Carpathian SCIENTIFIC JOURNAL

mathematical V.8, Ne2
publications 2016
CONTENTS
Bardyla S.O., Gutik O.V. On a complete topological inverse polycyclic monoid . . . . . . . .. 183
Ben Aoua L., Aliouche A. Coupled fixed point theorems for weakly compatible mappings along
with CLR property in Menger metric spaces . . . . . . . . . . . ..o v 195

Vasylyshyn T.V. Extensions of multilinear mappings to powers of linear spaces . . . . . . . .. 211
De N. The vertex Zagreb indices of some graph operations . . . . . .. ... ... ... .... 215
Dilnyi V.M., Hishchak T.I. On the intersection of weighted Hardy spaces . . . . . . . ... .. 224
Dmytryshyn R.I. A multidimensional generalization of the Rutishauser qd-algorithm . . . . . 230

Dobushovskyy M.S., Sheremeta M.M. Analogues of Whittaker’s theorem for Laplace-Stieltjes
integrals . . . . .. L 239

Yolacan E., Kiziltunc H., Kir M. Coincidence point theorems for ¢ — p—contraction mappings
in metric spaces involving a graph . . . . . . ... 251

Kravtsiv V.V., Zagorodnyuk A.V. Representation of spectra of algebras of block-symmetric an-

alytic functions of bounded type . . . . . .. ... 263
Kuchminska Kh.Yo. A Worpitzky boundary theorem for branched continued fractions of the

special form . .. ..o 272
Malytska H.P., Burtnyak L.V. Pointwise stabilization of the Poisson integral for the diffusion

type equations with inertia . . . . . . . . ... e 279
Praveena M.M., Bagewadi C.S. On generalized complex space forms satisfying certain curva-

ture conditions . . . . . ... 284
Prevysokova N.V. Family of wavelet functions on the Galois function base . . . . . . . .. .. 295
Savastru O.V. Divisor problem in special sets of Gaussian integers . . . . . . . . .. ... ... 305

Sharyn S.V. Application of the functional calculus to solving of infinite dimensional heat equation 313

Vitaliy Ivanovych Sushchansky | (obituary) . . . . . .. ... .. ... ... ... .. ... 323




KapHaTCbKl HAYKOBUH JXKYPHAA

MaTeMaTU4HI T.8, Ne2
mybAikammii 2016
3MICT
bapamaa C.O., I'yrik O.B. I1po nosHuii mononoeiunuil ineepcHuil noniyuxaivnuii moxoid . . 183

bern Aoya A., Ariyde A. Teopemu npo suenieHy Hepyxomy mouxy 019 c1abko cyMicHUX 6io-
obpasicerv y cykynxocmi 3 CLR enacmusicmio 6 mempuurux npocmopax Menrepa . . . . . 195

Bacuammmn T.B. [Tpodosocenns myavmuniHiiiHux 6i0obpasicerb Ha cmeneHi JiHIHUX npo-

CTHOPIB . . v v v o i e i i e e e e e e e e e e e e 211
Ae H. Indexcu 3aepeba eepuiun 019 Oegkux onepayiii 3 epagamu . . . . . . . . .. ... ... 215
Airsamit BM., Timmak T.1. [1po nepemun sazosux npocmopie apdi . . . . . . . . .. ... .. 224
Amurpyvse P.1. baeamosumipre ysaeanvhenus qd-areopummy Pymucxaysepa . . . . . . . 230

Aobymoscskuii M.C., lllepemera M.M. Ananozu meopemu Yimmexepa 014 inmeepanie Aanaaca-
CMIImMeeca . . . . . . ..o 239

Honakan E., Kiziatask I'., Kip M. Teopemu npo mouku cnienadints 019 ¢ — —CcKOpomHux
81000pastceHb 8 MEMPUUHUX NPOCTIOPAX B0N0UIT 2paie . . . . . . . . . . . . . .. .. .. 251

Kpasuis B.B., 3aropoantox A.B. [Ipedcmasnents cnekmpa aneebp 610UHO-CUMEMPUUHIUX AHA-
TIMUUHUX PYHKYITE 0O MEHCEHO20 MUY . . o o o o o v o et et e et e e e 263

Kyuminceka X.J. Meowcosa meopema Bopniybkozo 015 einngcmux nanyoeosux opobis cneyi-
ANOHO20 BURTAOY .« o o e v o et e e e e e e e e e e 272

Manvmupka I'.I1., Byptasik 1.B. [Tomoukosa cmabinisayia inmeepana ITyaccoHa 019 pisHaHb

mMuny OUQy3ii 3THEPYIEI0 . . . . . . . . o o 279
ITpasima M.M., bareBaai L1.C. [1po y3aeanvHeHi hopmu 8 KomnieKCHOMY Npocmopi, SKi 3ado-

BINILHSIONIb NEBHT YMOBU KPUBUHIL . . o o o o o v v v v o e e e e e e e e 284
[pesucokosa H.B. Cimeiicmeo setigiem-pyrHkuyiil Ha ocHosi pymHkyiti [anya . . . . . . . . . . 295
O.B.Casactpy [Ipobema inoHuUKi8 HA CNEYIATbHUX MHONCUHAX Yiaux 2aycosux uucen . . . . 305

Hlapya C.B. 3acmocysaHtsg ¢yHKYioHAIbHO020 uucaeHHS 00 po3s’a3anHs 3adaui Kowii 019 He-
CKIHUEHHOBUMIPHO20 PIBHIHHS MENAONPOBIOHOCHIT . . . . . . . . . o o oot i et 313

Bitaniit IBagoBMY CyIIaHCBKMIL | (HEKPOLOZ) . . . . . . o o oot i et 323




ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2016, 8 (2), 183-194 KapmaTchki MmaTem. my6a. 2016, T.8, Ne2, C.183-194
doi:10.15330/cmp.8.2.183-194

[\

BARDYLA S.0., GUTIK O.V.

ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID

We give sufficient conditions when a topological inverse A-polycyclic monoid P, is absolutely H-
closed in the class of topological inverse semigroups. For every infinite cardinal A we construct the
coarsest semigroup inverse topology T,,; on P, and give an example of a topological inverse monoid
S which contains the polycyclic monoid P; as a dense discrete subsemigroup.

Key words and phrases: inverse semigroup, bicyclic monoid, polycyclic monoid, free monoid,
semigroup of matrix units, topological semigroup, topological inverse semigroup, minimal topolo-

8y

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: sbardyla@yahoo.com(BardylaS.0O.), o_gutik@franko.lviv.ua, ovgutik@yahoo.com (Gutik O.V.)

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the
terminology of [10, 12,16, 31]. If A is a subset of a topological space X, then we denote the
closure of the set A in X by clx(A). By IN we denote the set of all positive integers and by w
the first infinite cardinal.

A semigroup S is called an inverse semigroup if every a in S possesses a unique inverse, i.e.
if there exists a unique element a~! in S such that

aa a=a and ataat=a"l.
A map that associates to any element of an inverse semigroup its inverse is called the inversion.

A band is a semigroup of idempotents. If S is a semigroup, then we shall denote the subset
of idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multipli-
cation. The semigroup operation on S determines the following partial order < on E(S): e < f
if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is
a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a chain if
its natural order is a linear order. A maximal chain of a semilattice E is a chain which is properly
contained in no other chain of E. The Axiom of Choice implies the existence of maximal chains
in any partially ordered set. According to [35, Definition I1.5.12] a chain L is called w-chain if
L is order isomorphic to {0, —1, —2, —3, ...} with the usual order <. Let E be a semilattice and
ec€ E.Wedenote le={f€E|f<elandTe={f €E|e<f}.

If S is a semigroup, then we shall denote by Z, .2, 2 and J# the Green relations on S
(see [17] or [12, Section 2.1]):

aZb if and only if aS' = bS'; 4.2 if and only if S'a = S'b;
D = LR =R, H =LNXZ.

The Z-class (resp., .£-, 7-, or Y—class) of the semigroup S which contains an element a of S
will be denoted by R, (resp., Ly, Hy, or D,).

YAK 512.53
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The bicyclic monoid € (p,q) is the semigroup with the identity 1 generated by two ele-
ments p and g subjected only to the condition pg = 1. The semigroup operation on €(p, q) is
determined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7mir\{l,m}.
It is well known that the bicyclic monoid #(p, q) is a bisimple (and hence simple) combina-
torial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a group
congruence [12]. Also the well known Andersen Theorem states that a simple semigroup S with
an idempotent is completely simple if and only if S does not contains an isomorphic copy of the bicyclic
semigroup (see [2] and [12, Theorem 2.54]).

Let A be a non-zero cardinal. On the set By = (A x A) U {0}, where 0 ¢ A x A, we define
the semigroup operation “ - ” as follows

o) = { 0 0

and (a,0)-0=0-(a,b) =0-0=0fora,b,c,d € A. The semigroup B, is called the semigroup
of A X A-matrix units (see [12]).

In 1970 Nivat and Perrot proposed the following generalization of the bicyclic monoid (see
[34] and [31, Section 9.3]). For a non-zero cardinal A, the polycyclic monoid on A generators Py
is the semigroup with zero given by

Py = ({pitiex Api " Yiea | pip; ' = Lpip; ' = 0fori # j).

If A = 1 the semigroup P is isomorphic to the bicyclic semigroup with adjoined zero. For ev-
ery finite non-zero cardinal A = n the polycyclic monoid P, is congruence free, combinatorial,
0-bisimple, 0-E-unitary inverse semigroup (see [31, Section 9.3]).

A topological (inverse) semigroup is a Hausdorff topological space together with a continu-
ous semigroup operation (and an inversion, respectively). Obviously, the inversion defined on
a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse semi-
group) and T is a topology on S such that (S, 7) is a topological (inverse) semigroup, then
we shall call T an (inverse) semigroup topology on S. A semitopological semigroup is a Hausdorff
topological space endowed with a separately continuous semigroup operation.

Let GT6®( be a class of topological semigroups. A semigroup S € GTE& is called
H-closed in GGy, if S is a closed subsemigroup of any topological semigroup T € GTE&&,
which contains S both as a subsemigroup and as a topological space. The H-closed topological
semigroups were introduced by Stepp in [39], and there they were called maximal semigroups.
A topological semigroup S € STE® is called absolutely H-closed in the class GTE&,, if any
continuous homomorphic image of S into T € GTS® is H-closed in 6GTG&&. Absolutely
H-closed topological semigroups were introduced by Stepp in [40], and there they were called
absolutely maximal.

Recall [1], a topological group G is called absolutely closed if G is a closed subgroup of
any topological group which contains G as a subgroup. In our terminology such topologi-
cal groups are called H-closed in the class of topological groups. In [36] Raikov proved that a
topological group G is absolutely closed if and only if it is Raikov complete, i.e., G is complete
with respect to the two-sided uniformity. A topological group G is called h-complete if for every
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continuous homomorphism #: G — H the subgroup f(G) of H is closed [13]. In our terminol-
ogy such topological groups are called absolutely H-closed in the class of topological groups.
The h-completeness is preserved under taking products and closed central subgroups [13].
H-closed paratopological and topological groups in the class of paratopological groups were
studied in [37]. The paper [7] contains a sufficient condition for a quasitopological group to
be H-closed, which allowed us to solve a problem by Arhangel’skii and Choban [3] and show
that a topological group G is H-closed in the class of quasitopological groups if and only if G
is Raikov-complete. In [18] it is proved that a topological group G is H-closed in the class of
semitopological inverse semigroups with continuous inversion if and only if G is compact.

In [40] Stepp studied H-closed topological semilattices in the class of topological semi-
groups. He proved that an algebraic semilattice E is algebraically s-complete in the class of
topological semilattices if and only if every chain in E is finite. In [27] Gutik and Repov$ stud-
ied the closure of a linearly ordered topological semilattice in a topological semilattice. They
obtained a characterization of H-closed linearly ordered topological semilattices in the class of
topological semilattices and showed that every H-closed linear topological semilattice is ab-
solutely H-closed in the class of topological semilattices. Such semilattices were studied also
in [11,20]. In [5] the closures of the discrete semilattices (IN, min) and (IN, max) were described.
In that paper the authors constructed an example of an H-closed topological semilattice in the
class of topological semilattices, which is not absolutely H-closed in the class of topological
semilattices. The constructed example gives a negative answer to Question 17 from [40]. H-
closed and absolutely H-closed (semi)topological semigroups and their extensions in different
classes of topological and semitopological semigroups were studied in [8, 18, 19,21-26]

In [6] we showed that the A-polycyclic monoid for an infinite cardinal A > 2 has similar al-
gebraic properties to that of the polycyclic monoid P, with finitely many n > 2 generators. In
particular we proved that for every infinite cardinal A the polycyclic monoid P, is congruence-
free, combinatorial, O-bisimple, 0-E-unitary, inverse semigroup. Also we showed that every
non-zero element x € P, is an isolated point in (P, T) for every Hausdorff topology on P,,
such that P, is a semitopological semigroup; moreover, every locally compact Hausdorff semi-
group topology on P, is discrete. The last statement extends results of the paper [32] treating
topological inverse graph semigroups. We described all feebly compact topologies T on P,
such that (P, 7) is a semitopological semigroup. Also in [6] we proved that for every cardi-
nal A > 2 any continuous homomorphism from a topological semigroup P, into an arbitrary
countably compact topological semigroup is annihilating and there exists no Hausdorff feebly
compact topological semigroup containing P, as a dense subsemigroup.

This paper is a continuation of [6]. In this paper we give sufficient conditions on a topo-
logical inverse A-polycyclic monoid P, to be absolutely H-closed in the class of topological
inverse semigroups. For every infinite cardinal A we construct the coarsest semigroup inverse
topology T,,; on P, and give an example of a topological inverse monoid S which contains the
polycyclic monoid P; as a dense discrete subsemigroup.

It is well known that for an arbitrary topological inverse semigroup S and every element
x € S the continuity of the semigroup operation and the inversion in S implies that any .#-
class Ly and any #-class Ry which contain the element x are closed subsets in S. Indeed, the
Wagner—Preston Theorem (see Theorem 1.17 from [12]) implies that Ly = L, -1, and Ry = R,
for arbitrary x € S and since the maps ¢: S — E(S) and : S — E(S) defined by the formulae

(x)p = xx 1 and () = x"1x
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are continuous, we get that Ly = (x 'x)¢~! and Ry = (xx~1)¢~! are closed subsets of the

topological semigroup S. This implies that for any idempotents e and f of a topological inverse
semigroup S the following .7-classes of S:

Hg:Reng al’ld He,f:RgmLf

are closed subsets of the topological inverse semigroup S too. Moreover, the relations ., #
and 7 are closed subsets in S x S, but Z and _# are not necessary closed subsetsin S x S for
an arbitrary topological inverse semigroup S (see [15, Section IIJ).

The following proposition describes Z-equivalent #-classes in an arbitrary topological
inverse semigroup.

Proposition 1. Let S be a Hausdorff topological inverse semigroup and a,c be Z-equivalent
elements of S. Then there exists b € S such that a%b and b.-Yc in S, and henceas = b, bs' = a,
tb = ¢, t'c = b, for somes,s',t,t' € S. The mappings f,.: Hy — Hc: x — txs and f.q: He —
H,: x — t'xs’ are continuous and mutually inverse, and hence are homeomorphisms of closed
subspaces H, and H, of the topological space S. Moreover, if H, and H, are subgroups of S
then H, and H, are topologically isomorphic closed topological subgroups in the topological
inverse semigroup S.

Proof. The above arguments imply that H, and H. are closed subspaces of S. Also, the alge-
braic part of the statement of our theorem follows from Theorem 2.3 of [12] and Theorem 1.2.7
from [28]. The continuity of the semigroup operation in S implies that the maps f,.: H, — H,
and f.,: H. — H, are continuous and hence are homeomorphisms. Now, the proof of The-
orem 1.2.7 from [28] implies that in the case when H, and H. are subgroups of S, then there
exist u,u’ € S such that the maps f,: H, — Hc: x — uxu’ and foq: He — Hy: x — u'xu are
mutually inverse isomorphisms and the continuity of the semigroup operation in S implies
that so defined maps are topological isomorphisms. O

Remark 1. The proof of Proposition 1 implies that any two Z-equivalent ¢ -classes of a Haus-
dorff semitopological semigroup S are homeomorphic subspaces in S, but they are not neces-
sary closed subspaces in S, and a similar statement holds for maximal subgroups in S (see [18]).

