow in part from the triangle inequality. However, there are several
applications1 in which the triangle inequality does not hold but in which we would still like to
perform analysis. So the questions that natually follow are:

Q1. What happens if we remove the triangle inequality all together?
Q2. What happens if we replace the triangle inequality with a generalized relation?

A distance space is a metric space without the triangle inequality constraint. Section 3
introduces distance spaces and demonstrates that some properties commonly associated with
metric spaces also hold in any distance space:

D1. ∅ and X are open, (Theorem 1),
D2. the intersection of a finite number of open sets is open, (Theorem 1),
D3. the union of an arbitrary number of open sets is open, (Theorem 1),
D4. every Cauchy sequence is bounded, (Proposition 1),
D5. any subsequence of a Cauchy sequence is also Cauchy, (Proposition 2),
D6. the Cantor Intersection Theorem holds, (Theorem 4).

УДК 517.98
2010 Mathematics Subject Classification: primary 54E25; secondary 54A05,54A20.

1 References for applications in which the triangle inequality may not hold: [21, 32–34, 65, 76, 80, 108, 114–116].

© Greenhoe D.J., 2016
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The following five properties (M1–M5) do hold in any metric space. However, the examples
from Section 3 listed below demonstrate that the five properties do not hold in all distance
spaces:

M1. the metric function is continuous fails to hold in Examples 1–3,
M2. open balls are open fails to hold in Examples 1 and 2,
M3. the open balls form a base for a topology fails to hold in Examples 1 and 2,
M4. the limits of convergent sequences are unique fails to hold in Example 1,
M5. convergent sequences are Cauchy fails to hold in Example 2.

Hence, Section 3 answers question Q1.
Section 4 begins to answer question Q2 by first introducing a new function, called the power

triangle function (see Definition 21) in a distance space (X, d), as

τ(p, σ; x, y, z; d) := 2σ

[
1

2
dp(x, z) +

1

2
dp(z, y)

] 1
p

for some (p, σ) ∈ R
∗ × R. Section 4 then goes on to use this function to define a new relation,

called the power triangle inequality in (X, d), and defined as

△©(p, σ; d) :=
{

(x, y, z) ∈ X3 | d(x, y) ≤ τ(p, σ; x, y, z; d)
}

.

The power triangle inequality is a generalized form of the triangle inequality in the sense
that the two inequalities coincide at (p, σ) = (1, 1). Other special values include (1, σ) yielding
the relaxed triangle inequality (and its associated near metric space) and (∞, σ) yielding the
σ-inframetric inequality (and its associated σ-inframetric space). Collectively, a distance space
with a power triangle inequality (see Definition 23) is herein called a power distance space (see
Definition 24) and denoted (X, d, p, σ).2

The power triangle function, at σ = 1
2 , is a special case of the power mean (see Definition

32) with N = 2 and λ1 = λ2 = 1
2 . Power means have the elegant properties of being continuous

and monontone with respect to a free parameter p. From this it is easy to show that the power
triangle function is also continuous and monontone with respect to both p and σ. Special
values of p yield operators coinciding with maximum, minimum, mean square, arithmetic
mean, geometric mean, and harmonic mean. Power means are briefly described in Appendix
B.2 (see also Corollaries 2, 3, 8 and Theorem 18).

Section 4.2 investigates the properties of power distance spaces. In particular, it shows for
what values of (p, σ) the properties M1–M5 hold. Here is a summary of the results in a power
distance space (X, d, p, σ), for all x, y, z ∈ X:

(M1) holds for any (p, σ) ∈ (R∗\{0})× R+ such that 2σ = 2
1
p , (Theorem 9),

(M2) holds for any (p, σ) ∈ (R∗\{0})× R+ such that 2σ ≤ 2
1
p , (Corollary 7),

(M3) holds for any (p, σ) ∈ (R∗\{0})× R+ such that 2σ ≤ 2
1
p , (Corollary 6),

(M4) holds for any (p, σ) ∈ R∗ × R+, (Theorem 10),
(M5) holds for any (p, σ) ∈ R∗ × R+, (Theorem 7).

Appendix A briefly introduces topological spaces. The open balls of any metric space form
a base for a topology. This is largely due to the fact that in a metric space, open balls are
open. Because of this, in metric spaces it is convenient to use topological structure to define

2 For examples of power distance spaces see Definition 24.
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and exploit analytic concepts such as continuity, convergence, closed sets, closure, interior,
and accumulation point. For example, in a metric space, the traditional definition of defining
continuity using open balls and the topological definition using open sets, coincide with each
other. Again, this is largely because the open balls of a metric space are open.

However, this is not the case for all distance spaces. In general, the open balls of a distance
space are not open, and they are not a base for a topology. In fact, the open balls of a distance
space are a base for a topology if and only if the open balls are open. While the open sets in a
distance space do induce a topology, it’s open balls may not (see Theorem 2, Corollary 1).

2 STANDARD DEFINITIONS

2.1 Standard sets

Definition 1. Let R be the set of real numbers. Let R⊢ (resp. R+) be the set of non-negative
(resp. postive) real numbers. Let R

∗ := R ∪ {−∞, ∞} be the set of extended real numbers [95].
Let Z be the set of integers. Let N := {n ∈ Z | n ≥ 1} be the set of natural numbers. Let
Z∗ := Z ∪ {−∞, ∞} be the extended set of integers.

Definition 2. Let X be a set. The quantity 2

X (the set of all subsets of X) is the power set of X,
i.e. 2X := {A ⊆ X}.

2.2 Relations

Definition 3 ([12,13,29,57,67,78,106]). Let X and Y be sets. The Cartesian product X × Y of X

and Y is the set X × Y := {(x, y) | x ∈ X and y ∈ Y}. An ordered pair (x, y) on X and Y is any
element in X × Y. A relation R© on X and Y is any subset of X × Y such that R© ⊆ X × Y. The
set 2XY is the set of all relations in X × Y. A relation f ∈ 2

XY is a function if (x, y1) ∈ f and
(x, y2) ∈ f implies y1 = y2. The set YX is the set of all functions in 2

XY.

Note, that the notation YX and 2

XY is motivated by the fact that for finite X and Y,
∣
∣YX

∣
∣ =

|Y || X | and
∣
∣
2

XY
∣
∣ = 2| X |·|Y |.

2.3 Set functions

Definition 4 ([55,87,92]). Let 2X be the power set of a set X. A set S(X) is a set structure on X

if S(X) ⊆ 2

X. A set structure Q(X) is a paving on X if ∅ ∈ Q(X).

Definition 5 ( [25, 55, 56, 92]). Let Q(X) be a paving on a set X. Let Y be a set containing the
element 0. A function m ∈ YQ(X) is a set function if m(∅) = 0.

Definition 6. The set function | A | ∈ Z∗2X
is the cardinality of A ∈ 2

X such that

| A | :=

{
the number of elements in A, for finite A,
∞, otherwise.

Definition 7. Let | X | be the cardinality of a set X. The structure ∅ is the empty set, and is a
set such that |∅ | = 0.
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2.4 Order

Definition 8 ([4, 38, 70, 77]). Let X be a set. A relation ≤ is an order relation in 2

XX if
1. x ≤ x ∀x ∈ X (reflexive) and
2. x ≤ y and y ≤ z =⇒ x ≤ z ∀x, y ∈ X (transitive) and
3. x ≤ y and y ≤ x =⇒ x = y ∀x, y ∈ X (anti-symmetric).

An ordered set is the pair (X,≤).3 A relation ≤ is a preorder relation in 2

XX if only the first
two conditions hold.

We write x < y if x ≤ y and x 6= y for any x, y from an ordered set ( X, ≤).

Definition 9 ([2,91]). In an ordered set ( X, ≤) the set [x : y] := {z ∈ X | x ≤ z ≤ y} is a closed
interval, the sets (x : y] := {z ∈ X | x < z ≤ y} and [x : y) := {z ∈ X | x ≤ z < y} are half-
open intervals, the set (x : y) := {z ∈ X | x < z < y} is an open interval.

Definition 10. Let (R, ≤) be the ordered set of real numbers. The absolute value |·| ∈ R
R is

defined as4 |x| :=

{ −x, for x ≤ 0,
x, otherwise.

3 BACKGROUND: DISTANCE SPACES

A distance space can be defined as a metric space without the triangle inequality constraint.
Much of the material in this section about distance spaces is standard in metric spaces. How-
ever, this paper works through this material again to demonstrate “how far we can go”, and
can’t go, without the triangle inequality.

3.1 Fundamental structure of distance spaces

3.1.1 Definitions

Definition 11 ([6, 9, 10, 41, 50, 68, 74, 82, 118]). A function d in the set RX×X is a distance if
1. d(x, y) ≥ 0 ∀x, y ∈ X (non-negative) and
2. d(x, y) = 0 ⇐⇒ x = y ∀x, y ∈ X (nondegenerate) and
3. d(x, y) = d(y, x) ∀x, y ∈ X (symmetric).

The pair (X, d) is a distance space if d is a distance on a set X.

Definition 12. 5 Let (X, d) be a distance space and 2

X be the power set of X. The diameter in
(X, d) of a set A ∈ 2

X is

diam A :=

{
0, for A = ∅,
sup {d(x, y) | x, y ∈ A} , otherwise.

Definition 13 ([16, 110]). A set A ∈ 2

X is bounded in a distance space (X, d) if diam A < ∞.

3 An order relation is also called a partial order relation. An ordered set is also called a partially ordered set
or poset.

4 A more general definition for absolute value is available for any commutative ring [26]. Let R be a commu-
tative ring. A function |·| in RR is an absolute value, or modulus, on R if

1. |x| ≥ 0 x ∈ R (non-negative) and
2. |x| = 0 ⇐⇒ x = 0 x ∈ R (nondegenerate) and
3. |xy| = |x| · |y| x, y ∈ R (homogeneous/submultiplicative) and
4. |x + y| ≤ |x|+ |y| x, y ∈ R (subadditive/triangle inequality).

5 For definition in metric space see [30, 60, 83, 87].
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3.1.2 Properties

Remark 1. Let {xn}n∈Z
be a sequence in a distance space (X, d). The distance space (X, d)

does not necessarily have all the nice properties that a metric space has. In particular, note the
following:

1. d is a distance in (X, d) /=⇒ d is continuous in (X, d), (Example 3),
2. B is an open ball in (X, d) /=⇒ B is open in (X, d), (Example 2),
3. B is the set of all /=⇒ B is a base for a (Example 2), 6

open balls in (X, d) topology on X,
4. {xn} is convergent in (X, d) /=⇒ limit is unique, (Example 1),
5. {xn} is convergent in (X, d) /=⇒ {xn} is Cauchy in (X, d), (Example 2).

3.2 Open sets in distance spaces

3.2.1 Definitions

Definition 14 ( [1]). Let (X, d) be a distance space. An open (resp. closed) ball centered at x

with radius r is the set B(x, r) := {y ∈ X | d(x, y) < r}
(
resp. B (x, r) := {y ∈ X | d(x, y) ≤ r}

)
.

Definition 15. Let (X, d) be a distance space. Let X\A be the set difference of X and a set A. A
set U is open in (X, d) if U ∈ 2

X and for every x in U there exists r ∈ R+ such that B(x, r) ⊆ U.
A set U is an open set in (X, d) if U is open in (X, d). A set D is closed in (X, d) if X\D is open.
A set D is a closed set in (X, d) if D is closed in (X, d).

3.2.2 Properties

Theorem 1 ( [43, 97]). Let (X, d) be a distance space. Let N be any (finite) positive integer. Let
Γ be a set possibly with an uncountable number of elements. Then the following statements
hold.

1. X is open.
2. ∅ is open.
3. Each element in

{
Uγ ∈ 2

X | γ ∈ Γ
}

is open =⇒
⋃

γ∈Γ

Uγ is open.

4. Each element in {Un|n = 1, 2, . . . , N} is open =⇒
N⋂

n=1

Un is open.

Proof. 1. By definition of open set, X is open iff ∀x ∈ X ∃ r such that B(x, r) ⊆ X. By definition
of open ball, it is always true that B(x, r) ⊆ X in (X, d). Therefore, X is open in (X, d).

2. By definition of open set, ∅ is open iff ∀x ∈ ∅ ∃ r such that B(x, r) ⊆ ∅. By definition of
empty set ∅, this is always true because no x is in ∅. Therefore, ∅ is open in (X, d).

3. By definition of open set,
⋃

Uγ is open iff ∀x ∈ ⋃
Uγ ∃ r such that B(x, r) ⊆ ⋃

Uγ.
If x ∈ ⋃

Uγ, then there is at least one U ∈ ⋃
Uγ that contains x. By the left hypothesis in

statement 3, that set U is open and so for that x ∃r such that B(x, r) ⊆ U ⊆ ⋃
Uγ. Therefore,

⋃
Uγ is open in (X, d).

4. Let us prove that if U1 and U2 are open, then U1 ∩ U2 is open. By definition of open
set, U1 ∩ U2 is open iff ∀x ∈ U1 ∩ U2 ∃ r such that B(x, r) ⊆ U1 ∩ U2. By the left hypothesis
above, U1 and U2 are open, and by the definition of open sets, there exists r1 and r2 such that

6 See [50, 61].
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B(x, r1) ⊆ U1 and B(x, r2) ⊆ U2. Let r := min {r1, r2}. Then B(x, r) ⊆ U1 and B(x, r) ⊆ U2. By
definition of set intersection, B(x, r) ⊆ U1 ∩ U2. Hence, U1 ∩ U2 is open.

Let us prove that
⋂N

n=1 Un is open by induction. For N = 1 case:
⋂N

n=1 Un =
⋂1

n=1 Un = U1

is open by hypothesis. By property of intersection
⋂N+1

n=1 Un =
(
⋂N

n=1 Un

)

∩ UN+1, therefore
⋂N+1

n=1 Un is open via “N case” hypothesis and above proof for two sets.

Corollary 1. Let (X, d) be a distance space. The set T :=
{

U ∈ 2

X |U is open in (X, d)
}

is a
topology on X, and (X, T) is a topological space.

Proof. This follows directly from the definition of an open set, Theorem 1, and the definition
of topology.

Of course it is possible to define a very large number of topologies even on a finite set with
just a handful of elements;7 and it is possible to define an infinite number of topologies even
on a linearly ordered infinite set like the real line (R, ≤).8 Be that as it may, Definition 16
defines a single but convenient topological space in terms of a distance space. Note that every
metric space conveniently and naturally induces a topological space because the open balls of
the metric space form a base for the topology. This is not the case for all distance spaces. But
if the open balls of a distance space are all open, then those open balls induce a topology (next
theorem).9

Definition 16. Let (X, d) be a distance space. The set T :=
{

U ∈ 2

X |U is open in (X, d)
}

is
the topology induced by (X, d) on X. The pair (X, T) is called the topological space induced
by (X, d).

For any distance space (X, d), no matter how strange, there is guaranteed to be at least one
topological space induced by (X, d) — and that is the indiscrete topological space (Example 9)
because for any distance space (X, d), ∅ and X are open sets in (X, d) (Theorem 1).

Theorem 2. Let B be the set of all open balls in a distance space (X, d). Then every open ball
in B is open if and only if B is a base for a topology.

Proof. Let every open ball in B be open. Then for every x in By ∈ B there exists r ∈ R+ such
that B(x, r) ⊆ By by Definition 15. It implies for every x ∈ X and for every By ∈ B containing
x, there exists Bx ∈ B such that x ∈ Bx ⊆ By, because ∀ (x, r) ∈ X × R

+, B(x, r) ⊆ X. Hence, B

is a base for T by Theorem 11.

Vice versa. Let B is a base for a topology. Then for every x ∈ X and for every U ⊆ T

containing x, there exists Bx ∈ B such that x ∈ Bx ⊆ U by Theorem 11. From Definition 26
it follows that for every x ∈ X and for every By ∈ B ⊆ T containing x, there exists Bx ∈ B

such that x ∈ Bx ⊆ By. Therefore for every x ∈ By ∈ B ⊆ T, there exists Bx ∈ B such that
x ∈ Bx ⊆ By. Hence, every open ball in B is open (see Definition 15).

7 For a finite set X with n elements, there are 29 topologies on X if n = 3; 6942 topologies on X if n = 5; and
and 8.977.053.873.043 (almost 9 trillion) topologies on X if n = 10. See [15, 24, 28, 29, 45, 71, 104].

8 For examples of topologies on the real line see [27, 66, 90, 99].
9 Metric space: Definition 24; open ball: Definition 14; base: Definition 26; topology: Definition 25; not all open

balls are open in a distance space: Example 1 and Example 2.
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3.3 Sequences in distance spaces

3.3.1 Definitions

Definition 17. 10 Let {xn}n∈Z
⊂ X be a sequence in a distance space (X, d). The sequence

{xn} converges to a limit x if for any ε ∈ R+, there exists N ∈ Z such that d(xn, x) < ε for all
n > N. This condition can be expressed in any of the following forms:

1. the limit of the sequence {xn} is x; 3. lim
n→∞

{xn} = x;

2. the sequence {xn} is convergent with limit x; 4. {xn} → x.
A sequence that converges is convergent.

Definition 18. 11 Let {xn}n∈Z
⊂ X be a sequence in a distance space (X, d). The sequence {xn}

is a Cauchy sequence in (X, d) if for every ε ∈ R
+, there exists N ∈ Z such that d(xn, xm) < ε

for all n, m > N.

Definition 19. 12 Let {xn}n∈Z
⊂ X be a sequence in a distance space (X, d). The sequence {xn}

is complete in (X, d) if the following implication holds: {xn} is Cauchy in (X, d) =⇒ {xn} is
convergent in (X, d).

3.3.2 Properties

Proposition 1. Let {xn}n∈Z
⊂ X be a sequence in a distance space (X, d). If {xn} is Cauchy in

(X, d), then it is bounded in (X, d).

Proof. Let {xn} be a Cauchy sequence. It means that for every ε ∈ R+ there exists N ∈ Z

such that ∀n, m > N, d(xn, xm) < ε. Let ε = 1. Then ∃N ∈ Z such that d(xn, xm) < 1 for all
n, m > N. It implies d(xn, xm+1) < max

{
{1} ∪

{
d
(
xp, xq

)
| p, q ≯ N

}}
. Hence, the sequence

{xn} is bounded by Definition 13.

Proposition 2. Let {xn}n∈Z
⊂ X be a sequence in a distance space (X, d). Let f ∈ ZZ be a

strictly monotone function such that f(n) < f(n + 1). Then if {xn}n∈Z
is a Cauchy sequence,

then subsequence
{

xf(n)

}

n∈Z

is also Cauchy.

Proof. Let {xn}n∈Z
be a Cauchy sequence. It means that for any given ε > 0, ∃N such that

∀n, m > N, d(xn, xm) < ε. Therefore there exists N′ such that d
(

xf(n), xf(m)

)

< ε for all

f(n), f(m) > N′. So,
{

xf(n)

}

n∈Z

is Cauchy sequence.

Theorem 3. 13 Let (X, d) be a distance space. Let A− be the closure of a A in a topological
space induced by (X, d). If limits are unique in (X, d) and (A, d) is complete in (X, d), then A

is closed in (X, d), i.e. A = A−.

Proof. By Lemma 3 we have A ⊆ A−. Let us prove that A− ⊆ A.

Let x be a point in A−. Define a sequence of open balls
{

B
(

x, 1
1

)

, B
(

x, 1
2

)

, B
(

x, 1
3

)

, . . .
}

.

Define a sequence of points {x1, x2, x3, . . .} such that xn ∈ B
(

xn, 1
n

)

∩ A. Then {xn} is conver-

gent in X with limit x by Definition 17 and {xn} is Cauchy in A by Definition 18. Since (A, d) is

10 For definition in metric space see [53, 68, 75, 97].
11 For definition in metric space see [2, 97].
12 For definition in metric space see [97].
13 For theorem in metric space see [18, 54, 72, 107].
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complete in (X, d), {xn} is therefore also convergent in A. Let this limit be y. Note that y ∈ A.
From uniqueness of limits it follows y = x, and therefore x ∈ A. Hence A− ⊆ A.

Proposition 3. Let {xn}n∈Z
be a sequence in a distance space (X, d). Let f : Z → Z be a strictly

increasing function such that f(n) < f(n + 1). If the sequence {xn}n∈Z
converges to limit x,

then a subsequence
{

xf(n)

}

n∈Z

converges to the same limit x.

Proof. By Theorem 6 we have ∀ε > 0, ∃N such that ∀n > N, d(xn, x) < ε. Therefore ∀ε > 0,

∃f(N) such that ∀f(n) > f(N), d
(

xf(n), x
)

< ε. So,
{

xf(n)

}

n∈Z

→ x via Theorem 6.

Theorem 4 (Cantor intersection theorem). Let (X, d) be a distance space, {An}n∈Z
a sequence

with each An ∈ 2

X, and | A | the number of elements in A. If (X, d) is complete, An is closed for

all n ∈ N, diam An ≥ diam An+1 for all n ∈ N, and diam {An}n∈Z
→ 0, then

∣
∣
∣
∣
∣

⋂

n∈N

An

∣
∣
∣
∣
∣
= 1.

Proof. Let us prove that |⋂ An | < 2. Let A := ∩An. For any x 6= y and {x, y} ∈ A we
have d(x, y) > 0 and {x, y} ⊆ An for all n. Since diam {An}n∈Z

→ 0, there exists n such
that diam An < d(x, y). It implies ∃n such that sup {d(x, y) | x, y ∈ An } < d(x, y). This is a
contradiction, so {x, y} /∈ A and |⋂ An | < 2.

Let us prove that |⋂ An | ≥ 1. Let xn ∈ An and xm ∈ Am. Since diam {An}n∈Z
→ 0, for

all ε there exists N ∈ N such that diam AN < ε. Therefore ∀m, n > N, xn ∈ An ⊆ AN and
xm ∈ Am ⊆ AN . But d(xn, xm) ≤ diam AN < ε, it means that {xn} is a Cauchy sequence.
Because {xn} is complete, xn → x. It implies x ∈ (An)

− = An, and, hence, | An | ≥ 1.

Definition 20 ([10]). Let (X, d) be a distance space. Let C be the set of all convergent sequences
in (X, d). The distance function d is continuous in (X, d) if

{xn} , {yn} ∈ C =⇒ lim
n→∞

{d(xn, yn)} = d
(

lim
n→∞

{xn} , lim
n→∞

{yn}
)

.

A distance function is discontinuous if it is not continuous.

Remark 2. Rather than defining continuity of a distance function in terms of the sequential
characterization of continuity as in Definition 20, we could define continuity using an inverse
image characterization of continuity (see Definition 16). Assuming an equivalent topological
space is used for both characterizations, the two characterizations are equivalent (Theorem 15).
In fact, one could construct an equivalence such as the following:







d is continuous in R
X2

(Definition 28)
( inverse image characterization

of continuity)







⇐⇒







{xn} , {yn} ∈ C =⇒
lim

n→∞
{d(xn, yn)} = d

(

lim
n→∞

{xn} , lim
n→∞

{yn}
)

(Definition 29)
( sequential characterization of continuity)







.

Note that just as {xn} is a sequence in X, so the ordered pair ({xn} , {yn}) is a sequence in X2.
The remainder follows from Theorem 15. However, use of the inverse image characterization
is somewhat troublesome because we would need a topology on X2, and we don’t immediately
have one defined and ready to use. In fact, we don’t even immediately have a distance space
on X2 defined or even open balls in such a distance space. The result is, for the scope of this
paper, it is arguably not worthwhile constructing the extra structure, but rather instead this
paper uses the sequential characterization as a definition (as in Definition 20).
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3.4 Examples

Similar distance functions and several of the observations for the examples in this section
can be found in [10].

In a metric space, all open balls are open, the open balls form a base for a topology, the lim-
its of convergent sequences are unique, and the metric function is continuous. In the distance
space of the next example, none of these properties hold.

Example 1. 14 Let (x, y) be an ordered pair in R2. Let (a : b) be an open interval and (a : b] a
half-open interval in R. Let |x| be the absolute value of x ∈ R. The function d(x, y) ∈ RR×R

such that

d(x, y) :=







y, ∀ (x, y) ∈ {4} × (0 : 2],
x, ∀ (x, y) ∈ (0 : 2]× {4},
|x − y|, otherwise,

is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because d does not satisfy the triangle inequality:
d(0, 4) := |0 − 4| = 4 � 2 = |0 − 1|+ 1 := d(0, 1) + d(1, 4).

2. Not every open ball in (R, d) is open. For example, the open ball B(3, 2) is not open
because 4 ∈ B(3, 2) but for all 0 < ε < 1

B(4, ε) = (4 − ε : 4 + ε) ∪ (0 : ε) * (1 : 5) = B(3, 2).

3. The open balls of (R, d) do not form a base for a topology on R. This follows directly
from previous item and Theorem 2.

4. In the distance space (R, d), limits are not unique. For example, the sequence {1/n}∞
1

converges both to the limit 0 and the limit 4 in (R, d):
lim

n→∞
d(xn, 0) := lim

n→∞
d(1/n, 0) := lim

n→∞
|1/n − 0| = 0 =⇒ {1/n} → 0,

lim
n→∞

d(xn, 4) := lim
n→∞

d(1/n, 4) := lim
n→∞

{1/n} = 0 =⇒ {1/n} → 4.

5. The topological space (X, T) induced by (R, d) also yields limits of 0 and 4 for the se-
quence {1/n}∞

1 , just as it does in previous item. This is largely due to the fact that, for
small ε, the open balls B(0, ε) and B(4, ε) are open.

B(0, ε) is open =⇒ for each U ∈ T that contains 0, ∃N ∈ N such that 1/n ∈ U ∀n > N

⇐⇒ {1/n} → 0 by definition of convergence.

B(4, ε) is open =⇒ for each U ∈ T that contains 4, ∃N ∈ N such that 1/n ∈ U ∀n > N

⇐⇒ {1/n} → 4 by definition of convergence.

6. The distance function d is discontinuous:

lim
n→∞

{d(1 − 1/n, 4 − 1/n)} = lim
n→∞

{|(1 − 1/n)− (4 − 1/n)|} = |1 − 4| = 3 6= 4 = d(0, 4)

= d
(

lim
n→∞

{1 − 1/n} , lim
n→∞

{4 − 1/n}
)

.

14 A similar distance function d and item 4 can in essence be found in [10].
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In a metric space, all convergent sequences are also Cauchy. However, this is not the case
for all distance spaces, as demonstrated next.

Example 2. 15 The function d(x, y) ∈ RR×R such that

d(x, y) :=

{ |x − y|, for x = 0 or y = 0 or x = y,
1, otherwise,

is a distance on R

Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because the triangle inequality does not hold:

d
(

1
4 , 1

2

)

= 1 � 3
4 =

∣
∣
∣

1
4 − 0

∣
∣
∣+

∣
∣
∣0 − 1

2

∣
∣
∣ = d

(
1
4 , 0
)

+ d
(

0, 1
2

)

.

2. The open ball B
(

1
4 , 1

2

)

is not open because for any ε ∈ R+, no matter how small,

B(0, ε) = (−ε : +ε) *
{

0, 1
4

}

=
{

x ∈ X
∣
∣
∣ d
(

1
4 , x
)

<
1
2

}

:= B
(

1
4 , 1

2

)

.

3. Even though not all the open balls are open, it is still possible to have an open set in
(R, d). For example, the set U := {1, 2} is open:

B(1, 1) := {x ∈ X | d(1, x) < 1} = {1} ⊆ {1, 2} := U,
B(2, 1) := {x ∈ X | d(2, x) < 1} = {2} ⊆ {1, 2} := U.

4. By item 2 and Theorem 2, the open balls of the distance space (R, d) do not form a base
for a topology on R.

5. Even though the open balls in (R, d) do not induce a topology on R, it is still possible to
find a set of open sets in (R, d) that is a topology. For example, the set {∅, {1, 2}, R} is
a topology on R.

6. In (R, d) limits of convergent sequences are unique. Namely, {xn} → x =⇒

lim
n→∞

d(xn, x) =







lim |xn − 0| = 0, for x = 0,
|x − x| = 0, for constant {xn} for n > N,

1 6= 0, otherwise,
which says that there are only two ways for a sequence to converge: either x = 0 or the
sequence eventually becomes constant (or both). Any other sequence will diverge.

7. In (R, d) a convergent sequence is not necessarily Cauchy. For example, the sequence
{1/n}n∈N

is convergent with limit 0

lim
n→∞

d(1/n, 0) = lim
n→∞

1/n = 0.

However, even though {1/n} is convergent, it is not Cauchy

lim
n,m→∞

d(1/n, 1/m) = 1 6= 0.

8. The distance function d is discontinuous in (X, d):

lim
n→∞

{d(1/n, 2 − 1/n)} = 1 6= 2 = d(0, 2) = d
(

lim
n→∞

{1/n} , lim
n→∞

{2 − 1/n}
)

.

15 The distance function d and item 7 can in essence be found in [10].
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Example 3. 16 The function d(x, y) ∈ RR×R such that

d(x, y) :=

{
2|x − y|, ∀ (x, y) ∈ {(0, 1) , (1, 0)},
|x − y|, otherwise,

is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because d does not satisfy the triangle inequality:
d(0, 1) := 2|0 − 1| = 2 � 1 = |0 − 1/2|+ |1/2 − 1| := d(0, 1/2) + d(1/2, 1) .

2. The function d is discontinuous:

lim
n→∞

{d(1 − 1/n, 1/n)} := lim
n→∞

{|1 − 1/n − 1/n|} = 1 6= 2

= 2|0 − 1| := d(0, 1) = d
(

lim
n→∞

{1 − 1/n} , lim
n→∞

{1/n}
)

.

3. In (R, d) open balls are open:

(a) p (x, y) := |x − y| is a metric and thus all open balls in that do not contain both 0
and 1 are open;

(b) by Example 14, q (x, y) := 2|x − y| is also a metric and thus all open balls containing
0 and 1 only are open;

(c) the only question remaining is with regards to open balls that contain 0, 1 and some
other element(s) in R. But even in this case, open balls are still open. For example,
B(−1, 2) = (−1 : 2) = (−1 : 1) ∪ (1 : 2). Note that both (−1 : 1) and (1 : 2) are
open, and thus by Theorem 1, B(−1, 2) is open as well.

4. By previous item and Theorem 2, the open balls of (R, d) do form a base for a topology
on R.

5. In (R, d) the limits of convergent sequences are unique. This is demonstrated in Example
7 using additional structure developed in Section 4.

6. In (R, d) convergent sequences are Cauchy. This is also demonstrated in Example 7.

The distance functions in Examples 1–3 were all discontinuous. In the absence of the trian-
gle inequality and in light of these examples, one might try replacing the triangle inequality
with the weaker requirement of continuity. However, as demonstrated by the next example,
this also leads to an arguably disastrous result.

Example 4 ( [10, 74]). The function d ∈ RR×R such that d(x, y) := (x − y)2 is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because the triangle inequality does not hold:
d(0, 2) := (0 − 2)2 = 4 � 2 = (0 − 1)2 + (1 − 2)2 := d(0, 1) + d(1, 2) .

2. The distance function d is continuous in (X, d). This is demonstrated in the more general
setting of Section 4 in Example 8.

16 The distance function d and item 2 can in essence be found in [10].
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3. Calculating the length of curves in (R, d) leads to a paradox.17 Partition [0 : 1] into 2N

consecutive line segments connected at the points
{

0, 1
2N , 2

2N , 3
2N , . . . , 2N−11

2N , 1
}

. Then

the distance, as measured by d, between any two consecutive points is equal to

d(pn, pn+1) := (pn − pn+1)
2 =

(
1

2N

)2
= 1

22N . But this leads to the paradox that the

total length of [0 : 1] is 0:

lim
N→∞

2N−1

∑
n=0

1

22N
= lim

N→∞

2N

22N
= lim

N→∞

1

2N
= 0.

4 DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES

4.1 Definitions

This paper introduces a new relation called the power triangle inequality. It is a generaliza-
tion of other common relations, including the triangle inequality. The power triangle inequal-
ity is defined in terms of a function herein called the power triangle function (next definition).
This function is a special case of the power mean with N = 2 and λ1 = λ2 = 1

2 . Power means
have the attractive properties of being continuous and strictly monotone with respect to a free
parameter p ∈ R∗. This fact is inherited and exploited by the power triangle inequality.

Definition 21. Let (X, d) be a distance space. Let R+ be the set of all positive real numbers and
R∗ be the set of extended real numbers. The power triangle function τ on (X, d) is defined as

τ(p, σ; x, y, z; d) := 2σ

[
1

2
dp(x, z) +

1

2
dp(z, y)

] 1
p

, ∀ (p, σ) ∈ R
∗ × R

⊢, x, y, z ∈ X.

Remark 3. In the field of probabilistic metric spaces, a function called the triangle function
was introduced by Sherstnev [102]. However, the power triangle function as defined in the
present paper is not a special case of (is not compatible with) the triangle function of Sherstnev.
Another definition of triangle function has been offered by Bessenyei [6] with special cases of

Φ(u, v) := c(u + v) and Φ(u, v) := (up + vp)
1
p , which are similar to the definition of power

triangle function offered in the present paper.

Definition 22. Let (X, d) be a distance space. Let 2XXX be the set of all trinomial relations on
X (see Definition 3). A relation △©(p, σ; d) in 2

XXX is a power triangle inequality on (X, d) if

△©(p, σ; d) :=
{

(x, y, z) ∈ X3 | d(x, y) ≤ τ(p, σ; x, y, z; d)
}

for some (p, σ) ∈ R
∗ × R

+.

The tuple (X, d, p, σ) is a power distance space and d a power distance or power distance func-
tion if (X, d) is a distance space in which the triangle relation △©(p, σ; d) holds.

The power triangle function can be used to define some standard inequalities (next defini-
tion). See Corollary 3 for some justification of the definitions.

17 This is the method of “inscribed polygons” for calculating the length of a curve and goes back to Archimedes
[17, 117].
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Definition 23 ([6,36,41,44,46,47,52,62,63,69,119]). Let △©(p, σ; d) be a power triangle inequality
on a distance space (X, d).

1. △©(∞, σ/2; d) is the σ-inframetric inequality.
2. △©(∞, 1

2 ; d) is the inframetric inequality.
3. △©(2,

√
2/2; d) is the quadratic inequality.

4. △©(1, σ; d) is the relaxed triangle inequality.
5. △©(1, 1; d) is the triangle inequality.
6. △©(1/2, 2; d) is the square mean root inequality.
7. △©(0, 1

2 ; d) is the geometric inequality.
8. △©(−1, 1

4 ; d) is the harmonic inequality.
9. △©(−∞, 1

2 ; d) is the minimal inequality.

Definition 24. 18 Let (X, d) be a distance space.
1. (X, d) is a metric space if the triangle inequality holds in X.
2. (X, d) is a near metric space if the relaxed triangle inequality holds in X.
3. (X, d) is an inframetric space if the inframetric inequality holds in X.
4. (X, d) is a σ-inframetric space if the σ-inframetric inequality holds in X.

4.2 Properties

4.2.1 Relationships of the power triangle function

Corollary 2. Let τ(p, σ; x, y, z; d) be the power triangle function in the distance space (X, d).
Let (R, |·|,≤) be the ordered metric space with the usual ordering relation ≤ and usual metric
|·| on R. The function τ(p, σ; x, y, z; d) is continuous and strictly monotone in (R, |·|,≤) with
respect to both the variables p and σ.

Proof. The function τ(p, σ; x, y, z; d) is continuous and strictly monotone with respect to p via
Theorem 18. By definition 21 of τ we have

τ(p, σ; x, y, z; d) := 2σ

[
1

2
dp(x, z) +

1

2
dp(z, y)

] 1
p

︸ ︷︷ ︸

f(p, x, y, z)

= 2σf(p, x, y, z),

where f is defined as above. Therefore τ is affine with respect to σ, and, hence, τ(p, σ; x, y, z; d)
is continuous and strictly monotone with respect to σ.

Corollary 3. Let τ(p, σ; x, y, z; d) be the power triangle function in the distance space (X, d).

τ(p, σ; x, y, z; d) =







2σ max {d(x, z), d(z, y)} for p = ∞, (maximum), 19

2σ
[

1/2d2(x, z) + 1/2d2(z, y)
] 1

2 for p = 2, (quadratic mean),
σ[d(x, z) + d(z, y)] for p = 1, (arithmetic mean), 20

2σ
√

d(x, z)
√

d(z, y) for p = 0, (geometric mean),

4σ
[

1
d(x,z) +

1
d(z,y)

]−1
for p = −1, (harmonic mean),

2σ min {d(x, z), d(z, y)} for p = −∞, (minimum).

Proof. These follow directly from Theorem 18.

18 For definitions in metric space see [30, 43, 48, 49, 60]; in near metric space see [36, 41, 46, 47, 62, 69, 119].
19 The maximum τ(∞, σ; x, y, z; d) corresponds to the inframetric space.
20 The arithmetic mean τ(1, σ; x, y, z; d) corresponds to the near metric space.
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Figure 1: σ = 1
2(2

1
p ) = 2

1
p−1 or p = ln 2

ln(2σ)
(see Lemma 1, Lemma 2, Corollary 6, Corollary 7,

and Theorem 9).

Corollary 4. Let (X, d) be a distance space. Then

2σ min {d(x, z), d(z, y)} ≤ 4σ
[

1
d(x,z) +

1
d(z,y)

]−1
≤ 2σ

√

d(x, z)
√

d(z, y)

≤ σ[d(x, z) + d(z, y)] ≤ 2σ max {d(x, z), d(z, y)}.

Proof. These follow directly from Corollary 8.

4.2.2 Properties of power distance spaces

The power triangle inequality property of a power distance space axiomatically endows a met-
ric with an upper bound. Lemma 1 demonstrates that there is a complementary lower bound
somewhat similar in form to the power triangle inequality upper bound. In the special case

where 2σ = 2
1
p , the lower bound helps provide a simple proof of the continuity of a large class

of power distance functions (Theorem 9). The inequality 2σ ≤ 2
1
p is a special relation in this

paper and appears repeatedly in this paper; it appears as an inequality in Lemma 2, Corollaries
6 and 7, and as an equality in Lemma 1 and Theorem 9. It is plotted in Figure 1.

Lemma 1. 21 Let (X, d, p, σ) be a power triangle triangle space. Let |·| be the absolute value
function. Let max {x, y} be the maximum and min {x, y} the minimum of any x, y ∈ R∗.
Then, for all (p, σ) ∈ R∗ × R+,

1. dp(x, y) ≥ max
{

0, 2
(2σ)pd

p(x, z)− dp(z, y) , 2
(2σ)pd

p(y, z)− dp(z, x)
}

∀x, y, z ∈ X,

2. d(x, y) ≥ |d(x, z)− d(z, y)| if p 6= 0 and 2σ = 2
1
p ∀x, y, z ∈ X.

Proof. From power triangle inequality and symmetric property of d we obtain

2

(2σ)p d
p(x, z)− dp(z, y) ≤ 2

(2σ)p

[

2σ[1/2dp(x, y) + 1/2dp(y, z)]
1
p

]p
− dp(z, y)

=
2(2σ)p

(2σ)p [1/2dp(x, y) + 1/2dp(y, z)]− dp(z, y)

= [dp(x, y) + dp(y, z)]− dp(y, z) = dp(x, y).

21 For assertion in metric space, i.e. (p, σ) = (1, 1) see [5, 43, 83].
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Using commutative and non-negative properties of d, for (p, σ) ∈ R∗ × R+ one can derive

dp(x, y) ≥ 2

(2σ)p d
p(x, z)− dp(z, y) , dp(y, x) ≥ 2

(2σ)p d
p(y, z)− dp(z, x) , dp(x, y) ≥ 0.

The rest follows because g(x) := x
1
p is strictly monotone in RR.

In case 2σ = 2
1
p we have

d(x, y) ≥ max

{

0,
2

(2σ)p d
p(x, z)− dp(z, y) ,

2

(2σ)p d
p(y, z)− dp(z, x)

} 1
p

= max {0, d(x, z)− d(z, y) , d(y, z)− d(z, x)}
= max {0, (d(x, z)− d(z, y)), −(d(x, z)− d(z, y))} = |(d(x, z)− d(z, y))|.

Theorem 5. Let (X, d, p, σ) be a power distance space. Let B be an open ball on (X, d). Then
for all (p, σ) ∈ (R∗\{0})× R+ the following implications hold:

1. if 2σ ≤ 2
1
p and q ∈ B(θ, r) then there exists rq ∈ R

+ such that B
(
q, rq

)
⊆ B(θ, r);

2. if there exists rq ∈ R
+ such that B

(
q, rq

)
⊆ B(θ, r) then q ∈ B(θ, r).

Proof. Using the Archimedean Property22 we obviously obtain

q ∈ B(θ, r) ⇐⇒ d(θ, q) < r ⇐⇒ 0 < r − d(θ, q) ⇐⇒ ∃rq ∈ R
+, 0 < rq < r − d(θ, q) .

Therefore

B
(
q, rq

)
:=
{

x ∈ X
∣
∣ d(q, x) < rq

}
=
{

x ∈ X
∣
∣ dp(q, x) < r

p
q ∈ R

+
}

⊆ {x ∈ X | dp(q, x) < rp − dp(θ, q)} = {x ∈ X | dp(θ, q) + dp(q, x) < rp }
=
{

x ∈ X
∣
∣
∣ [dp(θ, q) + dp(q, x)]

1
p < r

}

⊆
{

x ∈ X
∣
∣
∣ 21−1/pσ[dp(θ, q) + dp(q, x)]

1
p < r

}

=
{

x ∈ X
∣
∣
∣ 2σ[1/2d(θ, q) x + 1/2dp(q, x)]

1
p < r

}

:= {x ∈ X | τ(p, σ, θ, x, q) < r}
⊆ {x ∈ X | d(θ, x) < r} := B(θ, r) .

Here we used the fact that the functions f(x) := xp and f(x) := x
1
p are monotone. So, the first

implication is proved.
The second implication follows from

q ∈ {x ∈ X | d(q, x) = 0} ⊆
{

x ∈ X
∣
∣ d(q, x) < rq

}
:= B

(
q, rq

)
⊆ B(θ, r) .

The next assertion follows from Theorem 2 and Theorem 5.