Lemma 1. Let T and S be a Hausdorff topological inverse semigroup such that S is an inverse
subsemigroup of T. Let G be an ¢ -class in S which is a closed subset of the topological inverse
semigroup T and D¢ be a Z-class of the semigroup S which contains the set G. Then every
€ -class H C D¢ of the semigroup S is a closed subset of the topological space T.

Proof. First we consider the case when G has an idempotent, i.e., G is a maximal subgroup of
the semigroup S (see Theorem 2.16 of [12]).

In the case when the .7#-class H contains an idempotent, Theorem 2.16 in [12] implies that
H is a maximal subgroup of S and hence H is a subgroup of topological inverse semigroup T.
We put e and f are unit elements of the groups G and H, respectively. Since the idempotents e
and f are Z-equivalent in S, Proposition 3.2.5 of [31] implies that there exists 2 € S such that
aa~! = eand a~'a = f. Now by Proposition 3.2.11(5) of [31] the idempotents ¢ and f are Z-
equivalent in the semigroup T. Put H] and H' be the ./#-classes of idempotents ¢ and f in the
semigroup T, respectively. We define the maps f,s: T — T and ff.: T — T by the formulae
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(x)fef = a~'xa and (x)fs, = axa™!, respectively. Then forany s € H and t € H} we get the
equalities

(5)fe,f ((5)fe ) = a lsa(atsa) P =atsaa s la =a"tses ta = alssTla = alea
((5)fe,f) 1(s)fef = (atsa)talsa=atslaa s =a s lesa = a s lsa = alea
(Ofre((DFfe) =ata Nata )P =ata lat o =atft la 7t =att o = afa”!
—aa ' = e,
((B)fre) 1(t)ffe = (ata D lata ' =at o lata = at et = at e = afa!
-1
=aa " =e,

((S)fe,f)ff,e = aa 'saa™! = ese = s,
(O fe)fer=alata la = ftf =t,

1 1 1

because aa™" =ss*' =s 's =e¢,ea =a,af = aand a g =1 =¢1= f. Similarly, for
arbitrary s,v € HeT and t,u € H} we have that

1 1 1

(S)fe,f(v)fe,f =a Ysanva = a " lseva = a~

sva = (sv)fe,f

and
()ffe(t)ffe = ata taua™! = atfua~! = atua~! = (tu)ffe-

Hence the restrictions f, f| HT: HI — HJI and f | HI : HJI — H[ are mutually invertible group

isomorphisms. Also, since a € S we get that the restrictions fe,f]G: G — Hand ff,e\ g: H—G
are mutually invertible group isomorphisms too. This and the continuity of left and right
translations in T imply that H is a closed subgroup of the topological inverse semigroup T.

Next we consider the case when the .7#’-class H contains no idempotents. Then there exists
distinct idempotents e, f € S such that ss™! = e and s™'s = f for all s € H. Suppose to
the contrary that H is not a closed subset of the topological inverse semigroup T. Then there
exists an accumulation point x € T \ H of the set H in the topological space T. Since every
#€-class of a topological inverse semigroup T is a closed subset of T we get that H and x are
contained in a same #-class Hy of the semigroup T. Then xx~! = e and x"!'x = f. Now
the #-class H! in T which contains the idempotent e € S is a topological subgroup of the
topological inverse semigroup T and by Proposition 1 the subspace H/ of the topological space
T is homeomorphic to the subspace Hy of T. Moreover, Theorem 1.2.7 from [28] implies that
there exists a homeomorphism f: H, rightarrowH] such that the image (H)f is a topological
subgroup of the topological inverse semigroup T and (H)f is topologically isomorphic to the
topological group G. Then (H)f is not a closed subgroup of T which contradicts our above
part of the proof.

Assume that G has no idempotents. By the previous part of the proof it suffices to show that
there exists a maximal subgroup H, with an idempotent e in the Z-class D such that H, is a
closed subgroup of topological semigroup T. Suppose to the contrary that every maximal sub-
group in the Z-class D¢ is not a closed in T. Fix and arbitrary subgroup H, with an idempotent
e in the Z-class D¢ such that xx~! = e for all x € G. Then Proposition 3.2.11(3) of [31] implies
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that there exist //-classes H. and H/ in the semigroup T which contain the set G and group
H,. Since in the topological semigroup T every .7#-class is a closed subset in T, we have that
G is a closed subset of the space HL and H, is not a closed subgroup of the topological group
HET . Then Proposition 3.2.11 of [31] and Proposition 1 imply that there exist s, s’, t, t prime < g
such that the maps f.: Hl — Hl:x +— txs and fg: H. — H[l: x — t'xs’ are mutually
invertible homeomorphisms of the topological spaces H] and H[ such that the restrictions
felp,: HI — G and fg|g: G — H, are mutually invertible homeomorphisms. This is a contra-
diction, because H, is not a closed subset of H!. This completes proof of the lemma. O

Lemma 1 implies the following corollary.

Corollary 1. Let T and S be a Hausdortf topological inverse semigroup such that S is an inverse
subsemigroup of T. Let G be a maximal subgroup in S which is H-closed in the class of
topological inverse semigroups and D¢ be a Z-class of the semigroup S which contains the
group G. Then every s¢-class H C Dg of the semigroup S is a closed subset of the topological
space T.

Lemma 2. Let S be a Hausdorff topological inverse semigroup such following conditions hold:
(i) every maximal subgroup of the semigroup S is H-closed in the class topological groups;
(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).

If there exists a topological inverse semigroup T such that S is a dense subsemigroup of T and
T\ S # @ then for every x € T \ S at least one of the points x - x ! orx~! - x belongs to T \ S.

Proof. First we consider the case when the topological semilattice E(S) does not have the small-
est element. Then the space E(S) is discrete and Theorem 3.3.9 of [16] implies that E(S) is an
open subset of the topological space E(T) and hence every point of the set E(S) is isolated in
E(T). Also by Proposition I1.3 [15] we have that cl7(E(S)) = clg1)(E(S)) and hence the points
of the set E(T) \ E(S) are not isolated in the space E(T).

Fix an arbitrary point x € T\ S. By Corollary 1 every .7#/-class is a closed subset of the
topological inverse semigroup T. Since x is an accumulation point of the set S in the topo-
logical space T we have that every open neighbourhood U(x) of the point x in T intersects
infinitely many #-classes of the semigroup S. By Proposition II.1 of [15] the inversion on T is
a homeomorphism of the topological space T and hence (U(x)) " is an open neighbourhood
of the point x~! in T which intersects infinitely many ##-classes of the semigroup S. Then
the continuity of the semigroup operations and the inversion in T implies that at least one of
the sets (U(x) (U(x))_l) NE(T) or ((U(x))_1 U(x)) N E(T) is infinite for every open neigh-
bourhood U(x) of the point x in the topological semigroup T. This implies that at least one of
x cdotx~1 or x~1 - x is a non-isolated point in the topological space E(T).

In the case when the semilattice E(S) has a minimal idempotent the presented above ar-
guments imply that for arbitrary point x € T \ S and every open neighbourhood U(x) of the
point x in T one of the sets (U(x) (U(x))_1> NE(T) or <(U(x))_1 U(x)) N E(T) is infinite
for every open neighbourhood U(x) of the point x in the topological semigroup T. Since H,
is a minimal ideal of S and it is a Ratkov complete topological group. Then there exists an
open neighborhood U(x) of x in T, such that U(x) N H, = @. If xx ! = e or x 'x = e then
x = xx~'x € H,, which contradicts that x € T\ S. Hence xx ! € T\ Sorx"x € T\ S. O
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Lemma 2 implies the following two corollaries.

Corollary 2. Let S be a Hausdortf topological inverse semigroup satisfying the following con-
ditions:

(i) every maximal subgroup of the semigroup S and the semilattice E(S) are H-closed in the
class of topological inverse semigroups;

(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).
Then S is H-closed in the class of topological inverse semigroups.

Corollary 3. Let A > 2 and let Py be a proper dense subsemigroup of a topological inverse
semigroup S. Then either xx~! € S\ Py orx~1x € S\ P, forevery x € S\ Py.

The following theorem gives sufficient condition when a topological inverse A-polycyclic
monoid P, is absolutely H-closed in the class of topological inverse semigroups.

Theorem 1. Let A be a cardinal > 2 and T be a Hausdorff inverse semigroup topology on P,
such that U(0) N L is an infinite set for every open neighborhood U(0) of zero 0 in (P, T) and
every maximal chain L of the semilattice E(P, ). Then (P,, T) is absolutely H-closed in the class
of topological inverse semigroups.

Proof. First we observe that the definition of the A-polycyclic monoid P, implies that for every
maximal chain L in E(P)) the set L \ {0} is an w-chain. Then Theorem 2 of [5] implies that ev-
ery maximal chain L in E(P) ) with the induced topology from (P,, T) is an absolutely H-closed
topological semilattice. Suppose that E(P,) with the induced topology from (P, T) is not an
H-closed topological semilattice. Then there exists a topological semilattice S which contains
E(Py) as a dense proper subsemilattice. Also the continuity of the semilattice operation in S
implies that zero 0 of E(P,) is zero in S. Fix an arbitrary element x € S\ E(P,). Then for an
arbitrary open neighbourhood U (x) of the point x in S such that 0 ¢ U(x) the continuity of the
semilattice operation in S implies that there exists an open neighbourhood V' (x) subseteqU (x)
of x in S such that V(x) - V(x) C U(x). Now, the neighbourhood V(x) intersects infinitely
many maximal chains of the semilattice E(P, ), because all maximal chains in E(P,) with the
induced topology from (P,, T) are absolutely H-closed topological semilattices. Then the semi-
group operation of Py implies that 0 € V(x) - V(x) C U(x), which contradicts the choice of the
neighbourhood U(0). Therefore, E(P), ) with the induced topology from (P,, T) is an H-closed
topological semilattice.

Now, by Corollary 2 the topological inverse semigroup (P,, T) is H-closed in the class of
topological inverse semigroups. Since the A-polycyclic monoid P, is congruence free, every
continuous homomorphic image of (P), 7) is H-closed in the class of topological inverse semi-
groups. Indeed, if h: (Py, ) — T is a continuous (algebraic) homomorphism from (P,, T) into
a topological inverse semigroup T, then the set U(%(0)) N k(L) is infinite for every open neigh-
bourhood U(h(0)) of the image zero /(0) in T. Then the previous part of the proof implies
that /1(P, ) is a closed subsemigroup of T. O

Remark 2. By Remark 2.6 from [30] (also see [30, p. 453], [29, Section 2.1] and [31, Proposi-
tion 9.3.1]) for every positive integer n > 2 any non-zero element x of the polycyclic monoid
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P, has the form u—'v, where u and v are elements of the free monoid .#,;,, and the semigroup
operation on P, in this representation is defined in the following way:

a~lbyd, if b=Dbic forsomeby € My;

(c1a)~'d, if c =cib forsomecy € My;
a b ld =
0, otherwise

(1)
and a 'b-0=0-a"b=0-0=0.

Then Lemma 2.4 of [6] implies that every any non-zero element x of the polycyclic monoid P,
has the form u~'v, where u and v are elements of the free monoid .#), and the semigroup
operation on P, in this representation is defined by formula (1).

Now we shall construct a topology Tmi on the A-polycyclic monoid Py such that (P, Ty;) is
absolutely H-closed in the class of topological inverse semigroups.

Example 1. We define a topology Tp,; on the polycyclic monoid P, in the following way. All
non-zero elements of P, are isolated point in (P), Tp,). For an arbitrary finite subset A of .4,
put

UA(0) = {a—lb ca,be MA\A}.

We put Z,i = {Ua(0): A is a finite subset of .#) } to be a base of the topology Tp,; at zero
0eP,.

We observe that Tp, is a Hausdorff topology on Py because Uy, ,1(0) # a~'b for every non-
zero elementa~'b € P). Also, since (U4(0)) " = U4 (0) for any UA(0) € By, the inversion is
continuous in (Py, Tpy). Fix an arbitrary a~'b € Py and any basic neighbourhood U 4(0) of zero
in (Py, Tyi). Let Sy, be a set of all suffixes of the word b. Put B = P, U{kb € #): ka € A}. It
is obvious that the set B is finite and hence formula (1) implies thata='b - Ug(0) C U4(0). Let
Sa be a set of all suffixes of the word a. Put D = S, U {ta € .#): tb € A}. It is obvious that the
set D is finite and hence formula (1) implies that Up(0) -a~'b C U4(0). Also Ut (0) - Ur(0) C
Ux(0) forT = AU{b € #): bis a suffix of somea € A}. Therefore (P, Tp;) is a topological
inverse semigroup.

Theorem 1 and Example 1 implies the following corollary.

Corollary 4. The topological inverse semigroup (P), Tmi) is absolutely H-closed in the class of
topological inverse semigroups.

Definition 1 ([23]). A Hausdorff topological (inverse) semigroup (S, T) is said to be minimal if
no Hausdorff semigroup (inverse) topology on S is strictly contained in 7. If (S, T) is minimal
topological (inverse) semigroup, then T is called a minimal (inverse) semigroup topology.

Minimal topological groups were introduced independently in the early 1970’s by Doitchi-
nov [14] and Stephenson [38]. Both authors were motivated by the theory of minimal topologi-
cal spaces, which was well understood at that time (cf. [9]). More than 20 years earlier L. Nach-
bin [33] had studied minimality in the context of division rings, and B. Banaschewski [4] inves-
tigated minimality in the more general setting of topological algebras. In [23] on the infinite
semigroup of A X A-matrix units B, the minimal semigroup and the minimal semigroup in-
verse topologies were constructed.
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Theorem 2. For any infinite cardinal A, Tn,; is the coarsest inverse semigroup topology on P,,
and hence (P), Tmi) is a minimal topological inverse semigroup.

Proof. The definition of the topology Tm; on Py implies that the subsemigroup of idempotents
E(P)) of the semigroup P, is a compact subset of the space (P, Tpi). By Proposition 3.1 of [6]
every non zero-element of a semitopological monoid (P,, 7) is an isolated point in the space
(P), 7). This and above arguments imply that the topology T on P, induces the coarsest
semigroup topology on the semilattice E(Py). Also by Remark 2.6 from [30] (also see [30,
p- 453], [29, Section 2.1] and [31, Proposition 9.3.1]) we have that every non-zero element of the
semilattice E(P) ) can be represented in the form a~'a where a are elements of the free monoid
My, and the semigroup operation on E(P) ) in this representation is defined by formula (1).
Also, we observe that for any topological inverse semigroup S the following maps ¢: S —
E(S) and ¢: S — E(S) defines by the formulae ¢(x) = xx~! and ¥(x) = x~lx, respectively,
are continuous. Since the inverse element of u~1v in P, is equal to v~ 1u, we have that U, =
P\ (¢ 1 (A)Uyp~I(A)), for any finite subset A of the free monoid .#,. This implies that
Ua(A) € T for every inverse semigroup topology T on P,, where A is an arbitrary finite subset
of .#,,. Thus, Ty, is the coarsest inverse semigroup topology on the A-polycyclicmonoid Py. [

In the next example we construct a topological inverse monoid S which contains the poly-
cyclic monoid P, = <p1, p2 | p1 pl_l = pzpz_l =1,pm pz_l = pzpl_l = 0> as a dense discrete sub-
semigroup, i.e., the polycyclic monoid P, with the discrete topology is not H-closed in the class

of topological inverse semigroups. Also, later we assume that the free monoid ., is generated
by two element p; and p».

Example 2. Let F be the filter on the bicyclic semigroup € (p1, py*) = <p1, it piprt = 1>,
generated by the base # = {U,: n € N}, where U,, = {pl’ka: k,m > n}. We denote

A= {a’lb € Py: a # piay and b # p1by forany ay, by € .///2}.

For any element a~'b of the set A let #,1, be the filter on P,, generated by the base #,-1, =
{Vu: n € N}, where V,, = a—*U,b = {(pta)~1pTb: k,m > n}. It is obvious that F = F, 1y,
where 1 is the unit element of the free monoid .#,.

We extend the binary operation from P, onto S = P, U { %, 1,: a~'b € A} by the following
formulae:

ﬁ(ea)qd, ifc = eb;
() a'b o\, = F(ey-14, b= pjcforsomen € N, where e is the longest suffix
¢ of a such thate # p1 f for some f € Mj;
{ 0, otherwise;
[ F._,, ifd = es;
() F 1 alb = F o1, ifa = pld for somen € N, where e is the longest suffix
cd of b such thate # p1f for some f € Mpy;
0, otherwise;

ya—ld, jfb = C;
0, otherwise.
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It is obvious that the subset T = S\ P, U {0} with the induced binary operation from S is
isomorphic to the semigroup of w X w-matrix units B, and moreover we have that
(ﬁaqb)fl = ybflu inT.

We determine a topology T on the set S in the following way: assume that the elements of
the semigroup P, are isolated points in (S, T) and the family

‘@(941*%) = {un(gpflb) tUy € ‘@uflb}

of the set Uy(#,1;,) = Uy, U{Z,1,} is a neighborhood base of the topology T at the point
Fo1p € S.

Now we show that so defined binary operation on (S, T) is continuous.

In case () we consider three cases.

Ifa='b-.F,.1; = 0 then we have thata~'b - U,(%.-1;) = {0} for any positive integer n.

Ifa'v- F., = 7 (ea)-14 then ¢ = eb. We claim that a=1b - Uy(F.y) C Un(F (¢a)-1a)
for any open basic neighbourhood Uy (-# ,4)-14) of the point . ;)14 in (S, 7). Indeed, if x €
Un(F.1,) then x = (pi'c) ~1pkd for some positive integers m, k > n, and hence we have that

a~'b- (pi'e)'pid = a” b (pieb)~'pid = (pi'ea) ' pid € Un(F (eq)-1a)-

Ifa=b- F, 1y = F,,, then e is the longest suffix of the word a in .#> which is not equal
to the word p; f for some f € .#,. This holds when b = plc for some positive integer t. We
claim thata='b - Uy44(F.-1;) C Uy (F,-1,) for any open basic neighbourhood Uy, (.%,-1,) of the
point Z, 1, in (S, 7). Indeed, if x € Uy+¢(F,1,), then x = (pi*Tc)~1pi™d for some positive
integers m, k > n, and hence we have that

a b (pi o) ik td = et phe - (PP e) T = (p ) Tk € U ().

In case (Il) the proof of the continuity of binary operation in (S, T) is similar to case (l).

Now we consider case (lll).

If 7,1y - Fo1y = 0 then Uy (F,1y,) - Un(F,-14) C {0}, for any open basic neighbourhoods
U, (Z#,1,) and U, (F,1,) of the points %, 1, and .#, 1, in (S, T), respectively.

If 7, 1, F, 15 = F, 1, thenb = c and for every any open basic neighbourhood U, (.%,-1,)
of the point %, 1; in (S,T) we have that U, (%, 1) - Un(Fp13) € Uu(F,14). Indeed if
(Pha)'pib € Uy(F,1p) and (p1b)~'pi'd € Un(Fy14) then

(Pha)1pib- (pi) 'pid = (pha) Pl (b bV )p ' pid = (pia) " 'pid,

for some positive integers s,z > n, and hence (p5a) ~1pid € U, (F,14).

Thus, we proved that the binary operation on (S, T) is continuous. Taking into account
that P, is a dense subsemigroup of (S, T) we conclude that (S, T) is a topological semigroup.
Also, since T = S\ P, U {0} with the induced binary operation from S is isomorphic to the
semigroup of w X w-matrix units B, we have that idempotents in S commute and moreover
Foay - Fy, - Foa, = Fy-1,. This implies that S is an inverse semigroup. Also, for every open
basic neighbourhood U, (.Z,-1,) of the point ., 1, in (S,T) we have that (U,(Z,-1,)) " =
U, (#,1,) for alln € IN and hence the inversion in (S, T) is continuous.
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COUPLED FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS
ALONG WITH CLR PROPERTY IN MENGER METRIC SPACES

Coupled fixed point problems have attracted much attention in recent times. The aim of this
paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled map-
pings in Menger metric space and use this notions to establish common coupled fixed point results
for four self mappings. Our work generalizes the recent results of Jian-Zhong Xiao [24] et al (2011).
The main result is supported by a suitable example.

Key words and phrases: Menger metric space, t-norm of H-type, weak compatibility coupled
common fixed point, CLR property, E.A. property, JCLR property.
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1 INTRODUCTION

The concept of a probabilistic metric space was introduced and studied by Menger [3, 19].
Since then, many authors have studied the fixed point property for mappings defined on prob-
abilistic metric spaces (see [2,4,7,12,24]). Jachymski [15] has proved some fixed point theorems
for probabilistic nonlinear contractions with a gauge function ¢ and discussed the relations be-
tween several assumptions concerning ¢.

Bhaskar and Lakshmikantham [24] introduced the notion of coupled fixed points and
proved some coupled fixed point results in partially ordered metric spaces. The work [23]
was illustrated by proving the existence and uniqueness of the solution for a periodic bound-
ary value problem. These results were further extended and generalized by Lakshmikantham
and Ciri¢ [8] to coupled coincidence and coupled common fixed point results for nonlinear
contractions in partially ordered metric spaces.

Sedghi and al [5,9-11] proved some coupled fixed point theorems under contractive con-
ditions in fuzzy metric spaces. The results proved by Fang [1] for compatible and weakly
compatible mappings under ¢-contractive conditions in Menger spaces that provide a tool to
Hu [6] for proving fixed points results for coupled mappings and these results are the genuine
generalization of the result of [10].

Aamri and Moutawakil [22] introduced the concept of E.A. property in a metric space. Sin-
tunavarat and Kuman [14] introduced a new concept of CLR property. Very recently, Chauhan
et.al [13] introduced the notion of JCLR property. The importance of CLR property ensures
that one does not require the closeness of range subspaces.

In this paper, we give the concept of E.A. property, CLR property and JCLR property for
coupled mappings and prove a result which provides a generalization of the result of Zhong
Xiao [24].
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2 PRELIMINARIES

We now state some basic concepts and results which will be used. In the standard notation,
we suppose that R = (—o0, +00), RT = [0, +0), R = RU {—00,+0c0} and Z™ be the set of
positive integers.

A function F : R — [0,1] is called a distribution function if it is non decreasing and
left continuous with F(—o0) = F(+o0) = 1. The class of all distribution functions is denoted
by Deo.

Supposethat D = {F € D :infF DF (t) =0,supF (t) =1}, D5, = {F € D« : F(0) =0}
and DT = DN DZ (see [10,17]).

A special element of DV is the Heaviside function H defined by

1, t>0,
H(t):{ 0, t<O0.

Definition 1 ([16,17]). A function A : [0,1] x [0,1] — [0,1] is called a triangular norm (for
short, a t-norm) if the following conditions are satisfied for any a,b,c,d € [0,1] :

A1) Aa,l)=a;

(A-2) A(a,b) =A(ba);

(A-3) A(a,b) > A(c,d), fora>c,b>d;

(A-49) A(A(a,b),c)=A(a,A(bc)).

Two examples of t-norm are Ayy (a,b) = min {a, b} and Ap (a,b) = ab. It is evident that, as
regards the point wise ordering, A < Ay for each t-norm A.

Definition 2 ([16-18]). A triplet (X, F,A) is called a generalized Menger probabilistic metric
space if X is a non-empty set, A is t-norm and F is a mapping from X x X into DS satisfying
the following condition (F(x,y) for x,y € X is denoted by F,,):

(MS-1) F,, (t) = H(t) forallt € R ifand only if x = y;

(MS-2) F,, (t) = F,x (t) forallx,y € X andt € R;

(MS-3) Fyy(t+s)>T (F.: (t), Ey (s)) forallx,y,z € X and t,s € R".

A Menger probabilistic metric space (for short, a Menger PM-space) is a generalized Men-
ger space with F (X x X) € D™.

Schweizer et al [1,19] point out that if the t-norm T of a Menger PM-space satisfies the

condition sup A (a,a) =1, then (X, F, A) is a first countable Hausdorff topological space in
0<a<1
the (g, A) topology T, i.e., the family of sets

{Uyx (e,A):e>0,A€[0,1], (x € X)}

is the base of neighborhoods of point x for 7, where Uy (¢,A) = {y € X : F,; (¢) > 1—A}.

By virtue of this topology T a sequence {x,} in (X, F,A) is said to be convergent to x (we
write x, — x or nlgrol<> X, = x) if nlgrol<> Fr,x(t) = 1forall t > 0; {x,} is called a Cauchy
sequences in (X, F, A) if for any givene > 0and A € [0,1], there exists N = N (¢, A) € Z* such
that Fy, r, (¢) > 1 — A, whenever n,m > N; (X,F,A) is said to be complete if each Cauchy
sequence in X is convergent to some point in X.

In the sequel, we will always assume that (X, F, A) is a Menger space with the (¢, A) topo-

logy.
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Lemma 1. Let (X, d) be a usual metric space. Define a mapping F : X x X — D™ by
Fry(t)=H(t—d(x,y)) for x,y € Xandt > 0.

Then (X, F, Ay) is a Menger PM-space. It is called the induced Menger PM space by (X,d) and
it is complete if (X, d) is complete.

An arbitrary t-norm can be extended (by (A-3)) in a unique way to an n-ary operation. For
(a1,ap,...,a,) € [0,1]",n € Z7, the value A" (ay,a,...,a,) is defined by Al (a;) = a; and
A" (ay,ap,...,00) = A (A" (ay,a0,...,8,_1),an) -

For each a € [0,1], the sequence {A" (a)}:_, is defined by Al (a) = a and A" (a) =
A (A1 (a),a).

Definition 3. A t-norm A is said to be of H-type if the sequence of functions {A" (a)},_; is
equicontinuous ata = 1.

The t-norm Ay, is a trivial example of a t-norm of H-type, but there are t-norms A of H-type

with A # Ay,. Itis easy to see that if A is of H-type, then A satisfies sup A (a,a) = 1.
0<a<1

Lemma 2. Let (X,F,A) be a Menger PM-space. For each A € (0,1], define a function
dy: X xX—R"by
dy(x,y) =inf {t > 0: Fyy (t) >1—A}. (1)

Then the following statements hold:
(1)d) (x,y) < tifand only if Fy, (t) > 1 —A;
(2)dy (x,y) =d) (y,x) forallx,y € X and A € (0,1];
(3)d, (x,y) =0 forall A € (0,1] ifand only if x = y.

Lemma 3. Let (X, F,A) be a Menger PM-space and let {d, } Ae(0,1] be a family of pseudo-metrics
on X defined by (1).

If A is a t-norm of H-type, then for each A € (0,1] there exists u € (0, A] such that for each
meZT,

(X0, Xm) Z (xi,xiy1) forall xo,x1,...,xm € X.

Lemma 4. Suppose that F € D*. Foreachn € Z*, let F, : R — [0, 1] be nondecreasing, and
gn (0, +00) = (0, +00) satisfies 1_1>rJrr1 gn (t) =0 foranyt > 0. If
n (o]

Eu(gu(t)) > E(t) forall t>0,

then lim F,(t) =1foranyt > 0.

n——+o00

Definition 4 ([20]). An element x € X is called a common fixed point of the mappings
f:XxX—=>Xandg: X — X if

x=f(xx)=g(x).
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Definition 5 ([21]). An element (x,y) € X x X is called:
(i) a coupled fixed point of the mapping f : X x X — X if

flxy)=x fyx)=y

(ii) a coupled coincidence point of the mappings f : X x X — X and g : X — X if

flxy) =gx), flyx)=gW);

(iii) a common coupled fixed point of the mappings f : X x X = X and g : X — X if

x=fxy)=8x), y=fx)=gy).

In [22], Abbas et al introduced the concept of weakly compatible mappings. Here we give a
similar concept in Menger metric spaces as follows.

Definition 6. Let (X, F, A) be a Menger metric space and letf : X x X — X and g: X — X be
two mappings. f and g are said to be weakly compatible (or w-compatible) if they commute at
their coupled coincidence points, i.e.; if (x,y) is a coupled coincidence point of f and g, then

g(f(xy) = flg(x), W),  g(f(y,x)) = f(g(y) g(x)).

Definition 7 ([23]). Let A : X x X =+ X, B: Xx X —- X, T: X — X, S5 : X — X be four
mappings. Then, the pairs (B,S) and (A, T) are said to have common coupled coincidence
point if there exist a, b in X such that

B(a,b) =S(a) =T (a) = A(a,b) and B (ba) = S (b) = T (b) = A (b,a).

3 MAIN RESULTS

Now, we introduce the following concepts.

Definition 8. Let (X, F,A) be a Menger metric space and let mappings A : X x X — X and
S : X — X are said to satisfy the E.A. property if there exist sequences {x,},{yn} € X such
that

lim A (xn,yn) = lim S (x,) = x and lim A (yn, x,) = lim S (y,) =y

n—oo n—oo n—oo n—oo

for some x,y € X.

Definition 9. Let (X, F, A) be a Menger metric space andlet A: X x X - X, B: X x X = X,
T:X— X,S:X — X be four mappings.

Then the pairs (B, T) and (A, S) are said to satisfy the common E.A. property if there exist
sequences {xn},{yn},{x,}, {v,} € X such that
lim A (xn,yn) = nh_r)roloS (xn) = nl1_r>r010B (x’n,y/n) =1limT <xn) =x,

n—oo n—oo

lim A (yn, Xn) = im S (y») = lim B (y'n,x'n) = lim T (y’n) =y

n—o0 n—oo n—oo

for some x,y € X.
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Definition 10. Let (X, F,A) be a Menger metric space. The mappings A : X x X — X and
S : X — X are said to satisfy the CLRg property if there exist sequences {x,},{yn} € X such
that

lim A (xy,yn) = hm S(xy) = Sx and lim A (yu, x,) = l1m S(yn) = Sy

n—oo n—oo

for some x,y € X.

Definition 11. Let (X, F, A) be a Menger metric space andlet A: X x X — X,B: X x X — X,
T:X— X,S:X — X be four mappings.

Then the pairs (B, T) and (A, S) are said to satisfy the common CLRgt property if there
exist sequences {xn} , {yn}, {x,},{v,} € X such that

Jim, A () = lim S (50) = lim B (5,9,) = Jim T () =

fim A (g ) = lim, S (y) = lim B (v, ) = Hm T (5,) =,
wherex,y € S(X)NT (X).
Jian-Zhong Xiao [24] proved the following result.

Theorem 1. Let (X, F, A) be a complete Menger metric space with A is a t-norm of H-type and

A > Ap. Let g : RT — R be a gauge function such that ! ({0}) = {0} and ¥ ¢" (t) < +oo
n=1

foranyt >0.Let A: X x X = X, T : X — X be two mappings such that

Faey)ao) (9(8) = [8 (Fram (1), Fry1o (1))

for all x,y,u,v € X andt > 0, where A (X x X) C T (X), T is continuous and commutative
with A. Then there exists a unique u € X such thatu = Tu = A (u,u).

We now give our main result which provides a generalization of Theorem 1.

Theorem 2. Let (X, F,A) be a Menger metric space with A is a t-norm of H-typeand A > A,.
Let ¢ : R* — R* be a gauge function such that ¢~' ({0}) = {0} and Z ¢" (t) < 4o for any
t>0.Let A: X x X — X,S: X — X be two mappings satisfying the followmg conditions:

(1) forallx,y,u,v € Xandt >0
FA(x,y),A(u,v) (q)(t» > [A (FSx,Su (t) ’ FSy,Sv (”)}1/2} (2)

(2) the pair (A, S) is w-compatible;
(3) the pair (A, S) satisties CLRg property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point
x € X such thatx = A (x,x) =S (x).
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Proof. Since A and S satisfy CLRg property, there exist sequences {x, } and {y, } in X such that
lim A (x4, yn) = lun S(xp) =S(p), Lm A (yn xn) = lun S(yn) =5S(q) (3)

n—oo n—oo

for some x,y € X.
Step 1. We show that A and S have a coupled coincidence point.