Corollary 5. Let (X, d, p, σ) be a power distance space. If the inequality 2σ ≤ 2
1
p holds for all

(p, σ) ∈ (R∗\{0})× R+ then every open ball in (X, d) is open.

Corollary 6. Let (X, d, p, σ) be a power distance space. Let B be the set of all open balls in

(X, d). If the inequality 2σ ≤ 2
1
p holds for all (p, σ) ∈ (R∗\{0}) × R+ then B is a base for

(X, T).
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Figure 2: open set (see Lemma 2) .

Proof. The set of all open balls in (X, d) is a base for (X, T) by Corollary 5 and Theorem 11. T

is a topology on X by Definition 26.

The next assertion demonstrates that every point in an open set is contained in an open ball
that is contained in the original open set (see also Figure 2).

Lemma 2. Let (X, d, p, σ) be a power distance space. Let B be an open ball on (X, d). Then for
all (p, σ) ∈ (R∗\{0})× R

+ the following implications hold:

1. if 2σ ≤ 2
1
p and U is open in (X, d) then for all x ∈ U there exists r ∈ R+ such that

B(x, r) ⊆ U;

2. if for all x ∈ U there exists r ∈ R+ such that B(x, r) ⊆ U then U is open in (X, d).

Proof. From Corollary 6 we have

U =
⋃

{B(xγ, rγ) |B(xγ, rγ) ⊆ U } ⊇ B(x, r) ,

because x must be in one of those balls in U. So, the first implication is proved.
The second implication follows from

U =
⋃

{x ∈ X | x ∈ U } =
⋃

{B(x, r) | x ∈ U and B(x, r) ⊆ U } =⇒ U is open

by Corollary 6 and Corollary 1.

Corollary 7. 23 Let (X, d, p, σ) be a power distance space. Let B be an open ball on (X, d). If

2σ ≤ 2
1
p for all (p, σ) ∈ (R∗\{0})× R+ then every open ball B(x, r) in (X, d) is open.

Proof. The union of any set of open balls is open by Corollary 6, therefore the union of a set of
just one open ball is open. Hence, every open ball is open.

Theorem 6. 24 Let (X, d, p, σ) be a power distance space. Let (X, T) be a topological space
induced by (X, d). Let {xn}n∈Z

⊂ X be a sequence in (X, d). The sequence {xn} converges to
a limit x iff for any ε ∈ R+ there exists N ∈ Z such that for all n > N, d(xn, x) < ε.

22 See [1, 121].
23 For assertion in metric space see [1, 97].
24 For theorem in metric space see [53, 97].
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Proof. The sequence {xn} converges to x if and only if xn ∈ U ∀U ∈ Nx, n > N. By Lemma 2
∃B(x, ε) such that xn ∈ B(x, ε) ∀n > N. So, d(xn, x) < ε.

In distance spaces not all convergent sequences are Cauchy (see Example 2). However in a
distance space with any power triangle inequality all convergent sequences are Cauchy.

Theorem 7. 25 Let (X, d, p, σ) be a power distance space with any (p, σ) ∈ R∗ × R+. Let
{xn}n∈Z

⊂ X be a sequence in (X, d). Every convergent sequence {xn} is a Cauchy sequence
and therefore it is bounded in (X, d).

Proof. Let {xn}n∈Z
be a convergent sequence in (X, d). Then we have

d(xn, xm) ≤ τ(p, σ; xn, xm, x) := 2σ

[
1

2
dp(xn, x) +

1

2
dp(xm, x)

] 1
p

< 2σ

[
1

2
εp +

1

2
εp

] 1
p

= 2σε.

By Corollary 3 and definitions of power triangle inequality at p = ∞, p = −∞ and p = 0 we
have

d(xn, xm) ≤ τ(∞, σ; xn, xm, x) = 2σ max {d(xn, x), d(xm, x)} = 2σ max {ε, ε} = 2σε;

d(xn, xm) ≤ τ(−∞, σ; xn, xm, x) = 2σ min {d(xn, x), d(xm, x)} = 2σ min {ε, ε} = 2σε;

d(xn, xm) ≤ τ(0, σ; xn, xm, x) = 2σ
√

d(xn, x)
√

d(xm, x) = 2σ
√

ε
√

ε = 2σε.

Therefore the sequence {xn} is Cauchy. By Proposition 1 every Cauchy sequence is bound-
ed.

Theorem 8. 26 Let (X, d, p, σ) be a power distance space with any (p, σ) ∈ R∗×R+. Let f ∈ ZZ

be a strictly monotone function such that f(n) < f(n + 1). If {xn}n∈Z
is a Cauchy sequence

and
{

xf(n)

}

n∈Z

is convergent then {xn}n∈Z
is convergent.

Proof. It is easy to see that

d(xn, x) = d(x, xn) ≤ τ(p, σ; x, xn, xf(n)) := 2σ

[
1

2
dp
(

x, xf(n)

)

+
1

2
dp
(

xf(n), xn

)]
1
p

= 2σ

[
1

2
ε +

1

2
dp
(

xf(n), xn

)]
1
p

= 2σ

[
1

2
εp +

1

2
εp

] 1
p

= 2σε,

so, the sequence {xn}n∈Z
is convergent.

Theorem 9. 27 Let (X, d, p, σ) be a power distance space. Let (R, q) be a metric space of real

numbers with the usual metric q(x, y) := |x − y|. If 2σ = 2
1
p then d is continuous in (R, q).

Proof. Using triangle inequality of (R, |x − y|) and Lemma 1 we obtain

|d(x, y)− d(xn, yn)| ≤ |d(x, y)− d(xn, y)|+ |d(xn, y)− d(xn, yn)|
= |d(x, y)− d(y, xn)|+ |d(y, xn)− d(xn, yn)|
≤ d(x, xn) + d(y, yn) → 0 as n → ∞.

25 For theorem in metric space see [2, 53, 97].
26 For theorem in metric space see [97].
27 For theorem in metric space see [5].
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In distance spaces and topological spaces, limits of convergent sequences are in general not
unique (see Example 1, Example 12). However the next theorem demonstrates that in a power
distance space limits are unique.

Theorem 10 (Uniqueness of limit). 28 Let (X, d, p, σ) be a power distance space with any
(p, σ) ∈ R∗ × R+. Let x, y ∈ X and let {xn} ⊂ X be an X-valued sequence.

If ({xn} , {yn}) → (x, y) then x = y.

Proof. Let us prove that for all (p, σ) ∈ R∗ × R+ and for any ε ∈ R+, there exists N such that
d(x, y) < 2σε. For p ∈ R

∗\{−∞, 0, ∞} we have

d(x, y) ≤ τ(p, σ; x, y, xn) := 2σ

[
1

2
dp(x, xn) +

1

2
dp(xn, y)

] 1
p

< 2σ

[
1

2
εp +

1

2
εp

] 1
p

= 2σε.

By Corollary 3 and definition of power triangle inequality at p = ∞, p = −∞, p = 0 we have

d(x, y) ≤ τ(∞, σ; x, y, xn) = 2σ max {d(x, xn), d(xn, y)} < 2σε,

d(x, y) ≤ τ(−∞, σ; x, y, xn) = 2σ min {d(x, xn), d(xn, y)} < 2σε,

d(x, y) ≤ τ(0, σ; x, y, xn) = 2σ
√

d(x, xn)
√

d(xn, y) = 2σ
√

ε
√

ε < 2σε

respectively.

Suppose that x 6= y. Then d(x, y) 6= 0, and therefore d(x, y) > 0. It implies that there exists
ε such that d(x, y) > 2σε, which contradicts the proved above inequality d(x, y) < 2σε.

4.3 Examples

It is not always possible to find a triangle relation △©(p, σ; d) that holds in every distance
space, as demonstrated by Example 5 and Example 6 (next two examples).

Example 5. Let d(x, y) ∈ RR×R be defined as follows

d(x, y) :=







y, ∀ (x, y) ∈ {4} × (0 : 2],
x, ∀ (x, y) ∈ (0 : 2]× {4},
|x − y|, otherwise.

Note the following about the pair (R, d).

1. By Example 1, (R, d) is a distance space, but not a metric space, that is, the triangle
relation △©(1, 1; d) does not hold in (R, d).

2. Observe further that (R, d) is not a power distance space. In particular, the triangle re-
lation △©(p, σ; d) does not hold in (R, d) for any finite value of σ (does not hold for any
σ ∈ R+)

d(0, 4) = 4 � 0 = lim
ε→0

2σε = lim
ε→0

2σ
[

1/2|0 − ε|p + 1/2εp
] 1

p

:= lim
ε→0

2σ[1/2dp(0, ε) + 1/2dp(ε, 4)]
1
p := lim

ε→0
△©(p, σ; 0, 4, ε; d).

28 For theorem in metric space see [97, 109].
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Example 6. Let d(x, y) ∈ RR×R be defined as follows

d(x, y) :=

{ |x − y|, for x = 0 or y = 0 or x = y,
1, otherwise.

Note the following about the pair (R, d).

1. By Example 2, (R, d) is a distance space, but not a metric space, that is, the triangle
relation △©(1, 1; d) does not hold in (R, d).

2. Observe further that (R, d) is not a power distance space, that is, the triangle relation
△©(p, σ; d) does not hold in (R, d) for any value of (p, σ) ∈ R∗ × R+.

Let us prove that △©(p, σ; d) does not hold for any (p, σ) ∈ {∞}×R+. Indeed, Corollary 3
and Corollary 2 imply

lim
n,m→∞

d(1/n, 1/m) := 1 � 0 = 2σ max {0, 0} = 2σ lim
n,m→∞

max {d(1/n, 0) , d(0, 1/m)}

≥ lim
n,m→∞

2σ[1/2dp(1/n, 0) + 1/2dp(0, 1/m)]
1
p := lim

n,m→∞
τ(p, σ, 1/n, 1/m, 0).

The triangle relation △©(p, σ; d) does not hold for any (p, σ) ∈ R∗ ×R+ also. The triangle
function τ(p, σ; x, y, z; d) is continuous and strictly monotone in (R, |·|,≤) with respect
to the variable p via Corollary 2. From proved above it follows that △©(p, σ; d) fails to
hold at the best case of p = ∞, and so by Corollary 2, it doesn’t hold for any other value
of p ∈ R∗ either.

Example 7. Let d be a function in RR×R such that

d(x, y) :=

{
2|x − y|, ∀ (x, y) ∈ {(0, 1) , (1, 0)},
|x − y|, otherwise.

Note the following about the pair (R, d).

1. By Example 3, (R, d) is a distance space, but not a metric space, that is, the triangle
relation △©(1, 1; d) does not hold in (R, d).

2. But observe further that (R, d, 1, 2) is a power distance space. Let us prove that △©(1, 2; d)
holds for all (x, y) ∈ {(0, 1) , (1, 0)}. Indeed, for any z ∈ R we have

d(1, 0) = d(0, 1) := 2|0 − 1| = 2 ≤ 2 ≤ 2(|0 − z|+ |z − 1|)
= 2σ

(
1/2|0 − z|p + 1/2|z − 1|p

) 1
p := 2σ(1/2dp(0, z) + dp(z, 1))

1
p := τ(1, 2; 0, 1, z).

Let us show that △©(1, 2; d) holds for all other (x, y) ∈ R∗ × R+. Using Corollary 2 we
obtain

d(x, y) := 2|x − y| ≤ (|x − z|+ |z − y|) = 2σ
(

1/2|0 − z|p + 1/2|z − 1|p
) 1

p

:= τ(1, 1; x, y, z) ≤ τ(1, 2; x, y, z).

3. In (X, d), the limits of convergent sequences are unique. This follows directly from the
fact that (R, d, 1, 2) is a power distance space and by Theorem 10.

4. In (X, d), convergent sequences are Cauchy. This follows directly from the fact that
(R, d, 1, 2) is a power distance space and by Theorem 7.
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Example 8. Let d be a function in RR×R such that d(x, y) := (x − y)2. Note the following about
the pair (R, d).

1. It was demonstrated in Example 4 that (R, d) is a distance space, but that it is not a metric
space because the triangle inequality does not hold.

2. However, the tuple (R, d, p, σ) is a power distance space for any (p, σ) ∈ R
∗ × [2 : ∞). In

particular, for all x, y, z ∈ R, the power triangle inequality must hold. The “worst case”
for this is when a third point z is exactly “halfway between” x and y in d(x, y); that is,
when z = x+y

2 :

(x − y)2 := d(x, y) ≤ τ(p, σ; x, y, z; d) := 2σ[1/2dp(x, z) + 1/2dp(z, y)]
1
p

:= 2σ
[

1/2(x − z)2p + 1/2(z − y)2p
] 1

p
= 2σ

[

1/2|x − z|2p + 1/2|z − y|2p
] 1

p

= 2σ

[

1/2

∣
∣
∣
∣
x − x + y

2

∣
∣
∣
∣

2p

+ 1/2

∣
∣
∣
∣

x + y

2
− y

∣
∣
∣
∣

2p
] 1

p

= 2σ

[

1/2

∣
∣
∣
∣

y − x

2

∣
∣
∣
∣

2p

+ 1/2

∣
∣
∣
∣

x − y

2

∣
∣
∣
∣

2p
] 1

p

= 2σ

[∣
∣
∣
∣

x − y

2

∣
∣
∣
∣

2p
] 1

p

=
2σ

4
|x − y|2.

It follows (p, σ) ∈ R∗ × [2 : ∞).

3. The power distance function d is continuous in (R, d, p, σ) for any (p, σ) such that σ ≥ 2

and 2σ = p
1
p . This follows directly from Theorem 9.

APPENDIX A TOPOLOGICAL SPACES

Definition 25 ( [59, 60, 89, 96, 111]). Let Γ be a set with an arbitrary (possibly uncountable)
number of elements. Let 2X be the power set of a set X. A family of sets T ⊆ 2

X is a topology
on X if

1. ∅ ∈ T and
2. X ∈ T and
3. U, V ∈ T =⇒ U ∩ V ∈ T and
4. {Uγ | γ ∈ Γ} ⊆ T =⇒

⋃

γ∈Γ

Uγ ∈ T.

The ordered pair (X, T) is a topological space if T is a topology on X. A set U is open in (X, T)

if U is any element of T. A set D is closed in (X, T) if Dc is open in (X, T).

Just as the power set 2X and the set {∅, X} are algebras of sets on a set X, so also are these
sets topologies on X.

Example 9 ( [42, 73, 89, 105]). Let T (X) be the set of topologies on a set X and 2

X the power
set on X. Then {∅, X} is a topology in T (X), which is called indiscrete topology or trivial
topology; 2X is a topology in T (X), which is called discrete topology.

Definition 26 ([37,66]). Let (X, T) be a topological space. A set B ⊆ 2

X is a base for T if B ⊆ T

and for all U ∈ T there exist {Bγ ∈ B} such that U =
⋃

γ

Bγ.
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Theorem 11 ( [37, 66]). Let (X, T) be a topological space. Let B be a subset of 2X. If B is a base
for (X, T) then for every x ∈ X and for every open set U containing x, there exists Bx ∈ B such
that x ∈ Bx ⊆ U.

Theorem 12 ([11]). Let (X, T) be a topological space and B ⊆ 2

X. If B is a base for (X, T) then
1. x ∈ X =⇒ ∃Bx ∈ B such that x ∈ Bx and
2. B1, B2 ∈ B =⇒ B1 ∩ B2 ∈ B.

Example 10 ( [37]). Let (X, d) be a metric space. The set B := {B(x, r) | x ∈ X, r ∈ N} (the set
of all open balls in (X, d)) is a base for a topology on (X, d).

Example 11 (the standard topology on the real line). 29 The set B := {(a : b) | a, b ∈ R, a < b}
is a base for the metric space (R, |b − a|) (the usual metric space on R).

Definition 27 ( [51, 67, 72, 81, 89, 110]). Let (X, T) be a topological space. Let 2X be the power

set of X. The set A− is the closure of A ∈ 2

X if A− :=
⋂{

D ∈ 2

X | A ⊆ D and D is closed
}

.

The set A◦ is the interior of A ∈ 2

X if A◦ :=
⋃{

U ∈ 2

X |U ⊆ A and U is open
}

. A point x

is a closure point of A if x ∈ A−. A point x is an interior point of A if x ∈ A◦. A point x is an
accumulation point of A if x ∈ (A\{x})−. A point x in A− is a point of adherence in A or is
adherent to A if x ∈ A−.

Lemma 3 ( [1, 81]). Let A− be the closure, and A◦ the interior of a set A ∈ 2

X in a topological
space (X, T). Then A◦ ⊆ A ⊆ A−; A = A◦ iff A is open; A = A− iff A is closed.

Definition 28 ([37]). Let (X, Tx) and
(
Y, Ty

)
be topological spaces. Let f be a function in YX . A

function f ∈ YX is continuous if for any open set U ∈ Ty in
(
Y, Ty

)
the set f−1(U) ∈ Tx is open

in (X, Tx). A function is discontinuous in
(
X, Ty

)(X,Tx) if it is not continuous in
(
X, Ty

)(X,Tx).

Definition 28 defines continuity using open sets. Continuity can alternatively be defined
using closed sets or closure.

Theorem 13 ( [81, 101]). Let (X, T) and (Y, S) be topological spaces. Let f be a function in YX .
The following are equivalent:

1. f is continuous;
2. if B is closed in (Y, S) then f−1(B) is closed in (X, T);
3. f(A−) ⊆ f(A)−;
4. f−1(B) ⊆ f−1(B−).

Remark 4. A word of warning about defining continuity in terms of topological spaces —
continuity is defined in terms of a pair of topological spaces, and whether function is contin-
uous or discontinuous in general depends very heavily on the selection of these spaces. This
is illustrated in Proposition 4. The ramification of this is that when declaring a function to be
continuous or discontinuous, one must make clear the assumed topological spaces.

Proposition 4 ([35, 94]). Let (X, T) and (Y, S) be topological spaces. Let f be a function in

(Y, S)(X,T). If T is the discrete topology then f is continuous. If S is the indiscrete topology
then f is continuous.

29 See [37, 89].
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Definition 29 ( [66, 75]). Let (X, T) be a topological space. A sequence {xn}n∈Z
converges in

(X, T) to a point x if for each open set U ∈ T that contains x there exists N ∈ N such that
xn ∈ U for all n > N. This condition can be expressed in any of the following forms:

1. The limit of the sequence {xn} is x. 3. lim
n→∞

{xn} = x.

2. The sequence {xn} is convergent with limit x. 4. {xn} → x.
A sequence that converges is convergent. A sequence that does not converge is said to

diverge, or is divergent. An element x ∈ A is a limit point of A if it is the limit of some
A-valued sequence {xn} ⊂ A.

Example 12 ([89]). Let X := {x, y, z} and T31 := {∅, {x}, {x, y}, {x, z}, {x, y, z}}. Then
(X, T31) is a topological space. In this space, the sequence {x, x, x, . . .} converges to x. But
this sequence also converges to both y and z because x is in every open set that contains y and
x is in every open set that contains z. So, the limit of the sequence is not unique.

Example 13. In contrast to the low resolution topological space of Example 12, the limit of the
sequence {x, x, x, . . .} is unique in a topological space with sufficiently high resolution with re-
spect to y and z such as the following. Define a topological space (X, T56) where X := {x, y, z}
and T56 := {∅, {y}, {z}, {x, y}, {y, z}, {x, y, z}}. In this space, the sequence {x, x, x, . . .} con-
verges to x only. The sequence does not converge to y or z because there are open sets contain-
ing y or z that do not contain x (the open sets {y}, {z}, and {y, z}).

Theorem 14 (The Closed Set Theorem). 30 Let (X, T) be a topological space. Let A be a subset
of X. Then A is closed in (X, T) if and only if every A-valued sequence {xn}n∈Z

⊂ A that
converges in (X, T) has its limit in A.

Theorem 15 ([94]). Let (X, T) and (Y, S) be topological spaces. Let f be a function in (Y, S)(X,T).
Then inverse image characterization of continuity (see Definition 28) is equivalent to sequential
characterization of continuity (see Definition 29).

APPENDIX B FINITE SUMS

B.1 Convexity

Definition 30 ([3, 11, 64, 103]). A function f ∈ RR is said to be
convex if f

(
λx + [1 − λ]y

)
≤ λf(x) + (1 − λ) f(y), ∀x, y ∈ R, ∀λ ∈ (0 : 1);

strictly convex if f
(
λx + [1 − λ]y

)
= λf(x) + (1 − λ) f(y), ∀x, y ∈ R, x 6= y, ∀λ ∈ (0 : 1);

concave if −f is convex;
affine if f is convex and concave.

Theorem 16 (Jensen’s Inequality). 31 Let f ∈ RR be a function. If f is convex and
N

∑
n=1

λn = 1

then f

(
N

∑
n=1

λn xn

)

≤
N

∑
n=1

λn f(xn) for all xn ∈ R and N ∈ N.

30 See [54, 72, 97].
31 See [11, 64, 86].
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B.2 Power means

Definition 31 ([11]). The LλnMN
1 weighted ϕ-mean of a tuple LxnMN

1 is defined as

Mϕ(LxnM) := ϕ−1

(
N

∑
n=1

λn ϕ(xn)

)

where ϕ is a continuous and strictly monotonic function in RR
⊢

and LλnMN
n=1 is a sequence of

weights for which
N

∑
n=1

λn = 1.

Lemma 4 ( [11, 58, 93]). Let Mϕ(LxnM) be the LλnMN
1 weighted ϕ-mean and Mψ(LxnM) the LλnMN

1
weighted ψ-mean of a tuple LxnMN

1 .
If ϕψ−1 is convex and ϕ is increasing then Mϕ(LxnM) ≥ Mψ(LxnM).
If ϕψ−1 is convex and ϕ is decreasing then Mϕ(LxnM) ≤ Mψ(LxnM).
If ϕψ−1 is concave and ϕ is increasing then Mϕ(LxnM) ≤ Mψ(LxnM).
If ϕψ−1 is concave and ϕ is decreasing then Mϕ(LxnM) ≥ Mψ(LxnM).

One of the most well known inequalities in mathematics is Minkowski’s Inequality. In
1946, H.P. Mulholland submitted a result that generalizes Minkowski’s Inequality to an equal
weighted ϕ-mean. In 1979, G.V. Milovanović and I. Milovanović generalized this even further
to a weighted ϕ-mean.32

Theorem 17 ([20, 84]). Let ϕ be a convex strictly monotone function in RR, such that ϕ(0) = 0
and log ◦ϕ ◦ exp is convex. Then

ϕ−1

(
N

∑
n=1

λn ϕ(xn + yn)

)

≤ ϕ−1

(
N

∑
n=1

λn ϕ(xn)

)

+ ϕ−1

(
N

∑
n=1

λn ϕ(yn)

)

.

Definition 32 ( [11, 20]). Let Mϕ(x;p)(LxnM) be the LλnMN
1 weighted ϕ-mean of a non-negative

tuple LxnMN
1 . A mean Mϕ(x;p)(LxnM) is a power mean with parameter p if ϕ(x) := xp. That is,

Mϕ(x;p)(LxnM) =

(
N

∑
n=1

λn(xn)
p

) 1
p

.

Theorem 18 ( [7, 8, 11, 14, 19, 20]). Let Mϕ(x;p)(LxnM) be the power mean with parameter p of an

N-tuple LxnMN
1 in which the elements are not all equal. Then Mϕ(x;p)(LxnM) :=

(
N

∑
n=1

λn(xn)
p

) 1
p

is continuous and strictly monotone in R∗ and

Mϕ(x;p)(LxnM) =







max
n=1,2,...,N

LxnM, for p = +∞,

N

∏
n=1

xλn
n , for p = 0,

min
n=1,2,...,N

LxnM, for p = −∞.

32 See also [20, 22, 58, 79, 85, 88, 112].
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Proof. Let p and s be such that −∞ < p < s < ∞. Let ϕp := xp and ϕs := xs. Then ϕp ϕ−1
s = x

p
s .

The composite function ϕp ϕ−1
s is convex or concave depending on the values of p and s:

p < 0 (ϕp decreasing) p > 0 (ϕp increasing)

s < 0 convex (not possible)

s > 0 convex concave

Therefore by Lemma 4, we obtain Mϕ(x;p)(LxnM) < Mϕ(x;s)(LxnM). So, Mϕ(x;p) is strictly mono-
tone in p.

The sum of continuous functions is continuous. Therefore, Mϕ(x;p) is continuous in p for
p ∈ R\0. The cases of p ∈ {−∞, 0, ∞} we consider below.

Note that using the definition of Mϕ we obtain

{

Mϕ(x;p)

(

Lx−1
n M
)}−1

=







(
N

∑
n=1

λn

(

x−1
n

)p
) 1

p







−1

=

(
N

∑
n=1

λn(xn)
−p

) 1
−p

= Mϕ(x;−p)(LxnM). (1)

Denote xm := max
n∈Z

LxnM. Note that lim
p→∞

Mϕ ≤ max
n∈Z

LxnM. Indeed, using the definition of Mϕ,

we obtain

lim
p→∞

Mϕ(LxnM) = lim
p→∞

(
N

∑
n=1

λnx
p
n

) 1
p

≤ lim
p→∞

(
N

∑
n=1

λnx
p
m

) 1
p

= lim
p→∞








x
p
m

N

∑
n=1

λn

︸ ︷︷ ︸
1








1
p

= lim
p→∞

(
x

p
m · 1

) 1
p = xm = max

n∈Z

LxnM.

But also note that lim
p→∞

Mϕ ≥ max
n∈Z

LxnM because

lim
p→∞

Mϕ(LxnM) = lim
p→∞

(
N

∑
n=1

λnx
p
n

) 1
p

≥ lim
p→∞

(
wmx

p
m

) 1
p = lim

p→∞
w

1
p
mx

p
p
m = xm = max

n∈Z

LxnM.

Here we used the fact, that ϕ(x) := xp and ϕ−1 are both increasing or both decreasing. So,
lim
p→∞

Mϕ(LxnM) = max
n∈Z

LxnM.

Let us prove that lim
p→−∞

Mϕ(LxnM) = min
n∈Z

LxnM. From the equation (1) it follows

lim
p→−∞

Mϕ(x;p)(LxnM) = lim
p→∞

Mϕ(x;−p)(LxnM) = lim
p→∞

{

Mϕ(x;p)

(

Lx−1
n M
)}−1

= lim
p→∞

1

Mϕ(x;p)

(

Lx−1
n M
)

=
limp→∞ 1

limp→∞ Mϕ(x;p)

(

Lx−1
n M
) =

1

max
n∈Z

Lx−1
n M

=
1

(

min
n∈Z

LxnM

)−1
= min

n∈Z

LxnM.

It remains to prove that lim
p→0

Mϕ(LxnM) =
N

∏
n=1

xλn
n . Using the definition of Mϕ and l’Hôpital’s
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rule33 we obtain

lim
p→0

Mϕ(LxnM) = lim
p→0

exp
{

ln
{
Mϕ(LxnM)

}}
= lim

p→0
exp






ln







(
N

∑
n=1

λn

(
x

p
n

)

) 1
p













= exp







∂

∂p
ln

(
N

∑
n=1

λn
(

x
p
n

)

)

∂

∂p
p







p=0

= exp







N

∑
n=1

λn
∂

∂p

(
x

p
n

)

N

∑
n=1

λn

(
x

p
n

)







p=0

= exp







N

∑
n=1

λn
∂

∂p
exp

(
ln
(
x

p
n

))

N

∑
n=1

λn







p=0

= exp







N

∑
n=1

λn
∂

∂p
exp (r ln (xn))

1







p=0

= exp

{
N

∑
n=1

λn
∂

∂p
exp (p ln (xn))

}

p=0

= exp

{
N

∑
n=1

λn exp {p ln xn} ln (xn)

}

p=0

= exp

{
N

∑
n=1

λn ln (xn)

}

= exp

{
N

∑
n=1

ln
(

xλn
n

)
}

= exp

{

ln
N

∏
n=1

xλn
n

}

=
N

∏
n=1

xλn
n .

Corollary 8 ( [11, 20, 23, 63, 64]). Let LxnMN
1 be a tuple. Let LλnMN

1 be a tuple of weighting values

such that
N

∑
n=1

λn = 1. Then

minLxnM ≤
(

N

∑
n=1

λn
1

xn

)−1

︸ ︷︷ ︸

harmonic mean

≤
N

∏
n=1

xλn
n

︸ ︷︷ ︸

geometric mean

≤
N

∑
n=1

λnxn

︸ ︷︷ ︸

arithmetic mean

≤ maxLxnM.

Proof. These five means are all special cases of the power mean Mϕ(x:p), namely

p = ∞: maxLxnM,
p = 1: arithmetic mean,
p = 0: geometric mean,
p = −1: harmonic mean,
p = −∞: minLxnM.

So, the inequalities follow directly from Theorem 18.

If one is only concerned with the arithmetic mean and geometric mean, their relationship
can be established directly using Jensen’s Inequality (Theorem 16):

N

∑
n=1

λnxn = blogb(∑
N
n=1 λnxn) ≥ b(∑

N
n=1 λn logb xn) =

N

∏
n=1

b(λn logb xn) =
N

∏
n=1

b(logb xn)λn =
N

∏
n=1

xλn
n .

33 See [98].
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B.3 Inequalities

Lemma 5 (Young’s Inequality). 34

xy <
xp

p
+

yq

q
with 1

p +
1
q = 1 ∀1 < p < ∞, x, y ≥ 0, but y 6= xp−1,

xy =
xp

p
+

yq

q
with 1

p +
1
q = 1 ∀1 < p < ∞, x, y ≥ 0, and y = xp−1.

Theorem 19 (Minkowski’s Inequality for sequences). 35 Let LxnMN
1 ⊂ C and LynMN

1 ⊂ C be
complex N-tuples. Then

(
N

∑
n=1

|xn + yn|p
) 1

p

≤
(

N

∑
n=1

|xn|p
) 1

p

+

(
N

∑
n=1

|yn|p
) 1

p

∀ 1 < p < ∞.

APPENDIX C METRIC PRESERVING FUNCTIONS

Definition 33 ( [31, 40, 113]). Let M be the set of all metric spaces on a set X. A function

ϕ ∈ R⊢R
⊢

is a metric preserving function if d(x, y) := ϕ ◦ p (x, y) is a metric on X for all
(X, p) ∈ M.

Theorem 20 (necessary conditions). 36 Let Rϕ be the range of a function ϕ. If ϕ is a metric
preserving function then ϕ−1(0) = {0}, Rϕ ⊆ R⊢, and the function ϕ is subadditive, i.e.
ϕ(x + y) ≤ ϕ(x) + ϕ(y).

Theorem 21 (sufficient conditions). 37 Let ϕ be a function in R
R. If the conditions

1. x ≥ y =⇒ ϕ(x) ≥ ϕ(y), ∀x, y ∈ R
⊢,

2. ϕ(0) = 0,
3. ϕ(x + y) ≤ ϕ(x) + ϕ(y), ∀x, y ∈ R⊢,

hold, then ϕ is a metric preserving function.

The proofs for Example 14–Example 19 follow from Theorem 21.

Example 14 (α-scaled metric/dilated metric). 38 Let (X, d) be a metric space. The function
ϕ(x) := αx, α ∈ R+, is a metric preserving function (see Figure 3 (A)).

Example 15 (power transform metric/snowflake transform metric). 39 Let (X, d) be a metric
space. The function ϕ(x) := xα, α ∈ (0 : 1], is a metric preserving function (see Figure 3 (B)).

Example 16 (α-truncated metric/radar screen metric). 40 Let (X, d) be a metric space. The
function ϕ(x) := min {α, x}, α ∈ R

+, is a metric preserving function (see Figure 3 (C)).

34 See [22, 58, 79, 112, 120].
35 See [20, 22, 58, 79, 85, 112].
36 See [31, 40].
37 See [31, 40, 67].
38 See [39].
39 See [39, 40].
40 See [39, 53].
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(A) α-scaled/dilated (B) power transform/snowflake (C) α-truncated/radar screen
(Example 14) (Example 15) (Example 16)
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2
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(Example 17) (Example 18) (Example 19)

Figure 3: metric preserving functions.

Example 17 (bounded metric). 41 Let (X, d) be a metric space. The function ϕ(x) :=
x

1 + x
is a

metric preserving function (see Figure 3 (D)).

Example 18 (discrete metric preserving function). 42 The function ϕ(x) :=

{

0, for x ≤ 0,

1, otherwise,

from R
R is a metric preserving function (see Figure 3 (E)).

Example 19. The function

ϕ(x) :=























x, for 0 ≤ x < 1,

1, for 1 ≤ x ≤ 2,

x − 1, for 2 < x < 3,

2, for x ≥ 3,

from R
R is a metric preserving function (see Figure 3 (F)).
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[48] Fréchet M.R. Sur quelques points du calcul fonctionnel (on some points of functional calculation). Rendiconti del
Circolo Matematico di Palermo 1906, 22, 1–74. (in French)
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[101] Searcóid M. Metric spaces. In: Springer Undergraduate Mathematics Series. Springer Science & Business
Media, 2006.

[102] Sherstnev A.N. Random normed spaces. questions of completeness. Kazan. Gos. Univ. Uchen. Zap. 1962, 122 (4),
3–20.

[103] Simon B. Convexity: an analytic viewpoint. In: Cambridge Tracts in Mathematics, 187. Cambridge Univer-
sity Press, 2011.

[104] Sloane N.J.A. On-line encyclopedia of integer sequences. World Wide Web, 2014.

[105] Steen L.A., Seebach J.A. Counterexamples in topology. Springer-Verlag, 1978.

[106] Suppes P. Axiomatic Set Theory. Dover Publications, New York, 1972.

[107] Sutherland W.A. Introduction to metric and topological spaces. Oxford University Press, 1975.

[108] Szirmai J. The densest geodesic ball packing by a type of nil lattices. Beiträge Algebra Geom. 2007, 48 (2), 383–397.
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Ґрiнхое Д.Дж. Властивостi просторiв з вiдстанню, що задовольняють степеневi нерiвностi трику-

тника // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 51–82.

Метричнi простори забезпечують основу для математичного аналiзу i мають ряд дуже ко-
рисних властивостей. Багато з цих властивостей випливають зокрема з нерiвностi трикутника.
Однак є багато застосувань, в яких нерiвнiсть трикутника не справджується, але в яких ми все
ще можемо здiйснювати аналiз. У цiй статтi дослiджуємо, що трапиться, якщо нерiвнiсть три-
кутника вилучено з перелiку аксiом метрики, при цьому метричний простiр стає так званим
простором з вiдстанню. Також нас цiкавить, що буде коли нерiвнiсть трикутника замiнена на
бiльш загальне двохпараметричне спiввiдношення, яке ми називаємо степеневою нерiвнiстю
трикутника. Таке узагальнення нерiвностi трикутника дає незлiченно великий клас нерiвно-
стей, i включає при цьому звичайну нерiвнiсть трикутника, слабку нерiвнiсть трикутника та
iнфраметричну нерiвнiсть як частиннi випадки. Степенева нерiвнiсть трикутника визначена
в термiнах функцiї, яку ми називаємо степеневою трикутною функцiєю. Ця функцiя є непе-
рервною i монотонною вiдносно свого експоненцiального параметру, є степеневим середнiм,
i також включає як частиннi випадки максимум, мiнiмум, середнє квадратичне, середнє ари-
фметичне, середнє геометричне i середнє гармонiйне.

Ключовi слова i фрази: метричний простiр, простiр з вiдстанню, напiвметричний простiр,
квазi-метричний простiр, нерiвнiсть трикутника, слабка нерiвнiсть трикутника, iнфраметри-
ка, середнє арифметичне, середнє квадратичне, середнє геометричне, середнє гармонiйне, ма-
ксимум, мiнiмум, середнє степеневе.
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OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF NONREGULAR

GENERALIZED FUNCTIONS OF LÉVY WHITE NOISE ANALYSIS

The operators of stochastic differentiation, which are closely related with the extended Skorohod

stochastic integral and with the Hida stochastic derivative, play an important role in the classical

(Gaussian) white noise analysis. In particular, these operators can be used in order to study some

properties of the extended stochastic integral and of solutions of stochastic equations with Wick-

type nonlinearities.

During recent years the operators of stochastic differentiation were introduced and studied, in

particular, in the framework of the Meixner white noise analysis, in the same way as on spaces of

regular test and generalized functions and on spaces of nonregular test functions of the Lévy white

noise analysis. In the present paper we make the next natural step: introduce and study operators

of stochastic differentiation on spaces of nonregular generalized functions of the Lévy white noise

analysis (i.e., on spaces of generalized functions that belong to the so-called nonregular rigging of

the space of square integrable with respect to the measure of a Lévy white noise functions). In so

doing, we use Lytvynov’s generalization of the chaotic representation property. The researches of

the present paper can be considered as a contribution in a further development of the Lévy white

noise analysis.

Key words and phrases: operator of stochastic differentiation, stochastic derivative, extended
stochastic integral, Lévy process.
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INTRODUCTION

Let L = (Lt)t∈[0,+∞) be a Lévy process (i.e., a random process on [0,+∞) with stationary

independent increments and such that L0 = 0, see, e.g., [5, 30, 31] for details) without Gaus-

sian part and drift. In [23] the extended Skorohod stochastic integral with respect to L and

the corresponding Hida stochastic derivative on the space of square integrable random vari-

ables (L2) were constructed in terms of Lytvynov’s generalization of the chaotic representation

property (CRP) (see [27] and Subsection 1.2), some properties of these operators were estab-

lished; and it was shown that the above-mentioned integral coincides with the well-known

(constructed in terms of Itô’s generalization of the CRP [14]) extended stochastic integral with

respect to a Lévy process (e.g., [6, 7]). In [10, 21] the notion of stochastic integral and derivative

was widened to spaces of regular and nonregular test and generalized functions that belong

to so-called regular parametrized and nonregular riggings of (L2) respectively, this gives a

possibility to extend an area of possible applications of the above-mentioned operators (in

particular, now it is possible to define the stochastic integral and derivative as linear continu-

ous operators). Together with the stochastic integral and derivative, it is natural to introduce

УДК 517.98
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and to study so-called operators of stochastic differentiation in the Lévy white noise analysis, by

analogy with the Gaussian analysis [1, 37], the Gamma-analysis [17, 18], and the Meixner anal-

ysis [19, 20]. These operators are closely related with the extended Skorohod stochastic integral

with respect to a Lévy process and with the corresponding Hida stochastic derivative and, by

analogy with the classical Gaussian case, can be used, in particular, in order to study some

properties of the extended stochastic integral and of solutions of normally ordered stochas-

tic equations (stochastic equations with Wick-type nonlinearities in another terminology). In

[9, 8] the operators of stochastic differentiation on spaces that belong to a regular parametrized

rigging of (L2) ([21]) were introduced and studied. This rigging plays a very important role in

the Lévy analysis; but, in order to solve some problems that arise in this analysis (in particular,

in the theory of normally ordered stochastic equations), it is necessary to introduce into con-

sideration another, nonregular rigging of (L2) (see [21] and Subsection 1.3), and operators (e.g.,

the extended stochastic integral, the Hida stochastic derivative) on spaces (of nonregular test

and generalized functions) that belong to this rigging. Therefore it is natural to introduce and

to study operators of stochastic differentiation on the just now mentioned spaces.

In the paper [24] the operators of stochastic differentiation were introduced and studied

on the spaces of nonregular test functions of the Lévy white noise analysis. In particular, it

was shown that, roughly speaking, these operators are the restrictions to the above-mentioned

spaces of the corresponding operators on (L2). The next natural step is, of course, to consider

operators of stochastic differentiation on the spaces of nonregular generalized functions. But

here there is a problem: in contrast to the classical Gaussian case and to the "regular case",

the operators of stochastic differentiation on (L2) cannot be naturally continued to the just

now mentioned spaces (to the point, actually for the same reason the Hida stochastic deriva-

tive also cannot be naturally continued from (L2) to the spaces of nonregular generalized

functions). Nevertheless, it is possible to introduce on these spaces natural analogs of the

above-mentioned operators. These analogs have properties quite analogous to the properties

of operators of stochastic differentiation, and can be accepted as operators of stochastic differ-

entiation on the spaces of nonregular generalized functions. In the present paper we introduce

and study in detail the just now mentioned operators. In forthcoming papers we’ll consider

elements of the so-called Wick calculus in the Lévy white noise analysis, this will give us the

possibility to continue the study of properties and to consider some applications of the opera-

tors of stochastic differentiation.

The paper is organized in the following manner. In the first section we introduce a Lévy

process L and construct a convenient for our considerations probability triplet connected with

L; then, following [21, 23, 27], we describe in detail Lytvynov’s generalization of the CRP, the

nonregular rigging of (L2), and stochastic derivatives and integrals on the spaces that belong

to this rigging. In the second section we deal with the operators of stochastic differentiation on

the spaces of nonregular generalized functions, considering separately the cases of bounded

and unbounded operators. Note that some results of this paper were announced without

proofs in [25].

1 PRELIMINARIES

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the scalar product

in a space H; and by 〈·, ·〉H or 〈〈·, ·〉〉H the dual pairing generated by the scalar product in a
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space H. Another notation for norms, scalar products and dual pairings will be introduced

when it will be necessary.

1.1 Lévy processes

Denote R+ := [0,+∞). In this paper we deal with a real-valued locally square integrable

Lévy process L = (Lt)t∈R+ (a random process on R+ with stationary independent increments

and such that L0 = 0) without Gaussian part and drift (it is comparatively simple to consider

such processes from technical point of view). As is well known (e.g., [7]), the characteristic

function of L is

E[eiθLt ] = exp
[
t
∫

R

(eiθx − 1 − iθx)ν(dx)
]

, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B denotes

the Borel σ-algebra; E denotes the expectation. We assume that ν is a Radon measure whose

support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that

∫

R

x2eε|x|ν(dx) < ∞,

and ∫

R

x2ν(dx) = 1. (2)

Let us define a measure of the white noise of L. Let D denote the set of all real-valued

infinite-differentiable functions on R+ with compact supports. As is well known, D can be

endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [4]).

Let D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D denote ω(ϕ) by

〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing generated by the scalar product

in the space L2(R+) of (classes of) square integrable with respect to the Lebesgue measure real-

valued functions on R+, see Subsection 1.3 for details. The notation 〈·, ·〉 will be preserved for

dual pairings in tensor powers of spaces.

Definition. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-algebra,

with the Fourier transform
∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x)duν(dx)
]

, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner–Minlos theorem (e.g., [13]), see [27]. Below we

assume that the σ-algebra C(D′) is complete with respect to µ, i.e., C(D′) contains all subsets of all

measurable sets O such that µ(O) = 0.

Denote (L2) := L2(D′, C(D′), µ) the space of (classes of) real-valued square integrable with

respect to µ functions on D′; let also H := L2(R+). Substituting in (3) ϕ = tψ, t ∈ R, ψ ∈ D,

and using the Taylor decomposition by t and (2), one can show that

∫

D′
〈ω, ψ〉2µ(dω) =

∫

R+

(
ψ(u)

)2
du (4)

(this statement follows also from results of [27] and [7]). Let f ∈ H and D ∋ ϕk → f in

H as k → ∞ (it is well known (e.g., [4]) that D is a dense set in H). It follows from (4) that
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{〈◦, ϕk〉}k≥1 is a Cauchy sequence in (L2), therefore one can define 〈◦, f 〉 := (L2)− lim
k→∞

〈◦, ϕk〉.

It is easy to show (by the method of "mixed sequences") that 〈◦, f 〉 does not depend on the

choice of an approximating sequence for f and therefore is well defined in (L2).

Let us consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+ (here and below 1A denotes the indicator of a set

A). It follows from (1) and (3) that
(
〈◦, 1[0,t)〉

)
t∈R+

can be identified with a Lévy process on the

probability space (D′, C(D′), µ), i.e., one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

Remark. Note that one can understand the Lévy white noise as a generalized random process

(in the sense of [11]) with trajectories from D′: formally L′
·(ω) = 〈ω, 1[0,·)〉

′ = 〈ω, δ·〉 = ω(·),

where δ· is the Dirac delta-function concentrated at ·. Therefore µ is the measure of L′ in the

classical sense of this notion [12].

Remark. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy

measure ν(∆) = δ1(∆), ∆ ∈ B(R), i.e., if ν is a point mass at 1. This measure does not

satisfy the conditions accepted above (the support of δ1 does not contain an infinite number of

points); nevertheless, all results of the present paper have natural (and often strong) analogs

in the Poissonian analysis. The reader can find more information about peculiarities of the

Poissonian case in [23], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

As is known, some random processes L have a so-called chaotic representation property (CRP)

that consists, roughly speaking, in the following: any square integrable random variable can

be decomposed in a series of repeated stochastic integrals from nonrandom functions with

respect to L (see, e.g., [28] for a detailed presentation). The CRP plays a very important role in

the stochastic analysis (in particular, for processes with the CRP this property can be used in

order to construct extended stochastic integrals [16, 34, 15], stochastic derivatives and operators

of stochastic differentiation, e.g., [37, 1]), but, unfortunately, the only Lévy processes with this

property are Wiener and Poisson processes (e.g., [36]).

There are different approaches to a generalization of the CRP for Lévy processes: Itô’s ap-

proach [14], Nualart-Schoutens’ approach [29, 32], Lytvynov’s approach [27], Oksendal’s ap-

proach [7, 6] etc. The interconnections between these generalizations of the CRP are described

in, e.g., [27, 2, 7, 35, 6, 23]. In the present paper we deal with Lytvynov’s generalization of the

CRP that will be described now in detail.

Denote by ⊗̂ a symmetric tensor product and set Z+ := N ∪ {0}. Let P ≡ P(D′) be the

set of polynomials on D′, i.e., P consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, N f ∈ Z+, f (n) ∈ D⊗̂n, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0 := R. Since the measure

µ of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and

properties of the measure ν, see also [27]), P is a dense set in (L2) [33]. Denote by Pn the set

of polynomials of power not greater than n, by Pn the closure of Pn in (L2). Let for n ∈ N

Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)), P0 := P0. It is clear now that

(L2) =
∞
⊕

n=0
Pn.
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Let f (n) ∈ D⊗̂n, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection in (L2) of a mono-

mial 〈◦⊗n, f (n)〉 onto Pn. Let us define scalar products (·, ·)ext on D⊗̂n, n ∈ Z+, by setting for

f (n), g(n) ∈ D⊗̂n

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω),

and let | · |ext be the corresponding norms, i.e., | f (n)|ext =
√
( f (n) , f (n))ext. Denote by H

(n)
ext ,

n ∈ Z+, the completions of D⊗̂n with respect to the norms | · |ext. For F(n) ∈ H
(n)
ext define

a Wick monomial : 〈◦⊗n, F(n)〉 :
def
= (L2)− limk→∞ : 〈◦⊗n, f

(n)
k 〉 :, where D⊗̂n ∋ f

(n)
k → F(n) as

k → ∞ in H
(n)
ext (well-posedness of this definition can be proved by the method of "mixed

sequences"). Since, as is easy to see, for each n ∈ Z+ the set {: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n} is a

dense one in Pn, we have the next statement (which describes Lytvynov’s generalization of the

CRP).

Theorem. ([27]) A random variable F ∈ (L2) if and only if there exists a unique sequence of

kernels F(n) ∈ H
(n)
ext , n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (5)

(the series converges in (L2)) and

‖F‖2
(L2) =

∫

D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

So, for F, G ∈ (L2) the scalar product has the form

(F, G)(L2) =
∫

D′
F(ω)G(ω)µ(dω) = E[FG] =

∞

∑
n=0

n!(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively. In

particular, for F(n) ∈ H
(n)
ext and G(m) ∈ H

(m)
ext , n, m ∈ Z+,

(
: 〈◦⊗n, F(n)〉 :, : 〈◦⊗m, G(m)〉 :

)
(L2)

=
∫

D′
: 〈ω⊗n, F(n)〉 :: 〈ω⊗m, G(m)〉 :µ(dω)

= E
[
: 〈◦⊗n, F(n)〉 :: 〈◦⊗m, G(m)〉 :

]
= δn,mn!(F(n), G(n))ext.

Note that in the space (L2) we have : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉

[27].

Remark. In order to make calculations connected with the spaces H
(n)
ext , it is necessary to know

explicit formulas for the scalar products (·, ·)ext. Such formulas were obtained by E.W. Lytvy-

nov in [27]. Here, following [23], we write out it for convenience of a reader. Denote by ‖ · ‖ν

the norm in the space L2(R, ν) of (classes of) square integrable with respect to ν real-valued

functions on R. Let

pn(x) := xn + an,n−1xn−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n − 1}, n ∈ N, (6)
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be orthogonal in L2(R, ν) polynomials, i.e., for natural numbers n, m such that n 6= m,∫
R

pn(x)pm(x)ν(dx) = 0. Then for F(n), G(n) ∈ H
(n)
ext , n ∈ N, we have

(F(n),G(n))ext = ∑
k,lj,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n

n!

s1! · · · sk!

(‖pl1‖ν

l1!

)2s1
· · ·

(‖plk
‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

F(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× G(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)du1 · · · dus1+···+sk
.

(7)

In particular, for n = 1 (F(1), G(1))ext = ‖p1‖
2
ν

∫
R+

F(1)(u)G(1)(u)du; if n = 2 then we have

(F(2), G(2))ext = ‖p1‖
4
ν

∫
R2

+
F(2)(u, v)G(2)(u, v)dudv + ‖p2‖

2
ν

2

∫
R+

F(2)(u, u)G(2)(u, u)du, etc.

It follows from (7) that H
(1)
ext = H ≡ L2(R+): by (6) p1(x) = x and therefore by (2) ‖p1‖ν =

1; and for n ∈ N\{1} one can identify H⊗̂n with the proper subspace of H
(n)
ext that consists of

"vanishing on diagonals" elements (i.e., F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n} such

that k 6= j but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n (this explains why we

use the subscript ext in the notations H
(n)
ext , (·, ·)ext and | · |ext).

1.3 A nonregular rigging of (L2)

Denote by T the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an infinite differentiable

function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Let Hτ be the Sobolev space on R+ of

order τ1 weighted by the function τ2, i.e., Hτ is a completion of the set of infinite differentiable

functions on R+ with compact supports with respect to the norm generated by the scalar

product

(ϕ, ψ)Hτ
=

∫

R+

(
ϕ(u)ψ(u) +

τ1

∑
k=1

ϕ[k](u)ψ[k](u)
)

τ2(u)du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ respectively. It is well known

(e.g., [4]) that D = pr limτ∈T Hτ (moreover, D⊗̂n = pr limτ∈T H
⊗̂n
τ , see, e.g., [3] for details)

and for each τ ∈ T Hτ is densely and continuously embedded into H ≡ L2(R+), therefore

one can consider the chain

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,

where H−τ, τ ∈ T, are the spaces dual of Hτ with respect to H. Note that by the Schwartz

theorem [4] D′ = ind limτ∈T H−τ (it is convenient for us to consider D′ as a topological space

with the inductive limit topology). By analogy with [22] one can easily show that the measure

µ of a Lévy white noise is concentrated on H−τ̃ with some τ̃ ∈ T, i.e., µ(H−τ̃) = 1. Excepting

from T the indexes τ such that µ is not concentrated on H−τ, we will assume, in what follows,

that for each τ ∈ T µ(H−τ) = 1.

Denote the norms in Hτ and its tensor powers by | · |τ , i.e., for f (n) ∈ H⊗̂n
τ , n ∈ N,

| f (n) |τ =
√
( f (n), f (n))

H⊗̂n
τ

.
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Lemma. ([21]) There exists τ′ ∈ T such that for each n ∈ N the space H⊗̂n
τ′ is densely and

continuously embedded into the space H
(n)
ext . Moreover, for all f (n) ∈ H⊗̂n

τ′

| f (n)|2ext ≤ n!cn| f (n) |2τ′ ,

where c > 0 is some constant.

It follows from this lemma that if for some τ ∈ T the space Hτ is continuously embedded

into the space Hτ′ then for each n ∈ N the space H⊗̂n
τ is densely and continuously embedded

into the space H
(n)
ext , and there exists c(τ) > 0 such that for all f (n) ∈ H⊗̂n

τ

| f (n)|2ext ≤ n!c(τ)n | f (n)|2τ . (8)

In what follows, it will be convenient to assume that the indexes τ such that Hτ is not contin-

uously embedded into Hτ′ , are removed from T.

Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n, N f ∈ Z+
}
⊂ (L2). Accept on default

q ∈ Z+, τ ∈ T; set H⊗̂0
τ := R; and define scalar products (·, ·)τ,q on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)τ,q :=

min(N f ,Ng)

∑
n=0

(n!)22qn( f (n) , g(n))
H⊗̂n

τ
. (9)

Let ‖ · ‖τ,q be the corresponding norms, i.e., ‖ f‖τ,q =
√
( f , f )τ,q . In order to verify the well-

posedness of this definition, i.e., that formula (9) defines scalar, and not just quasiscalar prod-

ucts, we note that if for f ∈ PW ‖ f‖τ,q = 0 then by (9) for each coefficient f (n) of f | f (n)|τ = 0

and therefore by (8) | f (n)|ext = 0. So, in this case f = 0 in (L2).

Definition. We define Kondratiev spaces of nonregular test functions (Hτ)q as completions of

PW with respect to the norms ‖ · ‖τ,q, and set

(Hτ) := pr lim
q∈Z+

(Hτ)q, (D) := pr lim
q∈Z+,τ∈T

(Hτ)q.

As is easy to see, f ∈ (Hτ)q if and only if f can be presented in the form

f =
∞

∑
n=0

: 〈◦⊗n, f (n)〉 :, f (n) ∈ H⊗̂n
τ (10)

(the series converges in (Hτ)q), with

‖ f‖2
τ,q := ‖ f‖2

(Hτ )q
=

∞

∑
n=0

(n!)22qn| f (n) |2τ < ∞; (11)

and for f , g ∈ (Hτ)q

( f , g)(Hτ )q
=

∞

∑
n=0

(n!)22qn( f (n) , g(n))
H⊗̂n

τ
,

where f (n), g(n) ∈ H⊗̂n
τ are the kernels from decompositions (10) for f and g respectively (since

for each n ∈ Z+ H⊗̂n
τ ⊆ H

(n)
ext , for f (n) ∈ H⊗̂n

τ : 〈◦⊗n, f (n)〉 : is a well defined Wick monomial,

see Subsection 1.2). Further, f ∈ (Hτ) ( f ∈ (D)) if and only if f can be presented in form (10)

and norm (11) is finite for each q ∈ Z+ (for each q ∈ Z+ and each τ ∈ T).
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Proposition. ([21]) For each τ ∈ T there exists q0 = q0(τ) ∈ Z+ such that for each q ∈ Nq0 :=

{q0, q0 + 1, · · · } the space (Hτ)q is densely and continuously embedded into (L2).

In view of this proposition for τ ∈ T and q ≥ q0(τ) one can consider a chain

(D′) ⊃ (H−τ) ⊃ (H−τ)−q ⊃ (L2) ⊃ (Hτ)q ⊃ (Hτ) ⊃ (D), (12)

where (H−τ)−q, (H−τ) = ind limq→∞(H−τ)−q and (D′) = ind limq→∞,τ∈T(H−τ)−q are the

spaces dual of (Hτ)q, (Hτ) and (D) with respect to (L2).

Definition. Chain (12) is called a nonregular rigging of the space (L2). The negative spaces of

this chain (H−τ)−q, (H−τ) and (D′) are called Kondratiev spaces of nonregular generalized

functions.

Finally, we describe natural orthogonal bases in the spaces (H−τ)−q. Let us consider chains

D′(m)
⊃ H

(m)
−τ ⊃ H

(m)
ext ⊃ H⊗̂m

τ ⊃ D⊗̂m, (13)

m ∈ Z+ (for m = 0 D⊗̂0 = H⊗̂0
τ = H

(0)
ext = H

(0)
−τ = D′(0) = R), where H

(m)
−τ and D′(m) =

ind limτ∈T H
(m)
−τ are the spaces dual of H⊗̂m

τ and D⊗̂m with respect to H
(m)
ext . The next statement

follows from the definition of the spaces (H−τ)−q and the general duality theory (cf. [22]).

Proposition. ([21]) There exists a system of generalized functions
{

: 〈◦⊗m, F
(m)
ext 〉 : ∈ (H−τ)−q | F

(m)
ext ∈ H

(m)
−τ , m ∈ Z+

}

such that

1) for F
(m)
ext ∈ H

(m)
ext ⊂ H

(m)
−τ : 〈◦⊗m, F

(m)
ext 〉 : is a Wick monomial that was defined in Subsec-

tion 1.2;

2) any generalized function F ∈ (H−τ)−q can be presented as a series

F =
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext 〉 :, F

(m)
ext ∈ H

(m)
−τ , (14)

that converges in (H−τ)−q, i.e.,

‖F‖2
−τ,−q := ‖F‖2

(H−τ)−q
=

∞

∑
m=0

2−qm|F
(m)
ext |

2

H
(m)
−τ

< ∞; (15)

and, vice versa, any series (14) with finite norm (15) is a generalized function from (H−τ)−q

(i.e., such a series converges in (H−τ)−q);

3) for F, G ∈ (H−τ)−q the scalar product has a form

(F, G)(H−τ)−q
=

∞

∑
m=0

2−qm(F
(m)
ext , G

(m)
ext )H(m)

−τ

,

where F
(m)
ext , G

(m)
ext ∈ H

(m)
−τ are the kernels from decompositions (14) for F and G respectively;

4) the dual pairing between F ∈ (H−τ)−q and f ∈ (Hτ)q that is generated by the scalar

product in (L2), has the form

〈〈F, f 〉〉(L2 ) =
∞

∑
m=0

m!〈F
(m)
ext , f (m)〉ext, (16)

where F
(m)
ext ∈ H

(m)
−τ and f (m) ∈ H⊗̂m

τ are the kernels from decompositions (14) and (10) for F

and f respectively, 〈·, ·〉ext denotes the dual pairings between elements of negative and positive

spaces from chains (13), these pairings are generated by the scalar products in H
(m)
ext .

It is clear that F ∈ (H−τ) (F ∈ (D′)) if and only if F can be presented in form (14) and norm

(15) is finite for some q ∈ Nq0(τ) (for some τ ∈ T and some q ∈ Nq0(τ)).
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1.4 Stochastic derivatives and integrals

First, following [24], we recall the notion of the Hida stochastic derivative on the spaces

of nonregular test functions, and of the extended stochastic integral on the spaces of non-

regular generalized functions. Decomposition (5) for elements of (L2) defines an isometric

isomorphism (a generalized Wiener-Itô-Sigal isomorphism) I : (L2) →
∞
⊕

n=0
n!H

(n)
ext , where

∞
⊕

n=0
n!H

(n)
ext is a weighted extended Fock space (cf. [26]): for F ∈ (L2) of form (5) IF =

(F(0), F(1), . . . , F(n), . . . ) ∈
∞
⊕

n=0
n!H

(n)
ext . Let 1 : H → H be the identity operator. Then the

operator I ⊗ 1 : (L2) ⊗H →
( ∞
⊕

n=0
n!H

(n)
ext

)
⊗ H ∼=

∞
⊕

n=0
n!(H

(n)
ext ⊗H) is an isometric isomor-

phism between the spaces (L2)⊗H and
∞
⊕

n=0
n!(H

(n)
ext ⊗H). It is clear that for arbitrary n ∈ Z+

and F
(n)
· ∈ H

(n)
ext ⊗H a vector (0, . . . , 0︸ ︷︷ ︸

n

, F
(n)
· , 0, . . . ) belongs to

∞
⊕

n=0
n!(H

(n)
ext ⊗H). Set

: 〈◦⊗n, F
(n)
· 〉 :

de f
= (I ⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸

n

, F
(n)
· , 0, . . . ) ∈ (L2)⊗H. (17)

By the construction elements : 〈◦⊗n, F
(n)
· 〉 :, n ∈ Z+, form an orthogonal basis in the space

(L2)⊗H in the sense that any F ∈ (L2)⊗H can be presented as

F(·) =
∞

∑
n=0

: 〈◦⊗n, F
(n)
· 〉 :, F

(n)
· ∈ H

(n)
ext ⊗H

(the series converges in (L2) ⊗ H), with ‖F‖2
(L2)⊗H

= ∑
∞
n=0 n!|F

(n)
· |2

H
(n)
ext⊗H

< ∞. Since, as

is easily seen, the restriction of the generalized Wiener-Itô-Sigal isomorphism I to the space

(Hτ)q is an isometric isomorphism between (Hτ)q and a weighted Fock space
∞
⊕

n=0
(n!)22qnH⊗̂n

τ

(cf. [26]), and, of course, the restriction of the identity operator on H to the space Hτ is the

identity operator on Hτ , for arbitrary n ∈ Z+ and f
(n)
· ∈ H⊗̂n

τ ⊗Hτ ⊂ H
(n)
ext ⊗H we have

: 〈◦⊗n, f
(n)
· 〉 : ∈ (Hτ)q ⊗Hτ. Moreover, elements : 〈◦⊗n, f

(n)
· 〉 :, f

(n)
· ∈ H⊗̂n

τ ⊗Hτ , n ∈ Z+, form

orthogonal bases (in the above-described sense) in the spaces (Hτ)q ⊗Hτ.

Definition. For g ∈ (Hτ)q we define a Hida stochastic derivative ∂·g ∈ (Hτ)q ⊗Hτ by the

formula

∂·g :=
∞

∑
n=0

(n + 1): 〈◦⊗n, g(n+1)(·)〉 :, (18)

where g(n+1) ∈ H⊗̂n+1
τ , n ∈ Z+, are the kernels from decomposition (10) for g considered as

elements of H⊗̂n
τ ⊗Hτ .

Since (see (11))

‖∂·g‖
2
(Hτ)q⊗Hτ

=
∞

∑
n=0

((n + 1)!)22qn|g(n+1)(·)|2
H⊗̂n

τ ⊗Hτ

= 2−q
∞

∑
n=0

((n + 1)!)22q(n+1)|g(n+1)|2τ ≤ 2−q‖g‖2
τ,q ,

(19)
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this definition is well posed and, moreover, the Hida stochastic derivative

∂· : (Hτ)q → (Hτ)q ⊗Hτ (20)

is a linear continuous operator. It is shown in [24] that this derivative is (generated by) the

restriction to (Hτ)q of the Hida stochastic derivative on (L2). We note also that the restric-

tions of derivative (20) to (Hτ) and to (D) generate linear continuous operators ∂· : (Hτ) →

(Hτ)⊗Hτ := pr limq∈Z+
(Hτ)q ⊗Hτ and ∂· : (D) → (D)⊗D := pr limq∈Z+,τ∈T(Hτ)q ⊗Hτ

respectively.

Definition. We define an extended stochastic integral
∫

◦(u)d̂Lu : (H−τ)−q ⊗H−τ → (H−τ)−q (21)

as a linear continuous operator adjoint to Hida stochastic derivative (20): for F ∈ (H−τ)−q ⊗

H−τ ∫
F(u)d̂Lu := ∂∗· F ∈ (H−τ)−q, (22)

i.e., for arbitrary g ∈ (Hτ)q 〈〈
∫

F(u)d̂Lu, g〉〉(L2) = 〈〈F(·), ∂·g〉〉(L2)⊗H.

It is shown in [24] that integral (21) is an extension of the extended Skorohod stochastic

integral on (L2)⊗H.

By analogy one can define linear continuous operators
∫
◦(u)d̂Lu : (H−τ)⊗H−τ → (H−τ)

and
∫
◦(u)d̂Lu : (D′) ⊗ D′ → (D′), where (H−τ) ⊗ H−τ := ind limq→∞(H−τ)−q ⊗ H−τ,

(D′)⊗D′ := ind limq→∞,τ∈T(H−τ)−q ⊗H−τ.

In contrast to formula (18) for the Hida stochastic derivative, formula (22) for integral (21)

is inconvenient for calculations. Therefore let us write out a representation for this integral in

terms of orthogonal bases in the spaces of nonregular generalized functions.

First we note that, as in the case of the spaces (H−τ)−q, it follows from the general dual-

ity theory that there exists a system of orthogonal in (H−τ)−q ⊗ H−τ generalized functions
{

: 〈◦⊗m, F
(m)
ext,·〉 : ∈ (H−τ)−q ⊗ H−τ | F

(m)
ext,· ∈ H

(m)
−τ ⊗ H−τ, m ∈ Z+

}
such that for F

(m)
ext,· ∈

H
(m)
ext ⊗ H ⊂ H

(m)
−τ ⊗ H−τ : 〈◦⊗m, F

(m)
ext,·〉 : is given by (17); and any generalized function F ∈

(H−τ)−q ⊗H−τ can be presented as a convergent in (H−τ)−q ⊗H−τ series

F(·) =
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext,·〉 :, F

(m)
ext,· ∈ H

(m)
−τ ⊗H−τ, (23)

now

‖F‖2
(H−τ)−q⊗H−τ

=
∞

∑
m=0

2−qm|F
(m)
ext,·|

2

H
(m)
−τ ⊗H−τ

< ∞. (24)

Consider a family of chains

D′⊗̂m
⊃ H⊗̂m

−τ ⊃ H⊗̂m ⊃ H⊗̂m
τ ⊃ D⊗̂m, m ∈ Z+ (25)

(as is well known (e.g., [4]), H⊗̂m
−τ and D′⊗̂m = ind limτ∈T H⊗̂m

−τ are the spaces dual of H⊗̂m
τ and

D⊗̂m respectively; in the case m = 0 all spaces from chain (25) are equal to R). Since the spaces

of test functions in chains (25) and (13) coincide, there exists a family of natural isomorphisms

Um : D′(m)
→ D′⊗̂m

, m ∈ Z+,
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such that for all F
(m)
ext ∈ D′(m) and f (m) ∈ D⊗̂m

〈F
(m)
ext , f (m)〉ext = 〈UmF

(m)
ext , f (m)〉. (26)

It is easy to see that the restrictions of Um to H
(m)
−τ are isometric isomorphisms between the

spaces H
(m)
−τ and H⊗̂m

−τ .

Remark. As we saw above, H
(1)
ext = H, and therefore in the case m = 1 chains (25) and (13)

coincide. Thus U1 = 1 is the identity operator on D′(1) = D′. In the case m = 0 U0 is,

obviously, the identity operator on R.

Proposition. ([24]) Let F ∈ (H−τ)−q ⊗H−τ. The extended stochastic integral can be presented

in the form ∫
F(u)d̂Lu =

∞

∑
m=0

: 〈◦⊗m+1, F̂
(m)
ext 〉 :, (27)

where

F̂
(m)
ext := U−1

m+1{Pr[(Um ⊗ 1)F
(m)
ext,·]} ∈ H

(m+1)
−τ , (28)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m ∈ Z+

from H⊗̂m
−τ ⊗H−τ to H⊗̂m+1

−τ ), F
(m)
ext,· ∈ H

(m)
−τ ⊗H−τ, m ∈ Z+, are the kernels from decomposi-

tion (23) for F.

Remark. Sometimes it can be convenient to introduce the Hida stochastic derivative and the

extended stochastic integral as linear continuous operators acting from (Hτ)q to (Hτ)q ⊗H

and from (H−τ)−q ⊗H to (H−τ)−q respectively, this case is described in detail in [21].

Unfortunately, in contrast to the Hida stochastic derivative, the extended stochastic integral

with respect to a Lévy process cannot be naturally restricted to the spaces of nonregular test

functions. More precisely, for f ∈ (Hτ)q ⊗ Hτ

∫
f (u)d̂Lu not necessary a nonregular test

function (one can show that for τ ∈ T and q ∈ Z+ such that q > log2 c(τ), where c(τ) >

0 from estimate (8), if f ∈ (Hτ)q ⊗ Hτ then
∫

f (u)d̂Lu ∈ (L2); and for q sufficiently large

this integral is a regular test function [21]). Nevertheless, one can introduce on each space of

nonregular test functions a linear operator that has properties quite analogous to the properties

of the extended stochastic integral. Now we’ll introduce such operators (which will be called

generalized stochastic integrals) and consider them in detail.

Let f ∈ (Hτ)q ⊗ Hτ . Using the above-described orthogonal basis in this space, we can

write

f (·) =
∞

∑
n=0

: 〈◦⊗n, f
(n)
· 〉 :, f

(n)
· ∈ H⊗̂n

τ ⊗Hτ (29)

(the series converges in (Hτ)q ⊗Hτ), in this case

‖ f‖2
(Hτ )q⊗Hτ

=
∞

∑
n=0

(n!)22qn| f
(n)
· |2

H⊗̂n
τ ⊗Hτ

< ∞. (30)

Definition. We define a generalized stochastic integral

I : (Hτ)q+1 ⊗Hτ → (Hτ)q (31)
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as a linear continuous operator given for f ∈ (Hτ)q+1 ⊗Hτ by the formula

I( f ) :=
∞

∑
n=0

: 〈◦⊗n+1, f̂ (n)〉 : (32)

(cf. (27)), where f̂ (n) := Pr f
(n)
· ∈ H⊗̂n+1

τ are the orthoprojections onto H⊗̂n+1
τ (the symmetriza-

tions by all variables) of the kernels f
(n)
· ∈ H⊗̂n

τ ⊗Hτ from decomposition (29) for f .

Since (see (11), (32) and (30))

‖I( f )‖2
τ,q =

∞

∑
n=0

((n + 1)!)22q(n+1)| f̂ (n) |2τ ≤ 2q
∞

∑
n=0

(n!)22(q+1)n[(n + 1)22−n]| f
(n)
· |2

H⊗̂n
τ ⊗Hτ

≤ 9 · 2q−2‖ f‖2
(Hτ )q+1⊗Hτ

,

this definition is well posed. It is clear that the restriction of the operator I to the space (Hτ)⊗

Hτ (respectively to the space (D)⊗D) is a linear continuous operator acting from (Hτ)⊗Hτ

to (Hτ) (respectively from (D)⊗D to (D)).

The Hida stochastic derivative, in turn, has no a natural extension to the spaces of non-

regular generalized functions (the kernels from decompositions (14) for elements of (H−τ)−q

belong to the spaces H
(m)
−τ , m ∈ Z+, and for elements of these spaces it is impossible "to sepa-

rate a variable"). Nevertheless, one can define a natural analog of this derivative (a generalized

Hida derivative) on each of the above-mentioned spaces as an operator adjoint to I.

Definition. We define a generalized Hida derivative

∂̃· : (H−τ)−q → (H−τ)−q−1 ⊗H−τ (33)

as a linear continuous operator adjoint to generalized stochastic integral (31) (∂̃· := I
∗), i.e., for

all F ∈ (H−τ)−q and f ∈ (Hτ)q+1 ⊗Hτ

〈〈∂̃·F, f (·)〉〉(L2 )⊗H = 〈〈F, I( f )〉〉(L2 ). (34)

By analogy one can define linear continuous operators ∂̃· : (H−τ) → (H−τ)⊗H−τ and ∂̃· :

(D′) → (D′)⊗D′. We note also that since operators (33) and (31) are continuous, ∂̃∗· = I
∗∗ = I

and ∂̃∗∗· = I
∗ = ∂̃·.

In order to make calculations with derivative (33), let us obtain a representation for this

operator in terms of orthogonal bases in the spaces of nonregular generalized functions.

Proposition. Let F ∈ (H−τ)−q. Then

∂̃·F =
∞

∑
m=0

(m + 1): 〈◦⊗m, F
(m+1)
ext (·)〉 : ∈ (H−τ)−q−1 ⊗H−τ (35)

(cf. (18)), where

F
(m+1)
ext (·) := (U−1

m ⊗ 1)(Um+1F
(m+1)
ext )(·) ∈ H

(m)
−τ ⊗H−τ, (36)

here F
(m+1)
ext ∈ H

(m+1)
−τ are the kernels from decomposition (14) for F.
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Proof. Using (34), (14), (32), (16), (26), (36) and (29), for F ∈ (H−τ)−q and f ∈ (Hτ)q+1 ⊗Hτ we

obtain

〈〈∂̃·F, f 〉〉(L2)⊗H = 〈〈F, I( f )〉〉(L2 ) = 〈〈
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext 〉 :,

∞

∑
n=0

: 〈◦⊗n+1, f̂ (n)〉 :〉〉(L2)

=
∞

∑
m=0

(m + 1)!〈F
(m+1)
ext , f̂ (m)〉

H
(m+1)
ext

=
∞

∑
m=0

(m + 1)!〈Um+1F
(m+1)
ext , Pr f

(m)
· 〉H⊗̂m+1

=
∞

∑
m=0

(m + 1)!〈(Um+1F
(m+1)
ext )(·), f

(m)
· 〉H⊗̂m⊗H

=
∞

∑
m=0

m!(m + 1)〈(U−1
m ⊗ 1)(Um+1F

(m+1)
ext )(·), f

(m)
· 〉

H
(m)
ext ⊗H

= 〈〈
∞

∑
m=0

(m + 1): 〈◦⊗m, (U−1
m ⊗ 1)(Um+1F

(m+1)
ext )(·)〉 :,

∞

∑
n=0

: 〈◦⊗n, f
(n)
· 〉 :〉〉(L2)⊗H

= 〈〈
∞

∑
m=0

(m + 1): 〈◦⊗m, F
(m+1)
ext (·)〉 :, f 〉〉(L2)⊗H,

(37)

whence the result follows.

Sometimes it can be necessary to define a generalized stochastic integral by formula (32) as

a linear unbounded operator

I : (Hτ)q ⊗Hτ → (Hτ)q (38)

with the domain

dom(I) :=
{

f ∈ (Hτ)q ⊗Hτ : ‖I( f )‖2
τ,q =

∞

∑
n=0

((n + 1)!)22q(n+1)| f̂ (n) |2τ < ∞
}

. (39)

Since set (39) is dense in (Hτ)q ⊗Hτ, one can define now a corresponding generalized Hida

derivative as an unbounded operator adjoint to operator (38):

∂̃· := I
∗ : (H−τ)−q → (H−τ)−q ⊗H−τ. (40)

The domain of operator (40) by definition consists of F ∈ (H−τ)−q such that (Hτ)q ⊗Hτ ⊃

dom(I) ∋ f 7→ 〈〈F, I( f )〉〉(L2 ) is a linear continuous functional. By properties of Hilbert

equipments the last is possible if and only if there exists H ∈ (H−τ)−q ⊗ H−τ such that

〈〈F, I( f )〉〉(L2 ) = 〈〈H, f 〉〉(L2)⊗H. But by definition of ∂̃· we have H = ∂̃·F and therefore the

domain of operator (40) can be described by the condition ∂̃·F ∈ (H−τ)−q ⊗H−τ. Since for

f ∈ dom(I) and F ∈ dom(∂̃·) calculation (37) is, obviously, valid, ∂̃·F has form (35). So, the

domain of operator (40) can be described as follows:

dom(∂̃·) =
{

F ∈ (H−τ)−q : ‖∂̃·F‖
2
(H−τ)−q⊗H−τ

=
∞

∑
m=0

2−qm(m + 1)2|F
(m+1)
ext (·)|2

H
(m)
−τ ⊗H−τ

=
∞

∑
m=0

2−qm(m + 1)2|F
(m+1)
ext |2

H
(m+1)
−τ

< ∞
} (41)

(see (36)).

Proposition. Generalized stochastic integral (38) and generalized Hida derivative (40) are mu-

tually adjoint and, in particular, closed operators.
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Proof. Since set (41) is dense in (H−τ)−q, the operator ∂̃∗· = I
∗∗ : (Hτ)q ⊗ Hτ → (Hτ)q is

well defined as a linear unbounded operator with the domain that consists of f ∈ (Hτ)q ⊗Hτ

such that (H−τ)−q ⊃ dom(∂̃·) ∋ F 7→ 〈〈∂̃·F, f 〉〉(L2)⊗H is a linear continuous functional. By

properties of Hilbert equipments the last is possible if and only if there exists h ∈ (Hτ)q such

that 〈〈∂̃·F, f 〉〉(L2)⊗H = 〈〈F, h〉〉(L2). But by (40) h = I( f ) and therefore the domain of ∂̃∗· can

be described by the condition I( f ) ∈ (Hτ)q. Compareing this condition with (39) one can

conclude that dom(∂̃∗· ) = dom(I), therefore ∂̃∗· = I
∗∗ = I. The equality I

∗ = ∂̃· is a definition

of ∂̃·.

2 OPERATORS OF STOCHASTIC DIFFERENTIATION

2.1 The case of bounded operators

As we said above, just as the Hida stochastic derivative, the operators of stochastic differ-

entiation on (L2) [8, 9] cannot be naturally continued to the spaces of nonregular generalized

functions (because the kernels from decompositions (14) for elements of (H−τ)−q belong to too

wide spaces). Nevertheless, one can introduce on these spaces natural analogs of the above-

mentioned operators. These analogs have properties similar to the properties of operators of

stochastic differentiation, and can be accepted as operators of stochastic differentiation on the

spaces of nonregular generalized functions. In order to give an exact definition of the just now

mentioned operators, we need a preparation.

Let F
(m)
ext ∈ H

(m)
−τ , f (n) ∈ H⊗̂n

τ , n, m ∈ N, m > n. We define a generalized partial pairing

〈F
(m)
ext , f (n)〉ext ∈ H

(m−n)
−τ by setting for any g(m−n) ∈ H⊗̂m−n

τ

〈〈F
(m)
ext , f (n)〉ext, g(m−n)〉ext = 〈F

(m)
ext , f (n)⊗̂g(m−n)〉ext. (42)

Since by the generalized Cauchy-Bunyakovsky inequality

|〈F
(m)
ext , f (n)⊗̂g(m−n)〉ext| ≤ |F

(m)
ext |H(m)

−τ

| f (n)⊗̂g(m−n)|τ ≤ |F
(m)
ext |H(m)

−τ

| f (n) |τ|g
(m−n)|τ,

this definition is well posed and

|〈F
(m)
ext , f (n)〉ext|H(m−n)

−τ

≤ |F
(m)
ext |H(m)

−τ

| f (n)|τ . (43)

Definition. Let n ∈ N, f (n) ∈ H⊗̂n
τ . We define (the analog of) the operator of stochastic

differentiation

(D̃n◦)( f (n)) : (H−τ)−q → (H−τ)−q−1

as a linear continuous operator that is given by the formula

(D̃nF)( f (n)) : =
∞

∑
m=n

m!

(m − n)!
: 〈◦⊗m−n, 〈F

(m)
ext , f (n)〉ext〉 :

≡
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, 〈F

(m+n)
ext , f (n)〉ext〉 :,

(44)

where F
(m)
ext ∈ H

(m)
−τ are the kernels from decomposition (14) for F ∈ (H−τ)−q.
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Since (see (15), (44) and (43))

‖(D̃nF)( f (n))‖2
−τ,−q−1 =

∞

∑
m=0

2(−q−1)m ((m + n)!)2

(m!)2
|〈F

(m+n)
ext , f (n)〉ext|

2

H
(m)
−τ

≤ | f (n)|2τ2qn
∞

∑
m=0

2−q(m+n)|F
(m+n)
ext |2

H
(m+n)
−τ

[
2−m ((m + n)!)2

(m!)2

]
≤ | f (n) |2τ2qnC(n)‖F‖2

−τ,−q,

where C(n) := max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ] ≤ max
m∈Z+

[2−m(m + n)2n] < ∞, this definition is well posed.

It is clear that the operator (D̃n◦)( f (n)) can be naturally continued to a linear continuous op-

erator on the space (H−τ) (or (D′)).

Let us consider main properties of the operator D̃n.

Theorem. 1) For k1, . . . , km ∈ N, f
(k j)

j ∈ H
⊗̂k j
τ , j ∈ {1, . . . , m},

(D̃km(· · · (D̃k2((D̃k1◦)( f
(k1)
1 )))( f

(k2)
2 ) · · · ))( f

(km)
m ) = (D̃k1+···+km◦)( f

(k1)
1 ⊗̂ · · · ⊗̂ f

(km)
m ).

2) For each F ∈ (H−τ)−q the kernels F
(n)
ext ∈ H

(n)
−τ , n ∈ N, from decomposition (14) can be

presented in the form

F
(n)
ext =

1

n!
E(D̃nF),

i.e., for each f (n) ∈ H⊗̂n
τ 〈F

(n)
ext , f (n)〉ext =

1
n!E((D̃nF)( f (n))), here E◦ := 〈〈◦, 1〉〉(L2) is a general-

ized expectation.

3) The adjoint to D̃n operator has the form

(D̃ng)( f (n))∗ =
∞

∑
m=0

: 〈◦m+n, f (n)⊗̂g(m)〉 : ∈ (Hτ)q, (45)

where g ∈ (Hτ)q+1, f (n) ∈ H⊗̂n
τ , and g(m) ∈ H⊗̂m

τ are the kernels from decomposition (10) for

g.

Proof. 1) The proof consists in the application of the mathematical induction method.

2) Using (44) and (16) we obtain

E((D̃nF)( f (n))) = 〈〈(D̃nF)( f (n)), 1〉〉(L2) = n!〈F
(n)
ext , f (n)〉ext.

3) Since (see (11), (10))

‖
∞

∑
m=0

: 〈◦m+n, f (n)⊗̂g(m)〉 :‖2
τ,q =

∞

∑
m=0

((m + n)!)22q(m+n)| f (n)⊗̂g(m)|2τ

≤ | f (n)|2τ2qn
∞

∑
m=0

(m!)22(q+1)m|g(m)|2τ

[
2−m ((m + n)!)2

(m!)2

]
≤ | f (n)|2τ2qnC(n)‖g‖2

τ,q+1 < ∞

(here C(n) = max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ] as above), the right hand side of (45) is well defined as an

element of (Hτ)q. Further, using (44), (10), (16) and (42), for F ∈ (H−τ)−q of form (14) we
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obtain

〈〈F,(D̃ng)( f (n))∗〉〉(L2) = 〈〈(D̃nF)( f (n)), g〉〉(L2)

= 〈〈
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, 〈F

(m+n)
ext , f (n)〉ext〉 :,

∞

∑
k=0

: 〈◦⊗k, g(k)〉 :〉〉(L2)

=
∞

∑
m=0

(m + n)!〈〈F
(m+n)
ext , f (n)〉ext, g(m)〉ext =

∞

∑
m=0

(m + n)!〈F
(m+n)
ext , f (n)⊗̂g(m)〉ext

= 〈〈
∞

∑
k=0

: 〈◦⊗k, F
(k)
ext 〉 :,

∞

∑
m=0

: 〈◦⊗m+n, f (n)⊗̂g(m)〉 :〉〉(L2)

= 〈〈F,
∞

∑
m=0

: 〈◦⊗m+n, f (n)⊗̂g(m)〉 :〉〉(L2),

(46)

whence the result follows.

Now we consider in more detail the case n = 1. Denote D̃ := D̃1.

Theorem. 1) For all g ∈ (Hτ)q+1 and f (1) ∈ Hτ

(D̃g)( f (1))∗ = I(g ⊗ f (1)) ∈ (Hτ)q. (47)

2) For all F ∈ (H−τ)−q and f (1) ∈ Hτ

(D̃F)( f (1)) = 〈∂̃·F, f (1)(·)〉 ∈ (H−τ)−q−1, (48)

where 〈∂̃·F, f (1)(·)〉 is a partial pairing, i.e., the unique element of (H−τ)−q−1 such that for

arbitrary g ∈ (Hτ)q+1 〈〈〈∂̃·F, f (1)(·)〉, g〉〉(L2 ) = 〈〈∂̃·F, g ⊗ f (1)(·)〉〉(L2)⊗H.

Remark. Similarly to the proof of the fact that the generalized partial pairing 〈·, ·〉ext is well

posed and satisfies estimate (43), one can easily show that a partial pairing is well posed and

satisfies a generalized Cauchy-Bunyakovsky inequality (in our case this inequality has the form

‖〈∂̃·F, f (1)(·)〉‖−τ,−q−1 ≤ ‖∂̃·F‖(H−τ)−q−1⊗H−τ
| f (1) |τ).

Proof. 1) The result follows from representation (45) with n = 1 and the definition of an oper-

ator I (see (32)).