Since Z ¢" (t) < 400, we have hm ¢" (t) = 0, and so there exists nyp € Z* such that
P (t) < t Thus, from (2) we have

FaenynA(pa) () = Fatonym, A(pa) (@™ (1))
> A (Estanstn) (2771 ) Fstsio) (97 )] - @)
> [Fstustn (97 () Esusiar (977 (1)) ] -

Letting n — oo in (4), we have Fg,) a(pq) (t) = 1, thatis, A(p,q) = S(p) = x. Similarly,
S(q)=A(q,p) =y

Since the pair (A, S) is weakly compatible, it follows that A (x,y) = S (x) and A (y,x) =
S (y) . Hence A and S have a coupled coincidence point.

Step 2. To show that S (x) =y, S (y) = x.

In fact, from (2) we have

1/2
Fs(x),st0) (@ (1) = Faeyyn), A (@ (1) = [A <FS(xn),S(y) (1) Fs(y,),5(x )(f))]

> [Fs(xn),s(y) () Fs(y,),5(x) (t)] :
Similarly, we have

1/2
Fstaston (9(0) 2 [Fsus) () Fsusto (0] - ©)

Suppose that Qu (t) = Fs(x,),s(y) (t) Fs(y,),s(x) (t) - By (5) and (6), we have Qy (¢ (t)) > Qu-1 (t)
and hence,

Qi (9" (1) = Qut (9" (1) =+ = Qo (1). %
Furthermore, from (5)—(7) it follows that
Fstast) (97 (1) = [Qo (0] and. Fssy,) (" (1) > [Qo ()] ®)
It is evident that [Qp (t)]"/? € D*. Since nh_r>n ¢" (t) = 0, from (8) and Lemma 4 we have

lim S (x,) =S (y) and nh_r)roloS (yn) =S (x).

n—00

This shows that S (x) = yand S (y) = x. Hence, A (x,y) = yand A (y,x) = x.
Step 3. Next we shall show that x = y.
By (2) we have

1/2
Foy (¢ (1)) = Fa,x),Axy) (¢ (1) = {A <F5(y),5(x) (), Fs(x),5(9) (ﬂ)] > Fey (). (9)

From (9) we have Fy, (¢" (t)) > Fyy (t). Using Lemma 4, we have F,, (t) = 1,ie., x = y. The
uniqueness of x follows from (2). So, the proof of Theorem 2 is finished. O
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Theorem 3. Let (X,F,A) be a Menger metric space with A is a t-norm of H-type. Let
¢ : RT — R" be a gauge function such that ¢! ({0}) = {0}, ¢ (t) < t and nlgrc}o P"(t) =0
foranyt > 0. Let A: X xX — X,S5: X — X be two mappings satisfying the following
conditions:

(1) forallx,y,u,v € Xandt >0

FA(x,y),A(u,v) ((P(t>) > [FSx,Su (t) FSy,Sv (t)} 1/2; (10)

(2) the pair (A, S) is w-compatible;
(3) the pair (A, S) satisties CLRg property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point
x € X such thatx = A (x,x) =S (x).

Proof. Since A and S satisfy CLRg property, there exist sequences {x, } and {y, } in X such that

lim A (xn,yn) = nlgIC}OS (xn) =S(p), lLm A (yn x,) = lim S(y,) =S(q) (11)

n—oo n—oo n—oo

for some x,y € X.
Step 1. We show that A and S have a coupled coincidence point.
From (10) and ¢ (¢) < t, we obtain

FS(xn),A(p,q) (t) = FS(xn),A(p,q) (q) (t>) = FA(xn,yn),A(p,q) (q) (t>)
1/2 (12)
> |Fsus) () Fsnys (0]
Letting n — oo in (12), we have nlgrolos (xn) = A(p,q). Hence, S(p) = A(p,q) = «x.
Similarly, we can show that S () = A(q,p) = y.
Since the pair (A, S) is weakly compatible, it follows that A (x,y) = S (x), A(y,x) = S(y) .
Step 2. To show that S (x) =y, S (y) = x.
In fact, from (10) we have

1/2
Fs(x,),50) (@ (1)) = Fa(xuym), Awx) (@ (1) = [FS(xn),S(y) (t) Fs(y,),5(x) (t)] : (13)

Similarly, we have

1/2
Fs(x)s(y,) (9 (1)) = [Fs(xn),S(y) (t) Fs(y),5(x) (f)] : (14)

Suppose that Qn () = Fs(x,),5y) (t) Fs(y,),s(x) (£) - By (13) and (14), we have

Qu (9" (1) = Qut (9771 (1) =+ = Qo (B);
Fs(xu sty (97 (1) = [Qo (D] and Fo(y)s(y,) (9" (1) = [Qo (]2

Since [Qp (t)]'/? € DT and lim ¢" () = 0, by Lemma 4 we conclude that

n—o00

lim S (x,) =S (y) and nlgrolos (yn) =S (x).

n—oo
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This shows that S (x) = yand S (y) = x. Hence, A (x,y) =yand A (y,x) = x.
Step 3. Finally, we prove that x = y.
By (10) we have

1/2
] > Foy(H).  (15)

Fry (@ (1) = Fagx),axy) (@ (1) > [Fs(y),s(x) (1) Fs(x),5(y) (1)

From (15), we have F,, (¢" (t)) > Fy, (t). Using Lemma 4, we have F,, (t) = 1,i.e., x = y.
The uniqueness of x follows from (10). 0

Theorem 4. Let (X,F,A) be a Menger metric space with A is a t-norm of H-type. Let
¢ : Rt — R" be a gauge function such that ¢! ({0}) = {0}, ¢ (t) < t and r}gr;o " (t) = o0
foranyt > 0. Let A : X x X — X, S : X = X be two mappings satistying the following
conditions:

(1) forallx,y,u,v € Xandt >0

FA(xy),Au0) (1) = min {Fsusu (¢ (1)), Fsys0 (9 (1))} (16)
(2) the pair (A, S) is w-compatible;
(3) the pair (A, S) satisties CLRg property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point
x € X such thatx = A (x,x) =S (x).

Proof. Since A and S satisfy CLRg property, there exist sequences {x, } and {y, } in X such that

lim A (xn,yn) = nlgro‘os (xn) = S (p), nlgro‘oA (Yn, xn) = nlgro‘os (yn) = S (q) (17)

n—oo

for some x,y € X.
Step 1. We show that A and S have a coupled coincidence point.
From (16) and (17) it follows that

Fs(x),a(p9) () = Fa(xnyn),A(p,g) () = min {FS(xn),S(p) (@ (1), Fs(yn),s(9) (@ (f))} : (18)

Letting n — oo in (18), we have nlgrolo S(xn) = A(p,q).Hence, S(p) = A(p,q) = x. Similarly,
we can show that S () = A(q,p) = y.
Since the pair (A, S) is weakly compatible, it follows that A (x,y) = S (x), A(y,x) = S(y).
Step 2. We claim that S (x) =y, S (y) = .
In fact, from (16) we have

Fs(x,),5(y) (1) = Fa(xyn),A(y,x) (£) = min {FS(xn),S(y) (@ (1), Fsya),sx) (@ (t))} . (9

Similarly, we have
Fs(x),5(y,) () = min {FS(xn),S(y) (@ (1), Fsy),sex) (@ (f))} : (20)
Suppose that M, (t) = min {Fs(xn),s(y) (t) , Fs(y,),5(x) (t)} . From (19) and (20) it follows that

My (£) = M1 (9 (£) = -+ = Mo (¢" (1)) -
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. ey
Since nlgrolo ¢" (t) = +o00, we have

Mo (¢" (t)) = min {FS(xO),S(y) (t) ) Fs(yy),5(x) (t)} — lasn — co.
This shows that M, (t) — 1 asn — oo, s0

lim S (x,) =S(y) and lim S (y,) =S (x).

n—oo n—oo

Hence, S (x) =yand S (y) = x.
Step 3. Finally, we prove that x = y.
By (16) we have

Fry (t) = Fagyx),A(xy) () > min {FS(y),T(x) (¢ (1), Fsx),1(y) (@ (f))} =Foy(@(t). (21)

From (21), we have Fy, (t) > Fyy (¢" (t)). Letting n — oo, we have Fy, (t) = 1,ie, x = y.
Since the uniqueness of x follows from (16), the proof of Theorem 4 is completed. O

Now we give another generalization of Theorem 1.

Corollary 1. Let (X,F,A) be a Menger metric space with A is a t-norm of H-type. Let
@ : Rt — R* be a gauge function such that ¢! ({0}) = {0}, ¢ (t) < t and nh_r>r010 P"(t) =0
foranyt > 0andlet A : X x X — X,S : X — X be two mappings satisfying the following
conditions:

(1) forallx,y,u,v € Xandt >0

Fa(xy),A(wo) (9(1) = [A (Fsxsu (t), Fsyso (1))] 2
(2) the pair (A, S) is w-compatible;
(3) the pair (A, S) satisfies E.A. property.
If S (X) is a closed subspace of X, then A and S have a unique common fixed point in X.

Proof. Since A and S satisfy E.A. property, there exist sequences {x,} and {y,} in X such that

Y}E{}OA (Xn, Yn) = }1151305 (xn) = x, nlg{}oA (Y, xn) = }1151305 (yn) =y
for some x,y € X.
It follows from S (X) being a closed subspace of X that x = S(p), y = S(g) for some

p,q € X and then A and S satisfy CLRg property. By Theorem 2, we get that A and S have a
unique common fixed point in X. O

Corollary 2. Let (X,F,A) be a Menger metric space with A is a t-norm of H-type. Let
¢ : Rt — R* be a gauge function such that ¢! ({0}) = {0}, ¢ (t) < t and lim e" (1) =0
foranyt > 0. Let A: X x X = X,S : X — X be two mappings satisfying the conditions of
Corollary 1.

Suppose that A (X x X) C S (X)), if range of one of the maps A or S is a closed subspace of
X, then A and S have a unique common fixed point in X.
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Proof. It follows immediately from Corollary 1. O
Taking S = Ix in Theorem 2, we obtain the following

Corollary 3. Let (X,F,A) be a Menger metric space with A is a t-norm of H-type. Let
@ : Rt — RT be a gauge function such that ¢! ({0}) = {0}, ¢ (t) < t and nh_r)rc}o P"(t) =0
foranyt > 0. Let A : X x X — X be a mapping satisfying the following condition, for all
x,y,u,v € Xandt > 0:

(1)
FA(x,y),A(u,v) ((P(t>) 2 [A (Fx,u (t) ’ Py,v (t))}l/z;

(2) there exist sequences {x, } and {y,} in X such that

lim A (xn,yn) = hm Xy =%, lim A (yn, x,) = hm N Yn =Y

n—oo —00 n—oo

for some x,y € X.

Then there exists a unique z € X such thatz = A (z,z) .

Now, we prove Theorem 2, Theorem 3, Theorem 4 for four mappings satisfying CLRgst
property before proving our main theorems, we begin with the following observation.

Lemma 5. Let (X, F,A) be a Menger metric space with A is a t-norm of H-typeand A > A,.
Let ¢ : R* — R* be a gauge function such that ¢~' ({0}) = {0} and Z ¢" (t) < 400 for any

t>0.LetA: XxX =+ X,B:XxX =X, T:X — XandS : X—>Xbefourmapp1ngs
satisfying the following conditions:

(1) the pair (A, S) satisfies the CLRg property (or the pair (B, T) satisfies the CLRT property);
(2) A(X x X) C T(X) (or B(X x X) C S(X));
(3) T (X) (orS (X)) is complete subspace of X;

(4) B (x,,y,) converges for every sequences {x,} and {y, } in X whenever T (x,),T (y,)
converges (or A (xu,yn) converges for every sequences {x,} and {y,} in X whenever
S (xn),S (yn) converges);

(5) forallx,y,u,v € Xandt >0
1/2
FA(xy),Bu0) (9 (£)) = [A (Fsx,u (t) , Fsy,1o (1)) ] 2 (22)

Then (A, S) and (B, T') share the CLRgT property.

Proof. Suppose the pair (A, S) satisfies the CLRg property, then there exist {x, } and {y,} in X
such that

lim A (x4, yn) = lim S(x,) =a€ S(X),

n—oo n—oo

lim A (yn,xn) = lim S(y,) =be S(X).

n—oo n—o0
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Since A (X x X) C T (X) (wherein T (X) is complete), for each {x,}, {y,} in X there corre-
spond sequences {x, } and {y,} in X such that

A(xp,yn) =T <xn) and A (Yn,xn) =T <yn) .

Therefore,

lim A (xy,y,) = lim T< ) =g,

n—o0 n—00
Jim A) = JimT () =b
where a,b € S (X) N T (X). Now, we prove that B (x,,,,) — aand B (y,, x,,) — b.

Since Y ¢" (f) < +oo, we have h_r)n ¢" (t) = 0, and so there exists nyp € Z* such that
n=1 n—oo
¢" (t) < t. Thus, from (22) we have

o) (o) () 2 Fa(unn) B(xop,) (97 ()
> (8 (st (971 0) Fsgyrgiy (0 (f>>)]1/2 (23)

> [Esonn(a) (07 ) Esgyni) (97 ®))] 172

Letting n — oo in (23), we get lim B (x,,,¥2) = a. Similarly, we can show lim B (Y, x,) = b.
n—oo

Thus, the pairs (A, S) and (B T) share the CLRgt property. O
Theorem 5. Let (X, F,A) be a Menger metric space with A is a t-norm of H-typeand A > A,.
Let ¢ : R* — R* be a gauge function such that ¢~' ({0}) = {0} and Z ¢" (t) < 400 for any

t>0.LetA: XxX =+ X,B:XxX =X, T:X — XandS : X—>Xbefourmapp1ngs
satisfying the inequality (22) of Lemma 5.

If the pairs (A, S) and (B, T) share the CLRgT property, then (A,S) and (B, T) have a co-
incidence point each. Moreover A, B, S and T have a unique common fixed point if both the
pairs (A,S) and (B, T) are weakly compatible.

Proof. Since both the pairs (A,S) and (B, T) share the CLRst property, there exist four se-
quences {x,},{yn}, {x,} and {y, } in X such that:
nl1_r>r010A(xn,yn) = hm S(xp) = 11_r>n T< n) = nh_r}rc}oB ( n,yn> =a,
nlgroloA (Yn, xn) = hm S(yn) = hm T <yn> = nlgroloB (y/n,x/n) =D,

wherea € S(X)NT(X)and b € S(X)NT(X). It implies that there exist points 7,s, p,q € X
such that

(24)

S(ry=a,S(s)=b, T(p) =aand T (q) = D.
Step 1. We show that B (p,q) = T (p) and B(q,p) = T (q). Since ij ¢" (t) < 400, we have
n=1
lim ¢" () = 0 and so there exists 1y € Z" such that ¢™ (t) < t. Thus, from (22) we have

n—oo

Fr(,),Bpa) (t) = Fr (), Bpa) (@™ (1)) = Fa(xpym),B(pg) (9™ (1))
1/2

> [A <F5(xn),T(p) <90n°_1 (f)) Fsy,), () <9"n0_1 (0))] / )
> [Fsta 0 (977 (9) Fsunrip (97 ) ] .
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Letting n — oo in (25), we have lim T (x,) =B(p,q). By (24), T (p) = B (p,q) = a. Similarly,
we can show that T (g) = B(gq,p) = b.
Since the pair (B, T) is weakly compatible, so T (p) = B (p,q) = a implies T (a) = B (a, b),
similarly T (b) = B (b, a).
Now, we show that: S (r) = A(r,s)and S(s) = A (s, 7).
Since ij ¢" (t) < 400, we have lim ¢" () = 0 and so there exists ny € Z* such that
=1

n—oo

P (t) < ?._Thus, from (22) we get
FA(r,s),S(xn) (t) > FA(r,s),S(xn) (q)no (t)) = FA(r,s),B(x'n,y'n) (q)no (t))
ng— nog— 172
> (8 (Fsyr(a) (9771 0) Fsorgay (977 )] (26)

> [FS(r),T(x}l) <q)”0—1 (t)) FS(S)’T(%) <¢no—1 (t>>]1/2

Letting n — oo in (26), we have nlgrolos (xn) = A(r,s). By (24), S(r) = A(r,s) = a. Similarly,
we can show that S (s) = A (s,r) = b.
Since the pair (A4, S) is weakly compatible, it follows that A (a,b) = S (a), A (b,a) = S (b).
Step 2. We claim that Ta = b, Tb = a and Sa = b, Sb = a.
In fact, from (22) we have

1/2
Ery,),1a (@ (1) = Fay, ) Bap) (9 (1) 2 {A <P5(yn),T(a) (t) ) Fs(x,),T(0) (l‘))}

/2 (27)
2 [stn),nu) (£) Fs (), (1) (f)}

Similarly, we have

] 1/2

Ere,)m (9 (1) 2 [FS(xn),T(b) (t) Fsy,),1a (£) (28)

Suppose that Qu(t) = Fs(x,),1(v)(t)Fs(y,),1a(t)- By (27) and (28), we have Qy (¢ (t)) > Qu-1(t),
hence

Qu (9" (1) = Qua ("1 (1) = > Qo (1), (29)
Furthermore, from (27)—(29) it follows that
Frggym (0 (0) 2 [Q (]2 and Frogyny (9" (1) > Qo (]2 (30

It is evident that [Qp (#)]"/? € D*. Since lim,,_,e ¢" (£) = 0, from (30) and Lemma 4 we have

lim T (y’n) =Tz and lim T (x’n) = Tb.

n—oo n—o0

This shows that Ta = b and Tb = a. Hence B (a,b) = band B (b,a) = a.
Similarly, we can show that Sa = b and Sb = a. Hence A (a,b) = band A (b,a) = a.

Step 3. Now we prove thata = b.
By (22) we have

Fop (9 (1)) = Fa(pa),Bap) (¢ (1)) = {A (FS(b),T(a) (t) , Fsa), 1) (0)] > Fp (). (31)

From (31), we have F,, (¢" (t)) > F,; (t). Using Lemma 4, we obtain F,}, (t) = 1, ie.,a = b.
The uniqueness of a follows from (22). So, the proof of Theorem 5 is finished. O



COMMON COUPLED FIXED POINT IN PROBABILISTIC METRIC SPACES 207

Theorem 6. Let (X, F, A) be a Menger metric space with A is a t-norm of H-typeand A > A,.
Let ¢ : R* — R* be a gauge function such that ¢~' ({0}) = {0} and Z ¢" (t) < 400 for any

t>0.Let A: XxX =+ X,B:XxX—=X,T:X — XandS: X—>Xbefourmapp1ngs
satisfying the condition (1)—(5) of Lemma 1.

Then A, B,S and T have a unique common fixed point if both the pairs (A,S) and (B, T)
are w-compatible.

Proof. Inview of Lemma 5, both the pairs (A, S) and (B, T) enjoy the CLRgT property, therefore
there exist two sequences {x,}, {yx}, {x,} and {y, } in X such that:

lim A (xn,yn) = lim S(x,) = lim T( ) = lim B( n,yn) =a,

n— 00 n—oo n— 00 n—00
i A xa) = Jim, S () = Jim T () = fim B (v 5,) =
wherea € S(X)NT(X)and be S(X)NT(X).
The rest of the proof runs on the lines of the proof of Theorem 5. O

Similarly, we can prove Theorem 3 and Theorem 4 for four mappings using CLRgT prop-
erty.

Now, we present some illustrative examples which demonstrate the validity of the hypothe-
ses and degree of utility of our results.

forallx,y € X andt > 0. Then (X, F,A)

Example 1. Let X = [ ) U{l}andF., (t) = | m

is a Menger metric space, but it is not complete.
Obviously (X, F, A) is not complete. Define the mappings A : X x X — X, B: X x X = X,
T:X—=XandS: X — X by

B(

=
<
N—
I
T Ll | O 1 [ N
) N‘—Q—
<
—
hh
Y
Rg
<
SN—
N

~
—~
B
I
—N—

It is noted that A(X x X) = [0,%5) ¢ T(X) = [03], B(XxX) = [0,3] ¢ s(X) =

[0, 12} and T(X) and S(X) are complete.
Next, we show that our results can be used for this case.
Let us prove that A, B, S and T satisfy the CLRgt property. Consider the sequences {x,},
{yn}, {x,} and {y,} in X which are defined by
1 1

. 1 . 1
Xn—%/ Yn= 7, xn_gandyn_5_n’ n=123,...
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Since

Hm A (xp, yn) = mns@@:hmT(@):E%BQ%%)206ﬂxyu%m,

n—00 n—00 n—00
Iim A (yn, %) = lim $(y,) = lim T (y,) = lim B (y,,x,) =0€ S(X)NT(X).

Thus A, B, S and T satisfy the CLRgT property with these sequences.

Next, we will show that the pairs (A, S) and (B, T) are w-compatible.

It is obtained that

1. A(x,y) = S(x) and A(y,x) = S(y) if and only if x = y = 0, since A(5(0),5(0)) =
S(A(0,0)), mappings A and S are w-compatible, and

2. B(x,y) = T(x) and B(y,x) = T(y) if and only if x = y = 0, since B(T (0),T (0)) =
T(B(0,0)), mappings B and T are w-compatible.

Finally, we prove that for x,y,u,v € X,

FA(x,y),B(u,v) ((P (t)) 2 [A (FSX,TM (t) ’FS%TU (t))}

Let ¢ : (0,00) — (0,00) by ¢ (t) = 3t. Then LII’E ¢" (t) =0 forany t > 0. For x,y,u,v € X,
n e}

1/2

we distinguish the following cases.
Case 1. (x,y) # (1,1) and (u,v) # (1,1). In this case we have

t
5 t
FA(xy) B(u,0) (kt) = 2 22 = 2
Y)r 7 _l’_ 2
] e ()
t .
= > > min {FSx,Tu (t> zFSy,TU (t)} .
t+ %—u’

t
t t
FA(xy)B(uv) (kt)_ 22 2 - 2412
Y).b(U, t x4+ 1 A
2 6y_7‘ | _1’
t
> . > min {FSX u (1) , Fsy, 1o (t>}
H—L—H
3 2

Case 3. (x,y) = (1,1) and (u,v) # (1,1).

t
5 t
Fa(xy),B(u0) (kt) = : =
(xy)B(w,0) I ¥‘ F+ [x + Y]
t .
> 2 min {FSx,Tu (t> ;FSy,Tv (t)} .
t+ )X — 1

Case 4. (x,y) = (1,1) and (u,v) = (1,1).

t .
= — Z min {FSx,Tu (t) /FSy,TU (t)} ‘

t
Fa(xy) Bluo) (k) = 721 ]
I+3 t+3

Hence, all the hypotheses of Theorem 5 hold. Clearly (0,0) is the unique common coupled
tixed pointof A,B,S and T.
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Ben Aoya A., Axiyue A. Teopemu npo 3uenneny Hepyxomy mouky 01 caabko cymicHux 8idobpasicert
y cykynnocmi 3 CLR enacmusicmio 6 mempuunux npocmopax Meurepa // Kapmarcbki maTeM. myba.
—2016. — T.8, Ne2. — C. 195-210.

ITpobaemu 3B'513HOI HEPYXOMOI TOUKM IPUBEpPTaIOTh 3HAUHY YBary B TellepillHili gac. MeTa miei
CTaTTi moasirae y posnmpenHi nousiTh E.A. Baactmusocrti, CLR BaacTmBocTi Ta JCLR BAACTMBOCTI AAS
3BSI3HNX BipOOpakeHb B METPUIHOMY NIpOCTOpi MeHT'epa i BUKOPMCTaHHI IMX MOHSITH AAST AOCAi-
AKEHHSI 3aTaAbHVX Pe3yABTaTiB PO 3B'SI3HY HEPYXOMY TOUKY AAS UOTMPBOX BAACHMX BiAOOGpakeHb.
Hamma pob6ora y3araabHioe pesyabraty LIsta-Xoxonr Kesto [24] Ta iH. OcHOBEMIT pe3yAbTaT HaBeACHO
3 BUKOPUCTaHHSIM BiATIOBiAHOTO MPUKAAAY.

Kontouosi cnoea i ppasu: MeTpuaHmit mpocTip Menrepa, t-HopMa Tty H, crabka BiAIIOBiAHICTD
38’s13H01 HepyxoMoi Toukn, CLR BaactusicTh, E.A. BaacTusicTs, JCLR BAACTUBICTD.
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VASYLYSHYN T.V.

EXTENSIONS OF MULTILINEAR MAPPINGS TO POWERS OF LINEAR SPACES

We consider the question of the possibility to recover a multilinear mapping from the restriction
to the diagonal of its extension to a Cartesian power of a space.
Key words and phrases: multilinear mapping, polarization formula.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Let X and Y be linear spaces over the same field K. It is well-known (see e. g. [1, Theo-
rem 1.10]) that every symmetric n-linear mapping A : X" — Y can be recovered from its restric-
tion to the diagonal A : X — Y, A(x) = A(x,...,x), by means of the so-called Polarization

Formula:
1 ~
A(xl,...,x”) — |21’l Z 81...871A(81x1+...+8nx”).
n: €1,.-,En==1

But in general if A is non-symmetric, it cannot be recovered from A. For example, if A is alter-
nating, then Ais equal to zero. Let us recall that A is called alternating if A(xy(1), ..., Xo(n)) =
(=1)7A(xq,...,x,) forevery x1,...,x, € Xand o € S,, where S, is the group of all permuta-
tions of n elements and (—1)7 is the sign of the permutation ¢.

In [1, p. 8] it has been introduced mappings between complex linear spaces, which are
linear with respect to some arguments and antilinear with respect to other arguments. If such
a mapping is symmetric with respect to “linear” and “antilinear” arguments separately, then it
can be recovered from its restriction to the diagonal by means of polarization formulas, proved
in [2] and [3]. Note that in this case there are no any requirements of symmetry between
“linear” and “antilinear” arguments. In some cases for multilinear mappings there is a similar
situation. For example, if A : X" — Y is an n-linear mapping, then a mapping A : (X")" — Y,
defined by

g(xl, ce Xp) = A(xgl), e, x,(f)),

1 n
where x; = (x]( ),...,x]( )

non-symmetric) and its restriction to the diagonal A(x) is equal to A(x(), ..., x(") for x =
(x(l), el x(”)) € X". Therefore, A and, consequently, A, can be recovered from the restriction
of A to the diagonal.

We consider the question of the possibility of recovering of a multilinear mapping from the
restriction to the diagonal of its extension to a power of a space.

) € X", j € {1,...,n}, is an n-linear mapping too (in general,

YAK 517.98
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1 THE MAIN RESULT

Let M = (mij)zr‘szl be a matrix of scalars from K. Then for every n-linear mapping A :
X" — Y amapping Ep(A) : (X*)" — Y, defined by

Epm(A)(x1,...,x0) = A(mllxgl) +...+ mlnxgn),- . ,mnlx,gl) +...+ mnnx,gn)),
where x1,...,x,; € X", is an n-linear mapping. Its restriction to the diagonal is equal to
e n n
Em(A)(x) = Y oo Y gy oo, A(xRD, L xRy, (1)
ki=1  kn=1
Note thatif m;; =1,i =1,...,n, for the fixed j € {1,...,n}, then Ep;(A) is an extension of A.

Proposition 1.1. For every n-linear alternating mapping A : X" =Y,

—

Em(A)(x) = det(M)A(xD, ..., xM),
where x = (x), ..., xM) € X",

Proof. Since A is alternating, A(x(kl), een, x(k")) = 0if k; = ks for some [ # s. Therefore, by (1),

EM(A)(X) = Z Myg(ky) -+ mmr(kn)A(x(U(l)), o, x(U(n))>.

cEeS,

Since A(x(eM), ..., x(e()) = (—1)7A(x(), ..., x("), therefore

Em(A)(x) = Y (1) Mgk - - - Moy AL, . xM) = det(M)A(xD, .., x™).

oES,

O

Let us consider recovering of multilinear mappings, which in general are neither symmetric
nor alternating. It can be easily seen that if M is a diagonal matrix, then

L —

Em(A)(x) = myq ... mun A(xM), . x™)

for every n-linear mapping A. Let us construct a non-diagonal matrix M’ such that every n-

linear mapping A can be recovered from EW) Let

11 1 1
1 -1 1 1
M=11 1 =1 1
1 1 1 —1
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Theorem 1. The n-linear mapping A can be recovered from Em) by means of the formula:

1 1 : : —
A(x]./"'lxn) = 211 Z (—1)]2+”’+]” Z €1 ...SnEM/(A)
j;_,...,jn:O €1,...,€n::|:1 (2)
X <€1i1 (x1) + ezp](f) (x2) +...+ enp](:) (xn)) ,
where
k) _ [ i(x), ifjr =0,
Al ={ . i
fork € {2,...,n}.
Proof. Lety; =i1(x1),y2 = p](zz)(xz), e Yn = p](:)(xn). Notice that
Y. er...enEpm(A) (e 4 -+ Enn)
€1,.-,En==1
n
= Z EM’(A)(yklr“'/ykn) Z €1...&n€gy - - - &,
kl,...,knzl £1,...,£n:i1
and
[ 2r, ifky #E L F
. ‘ 1o Enlley « - By = { 0, otherwise.
1,...,8;1—:t1
Therefore,
1 —
on Z €1...enEpr(A)(e1y1 + ...+ €nln) = Z EM/(A)(yU(l),...,yg(n)).
€1,.-,En==1 oceS,

For o € S, such that o(n) = n we have

1 1

> (U Ene () Yoty Yotn-1yYotn) = Y (D" En(A) (Vo(ays -+ Yoty Py (5n) )
jn=0 jn=0

= EM’(A>(yU(1)/ . 'rya(nfl)fil (x?l)) - EM’(A>(yU(1)/ . 'rya(nfl)fin(xn))
=2Ep(A) Wo(1)r - -+ Yo(n—1), 1 (xn))-
For o € S, such that o(n) # n we have

1 1

> (U Ere (A Wotr)s - Yon) = Y (1 (Yoo P s Yoty
jn=0 jn=0

= Enr(A) Yoy 1) Yoimy) = Enr (A) Yoy - in(xn), - Yor(uy) = O-
Therefore, the right-hand side of (2) is equal to

1 1 . . '
=2 Y, (=pEtethe N B (A) Yoy -0 Yo(ne)s i1(Xn)-
]‘2/"'/]‘717120 O’ESn, (T(Tl):n

After applying this method n — 1 times we obtain that the right-hand side of (2) is equal to
Enp(A)(i1(x1),i1(x2), ..., i1(xy)), which is equal to A(xy,xp, ..., xp). O
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THE VERTEX ZAGREB INDICES OF SOME GRAPH OPERATIONS

Recently, Tavakoli et al. [6] introduced a new version of Zagreb indices, named as vertex Zagreb
indices. In this paper explicit expressions of different graphs operations of vertex Zagreb indices are
presented and also as an application, explicit formulas for vertex Zagreb indices of some chemical
graphs are obtained.

Key words and phrases: degree, topological index, Zagreb index, graph operations.
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INTRODUCTION

In this paper, all the graphs are simple connected, having no directed or weighted edges.
Let G be such a graph with vertex set V(G) and edge set E(G). Let the number of vertices and
edges of G will be denoted by n and m respectively. Also let the edge connecting the vertices
u and v is denoted by uv. The degree of a vertex v, is the number of first neighbors of v and is
denoted by dg(v). Let N(u) denotes the first neighbor set of u; then |N(u)| = dg(u). As usual
P, and C, denote a path and cycle graph of order n respectively. Let, } denotes the class of
all graphs, then a function T : ), — R™ is known as a topological index if for every graph H
isomorphic to G, T(G) = T(H). Thus a topological index transforming chemical information
of a molecular graph by means of a numeric parameter which characterize its topology and is
necessarily invariant under automorphism of graphs.