2) Taking into account (47) and (34), for all g ∈ (Hτ)q+1 we obtain

〈〈(D̃F)( f (1)), g〉〉(L2) = 〈〈F, (D̃g)( f (1))∗〉〉(L2) = 〈〈F, I(g ⊗ f (1))〉〉(L2)

= 〈〈∂̃·F, g ⊗ f (1)(·)〉〉(L2)⊗H = 〈〈〈∂̃·F, f (1)(·)〉, g〉〉(L2 ),

whence the result follows.

Remark. Formally substituting in (48) f (1) = δt, t ∈ R+ (here δt is the Dirac delta-function

concentrated at t; the substitution is formal because δt 6∈ Hτ), we obtain a formal equality ∂̃t◦ =

(D̃◦)(δt) (whence ∂̃·◦ = (D̃◦)(δ·)). In this connection we note that for the Hida stochastic

derivative ∂· and the operator of stochastic differentiation D on the spaces of nonregular test

functions, for each t ∈ R+ ∂t◦ = (D◦)(δt) [24]; the formal analog of the last equality is valid

on spaces that belong to the regular rigging of (L2) [8].
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In some applications of the Gaussian analysis (in particular, in the Malliavin calculus) an

important role belongs to the commutator between the extended stochastic integral and the

operator of stochastic differentiation (see, e.g., [1]). Analogs of this commutator are calculated

in the Meixner analysis [19, 20] and on the spaces of regular test and generalized functions

of the Lévy analysis [8, 9]. Unfortunately, it is impossible to calculate a direct analog of the

above-mentioned commutator on the spaces of nonregular test functions of the Lévy analysis:

as we saw above, the extended stochastic integral cannot be naturally restricted to these spaces.

Nevertheless, there exists an analog of this integral on the just now mentioned spaces — the

generalized stochastic integral I. So, now it is natural to calculate the commutator between

I and the operator of stochastic differentiation, this commutator is calculated in [24]. On the

spaces of nonregular generalized functions of the Lévy analysis the extended stochastic inte-

gral with respect to a Lévy process is well defined, and the role of the operator of stochastic

differentiation belongs to the operator D̃. So, it is natural to calculate the commutator between

the above-mentioned integral and D̃. In order to do this, let us introduce operators of stochas-

tic differentiation on the spaces (H−τ)−q ⊗H−τ (this notion is intuitively clear and can be used

without an additional explanation, but we prefer to give an exact definition).

As above, we begin with a preparation. Let f (n) ∈ H⊗̂n
τ , g

(m)
· ∈ H⊗̂m

τ ⊗Hτ. We define

f (n)⊗g
(m)
· := (Pr ⊗ 1)( f (n) ⊗ g

(m)
· ) ∈ H⊗̂n+m

τ ⊗Hτ, (49)

where Pr ⊗ 1 is the operator of symmetrization "by n + m variables, except the variable ·" or,

which is the same, the orthoprojector acting from H⊗̂n
τ ⊗H⊗̂m

τ ⊗Hτ to H⊗̂n+m
τ ⊗Hτ (of course,

this operator depends on n and m, but we simplify the nonation). It is clear that

| f (n)⊗g
(m)
· |

H⊗̂n+m
τ ⊗Hτ

≤ | f (n)|
H⊗̂n

τ
|g

(m)
· |

H⊗̂m
τ ⊗Hτ

, (50)

and for f (n) ∈ H⊗̂n
τ , g(m) ∈ H⊗̂m

τ , h(1) ∈ Hτ

f (n)⊗(g(m) ⊗ h(1)) = ( f (n)⊗̂g(m))⊗ h(1). (51)

Let f (n) ∈ H⊗̂n
τ , F

(m)
ext,· ∈ H

(m)
−τ ⊗H−τ, n, m ∈ N, m ≥ n. We define a generalized partial

pairing 〈F
(m)
ext,·, f (n)〉EXT ∈ H

(m−n)
−τ ⊗H−τ by setting for arbitrary g

(m−n)
· ∈ H⊗̂m−n

τ ⊗Hτ

〈〈F
(m)
ext,·, f (n)〉EXT , g

(m−n)
· 〉

H
(m−n)
ext ⊗H

= 〈F
(m)
ext,·, f (n)⊗g

(m−n)
· 〉

H
(m)
ext ⊗H

. (52)

Since by the generalized Cauchy-Bunyakovsky inequality and (50)

|〈F
(m)
ext,·, f (n)⊗g

(m−n)
· 〉

H
(m)
ext ⊗H

| ≤ |F
(m)
ext,·|H(m)

−τ ⊗H−τ
| f (n)⊗g

(m−n)
· |

H⊗̂m
τ ⊗Hτ

≤ |F
(m)
ext,·|H(m)

−τ ⊗H−τ
| f (n) |

H⊗̂n
τ
|g

(m−n)
· |

H⊗̂m−n
τ ⊗Hτ

,

this definition is well posed and

|〈F
(m)
ext,·, f (n)〉EXT |H(m−n)

−τ ⊗H−τ
≤ |F

(m)
ext,·|H(m)

−τ ⊗H−τ
| f (n) |

H⊗̂n
τ

. (53)
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Remark. Let F
(m)
ext ∈ H

(m)
−τ , H(1) ∈ H−τ; g(m−n) ∈ H⊗̂m−n

τ , h(1) ∈ Hτ. For f (n) ∈ H⊗̂n
τ by (52),

(51) and (42) we obtain

〈〈F
(m)
ext ⊗ H(1)(·), f (n)〉EXT , g(m−n) ⊗ h(1)(·)〉

H
(m−n)
ext ⊗H

= 〈F
(m)
ext ⊗ H(1)(·), f (n)⊗(g(m−n) ⊗ h(1)(·))〉

H
(m)
ext ⊗H

= 〈F
(m)
ext ⊗ H(1)(·), ( f (n)⊗̂g(m−n))⊗ h(1)(·)〉

H
(m)
ext ⊗H

= 〈F
(m)
ext , f (n)⊗̂g(m−n)〉

H
(m)
ext

〈H(1), h(1)〉H

= 〈〈F
(m)
ext , f (n)〉ext, g(m−n)〉

H
(m−n)
ext

〈H(1), h(1)〉H

= 〈〈F
(m)
ext , f (n)〉ext ⊗ H(1)(·), g(m−n) ⊗ h(1)(·)〉

H
(m−n)
ext ⊗H

.

Since the set {g(m−n) ⊗ h(1) : g(m−n) ∈ H⊗̂m−n
τ , h(1) ∈ Hτ} is total in the space H⊗̂m−n

τ ⊗Hτ,

we can conclude that

〈F
(m)
ext ⊗ H(1), f (n)〉EXT = 〈F

(m)
ext , f (n)〉ext ⊗ H(1) (54)

in the space H
(m−n)
−τ ⊗H−τ.

Definition. Let n ∈ N, f (n) ∈ H⊗̂n
τ . We define a linear continuous operator

(D̃n◦)( f (n)) : (H−τ)−q ⊗H−τ → (H−τ)−q−1 ⊗H−τ

by setting for F ∈ (H−τ)−q ⊗H−τ

(D̃nF(·))( f (n)) : =
∞

∑
m=n

m!

(m − n)!
: 〈◦⊗m−n, 〈F

(m)
ext,·, f (n)〉EXT〉 :

≡
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, 〈F

(m+n)
ext,· , f (n)〉EXT〉 :,

(55)

where F
(m)
ext,· ∈ H

(m)
−τ ⊗H−τ are the kernels from decomposition (23) for F.

Since (see (24), (55) and (53))

‖(D̃nF(·))( f (n))‖2
(H−τ)−q−1⊗H−τ

=
∞

∑
m=0

2(−q−1)m ((m + n)!)2

(m!)2
|〈F

(m+n)
ext,· , f (n)〉EXT |

2

H
(m)
−τ ⊗H−τ

≤ | f (n) |2τ2qn
∞

∑
m=0

2−q(m+n)|F
(m+n)
ext,· |2

H
(m+n)
−τ ⊗H−τ

[
2−m ((m + n)!)2

(m!)2

]

≤ | f (n) |2τ2qnC(n)‖F‖2
(H−τ)−q⊗H−τ

,

where, as above, C(n) = max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ], this definition is well posed.

Remark. Let F ∈ (H−τ)−q, H(1) ∈ H−τ. Using (55), (54) and (44) one can easily show that for

each n ∈ N and f (n) ∈ H⊗̂n
τ

(D̃nF ⊗ H(1))( f (n)) = (D̃nF)( f (n))⊗ H(1) ∈ (H−τ)−q−1 ⊗H−τ.

Denote D̃ := D̃1.
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Theorem. For all F ∈ (H−τ)−q ⊗H−τ and f (1) ∈ Hτ

(D̃
∫

F(u)d̂Lu)( f (1)) =
∫
(D̃F(u))( f (1))d̂Lu +

∫
F(u) f (1)(u)du ∈ (H−τ)−q−1, (56)

here
∫
(D̃F(u))( f (1))d̂Lu :=

∫
J(u)d̂Lu, where J(·) := (D̃F(·))( f (1)) ∈ (H−τ)−q−1 ⊗ H−τ;∫

F(u) f (1)(u)du is a generalized Pettis integral, i.e.,
∫

F(u) f (1)(u)du ≡ 〈F(·), f (1)(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1

(〈F(·), f (1)(·)〉 is a partial pairing).

Proof. Using (27) and (44) we obtain

(D̃
∫

F(u)d̂Lu)( f (1)) =
∞

∑
m=0

(m + 1): 〈◦⊗m, 〈F̂
(m)
ext , f (1)〉ext〉 :,

where F̂
(m)
ext ∈ H

(m+1)
−τ are the kernels from decomposition (27) (which is decomposition (14)

for
∫

F(u)d̂Lu), i.e., F̂
(m)
ext are given by formula (28) (F

(m)
ext,· ∈ H

(m)
−τ ⊗H−τ in (28) are the kernels

from decomposition (23) for F). On the other hand, by (55), (27) and (28)
∫
(D̃F(u))( f (1))d̂Lu =

∞

∑
m=0

m: 〈◦⊗m, U−1
m {Pr[(Um−1 ⊗ 1)〈F

(m)
ext,·, f (1)〉EXT ]}〉 :.

Let g = ∑
∞
k=0 : 〈◦⊗k, g(k)〉 : ∈ (Hτ)q+1, g(k) ∈ H⊗̂k

τ (see (10)). By (16) we have

〈〈(D̃
∫

F(u)d̂Lu)( f (1)), g〉〉(L2) =
∞

∑
m=0

m!(m + 1)〈〈F̂
(m)
ext , f (1)〉ext, g(m)〉

H
(m)
ext

,

〈〈
∫
(D̃F(u))( f (1))d̂Lu, g〉〉(L2) =

∞

∑
m=0

m!m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F

(m)
ext,·, f (1)〉EXT ]}, g(m)〉

H
(m)
ext

.

Further, since for each m g(m) belongs to the symmetric tensor power of Hτ, by (26), (52) and

(49)

m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F

(m)
ext,·, f (1)〉EXT ]}, g(m)〉

H
(m)
ext

= m〈(Um−1 ⊗ 1)〈F
(m)
ext,·, f (1)〉EXT , g(m)〉H⊗m

= m〈(Um−1 ⊗ 1)〈F
(m)
ext,·, f (1)〉EXT , g(m)(·)〉H⊗̂m−1⊗H = m〈〈F

(m)
ext,·, f (1)〉EXT , g(m)(·)〉

H
(m−1)
ext ⊗H

= m〈F
(m)
ext,·, f (1)⊗g(m)(·)〉

H
(m)
ext ⊗H

= 〈F
(m)
ext,·(·1, . . . , ·m), f (1)(·1)⊗ g(m)(·2, . . . , ·m, ·)

+ f (1)(·2)⊗ g(m)(·3, . . . , ·m, ·1, ·) + · · ·+ f (1)(·m)⊗ g(m)(·1, . . . , ·m−1, ·)〉
H

(m)
ext ⊗H

;

and by (42), (28), (26), the symmetry of f (1)⊗̂g(m) and g(m), and the last calculation

(m + 1)〈〈F̂
(m)
ext , f (1)〉ext, g(m)〉

H
(m)
ext

= (m + 1)〈F̂
(m)
ext , f (1)⊗̂g(m)〉

H
(m+1)
ext

= (m + 1)〈(Um ⊗ 1)F
(m)
ext,·, f (1)⊗̂g(m)〉H⊗m+1 = (m + 1)〈(Um ⊗ 1)F

(m)
ext,·, ( f (1)⊗̂g(m))(·)〉H⊗̂m⊗H

= (m + 1)〈F
(m)
ext,·, ( f (1)⊗̂g(m))(·)〉

H
(m)
ext ⊗H

= 〈F
(m)
ext,·(·1, . . . , ·m), g(m)(·1, . . . , ·m)⊗ f (1)(·)

+ f (1)(·1)⊗ g(m)(·2, . . . , ·m, ·) + f (1)(·2)⊗ g(m)(·3, . . . , ·m, ·1, ·)

+ · · ·+ f (1)(·m)⊗ g(m)(·1, . . . , ·m−1, ·)〉
H

(m)
ext ⊗H

= 〈F
(m)
ext,·, g(m) ⊗ f (1)(·)〉

H
(m)
ext ⊗H

+ m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F

(m)
ext,·, f (1)〉EXT ]}, g(m)〉

H
(m)
ext

.
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Later, by (23), the construction of a pairing in a tensor product of chains (e.g., [4]), (29) and the

definition of a partial pairing

∞

∑
m=0

m!〈F
(m)
ext,·, g(m) ⊗ f (1)(·)〉

H
(m)
ext ⊗H

= 〈〈F(·),
∞

∑
m=0

: 〈◦⊗m, g(m) ⊗ f (1)(·)〉 :〉〉(L2)⊗H

= 〈〈F(·), g ⊗ f (1)(·)〉〉(L2)⊗H = 〈〈〈F(·), f (1)(·)〉H , g〉〉(L2),

(57)

where 〈F(·), f (1)(·)〉H ≡ 〈F(·), f (1)(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1 is a partial pairing.

So, for arbitrary g ∈ (Hτ)q+1

〈〈(D̃
∫

F(u)d̂Lu)( f (1)), g〉〉(L2) = 〈〈
∫
(D̃F(u))( f (1))d̂Lu, g〉〉(L2) + 〈〈〈F(·), f (1)(·)〉, g〉〉(L2),

from where (56) follows.

Remark. As follows from (57), the definition of a partial pairing, and (16), for

g =
∞

∑
k=0

: 〈◦⊗k, g(k)〉 : ∈ (Hτ)q

〈〈〈F(·), f (1)(·)〉H , g〉〉(L2) =
∞

∑
m=0

m!〈〈F
(m)
ext,·, f (1)(·)〉H , g(m)〉

H
(m)
ext

= 〈〈
∞

∑
m=0

: 〈◦⊗m, 〈F
(m)
ext,·, f (1)(·)〉H〉 :, g〉〉(L2),

from where 〈F(·), f (1)(·)〉H = ∑
∞
m=0 : 〈◦⊗m, 〈F

(m)
ext,·, f (1)(·)〉H〉 : in (H−τ)−q.

Remark. One can easily show that the restriction of an operator (D̃n◦)( f (n)), n ∈ N, f (n) ∈

H⊗̂n
τ , to the space (H−τ)−q ⊗H can be interpreted as a linear continuous operator acting from

(H−τ)−q ⊗ H to (H−τ)−q−1 ⊗ H. Let us consider the extended stochastic integral∫
∆
◦(u)d̂Lu :=

∫
◦(u)1∆(u)d̂Lu : (H−τ)−q ⊗H → (H−τ)−q, ∆ ∈ B(R+) — the Borel σ-algebra

(this integral satisfies (27) with kernels (28), see [21] for a detailed presentation). By analogy

with the proof of the last theorem one can show that for all F ∈ (H−τ)−q ⊗H and f (1) ∈ Hτ

(D̃
∫

∆
F(u)d̂Lu)( f (1)) =

∫

∆
(D̃F(u))( f (1))d̂Lu +

∫

∆
F(u) f (1)(u)du ∈ (H−τ)−q−1,

where
∫

∆
(D̃F(u))( f (1))d̂Lu :=

∫
∆

J(u)d̂Lu, J(·) := (D̃F(·))( f (1)) ∈ (H−τ)−q−1 ⊗H;

∫

∆
F(u) f (1)(u)du :=

∫
F(u) f (1)(u)1∆(u)du ≡ 〈F(·), f (1)(·)1∆(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1

is a partial pairing.

As is easily seen, the results of this subsection hold true (up to obvious modifications) if we

consider the operators of stochastic differentiation on the space (H−τ) or (D′).

Remark. As is known [1], in the classical Gaussian white noise analysis the operator of stochas-

tic differentiation is a differentiation with respect to a so-called Wick product. This result holds

true in the so-called Gamma-analysis [17] and in a more general Meixner analysis. In forth-

coming papers we’ll obtain similar results on spaces of test and generalized functions of the

Lévy white noise analysis.
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2.2 The case of unbounded operators

Similarly to the analysis on spaces of regular test and generalized functions [9, 8], some-

times it can be necessary to consider (D̃n◦)( f (n)), f (n) ∈ H⊗̂n
τ , as a linear operator acting in

(H−τ)−q. Let us accept a corresponding definition.

Definition. Let n ∈ N, f (n) ∈ H⊗̂n
τ . We define the operator of stochastic differentiation

(D̃n◦)( f (n)) : (H−τ)−q → (H−τ)−q (58)

with the domain

dom((D̃n◦)( f (n))) :=
{

F ∈ (H−τ)−q :

‖(D̃nF)( f (n))‖2
−τ,−q =

∞

∑
m=0

2−qm ((m + n)!)2

(m!)2
|〈F

(m+n)
ext , f (n)〉ext|

2

H
(m)
−τ

< ∞
} (59)

(here F
(m+n)
ext ∈ H

(m+n)
−τ are the kernels from decomposition (14) for F) by formula (44).

Proposition. Operator of stochastic differentiation (58) with domain (59) is closed.

Proof. Let us show that there exists a second adjoint to (D̃n◦)( f (n)) operator (D̃n◦)( f (n))∗∗ =

(D̃n◦)( f (n)) (it is well known that an adjoint operator is closed). Since, obviously, the do-

main of operator (58) is a dense set in (H−τ)−q, the adjoint operator (D̃n◦)( f (n))∗ : (Hτ)q →

(Hτ)q is well defined. By definition, g ∈ dom((D̃n◦)( f (n))∗) if and only if (H−τ)−q ⊃

dom((D̃n◦)( f (n))) ∋ F 7→ 〈〈(D̃nF)( f (n)), g〉〉(L2) is a linear continuous functional. By prop-

erties of Hilbert equipments the last is possible if and only if there exists h ∈ (Hτ)q such that

〈〈(D̃nF)( f (n)), g〉〉(L2) = 〈〈F, h〉〉(L2). But by calculation (46) h has form (45), therefore

dom((D̃n◦)( f (n))∗) :=
{

g ∈ (Hτ)q :

‖(D̃nF)( f (n))∗‖2
τ,q =

∞

∑
m=0

((m + n)!)22q(m+n)| f (n)⊗̂g(m)|2τ < ∞
}

(see (11)), this set is dense in (Hτ)q, hence the operator (D̃n◦)( f (n))∗∗ : (H−τ)−q → (H−τ)−q

is well defined. Now it remains to show that

dom((D̃n◦)( f (n))∗∗) = dom((D̃n◦)( f (n))). (60)

By definition, F ∈ dom((D̃n◦)( f (n))∗∗) if and only if (Hτ)q ⊃ dom((D̃n◦)( f (n))∗) ∋ g 7→

〈〈F, (D̃ng)( f (n))∗〉〉(L2) is a linear continuous functional. By properties of Hilbert equipments

the last is possible if and only if there exists H ∈ (H−τ)−q such that 〈〈F, (D̃ng)( f (n))∗〉〉(L2) =

〈〈H, g〉〉(L2). It is clear that H has form (44), therefore equality (60) follows from (59).

Remark. Let

An :=
{

F ∈ (H−τ)−q :
∞

∑
m=0

2−qm ((m + n)!)2

(m!)2
|F

(m+n)
ext |2

H
(m+n)
−τ

< ∞
}

, n ∈ N,

here F
(m+n)
ext ∈ H

(m+n)
−τ are the kernels from decomposition (14) for F. For each f (n) ∈ H⊗̂n

τ we

define the operator of stochastic differentiation

(D̂n◦)( f (n)) : (H−τ)−q → (H−τ)−q (61)
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with the domain An by formula (44) with D̂n instead of D̃n. It follows from the just proved

proposition that this operator is closable (its closure is operator (58)). Moreover, for each F ∈

An the operator (D̂nF)(◦) : H⊗̂n
τ → (H−τ)−q is linear bounded (and, therefore, continuous):

by (44), (15) and (43) for each f (n) ∈ H⊗̂n
τ

‖(D̂nF)( f (n))‖2
−τ,−q =

∞

∑
m=0

2−qm ((m + n)!)2

(m!)2
|〈F

(m+n)
ext , f (n)〉ext|

2

H
(m)
−τ

≤ | f (n)|2τ

∞

∑
m=0

2−qm ((m + n)!)2

(m!)2
|F

(m+n)
ext |2

H
(m+n)
−τ

.

It is clear that the results of Subsection 2.1 hold true (up to obvious modifications) for

operators (58) and (61).
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analysis. Methods Funct. Anal. Topol. 2015, 21 (4), 336–360.

[25] Kachanovsky N.A. Bounded operators of stochastic differentiation on spaces of nonregular generalized functions in
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Качановський М.О. Оператори стохастичного диференцiювання на просторах нерегулярних уза-

гальнених функцiй аналiзу бiлого шуму Левi // Карпатськi матем. публ. — 2016. — Т.8, №1. — C.

83–106.

Оператори стохастичного диференцiювання, якi тiсно пов’язанi з розширеним стохасти-

чним iнтегралом Скорохода та зi стохастичною похiдною Хiди, грають важливу роль у кла-

сичному (гауссiвському) аналiзi бiлого шуму. Зокрема, цi оператори можна використовувати

для вивчення деяких властивостей розширеного стохастичного iнтеграла та розв’язкiв стоха-

стичних рiвнянь з нелiнiйностями вiкiвського типу.

Протягом останнiх рокiв оператори стохастичного диференцiювання були уведенi та ви-

вченi, зокрема, у межах майкснерiвського аналiзу бiлого шуму, так само як i на просторах

регулярних основних i узагальнених функцiй та на просторах нерегулярних основних фун-

кцiй аналiзу бiлого шуму Левi. У цiй статтi ми робимо наступний природний крок: уводимо

та вивчаємо оператори стохастичного диференцiювання на просторах нерегулярних узагаль-

нених функцiй аналiзу бiлого шуму Левi (тобто на просторах узагальнених функцiй, якi на-

лежать так званому нерегулярному оснащенню простору квадратично iнтегровних за мiрою

бiлого шуму Левi функцiй). При цьому використовується литвинiвське узагальнення власти-

востi хаотичного розкладу. Дослiдження цiєї статтi можна розглядати як внесок у подальший

розвиток аналiзу бiлого шуму Левi.

Ключовi слова i фрази: оператор стохастичного диференцiювання, стохастична похiдна,

розширений стохастичний iнтеграл, процес Левi.
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KINASH N.YE.

AN INVERSE PROBLEM FOR A 2D PARABOLIC EQUATION WITH NONLOCAL

OVERDETERMINATION CONDITION

We consider an inverse problem of identifying the time-dependent coefficient a(t) in a two-

dimensional parabolic equation:

ut = a(t)∆u + b1(x, y, t)ux + b2(x, y, t)uy + c(x, y, t)u + f (x, y, t), (x, y, t) ∈ QT,

with the initial condition, Neumann boundary data and the nonlocal overdetermination condition

ν1(t)u(0, y0, t) + ν2(t)u(h, y0, t) = µ3(t), t ∈ [0, T],

where y0 is a fixed number from [0, l].

The conditions of existence and uniqueness of the classical solution to this problem are estab-

lished. For this purpose the Green function method, Schauder fixed point theorem and the theory

of Volterra intergral equations are utilized.

Key words and phrases: inverse problem, determining coefficients, parabolic equation, nonlocal
overdetermination condition, rectangular domain.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine

E-mail: n_kinash@lnu.edu.ua

INTRODUCTION

This paper discusses the problem of identifying an unknown pair of functions

(a(t), u(x, y, t)) for the equation

ut = a(t)∆u + b1(x, y, t)ux + b2(x, y, t)uy + c(x, y, t)u + f (x, y, t),

(x, y, t) ∈ QT := {(x, y, t) : 0 < x < h, 0 < y < l, 0 < t < T}
(1)

with the initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ [0, h]× [0, l], (2)

boundary conditions

ux(0, y, t) = µ11(y, t), ux(h, y, t) = µ12(y, t), (y, t) ∈ [0, l]× [0, T], (3)

uy(x, 0, t) = µ21(x, t), uy(x, l, t) = µ22(x, t), (x, t) ∈ [0, h]× [0, T]. (4)

With the only above data this problem is underdetermined and we are forced to impose an ad-

ditional condition to determine a(t). In particular, we shall take a nonlocal overdetermination

condition, that arises in practical applications [15]:

ν1(t)u(0, y0, t) + ν2(t)u(h, y0 , t) = µ3(t), t ∈ [0, T], (5)

УДК 517.95
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where y0 is a fixed number from [0, l].

In the past few decades a great deal of interest has been directed towards the coefficient

inverse problems. In 1993 Ivanchov M. considered nonlocal inverse problems of determining a

leading time-dependent coefficient in a 1D heat equation [8, 9, 10]. For parabolic equations in

one space variable, Bereznytska I. [1] considered the problem of determining conductivity a(t)

in a general parabolic equation subject to the Neumann boundary data and nonlocal overde-

termination condition. Analogous problem with the Dirichlet boundary data was investigated

in [12]. Later Huzyk N. investigated the problem of identifying time-dependent coefficients

in a degenerate parabolic equation also subjected to Neumann boundary data and nonlocal

overdetermination condition [5], [6]. All these papers are united by the approach utilized to

proof the existence of solution: the inverse problem is reformulated as a fixed point problem

for a certain nonlinear map, so that the Schauder theorem can be applied to it.

The other approaches to this problem addressing the question of existence and uniqueness

are the Fourier method utilized by Ismailov M.I., Kanca F. [11], Oussaeif T.-E., Bouziani A. [16]

and the theory of reproducing kernels used by Mohammadi M., Mokhtari R. and Isfahani F.T.

[14].

The numerical results to nonlocal inverse problems have been obtained in works of Les-

nic D. et al [13] with the help of Ritz-Galerkin method. A numerical marching scheme based on

the discrete mollification for the recovery of the diffusivity coefficient in the two-dimensional

inverse heat conduction problem has been presented by Coles C., Murio D.A. [2, 3].

Since the satisfactory results to the nonlocal coefficient inverse problems were successfully

obtained in one-dimensional case, this paper represents an attempt to extend these results to

multidimensional case, which is more interesting for its applications.

1 NOTATIONS AND ASSUMPTIONS

Let Gk(x, t, ξ, τ) be the Green function of a 1D problem for the equation ut = a(t)uxx with

a Dirichlet boundary condition, when k = 1, Neumann bondary condition, when k = 2. These

functions are defined by the equality

Gk(x, t, ξ, τ) =
1

2
√

π(θ(t) − θ(τ))

+∞

∑
n=−∞

(
exp

(
−
(x − ξ + 2nh)2

4(θ(t) − θ(τ))

)

+(−1)k exp

(
−
(x + ξ + 2nh)2

4(θ(t)− θ(τ))

))
, k = 1, 2, θ(t) =

t∫

0

a(τ)dτ.

(6)

At the same time we define the function Gm(y, t, η, τ) analogously to Gk(x, t, ξ, τ).

Now, let us introduce the 2D heat equation

ut = a(t)∆u + f (x, y, t), (x, y, t) ∈ QT. (7)

Green functions for (7) are determined as follows

Gkm(x, y, t, ξ, η, τ) = Gk(x, t, ξ, τ)Gm(y, t, η, τ), k, m = 1, 2. (8)

The Green function of the problem (7), (2)-(4) is defined by (8), when k = m = 2.
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For α ∈ (0, 1) we denote

Cα,0(QT) :={ f ∈ C(QT)| | f (x2 , y2, t)− f (x1, y1, t)| 6 C(|x2 − x1|
α + |y2 − y1|

α),

(xi, yi, t) ∈ QT, i = 1, 2}.

Throughout this paper, we assume that:

(A1) f ∈ Cα,0(QT), b1, b2, c ∈ C1,0(QT), ϕ ∈ C2([0, h]× [0, l]), µ3, ν1, ν2 ∈ C1([0, T]),

µ11, µ12 ∈ C2,1([0, l]× [0, T]), µ21, µ22 ∈ C2,1([0, h]× [0, T]);

(A2) µ′
3(t)− ν1(t)b1(0, y0, t)µ11(y0, t)− ν2(t)b1(h, y0, t)µ12(y0, t)− ν1(t) f (0, y0 , t)− ν2(t)

× f (h, y0 , t) > 0, ν′1(t) + ν1(t)c(0, y0, t) 6 0, ν′2(t) + ν2(t)c(h, y0, t) 6 0,

νk(t) > 0, k = 1, 2, b2(0, y0, t) 6 0, b2(h, y0, t) 6 0, t ∈ [0, T], ϕ(x, y) > 0,

ϕy(x, y) > 0, (x, y) ∈ [0, h]× [0, l], µ21(x, t) > 0, µ22(x, t) > 0, (x, t) ∈ [0, h]× [0, T];

(A3) ν1(t) + ν2(t) > 0, t ∈ [0, T], ∆ϕ(x, y) > 0, (x, y) ∈ [0, h]× [0, l];

(A4) ϕx(0, y) = µ11(y, 0), ϕx(h, y) = µ12(y, 0), y ∈ [0, l], ϕy(x, 0) = µ21(x, 0), ϕy(x, h)

= µ22(x, 0), x ∈ [0, h], ν1(0)ϕ(0, y0) + ν2(0)ϕ(h, y0) = µ3(0).

2 EXISTENCE OF A SOLUTION

Theorem 1. Provided that (A1)–(A4) hold, the problem (1)–(5) has at least one solution (a, u) ∈
C([0, t∗])× C2,1(Qt∗), a(t) > 0, t ∈ [0, t∗], where t∗ ∈ (0, T] is determined from the input data.

Proof. To proof the existence of the solution to (1)-(5) we are first going to reduce it to an

equivalent in a certain sense operator equation with respect to a and afterwards to proof the

existence of the operator equation solution by the Schauder fixed point theorem.

In order to obtain an equation with respect to a(t), (1) is applied to the overdetermination

condition (5) previously differentiated:

a(t) = [µ′
3(t)− ν1(t)b1(0, y0, t)µ11(y0, t)− ν2(t)b1(h, y0, t)µ12(y0, t)− ν1(t)

× f (0, y0 , t)− ν2(t) f (h, y0 , t)− (ν′1(t) + ν1(t)c(0, y0, t))u(0, y0, t)− (ν′2(t)

+ ν2(t)c(h, y0, t))u(h, y0, t)− ν1(t)b2(0, y0, t)uy(0, y0, t)− ν2(t)b2(h, y0, t)

× uy(h, y0, t)][ν1(t)∆u(0, y0, t) + ν2(t)∆u(h, y0, t)]−1, t ∈ [0, T].

To continue the investigation of the equation (9), it is necessary to get some representation of

the terms u(0, y0, t), u(h, y0, t), uy(0, y0, t), uy(h, y0, t), ∆u(0, y0, t), ∆u(h, y0, t).

The solution to the problem (7), (2)–(4) is denoted as u0(x, y, t) under the temporary as-

sumption that a ∈ C([0, T]), a(t) > 0, t ∈ [0, T] is a known function. Therefore, taking advan-
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tage of (8) we represent u0 as the solution to (7), (2)–(4)

u0(x, y, t)=

l∫

0

h∫

0

G22(x, y, t, ξ, η, 0)ϕ(ξ, η)dξdη −

t∫

0

h∫

0

G22(x, y, t, ξ, 0, τ)a(τ)

× µ21(ξ, τ)dξdτ +

t∫

0

h∫

0

G22(x, y, t, ξ, l, τ)a(τ)µ22(ξ, τ)dξdτ

−

t∫

0

l∫

0

G22(x, y, t, 0, η, τ)a(τ)µ11(η, τ)dηdτ +

t∫

0

l∫

0

G22(x, y, t, h, η, τ)a(τ)

× µ12(η, τ)dηdτ +

t∫

0

l∫

0

h∫

0

G22(x, y, t, ξ, η, τ) f (ξ, η, τ)dξdηdτ, (x, y, t) ∈ QT.

(9)

Denote by

v(x, y, t) := (b1ux + b2uy + cu)(x, y, t),

w1(x, y, t) := vx(x, y, t) = (b1uxx + b2uxy + b2xuy + (b1x + c)ux + cxu)(x, y, t),

w2(x, y, t) := vy(x, y, t) = (b1uxy + b2uyy + (b2y + c)uy + b1yux + cyu)(x, y, t),

(x, y, t) ∈ QT.

(10)

Problem (1)-(4) is reduced to the equation

u(x, y, t) = u0(x, y, t) +

t∫

0

l∫

0

h∫

0

G22(x, y, t, ξ, η, τ)v(ξ, η, τ)dξdηdτ, (x, y, t) ∈ QT. (11)

Thus, from (11) we obtain

v(x, y, t) = (b1u0x + b2u0y + cu0)(x, y, t) +

t∫

0

l∫

0

h∫

0

(b1(x, y, t)G22x(x, y, t, ξ, η, τ)

+ b2(x, y, t)G22y(x, y, t, ξ, η, τ) + c(x, y, t)G22(x, y, t, ξ, η, τ))v(ξ, η, τ)dξdηdτ,

(x, y, t) ∈ QT.

(12)

By differentiating (12) with respect to x, applying the Green function properties and inte-

gration by parts we obtain the equation

w1(x, y, t) = (b1u0xx + b2u0xy + b2xu0y + (b1x + c)u0x + cxu0)(x, y, t)

+

t∫

0

l∫

0

h∫

0

(b1x(x, y, t)G22x(x, y, t, ξ, η, τ) + b2x(x, y, t)G22y(x, y, t, ξ, η, τ)

+ cx(x, y, t)G22(x, y, t, ξ, η, τ))v(ξ, η, τ)dξdηdτ +

t∫

0

l∫

0

h∫

0

(b1(x, y, t)

× G12x(x, y, t, ξ, η, τ) + b2(x, y, t)G12y(x, y, t, ξ, η, τ) + c(x, y, t)

× G12(x, y, t, ξ, η, τ))w1(ξ, η, τ)dξdηdτ, (x, y, t) ∈ QT.

(13)
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Analogously to (13), by differentiating (12) with respect to y, we obtain

w2(x, y, t) = (b1u0xy + b2u0yy + (b2y + c)u0y + b1yu0x + cyu0)(x, y, t)

+

t∫

0

l∫

0

h∫

0

(b1y(x, y, t)G22x(x, y, t, ξ, η, τ) + b2y(x, y, t)G22y(x, y, t, ξ, η, τ)

+ cy(x, y, t)G22(x, y, t, ξ, η, τ))v(ξ, η, τ)dξdηdτ +

t∫

0

l∫

0

h∫

0

(b1(x, y, t)

× G21x(x, y, t, ξ, η, τ) + b2(x, y, t)G21y(x, y, t, ξ, η, τ) + c(x, y, t)

× G21(x, y, t, ξ, η, τ))w2(ξ, η, τ)dξdηdτ, (x, y, t) ∈ QT.

(14)

We find from (11)

uy(x, y, t) = u0y(x, y, t) +

t∫

0

l∫

0

h∫

0

G22y(x, y, t, ξ, η, τ)v(ξ, η, τ)dξdηdτ, (15)

∆u(x, y, t) = ∆u0(x, y, t) +

t∫

0

l∫

0

h∫

0

G12x(x, y, t, ξ, η, τ)w1(ξ, η, τ)dξdηdτ

+

t∫

0

l∫

0

h∫

0

G21y(x, y, t, ξ, η, τ)w2(ξ, η, τ)dξdηdτ, (x, y, t) ∈ QT,

(16)

where u0y, ∆u0 are calculated from (9):

u0y(x, y, t)=

l∫

0

h∫

0

G21(x, y, t, ξ, η, 0)ϕη(ξ, η)dξdη +

t∫

0

h∫

0

G21η(x, y, t, ξ, 0, τ)a(τ)

× µ21(ξ, τ)dξdτ −

t∫

0

h∫

0

G21η(x, y, t, ξ, l, τ)a(τ)µ22(ξ, τ)dξdτ

−

t∫

0

l∫

0

G21(x, y, t, 0, η, τ)a(τ)µ11η (η, τ)dηdτ +

t∫

0

l∫

0

G21(x, y, t, h, η, τ)a(τ)

× µ12η(η, τ)dηdτ +

t∫

0

l∫

0

h∫

0

G22y(x, y, t, ξ, η, τ) f (ξ, η, τ)dξdηdτ,

(17)
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∆u0(x, y, t)=

l∫

0

h∫

0

G22(x, y, t, ξ, η, 0)∆ϕ(ξ, η)dξdη −

t∫

0

h∫

0

G22(x, y, t, ξ, 0, τ)

× µ21τ(ξ, τ)dξdτ +

t∫

0

h∫

0

G22(x, y, t, ξ, l, τ)µ22τ(ξ, τ)dξdτ

−

t∫

0

l∫

0

G22(x, y, t, 0, η, τ)µ11τ(η, τ)dηdτ +

t∫

0

l∫

0

G22(x, y, t, h, η, τ)

× µ12τ(η, τ)dηdτ +

t∫

0

dτ

l∫

0

h∫

0

∆G22(x, y, t, ξ, η, τ) f (ξ, η, τ)dξdη, (x, y, t) ∈ QT.

(18)

By substituting (11), (16), (15) into (9) we obtain:

a(t) =
Q1(a, v)(t)

Q2(a, w1, w2)(t)
, (19)

where

Q1(a, v)(t) = µ′
3(t)− ν1(t)b1(0, y0, t)µ11(y0, t)− ν2(t)b1(h, y0, t)µ12(y0, t)− ν1(t)

× f (0, y0, t)− ν2(t) f (h, y0 , t)− (ν′1(t) + ν1(t)c(0, y0, t))u0(0, y0, t)− (ν′2(t)

+ ν2(t)c(h, y0, t))u0(h, y0, t)− ν1(t)b2(0, y0, t)u0y(0, y0, t)− ν2(t)b2(h, y0, t)

× u0y(h, y0, t) +

t∫

0

l∫

0

h∫

0

v(ξ, η, τ)(−(ν′1(t) + ν1(t)c(0, y0, t))G22(0, y0, t, ξ, η, τ)

− (ν′2(t) + ν2(t)c(h, y0, t))G22(h, y0, t, ξ, η, τ)− ν1(t)b2(0, y0, t)

× G22y(0, y0, t, ξ, η, τ)− ν2(t)b2(h, y0, t)G22y(h, y0, t, ξ, η, τ))dξdηdτ,

(20)

Q2(a, w1, w2)(t) = ν1(t)∆u0(0, y0, t) + ν2(t)∆u0(h, y0, t)

+

t∫

0

l∫

0

h∫

0

(ν1(t)G12x(0, y0, t, ξ, η, τ) + ν2(t)G12x(h, y0, t, ξ, η, τ))w1(ξ, η, τ)dξdηdτ

+

t∫

0

l∫

0

h∫

0

(ν1(t)G21y(0, y0, t, ξ, η, τ) + ν2(t)G21y(h, y0, t, ξ, η, τ))w2(ξ, η, τ)dξdηdτ,

(21)

where v, w1, w2 are solutions to the system of integral equations (12)–(14).

Denote

• N := {a ∈ C([0, t∗]) : A0 6 a(t) 6 A1}, where the constants A0, A1 ∈ R+, t∗ ∈ (0, T]

are to be established below;

• P̂ : N ×
(
C(QT)

)3
→ N , such that P̂(a, v, w1, w2) =

Q1(a, v)

Q2(a, w1, w2)
;

• P̃ : N →
(
C(QT)

)3
an operator that maps each element a ∈ N into the solution of the

system of integral equations (12)–(14).
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Since the functions v, w1, w2 in (19) are now defined by P̃, the equation (19) can be rewritten

as the following operator equation:

a = Pa, where Pa := P̂(a, P̃(a)), a ∈ N . (22)

The problem (1)–(5) is equivalent to the equation (22) in the following sense: if (a, u) is a

solution to problem (1)–(5), then a is a solution of (22) and, on the other hand, if a ∈ C([0, T])

is a solution of (22), then (a, u) is a solution to the problem (1)–(5), where u is determined by

the equations (11).

From the way the equation (22) has been obtained it follows, that if (a, u) is the solution to

(1)–(5), then a satisfies (22).

Reciprocally, for any a ∈ N functions u, v are uniquely determined from (11), (12) and such

a system of integral equations is equivalent to the direct problem (1)–(4). Thus, it is left to be

shown that (5) follows from (22). By implementing all the substitutions in the reverse order we

move from (22) to (9). After (9) is multiplied by its denominator and integrated with respect to

time, regarding (A4), the overdetermination condition (5) is obtained.

Consequently, the existence of solution to (1)—(5) is equivalent to the existence of solution

to the operator equation (22).

In order to apply the Schauder fixed point theorem we show that P is compact and that it

maps N into itself.

Since for each a ∈ N u0x, u0y, u0xx, u0xy, u0yy are continuous functions according to (A1),

it follows from the properties of the systems of Volterra integral equations that P̃ is a bounded

operator. The compactness of the operator P̂ follows from [7]. Therefore P is compact as the

composition of bounded operator P̃ and compact operator P̂ .

Thus, the next goal is to establish A0, A1 ∈ R+, such that A0 6 (Pa)(t) 6 A1,

t ∈ [0, t∗], a ∈ N .

From the explicit representation of u0 and its derivative u0y (9), (17), the Green function

properties and (A2) it follows that

lim
t→0

u0(x, y, t)= ϕ(x, y),

lim
t→0

u0y(x, y, t)= lim
t→0

( l∫

0

G1(y, t, η, 0)ϕη(x, η)dη +

t∫

0

G1η(y, t, 0, τ)a(τ)µ21(x, τ)dτ

−

t∫

0

G1η(y, t, l, τ)a(τ)µ22(x, τ)dτ
)

.