The first and second Zagreb indices of a graph were introduced in 1972 [1], denoted by
M;(G) and M (G) and are respectively defined as

Mi(G)= Y dg(v)’= Y [do(u)+dg(v)]and Ma(G) = Y dg(u)dg(v).
veV(G) uveE(G) uveE(G)

These indices are among one of the most important vertex-degree based topological indices
and have good application, so that get lots of attention from chemists and mathematicians
(see [2-5,7]).

There are various study of different versions of Zagreb indices. One of the modified ver-
sions of classical Zagreb indices, the vertex version of first and second Zagreb indices were
introduced by Tavakoli et al. in [6] to calculate the eccentric connectivity index and Zagreb
coindices of graphs under generalized hierarchical product and are defined as

YAK 519.1
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MiG)= ¥ e +de(@)], MH(C)= ¥ do(u)dg(o).
{uv}cv(G) {u0}cV(G)

In that paper, they also derived explicit expressions of first and second vertex Zagreb in-
dices of generalized hierarchical product graphs. Till date, the study of these indices are largely
limited and hence we have attracted in studying mathematical properties of these vertex ver-
sion of Zagreb indices.

Graph operations played a very important role in chemical graph theory, as some chem-
ically interesting graphs can be obtained by different graph operations on some general or
particular graphs. In [7], Khalifeh et al. derived some exact formula for computing first and
second Zagreb indices under some graph operations. In [8], Ashrafi et al. presented some
explicit formulae of Zagreb coindices under some graph operations. In [9], Das et al. derived
some upper bounds for multiplicative Zagreb indices for different graph operations. In [10]
and [11], the present author obtained F-index and F-coindex of different graph operations.
In [12] the present author found reformulated first Zagreb index under different graph opera-
tions. In [13], Azari and Iranmanesh presented explicit formulas for computing the eccentric-
distance sum of different graph operations. There are several other results regarding various
topological indices under different graph operations are available in the literature (for details
see [14-23]). In this paper, we derive some exact expression of the first and second vertex Za-
greb indices of different graph operations such as union, join, Cartesian product, composition
and corona product of graphs.

1 MAIN RESULTS

In this section, we study the first and second vertex Zagreb indices under union, join, Carte-
sian product, composition and corona product of graphs. All these operations are binary,
and the join and Cartesian product of graphs are commutative operations, whereas the com-
position and corona product operations are noncommutative. Let G; and G, be two simple
connected graphs, so that their vertex sets and edge sets are represented as V(G;) and E(G;)
respectively, for i € {1,2}. Also let, n; and m; denote the number of vertices and edges of G;
respectively, for i € {1,2}.

1.1 Union

Definition 1.1. The union of two graphs G; and G; is the graph denoted by G U G, with the
vertex set V(G1) U V(Gy) and edge set E(Gy) U E(Gy). In this case we assume that V(Gy) and
V(G,) are disjoint.

The degree of a vertex v of G; U G; is equal to degree of that vertex in the component G;,
i = 1,2, that contains it. In the following we calculate the first and second vertex Zagreb
indices of G1 U Gy.

Theorem 1. Let Gy and G; be two connected graphs, then
MT(Gl U Gz) = MT(Gl) + MT(GZ) + 2nymq 4 2nyms.

Proof. From definition, it is clear that, the vertex Zagreb index of G; U G, is equal to the sum
of the vertex Zagreb index of the components G;, in addition to that the contributions of the
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missing edges between the components, which makes the edge set of the complete bipartite
graph K, »,. Thus we have

Mi(GIUGy) = Y. [de(w) +dc, ()] + Y [de,(u) +dg,(v)]
{uv}ev(Gy) {uv}eV(Gy)

+ ), ) ldg(u) +dg,(v)],

uEV(Gl) UEV Gz)

which proves the desired result. O
Theorem 2. Let Gy and G; be two connected graphs, then

M;(G1UGy) = M5(Gy) + M5 (Gy) + 4mymy.
Proof. From definition, similar to last theorem, we have

M;(Gl U Gz) = Z dG1 (u)dGl (U) + Z dGZ(u>de_ (U)
{u,v}ev(Gy) {uv}ev(Gy)

+ Z Z dGl )dc,(v),

uev(Gy) veV(Gy)
which proves the desired result. O

1.2 Join
Definition 1.2. The join of two graphs G; and G, with disjoint vertex sets V(G1) and V(Gy) is

the graph denoted by G; + G, with the vertex set V(G1) UV (Gy) and edge set E(G1) UE(Gy) U
{uv:u e V(Gy),ve V(Gy)}.

Thus in the sum of two graphs all the vertices of one graph are connected with all the
vertices of the other graph, keeping all the edges of both graphs. So, the degree of the vertices
of G1 + Gy is given by

P (0) = dg,(v) + 1y, veV(G)
G116 dGz (’U) +ny, vVE V(Gz).

In the following Theorem the first vertex Zagreb index of G; + G, is calculated.

Theorem 3. The first vertex Zagreb index of G1 + G is given by

MT(Gl +Gy) = MT(Gl) + MT(GZ) + 2nymy 4 2npmq + 21111’12(111 +ny — 1).
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Proof. Using definition of first vertex Zagreb index, we have

MT(Gl + GZ) == Z [dG1+G2(U) + dG1+G2 ('U)}
{u,0}CV(G1+Gp)
= Y [dg+cWw)+dgic,@)]+ Y., [dgic(u)+dg 16 (0)]
{u,v}eV(Gy) {u0}CV(Gy)
+ Z [dGH-Gz (u) + dG1+G2 (U)}

uEV(Gl),UEV(Gz)

= ) lde(w) t+dg (@) +2m]+ Y [dg,(u) +dg,(0) +2m]
{up}CV(GY) {u2}V(G2)

+ Z [dg, (1) +np 4+ dg, (v) + nq]
HEV(Gy) eV (Gy)
ny(ny —1
= Z [dg, (u) +dg, (v)] + 2n2.¥
{u,0}CV(G)
le(nz — 1)

> + nynp(ny + np) + 2nymy + 2npmy,

+ Z [dc, (u) +dg,(v)] + 2n;.
{uv}CV(Gy)

which proves the desired result.
In the following, next we calculate the second vertex Zagreb index of G; + Go.

Theorem 4. The second vertex Zagreb index of G1 + G, is given by
VEs Ik VEs Ik Ve 1
M;(G1 + G2) = M3(G1) + maMi(G) + M3 (Gz) +niMi(Gz) + EnanZ(nl -1

1
+ Enlznz(i’lz — 1) + 4mymy + 2nynz (my + ma) + ny*no’.
Proof. Using definition of first vertex Zagreb index, we have
M§ (Gl + GZ) = Z dGl+G2 (u)dG1+G2 (U)
{u,v}gV(G1+G2)

= Z dG1+G2(u)dG1+G2 (Z)) + Z dG1+Gz(u)dG1+Gz (Z))
(4o} CV(Gr) {12} SV(Gy)

+ Z dGlJer(u)dGlJer (U) = Z (dcl (1/[) + nz)(dcl (U) + nz)
ueV(Gy),0eV(Gy) {uv}CV(Gy)

+ ) (dg(u) +m)(de,(v) + m1) + )3 (de, (1) +n2)(dg, (v) +m1)
{uv}CV(Gy) ueV(Gy),veV(Gy)

)
= ) dg(wde(v)+ny ), [dg(u)+dg, (0)]
{u0}CV(Gy) {u0}CV(Gy)

-1
2D LY dwia@m Y e ) +dg @)
{10} SV(Gy) {10}V (Gy)

+ Y (dg, (u)dg, (v) +mdg, (u) + nadg, (v) + niny)
UEV(G1),0€V(Gy)

+n

2 m2(np — 1)

+m >

% 1k 1 1k 1%
= Mz(Gl) + 1’12M1 (Gl) + Enlnzz(nl — 1) + Mz(Gz) + TllMl (Gz)

1
+ Enlznz(l’lz — 1) + 4m1m2 + 27111’121’712 + 2n1n2m1 + Tllznzz,

from where the desired result follows.
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Example 1. The complete bipartite graph K, can be defined as K, ; = K, 4+ K. So its vertex
Zagreb indices can be calculated from the previous theorem as

(i) Mj(Kpq) =2pq(p+4q-1),

(ii) M3(Kpq) = pa [2;%7 —3(p+ q)] :

The suspension of a graph G is defined as sum of G with a single vertex. So from the
previous proposition the following corollary follows.

Corollary 1.1. The first and second vertex Zagreb indices of suspension of a graph G is given
by

(i) M;(G+ K1) = M;(G) +2n2 +2m,

(i) M;(G+ Kq) = M;(G) + M;(G) +2mn + in(3n —1).

Example 2. The star graph S, with n vertices is the suspension of empty graph K,,_1. So its first
and second vertex Zagreb indices can be respectively calculated from the previous corollary
as

(i) M;(Sp) =2(n—1)%
(ii) M3(Sn) = 3(n—1)* = J(n—1).

Example 3. The wheel graph Wy, on (n + 1) vertices is the suspension of C;,. So from the
previous corollary its first and second vertex Zagreb indices are given by

(i) M;(Cy+Kq) = 4n?,
(ii) M;(Cy+Ky) = Bn? —3In.

Example 4. The fan graph F, on (n+1) vertices is the suspension of P,,. So from the previous
corollary its first and second vertex Zagreb indices are given by

(i) M;(P,+K;) =2n(2n—1),
(i) M; (P, +Kq) =2n(2n —1).
1.3 The Cartesian product

Definition 1.3. Let G; and G, be two connected graphs. The Cartesian product of Gy and Gy
denoted by Gi x Gy, is the graph with vertex set V(G1) x V(Gy) and any two vertices (1, ;)
and (ug, vs) are adjacent if and only if [u, = u, € V(Gy) and v,vs € E(G)] or [v, = vs € V(Ga)
and upuy € E(Gy)]andr,s =1,2,..., |V(G2)|.

In the following Theorem we express the first and second vertex Zagreb indices of the
Cartesian product of graphs.

Theorem 5. Let Gy and G be two connected graphs, then
() M3(G1 x G1) = 2nynp(nymy + nymy) — 2myny — 2mony,

(ii) M;(Gl X Gz) = 2(1’111712 + n2m1)2 — 4m1m2 — %nle(Gl) — %nlMl(Gz).
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The proof of the above Theorem follows by applying Theorem 1 and 4 of [7] and Proposition

13 of [8] respectively and using the fact that M (G) = M;(G) — M;(G) and Mz(G) = M3 (G) —
My (G).
Example 5. The Ladder graph L, , made by n square and (2n + 2) vertices is the cartesian
product of P, and P,,1. So the first and second vertex Zagreb indices of L, are given by

(i) Mj(Ly) = 2(6n*+5n+1),

(i) M3 (Ly) = 3(6n*+n+1).
Example 6. We have Cy-nanotorus TCy(m,n) = C, x Cy. So its first and second vertex Zagreb
indices are given by

(i) M;(TCy(m,n)) =4mn(mn — 1),

(ii) M5(TCy(m,n)) = 8mn(mn —1).
Example 7. We have C4-nanotube TUCy(m,n) = P, X Py,. So from the last theorem, its first
and second vertex Zagreb indices are given by

(i) M;(TUC4(m,n)) =2(2mn —n—m)(mn — 1),

(i) M;(TUCy(m,n)) =2(2mn —n—m) —4(n —1)(m — 1) — (4mn — 3(n +m)).
1.4 Composition

Definition 1.4. The composition or lexicographic product of two graphs G, and G is denoted
by G1|G;] and any two vertices (u1, up) and (v1,v;)are adjacent if and only if uyv; € E(Gy1)or
[u1 = vy and upvy € E(Gy)].

The vertex set of G1[G] is V(G1) x V(G,) and the degree of a vertex (a,b) of G1[G;] is given
by dGl[Gz] (l}l, b) = ledGl (ll) + dGz (b)

The proof of the next Theorem follows similarly from the expressions of Zagreb indices
and Zagreb coindices of composition of graphs from Theorem 3 and 6 of [7] and Proposition
18 of [8] respectively.

Theorem 6. Let G; and G, be two connected graphs, then the first and second vertex Zagreb
indices of G1|G,] is given by

(i) M;(G1[Ga]) = 2nynp(nyma + np®my) — 2my(n + na?),

P 1
(if) M3(G1[Ga]) = 2myny®(2nymy + np*my) + 2n1°my* — dmymony — 5”231\41(61)

1
— EnlMl(G2>.

Example 8. The fence graph is defined as P,[P:]. So from the last theorem its first and second
vertex Zagreb indices are given by

(i) M (Pu[Py]) = 18n% —22n +38,
(i) M3 (Py[Ps]) = 50n? — 105n + 64.

Example 9. The closed fence graph is defined as C,[P,] so that from the last theorem its first
and second vertex Zagreb indices are given by

(i) M*1(Cy[Py]) = 18n% — 8n,
(i) M3(Cy[P2]) = 18n% + 7n.
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1.5 Corona Product

The corona product G; o G; of two graphs G; and G is obtained by taking one copy of G;
and 17 copies of G, and by joining each vertex of the i-th copy of G, to the i-th vertex of Gy,
where 1 < i < nj. Thus, the corona product of G; and G; has total (111 + n1) number of
vertices and (mj + nymy + niny) number of edges. A variety of topological indices under the
corona product of graphs have already been studied by researchers [24,26]. The degree of a
vertex v of G o G is given by

doe (0) = { dg,(v) + 12, v EV(G)

de,(v) +1, veV(Gy), i=12,...,n,

where, Gy ; is the i-th copy of the graph G,. In the following theorem, the first and second
vertex Zagreb indices of the corona product of two graphs are computed. The proof of the
following theorem follows by manipulating the definition of corona product of graphs and
hence we omit it.

Theorem 7. The first and second vertex Zagreb indices of G o G is given by

(i) MT(Gl o Gz) = MT(Gl) + 1’11MT(G2) + 2n1n2[(n2 + WI2)(1’11 — 1) +my+ny+np, — 1]

+ 2m2n12,

(i) M3(Gy 0 Gy) = M5 (G1) + ni M5 (Gy) 4 2112 (ng + myp)? + 2nymy (ng + my) — 2nqmy>

1
— 2(nymy + npmy) — Enlnz(nz +1).

Let for a graph G, n and m are number of vertices and edges of G, respectively. If degree
of any end vertex of an edge is one then it is call a thorn or pendent edge. The t-thorny graph
G' of a given graph G is obtained by joining t-number of thorns to each vertex of G. Different
topological indices of thorn graphs have already been studied by researcher (see [14,25,27,28]).
We know that, the t-thorny graph of G is defined as the corona product of G and complement
of complete graph with t vertices K;. So, from the previous theorem we get the following
corollary.

Corollary 1.2. The first and second vertex Zagreb indices of the t-thorny graph are given by
(i) M;(G'") = M;(G) +2nt(nt +n+m—1),
(i) M;(G') = M;(G) +2n2 — Int? 4+ 2mt(2n — 1) — 1nt.

where, n and m are number of vertices and edges of G, respectively.

Example 10. The first and second vertex Zagreb indices of t-thorny graph of C,, are given by
(i) M;(Cy') =2n(n—1)+2nt(nt +2n —1),
(ii) M;(Cy') =2n(n—1) +nt(6n — 3t — 3).

Example 11. The first and second vertex Zagreb indices of t-thorny graph of P, are given by

(i) Mz (P) = 2(n — 1) + 2nt(nt +2n — 2),
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(i) M3 (Py') = 2n* — 6n + 2n2t? + 4n*t — 3nt> — Bnt + 2t +5.

Example 12. Let, n and m are the number of vertices and edges of G, respectively. One of the
hydrogen suppressed molecular graph is the bottleneck graph (B) of a given graph G, which
is defined as the corona product of K, and G. Using last theorem, the first and second vertex
Zagreb indices of bottleneck graph of G are given by

(i) M;(B)

(ii) M;(B)

2M;(G) +8n® + 4nm + 8n + 8m + 2,

2M;(G) + 7n? + 4m? + 16nm + 5n + 4m + 1.

2 CONCLUSION

In this paper, we have studied the first and second vertex Zagreb indices of different graph

operations. Also we apply our results to compute the vertex Zagreb indices for some special
classes of graphs and nano-structures. For further study, vertex Zagreb indices of some other
graph operations and for different composite graphs can be computed.
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ON THE INTERSECTION OF WEIGHTED HARDY SPACES

Let Hf; (C4+),1 <p < +400,0 <0 < +oo, be the space of all functions f analytic in the half plane
C+ = {z : Rez > 0} and such that

+o00 1/p

1= sup [ IfGein)perisndiar b < oo

9e(=7:3) | o

We obtain some properties and description of zeros for functions from the space (| Hj(C-).
o>0

Key words and phrases: zeros of functions, weighted Hardy space, angular boundary values.

Ivan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, Ukraine
E-mail: dilnyiQukr.net (Dilnyi VM.), taniosered@mail.ru (Hishchak T.I.)

INTRODUCTION

Let HP(C4), 1 < p < +o00, be the Hardy space of holomorphicin C; = {z : Rez > 0}
functions f such that

+0c0
IfIIP =sup{ [ If(x+iy)Pdy § < +e.
x>0 |

Let H)(C4),1 < p < +00,0 < ¢ < +00, be the space of all functions f analytic in the half
plane C; and such that

+o00 1/p
lfl] := sup /\f(rei‘P)]pe’p‘T"Si“‘P‘dr < +o0.
0

pe(=%:7)

We denote by HX(C4), 0 < 0 < +00, the space of all functions analytic in the right half-
plane satisfying the condition

11 = sup {If(@)]e ™I} < e

zeCy

The space Hg(C+), 1 <p<400,0< 0 < +00,is a weighted Hardy space, as it follows
from results of A. M. Sedletskii [9]. The theory of weighted Hardy space for the case if the
weight is an exponential function considered in [2,3,10-13]. Functions f € H}(C.) have
angular boundary values almost everywhere on dC (we denote the extension by the same
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symbols f) and f € LP(dC, ). Thus, the space H)(C.), p > 1, is a Banach space. For functions
f € HY(C) there exists [4,12] an integral boundary function defined by the equality

ty ty
h(ts) — h(ty) :xl_i>%1+/ln |f(x—|—it)|dt—/ln FGD|dt, <t
tq t

up to an additive constant and to values at continuity points. The integral boundary function
h is nonincreasing on R and #'(t) = 0 almost everywhere on R. The interest to the space
HP(C.) is generated by studies of completeness [3], by the theory of integral operators and
the shift operator [1,8].
A number of papers have been devoted to the intersection of Hardy and related spaces
(see [5,7]). The aim of our research is to describe some properties of the following space
HE(C+) = () HE(Cy).

>0

Obviously, HA(C) D HP(C.) and HA(C,) C HI(Cy) foralle.

1 THE MAIN RESULTS

Theorem 1. H-(C ) # HP(C,).

Proof. Let f(z) = e~*V"(#¥2) We choose the branch of the logarithm thatIn1 = 0 and v/1 = 1.
Let us prove that the function f belongs to H}(C ) for all ¢ > 0. Indeed,

. 7 sin
In|f(re'?)| = —ri‘/ln2 \/47’ cos ¢ + 12 + 4 + arctg? ﬁ
rsin ¢ rsin @
arctg arCtg 7 cos 9+2 arctg arCtg 7 cos ¢p+2
In \/4r cos p+r2+4 . . In \/4r cos p+r2+4

X | cos ¢ cos — sin @ sin

2 2

arctg %@iz
) ” , rsing . . arctg In \/4r cos p-+r2+4
<ry/In”4/4rcos ¢ + r> + 4 + arctg® ——————sin ¢ sin
rcos g +2 2

r 1
< —@sin ,
=27y
It follows easily that f € H}(C. ). Consequently, f € HF(C).
Let us show that f(z) = e 2VInE+2) ¢ HP(C,). Indeed,

v — +o0o.

arctg %

arctg
N = 2 4412 2Y i T Inyady?
ln]f(zy)]—y\/ln 4 + y* + arctg 5 sin 5
_ Y i Jat a1 VAV
\/E\/ln 4 4y + arctg 2\]1
Yy

\/1n2 V4+y?+arctg?§

for y>C>0.

2In(4 +y?)
Therefore f(iy) € LP(0; +o0). Hence, f ¢ HP(Cy). O
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Proposition 1. Suppose that f € HA(C,;), 1 < p < 0. Then the following conditions are
fulfilled :

a) angular boundary values exist almost everywhere on iR ;
b) |f(it)|e~€!l € LP(RR) for any & > 0;
c¢) HE(C.) is a Banach space for uniform convergence on compact sets.

Proof. Let f € HF(Cy), then f € HY(C ) for some ¢ > 0. In [11] B. V. Vinnitskii proved that
a function f € HY(C.), p € (1;+0), has almost everywhere on iR angular boundary values
f(iy) and f(iy)e=“W! € LP(R). Therefore f(iy)e¢l¥| € LP(R) for some positive e.

In [10] B. V. Vinnitskii showed that a function f € H°(C4) has almost everywhere on /R
angular boundary values f(it) and f(it)e Il € L*(R) for all &. In [11] inequality

()] < 22PL2El)

Re(z)”

proved for each function f belonging to H/(C ). Furthermore, H"(C ;) is a Banach space with
respect to uniform convergence on compact sets. U

Let B is a class of continuous, increasing functions 1 : [0;+c0) — (0;4+00) such that
n(r) = o(r) as r — 0. We denote by HY (C) the space of functions analytic in C for
which there exists 7 € B

+o0
sup { / f(fei‘P)pe”(V)SiM’dr} < +oo,
0

lol<7
where 7 € B.
Theorem 2. If f € H?,(C.), then f € HR(C).

Proof. Let f € H?(C..), then f € H;(C,.) for all ¢ > 0. Furthermore,

+o0 too
/|f(rei(P)|Pe—PW|Sin¢|dr: / |f(reisv)|pe—f7(r)lsin40|e—pr0|sinsv|+f7(r)|sinsv|dr_
0 0

Since —pro|sing|+n(r)|sing| = |sin¢|(—pro +n(r)) < 0asr > ry, we have

+o00 +0c0
[ 1ty pereisndiar < [ |f(reie)|penlsnelar < oo

o 70

This implies that

+00 +oo
sup { / f(ref(P)PeW”iWr} < sup { / f(re“P)PeW)siwr}

ro ro
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and

o o
sup [ 1f(re )7 10IS0 Pl b < sup § [ |f(rei?)|” exp{ min {—n(r)}|sin g|}dr
9 5 re0;ro]

1o ]
< sup {exp{ min {—7(r)}|sin ¢|} / f(rei‘P)pdT} < Cl/‘f(f’eiq))]pdr < 400,
re(0;ro] 4 5

In particular, choosing ¢, = 2};7 (%7)0 we can achieve that

—+00
/ |f(re'®)|Pe=Prolsinelgy < c; < 4-c0.
0

It follows that f € HZ(C.). O
B. V. Vinnitskii described [11] zeros for functions f & Hﬁ(o:+) in terms of the following

function . A\ Red
. M €/M\n
0= L {m A ) mr

1<|Ay| <7

where A,, € C. We obtain the following statement.
Theorem 3. If f € HF(C.), then S(r) = o(In7), r — —+o0.

Proof. Suppose f € HF(C), then f € HY(C4) for all ¢ > 0. Use the following version of the
Carleman formula [4,6,12]

1 (% . 1 1 1 .
S(r) = p— LE In|f(re'?)| cos pdp + o / (t_z - r_2> In |f(it)|dt
2 1<|t|<r
1 1 1 W
- / (?2 - 72) |dh(t)] + O(1).
1<|t|<r

In [11] it is shown that for each function f € HY (C4),0 > 0, the first term on the right
side of the last equality is bounded by an independent of r and ¢ constant. Hence, this term is
bounded for each function of the space H.(C. ). Consider the second addend

[ (tlz - %) In|f(inlde = 5 | <t12 - r%) (In|£(it) e~ + eIt dt

1<|t|<r 1<|t|<r

<3x [ (g-7) Wi+ el

1<|t|<r

Since 5= [ <tl2 — }2) olt|dt = Lolnrand f(iy)e= € LP(R), this yields

1<|t|<r

1 1 1 . 1
P / (t—z—r—2>ln|f(lt)|dt§C3+;0'1n7’-

1<|t|<r
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Therefore . . . .
S(r) = s+ —olnr — — / <t—2 - 72) dh(t)).

1<|t|<r

Then, the last addend is negative, we deduce

S(r) <cs+ glnr.
T

Since the result is true for on of an arbitrary o, we obtain the statement of the theorem.

Theorem 4. If f € HE(C.), then P(r) = o(Inr), r — +o00, where
1 1 1
P(r) = 5- / (?2 - 72) dh(p)].
1<|t|<r
Proof. Let f € HF(Cy), then f € HJ(Cy) for everyone ¢ > 0. Using (1), we get
P(r) =K(r)—S(r) +O(1), r — +oco, where
1 1 1 .
K(r) = 5- / (t_z - 72) In | £(it)|dt.
1<|t|<r
Since
_ 1 .1 #)le=ltdr + - / .1
K(r) = 5 / <t2 r2> In |f(if) e~ ldt + s~ ) eltlar
1<|t|<r 1<|t|<r

1
SC3—{—;Ulnr forall o >0,

we deduce K(r) = o(Inr) as r — +oo. From Theorem 3 we get the following S(r) = o(Inr),
r — 4o00. Thus P(r) = o(Inr),r — +o0. O

Theorem 5. Let (A,) be an arbitrary sequence in C.. Then S(r) = o(Inr), r — o0, if and only
if So(r) = o(Inr),r — +oco, where

ReA
50(7’) = Z |A |Z
1<|Ay|<r 171
Proof. Itis clear that
ReA ReA s(r
R R T Y
1<|Ay|<r 1<| Ay < 1M1
wheres(r) = % I‘{i’\r
1<|Apl<r
In [10] B. V. Vinnitskii proved that
S(2r) > 354(:).
It follows that S 4
rS(2r
So(r) —S(r) < 3 55(27’).

Since S(r) = o(Inr), we have S(2r) = o(Inr). Hence, So(r) — S(r) = o(Inr), r — +o0.
The converse implication is trivial. O
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DMYTRYSHYN R.I.

A MULTIDIMENSIONAL GENERALIZATION OF THE RUTISHAUSER
QD-ALGORITHM

In this paper the regular multidimensional C-fraction with independent variables, which is a
generalization of regular C-fraction, is considered. An algorithm of calculation of the coefficients
of the regular multidimensional C-fraction with independent variables correspondence to a given
formal multiple power series is constructed. Necessary and sufficient conditions of the existence of
this algorithm are established. The above mentioned algorithm is a multidimensional generalization
of the Rutishauser gd-algorithm.

Key words and phrases: regular multidimensional C-fraction with independent variables, corre-
spondence, multiple power series, algorithm.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: dmytryshynr@hotmail.com

INTRODUCTION

In constructing the branched continued fractions for a given formal multiple power series
the concept of correspondence is used. Some general theory of correspondence for functions of
one variables is developed in [15, pp. 148-160] (see also [11, pp. 241-274]) and some aspects of
it for functions of several variables are considered in [7], [6, pp. 107-109]. As a result, different
types of functional fractions are constructed in [1-6,8-10,12-14, 16].

In the present paper we construct and investigate an algorithm for the expansion of a given
formal multiple power series into a corresponding regular multidimensional C-fraction with
independent variables, which is a generalization of the regular C-fraction [15, p. 128-129]. It is
a further expansion of the results obtained in [2].

1 CORRESPONDENCE

Let £ be set of all formal multiple power series of the form

L(Z) = Z Cm(N)Zm(N)r 1)
lm(N)|=>0

where m(N) = mq,my,...,my is multiindex, m; € Z,,1 < i < N,0(N) = 0,0,...,0,
[m(N)| = my +my+ - +mn, cyny €C, z"(N) = 2z oz N,z = (21,20, ..., zn) € CN.
Obviously, this set forms a ring with unity respect to the operations addition and multiplica-
tion of series. We define the mapping A : £ — INo U {co} as follows: A(L(z)) = oo, if L(z) = 0;

YAK 517.524
2010 Mathematics Subject Classification: 11A55, 65D15, 11]70.
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A(L(z)) = n,if L(z) # 0, where n is the smallest degree of homogeneous polynomial for
which ¢, ny # 0, thatis n = |m(N)|. We consider the sequence of rational functions

Py, (z)
Q,(z)’

where Py, (z), Q,(z) are polynomials of degrees m, and I, respectively, z € CN, moreover,

Q1,(0,0,...,0) #0.
The sequence { f,(z)} corresponds to series (1) atz = (0,0,...,0), if

lim A(L(z) — L(fu(2))) = +oo,

n——+oo

fn(z) =

n>1,

where L(f,(z)) is expansion of function f,(z) into Taylor series atz = (0,0, ...,0). The order
of correspondence of f,,(z) is defined by the formula v, = A(L(z) — L(f,(z))). This means that
the expansion f,(z) into formal multiple power series coincides with L(z) for all homogeneous
polynomials to the degree (v, — 1) inclusively.

Let us introduce the following set of multiindices

J ={m(N): m(N) =my,my,...,my, my € Z,, 1 <p <N}
And now, let us define arithmetical operations on the set 7 componentwise. If
T’(N) =7ryr,...,TN €T, S(N) =51,8,...,SN € J, ke Z,

then
r(N)+s(N)=ry+s1,r+5s2,...,rN+sn, kr(N)=kry,kry,... kry.

We consider the regular multidimensional C-fraction with independent variables

ag a0
0 k-1 g7 - N a:1\Zi ’ 2)
1LY Y gy y
= 1 =1 L 4i(2)Zi
k=1 ir=1 =1y 2

where i(k) = i1,1,..., i is multiindex, ap # 0, aGig 70,k >1, 1 <iy <ipq, 1 <n <k
ip =N,z cCN.

Leteg = 0,0,...,0,e, = 6,1,0r2,...,0;, N be a multiindex, J, s be a Kronecker symbol, 1 <
r,5 < N. Let us introduce the following sets of multiindices

T ={i(k) : i(k) = i1 iz, ... ig, 1 <ip <ipq, 1< p<k k>1,ip=N},
I* = {lf\(]k) . lf\([k) = 61'1 +ei2—{— cee +eik, l(k) € I}

and the mapping ¢ : Z — Z%, such that ¢(i(k)) = if\(’k) for all i(k) € Z (we can show that the
mapping ¢ is bijective).

Letag = by, a;(x) = b; i i(k) € Z,il, itk € Z*. Then we write fraction (2) in the form

-1

00 lklesz
(1+DZ > , ®)

1%
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N * N
where by # 0, bizl'\(lk) # 0, i) c€1*,zeC"V.

Let
-1

)= <1 DY bi%z{k)
z) = + —
gn( 0 11_)1 = 1
be the nth approximant of regular multidimensional C-fraction with independent variables
3),n > 1.

The correspondence of fraction (3) to series (1) means that the sequence of approximants
{gn(z)} corresponds to L(z).

2 ALGORITHM

We shall construct and investigate the algorithm for the expansion of the formal multiple
power series (1) into the corresponding regular multidimensional C-fraction with independent
variables (3).

Let cpn) 7 0 and

Cm(N
Reo(z) = ) (N) ym(N)
im(N)|=>0 0(N)

Next, let
R, (z)= Y cle) m(N) @)

be reciprocal to series R, (z). The coefficient of FMPS (4) are uniquely determined by recurrent
formulas

(e0) T Cr(N) .
Con(N) = ) Con(N)—r(N) 7 M 0,1<j<N, m(N)| >1, (5)
[r(N)|=1 0(N)
where c(()e((}\)[) = 1, moreover, cfs(()l)\]) = 0, if here exist an index j, 1 < j < N, such that nj < 0.