Then for any (x, y) ∈ [0, h]× [0, l]

0 6 min
[0,h]×[0,l]

ϕ(x, y) 6 lim
t→0

u0(x, y, t) 6 max
[0,h]×[0,l]

ϕ(x, y),

0 6 min{ min
[0,h]×[0,l]

ϕy(x, y), min
[0,h]×[0,T]

µ21(x, t), min
[0,h]×[0,T]

µ22(x, t)} 6 lim
t→0

u0y(x, y, t)

6 max{ max
[0,h]×[0,l]

ϕy(x, y), max
[0,h]×[0,T]

µ21(x, t), max
[0,h]×[0,T]

µ22(x, t)}.

The last term in (20) vanishes, when t → 0, according to the properties of Newtonian poten-

tials.
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Therefore, thanks to (A2) there are such constants m1, M1 that

0 < m1 6 lim
t→0

Q1(t) 6 M1.

Namely,

m1 := min
[0,T]

(µ′
3(t)− ν1(t)b1(0, y0, t)µ11(y0, t)− ν2(t)b1(h, y0, t)µ12(y0, t)− ν1(t)

× f (0, y0, t)− ν2(t) f (h, y0 , t)),
(23)

M1 := max
[0,T]

(µ′
3(t)− ν1(t)b1(0, y0, t)µ11(y0, t)− ν2(t)b1(h, y0, t)µ12(y0, t)− ν1(t)

× f (0, y0, t)− ν2(t) f (h, y0 , t)) + max
[0,T]

(−(ν′1(t) + ν1(t)c(0, y0, t))− (ν′2(t) + ν2(t)

× c(h, y0, t))) max
[0,h]×[0,l]

ϕ(x, y) + max
[0,T]

(−ν1(t)b2(0, y0, t)− ν2(t)b2(h, y0, t))

× max{ max
[0,h]×[0,l]

ϕy(x, y), max
[0,h]×[0,T]

µ21(x, t), max
[0,h]×[0,T]

µ22(x, t)}.

(24)

Thus from the definition of limit it derives that for ε = 1
2 m1 there is such a value t1 ∈ (0, T],

that

1

2
m1 6 Q1(t) 6 M1 +

1

2
m1, t ∈ [0, t1]. (25)

Similarly, from the explicit representation (18) of ∆u0

lim
t→0

∆u0(x, y, t)= ∆ϕ(x, y).

Denote

m2 := min
[0,T]

(ν1(t) + ν2(t)) min
[0,h]×[0,l]

∆ϕ(x, y), (26)

M2 := max
[0,T]

(ν1(t) + ν2(t)) max
[0,h]×[0,l]

∆ϕ(x, y). (27)

Then 0 < m2 6 lim
t→0

Q2(t) 6 M2. Analogously, there is such a value t2 ∈ (0, T], that

1

2
m2 6 Q2(t) 6 M2 +

1

2
m2, t ∈ [0, t2]. (28)

Define

A0 :=
1
2 m1

M2 +
1
2 m2

, A1 :=
M1 +

1
2 m1

1
2 m2

, t∗ := min{t1, t2}.

and make sure that: if a ∈ N , then A0 6 (Pa)(t) 6 A1, t ∈ [0, t∗].

From the Schauder fixed point theorem follows the existence of the solution to (22), and,

hence, for the problem (1)–(5).
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3 UNIQUENESS OF A SOLUTION

Theorem 2. Under the condition (A2) the problem (1)–(5) cannot have more than one solution

(a, u) in the space C([0, t1]) × C2,1(Qt1
), such that ∆u ∈ Cα,0(Qt1

) and a(t) > 0, t ∈ [0, t1],

where t1 ∈ (0, T] is determined from the input data.

Proof. Suppose that there exist two solutions (a1(t), u1(x, y, t)) and (a2(t), u2(x, y, t)) of the

problem (1)–(5). Denote

a3(t) := a1(t)− a2(t), t ∈ [0, T], (29)

u3(x, y, t) := u1(x, y, t)− u2(x, y, t), (x, y, t) ∈ QT. (30)

Then (a3(t), u3(x, y, t)) is solution of the problem

u3t = a1(t)∆u3 + b1(x, y, t)u3x + b2(x, y, t)u3y + c(x, y, t)u3 + a3(t)∆u2, (x, y, t) ∈ QT, (31)

u3(x, y, 0) = 0, (x, y) ∈ [0, h]× [0, l], (32)

u3x(0, y, t) = 0, u3x(h, y, t) = 0, (y, t) ∈ [0, l]× [0, T], (33)

u3y(x, 0, t) = 0, u3y(x, l, t) = 0, (x, t) ∈ [0, h]× [0, T], (34)

ν1(t)u3(0, y0, t) + ν2(t)u3(h, y0, t) = 0, t ∈ [0, T]. (35)

By calculating the derivative of (35) and applying (31) to it, we obtain for t ∈ [0, T]

(ν1(t)∆u2(0, y0, t) + ν2(t)∆u2(h, y0, t))a3(t) = −(ν′1(t) + ν1(t)c(0, y0, t))

× u3(0, y0, t)− (ν′2(t) + ν2(t)c(h, y0 , t))u3(h, y0, t)− ν1(t)b2(0, y0, t)u3y(0, y0, t)

− ν2(t)b2(h, y0, t)u3y(h, y0, t)− ν1(t)a1(t)∆u3(0, y0, t)− ν2(t)a1(t)∆u3(h, y0, t).

(36)

Denote by Ĝ22(x, y, t, ξ, η, τ) a Green function of the problem (31)–(34). Since a1(t) is a known

function, the solution to the problem (31)–(34) is unique and can be calculated by the formula:

u3(x, y, t) =

t∫

0

l∫

0

h∫

0

Ĝ22(x, y, t, ξ, η, τ)a3(τ)∆u2(ξ, η, τ)dξdηdτ. (37)

By differentiating (37) with respect to y and applying to (37) the Laplacian , we obtain

u3y(x, y, t) =

t∫

0

l∫

0

h∫

0

Ĝ22y(x, y, t, ξ, η, τ)a3(τ)∆u2(ξ, η, τ)dξdηdτ, (38)

∆u3(x, y, t) =

t∫

0

dτ

l∫

0

h∫

0

∆Ĝ22(x, y, t, ξ, η, τ)a3(τ)∆u2(ξ, η, τ)dξdη. (39)

Therefore, by applying (37)–(39) to (36), we obtain an equation with respect to a3(t)

a3(t) =
−1

ν1(t)∆u2(0, y0, t) + ν2(t)∆u2(h, y0, t)

t∫

0

dτ

l∫

0

h∫

0

(
(ν′1(t) + ν1(t)c(0, y0, t))

× Ĝ22(0, y0, t, ξ, η, τ) + (ν′2(t) + ν2(t)c(h, y0, t))Ĝ22(h, y0, t, ξ, η, τ)

+ ν1(t)b2(0, y0, t)Ĝ22y(0, y0, t, ξ, η, τ) + ν2(t)b2(h, y0, t)Ĝ22y(h, y0, t, ξ, η, τ)

+ ν1(t)a1(t)∆Ĝ22(0, y0, t, ξ, η, τ) + ν2(t)a1(t)∆Ĝ22(h, y0, t, ξ, η, τ)

)

× a3(τ)∆u2(ξ, η, τ)dξdη.

(40)
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It is still necessary to ensure that for

ν1(t)∆u2(0, y0, t) + ν2(t)∆u2(h, y0, t) > 0. (41)

Since (a2, u2) is a solution of (1)–(5) it follows from (9) that t ∈ [0, T]

ν1(t)∆u2(0, y0, t) + ν2(t)∆u2(h, y0, t) =
1

a2(t)
(µ′

3(t)− ν1(t) f (0, y0 , t)− ν2(t)

× f (h, y0 , t)− (ν′1(t) + ν1(t)c(0, y0, t))u2(0, y0, t)− (ν′2(t) + ν2(t)c(h, y0, t))

× u2(h, y0, t)− ν1(t)b2(0, y0, t)u2y(0, y0, t)− ν2(t)b2(h, y0, t)u2y(h, y0, t)).

(42)

Thus, it follows from (42), (20) and (25), ensured by (A2), that

ν1(t)∆u2(0, y0, t) + ν2(t)∆u2(h, y0, t) >
m1

2a2(t)
> 0, t ∈ [0, t1]. (43)

Hence, (40) is a homogeneous Volterra integral equation of the second kind on [0, t1]. Since

∆u2 ∈ Cα,0(Qt1
), according to [4] the kernel of (40) is integrable. Therefore, (40) has a unique

solution a3(t) = 0, t ∈ [0, t1], and from the equality (37) it follows that u3(x, y, t) = 0,

(x, y, t) ∈ Qt1
. The proof of the theorem is complete.
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Кiнаш Н.Є. Обернена задача для двовимiрного параболiчного рiвняння iз нелокальними умовами пе-

ревизначення // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 107–117.

Розглядаємо обернену задачу визначення залежного вiд часу коефiцiєнта a(t) у двовимiр-

ному параболiчному рiвняннi:

ut = a(t)∆u + b1(x, y, t)ux + b2(x, y, t)uy + c(x, y, t)u + f (x, y, t), (x, y, t) ∈ QT,

iз початковою умовою, крайовими умовами Неймана та нелокальною умовою перевизначення

ν1(t)u(0, y0, t) + ν2(t)u(h, y0, t) = µ3(t), t ∈ [0, T],

де y0 фiксоване значення iз [0, l].

Встановлено умови iснування та єдиностi класичного розв’язку задачi. З цiєю метою засто-

совано метод функцiї Грiна, теорему Шаудера про нерухому точку та теорiю iнтегральних

рiвнянь Вольтерра.

Ключовi слова i фрази: обернена задача, визначення коефiцiєнтiв, параболiчне рiвняння,

нелокальна умова перевизначення, прямокутна область.
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INVERSE CAUCHY PROBLEM FOR FRACTIONAL TELEGRAPH EQUATION WITH

DISTRIBUTIONS

The inverse Cauchy problem for the fractional telegraph equation

u
(α)
t − r(t)u

(β)
t + a2(−∆)γ/2u = F0(x)g(t), (x, t) ∈ Rn × (0, T],

with given distributions in the right-hand sides of the equation and initial conditions is studied.

Our task is to determinate a pair of functions: a generalized solution u (continuous in time variable

in general sense) and unknown continuous minor coefficient r(t). The unique solvability of the

problem is established.

Key words and phrases: generalized function, fractional derivative, inverse problem, Green vector-
function.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine

E-mail: lhp@ukr.net (Lopushanska H.), vrapita@gmail.com (Rapita V.)

INTRODUCTION

The existence and uniqueness theorems were proved, and the representation (in terms of

the Green function) of classical solution of a time- and a time-space-fractional Cauchy problem

was obtained, for example, in [1, 3–5, 14]. The unique solvability of a time-space-fractional

Cauchy problem in spaces of distributions was proved in [8, 10].

Inverse problems for such equations arise in many branches of science and engineering.

The inverse boundary value problems for determination of a leading coefficient, or a part

of the right-hand side, or an order of a diffusion-wave equation, or an unknown boundary

condition, were studied, for example, in [2, 6, 11, 12, 15].

In the present paper we prove the existence and uniqueness of a solution (u, r) of the inverse

Cauchy problem

u
(α)
t − r(t)u

(β)
t + a2(−∆)γ/2u = F0(x)g(t), (x, t) ∈ Rn × (0, T], (1)

u(x, 0) = F1(x), ut(x, 0) = F2(x), x ∈ Rn, (2)(
u(·, t), ϕ0(·)

)
= F(t), t ∈ (0, T] (3)

with the Riemann-Liouville fractional derivatives u
(α)
t , u

(β)
t , where F0, F1, F2 are given distribu-

tions, F, g, ϕ0 are given smooth functions, the symbol ( f , ϕ) stands for the value of the distri-

bution f on the test function ϕ, a2 is a positive constant, (−∆)γ/2u is defined with the use of

the Fourier transform as follows

F[(−∆)γ/2u] = |λ|γF[u],

and the following assumption holds:

(L) α ∈ (1, 2), β ∈ (0, 1), γ > α, min{n, 2, γ} > (n − 1)/2.

УДК 517.95
2010 Mathematics Subject Classification: 35S15.
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1 NOTATIONS AND AUXILIARY RESULTS

Denote the set of natural numbers by symbol N. Let Z+ := N ∪ {0}, Q := Rn × (0, T],

n ∈ N. Let E(Rn) := C∞(Rn) and D(Rn) be the space of infinitely differentiable functions com-

pactly supported in Rn. D(Q̄) is the space of infinitely differentiable functions having compact

supports with respect to space variables and such that ( ∂
∂t )

kv|t=T = 0, k ∈ Z+, Dk(Rn) is the

space of functions from Ck(Rn) having compact supports, ‖ϕ‖Dk(Rn) := max
|κ|≤k

max
x∈suppϕ

|Dκ ϕ(x)|,

where κ = (κ1, . . . , κn), κj ∈ Z+, j ∈ {1, . . . , n}, |κ| = κ1 + · · · + κn, Dκ ϕ(x) := ∂|κ|ϕ(x)

∂x
κ1
1 ...∂xκn

n
,

while D′(Rn), E ′(Rn) and D′(Q̄) are spaces of linear continuous functionals (distributions)

over D(Rn), E(Rn) and D(Q̄), respectively. Note that E ′(Rn) is the space of generalized func-

tions with compact supports. Let

D′
+(R) := { f ∈ D′(R) : f = 0, ∀t < 0},

D′
C(Q) = {v ∈ D′(Q̄) : (v(·, t), ϕ(·)) ∈ C(0, T] for all ϕ ∈ D(Rn)}.

We denote by f∗g the convolution of the generalized functions f and g, and use the function

fλ(t) =





θ(t)tλ−1

Γ(λ)
, λ > 0,

f ′1+λ(t), λ ≤ 0,

where Γ(z) is the gamma-function, θ(t) is the Heaviside function. Note that fλ ∗ fµ = fλ+µ.

Recall that the Riemann-Liouville derivative of order β > 0 is defined as

v
(β)
t (x, t) = f−β(t) ∗ v(x, t),

and the Caputo fractional derivative is defined in [3] by

D
β
t v(x, t) =

1

Γ(1 − β)

[ ∂

∂t

t∫

0

v(x, τ)

(t − τ)β
dτ −

v(x, 0)

tβ

]
, β ∈ (0, 1),

D
β
t v(x, t) =

1

Γ(2 − β)

[ ∂

∂t

t∫

0

vτ(x, τ)

(t − τ)β−1
dτ −

vt(x, 0)

(t − τ)β−1

]
, β ∈ (1, 2).

Denote by

Cα,γ(Q) := {v ∈ C(Q) : (−∆)γ/2v, Dα
t v ∈ C(Q)},

Cα,γ(Q̄) := {v ∈ Cα,γ(Q) | v, vt ∈ C(Q̄)},

(Lv)(x, t) := v
(α)
t (x, t) + a2(−∆)γ/2v(x, t),

(Lregv)(x, t) := Dα
t v(x, t) + a2(−∆)γ/2v(x, t),

(L̂v)(x, t) := f−α(t)∗̂v(x, t) + a2(−∆)γ/2v(x, t), (x, t) ∈ Q,

where f−α(t)∗̂v(x, t) =
(

f−α(τ), v(x, t + τ)
)
, v ∈ D(Q̄). The Green formula holds [8]:

∫

Q

v(y, τ)(L̂ψ)(y, τ)dydτ =
∫

Q

(Lregv)(y, τ)ψ(y, τ)dydτ

−
∫

Rn

v(y, 0)dy

T∫

0

f2−α(τ)ψτ(y, τ)dτ +
∫

Rn

vt(y, 0)dy

T∫

0

f2−α(τ)ψ(y, τ)dτ,
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for all v ∈ Cα,γ(Q̄), ψ ∈ D(Q̄).

Assumptions:

(A1) F0, F1, F2 ∈ E ′(Rn), tεg(t) is a continuous function on [0, T] for some ε ∈ (0, α/2);

(A2) F, F(β) ∈ C(0, T], inf
t∈(0,T]

|F(β)(t)| = f = const > 0, tεF(α)(t) is a continuous function on

[0, T] for some ε ∈ (0, α/2), ϕ0 ∈ D(Rn).

Definition 1. A pair of functions (u, r) ∈ D′
C(Q)× C(0, T] satisfying the identity

(u, L̂ψ) =

T∫

0

g(t)
(

F0(·), ψ(·, t)
)

dt +

T∫

0

r(t)
(
u
(β)
t (·, t), ψ(·, t)

)
dt +

2

∑
j=1

(
Fj(x) fj−α(t), ψ(x, t)

)
(4)

for all ψ ∈ D(Q̄) and the condition (3) is called a solution of the problem (1)–(3).

We use the Green function method to prove the solvability of this problem.

Definition 2. A vector-function
(
G0(x, t), G1(x, t), G2(x, t)

)
such that under rather regular g0,

g1, g2 the function

u(x, t) =

t∫

0

dτ
∫

Rn

G0(x − y, t − τ)g0(y, τ)dy +
2

∑
j=1

∫

Rn

Gj(x − y, t)gj(y)dy, (x, t) ∈ Q̄ (5)

is a classical (from Cα,γ(Q̄)) solution of the Cauchy problem

Lregu(x, t) = g0(x, t), (x, t) ∈ Q,

u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ Rn,

is called a Green vector-function of this problem.

Denote by

(Ĝ0 ϕ)(y, τ) :=

T∫

τ

∫

Rn

G0(x − y, t − τ)ϕ(x, t)dxdt,

(Ĝj ϕ)(y) :=

T∫

0

∫

Rn

Gj(x − y, t)ϕ(x, t)dxdt, j = 1, 2.

Lemma 1 ([8]). The following relations hold:

Gj(x, t) =
(

fj−α(τ), G0(x, t − τ)
)
, (x, t) ∈ Q, j = 1, 2, (6)

(Ĝ0(L̂ψ))(y, τ) = ψ(y, τ), (y, τ) ∈ Q̄,

(Ĝj(L̂ψ))(y) =
(

fj−α(τ), ψ(y, τ)
)
, y ∈ Rn, j = 1, 2, for all ψ ∈ D(Q̄).

(7)

Lemma 2 ([1, 4]). The Green vector-function of the Cauchy problem (1), (2) exists.

We also use the notations

(Ĝj ϕ)(y, t) :=
∫

Rn

Gj(x − y, t)ϕ(x) dx, j = 0, 1, 2.
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Lemma 3. For all k ∈ Z+, multi-index κ, |κ| = k, ϕ ∈ D(Rn) we have

Dκ
y(Ĝj ϕ) ∈ C(Q), j = 0, 1, 2,

and for all ε ∈ (0, 1) the following estimates hold:

∣∣Dκ
y(Ĝ0 ϕ)(y, t)

∣∣ ≤ cktα−ε−1‖ϕ‖Dk(Rn),∣∣Dκ
y(Ĝ1 ϕ)(y, t)

∣∣ ≤ ck(1 + | ln t|)‖ϕ‖Dk(Rn),∣∣Dκ
y(Ĝ2 ϕ)(y, t)

∣∣ ≤ ck‖ϕ‖Dk(Rn), (y, t) ∈ Q.

Hereinafter bi, ci, i ∈ Z+, are positive constants.

Proof. Lemma can be proved with the use of the estimates of the Green vector-function compo-

nents, which were obtained in [8] by using the properties of the H-functions of Fox [7, 13].

Theorem 1. Assume that (L), (A1) hold. Then there exists a unique solution u ∈ D′
C(Q) of the

problem (1), (2) with r(t) = 0, t ∈ [0, T]. It is defined by

(
u(·, t), ϕ(·)

)
= hϕ(t) for all ϕ ∈ D(Rn), t ∈ (0, T], (8)

where

hϕ(t) =
2

∑
j=1

(
Fj(·), (Ĝj ϕ)(·, t)

)
+

t∫

0

g(τ)
(

F0(·), (Ĝ0 ϕ)(·, t − τ)
)

dτ, t ∈ (0, T].

Proof. A distribution from E ′(Rn) has a finite order of the singularity. So, there exist k0, k1, k2 ∈

Z+ and the functions g0κ , g1κ , g2κ ∈ L1(R
n) such that

(
Fj, ϕ

)
= ∑

|κ|≤k j

∫

Rn

gjκ(y)Dκ ϕ(y)dy for all ϕ ∈ D(Rn), j = 0, 1, 2. (9)

It means that s(Fj) ≤ kj, j = 0, 1, 2.

Using (9) and Lemma 3, similarly to [9], we show that the function (8) belongs to D′
C(Q),

and using (7), show that it satisfies the equality (4) with r(t) = 0, t ∈ [0, T]. The uniqueness of

a solution can be proved as in [9].

2 THE EXISTENCE AND UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM

As we know from the Theorem 1, under assumptions (L), (A1) the solution u ∈ D′
C(Q) of

the Cauchy problem (1), (2) satisfies the equation

(
u(·, t), ϕ(·)

)
= hϕ(t) +

t∫

0

r(τ)
(

u
(β)
t (·, t), (Ĝ0 ϕ)(·, t − τ)

)
dτ, ϕ ∈ D(Rn), t ∈ (0, T], (10)

and hϕ ∈ C(0, T] for all ϕ ∈ D(Rn). Conversely, any solution u ∈ D′
C(Q) of (10) is the solution

of the problem (1), (2).
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From the equation (1) we obtain

(
u
(α)
t (·, t), ϕ0(·)

)
= a2

(
u(·, t), (−∆)γ/2 ϕ0(·)

)
+ r(t)

(
u
(β)
t (·, t), ϕ0

)
+ g(t)

(
F0, ϕ0

)
.

Using (3) and (A2) find

r(t) =
[
F(α)(t)− a2

(
u(·, t), (−∆)γ/2 ϕ0(·)

)
− g(t)

(
F0, ϕ0

)]
[F(β)(t)]−1, t ∈ (0, T]. (11)

Denote by H(u, t) the right-hand side of (11), substitute it in (10) instead of r(t). We obtain

the nonlinear operator equation

(
u(·, t), ϕ(·)

)
= hϕ(t) +

t∫

0

H(u, τ)
(
u(·, t), (Ĝ0 ϕ)(·, t − τ)

)
dτ, ϕ ∈ D(Rn), t ∈ (0, T], (12)

relatively unknown function u ∈ D′
C(Q). Conversely, if u ∈ D′

C(Q) is a solution of (12), r is

defined by (11) then, by the Theorem 1, the pair (u, r) satisfies the problem (1)–(3). So, under

assumptions (L), (A1), (A2) a pair (u, r) ∈ D′
C(Q)× C(0, T] is a solution of the problem (1)–(3)

if and only if the function u ∈ D′
C(Q) is a solution of (12) and r(t) is defined by (11).

Theorem 2. Assume that (L), (A1), (A2) hold. Then there exist T∗ ∈ (0, T] (Q∗ = Rn × (0, T∗],

respectively) and the solution (u, r) ∈ D′
C(Q

∗)× C(0, T∗] of the problem (1)–(3): the function

u is a solution of (12), r is defined by (11).

Proof. By the Theorem 1 the right-hand side of (12) is continuous on (0, T]. It is enough to

prove the solvability of the equation (12) in D′
C(Q). Using (9) and Lemma 3, for all ε ∈ (0, 1),

ϕ ∈ DK(Rn) with K ∈ Z+, K ≥ max{k0, k1, k2}, where s(Fj) ≤ kj, j = 0, 1, 2, we obtain

tε
∣∣∣

t∫

0

g(τ)
(

F0(·), (Ĝ0 ϕ)(·, t, τ)
)
dτ

∣∣∣ ≤ b0tα‖ϕ‖DK(Rn), (13)

tε|hϕ(t)| ≤
[
tαb0 + b1

]
‖ϕ‖DK(Rn). (14)

Let R > 0, ε ∈ (0, α/2),

MR,ε = MR,ε(Q) =
{

v ∈ D′
C(Q) : ‖v‖ε = sup

t∈(0,T]

sup
ϕ∈DK(Rn)

tε
∣∣(v(·, t), ϕ(·)

)∣∣
‖ϕ‖DK(Rn)

≤ R
}

.

Define the operator P : D′
C(Q) → D′

C(Q) as follows

(
(Pv)(·, t), ϕ(·)

)
= hϕ(t) +

t∫

0

H(v, τ)
(
v(·, t), (Ĝ0 ϕ)(·, t − τ)

)
dτ, ϕ ∈ DK(Rn). (15)

We use the Banach principle to prove the solvability of the equation (12), that is

u = Pu, u ∈ MR,ε(Q) ⊂ D′
C(Q).

At the beginning we show that there exist R > 0, T∗ ∈ (0, T], Q∗ = Rn × (0, T∗] and

M∗
R,ε = MR,ε(Q

∗) such that P : M∗
R,ε → M∗

R,ε.
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For every v ∈ MR,ε we have

τε|
(
v(·, τ), a2(−∆)γ/2 ϕ0(·)

)
| ≤ R‖(−∆)γ/2 ϕ0‖DK(Rn) := b2R,

and therefore

τε|H(v, τ)| ≤
B + b2R

f
, where B = sup

τ∈(0,T]

τε|F(α)(τ)− g(τ)(F0, ϕ0)|.

From here, taking into account (13), (14) and Lemma 3, for all v ∈ MR,ε, ϕ ∈ D(Rn) we

obtain

tε
∣∣((Pv)(·, t), ϕ(·)

)∣∣
‖ϕ‖DK(Rn)

≤ tαb0 + b1 +
(B + b2R)R

f

t∫

0

‖(Ĝ0 ϕ)(·, t − τ)‖DK(Rn)τ
−εdτ

‖ϕ‖DK(Rn)

≤ tαb0 + b1 +
(B + b2R)R

f

t∫

0

cK(t − τ)α−ε−1τ−εdτ

≤ tα−2ε(q0R2 + q1R + q2) + b1,

where qj (j ∈ {0, 1, 2}) are positive constants.

To realize the inequality

tα−2ε(q0R2 + q1R + q2) + b1 ≤ R for all t ∈ [0, T∗] (16)

with some T∗ ∈ (0, T], we will at first choose R ≥ 2b1 and t0 ∈ (0, T] such that

q2tα−2ε + b1 ≤ R/2 for all t ∈ [0, t0].

Then (16) follows from the inequality

(q0 + q1)t
α−2εR ≤

1

2
for all t ∈ [0, T∗] (17)

for some R ≥ max{1, 2b1}, where T∗ = min{t0, 1/[2(q0 + q1)R]1/(α−2ε)}. We have proved the

existence R, T∗ such that P : M∗
R,ε → M∗

R,ε.

Now we show that P is the contraction operator on M∗
R,ε. For v1, v2 ∈ M∗

R,ε, ϕ ∈ D(Rn) and

t ∈ [0, T∗] we have

tε
∣∣((Pv1)(·, t)−

(
(Pv2)(·, t), ϕ(·)

)∣∣
‖ϕ‖DK(Rn)

=
tε

‖ϕ‖DK(Rn)

t∫

0

∣∣∣H(v2, τ)
(
v1(·, t)− v2(·, t), (Ĝ0 ϕ)(·, t − τ)

)

+
(

H(v1, τ)− H(v2, τ)
)(

v1(·, t), (Ĝ0 ϕ)(·, t − τ)
)∣∣∣dτ

≤
(B + b2R)tε

f

t∫

0

∣∣(v1(·, t)− v2(·, t), (Ĝ0 ϕ)(·, t − τ)
)∣∣

‖(Ĝ0 ϕ)(·, t − τ)‖DK(Rn)

‖(Ĝ0 ϕ)(·, t − τ)‖DK(Rn)

‖ϕ‖DK(Rn)
τ−εdτ

+
a2tεR‖(−∆)γ/2 ϕ0‖DK(Rn)

f

t∫

0

∣∣(v1(·, τ)− v2(·, τ), (−∆)γ/2 ϕ0(·)
)∣∣

‖(−∆)γ/2 ϕ0‖DK(Rn)

‖(Ĝ0 ϕ)(·, t − τ)‖DK(Rn)

‖ϕ‖DK(Rn)
dτ

≤
(B + 2b2R)

f
· ‖v1 − v2‖ε

t∫
0

‖(Ĝ0 ϕ)(·, t − τ)‖DK(Rn)τ
−εdτ

‖ϕ‖DK(Rn)
≤ (2q0R + q1)t

α−2ε‖v1 − v2‖ε.
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If (−∆)γ/2 ϕ0(x) ≡ 0, x ∈ Rn, then
(
v1(·, t)− v2(·, t), (−∆)γ/2 ϕ0(·)

)
= 0 for all t ∈ [0, T∗],

and the factor 2 is absent in the obtained expression.

For t ∈ [0, T∗] we have

(2q0R + q1)t
α−2ε ≤

2q0R + q1

2(q0 + q1)R
≤

2q0 + q1

2(q0 + q1)
< 1.

So, P is the contraction operator on MR,ε(Q
∗), and by the Banach theorem we obtain the

solvability of the equation (12) in M∗
R,ε ⊂ D′

C(Q
∗).

Theorem 3. Under conditions F(β) ∈ C(0, T], inf
t∈(0,T]

|F(β)(t)| 6= 0 a solution (u, r) ∈ D′
C(Q)×

C(0, T] of the problem (1)–(3) is unique.

Proof. Take two solutions (u1, r1), (u2, r2) ∈ D′
C(Q)× C(0, T] of the problem (1)–(3) and sub-

stitute them in (1), (2). Putting u = u1 − u2, r = r1 − r2 obtain the Cauchy problem for the

equation

u
(α)
t = a2(−∆)γ/2u + r2u

(β)
t + ru1

(β)
t (18)

with zero initial conditions. By the definition of solution

(
u, L̂ψ

)
=

T∫

0

[
r2(t)

(
u
(β)
t (·, t), ψ(·, t)

)
+ r(t)

(
u1

(β)
t (·, t), ψ(·, t)

)]
dt for all ψ ∈ D(Q̄).

According to [8], for each ̺ ∈ D(Q̄) there exists ψ = Ĝ0̺ ∈ D(Q̄0) such that L̂ψ = ̺ in Q.

Then for each ̺ ∈ D(Q̄) we have

T∫

0

(
u(·, t), ̺(·, t)

)
dt =

T∫

0

(
r2(t)u

(β)
t (·, t) + r(t)u1

(β)
t (·, t), (Ĝ0̺)(·, t)

)
dt. (19)

From the over-determination condition (3), by using (11), we find

a2
(

u(z, t), (−∆)γ/2 ϕ0(z)
)
= −r(t)F(β)(t), t ∈ (0, T], (20)

and then, from (19), for all ̺ ∈ D(Q̄) we obtain the equation

T∫

0

(
u
(β)
t (·, t), ̺(·, t)− r2(t)(Ĝ0̺)(·, t) +

(−∆)γ/2 ϕ0(·)w̺(t)

F(β)(t)

)
dt = 0, (21)

where

w̺(t) = a2
(
u1

(β)
t (·, t), (Ĝ0̺)(·, t)

)

= a2
(

f−β(t) ∗ u1(·, t), (Ĝ0̺)(·, t)
)
= a2

(
u1(·, t), f−β(t)∗̂(Ĝ0̺)(·, t)

)

is the known function from C(0, T],

̺(·, t)− r2(t)(Ĝ0̺)(·, t) +
(−∆)γ/2 ϕ0(·)w̺(t)

F(β)(t)
∈ D(Rn), t ∈ (0, T]
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is the continuous function in t ∈ (0, T]. So, for each ϕ ∈ D(Rn), µ ∈ D(0, T], µ(T) = 0 there

exists a unique solution ̺ ∈ D(Q̄) of the second type Volterra integral equation

̺(x, t)− r2(t)(Ĝ0̺)(x, t) +
(−∆)γ/2 ϕ0(x)w̺(t)

F(β)(t)
= ϕ(x)µ(t), (x, t) ∈ Q̄,

with integrable kernel. Then (21) implies that

T∫

0

(
u
(β)
t (·, t), ϕ(·)

)
µ(t)dt = 0 for all ϕ ∈ D(Rn), µ ∈ D(0, T], µ(T) = 0.

By the Dubua-Rejmon lemma we obtain

(
u
(β)
t (·, t), ϕ(·)

)
= 0 for all ϕ ∈ D(Rn), t ∈ (0, T].

Therefore, u
(β)
t = 0, i.e. f−β(t) ∗ u(x, t) = 0, i.e. fβ(t) ∗ f−β(t) ∗ u(x, t) = 0, i.e. u = 0 in D′

C(Q),

and (20) implies that r(t) = 0, t ∈ (0, T].

3 CONCLUSIONS

The inverse Cauchy problem for a time-space-fractional telegraph equation with given dis-

tributions in the right-hand sides has been studied. We have determinated a generalized solu-

tion u of direct Cauchy problem and unknown, depending on time variable, continuous minor

coefficient r of the equation. The existence of a solution (u, r) ∈ D′
C(Q

∗)× C(0, T∗] is obtained

for some T∗ ∈ (0, T]. The uniqueness of a solution (u, r) ∈ D′
C(Q) × C(0, T] is obtained for

arbitrary T > 0.

Let D′
C(Q̄) = {v ∈ D′(Q̄) : (v(·, t), ϕ(·)) ∈ C[0, T] for all ϕ ∈ D(Rn)}. The Green vec-

tor-function of the Cauchy problem for the operator Dα
t − A(x, D), where A(x, D) is an elliptic

differential expression of the second order with infinitely differentiable coefficients, has the

exponential descending at infinity. So, unlike the case of the proposed problem (1)–(3), under

assumptions F0, F1, F2 ∈ E ′(Rn), g ∈ C[0, T], F, F(β), F(α) ∈ C[0, T], F(β)(t) 6= 0, t ∈ [0, T] and

the compatibility conditions

(F1, ϕ0) = F(0), (F2, ϕ0) = F′(0),

there exist T∗ ∈ (0, T] and the solution (u, r) ∈ D′
C(Q̄

∗)× C[0, T∗] of the problem (1)–(3) with

the operator −A(x, D) instead of a2(−∆)γ/2.
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Лопушанська Г., Рапiта В. Обернена задача Кошi для телеграфного рiвняння з дробовими похiдними

та узагальненими функцiями // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 118–126.

Дослiджуємо обернену задачу Кошi для рiвняння

u
(α)
t − r(t)u

(β)
t + a2(−∆)γ/2u = F0(x)g(t), (x, t) ∈ Rn × (0, T],

з дробовими похiдними та заданими узагальненими функцiями в правих частинах рiвнян-

ня i початкових умов. Наше завдання полягає у визначеннi пари функцiй: узагальненого

розв’язку u (неперервного за часом в узагальненому сенсi) та невiдомого молодшого коефi-

цiєнта r(t). У статтi встановлено однозначну розв’язнiсть задачi.

Ключовi слова i фрази: узагальнена функцiя, дробова похiдна, обернена задача, вектор фун-

кцiя Грiна.
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HYPERCYCLIC OPERATORS ON ALGEBRA OF SYMMETRIC ANALYTIC

FUNCTIONS ON ℓp

In the paper, it is proposed a method of construction of hypercyclic composition operators on

H(Cn) using polynomial automorphisms of C
n and symmetric analytic functions on ℓp. In particu-

lar, we show that a “symmetric translation” operator is hypercyclic on a Fréchet algebra of symmet-

ric entire functions on ℓp which are bounded on bounded subsets.
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INTRODUCTION

The theory of hypercyclicity studies the long-term behavior of continuous operators on

topological spaces. Let X be a Fréchet (linear complete metric) space.

Definition 1. A continuous linear operator T : X → X is called hypercyclic if there is a vector

x0 ∈ X for which the orbit under T, Orb(T, x0) = {x0, Tx0, T2x0, . . .} is dense in X. Every such

vector x0 is called a hypercyclic vector of T.

The classical Birkhoff’s theorem [6] asserts that any operator of composition with transla-

tion x 7→ x + a, Ta : f (x) 7→ f (x + a) is hypercyclic on a space of entire functions H(C) on a

complex plane C if a 6= 0. The Birkhoff’s translation Ta has also been regarded as a differentia-

tion operator

Ta( f ) =
∞

∑
n=0

an

n!
Dn f .

A generalization of Birkhoff’s theorem was proved by Godefroy and Shapiro in [9]. They

showed that if ϕ(z) = ∑
|α|≥0

cαzα is a non-constant entire function of exponential type on C
n,

then the operator

f 7→ ∑
|α|≥0

cαDα f , f ∈ H(Cn), (1)

is hypercyclic. Moreover, in [9], it is proved that any continuous linear operator T on H(Cn),

which commutes with translations and is not a scalar multiple of the identity, can be expressed

by (1) and so is hypercyclic as well.

Let us recall that an operator CΦ on H(Cn) is said to be a composition operator if CΦ f (x) =

f (Φ(x)) for some analytic map Φ : C
n → C

n. It is known that only translation operator Ta for

УДК 517.98
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some a 6= 0 is a hypercyclic composition operator on H(C) [5]. However, if n > 1, H(Cn)

supports more hypercyclic composition operators. Bernal-González [4] established some nec-

essary and sufficient conditions for a composition operator by an affine map to be hypercyclic.

In [14], it was proposed a method of construction of hypercyclic composition operators on

H(Cn), which can not be described by formula (1), using symmetric analytic functions on ℓ1.

The purpose of this paper is a generalization of the method for the space ℓp, 1 < p < ∞. Also

similarly to [14], we show that a symmetric translation operator is hypercyclic on a Fréchet

algebra Hn
bs(ℓp) of symmetric entire functions on ℓp which are bounded on bounded subsets.

More about hypercyclic composition operators the reader can find in [13].

In Section 1, we discuss some relationship between polynomial automorphisms on Cn and

an operation of changing of polynomial bases in an algebra of symmetric analytic functions

on the Banach space of summing sequences, ℓp. In Section 2, we prove the hypercyclicity of a

special operator on the algebra of symmetric analytic functions on ℓp which plays the role of

translation in this algebra. We consider, in the third section, an algebra which is the completion

of the space of symmetric polynomials on ℓp endowed with the uniform topology on bounded

subsets and we prove hypercyclicity of our special operator on this algebra.

Let us recall a well known Kitai-Gethner-Shapiro’s theorem which is also known as the

Hypercyclicity Criterion.

Theorem 1 (Hypercyclicity Criterion). Let X be a separable complete linear metric space and

T : X → X be a linear and continuous operator. Suppose there exist X0, Y0 dense subsets of X,

a sequence (nk) of positive integers and a sequence of mappings (possibly nonlinear, possibly

not continuous) Sn : Y0 → X so that

1. Tnk(x) → 0 for every x ∈ X0 as k → ∞,

2. Snk
(y) → 0 for every y ∈ Y0 as k → ∞,

3. Tnk ◦ Snk
(y) = y for every y ∈ Y0.

Then T is hypercyclic.

The operator T is called the operator that satisfy the Hypercyclicity Criterion for full sequence

if we can chose nk = k.

For details of the theory of analytic functions on Banach spaces we refer the reader to Di-

neen’s book [8]. Note that an analogue of the Godefroy-Shapiro’s theorem for a special class of

entire functions on Banach space with separable dual was proved by Aron and Bés in [2]. Cur-

rent state of theory of symmetric analytic functions on Banach spaces can be found in [1, 10].

A detailed survey of hypercyclic operators is given by Grosse-Erdmann in [3, 11, 12].

1 ALGEBRA OF SYMMETRIC FUNCTIONS

Let X be a Banach space with a symmetric basis (ei)
∞
i=1. A function g on X is called sym-

metric if for every x =
∞

∑
i=1

xiei ∈ X, g(x) = g
( ∞

∑
i=1

xiei

)

= g
( ∞

∑
i=1

xieσ(i)

)

for an arbitrary permu-

tation σ on the set {1, ..., m} for any positive integer m. The sequence of homogeneous poly-

nomials (Pj)
∞
j=1, deg Pk = k is called a homogeneous algebraic basis in the algebra of symmetric
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polynomials, if for every symmetric polynomial P of degree n on X there exists a polynomial

q on Cn such that P(x) = q(P1(x), . . . , Pn(x)).

We denote by Ps(ℓp) algebra symmetric continuous polynomials. Let ⌈p⌉ be the smallest

integer that is greater than or equal to p. In [10], it is proved that the polynomials

Fk

(

∞

∑
i=1

aiei

)

=
∞

∑
i=1

ak
i (2)

for k = ⌈p⌉, ⌈p⌉+ 1, . . . form an algebraic basis in Ps(ℓp).

So, there are no symmetric polynomials of degree less than ⌈p⌉ in Ps(ℓp) and if

⌈p1⌉ = ⌈p2⌉, then Ps(ℓp1) = Ps(ℓp2). Thus, without loss of generality we can consider Ps(ℓp)

only for integer values of p. Throughout, we will assume that p is an integer, 1 ≤ p < ∞.

Corollary 1 ([1]). Given (ξ1, . . . , ξn) ∈ Cn, there is x ∈ ℓ
n+p−1
p such that

Fp(x) = ξ1, . . . , Fn+p−1(x) = ξn.

This result shows that any P ∈ Ps(ℓp) has a unique representation in terms of {Fk},

in sense that if q ∈ P(Cn) for some n is such that P(x) = q(Fp(x), . . . , Fn+p(x)), and if

q′ ∈ P(Cm) for some m is such that P(x) = q′(Fp(x), . . . , Fm+p(x)), with, say, n ≤ m, then

q′(ξ1, · · · , ξm) = q(ξ1, · · · , ξn).

Let us denote by Pn
s (ℓp), n ≥ p, the subalgebra of Ps(ℓp) generated by {Fp, . . . , Fn}.

Denote by Hn
bs(ℓp) an algebra of entire symmetric functions on ℓp which is topologically

generated by polynomials Fp, . . . , Fn. It means that Hn
bs(ℓp) is the completion of the algebraic

span of Fp, . . . , Fn in the uniform topology on bounded subsets. We say that polynomials

Qp, . . . , Qn (not necessary homogeneous) form an algebraic basis in Hn
bs(ℓp) if they topologi-

cally generate Hn
bs(ℓp). Evidently, if (Qj)

∞
j=1 is a homogeneous algebraic basis in Ps(ℓp), then

(Qp, . . . , Qn) is an algebraic basis in Hn
bs(ℓp).

2 SYMMETRIC TRANSLATION

In this section, we construct a special operator on the algebra of symmetric analytic func-

tions on ℓp. We start with an evident statement, which actually is a very special case of the

Universal Comparison Principle (see [11, Proposition 4]).

Proposition 1. Let T be a hypercyclic operator on X and A be an isomorphism of X. Then

A−1TA is hypercyclic.

We will say that A−1TA is a similar operator to T. If T = Cα is a composition opera-

tor on H(Cn) and A = CΦ is a composition by an analytic automorphism Φ of C
n, then

A−1TA = CΦ◦α◦Φ−1 is a composition operator too. If A is a composition with a polynomial

automorphism, we will say that A−1TA is polynomially similar to T. Now we consider operators

which are similar to the translation composition Ta : f (x) 7→ f (x + a) on H(Cn).

Let us denote by F n
p the mapping from ℓp to C

n+1−p, n ≥ p, given by

F n
p : x 7→ (Fp(x), . . . , Fn(x)).

It is known (see [1]) that the map

CFn
p

: f (t1, . . . , tn) 7→ f (Fp(x), . . . , Fn(x))
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is a topological isomorphism from the algebra H(Cn+1−p) to the algebra Hn
bs(ℓp).

Easy to see that for symmetric function f (x) on ℓp the function f (x + y) is not symmetric

for some fixed y ∈ ℓp. The space of symmetric function is not invariant respect to certain

translation operator f (x) 7→ f (x + y). We propose another translation on ℓp, which keep the

space of symmetric analytic functions.

Let x, y ∈ ℓp, x = (x1, x2, . . .) and y = (y1, y2, . . .). We put

x • y := (x1, y1, x2, y2, . . .).

We note the basic properties of symmetric translation.

1. If x = σ1(u) i y = σ2(v) for some permutations σ1, σ2 then x • y = σ(u • v) for some

permutation σ on N.

2. ‖x • y‖p = ‖x‖p + ‖y‖p.

3. For any natural n ≥ p

Fn(x • y) = Fn(x) + Fn(y). (3)

We define

Ty( f )(x) := f (x • y)

and will say that x 7→ x • y is the symmetric translation and the operator Ty is the symmetric

translation operator. It is clear that if f is a symmetric function, then f (x • y) is a symmetric

function for any fixed y. In [7], it is proved that Ty is a topological isomorphism from the

algebra of symmetric analytic functions to itself.

Let g ∈ Hn
s (ℓp) and α = (α1, . . . , αn). Set for f = (F F

n )
−1g

Dαg := F F
n Dα(F F

n )
−1g =

(

∂α1

∂tα1
1

· · ·
∂αn

∂tαn
n

f

)

(F1(·), . . . , Fp+n−1(·)).

Theorem 2. Let y ∈ ℓp such that (Fp(y), . . . , Fp+n−1(y)) is a nonzero vector in C
n. Then the

symmetric translation operator Ty is hypercyclic on Hn
bs(ℓp). Moreover, every operator A on

Hn
s (ℓp) which commutes with Ty and is not a scalar multiple of the identity is hypercyclic and

can be represented by

A(g) = ∑
|α|≥0

cαD
αg, (4)

where cα are coefficients of a non-constant entire function of exponential type on Cn.

Proof. Let a = (Fp(y), . . . , Fp+n−1(y)) ∈ Cn. If g ∈ Hn
bs(ℓp), then

g(x) = CFn
p
( f )(x) = f (Fp(x), . . . , Fp+n−1(x))

for some f ∈ Hn
s (ℓ1) and property (3) implies that

Ty(g)(x) = g(x • y) = f (Fp(x • y), . . . , Fp+n−1(x • y))

= f (Fp(x) + Fp(y), . . . , Fp+n−1(x) + Fp+n−1(y))

= CFn
p
(( f )(t + a)) = CFn

p
(Ta( f )(t)).

Since the set (Tk
a ( f ))∞

k=1 is dense in H(Cn), then set (T k
y (g))∞

k=1 = (CFn
p
(Tk

a ( f )))∞
k=1 is

dense in Hn
bs(ℓp). So, the symmetric translation of operator Ty is hypercyclic on Hn

bs(ℓp). Since

Ty(g)(x) = F F
n Ta(F F

n )
−1(g)(x), the proof of (4) follows from Proposition 1 and the Godefroy-

Shapiro Theorem.
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A given algebraic basis R on Hn
s (ℓp) we set

TR,y := (FR
n )−1TyF

R
n and Dα

R := (FR
n )−1DαFR

n .

Corollary 2. Let R be an algebraic basis on Hn
s (ℓp) and let y ∈ ℓp such that

(Fp(y), . . . , Fp+n−1(y)) 6= 0. Then the operator TR,y is hypercyclic on H(Cn). Moreover, every

operator A on H(Cn) which commutes with TR,y and is not a scalar multiple of the identity is

hypercyclic and can be represented by the form

A( f ) = ∑
|α|≥0

cαDα
R f , (5)

where cα as in (1).

We need the next proposition.

Proposition 2 ([14]). Let Φ = (Φ1, . . . , Φn) be a polynomial automorphism on C
n. Then

(Φ1(R), . . . , Φn(R)) is an algebraic basis in Hn
s (ℓp) for an arbitrary algebraic basis

R = (R1, . . . , Rn).

Conversely, if (Φ1(R), . . . , Φn(R)) is an algebraic basis for some algebraic basis

R = (R1, . . . , Rn) in Hn
s (ℓp) and a polynomial map Φ on Cn, then Φ is a polynomial auto-

morphism.

Note that due to Proposition 2 the transformation (FR
n )−1TyFR

n is nothing else than a com-

position with Φ ◦ (I + a) ◦ Φ−1, where Φ(Fp, . . . , Fp+n−1) = (Rp, . . . , Rp+n−1) and

a = (Fp(y), . . . , Fp+n−1(y)). Conversely, every polynomially similar operator to the translation

can be represented by the form (FR
n )−1TyFR

n for some algebraic basis of symmetric polynomi-

als R. This observation can be helpful in order to construct some examples of such operators.

The next algebraic bases of Ps(ℓp) is useful for us: (G
(p)
k )∞

k=1, where

Gk(x) = G
(1)
k (x) = ∑

i1<···<ik

xi1 · · · xik

and G
(p)
k (x) can be obtained from Newton’s formula (see [16, §53]), putting

F1(x) = F2(x) = · · · = Fp−1(x) = 0. So, we get ([15])

nG
(p)
n = (−1)p+1Fp(x)G

(p)
n−p(x) + (−1)p+2Fp+1(x)G

(p)
n−p−1(x)

+ · · ·+ (−1)n−p+1Fn−p(x)G
(p)
p (x) + (−1)n+1Fn(x),

where n > p, G
(p)
0 (x) ≡ 1, F0(x) ≡ 1 and G

(p)
1 (x) = G

(p)
2 (x) = · · · = G

(p)
p−1(x) = 0, F1(x) =

F2(x) = · · · = Fp−1(x) = 0. By another words, in (2) the terms Fr(x)G
(p)
q−r(x) = 0, if r < p and

q − r < p, where p ≤ r ≤ n − p, p ≤ q − r ≤ n − p.

Let us compute how looks the operator TR,y for R = G. We observe first that

G
(p)
m (x • y) = ∑

j+k=m

G
(p)
j (x)G

(p)
k (y), p ≤ m ≤ p + n − 1,
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where for the sake of convenience we take G
(p)
0 ≡ 1. Thus

TyF
G
n f (t1, . . . , tn) = Ty f (G

(p)
p (x), . . . , G

(p)
p+n(x)) = f (G

(p)
p (x • y), . . . , G

(p)
p+n(x • y))

= f
(

G
(p)
p (x) + G

(p)
p (y), . . . , ∑

i+k=m

G
(p)
i (x)G

(p)
k (y), . . . , ∑

i+k=p+n−1

G
(p)
i (x)G

(p)
k (y)

)

.

Therefore,

TG,y f (t1, . . . , tn) = f
(

tp + bp, . . . , ∑
j+k=m

tjbk, . . . , ∑
j+k=p+n−1

tjbk

)

, (6)

where t1 = 0, . . . , tp−1 = 0, b1 = 0, . . . , bp−1 = 0, and bj = G
(p)
j (y) for 1 ≤ j ≤ p + n − 1.

Godefroy and Shapiro proved that any continuous linear operator T on H(Cn), which com-

mutes with translations and is not a scalar multiple of the identity, can be generated by (1).

Composition with an affine map still does not commute with Ta. Indeed, by (6),

Ta ◦ TG,y f (t1, . . . , tn) = f
(

tp + bp + ap, . . . ,
p+n−1

∑
j=0

tjbp+n−1−j + ap+n−1

)

;

TG,y ◦ Ta f (t1, . . . , tn) = f
(

tp + bp + ap, . . . ,
p+n−1

∑
j=0

(tj + aj)bp+n−1−j

)

,

where a0 = 1. Evidently, Ta ◦ TG,y 6= TG,y ◦ Ta for some a 6= 0 whenever b 6= (0, . . . , 0, bp+n−1).

3 THE CASE OF SPACE Hbs(ℓp)

Note that Ta satisfies the Hypercyclicity Criterion for full sequence [9] and so the sym-

metric shift Ty on Hn
s (ℓp) satisfies the Hypercyclicity Criterion for full sequence provided

(Fp(y), . . . , Fp+n−1(y)) 6= 0.

We will establish our result about hypercyclic operators on the space of symmetric entire

functions on ℓp. But before this, we need the following general auxiliary statement, which

might be of some interest by itself.

Lemma 1 ([14]). Let X be a Fréchet space and X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ · · · be a sequence of

closed subspaces such that
∞
⋃

m=1

Xm is dense in X. Let T be an operator on X such that T(Xm) ⊂

Xm for each m each restriction T|Xm satisfies the Hypercyclicity Criterion for full sequence on

Xm. Then T satisfies the Hypercyclicity Criterion for full sequence on X.

We denote by Hbs(ℓp) a Fréchet algebra of symmetric entire functions on ℓp which are

bounded on bounded subsets. This algebra is the completion of the space of symmetric poly-

nomials on ℓp endowed with the uniform topology on bounded subsets.

Theorem 3. The symmetric translation operator Ty is hypercyclic on Hbs(ℓp) for every y 6= 0.

Proof. Since y 6= 0, Fm0(y) 6= 0 for some m0 [1]. So, Ty is hypercyclic (and satisfies the Hy-

percyclicity Criterion for full sequence) on Hm
s (ℓp) whenever m ≥ m0. The set

∞
⋃

m=m0

Hm
s (ℓp)

contains the space of all symmetric polynomials on ℓp and so it is dense in Hbs(ℓp). Also

Hm
s (ℓp) ⊂ Hn

s (ℓp), if n > m. Hence, by Lemma 1, Ty is hypercyclic.
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Можировська З.Г. Гiперциклiчнi оператори на алгебрi симетричних аналiтичних функцiй на ℓp.

// Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 127–133.

В статтi запропоновано метод побудови гiперциклiчних операторiв композицiї на просто-

рi H(Cn) з використанням полiномiальних автоморфiзмiв на C
n i симетричних аналiтичних

функцiй на ℓp. Зокрема, в роботi показано гiперциклiчнiсть оператора “симетричного зсуву”

на алгебрi Фреше симетричних цiлих функцiй на ℓp, якi є обмеженими на обмежених пiдмно-

жинах.

Ключовi слова i фрази: гiперциклiчнi оператори, функцiональнi простори.
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NAGESWARA RAO K.1 , GERMINA K.A.2 , SHAINI P.1

ON THE DIMENSION OF VERTEX LABELING OF k-UNIFORM DCSL OF

k-UNIFORM CATERPILLAR

A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment
f : V(G) → 2X, X being a nonempty ground set, such that the corresponding induced function

f ⊕ : E(G) → 2X \ {∅} given by f ⊕(uv) = f (u) ⊕ f (v) satisfies | f ⊕(uv) |= k
f
(u,v)dG(u, v) for

every pair of distinct vertices u, v ∈ V(G), where dG(u, v) denotes the path distance between u and

v and k
f
(u,v) is a constant, not necessarily an integer. A dcsl f of G is k-uniform if all the constant

of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is called a
k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by δk(G) is the minimum of
the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension L of a partial
order P = (P,�) is a linear order on the elements of P, such that x � y in P implies x � y in L,
for all x, y ∈ P. The dimension of a poset P, denoted by dim(P), is the minimum number of linear
extensions on P whose intersection is ‘�’. In this paper we prove that dim(F ) ≤ δk(P+k

n ), where
F is the range of a k-uniform dcsl of the k-uniform caterpillar, denoted by P+k

n (n ≥ 1, k ≥ 1) on
‘n(k + 1)’ vertices.

Key words and phrases: k-uniform dcsl index, dimension of a poset, lattice.
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INTRODUCTION

Acharya [1] introduced the notion of vertex set-valuation as a set-analogue of number valu-
ation. For a graph G = (V, E) and a nonempty set X, Acharya defined a set-valuation of G as
an injective set-valued function f : V(G) → 2X, and defined a set-indexer f⊕ : E(G) → 2X \ {∅}

as a set-valuation such that the function given by f⊕(uv) = f (u)⊕ f (v) for every uv ∈ E(G) is
also injective, where 2X is the set of all subsets of X and ‘⊕’ is the binary operation of taking
the symmetric difference of subsets of X.

Acharya and Germina [2], introduced the particular kind of set-valuation for which a met-
ric, especially the cardinality of the symmetric difference, associated with each pair of ver-
tices is k (where k be a constant) times that of the distance between them in the graph [2]. In
other words, determine those graphs G = (V, E) that admit an injective set-valued function
f : V(G) → 2X, where 2X is the power set of a nonempty set X, such that, for each pair of
distinct vertices u and v in G, the cardinality of the symmetric difference f (u)⊕ f (v) is k times
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that of the usual path distance dG(u, v) between u and v in G, where k is a non-negative con-
stant. They in [2] called such a set-valuation f of G a k-uniform distance-compatible set-labeling (k-

uniform dcsl) of G, and the graph G which admits k-uniform dcsl, a k-uniform distance-compatible

set-labeled graph (k-uniform dcsl graph) and the non empty set X corresponding to f , a k-uniform

dcsl-set. The k-uniform dcsl index [4] of a graph G, denoted by δk(G) is the minimum of the
cardinalities of X, as X varies over all k-uniform dcsl-sets of G.

Consider a partially ordered set or a poset P as a structure (P, �) where P is a nonempty set
and ‘�’ is a partial order relation on P. We denote (x, y) ∈ P by x � y, and identify the ground
set of a poset with the whole poset. Two elements of P standing in the relation of P are called
comparable, otherwise they are incomparable. We denote the incomparable elements x and y of
P by x ‖ y. A poset is a chain if it contains no incomparable pair of elements, and in this case,
the partial order is a linear order. A poset is an antichain if all of its pairs are incomparable. The
length of a chain is one less than the number of elements in the chain. An element p ∈ P of a
finite poset is on level k, if there exists a sequence of elements p0, p1, . . . , pk = p in P such that
p0 � p1 � ldots � pk = p and any other such sequences in P has length less than or equal to
k. The size of a largest chain in a poset P is called the height of the poset, denoted by height(P)

or h(P), and that of a largest antichain is called its width, denoted by width(P) or w(P). A Hasse

diagram of a poset (P, �) is a drawing in which the points of P are placed so that if y covers x

(we say, z covers y if and only if y ≺ z and y � x � z implies either x = y or x = z), then y

is placed at a higher level than x and joined to x by a line segment. A poset P is connected, if
its Hasse diagram is connected as a graph. A Cover graph or Hasse graph of a poset (P, �) is the
graph with vertex set P such that x, y ∈ P are adjacent if and only if one of them covers the
other.

Let P = (P,�P) and Q = (Q,�Q) be two partially ordered sets. A mapping f from the
poset P to the poset Q is called order preserving if for every two elements x and y of P, x �P y

implies f (x) �Q f (y). A poset Q is a subposet of P if Q ⊆ P, and �Q is the restriction of �P to
Q × Q. i.e., for a, b ∈ Q, a �Q b if and only if a �P b. Two posets P and Q are called isomorphic

if there is a one to one order preserving mapping Φ from the poset P onto the poset Q such
that for every two elements x and y of P, x �P y in P if and only if Φ(x) �Q Φ(y) in Q. The
poset Q is said to be embedded or contained in P, denoted by Q ⊑ P, if Q is isomorphic to a
subposet of P. Let R and S are two partial orders (with respect to �) on the same set X, we call
S an extension of R if R ⊆ S, i.e., x � y in R implies x � y in S for all x, y ∈ X. In particular
if S is a chain, then we call it as a linear extension of R. For convenience, let L : [x1, x2, . . . , xn]

denote linear order on {x1, x2, . . . , xn} in which x1 � x2 � · · · � xn.

Definition 1 ([8]). A set R = {L1, L2, . . . , Lk} of linear extensions of P is a realizer of P if for
every incomparable pair x, y ∈ P, there are Li, Lj ∈ R with x � y in Li and x � y in Lj for
1 ≤ i 6= j ≤ k. The dimension of P (denoted by dim(P)) is the minimum cardinality of a
realizer.

There are equivalent definitions for dim(P). It is defined as the minimum k for which there
are linear extensions L1, . . . , Lk such that P = L1 ∩L2 ∩ · · · ∩Lk, where the intersection is taken
over the sets of relations of Li, for 1 ≤ i ≤ k. Another characterization of dimension, in terms
of coordinates, is obtained by using an embedding of P into Rt (called t-dimensional poset)
[11]. Let Rt denotes the poset of all t-tuples of real numbers, partially ordered by inequality in
each coordinate: (a1, a2, . . . , at) ≤ (b1, b2, . . . , bt) if and only if ai ≤ bi, for i = 1, 2, . . . , t. Then
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the dimension of a poset P is the minimum number t such that P is embedded in Rt, denoted
as P ⊑ Rt. For more results on dimension of poset one may see [7, 9, 12, 13].

A poset (L,�) is a lattice if every pair of elements x, y ∈ L, has a least upper bound (lub),
denoted by x ∨ y (called join), and a greatest lower bound (glb), denoted by x ∧ y (called meet). In
general, a lattice is denoted by (L,�). Throughout this paper lattice (and poset) means lattice
(and poset) under set inclusion ⊆. Unless otherwise mentioned, for all the terminology in
graph theory and lattice theory, the reader is asked to refer, respectively [5, 6].

This paper initiates a study on the dimension of vertex labeling of k-uniform dcsl of k-
uniform caterpillar, and prove that dim(F ) ≤ δk(P+k

n ), where F is the range of a k-uniform
dcsl of the k-uniform caterpillar, denoted by P+k

n (n ≥ 1, k ≥ 1) on ‘n(k + 1)’ vertices that
forms a poset under set inclusion ⊆.

Following are the definitions and results used in this paper.

Definition 2 ([10]). The height-2 poset Hn on 2n elements a1, . . . , an, b1, . . . , bn is the poset of
height two consisting of two antichains A = {a1, . . . , an} and B = {b1, . . . , bn} such that bi � aj

in Hn exactly if i = j, and j = i − 1.

Proposition 1 ([10]). For n ≥ 2, dim(Hn) = 2.

Proposition 2 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path Pn(n > 2),
which is embedded in Hn, then dim(F ) = 2.

Definition 3 ([10]). A width-2 poset Wn is the poset ({a1, . . . , an, b1, . . . , bn},�) of width two
consisting of two chains A = {a1, . . . , an} and B = {b1, . . . , bn} such that ai−1 � ai for 2 ≤ i ≤

n, bi � bi+1 for 1 ≤ i ≤ n − 1, a1 � bi for 1 ≤ i ≤ n, and for 2 ≤ i ≤ n and 1 ≤ j ≤ n, ai || bj.

Proposition 3 ([10]). For n ≥ 2, dim(Wn) = 2.

Proposition 4 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path Pn(n > 2),
which is embedded in Wn, then dim(F ) = 2.

Lemma 1 ([3]). δd(Pn) = n − 1, for n > 2.

Lemma 2 ([10]). δk(Pn) = k(n − 1), for n > 2.

1 MAIN RESULTS

Since the existence of vertex labeling of 1-uniform dcsl graph is not unique, the problem
of determining posets which embeds the vertex labeling of 1-uniform dcsl of k-uniform cater-
pillar is same as determining the existence of different vertex labels f of 1-uniform dcsl of
k-uniform caterpillar whose corresponding range, say F = Range( f ) forms a poset under
set inclusion ⊆. Thus, there is a one to one correspondence between the vertex labeling f

of 1-uniform dcsl of k-uniform caterpillar and its corresponding poset F . Thus, it is always
possible to find a 1-uniform dcsl f of a graph G so that F = Range( f ) forms a poset under
set inclusion ⊆. Hence, F contains the vertex labeling f of 1-uniform dcsl graph G as an em-
bedding of itself. Hence, the problem of determining the 1-uniform dcsl vertex labeling f of
a graph G is equivalent in determining the poset F which embeds the 1-uniform dcsl vertex
labeling f of the same graph G.
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Definition 4. Let P = ({a1, . . . , an},�) be a poset. We define k-uniform extended poset or,
simply, k-extended poset of P, denoted by Pk as

({a1, a1
1, a2

1, . . . , ak
1, a2, a1

2, a2
2, ak

2, . . . , an, a1
n, a2

n, . . . , ak
n},�),

which is an extension of P, and for 1 ≤ i ≤ n, each k(≥ 1) elements a1
i , a2

i , . . . , ak
i of Pk

covers only ai. We call P as an underline poset of Pk.

Remark 1. It is interesting to note the following in a k-extended posets.

(i) If there exist any two distinct elements which belong to the same level in Pk, then they
are incomparable.

(ii) For each k(≥ 1) elements a1
i , a2

i , . . . , ak
i of Pk covers only ai, where 1 ≤ i ≤ n. This

implies that there exist no element in Pk that covers any one of the k elements a1
i , a2

i , . . . ,
ak

i . Hence, the k elements a1
i , a2

i , . . . , ak
i are maximal elements of Pk. Thus, they are the nk

maximal elements, namely, a
j
i in Pk, 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Proposition 5. For any poset P (finite and connected) of size greater than 1, the k-extended
poset Pk(k ≥ 1) of P, does not form a lattice.

Proof. If possible let, Pk forms a lattice, then Pk has unique glb and unique lub, say g and l

respectively. Since l is the lub of Pk, x � l, for every x ∈ Pk, which in turn implies one of the
element from the maximal elements a1

n, a2
n, . . . , ak

n of Pk should be equal to l, say, a1
n. Hence for

2 ≤ i ≤ n, we have ai
n � l which is a contradiction as remarked in Remark 1.

Proposition 6. Let P be a linear order as of the form: ai−1 � ai, for 2 ≤ i ≤ n, then the
dimension of k-extended poset Pk(k ≥ 1) of P is 2.

Proof. Let R = {L1, L2} be linear extensions of Pk, where
L1 : [a1, a1

1, . . . , ak
1, a2, a1

2, . . . , ak
2, . . . , an, a1

n, . . . , ak
n] and

L2: [a1, . . . , an, ak
n, . . . , a1

n, ak
n−1, . . . , a1

n−1, . . . , ak
1, . . . , a1

1].
Then R is a realizer of Pk, and hence dim(Pk) ≤ 2. We prove that there is no proper subset

S of R which realizes Pk. For, if there is a proper subset S of R which realizes Pk, then, the only
one member in S give rise to the poset Pk, and hence, all the elements of Pk are comparable,
which is a contradiction. Hence dim(Pk) = 2.

Since the graph P+k
n is the extension of Pn, the k-extended poset can embed the vertex

labeling of a 1-uniform dcsl k-uniform caterpillar only when its corresponding underline poset
embed the vertex labeling of a 1-uniform dcsl path.

Now, we aim to determine the dimension of k-extended posets which embeds the vertex
labeling of a 1-uniform dcsl of a k-uniform caterpillar.

Proposition 7. Let P be a linear order as ai−1 � ai, for 2 ≤ i ≤ n, then the k-extended poset Pk

embeds the vertex labeling of a 1-uniform dcsl of the k-uniform caterpillar.

Proof. Let G = P+k
n be the k-uniform caterpillar with n(k+ 1) vertices, where n ≥ 2 and k ≥ 1.

Let V(G) = {vi, v
j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, where vi are the internal vertices and v

j
i are the

pendant vertices which are adjacent to vi.
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First we claim that there exist a vertex labeling f of a 1-uniform dcsl of the k-uniform cater-
pillar, whose range is suitable for the embedding of k-extended poset Pk. Let
X = {1, 2, . . . , n(k + 1) − 1}. Define f : V(G) → 2X such that f (v1) = ∅ and f (vj) =

{1, 2, . . . , j − 1}, 2 ≤ j ≤ n. For, 1 ≤ i ≤ n and 1 ≤ j ≤ k,

f (v
j
i) = f (vi) ∪ {(n − 1) + (i − 1)k + j} = {1, 2, . . . , i − 1, (n − 1) + (i − 1)k + j}.

Case 1: When u = vl and v = vm, l = 1 and 2 ≤ m ≤ n. Then,

| f (vl )⊕ f (vm)| =| ∅⊕ {1, 2, . . . , m − 1} |=| {1, 2, . . . , m − 1} |= m − l = d(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, 2 ≤ l, m ≤ n. Then,

| f (vl )⊕ f (vm)| =| {1, 2, . . . , l − 1} ⊕ {1, 2, . . . , m − 1} |

=| {l, l + 1, . . . , m − 1} |= m − l = d(vl , vm), 2 ≤ l < m ≤ n.

Case 3: When u = vl and v = v
j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl )⊕ f (v
j
m)| =| ∅⊕ {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |= m = d(vl , v
j
m).

Case 4: When u = vl and v = v
j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)| =| {1, 2, . . . , l − 1} ⊕ {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {l, l + 1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

= m − l + 1 = d(vl , v
j
m), 2 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 5: When u = vi
l and v = v

j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)| =| {(n − 1) + (l − 1)k + i}

⊕ {1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {1, . . . , m − 1, (n − 1) + (m − 1)k + j, (n − 1) + (l − 1)k + i} |= m + 1 = d(vi
l , v

j
m).

Case 6: When u = vi
l and v = v

j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ i, j ≤ k. Then,

f (vi
l)⊕ f (v

j
m)| =| {1, . . . , l − 1, (n − 1) + (l − 1)k + i}

⊕ {1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {(n − 1) + (l − 1)k + i, l, l + 1, ., m − 1, (n − 1) + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m), 2 ≤ l < m ≤ n and 1 ≤ i ≤ j ≤ k.

Hence, for any distinct u, v ∈ V(G), | f (u) ⊕ f (v)| = d(u, v). Thus, f is a 1-uniform dcsl of
G.

Now, to prove, F ⊑ Pk, where F is the range of f which forms a poset under ‘⊆’ and P a
linear order as ai−1 � ai, 2 ≤ i ≤ n. Define Φ : F → Pk as follows.
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Case 1. On the internal vertices vi of V(G), define Φ( f (vi)) = ai.

Case 2. On the pendant vertices v
j
i of V(G), define Φ( f (v

j
i )) = a

j
i .

In Case 1, the corresponding vertex labels of a pair of internal vertices are comparable
where as in Case 2, for any pair of pendant vertices the corresponding vertex labels are incom-
parable. Hence, f (vi) ⊆ f (vj) in F if and only if ai � aj in Pk and f (vr

i ) ‖ f (vs
i ) in F if and

only if ar
i ‖ as

i in Pk. Also, f (vi) ⊆ f (v
j
i) in F if and only if ai � a

j
i in Pk and f (vi) ‖ f (vs

i−1) in
F if and only if ai ‖ as

i−1 in Pk. Therefore, F ⊑ Pk.

Using Proposition 6 and Proposition 7, we have the following result.

Proposition 8. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F ⊑ Pk, where P is a linear order of finite length. Then dim(F ) = 2.

Remark 2. From Proposition 2 and Proposition 4, we have seen that the height-2 poset, Hn

and width-2 poset, Wn on ‘ 2n ’ elements embeds the vertex labeling of a 1-uniform dcsl path.
Choosing these posets as underline posets defined on ‘ n ’ elements, the corresponding k-
extended posets embedding, restricted to height-2 poset and width-2 poset on n elements,
give two subposets, namely min height poset (denoted by Minn) and avg height poset(denoted
by Avgn), respectively. Further, the poset Minn end up with b⌈ n

2 ⌉
, when n is odd; a n

2
if n is

even. Hence, Minn ⊑ Hn. For the poset Avgn, Avgn ⊑ Wn. For, without loss of generality,
consider the poset as ({a1, . . . , a⌈ n

2 ⌉=h, b1, . . . , bn−h},�) of width two consisting of two chains
A = {a1, . . . , ah} and B = {b1, . . . , bn−h} such that ai−1 preceqai for 2 ≤ i ≤ h, bi � bi+1 for
1 ≤ i ≤ n − h − 1, a1 � bi for 1 ≤ i ≤ n − h, and for 2 ≤ i ≤ h and 1 ≤ j ≤ n − h, ai || bj.
In particular, if the underline poset is of linear order, then it posses maximum height and by
Proposition 6, the k-extended poset of it has dimension 2.

Proposition 9. For a k-extended poset Minn, dim(Mink
n) = 2.

Proof. We define the linear extensions L1 and L2 of Mink
n, in two cases.

Case 1: When n is even. Consider,

L1 : [b1, b1
1, . . . , bk

1, b2, b1
2, . . . , bk

2, . . . , b n
2
, b1

n
2
, . . . , bk

n
2
, a1, a1

1, . . . , ak
1, a2, a1

2, . . . , ak
2, . . . ,

a n
2
, a1

n
2
, . . . , ak

n
2
] and

L2 : [b n
2
, a n

2
, b n

2−1, a n
2−1, . . . , b1, a1, ak

n
2
, . . . , a1

n
2
, ak

n
2−1, . . . , a1

n
2−1, . . . , ak

1, . . . , a1
1, bk

n
2
, . . . ,

b1
n
2
, bk

n
2 −1, . . . , b1

n
2−1, . . . , bk

1, . . . , b1
1].

Since, these extensions intersect to yield the partial order on Mink
n, dim(Mink

n) ≤ 2.
Case 2: When n is odd. Consider,

L1 : [b⌈ n
2 ⌉

, b1
⌈ n

2 ⌉
, . . . , bk

⌈ n
2 ⌉

, b⌈ n
2 ⌉−1, b1

⌈ n
2 ⌉−1, . . . , bk

⌈ n
2 ⌉−1, . . . , b1, b1

1, . . . , bk
1, a⌈ n

2 ⌉−1, a1
⌈ n

2 ⌉−1, . . . ,

ak
⌈ n

2 ⌉−1, . . . , a1, a1
1, . . . , ak

1] and

L2 : [b1, a1, b2, a2, . . . , b⌈ n
2 ⌉−1, a⌈ n

2 ⌉−1, b⌈ n
2 ⌉

, ak
1, . . . , a1

1, ak
2, . . . , a1

2, . . . , ak
⌈ n

2 ⌉−1, . . . , a1
⌈ n

2 ⌉−1,

bk
1, . . . , b1

1, bk
2, . . . , b1

2, . . . , bk
⌈ n

2 ⌉
, . . . , b1

⌈ n
2 ⌉
].



140 NAGESWARA RAO K., GERMINA K.A., SHAINI P.

Clearly, these extensions produces a realizer of Mink
n, hence dim(Mink

n) ≤ 2. Following as
in the proof of Proposition 6, the dimension cannot be less than 2. Therefore, dim(Mink

n) =

2.

Proposition 10. The k-extended poset Mink
n embeds the vertex labeling of a 1-uniform dcsl of

the k-uniform caterpillar.

Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2 . . . , vn, v1

n, . . . , vk
n}, where vi are the internal ver-

tices and v
j
i are the pendant vertices which are adjacent to vi.

Let X = {1, 2, . . . , w, . . . , n, . . . , m = n(k + 1)− 1}, where w = ⌈ |V(Pn)|
2 ⌉.

We claim that there exists a poset F which can be obtained from a vertex labeling of 1-
uniform dcsl caterpillar, that suits for the embedding of Mink

n.
Define f : V(Pk

n) → 2X, on internal vertices, by

f (v1) = {1, 2, . . . , w − 1}, f (v2) = {1, 2, . . . , w − 1, w}, f (v3) = {2, . . . , w − 1, w},

f (v4) = {2, . . . , w − 1, w, w + 1}, f (v5) = {3, . . . , w, w + 1}, . . . , f (vn) = {w, w + 1, . . . , n − 1},

when n is odd; otherwise, f (vn) = {w, w + 1, . . . , n}. In general, for 1 ≤ i ≤ n,

f (vi) =

{

{ i+1
2 , i+1

2 + 1, . . . , i+1
2 + w − 2 }, if i is odd

{ i
2 , i

2 + 1, . . . , i
2 + w − 1 }, otherwise,

and on pendant vertices, vertex labeling is same, as in Proposition 7.
Case 1: When u = vi and v = vi+1, where i is odd. Then,

| f (vi)⊕ f (vi+1)| =| {
i + 1

2
, . . . ,

i + 1

2
+ w − 2} ⊕ {

i + 1

2
, . . . ,

i + 1

2
+ w − 1} |

=| {
i + 1

2
+ w − 1} |= 1 = d(vi , vi+1).

Case 2: When u = vi+1 and v = vi, where i is even. Then,

| f (vi+1)⊕ f (vi)| =| {
i + 2

2
, . . . ,

i + 2

2
+ w − 2} ⊕ {

i

2
, . . . ,

i

2
+ w − 1} |

=| {
i

2
} |= 1 = d(vi+1, vi).

Case 3: When u = vl and v = vm, l 6= m, 1 ≤ l, m ≤ n and both l and m are odd. Then,

| f (vl )⊕ f (vm)| =| {
l + 1

2
, . . . ,

l + 1

2
+ w − 2} ⊕ {

m + 1

2
, . . . ,

m + 1

2
+ w − 2} |

=| {
l + 1

2
, . . . ,

m + 1

2
+ w − 2} |= m − l = d(vl , vm), 1 ≤ l < m ≤ n.

Case 4: When u = vl and v = vm, l 6= m, 1 ≤ l, m ≤ n and both l and m are even. Then,

| f (vl )⊕ f (vm)| =| {
l

2
, . . . ,

l

2
+ w − 1} ⊕ {

m

2
, . . . ,

m

2
+ w − 1} |

=| {
l

2
, . . . ,

m

2
+ w − 1} |= m − l = d(vl , vm), 1 ≤ l < m ≤ n.

Case 5: When u = vi and v = v
j
i , 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then,

| f (vi)⊕ f (v
j
i)| =| {n + (i − 1)k + (j − 1)} |= 1 = d(vi, v

j
i).
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Case 6: When u = vi and v = v
j
i+1, 1 ≤ j ≤ k and i is odd. Then,

| f (vi)⊕ f (v
j
i+1)| =| {

i + 1

2
, . . . ,

i + 1

2
+ w − 2}

⊕ {
i + 1

2
, . . . ,

i + 1

2
+ w − 1, n + (i)k + (j − 1)} |

=| {
i + 1

2
+ w − 1, n + (i)k + (j − 1)} |= 2 = d(vi, v

j
i+1).

Case 7: u = vi+1 and v = v
j
i , 1 ≤ j ≤ k and i is even. Then,

| f (vi+1)⊕ f (vi)| =| {
i + 2

2
,

i + 2

2
+ 1, . . . ,

i + 2

2
+ w − 2}

⊕ {
i

2
,

i

2
+ 1, . . . ,

i

2
+ w − 1, n + (i − 1)k + (j − 1)} |

=| {
i

2
, n + (i − 1)k + (j − 1)} |= 2 = d(vi+1, v

j
i).

Case 8: When u = vl and v = v
j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ j ≤ k and both l and m are odd.

Then,

| f (vl)⊕ f (v
j
m)| =| {

l + 1

2
,

l + 1

2
+ 1, . . . ,

l + 1

2
+ w − 2}

⊕ {
m + 1

2
,

m + 1

2
+ 1, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |

=| {
l + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |= m − l + 1 = d(vl , v

j
m),

1 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 9: When u = vl and v = v
j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ j ≤ k and both l and m are even.

Then,

| f (vl)⊕ f (v
j
m)| =| {

l

2
,

l

2
+ 1, . . . ,

l

2
+ w − 1}

⊕ {
m

2
,

m

2
+ 1, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |

=| {{
l

2
, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |= m − l + 1 = d(vl , v

j
m),

1 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 10: When u = vr
i and v = vs

i+1, 1 ≤ r, s ≤ k and i is odd. Then,

| f (vr
i )⊕ f (vs

i+1)| =| {
i + 1

2
, . . . ,

i + 1

2
+ w − 2, n + (i − 1)k + (r − 1)}

⊕ {
i + 1

2
, . . . ,

i + 1

2
+ w − 1, n + (i)k + (s − 1)} |

=| {n + (i − 1)k + (r − 1),
i + 1

2
+ w − 1, n + (i)k + (s − 1)} |= 3 = d(vr

i , vs
i+1).
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Case 11: u = vr
i+1 and v = vs

i , 1 ≤ r, s ≤ k and i is even. Then,

| f (vr
i+1)⊕ f (vs

i )| =| {
i + 2

2
, . . . ,

i + 2

2
+ w − 2, n + (i)k + (r − 1)}

⊕ {
i

2
, . . . ,

i

2
+ w − 1, n + (i − 1)k + (j − 1)} |

=| {
i

2
, n + (i)k + (r − 1), n + (i − 1)k + (s − 1)} |= 3 = d(vr

i+1, vs
i ).

Case 12: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ i, j ≤ k and both l and m are

odd. Then,

| f (vi
l)⊕ f (v

j
m)| =| {

l + 1

2
, . . . ,

l + 1

2
+ w − 2, n + (l − 1)k + (i − 1)}

⊕ {
m + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |

=| {{
l + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (l − 1)k + (i − 1), n + (m − 1)k + (j − 1)} |

= m − l + 2 = d(vi
l , v

j
m), 1 ≤ l < m ≤ n and 1 ≤ i, j ≤ k.

Case 13: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ i, j ≤ k and both l and m are

even. Then,

| f (vi
l)⊕ f (v

j
m)| =| {

l

2
, . . . ,

l

2
+ w − 1, n + (l − 1)k + (i − 1)}

⊕ {
m

2
, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |

=| {{
l

2
, . . . ,

m

2
+ w − 1, n + (l − 1)k + (i − 1), n + (m − 1)k + (j − 1)} |

= m − l + 2 = d(vi
l , v

j
m), 1 ≤ l < m ≤ n and 1 ≤ i, j ≤ k.

Thus, for any distinct u, v ∈ V(Pk
n), | f (u) ⊕ f (v)| = d(u, v) and hence f admits 1-uniform

dcsl. Also, to prove F ⊑ Mink
n, where F is the range of f , which forms a poset, we define

Φ : F → Mink
n as follows in two different cases.

Case 1. On the internal vertices vi of V(Pk
n). Φ( f (vi)) =







a i
2
, if i is even,

b⌈ i
2 ⌉

, otherwise.

Case 2. On the pendant vertices v
j
i of V(Pk

n). Φ( f (v
j
i )) =







a
j
i
2
, if i is even,

b
j

⌈ i
2 ⌉

, otherwise.

In Case 1, the internal vertex labeling of V(Pk
n), exhibits the embedding of F into the un-

derline poset of Mink
n; and in Case 2, the pendent vertex labeling of V(Pk

n), exhibits the em-
bedding of F into the outermost labeling of an underline set of Mink

n. Thus, all together, we
get F ⊑ Mink

n.

Analogously, from Proposition 9 and Proposition 10, we have.
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Proposition 11. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F ⊑ Mink

n. Then dim(F ) = 2.

Proposition 12. For the k-extended poset Avgk
n , dim(Avgk

n) = 2.

Proof. Let us take the linear extensions of Avgk
n as

L1 :[a1, a1
1, . . . , ak

1, a2, a1
2, . . . , ak

2, . . . , ah, a1
h, . . . , ak

h, b1, b1
1, . . . , bk

1, b2, b1
2, . . . , bk

2, . . . , bn−h,

b1
n−h, . . . , bk

n−h] and

L2 :[a1, b1, b2, . . . , bn−h, a2, . . . , ah, bk
n−h, . . . , b1

n−h, bk
n−h−1, . . . , b1

n−h−1, . . . , bk
1, . . . , b1

1,

ak
h, . . . , a1

h, ak
h−1, . . . , a1

h−1, . . . , ak
1, . . . , a1

1].

Then dimension of Avgk
n is at most 2. Again, as in Proposition 6 the dimension cannot be

less than 2. Hence dim(Avgk
n) = 2.

Proposition 13. The k-extended poset Avgk
n embeds the vertex labeling of a 1-uniform dcsl of

the k-uniform caterpillar.

Proof. Let v1, v1
1, . . . , vk

1, v2, v1
2, . . . , vk

2, . . . , vn, v1
n, . . . , and vk

n be the vertices of V(Pk
n).

Let X = {1, 2, . . . , h, . . . , n, . . . , m = n(k + 1) − 1}, where h = ⌈ |V(Pn)|
2 ⌉. To prove the ex-

istence of a poset F from a vertex labeling of 1-uniform dcsl of the k-uniform caterpillar, that
suits for the embedding of Avgk

n , define f : V(Pk
n) → 2X, on internal vertices, by

f (vj) = {1, . . . , n − h − (j − 1)}, 1 ≤ j ≤ n − h, f (vn−h+1) = ∅,

f (vn−h+i) = {n − h + 1, . . . , n − h + (i − 1)}, 2 ≤ i ≤ h

and we consider the vertex labeling on pendant vertices which is same as mentioned in
Proposition 7.

Case 1: When u = vl and v = vm, l 6= m, 1 ≤ l ≤ n − h and m = n − h + 1. Then,

| f (vl)⊕ f (vm)| =| {1, . . . , n − h − (l − 1)} ⊕∅ |

=| {1, . . . , n − h − (l − 1)} |= n − h − (l − 1) = d(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, n − h + 2 ≤ l ≤ n and m = n − h + 1. Then,

| f (vl )⊕ f (vm)| =| {n − h + 1, . . . , l − 1} ⊕∅ |

=| {n − h + 1, . . . , l − 1 = n − h + (l − m)} |= l − m = d(vl , vm).

Case 3: When u = vl and v = vm, l 6= m, 1 ≤ l ≤ n − h and n − h + 2 ≤ m ≤ n. Then,

| f (vl)⊕ f (vm)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − h + 1, . . . , m − 1} |

=| {1, . . . , n − h − (l − 1), n − h + 1, . . . , m − 1} |= m − l = d(vl , vm).

Case 4: When u = vl and v = v
j
m, l 6= m, 1 ≤ l ≤ n − h, m = n − h + 1 and 1 ≤ j ≤ k. Then,

| f (vl )⊕ f (v
j
m)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (m − 1)k + j} |= m − l + 1 = d(vl , v
j
m).
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Case 5: When u = vl and v = v
j
m, l 6= m, n − h + 2 ≤ l ≤ n, m = n − h + 1 and 1 ≤ j ≤ k.

Then,

| f (vl)⊕ f (v
j
m)| =| {n − h + 1, . . . , l − 1} ⊕ {n − 1 + (m − 1)k + j} |

=| {n − h + 1, . . . , l − 1, n − 1 + (m − 1)k + j} |= l − m + 1 = d(vl , v
j
m).

Case 6: When u = vl and v = v
j
m, l 6= m, 1 ≤ l ≤ n − h, n − h + 2 ≤ m ≤ n and 1 ≤ j ≤ k.

Then,

| f (vl)⊕ f (v
j
m)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

= m − l + 1 = d(vl , v
j
m).

Case 7: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l ≤ n − h, m = n − h + 1 and 1 ≤ i, j ≤ k.

Then,

| f (vi
l)⊕ f (v

j
m)| =| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i} ⊕ {n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i, n − 1 + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m).

Case 8: When u = vi
l and v = v

j
m, l 6= m, n − h + 2 ≤ l ≤ n, m = n − h + 1 and 1 ≤ i, j ≤ k.

Then,

| f (vi
l )⊕ f (v

j
m)| =| {n − h + 1, . . . , l − 1, n − 1 + (l − 1)k + i} ⊕ {n − 1 + (m − 1)k + j} |

=| {n − h + 1, . . . , l − 1, n − 1 + (l − 1)k + i, n − 1 + (m − 1)k + j} |= l − m + 2 = d(vi
l , v

j
m).

Case 9: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l ≤ n − h, n − h + 2 ≤ m ≤ n and 1 ≤ j ≤ k.

Then,

| f (vi
l)⊕ f (v

j
m)| =| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i}

⊕ {n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i, n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m).

Thus, for any distinct vertices u, v ∈ V(Pk
n), | f (u) ⊕ f (v)| = d(u, v), and hence f admits

1-uniform dcsl.
Finally, to prove F ⊑ Avgk

n, where F is the range of f , which forms a poset, define Ψ : F →

Avgk
n as follows.

Case 1. On the internal vertices vi of V(Pk
n). Ψ( f (vi)) =

{

bi, when 1 ≤ i ≤ n − h,

ai−(n−h), otherwise.

Case 2. On the pendant vertices v
j
i of V(Pk

n). Φ( f (v
j
i )) =

{

b
j
i , when 1 ≤ i ≤ n − h,

a
j

i−(n−h)
, otherwise.

In Case 1, we can identify the internal vertex labeling of V(Pk
n), as the embedding of F

into the underline poset of Avgk
n . In Case 2, the pendent vertex labeling of V(Pk

n), list the
embedding of F into the outermost labeling of an underline set of Avgk

n. Thus, from Case 1
and Case 2, we get F ⊑ Avgk

n .
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The following result follows from Proposition 12 and Proposition 13.

Proposition 14. Let F be the range of vertex labeling of a 1-uniform dcsl k-uniform caterpillar
such that F ⊑ Avgk

n . Then dim(F ) = 2.

Theorem 1 ([7]). If T is a tree1, then dim(T) ≤ 2 unless T contains one or more of the trees J1

and J2 or their duals as subposets.

Theorem 2. Let F be the poset. Then there exists a 1-uniform dcsl f (the vertex labeling of a
k-uniform caterpillar) such that F = Range( f ) = { f (v) | v ∈ V(Pk

n)}, where n > 2 and k ≥ 1,
and dim(F ) = 2.

Proof. Let f be a vertex labeling of 1-uniform dcsl k-uniform caterpillar on ‘n(k + 1)’ vertices,
where n > 2 and k ≥ 1, other than the labeling which is mentioned in Proposition 7, Proposi-
tion 10 and Proposition 13, respectively, and let F be the range of f . Hence, F = Range( f ) =

{ f (v) | v ∈ V(Pk
n)}, is a poset.

We prove that dim(F ) = 2.
Since the Hasse diagram of F is a tree, from Theorem 1, we have dim(F ) ≤ 2. But, dim(F )

is never less than 2. For, if it is of dimension 1, then the Hasse diagram of it resembles a path,
which is not possible. Hence, dim(F ) = 2.

Recall that [3] the minimum cardinality of the underlying set X such that G admits a 1-
uniform dcsl is called the 1-uniform dcsl index δd(G) of G. Following discussion is an attempt
to establish the relationship between the 1-uniform dscl index of a k-uniform caterpillar and
the dimension of the poset F = Range( f ) = { f (v) | v ∈ V(Pk

n)}, where n ≥ 1 and k ≥ 1.

Lemma 3. The 1-uniform dcsl index of Pk
n (n ≥ 1, k ≥ 1) is n(k + 1)− 1.

Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . , vk
n}, and let f be the dcsl label-

ing of Pk
n with the underlying set as X. First, we claim that | X |≥ n(k + 1)− 1. By Lemma 1,

the 1-uniform dcsl index of Pn is n − 1, and hence for the internal vertices of Pk
n, the dcsl index

is n − 1. For the remaining ‘nk’ vertices (pendant vertices), we need to have atleast ‘nk’ subsets
of X other than the subsets which has already been labeled for the internal vertices. Hence, the
cardinality of X is atleast nk + n − 1. By Proposition 7, the vertex labeling of 1-uniform dcsl of
Pk

n with underlying set X is of cardinality n(k + 1)− 1. Hence, δd(Pk
n) = n(k + 1)− 1.

In Propositions 7, 10 and 13, the existence of different vertex labeling of 1-uniform dcsl of
k-uniform caterpillar and their embedding in respective posets have been established.

In the following theorem we determine the bounds of the poset F , where
F = Range( f ) = { f (v) | v ∈ V(Pk

n)}.

Theorem 3. Let F be the poset which is the range of a 1-uniform dcsl of the k-uniform cater-
pillar, with respect to set inclusion ‘⊆’. Then, dim(F ) ≤ δd(Pk

n).

Proof. Let f be a 1-uniform dcsl of Pk
n(n ≥ 1, k ≥ 1), such that F = { f (v) | v ∈ V(Pk

n)} forms
a poset with respect to set inclusion ‘⊆’. Depending on the number of vertices of V(Pk

n), we
prove the theorem for the following four cases.

1 we call a poset is a tree if its Hasse diagram is a tree in the graph theoretic sense.
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Case 1: When n = 1 and k = 1. In this case, the poset F is isomorphic to a poset which
is a chain of length 1, and hence dim(F ) = 1. But by Lemma 3, δd(P1

1 ) = 1. Thus, we have
dim(F ) = δd(Pk

n).
Case 2: When n = 2 and k = 1. By Lemma 3, we have δd(P1

2 ) = 3. Also F is isomorphic
to any of the four posets namely, a poset which is a chain of length 3, poset Avg4, poset ˆAvg4

or poset P1, where P is a chain of length 1. If F is isomorphic to chain of length 3, then
dim(F ) = 1, and hence dim(F ) < δd(Pk

n). If F ∼= Avg4, then by Proposition 14, dim(F ) = 2,
and hence dim(F ) < δd(Pk

n). Since, for a poset P, dim(P) = dim(P̂) (see [7]), so if F ∼= ˆAvg4,
then dim(F ) = dim(F̂ ) = dim(Avg4) = 2. Thus, dim(F ) < δd(Pk

n). If F ∼= P1, where P is a
chain of length 1, then by Proposition 8, dim(F ) = 2, and hence, dim(F ) < δd(Pk

n).
Case 3: When n ≥ 3 and k ≥ 1. In this case, we prefer k-extended posets that embeds F , as

it is not easy to predict all the variations of the poset F . Thus, based on the underline posets
of the k-extended posets, since by Lemma 3, δd(Pk

n) = n(k + 1)− 1, it is enough to consider the
following subcases under Case 3.

Case 3.1: If the underline poset is a linear order of finite length, say L : ai−1 � ai, for
2 ≤ i ≤ n, then by Proposition 8, dim(F ) = 2. Hence δd(Pk

n) > dim(F ).
Case 3.2: If the underline poset is isomorphic to Minn, then by Proposition 11, dim(F ) = 2.

Hence dim(F ) < δd(Pk
n).

Case 3.3: If the underline poset is isomorphic to Avgn, then by Proposition 14, dim(F ) = 2.
Hence dim(F ) < δd(Pk

n).
Case 4: When the poset F is not isomorphic to either Pk, Mink

n or Avgk
n . We have from

Theorem 2, dim(F ) = 2 and, by Lemma 3, δd(Pk
n) = n(k + 1) − 1, hence dim(F ) < δd(Pk

n).
Thus in all the cases we get dim(F ) ≤ δd(Pk

n).

Theorem 4. The k-uniform caterpillar Pk
n admits a k-uniform dcsl.

Proof. Consider G = Pk
n with n(k + 1) vertices, say v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . ,
and vk

n. Let X = {1, 2, . . . , h, . . . , n, . . . , n(k + 1)− 1, . . . , k(n(k + 1)− 1)}.
Define f : V(G) → 2X by f (v1) = ∅, f (vi) = {1, 2, . . . , (i − 1)k} for 2 ≤ i ≤ n, and for

1 ≤ i ≤ k,

f (vi
1) = f (v1) ∪ {(n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k},

f (vi
2) = f (v2) ∪ {(n − 1)k + k2 + (i − 1)k + 1, . . . , (n − 1)k + k2 + (i − 1)k + k} and

f (vi
n) = f (vn)∪

{(n − 1)k + (n − 1)k2 + (i − 1)k + 1, . . . , (n − 1)k + (n − 1)k2 + (i − 1)k + k}.

In general, for 1 ≤ i ≤ n and 1 ≤ j ≤ k,

f (v
j
i) = f (vi)∪ {(n − 1)k+ (i − 1)k2 + (j − 1)k+ 1, . . . , (n − 1)k+ (i − 1)k2 + (j − 1)k+ k}.

Case 1: When u = vl and v = vm, l = 1 and 2 ≤ m ≤ n. Then,

| f (vl )⊕ f (vm)| =| ∅⊕ {1, 2, . . . , (m − 1)k} |

=| {1, 2, . . . , (m − 1)k} |= (m − 1)k = kd(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, 2 ≤ l, m ≤ n. Then,

| f (vl)⊕ f (vm)| =| {1, 2, . . . , (l − 1)k} ⊕ {1, 2, . . . , (m − 1)k} |

=| {(l − 1)k + 1, . . . , (m − 1)k} |= (m − l)k = kd(vl , vm), 2 ≤ l < m ≤ n.
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Case 3: When u = vl and v = v
j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)|

=| ∅⊕ {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . , (n + j − 2)k + (m − 1)k2 + k} |

=| {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . , (n + j − 2)k + (m − 1)k2 + k} |

= (m − l + 1)k = kd(vl , v
j
m).

Case 4: When u = vl and v = v
j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)|

=| {1, 2, . . . , (l − 1)k} ⊕ {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . ,

(n + j − 2)k + (m − 1)k2 + k} |

=| {(l − 1)k + 1, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . ,

(n + j − 2)k + (m − 1)k2 + k} |

= (m − l + 1)k = kd(vl , v
j
m), 2 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 5: When u = vi
l and v = v

j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)|

=| {(n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k} ⊕ {1, . . . , (m − 1)k,

(n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . , (n − 1)k + (m − 1)k2 + (j − 1)k + k} |

=| {1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . ,

(n − 1)k + (m − 1)k2 + (j − 1)k + k, (n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k} |

= (m − l + 2)k = kd(vi
l , v

j
m).

Case 6: When u = vi
l and v = v

j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)|

=| {1, . . . , (l − 1)k, (n − 1)k + (l − 1)k2 + (i − 1)k + 1, . . . ,

(n − 1)k + (l − 1)k2 + (i − 1)k + k} ⊕ {1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2+

(j − 1)k + 1, . . . , (n − 1)k + (m − 1)k2 + (j − 1)k + k} |

=| {(n − 1)k + (l − 1)k2 + (i − 1)k + 1, . . . , (n − 1)k + (l − 1)k2 + (i − 1)k + k,

(l − 1)k + 1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . ,

(n − 1)k + (m − 1)k2 + (j − 1)k + k} |

= (m − l + 2)k = kd(vi
l , v

j
m), 2 ≤ l < m ≤ n and 1 ≤ i ≤ j ≤ k.

Hence, for any distinct u, v ∈ V(G), | f (u) ⊕ f (v)| = kd(u, v). Which shows that f admits
k-uniform dcsl.

Lemma 4. For n ≥ 1, k ≥ 1, δk(Pk
n) = k(n(k + 1)− 1).
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Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . , vk
n}, and let f be the dcsl label-

ing of Pk
n with the underlying set as X. By Lemma 2, the 1-uniform dcsl index of Pn is k(n − 1),

which implies that for internal vertices of Pk
n, the required dcsl index is k(n − 1), where as for

remaining ‘nk’ vertices (pendant vertices), we need at least ‘k2n’ subsets of X other than the
subsets which has already been labeled. Hence the cardinality of X is atleast k2n + k(n − 1).
Since by Theorem 4, Pk

n is a k-uniform dcsl with underlying set X of cardinality k(n(k+ 1)− 1),
thus we have, δk(Pk

n) = k(n(k + 1)− 1).

Theorem 5 ([4]). If G is k-uniform dcsl, and m is a positive integer, then G is mk-uniform dcsl.

It has been already established in [4] that path admits arbitrary k-uniform dcsl labeling and
k-uniform dcsl index, δk(Pn) is k times that of 1-uniform dcsl index. In this paper, this result
is extended to a k-uniform caterpillar, and we prove that the k-uniform dcsl index, δk(Pk

n) is k

times that of the 1-uniform dcsl index of k-uniform caterpillar. It is interesting to note that the
range of any arbitrary k-uniform dcsl of a k-uniform caterpillar, Pk

n need not form a connected
poset. However, there always exists a k-uniform dcsl of Pk

n, whose range is a connected poset.
Hence, the Hasse diagram (or poset) which embeds the vertex labeling of 1-uniform dcsl Pk

n,
can also embed the vertex labeling of k-uniform dcsl Pk

n. Hence, for such postes the dimension
corresponding to 1-uniform dcsl Pk

n and the dimension corresponding to k-uniform dcsl Pk
n are

same. Thus, we have the following theorem.

Theorem 6. If F is the range of a k-uniform dcsl of the k-uniform caterpillar Pk
n (n ≥ 1, k ≥ 1),

that forms a poset with respect to set inclusion ‘⊆’, then, dim(F ) ≤ δk(Pk
n).

Proof. Proof is immediate from Theorem 5, Lemma 4 and Theorem 3.

Acnowledgement. The authors would also like to thank the referee for the valuable com-
ments that greatly improved the quality of this paper.
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Наґесвара Рао К., Ґермiна К.А., Шаiнi П. Про розмiрнiсть маркування вершин k-однорiдного dcsl

k-однорiдного графа // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 134–149.

Сумiсне з вiдстанню множинне маркування (dcsl) зв’язного графа G є iн’єктивним вiдобра-
женням f : V(G) → 2X, де X є непорожною базовою множиною такою, що вiдповiдна iнду-
кована функцiя f ⊕ : E(G) → 2X \ {∅}, задана рiвнiстю f ⊕(uv) = f (u) ⊕ f (v), задовольняє

| f ⊕(uv) |= k
f
(u,v)

dG(u, v) для довiльної пари рiзних вершин u, v ∈ V(G), де dG(u, v) позначає

вiдстань мiж u i v та k
f
(u,v) є числом, не обов’язково цiлим. Сумiсне з вiдстанню множинне мар-

кування f графа G є k-однорiдним, якщо всi коефiцiєнти пропорцiйностi вiдносно f рiвнi k,
i якщо G допускає таке маркування, то G називають k-однорiдним dcsl графом. k-однорiдний

dcsl iндекс графа G, що позначається δk(G), є мiнiмальним серед потужностей X, де X пробiгає
всi k-однорiднi dcsl-множини графа G. Лiнiйне розширення L часткового порядку P = (P,�)

є лiнiйним порядком на елементах iз P таким, що з x � y в P слiдує, що x � y в L для всiх
x, y ∈ P. Розмiрнiсть множини P, яка позначається dim(P), є мiнiмальним числом лiнiйних
розширень на P, перетин яких є ‘�’. У цiй статтi ми доводимо, що dim(F ) ≤ δk(P+k

n ), де F є
образом k-однорiдного dcsl k-однорiдного графа, позначеного P+k

n (n ≥ 1, k ≥ 1) на ‘n(k + 1)’
вершинах.

Ключовi слова i фрази: k-однорiдний dcsl iндекс, розмiрнiсть множини з частковим поряд-
ком, решiтка.
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APPROXIMATION RELATIONS ON THE POSETS OF PSEUDOMETRICS AND OF

PSEUDOULTRAMETRICS

We show that non-trivial “way below” and “way above” relations on the posets of all pseudo-

metrics and of all pseudoultrametrics on a fixed set X are possible if and only if the set X is finite.
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INTRODUCTION

It turned out (see [1]) that partial orders are closely related to topologies, in particular, a

“decent” ordering of a set determines quite natural and useful topologies, e.g., Scott topology,

upper/lower topology, Lawson topology etc. For these topologies to have nice properties, the

original order has to satisfy certain requirements, mostly related to approximation relations.

Recall that a poset (D,≤) is directed (resp. filtered) if for all d1, d2 ∈ D there is d ∈ D such

that d1, d2 ≤ d (resp. d1, d2 ≥ d).

Definition 1. An element x0 is called to be way below an element x1 (or approximates x1 from

below) in a poset (X,≤) (denoted x0 ≪ x1) if for every non-empty directed subset D ⊂ X such

that x1 ≤ sup D there is an element d ∈ D such that x0 ≤ d.

Definition 2. An element x0 is called to be way above an element x1 (or approximates x1 from

above) in a poset (X,≤) (denoted x0 ≫ x1) if for every non-empty filtered subset D ⊂ X such

that x1 ≥ inf D there is an element d ∈ D such that x0 ≥ d.

Obviously x0 ≪ x1 or x0 ≫ x1 imply respectively x0 ≤ x1 or x0 ≥ x1 (see more in [1]).

A poset is called continuous (dually continuous) if each element is the least upper bound

of all elements approximating it from below (resp. the greatest lower bound of all elements

approximating it from above).

We are going to apply the above apparatus to the set of all pseudometrics on a fixed set, and

to its subset that consists of all pseudoultrametrics. Ultrametrics (or non-Archimedean metrics

[2]) are studied since the beginning of XX century, cf. a review in [3]. They found numerous

applications, e.g., in computer science.

Monotone families of (pseudo-)ultrametrics were studied in [4], but approximation rela-

tions were out of the scope of the latter paper.

The following notion is a natural mixture of ones of ultrametric and pseudometric.

УДК 515.124
2010 Mathematics Subject Classification: 06F30, 54E35.
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Definition 3. A mapping d : X × X → R, that satisfies the conditions:

• d(x, y) ≥ 0 for all x, y ∈ X (nonnegativeness);

• d(x, x) = 0 for all x ∈ X (identity);

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry);

• d(x, y) ≤ max{d(y, z), d(z, x)} for all x, y, z ∈ X (strong triangle inequality);

is called a pseudoultrametric on the set X.

It is just a pseudometric such that the usual triangle inequality d(x, y) ≤ d(y, z) + d(z, x)

holds in a stronger form.

The main results of this paper are somewhat disappointing, but they show that, to obtain

meaningful theory of approximation, narrower classes of pseudometrics should be considered.

1 POSET OF PSEUDOMETRICS

We denote by Ps(X) the set of all pseudometrics on a set X. The partial order on Ps(X)

is defined pointwise: a pseudometric d1 precedes a pseudometric d2 (written d1 ≤ d2) if

d1(x, y) ≤ d2(x, y) holds for all points x, y ∈ X.

Obviously the trivial pseudometric d ≡ 0 is the least element of Ps(X), hence Ps(X) is

bounded from below. The greatest lower bound for two pseudometrics is described with the

following statement.

Lemma 1. For d1, d2 ∈ Ps(X) the function

d∗(x, y) = inf

{

n−1

∑
k=0

{min{d1(tk, tk+1), d2(tk, tk+1)}}|n ∈ N, x = t0, {t1, ..., tn−1} ⊂ X, tn = y

}

is the infimum of d1, d2 in the set Ps(X).

Proof. Properties of symmetry and identity clearly hold for d∗. To verify the triangle inequality

d∗(x, y) ≤ d∗(x, z) + d∗(z, y),

recall that (after renumbering points in the second sum)

d∗(x, z) + d∗(z, y) = inf
{

m

∑
k=1

{min{d1(tk−1, tk), d2(tk−1, tk)}|

m ∈ N, t0, t1, . . . , tm ∈ X, x = t0, tm = z
}

+ inf
{

n

∑
k=m+1

min{d1(tk−1, tk), d2(tk−1, tk)}|

m, n ∈ N, 1 6 m 6 n − 1, tm, . . . , tn−1, tn ∈ X, tm = z, tn = y
}

≥ inf
{

n

∑
k=1

{min{d1(tk−1, tk), d2(tk−1, tk)}|

m, n ∈ N, 1 6 m 6 n − 1, t0, . . . , tn−1, tn ∈ X, t0 = x, tm = z, tn = y
}

≥ inf
{

n

∑
k=1

{min{d1(tk−1, tk), d2(tk−1, tk)}|

n ∈ N, t0, . . . , tn−1, tn ∈ X, t0 = x, tn = y
}

= d∗(x, y).
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Hence d∗ ∈ Ps(X).

The simplest sequence t0, t1, . . . , dn that satisfies the above conditions is t0 = x, t1 = y (for

n = 1). It implies d∗(x, y) ≤ min{d1(x, y), d2(x, y)}, i.e., d∗ is a lower bound of the pseudomet-

rics d1, d2.

Show that d∗ is the greatest lower bound. For all x, y ∈ X and d′ ∈ Ps(X) such that d′ ≤ d1,

d′ ≤ d2 we obtain

d′(x, y) = inf
{

n

∑
k=1

d′(tk−1, tk)|n ∈ N, t0, . . . , tn−1, tn ∈ X, t0 = x, tn = y
}

6 inf
{

n

∑
k=1

{min{d1(tk−1, tk), d2(tk−1, tk)}|n ∈ N, t0, . . . , tn−1, tn ∈ X, t0 = x, tn = y
}

= d∗(x, y).

The least upper bound of pseudometrics d1, d2 is the pointwise minimum

d∗(x, y) = max{(d1(x, y), d2(x, y)} for all x, y ∈ X, thus Ps(X) is a lattice with the least el-

ement d ≡ 0, but obviously without a greatest element for |X| > 1. Being a lattice, Ps(X) is

both directed and filtered.

This lattice is not distributive.

Example 1. Consider, e.g., the set X = {x1, x2, x3} and the pseudometrics

d1(a, b) =

{

0, {a, b} = {x2, x3} or a = b,

1 otherwise,

d2(a, b) =

{

0, {a, b} = {x1, x3} or a = b,

1 otherwise,

d3(a, b) =

{

0, {a, b} = {x1, x2} or a = b,

1 otherwise,

for all a, b ∈ X. Then

d1 ∨ d2(a, b) =

{

0, a = b,

1 otherwise,
hence (d1 ∨ d2) ∧ d3 = d3.

On the other hand

d1 ∧ d3 = d2 ∧ d3 ≡ 0, hence (d1 ∧ d3) ∨ (d2 ∧ d3) ≡ 0.

Therefore (d1 ∨ d2) ∧ d3 6= (d1 ∧ d3) ∨ (d2 ∧ d3).

Not having a greatest element, the lattice Ps(X) cannot be complete. Nevertheless, it is

straightforward to verify that Ps(X) is a conditionally complete upper semilattice, i.e., each

non-empty set D of pseudometrics that is bounded from above by a pseudometric d0 has a

supremum which is calculated pointwise: (sup D)(x, y) = sup{d(x, y) | d ∈ D} for all x, y ∈

X. The latter supremum exists because the set in the curly braces is bounded by d0(x, y). The
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infimum of a set D (which is always bounded from below by d0 ≡ 0) is similar to the one in

Lemma 1:

(inf D)(x, y) = inf
{ n

∑
k=1

inf{d(tk−1, tk) | d ∈ D} | n ∈ N, x = t0, {t1, ..., tn−1} ⊂ X, tn = y
}

.

Thus Ps(X) is a complete lower semilattice.

Let us start with a simple but important observation.

Lemma 2. Let pseudometrics d0, d1 in X be such that d0(x, y) ≥ d1(x, y) > 0 for some x, y ∈ X.

Then neither d0 ≪ d1 nor d1 ≫ d0 is valid.

Proof. Choose the set D = {(1 − 1
n ) · d1|n ∈ N} of pseudometrics. It is directed, its supremum

is equal to d1, but (1 − 1
n ) · d1(x, y) < d1(x, y) 6 d0(x, y), hence (1 − 1

n)d1 6> d0, thus d0 6≪ d1.

Similarly the set D′ = {(1 + 1
n ) · d0|n ∈ N is filtered with the greatest lower bound d0, but

neither of its element precedes d1, hence d1 6≫ d0.

It is easy to see that pseudometrics on a finite set are in the “way below” relation if and

only if the above double inequality does not hold for all pairs of points.

Proposition 1. For pseudometrics d0 and d1 on a finite set X the following statements are

equivalent:

(1) d0 ≪ d1 in Ps(X);

(2) d1 ≫ d0 in Ps(X);

(3) for all x, y ∈ X either d0(x, y) = d1(x, y) = 0 or d0(x, y) < d1(x, y) is valid.

Proof. (1) =⇒ (3) and (2) =⇒ (3) have already been proved. To show (3) =⇒ (1), assume that

the condition of the theorem holds for some d0, d1 ∈ Ps(X), and a directed set D ⊂ Ps(X) is

such that sup D > d1, hence sup{d(x, y) | d ∈ D} > d1(x, y) for all x, y ∈ X. For all pairs

x, y ∈ X such that d0(x, y) > 0 (and hence d1(x, y) > d0(x, y)) choose an element dx,y ∈ D such

that dx,y(x, y) > d0(x, y). The set of the chosen elements of D is finite, D is directed, hence

there is d ∈ D that succeeds all dx,y. Obviously d > d0, thus d0 ≪ d1.

Proof of (3) =⇒ (2) is analogous.

Unfortunately, for an infinite set X conditions of the latter proposition are necessary but

not sufficient.

Example 2. Consider X = N with the standard metric d(x, y) = |x − y| and the set of pseudo-

metrics D = {di|i ∈ N},

di(x, y) =























|x − y|, x, y < i;

|x − i|, x < i, y ≥ i;

|i − y|, x ≥ i, y < i;

0, x, y ≥ i.

It is directed because i ≤ j implies di ≤ dj, and sup{di | i ∈ N} = d. For the metric

d′ = 1
2 d and all points x, y ∈ N we have either d′(x, y) = d(x, y) = 0 or d′(x, y) < d(x, y) but

d′(i, i + 1) = 1
2 > di(i, i + 1) = 0, hence neither of di succeeds d′.

We describe a construction of a pseudometric that precedes a given one, and is obtained by

“gluing” points. In what follows we denote d(x, F) = inf{d(x, y) | y ∈ F}.
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Lemma 3. Let d ∈ Ps(X) and subset F ⊂ X be non-empty. Then the function d́F : X × X → R

that is determined with the formula

d́F(x, y) = min{d(x, y), d(x, F) + d(y, F)}, x, y ∈ X,

is a pseudometric on X, and d́F ≤ d. If the set F is bounded, then d(x, y) − d́F(x, y) ≤ diam F

for all x, y ∈ X.

Proof. Check the prorerties from the definition of pseudometrics for arbitrary x, y, z ∈ X:

(1) d́F(x, y) ≥ 0 because d(x, y) ≥ 0 i d(x, F) + d(y, F) ≥ 0.

(2) d́F(x, x) = min{d(x, x), d(x, F) + d(x, F)} = 0.

(3) d́F(x, y) = min{d(x, y), d(x, F) + d(y, F)} = min{d(y, x), d(y, F) + d(x, F)} = d́F(y, x).

(4)

d́F(x, z) + d́F(z, y)

= min{d(x, z), d(x, F) + d(z, F)}+ min{d(z, y), d(z, F) + d(y, F)}

= min
{

d(x, z) + d(z, y),
(

d(x, z) + d(z, F)
)

+ d(y, F),
(

d(z, y) + d(z, F)
)

+ d(x, F), d(x, F) + d(z, F) + d(z, F) + d(y, F)}

≥ min{d(x, y), d(x, F) + d(y, F), d(y, F) + d(x, F), d(x, F) + d(y, F) + 2d(z, F)}

= min{d(x, y), d(x, F) + d(y, F)}.

Thus d́F is a pseudometric.

Now for arbitrary ε > 0 choose z, z′ ∈ F such that d(x, z) < d(x, F) + ε, d(y, z′) < d(y, F) +

ε. Hence

d(x, F) + d(y, F) > d(x, z) + d(y, z′)− 2ε > d(x, z) + d(y, z)− d(z, z′)− 2ε

> d(x, z) + d(y, z)− diam F − 2ε > d(x, y)− diam F − 2ε,

thus

d́F(x, y) > d(x, y)− diam F − 2ε,

then passing to the limit as ε tends to 0 we obtain the required inequality.

Theorem 1. For all pseudometrics d0, d1 on an infinite set X, d0 ≫ d1 is not valid in Ps(X). If

d0 6≡ 0, then d0 ≪ d1 also does not hold.

Proof. Let d0 be way above d1. Choose a sequence x1, x2, · · · ∈ X of distinct points and put

αm = max{d0(xi, xj) | 1 ≤ i, j ≤ m}+ m for all m ∈ N. The sequence (αm)m∈N is increasing,

and the functions

δm(a, b) =























0, a = b or a, b /∈ {xm, xm+1, . . . },

αmax{i,j}, a = xi 6= b = xj, i, j ≥ m,

αi, a = xi, i ≥ m, b /∈ {xm, xm+1, . . . }

or b = xi, i ≥ m, a /∈ {xm, xm+1, . . . },

a, b ∈ X,

are pseudometrics and even pseudoultrametrics. It is easy to see that δ1 ≥ δ2 ≥ . . . ,

inf{δm | m ∈ N} ≡ 0 6 d1, but δm 66 d0 (e.g., δm(xm, xm+1) = αm+1 ≥ d0(xm, xm+1)). Therefore

d0 6≫ d1.
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Assume now d0 ≪ d1, d0 6≡ 0. Choose a sequence x0, x1, x2, · · · ∈ X of distinct points

such that d0(x0, xi) > 0 for all i ∈ N. Denote Fi = {x0, xi, xi+1, xi+2, . . . }, i ≥ 1. Let d′ be the

pseudometric on X:

d′(a, b) =























0, a, b /∈ {x0, x1, . . . },

|i − j|, a = xi, b = xj,

i, a = xi, b /∈ {x0, x1, . . . }

or a /∈ {x0, x1, . . . }, b = xi,

x, y ∈ X.

Show that the pseudometric ρ = d1 + d′ > d1 is the least upper bound of the non-decreasing

sequence of pseudometrics ρi = ρ́Fi
. Clearly ρ(a, Fi \ {x0}) → ∞ as i → ∞ for all points a ∈ X,

hence ρ(a, Fi) → ρ(a, x0), and

ρ́Fi
(a, b) → min{ρ(a, b), ρ(a, x0) + ρ(b, x0)} = ρ(a, b).

On the other hand, none of ρi succeeds d0 because ρi(x0, xi) = 0 but d0(x0, xi) > 0. There-

fore d0 is not way below d1.

Thus there is no non-trivial approximation in Ps(X) for infinite X.

2 POSET OF PSEUDOULTRAMETRICS

Consider the subset PsU(X) ⊂ Ps(X) that consists of all pseudoultrametrics on X, with

the restriction of the partial order. It is also a lattice, with the meets (the pairwise infima)

calculated pointwise as well, but the formula for the joins (the pairwise suprema) needs to be

modified. For d1, d2 ∈ PsU(X) the function

d∗(x, y) = inf{max{min{d1(tk, tk+1), d2(tk, tk+1)} | 0 ≤ k ≤ n − 1}|

n ∈ N, x = t0, {t1, ..., tn−1} ⊂ X, tn = y}

is the infimum of d1, d2 in the set PsU(X). The formula for the infima of arbitrary sets is

modified accordingly. The pseudometrics in Example 1 are pseudoultrametrics, hence the

lattice PsU(X) is not distributive as well.

Mutatis mutandis we obtain a similar result on approximation relations in PsU(X) for a

finite set X.

Proposition 2. For pseudoultrametrics d0 and d1 on a finite set X the following statements are

equivalent:

(1) d0 ≪ d1 in PsU(X);

(2) d1 ≫ d0 in PsU(X);

(3) for all x, y ∈ X either d0(x, y) = d1(x, y) = 0 or d0(x, y) < d1(x, y) is valid.

Nonetheless, the transfer of Theorem 1 to pseudoultrametrics is not so trivial. We need to

modify Lemma 3.

Lemma 4. Let d ∈ PsU(X) and subset F ⊂ X be non-empty. Then the function d̀F : X ×X → R

that is determined with the formula

d́F(x, y) = min
{

d(x, y), max{d(x, F), d(y, F)}
}

, x, y ∈ X,

is a pseudoultrametric on X, and d̀F ≤ d. If the set F is bounded, then

d(x, y) ≤ max{d̀F(x, y), diam F} for all x, y ∈ X.
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Proof. Only the triangle inequality has to be verified. For arbitrary x, y, z ∈ X:

(4)

max{d̀F(x, z), d̀F(z, y)

= max
{

min{d(x, z), max{d(x, F), d(z, F)}}, min{d(z, y), max{d(z, F), d(y, F)}}
}

= min
{

max{d(x, z), d(z, y)}, max{d(x, z), d(z, F), d(y, F)},

max{d(z, y), d(z, F), d(x, F)}, max{d(x, F), d(z, F), d(z, F), d(y, F)}
}

≥ min
{

d(x, y), max{d(x, F), d(y, F)}
}

.

Thus d̀F is a pseudoultrametric.

Now for arbitrary ε > 0 choose points z, z′ ∈ F such that d(x, z) < d(x, F) + ε, d(y, z′) <

d(y, F) + ε. Hence

max{d(x, F), d(y, F)} ≥ max{d(x, z)− ε, d(y, z′)− ε} = max{d(x, z), d(y, z′)} − ε

> max{d(x, z), d(y, z), d(z, z′)} − ε,

thus

max{diam F, d̀F(x, y)}

≥ max
{

diam F, min{d(x, y), max{d(x, z), d(y, z), d(z, z′ )} − ε}
}

= min
{

max{diam F, d(x, y)}, max{diam F, d(x, z)− ε, d(y, z)− ε, d(z, z′)− ε}
}

≥ max{diam F, d(x, y)} − ε

for all ε > 0, hence max{diam F, d̀F(x, y)} ≥ d(x, y).

Now we are ready to prove

Theorem 2. For all pseudoultrametrics d0, d1 on an infinite set X, d0 ≫ d1 is not valid in

PsU(X). If d0 6≡ 0, then d0 ≪ d1 also does not hold.

Proof. Recall that the pseudometrics δm used in the proof of Theorem 1 are pseudoultrametrics,

hence the entire construction is applicable to proof of d0 6≫ d1 in PsU(X) as well.

Assume now d0 ≪ d1, d0 6≡ 0. Choose a sequence x0, x1, x2, · · · ∈ X of distinct points such

that d0(x0, xi) > 0 for all i ∈ N. Put αm = max{d0(xi, xj) | 0 ≤ i, j ≤ m}+ m for all m ≥ 0

(hence α0 = 0), and denote Fi = {x0, xi, xi+1, xi+2, . . . } for all i ∈ N. The formula

d′(a, b) =























0, a, b /∈ {x0, x1, . . . } or a = b,

αmax{i,j}, a = xi 6= b = xj,

αi, a = xi, b /∈ {x0, x1, . . . }

or a /∈ {x0, x1, . . . }, b = xi,

x, y ∈ X,

defines a pseudoultrametric on X. Then the pseudoultrametric ρ = sup{d1, d′} > d1 is the

least upper bound of the non-decreasing sequence of pseudoultrametrics ρi = ρ̀Fi
. Observe

ρ(a, Fi \ {x0}) → ∞ as i → ∞ for all points a ∈ X, hence ρ(a, Fi) → ρ(a, x0), and

ρ̀Fi
(a, b) → min

{

ρ(a, b), max{ρ(a, x0), ρ(b, x0)}
}

= ρ(a, b).

Again, ρi(x0, xi) = 0 but d0(x0, xi) > 0, hence ρi ≥ d0 is impossible, which contradicts to

d0 ≪ d1 in PsU(X).

Thus, for an infinite set X the poset PsU(X) is as poor in “way below” and “way above”

relations as Ps(X) is.
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3 CONCLUSIONS

We have proved that the posets Ps(X) and PsU(X) have no nontrivial approximation rela-

tions, hence are not continuous or dually continuous. Therefore we shall restrict our attention

to narrower classes of pseudometrics, namely to compact and locally compact pseudoultra-

metrics. This will be the topic of an upcoming publication.
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INTRODUCTION

Let R will always denote a commutative domain with nonzero unit element. Let ϕ : R → Z

be a norm satisfying ϕ(0) = 0, ϕ(a) > 0 for a 6= 0, and ϕ(ab) ≥ ϕ(a).

Definition 1. Domain R is called Euclidean if for any a, b ∈ R with b 6= 0, there exist q, r ∈ R

such that

a = bq + r and ϕ(r) < ϕ(b).

Let a, b ∈ R, b 6= 0, and k be an arbitrary positive integer. We talk about k-term divisibility

chain [7] if there exists a finite sequence of equalities

a = bq1 + r1, b = r1q2 + r2, . . . , rk−2 = rk−1qk + rk. (1)

Definition 2. Domain R is called ω-Euclidean ring [7] relatively to norm N, if for every pair

of elements a, b ∈ R, b 6= 0 can be found k ∈ N and such divisibility chain (1) of length k that

ϕ(rk) < ϕ(b).

Clearly, 1-Euclidean domain is an Euclidean domain. Now let RX = R[[X]][X−1 ] be the ring

of formal Laurent series with coefficient in R. P. Samuel in [6] proved that if RX is euclidean,

R is so. Also F. Dress proved the converse in [3]. Also in [1] it is proved similar results are for

2-Euclidean domain.
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MAIN RESULTS

Let R be an integral domain with a norm map ϕ : R → Z and let RX = R[[X]][X−1 ] be the

ring of formal Laurent series with coefficient in R.

For any element

f = ∑
i≥h

aiX
i ∈ RX, ai ∈ R, h ∈ Z, ah 6= 0

we put a norm map ψ : RX → R satisfying ψ( f ) = ah and ψ(0) = 0, where ah be a variable

coefficient in the lowest degree.

Proposition 1. For any f , g ∈ RX with g 6= 0 we have that f = gu or, f = gu + v, where

ψ(g) ∤ ψ(v).

Proof. Let h (resp. k) be the lowest degree of f (resp. g). Set ψ( f ) = ψ(g)q + r, where q, r ∈ R.

Then we can write

v = f − qXh−kg = rXh + higher degree terms.

If ψ(g) ∤ r, we get ψ(g) ∤ r = ψ(v).

If ψ(g) | r, we similarly construct v1 = v − q1Xh1−kg, (h1 = order of v) and so on. If the

process stops after a finite number of steps, we obtain

f = gu + v, ψ(g) ∤ ψ(v).

Otherwise the infinite sum

u = qXh−k + q1Xh1−k + · · ·+ qnXhn−k + · · ·

is true sense, and we obtain f = gu.

Let a map ϕx : R → Z by ϕx( f ) = ϕ(ψ( f )). Then we obtain the following.

Theorem 1. If R is ω-Euclidean domain with respect to ϕ, then RX is ω-Euclidean domain

with respect to ϕx = ϕ · ψ.

Proof. By Proposition 1 for any f , g ∈ RX with g 6= 0 we have the following:

(1) f = gu, or

(2) f = gu + v, ψ(g) ∤ ψ(v).

It is obvious that the case (1), RX is Euclidean domain and thus R is ω-Euclidean.

In the case of (2) review:

a) if ϕ(ψ(v)) < ϕ(ψ(g)), then we have ϕx(v) < ϕx(g) by definition, RX is Euclidean do-

main and thus R is ω-Euclidean;

b) if ϕ(ψ(v)) ≥ ϕ(ψ(g)), then

ψ(v) = ψ(g)q1 + r1, ψ(g) = r1q2 + r2, . . . , rk−2 = rk−1qk + rk, (2)

and ϕ(rk) < ϕ(ψ(g)), because R is ω-Euclidean domain.

Now if we set

v − q1Xh1−kg = v1, (h1 - order of v),
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we have f = (u + q1Xh1−k)g + v1 and ψ(v1) = r1. If we set

g − q2Xk−h2 v1 = v2, (h2 - order of v1),

we have g = q2Xk−h2 v1 + v2 and ψ(v2) = r2. Continuing this process in the k step we get

vk−2 − qkXhk−1−hk vk−1 = vk, (hk — order of vk−1),

then vk−2 = qkXhk−1−hk vk−1 + vk and ψ(vk) = rk. If rk 6= 0, we obtain

f = (u + q1Xh1−k)g + v1, g = q2Xk−h2 v1 + v2, . . . , vk−2 = qkXhk−1−hk vk−1 + vk,

and

ϕx(g) = ϕ(ψ(g)) > ϕ(rk) = ϕx(vk).

If rk = 0, we have rk−2 = rk−1qk. Then we have.

If ϕ(ψ(g)) > ϕ(rk−1), we obtain (k − 1)-term divisibility chain, because

ϕ(ψ(g)) = ϕx(g) > ϕx(vk−1) = ϕ(rk−1).

On the other hand, since ϕ(rk−1) ≥ ϕ(ψ(g)), then with (2) we get ψ(g) = rk−1m, where

m ∈ R. Then ϕ(m) = 1.

Hence,

rk−1 = ψ(g)m−1

and

ψ(v) = ψ(g)x,

for some x ∈ R. This is contradictory to for ψ(g) ∤ ψ(v).

Theorem 2. If RX is ω-Euclidean domain with respect to ϕx, then R is ω-Euclidean domain

with respect to ϕ.

Proof. Let a, b ∈ R, where b 6= 0. Since RX is ω-Euclidean domain, there exist such

q1, . . . , qn, r1, . . . , rn ∈ RX that

a = bq1 + r1, b = r1q2 + r2, . . . , rn−2 = rn−1qn + rn, (3)

where ϕx(rn) < ϕx(b).

Note that

qi = q′ki
Xki + higher degree terms, ri = r′si

Xsi + higher degree terms

(1) Let ϕx(r1) < ϕx(b). If k1 < 0, we have k1 = s1 and bq′k1
+ r′s1

= 0, and hence

ϕx(r1) = ϕ(r′s1
) = ϕ(−bq′k1

) ≥ ϕ(b) = ϕx(b). This is a contradiction. Therefore we get k1 ≥ 0,

then a = bq′k0
+ r′s0

, ϕ(r′s0
) = ϕx(r1) < ϕx(b) = ϕ(b).

(2) Let ϕx(r1) ≥ ϕx(b). If s1 + k2 < 0, we get s1 + k2 = s2 and r′s1
q′k2

+ r′s2
= 0 and note

that a chain 3 we get rn = r1x∗ + r2y∗ for some x∗, y∗ ∈ RX. Then ϕx(rn) = ϕx(r1x∗ + r2y∗) =

ϕ((x∗ − q′k2
y∗)r′s1

) ≥ ϕ(r′s1
) ≥ ϕx(b).

Hence ϕx(rn) < ϕx(b), this is contradiction and we get s1 + k2 ≥ 0. Then we can consider

possibility.

Case 1) r′s2
6= 0.
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If k1 < 0, we get bq′k1
+ r′s1

= 0. On the other hand with chain 3 we have rn = bx + r1y, for

some x, y ∈ RX,

ϕx(rn) = ϕx(bx + r1y) = ϕ((x
′
− q′k1

y
′
)b) ≥ ϕ(b) = ϕx(b).

This is contradiction, because ϕx(rn) < ϕx(b). Hence we have k1 ≥ 0. The we obtain

a = bq′k1
+ r′s1

, b = r′s1
q′k2

+ r′s2
, . . . , r′sn−2

= r′sn−1
q′kn

+ r′sn
,

where ϕx(rn) = ϕ(r′sn
) < ϕ(b) = ϕx(b).

Case 2) r′s2
= 0.

In this case, we distinguish now two subcases.

1’) If k1 ≥ 0, it is obvious that

a = bq′k1
+ r′s1

, b = r′s1
q′k2

+ 0,

and ϕ(0) < ϕ(b).

2’) If k1 < 0 we have k1 = s1 < 0 and bq′k1
+ r′s1

= 0.

On the other hand, since b = r′s1
q′k2

we have r′s1
q′k1

q′k2
+ r′s1

= 0 i q′k1
q′k2

+ 1 = 0 and hence

q′k1
, q′k2

are units. Then we can obtain:

b = (r′s1
Xs1 + · · · )(q′k1

Xk1 + · · · ) + (r′s2
Xs2 + · · · ) = r′s1

q′k2

+ (r′s1
q′k2+1 + r′s1+1q′k2

)X + (r′s1
q′k2+2 + r′s1+1q′k2+1 + r′s1+2q′k2

)X2 + · · ·+ (r′s2
Xs2 + · · · ).

Therefore we get the following equations:



















r′s1
q′k2+1 + r′s1+1q′k2

= 0,

r′s1
q′k2+2 + r′s1+1q′k2+1 + r′s1+2q′k2

= 0,

· · · · · · · · · · · ·

r′s1
q′k2+s2

+ r′s1+1q′k2+s2−1 + · · ·+ r′s1+s2
q′k2

+ r′s2
= 0.

(4)

Since q′k1
is a unit, we have

r′s1+1 = (q′k1
)−1r′s1

q′k1+1 = (q′k1
)−1q′k1+1(q

′
k2
)−1b.

Hence we get b | r′s1+1. Similarly, we have

b | r′s1+2, · · · , r′s1+s2−1.

Then if s1 + s2 < 0, we have bq′s1+s2
+ r′s1+s2

= 0 and hence b | r′s1+1. By above equations

(4), b | r′s2
and ϕ(r′s2

) ≥ ϕ(b). This is a contradiction with ϕ(r′s2
) < ϕ(b). Therefore we get

s1 + s2 ≥ 0.

Now, if s1 + s2 > 0, there exist an integer h such that r′s1
q′k2+h + r′s1+hq′k2

= 0 and

b | r′s1+h = r′0. Hence we obtain a = bq′0 + r′0 = bq∗.

If s1 + s2 = 0, the equation (4) we have

r′s1
q′k2+s2

+ · · ·+ r′s1+s2
q′k2

= r′s1
q′k2+s2

+ · · ·+ (a − bq′0)q
′
k2
+ r′s2

= 0.

Then we obtain

a = bq′0 + (q′k2
)−1(−r′s1

q′k2+s2
− · · · − r′s2

) = bq′ + (q′k2
)−1(−r′s2

)

and ϕ((q′k2
)−1(−r′s2

)) = ϕ(r′s2
) < ϕ(b).
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As a consequent we obtain the following.

Theorem 3. R is ω-Euclidean domain if and only if RX is ω-Euclidean domain.

A ring R has IPn-property, if every square singular matrix of n order over R is a product

of idempotent matrices. If this is true for any singular matrix over R, then the ring R has

IP-property.

Theorem 4. Let R is Bezout domain with IP2-property, then RX is a domain with IP-property.

Proof. Let R be Bezout domain with IP2-property, then R is GE2-ring [4]. Since the condition

GE2-ring over Bezout domain implies the presence of the infinite divisibility chain for any two

elements with R, hence R is ω-Euclidean domain. According to Theorem 1, RX is ω-Euclidean

domain, then from [2] for any two elements of RX there exists the infinite divisibility chain.

Then, according to Theorem 6.2 and Proposition 2.4 of [5] implies that RX has IP-property.

Given from theorem 2, consequently the following result is true.

Theorem 5. Let RX — ω-Euclidean domain, then R has IP-property.
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Доведено, що комутативна область є ω-евклiдовою тодi i тiльки тодi, коли кiльце фор-

мальних Лоранових рядiв є ω-евклiдовою областю. Також показано, що довiльна особлива

матриця над кiльцем формальних Лоранових рядiв RX є добутком iдемпотентних матриць,

якщо R є ω-евклiдове кiльце.
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INTRODUCTION

Many problems from Elasticity Theory, Gas dynamics, Theory of plates and shells reduced

to partial higher order differential equations [1, 2, 3] using Fourier method [3] or the method

of Principal coordinates [1]. As a result we get a infinite system of ordinary differential equa-

tions. The Theory of countable ordinary differential systems is described in the monograph

[4]. However, in many cases, particularly in the famous Hadamard’s example [5, p.112] about

correct solvability of initial problem for Cauchy-Riemann equation, if interpret partial solu-

tions like un = In(t) cos nx, vn = Jn(t) sin nx, we get a countable system of partial first order

differential equations. Similar systems occur in determining of the generalized solution for

hyperbolic first order equations [5, p.132], in the investigation of mathematical models of self-

excited oscillator with distributed parameters [6], in many periodic solutions of quasi-linear

hyperbolic systems [7] and others. Some questions about the correct solvability of initial-

boundary value problems for countable hyperbolic systems of first order differential equations

are considered in [8, 9, 10, 13].

1 STATEMENT OF PROBLEM

In the domain Q = {(t, x, y) : t ∈ (0, T), x ∈ (0, l1), y ∈ (0, l2)} we consider fourth order

partial differential equation

utt + B(t, x)(utx + uxyy) + C(t, x)uxx + uyyyy + 2utyy = f
(

t, x, y, u, ut, ux, uyy

)

(1)

with initial

u|t=0 = ϕ(x, y),

ut|t=0 = ψ(x, y), 0 ≤ x ≤ l1, 0 ≤ y ≤ l2,
(2)
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and boundary conditions

u|y=0 = u|y=l2 = 0,

∂2u

∂y2

∣

∣

∣

y=0
=

∂2u

∂y2

∣

∣

∣

y=l2
= 0, 0 ≤ x ≤ l1, 0 ≤ t ≤ T,

u|x=0 = µ(t, y), u|x=l1 = ν(t, y), 0 ≤ y ≤ l2, 0 ≤ t ≤ T,

(3)

where

µ(0, y) = ϕ(0, y), ν(0, y) = ϕ(l1, y), µ′
t(0, y) = ψ(0, y), ν′t(0, y) = ψ(l1, y),

ϕ(x, 0) = ϕ(x, l2) = 0, ψ(x, 0) = ψ(x, l2) = 0,

ϕ′′
yy(x, 0) = ϕ′′

yy(x, l2) = 0, ψ′′
yy(x, 0) = ψ′′

yy(x, l2) = 0.

2 THE REDUCTION EQUATION (1) TO A COUNTABLE SYSTEM OF SECOND ORDER

DIFFERENTIAL EQUATIONS

We will search solution of the problem (1)–(3) using separation of variables method, namely

in the form of a series

u(t, x, y) = v0(t, x) +
∞

∑
n=1

(

vn(t, x) cos αny + wn(t, x) sin αny
)

, (4)

where αn = 2πn
l2

(see [12, 13]). Substituting (4) in boundary conditions (3), we obtain
∞

∑
n=0

vn(t, x) = 0 and
∞

∑
n=1

α2
nvn(t, x) = 0. Suppose, that vn(t, x) ≡ 0 for all n ∈ N and

(t, x) ∈ Πt,x = (0, T)× (0, l1).

Assume that the initial data of the problem (1)–(3) are sufficiently smooth. Let compatibil-

ity conditions are fulfilled and the initial data are unambiguous decomposed in a series

f
(

t, x, y, u,
∂u

∂t
,

∂u

∂x
,

∂2u

∂y2

)

=
∞

∑
n=1

fn

(

t, x, w1, w2, . . . ,
∂w1

∂t
,

∂w2

∂t
, . . . ,

∂w1

∂x
,

∂w2

∂x
, . . .

)

sin αny, (5)

ϕ(x, y) =
∞

∑
n=1

ϕn(x) sin αny, ψ(x, y) =
∞

∑
n=1

ψn(x) sin αny, (6)

µ(t, y) =
∞

∑
n=1

µn(t) sin αny, ν(t, y) =
∞

∑
n=1

νn(t) sin αny. (7)

Let ωn =
(

2πn
l2

)2
. Substitute equality (4) in equation (1) and conditions (2) and (3). After

multiplying received equalities by sin αmy, (m = 1, 2, . . .) and integrating in the interval from

0 to l2, with considering conditions (5)–(7), we obtain the countable system of second-order

differential equations

∂2wn

∂t2
+ B(t, x)

(∂2wn

∂t∂x
− ωn

∂wn

∂x

)

+ C(t, x)
∂2wn

∂x2
+ ω2

nwn − 2ωn
∂wn

∂t

= fn

(

t, x, w1, w2, . . . ,
∂w1

∂t
,

∂w2

∂t
, . . . ,

∂w1

∂x
,

∂w2

∂x
, . . .

)

, n ∈ N,

(8)

with initial and boundary conditions

wn|t=0 = ϕn(x),
∂wn

∂t

∣

∣

∣

t=0
= ψn(x), 0 ≤ x ≤ l1,

wn|x=0 = µn(t), wn|x=l1 = νn(t), 0 ≤ t ≤ T.
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Propose a change of variables wn = vneωnt. Then all derivatives will be rewritten in a form

∂wn

∂t
=

(∂vn

∂t
+ ωnvn

)

eωnt,
∂wn

∂x
=

∂vn

∂x
eωnt,

∂2wn

∂t2
=

(∂2vn

∂t2
+ 2ωn

∂vn

∂t
+ ω2

nvn

)

eωnt,

∂2wn

∂t∂x
=

(∂2vn

∂t∂x
+ ωn

∂vn

∂x

)

eωnt,
∂2wn

∂x2
=

∂2vn

∂x2
eωnt.

As a result, we obtain the countable system of second order differential equations

∂2vn

∂t2
+ B(t, x)

∂2vn

∂t∂x
+ C(t, x)

∂2vn

∂x2

= f̃n

(

t, x, v1, v2, . . . ,
∂v1

∂t
,

∂v2

∂t
, . . . ,

∂v1

∂x
,

∂v2

∂x
, . . .

)

, n ∈ N,

where

f̃n = e−ωnt fn

(

t, x, v1eωnt, v2eωnt, . . . ,

∂v1

∂t
eωnt + ωnv1eωnt,

∂v2

∂t
eωnt + ωnv2eωnt, . . . ,

∂v1

∂x
eωnt,

∂v2

∂x
eωnt, . . .

)

.

Initial and boundary conditions will be rewritten in a form

vn|t=0 = ϕn(x),
∂vn

∂t

∣

∣

∣

t=0
= ψ̃n(x), 0 ≤ x ≤ l1,

vn|x=0 = µ̃n(t), vn|x=l1 = ν̃n(t), 0 ≤ t ≤ T,

where µ̃n(t) = µn(t)e−ωnt, ν̃n(t) = νn(t)e−ωnt, ψ̃n(x) = ψn(x)− ωn ϕn(x).

3 THE REDUCTION TO COUNTABLE SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS

Suppose that ∆(t, x) = B2(t, x)− 4C(t, x) > 0, for all (t, x) ∈ Πt,x, so each equation of the

system (8) has hyperbolic type. We denote

λi(t, x) =
B(t, x) + (−1)i

√

∆(t, x)

2
,

vi,n =
∂vn

∂t
+ λi

∂vn

∂x
, i = 1, 2.

Then

∂vn

∂x
=

v2,n − v1,n√
∆

,

∂vn

∂t
= v2,n − (B +

√
∆)

v2,n − v1,n

2
√

∆
.

Due to variables changes, each equation of the system (8) would be equivalent to the system

of equations [5, 11]

∂vi,n

∂t
+ λ3−i

∂vi,n

∂x
=

1√
∆

(∂λi

∂t
+ λ3−i

∂λi

∂x

)

(v2,n − v1,n)

+ f̃n

(

t, x, v1, . . . , v2,1 − (B +
√

∆)
v2,1 − v1,1

2
√

∆
, . . . ,

v2,1 − v1,1√
∆

, . . .
)

,

∂vn

∂t
= v2,n − (B +

√
∆)

v2,n − v1,n

2
√

∆
, i = 1, 2, n ∈ N.

(9)
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Suppose, that λ1(t, x) ≥ 0, λ2(t, x) ≤ 0
(

a sufficient condition is execution the inequality

|B(t, x)| ≤
√

∆(t, x)
)

. Conduct characteristic L1(0, 0) through the point (0, 0) and characteris-

tic L2(0, l1) through the point (0, l1), which are the solutions of Cauchy problems

dx

dt
= λ1(t, x), x(0) = 0,

dx

dt
= λ2(t, x), x(0) = l1.

Thus, rectangle Πt,x is divided into three parts (see Figure 1).

Figure 1: Partition of domain by characteristics with slope λ1 ≥ 0, λ2 ≤ 0.

In subdomain Π0 for system (9) define the initial conditions

vn|t=0 = ϕn(x), vi,n|t=0 = ψ̃n(x) + λi|t=0
dϕn

dx
(x), i = 1, 2.

In Π1 for vn and v2,n define the initial conditions, and for v1,n define the boundary condi-

tions on the left side

vn|t=0 = ϕn(x), v2,n|t=0 = ψ̃n(x) + λ2|t=0
dϕn

dx
(x),

v1,n|x=0 =
2
√

∆

B +
√

∆

∣

∣

∣

x=0

dµ̃n

dt
(t) +

(

1 − 2
√

∆

B +
√

∆

)
∣

∣

∣

x=0
v2,n|x=0.

In subdomain Π2 for vn and v1,n define the initial conditions, and for v2,n define the bound-

ary conditions on the right side

vn|t=0 = ϕn(x), v1,n|t=0 = ψ̃n(x) + λ1|t=0
dϕn

dx
(x),

v2,n|x=l1 =
2
√

∆√
∆ − B

∣

∣

∣

x=l1

dµ̃n

dt
(t) +

B +
√

∆

B −
√

∆

∣

∣

∣

x=l1
v1,n|x=l1 .

Remark 3.1. If the following condition is not fulfilled λ1 ≥ 0, λ2 ≤ 0, there is possible to get

such cases:

i) λ1 ≥ λ2 ≥ 0, λ2
1 + λ2

2 6= 0;

ii) λ1 ≤ λ2 ≤ 0, λ2
1 + λ2

2 6= 0.

In the first case, for system (1) it is necessary to define the boundary conditions in the next

form

u|x=0 = µ(t, y), ux|x=0 = ν(t, y), 0 ≤ y ≤ l2, 0 ≤ t ≤ T.
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Figure 2: Partition of domain by characteris-

tics with slope λ1, λ2 > 0.

Figure 3: Partition of domain by characteris-

tics with slope λ1, λ2 < 0.

Conduct characteristics L1(0, 0) and L2(0, 0) through the point (0, 0), which are the solu-

tions of Cauchy problems
dx

dt
= λi, x(0) = 0, i = 1, 2.

Thus, rectangle Πt,x is devided into three parts (see Figure 2).

In subdomain Π0 define the initial conditions

vn|t=0 = ϕn(x), vi,n|t=0 = ψ̃n(x) + λi|t=0
dϕn

dx
(x), i = 1, 2.

In Π1 for vn and v2,n define the initial conditions, and for v1,n define the boundary condi-

tions on the left side

vn|t=0 = ϕn(x), v2,n|t=0 = ψ̃n(x) + λ2|t=0
dϕn

dx
(x),

v1,n|x=0 =
dµ̃n

dt
(t) + λ1|x=0ν̃n(t).

In subdomain Π2 for vn define the initial conditions, and for v1,n and v2,n define the bound-

ary conditions on the left side

vn|t=0 = ϕn(x), vi,n|x=0 =
dµ̃n

dt
(t) + λi|x=0νn(t).

Similarly, the initial and boundary conditions would be defined in case, when λ1 ≤ λ2 ≤ 0,

λ2
1 +λ2

2 > 0 (see Figure 3). In this case for the system (1) we have to set the boundary conditions

in the following form

u|x=l1 = µ(t, y), ux|x=l1 = ν(t, y), 0 ≤ y ≤ l2, 0 ≤ t ≤ T.

4 EXAMPLE

For example, consider a differential equation

utt − x2uxx + uyyyy + 2utyy = −xux +
(

− π

6
+ πy − y2

)

u + f (t, x, y), (10)
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where f (t, x, y) — some polynomial of (t, x, y), with initial conditions

u|t=0 = 0, ut|t=0 =
(

y5 − 5

2
πy4 +

5

3
π2y3 − 1

6
π4y

)

(πx − x2), 0 ≤ x ≤ π, 0 ≤ y ≤ π,

and homogeneous boundary conditions

∂2u

∂y2

∣

∣

∣

y=0
=

∂2u

∂y2

∣

∣

∣

y=π
= 0,

u|y=0 = u|y=π = 0, u|x=0 = u|x=π = 0, 0 ≤ x ≤ π, 0 ≤ y ≤ π, 0 ≤ t ≤ T.

(11)

The solution can be sought in the form u(t, x, y) =
∞

∑
n=1

wn(t, x) sin 2ny. Functions on the

right side of the equation and the initial conditions decomposed in such series

y5 − 5

2
πy4 +

5

3
π2y3 − 1

6
π4y = −

∞

∑
n=1

15

2n5
sin 2ny,

f (t, x, y) =
∞

∑
n=1

fn(t, x) sin 2ny,

− π2

6
+ πy − y2 = −

∞

∑
m=1

1

m2
cos 2my,

(

− π2

6
+ πy − y2

)

u =
∞

∑
n=1

∞

∑
k=1

∞

∑
m=1

wk

m2
δk,m

n sin 2ny,

where δk,m
n =

{ 1
2 , if k + m − n = 0,

−1
2 , if (k − m + n)(m − k + n) = 0.

So, we obtain the countable system of second order differential equations

∂2wn

∂t2
− x2 ∂2wn

∂x2
+ ω2

nwn − 2ωn
∂wn

∂t
= −x

∂wn

∂x
+

∞

∑
k=1

∞

∑
m=1

wk

m2
δk,m

n + fn, n ∈ N, (12)

with initial conditions

wn|t=0 = 0,
∂wn

∂t

∣

∣

∣

t=0
= − 15

2n5
(πx − x2), 0 ≤ x ≤ π, n ∈ N,

and homogeneous boundary conditions.

Perform a change of variables wn = vneωnt. The system (12) will be rewritten in a form

∂2vn

∂t2
− x2 ∂2vn

∂x2
+ x

∂vn

∂x
=

∞

∑
k=1

∞

∑
m=1

vke(ωk−ωn)t

m2
δk,m

n +
fn

eωnt
, n ∈ N,

with initial and homogeneous boundary conditions

vn|t=0 = 0,
∂vn

∂t

∣

∣

∣

t=0
= − 15

2n5
(πx − x2), 0 ≤ x ≤ π, n ∈ N.

In this case ∆ = 4x2, that is

v1,n =
∂vn

∂t
+ x

∂vn

∂x
,

v2,n =
∂vn

∂t
− x

∂vn

∂x
.
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As a result, we obtain the countable system of first order differential equations































∂v1,n

∂t
− x

∂v1,n

∂x
=

∞

∑
k=1

∞

∑
m=1

vke(ωk−ωn)t

m2
δk,m

n +
fn

eωnt
,

∂v2,n

∂t
+ x

∂v2,n

∂x
=

∞

∑
k=1

∞

∑
m=1

vke(ωk−ωn)t

m2
δk,m

n +
fn

eωnt
,

∂vn

∂t
=

v1,n + v2,n

2
.

(13)

Since λ1 = x > 0, λ2 = −x < 0, initial and boundary conditions will be rewritten in a

form:

vn|t=0 = 0, v1,n|t=0 = − 15

2n5

(

πx − x2
)

, v2,n|t=0 = − 15

2n5

(

πx − x2
)

, (t, x) ∈ Π0; (14)

vn|t=0 = 0, v2,n|t=0 = − 15

2n5

(

πx − x2
)

, v1,n|x=0 = −v2,n|x=0, (t, x) ∈ Π1; (15)

vn|t=0 = 0, v1,n|t=0 = − 15

2n5

(

πx − x2
)

, v2,n|x=π = −v1,n|x=π, (t, x) ∈ Π2. (16)

After solving the problem (13)–(16) (see [9]), we will obtain a system of functions

vn = − 15t

2n5eωnt
(πx − x2),

v1,n = − 15t

2n5eωnt

(

(1 − ωnt)(πx − x2) + t(πx − 2x2)
)

,

v2,n = − 15t

2n5eωnt

(

(1 − ωnt)(πx − x2)− t(πx − 2x2)
)

.

So wn = −15t
2n5 (πx − x2).

Therefore u(t, x, y) = 15t
2 (x2 − πx)

∞

∑
n=1

sin 2ny
n5 is the exact solution of the problem (10)–(11).

In the Figure 4 we can see 3D-graphics of the solution in the case of t = 0.25 and t = 0.5.

Figure 4: Graphics of solutions at t = 0.25 and t = 0.5.

Together with the problem (13)–(16), we consider truncated system
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





























∂v1,n

∂t
− x

∂v1,n

∂x
=

N

∑
k=1

∞

∑
m=1

vke(ωk−ωn)t

m2
δk,m

n +
fn

eωnt
,

∂v2,n

∂t
+ x

∂v2,n

∂x
=

N

∑
k=1

∞

∑
m=1

vke(ωk−ωn)t

m2
δk,m

n +
fn

eωnt
,

∂vn

∂t
=

v1,n + v2,n

2
,

(17)

with the initial and the boundary conditions (14)–(16). With some suppositions [10], the solu-

tions of the problems (17), (14)–(16) and (13)–(16) will be as close as possible.

Let vN
n is the solution of the problem (17), (14)–(16) and uN(t, x, y) =

N

∑
n=1

wN
n sin 2ny. Figure

5 shows a graph of
max
t,x,y

{|uN(t,x,y)−u(t,x,y)|}
max
t,x,y

{|u(t,x,y)|} .

Figure 5: Dependence of difference between exact and approximate solution by N.
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У цiй роботi на модельному прикладi мiшаної задачi для диференцiального рiвняння че-

твертого порядку показано, як таку задачу можа звести до задачi для злiченної гiперболiчної

системи зв’язних рiвнянь першого порядку.
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A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of p-loxodromic functions (meromorphic functions, satisfying the condition

f (qz) = p f (z) for some q ∈ C\{0} and all z ∈ C\{0}) is studied. Each p-loxodromic function

is Julia exceptional. The representation of these functions as well as their zero and pole distribution

are investigated.
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INTRODUCTION

Denote C∗ = C\{0}, and let q, p ∈ C∗, |q| < 1.

Definition 1. A meromorphic in C∗ function f is said to be p-loxodromic of multiplicator q if for

every z ∈ C∗

f (qz) = p f (z). (1)

Let Lqp denotes the class of p-loxodromic functions of multiplicator q.

The case p = 1 has been studied earlier in the works of O. Rausenberger [9], G. Valiron

[11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders

schöne und überraschende" G. Julia gave an example of a meromorphic in the punctured plane

C∗ function satisfying (1) with p = 1 for some non-zero q, |q| 6= 1, and all z ∈ C∗. He noted

that the family { fn(z)}, fn(z) = f (qnz) is normal [7] in C∗ because fn(z) = f (z) for all z ∈ C∗.

If p = 1 the function f is called loxodromic. Loxodromic functions of multiplicator q form

a field, which is denoted by Lq. The set Lqp forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from Lqp is a loxodromic function, and the deriva-

tive of the loxodromic function is p-loxodromic with p = 1
q .

Remark 1. Every f ≡ const belongs to Lq, but the unique constant function belonging to Lqp

is f ≡ 0.

If f ∈ Lqp and a is a zero of f , then aqn, n ∈ Z, are as well. That is, in the case of non-

positive q the zeros of f lay on a logarithmic spiral. Let a = |a|eiα, q = |q|eiγ. Then the loga-

rithmic spiral in polar coordinates (r, ϕ) takes the form

log r − log |a| = k(ϕ − α),

УДК 517.53
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where k =
log |q|

γ . The same concerns the poles of f . The image of a logarithmic spiral on the

Riemann sphere by the stereographic projection intersects each meridian at the same angle

and is called loxodromic curve (λoξoζ - oblique, δρoµoζ - way). That is why we call (following

G. Valiron) the function from Lq loxodromic.

Remark 2. If f ∈ Lq and z is its a-point, a ∈ C ∪ {∞}, then qnz, n ∈ Z, are its a-points too. In

the case, f ∈ Lqp, the previous considerations are valid only for the zeros and the poles of f .

It is easy to verify, that Lqp forms the linear spaces over the fields C and Lq. Also it is clear

that Lqp has the following properties.

Proposition. The linear space Lqp has the following properties.

1. The map D : f (z) 7→ z f ′(z) maps Lqp to Lqp.

2. The map Dl : f (z) 7→ z
f ′(z)
f (z)

maps Lqp to Lq.

3. f (z) ∈ Lqp ⇒ f (1
z ) ∈ Lq 1

p
.

Let us give nontrivial example of p-loxodromic function of multiplicator q. Put

h(z) =
∞

∏
n=1

(1 − qnz), 0 < |q| < 1.

Definition 2. The function

P(z) = (1 − z)h(z)h

(

1

z

)

= (1 − z)
∞

∏
n=1

(1 − qnz)(1 − qn

z
)

is called the Schottky-Klein prime function.

This function is holomorphic in C∗ with zero sequence {qn}, n ∈ Z. It was introduced by

Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains,

see also [2].

It is easy to obtain the following property of P

P(qz) = −1

z
P(z). (2)

Example 1. Consider the function

f (z) =
P
(

z
p

)

P(z)
.

Using (2), it is easy to show that f ∈ Lqp.

1 THE NUMBERS OF ZEROS AND POLES OF p-LOXODROMIC FUNCTIONS IN AN ANNULUS

Let Aq(R) = {z ∈ C : |q|R < |z| ≤ R}, R > 0 and Aq = Aq(1).

Theorem 1. Let f ∈ Lqp and the boundary of Aq(R) contains neither zeros nor poles of f .

Then f has equal numbers of zeros and poles (counted according to their multiplicities) in

every Aq(R).
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Proof. Let Γ1 = {z ∈ C : |z| = |q|R} and Γ2 = {z ∈ C : |z| = R} denote the circles bounding

Aq(R). Let n( f ) be the number of poles of f in Aq(R).

By the argument principle, we have

n

(

1

f

)

− n( f ) =
1

2iπ







∫

Γ+
2

f ′(z)
f (z)

dz −
∫

Γ+
1

f ′(ξ)
f (ξ)

dξ






. (3)

Setting ξ = qz in the second integral of (3), we obtain

n

(

1

f

)

− n( f ) =
1

2iπ

∫

Γ+
2

(

f ′(z)
f (z)

− q
f ′(qz)

f (qz)

)

dz. (4)

Since f ∈ Lqp, the relation (1) implies

f ′(qz) =
p

q
f ′(z). (5)

Putting (1) and (5) in (4), we obtain the conclusion of the theorem.

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles

(and two zeros) in every annulus Aq(R) [5]. As we see from Example 1, the p-loxodromic

function f has the unique pole z = 1 in Aq. This is an essential difference between loxodromic

and p-loxodromic functions with p 6= 1.

2 REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from Lq was given in [11], [5]. The following

theorem gives the representation of a function from Lqp.

Let a1, ..., am and b1, ..., bm be the zeros and the poles of f ∈ Lqp in Aq respectively. Denote

λ =
a1 · ... · am

b1 · ... · bm
. (6)

Theorem 2. The non-identical zero meromorphic in C∗ function f belongs to Lqp, p 6= 1, if

and only if there exists ν ∈ Z such that λ = p
qν and f has the form

f (z) = czν
P
(

z
a1

)

· ... · P
(

z
am

)

P
(

z
b1

)

· ... · P
(

z
bm

) , (7)

where c is a constant.

Proof. Firstly, denote

M(z) =
P
(

z
a1

)

· ... · P
(

z
am

)

P
(

z
b1

)

· ... · P
(

z
bm

)

and consider the function

g(z) =
f (z)

M(z)
.
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Since the functions f and M have the same zeros and poles, it follows that their ratio g is

holomorphic in C∗ function. Let g(z) =
+∞

∑
n=−∞

cnzn be the Laurant expansion of g in C∗. Using

relation (1) and the equality (2), we obtain

λg(qz) = pg(z). (8)

According to (8), we obtain

λ
+∞

∑
n=−∞

cnqnzn = p
+∞

∑
n=−∞

cnzn

for any z ∈ C∗. This implies λcnqn = pcn or cn(λqn − p) = 0. Then there exists at least one

cν 6= 0, ν ∈ Z, such that

cν(λqν − p) = 0. (9)

Hence, the relation (9) implies qν =
p

λ
. We see also that cn = 0 if n 6= ν, so we have

g(z) = cνzν. Thus, we can conclude

f (z) = g(z)M(z) = czν M(z),

where c is a constant.

Secondly, we have f (z) = czνM(z), ν ∈ Z. Show that it belongs to Lqp. Thus, f (qz) =

cqνzν M(qz). Indeed, using (2), we obtain

f (qz) = cqνzνλM(z) = p f (z).

This completes the proof.

Corollary 1. Assume f ∈ Lqp, if f is holomorphic in C∗, then f (z) ≡ 0 or there exists k ∈
Z\{0} such that p = qk and f (z) = czk, where c is a constant. Conversely, a holomorphic in

C∗ function of the form f (z) = czk, where k ∈ Z\{0}, c is a constant, belongs to Lqp.

3 ZERO AND POLE DISTRIBUTION

Let {aj}, {bj}, j ∈ Z be a couple of sequences in C∗, p 6= 1. Put

µ(r) = [log r/ log |q|]− 1.

Note that µ(r) = 0 if |q| ≤ r < 1. Denote

Mν(r) =
1

|p|µ(r)
×



















































rν

∏
1<|aj|≤r

r
|aj|

∏
1<|bj|≤r

r
|bj|

, r > 1;

rν

∏
r<|aj|≤1

|aj|
r

∏
r<|bj|≤1

|bj|
r

, 0 < r ≤ 1.
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Theorem 3. The zero sequence {aj} and the pole sequence {bj} of a non-identical zero mero-

morphic p-loxodromic function of multiplicator q satisfy the following conditions:

(i) the number of aj and bj in every annulus of the form {z : r < |z| < 2r}, r > 0 is bounded

by an absolute constant;

(ii) the difference between the numbers of aj and bk in every annulus {z : r1 < |z| < r2},

0 < r1 < r2 < +∞ is bounded by an absolute constant;

(iii) there exists C1 > 0 such that
∣

∣

∣

aj

bk
− 1
∣

∣

∣
> C1 for every j, k ∈ Z ;

(iv) the function Mν(r), where ν ∈ Z such that λ = p
qν , and λ is given by (6), is bounded for

r > 0.

Proof. Let f be a p-loxodromic of multiplicator q function. If f is holomorphic then by Corol-

lary 1 there exists k ∈ Z\{0} such that f (z) = czk, and c is a constant. Hence, f has no zeros

in C∗. So there is nothing to prove.

Let f be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and

poles.

(i) First we remark that there exists a unique n0 ∈ Z+ such that
1

|q|n0
≤ 2 <

1

|q|n0+1
. This

n0 is equal to

[

log 2

log 1
|q|

]

.

Since every annulus {z :
r

|q|k < |z| ≤ r

|q|k+1
}, where k ∈ Z, contains the same number of

zeros of f , say m, and

(r, 2r] =

(

n0−1
⋃

k=0

(

r

|q|k ,
r

|q|k+1

]

)

∪
(

r

|q|n0
, 2r

]

it follows that the annulus {z : r < |z| ≤ 2r} contains at least n0m and less than (n0 + 1)m

zeros of f . The same is true about the poles of f .

(ii) Similarly as in (i) we can find unique n1, n2 ∈ Z such that

|q|n1+1
< r1 ≤ |q|n1 < |q|n2 < r2 ≤ |q|n2−1.

Hence

(r1, r2) = (r1, |q|n1 ] ∪





n2−1
⋃

k=n1

(|q|k , |q|k+1]



 ∪ (|q|n2 , r2).

Every annulus of the form {z : |q|k+1
< |z| ≤ |q|k}, where k ∈ Z, contains equal amount of

zeros and poles of f counted according to their multiplicities (we have denoted this number

by m). Therefore the difference between the numbers of zeros and poles of f in the annulus

{z : r1 < |z| < r2} is no greater than 2m because of the choice of n1, n2.

(iii) Let a1, a2, ..., am and b1, b2, ..., bm be the zeros and the poles of f in {z : |q| < |z| ≤ 1}
respectively. Then all the zeros of f have the form αµ,k = akqµ, where µ ∈ Z, k = 1, 2, ..., m.
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The same is true about the poles of f , namely βν,k = bkqν, where ν ∈ Z, k = 1, 2, ..., m. So,
αµ,j

βν,k
=

aj

bk
ql , where l ∈ Z.

It is necessary to show that there exists C > 0 such that the inequality
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

> C

holds for all j, k ∈ {1, 2, ..., m}, and l ∈ Z.

Suppose that for any ε > 0 there exist j, k ∈ {1, 2, ..., m}, and l ∈ Z such that
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≤ ε. (10)

Without loss of generality we can assume that |l| ≤ 2. Indeed, taking into account where

aj, bk belong to, we have
∣

∣

∣

∣

aj

bk
ql

∣

∣

∣

∣

≤ 1

|q| |q|
l ≤ |q|, l ≥ 2.

Similarly,
∣

∣

∣

∣

aj

bk
ql

∣

∣

∣

∣

≥ |q||q|l ≥ 1

|q| , l ≤ −2.

So, for all j, k ∈ {1, 2, ..., m}, and l ≥ 2
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≥ 1 − |q|,

and for l ≤ −2
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≥ 1

|q| − 1.

Let now |l| < 2. Choose

ε =
1

2
min{|ajq

l − bk| : j, k ∈ {1, 2, ..., m},−1 ≤ l ≤ 1}.

Then (10) implies

|ajq
l − bk| ≤ ε|bk| ≤ ε .

That is

|ajq
l − bk| ≤

1

2
min{|ajq

l − bk| : j, k ∈ {1, 2, ..., m},−1 ≤ l ≤ 1}

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

f (z) = czν
m

∏
k=1

+∞

∏
n=0

(

1 − qnz

ak

)

+∞

∏
n=1

(

1 − qnak

z

)

+∞

∏
n=0

(

1 − qnz

bk

)

+∞

∏
n=1

(

1 − qnbk

z

) , z ∈ C∗. (11)

Clearly, we can assume c 6= 0. Consider the integral means I(r) = 1
2π

2π
∫

0

log | f (reiθ)| dθ ,

r > 0.
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Let z = reiθ . We have for r > 1 [4, p. 8]

1

2π

2π
∫

0

log

∣

∣

∣

∣

∣

1 − z

aj

∣

∣

∣

∣

∣

dθ = log+ r

|aj |
,

and, if |aj | ≤ 1

1

2π

2π
∫

0

log

∣

∣

∣

∣

1 −
aj

z

∣

∣

∣

∣

dθ = 0 .

The same is true for bj.

Since for every k ∈ {1, 2, ..., m} we have |ckq−n| > 1 for n ∈ N, and |ckqn| ≤ 1 for n ∈
N ∪ {0}, where ck is a zero or pole of f , then (11) implies

I(r) = ν log r + ∑
|aj|>1

log+ r

|aj |
− ∑

|bj|>1

log+ r

|bj|
+ log |c| , r > 1 .

Similarly, for 0 < r ≤ 1 we obtain

I(r) = ν log r + ∑
|aj|≤1

log+ |aj |
r

− ∑
|bj|≤1

log+ |bj|
r

+ log |c| .

Hence,

Mν(r) =
1

|p|µ(r)
1

|c| exp I(r) =
1

|c| exp{I(r)− µ(r) log |p|}, r > 0 .

Since I(r) is convex with respect to log r and consequently continuous, I(r) is bounded on

[|q|, 1]. It follows from the definition of a p-loxodromic function of multiplicator q that

I(|q|kr) = I(r) + k log |p|
for every k ∈ Z. On the other hand

µ(|q|kr) =

[

k log |q|+ log r

log |q|

]

− 1 = k, |q| ≤ r < 1.

That is

Mν(|q|kr) = Mν(r), |q| ≤ r < 1

for all k ∈ Z. Then we conclude that Mν(r) remains bounded for all r > 0 which completes

the proof.

4 JULIA EXCEPTIONALITY

Definition 3. Let fn, n ∈ N, be meromorphic functions in a domain G. A sequence { fn(z)} is

said to be uniformly convergent to f (z) on G in the Carathéodory-Landau sense [1] if for any point

z0 ∈ G there exists a disk K(z0) centered at this point such that K(z0) ⊂ G and

(∀ε > 0)(∃n0 ∈ N)(∀n > n0)(∀z ∈ K(z0)) : | fn(z)− f (z)| < ε,

whenever f (z0) 6= ∞, or
∣

∣

∣

∣

1

fn(z)
− 1

f (z)

∣

∣

∣

∣

< ε,

whenever f (z0) = ∞.
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Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family F of meromorphic in C∗ functions is said to be normal if every sequence

{ fn} ⊆ F contains a subsequence which converges uniformly in the Carathéodory-Landau

sense.

Definition 5. A meromorphic in C∗ function f is called Julia exceptional (see [7]) if for some q,

0 < |q| < 1, the family { fn(z)}, n ∈ Z, where fn(z) = f (qnz), is normal in C∗.

In C there are few simple examples of Julia exceptional functions. But in C∗ we have the

following.

Let f ∈ Lqp. We have

fn(z) = f (qnz) = pn f (z)

for every z ∈ C∗.

If |p| > 1, then a limiting function of the family { fn(z)}, n ∈ Z, is ∞. Otherwise, if |p| < 1,

then a limiting function is 0. If |p| = 1, that is p = eiα, we have fn(z) = einα f (z). Hence, the

set of limit functions depends on α. If α = πm
k , where m ∈ Z, k ∈ N, the number of limiting

functions is less than or equals to 2k. Otherwise, if α = πr, where r ∈ R\Q, the number of

limiting functions is infinite.

Example 2. Let f ∈ Lα
q with α = π

4 . Then

fn(z) = f (qnz) = pn f (z) = ein π
4 f (z).

Thus, we obtain eight limiting functions

± f , ±i f ,

(√
2

2
± i

√
2

2

)

f ,

(

−
√

2

2
± i

√
2

2

)

f .

Hence, f is Julia exceptional in C∗.

These results can be summarized as follows.

Theorem 4. Each function f ∈ Lqp is Julia exceptional in C∗.
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патськi матем. публ. — 2016. — Т.8, №1. — C. 172–180.

Дослiджується клас p-локсодромних функцiй (мероморфних функцiй, що задовольняють

умову f (qz) = p f (z) при деяких q ∈ C\{0} для всiх z ∈ C \ {0}). Доведено, що кожна p-

локсодромна функцiя є Жюлiа винятковою. Подано зображення таких функцiй та описано

розподiл їх нулiв та полюсiв.

Ключовi слова i фрази: p-локсодромна функцiя, первинна функцiя Шотткi-Кляйна, Жюлiа

винятковiсть.