By condition cg‘)) # 0,2 <j < N, we write the series (4) in the form

N
Rl (2) = Pey(z1) + Y V2R, (2),
j=2

where
- C(Bo)( |
ei+r(N
Po(z1)= Y CE;(()Z)\I)ZTl’ R (z) = y i - 2/(N)
my =0 [r(N)|=0 Ce;
m;=0,2<j<N =0, j+1<i<N
Then L(z) can be written
Co(N
L(z) = o
Po(z1) + ) k¥R (2)
j=2
Let -
my
)3 Cm(N)#1
m1:O
mj=0,2<j<N
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be a normal series (for the notion of normality of formal power series, see [15, pp. 185-190]).
Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers qgﬁ) , egl@) Jip=1,

it itk
1<p<kk>1,n2>0,of gd-table forh =0:
O
Lty i)
o) o)
Yito) Hjtn) Yi2) Hjin)
q(l}f) N q I(\)I) N
Lt o) L) Hjin
e(l%f) N 6(111) N (1(\)1) N
i) Fjin) i i) i) i) ©)
(I%I) N q(l}f) N : '
Lt o) Yi2) Hjin)
® @
ORRA Lty jon
® :
Yt )
the entries of which are defined by the initial conditions
(j;\(]h)_ejl1)
(n) (n) m(N)+e; +ej,
W, =0 g =——"1I  |y(N)| =my =n, n>0, 7)
i(0) () i)+ G —ein) m(N)| 1
m(N)+ej,
moreover,
C
n m(NH"ez
T = L m(N)| = my, =n,n >0,
i(1) Cim(N)

and the rhombus rule
e(n) (n) _ (n+1) e(n+1)

— >1, n>0
N N d.N" N N N N N 7 =z 4 ’
Y Tim N im e Tim Yoy (8)
(n) (n) _ (n1) (n41)
GN N N N T 4N N EN N s T >1,n=>0,
i(r) T j(m) “titr1) () i) Vj(ny i(r)j(n)

The procedure of calculation of the elements of table (6) the entries of which are defined by
the initial conditions (7) and the rhombus rule (8) is called the Rutishauser gd-algorithm [15, p.
227].

: E— I (O e <p< > i
We put bll[\(IZkil) q%kin, bliA(JZk) e%k), ip 1,1 < p < k k > 1. According to

Theorem 7.7 [15, pp. 230-231]

ad c * i;
5 ) | 4 D i(k)
=0 o) =
m;j=0,2<j<N ip=1,1<p<k
Here the symbol "~" means the correspondence between the series and the fraction. Moreover,
according to Lemma 3 [4] we have

Pel(zl) ~1+ D 1<_i) ’

k=1
ip=1,1<p<k
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since the series P, (z1) is reciprocal to series

Em(N) ZM,
m1:O CO(N)
m;=0,2<j<N

Thus we can write

Co(N)
0 bNZ

1 + D z(k + Zce e-

k=1
ip=1,1<p<k

L(z) ~

Let I be an arbitrary natural number, moreover, 2 < | < N. Next, let

(o]

). Cr(NYZ]

mI:O
mj=0, j#1, 1<j<N

be anormal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

q(N) , e(N) Jip=1,1<p<kk>1,n >0, of gd-table (6) the entries of which are defined by the
Y tite)
initial conditions (7) and the rhombus rule (8) for h = 0.

We putb)y, = —q?f} Jbly = —e(g,) ,ip =1,1<p <k k > 1. According to Theo-
Li2k—1) Liok—1)  li(aw) L2k
rem 7.7 [15, pp. 230-231]
-1
) m 00 b; Z]
Z Cm(N)le 1 + D 111\{")
=0 Co(N) i 1
m;=0, j£l, 1<j<N ip=1,1<p<k
Since
(o) _ _Sm(N) _ =1, m=0,j#1,1<i<N, ij =1
N T oy TR ALl .
then we put b,y —bN L1 =1L
Yi(1) L)
Thus we can write
Co(N)
L(Z) 00 b, iN 21 ’
1+ ] “k + Z by z,Ryx (2)
=1 T2 p<k =

Again, let [ be an arbitrary natural number, moreover, 2 < [ < N. Next, let

R; (z) = ) c’(;’()N)zm(N) 9)
Im(N)|=0
m;=0, |+1<i<N
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be reciprocal to series R, (z). The coefficients of series (9) are uniquely determined by recurrent

formulas for m; =0, j,+1<i <N, |m(N)| > 1, and j]I‘\(Ih) =g
(]]I\(]]”ie]h)

@y _ MG S,

Cu(N) = = Cm(N)=r(N) N, ~e; )

(10)
ejh

Gy ()
0(N) n(N)

By condition cé 1) # 0,2 < j <, we write the series (9) in the form

where ¢ = 1, moreover, ¢ = 0, if here exist an index p, 1 < p < N, such thatn, < 0.

1
Rél (z) = Pe+e; (z1) + Z C(Ejl)szel-i-ej(Z)/
=2

where

%) c

_ (er) m _ etr(N) r(N
Pel+gl (Zl) — Z Cm(N)Zl ’ Rgl+gj(z> — Z (61) Z ( ).
m=0 (N[>0 ce
mj=0, 2<j<N ri=0, j+1<i<N

Then R¢,(z) can be written as follows

I -1
Ry, (2) = (Pw (z1) + _chﬁf’>z]-Re,+ej<z>> :

]

Let
[e ]
Z c(¢0) S
m(N)+e~1
m1:O
m=0,2<j<N

be anormal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

qi(giﬁr@l' ei(g,j)+el, ip=1,1<p<kk>1,n>0,of gd-table (6) the entries of which are defined

by the initial conditions (7) and the rhombus rule (8) for j ]Z\(] ny = e
We put b,y = —q(o) b.n — 9 sip=1,1<p <k k>1 According to

i(2k-1)Tel iy qyter’ iyt i e

Theorem 7.7 [15, pp. 230-231]

-1

(e0) b
N L, Z
C- Cm(N)+er_my = i e
Z ) 1~ 1+ D 1
mlzol C@[ . k=1
m;=0, 2<j<N ip=1,1<p<k

(e0)
(o]
Z Cm(N)+el my
e 17
o glo)
mi=0, 2<j<N
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then according to Lemma 3 [4] we obtain

00 b.n 21
1., te;
(k)
P€1+€1(zl) N1+ D : 1 .
k=1
ip=1,1<p<k

Let t be an arbitrary natural number, moreover, 2 < t <[ — 1. Next, let
[e¢]
(eo) my
Z Cm(N )+elzt

be anormal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

i(gfj)HI, ei(gfj)%/ ip=1t1<p<kk>1n2>0,of gd-table (6) the entries of which are defined

by the initial conditions (7) and the rhombus rule (8) for j ]I\(] ny = e

0) (0) : .
We put b/ S— , b = —e, ,i,=11<p<k k> 1. According to
P 1%2k71>+€l q1%2k71>+€l lf\(]Zk)—Fel 111'\(12;()"‘31 P P> - &
Theorem 7.7 [15, pp. 230-231]
-1
(eo) b! z
> Cm(N)Jrel iy = ‘f\(]k)ﬂz t
Yo ey T T
—~ (eo) 1
mt—o . C@[ k=1
m;=0, j#£t, 1<j<N ip=t, 1<p<k
Since the series Pp, 1, (2) is reciprocal to series
(eo)
i Cm(N)+el m
t o
m=0 fgzeO)
mj—O,] t,1<j<N
then according to Lemma 3 [4] we obtain
/ 2
© iN +e
k
P€l+€r(zt) ~1+ D %
k=1
ip=t, 1<p<k
Since
(e0) 2 (o) 2
(e) Ce,ie, ~ Co(N)Certer — Cop b () C2¢,  Co(N)C2e; —C¢p Y
Co " T T @ T e TVater Co T TN T T T ¢ T2
Ce e/“0(N) Ce, e;CO(N)
than we put b 40, = bé,+e,/ bye, = béel.
Thus we can write
C
L(Z) ~ O(N) ,
N bin 2
]
QjN (z1) + Z -

j(0)

. VA
j(1) i) i) (2)

K J1

=2

I QjN (z1) + Z b; ijR
j2=2
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where

11N +jN <1
(Zl) = 1 _.I_ D (k) 1]<h) , h 2 O,

k=1
ip=1,1<p<k

Q

N
Vj(n)

moreover, j, #1, 1 <r <h, j]I.\(’h) cI* ifh > 1.
Next, computing the coefficients

()

winy, Mi=0, it 1<i<N, |Im(N)| >1, jr #1,1<r <h, i €1,

j(h
by recurrent formulas (10) and continuing process of iteration under the conditions that the
series

= m = (eo) = (j%))
1 0 mi ] my
Y Cm(N)Z] s ) Con(N) e, 21 7 ) Cn(N) e, 5 (1)
mI:O I’I”leO mr:O h
mi=0, i1, 1<i<N mi=0, i, 1<i<N mi=0, i#r, 1<i<N

where1 <I<N,1<t<p-1,2<p<N, 1<r<j,—-1,j#1,1<r<h, j}{h)ez*,

. . . 0)
are normal, for series (1) we obtain fraction (3), where ¢y = cy(n, bin N = — ( N s
M @) ON)” Pl 1) +il) Til+it%
by v =—e9 = 1<p<k1<n<j,—1,k>1 541, 1<r<h iV eT*

I{EIZk)+];\(]h) 15\(]]{ +]]I\(Ih) p — p — — — ]h - ]r 7& — — ]](h)

)
(the numbers q.(o) N ,e.(g,) Nlp=n 1<p<k1<n<j-1%k>1j #1,
o it e
1<r<h, jNh) € TI*, are the diagonal elements of the gd-table (6) the entries of which are
defined by the initial conditions (7) and the rhombus rule (8)).

Thus, if the coefficients of the formal multiple power series (1) are given, then the recurrent
algorithm of calculation of the coefficients of the regular multidimensional C-fraction with
independent variables (3) is constructed. This algorithm is a multidimensional generalization
of Rutishauser gd-algorithm [15, p. 227]. The correspondence of fraction (3) to series (1) can be
proved by a scheme proposed in [5].

Hence, the following theorem holds:

Theorem. The regular multidimensional C-fraction with independent variables (3) corres-
ponds to the given formal multiple power series (1) if and only if the formal power series
(11) are normal.

We remark that some examples of functions of two variables represented by regular two-
dimensional C-fractions with independent variables are given in [2].
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Po3rasianaeThest peryAsipHmii 6araTosumipaiit C-apib 3 HepiBHO3HAUHMMY 3MiHHIMI, SIKII € y3a-
raAbHEHHSIM peryasiporo C-apoby. ITobyaosaHo arroputm obumcaeHHs: KoedillieHTiB 6araToBm-
MipHOTrO C-ApOOY 3 HEpiBHOBHAYHMMM 3MiHHMMM, BiATTIOBIAHOTO 3aAaHOMY (POPMaABHOMY KPaTHO-
MY CTeIIeHeBOMY PSIAY, SIKMI € y3araabHeHHsIM qd-aaropurMy PyTmcxaysepa. BecranoBaeHO HeobXi-
AHi Ta AOCTaTHi YMOBM iCHYBaHHSI TAKOTO aATOPUTMY.

Kontouosi cnoea i ¢ppasu: peryrsipamit bararosumipamit C-aApib 3 HepiBHO3HaAUHMMI 3MiHHMMI,
BiATIOBiAHICTD, KpAaTHMIM CTeIeHeBII PsIA, aATOPUTM.
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ANALOGUES OF WHITTAKER’S THEOREM FOR LAPLACE-STIELTJES INTEGRALS

Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals
are found. Using these estimates we obtained analogues of Whittaker’s theorem for entire functions
given by lacunary power series.
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INTRODUCTION
For an entire function -
g(z) = Y anzt, z=re", (1)
n=0
let M o ) B do— Tm In In Mg (r) A= 1 lnlnMg(r)b th
e g(”) = max{[g(z)| : |z| =7} and ¢ = riffwT, = r—l%fooT e the

order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that A < ¢p,
where p = lim (In A,)/1In A,4q. For an analytic in {z : |z| < 1} function (1) of the order

n—-+oo
— InlInM —  InlInM
0o = lim Lg(r) and the lower order Ay = lim Lg(r) L.R. Sons [2] tried to prove
r1l —11’1(1—7’) 1l —11’1(1—1’)

that Ag +1 < (gp + 1)B. In [3] this result is disproved and it is showed that Ay < @op, i. e.
absolute analogue of Whittaker’s theorem is valid. Moreover, in [3] it is obtained analogues of

[e ]
Whittaker’s theorem for Dirichlet series Y. a,e’,s = o + it, with an arbitrary abscissa of the
n=0
absolute convergence 0, = A € (—oo, +o0], where 0 = Ay < A, T +00, 1 — o0.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right
functions F on [0, +o0). We say that F € V(I) if F € V and F(x) — F(x —0) <1 < +oo0 for all
x > 0.

For a nonnegative function f on [0, +0c0) the integral

(9]

I(o) = / F(x)e“dF(x), o ER, @)

0

YAK 517.5
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is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace

integral I(0) = [;° f(x)e*’dx and of the Dirichlet series §0 a,e’? with nonnegative coeffi-
cients a, and exponents A,, 0 < A, T 400, n — oo, if wenchoose F(x) =n(x) = Y land

An<x
f(Ay) = a, > 0forall n > 0. The maximal therm of this Dirichlet series is defined by formula
(o) = max{a,e’’ : n > 0}.

By QQ(A) we denote the class of all positive unbounded on (—oco, A) functions ® such that
the derivative @' is positive continuously differentiable and increasing to +oco on (—oo, A).
From now on, we denote by ¢ the inverse function to @', and let ¥(x) = x — ®(x)/P’(x) be
the function associated with @ in the sense of Newton. It is clear that the function ¢ is con-
tinuously differentiable and increasing to A on (0, +o0). The function ¥ is [4-6] continuously
differentiable and increasing to A on (—oo, A).

For® € O)(A)and 0 < a < b < +co we put

b b
Gi(a, b, ®) — ba_ba/q)(g(t)dt, Gola, b, ®) = @ (bla/go(t)dt) .

a

It is known [5] that Gy (a,b, @) < Gy(a, b, @), and in [3] the following Lemma is proved.

Lemma 1. Let (x;) be an increasing to +co sequence of positive numbers, ® € Q(A) and
up () be the maximal term of formal Dirichlet series

D(s) = i exp{ —x¥(@(xx)) +sxx}, s=o0+it.

k=1
Then | ©) n1 ©)
=)~V M new) v ®)
. Inpp(o) . Gi(xg, x40, D)
lim ———~Z% = lim 4
ota @(0) koo G2(Xk, X1, P) @
and if o(0)0" (0)
1o o
In HD(U')"— (W—].) In CD(O') ZO, g & [Uo, A), (5)
then

. Inln “LlD(O') . In G1 (Xk, Xk+1, CI))
lim ————~ = lim :
A In®(0) k—oo IN G2 (xg, X41, D)

(6)

It is clear that integral (2) either converges for all o € R or diverges for all ¢ € R or there
exists a number ¢, such that integral (2) converges for o < . and diverges for ¢ > o.. In the
latter case the number o, is called abscissa of the convergence of integral (2). If integral (2)
converges for all ¢ € R then we put 0, = 400, and if it diverges for all ¢ € R then we put
Oc = —o0.

Let

u(o,I) =sup{f(x)e” : x >0}, oc€R,

be the maximum of the integrand. Then either y(c,I) < oo forall o € R or p(c, I) = +oo for
all ¢ € R or there exists a number ¢}, such that y(c, I) < +oo forall ¢ < ¢y and p(c,I) = +oo
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for for all o > ¢,. By analogy the number ¢}, is called abscissa of maximum of the integrand.
It is well known ( [4]) that if F € V and In F(x) = o(x) as x — +oo then 0. > 0y,.

For each Dirichlet series 0 < 0y,. In general case this inequality can be not executed. We
will say in this connection as in [4] that a nonnegative function f has regular variation in regard
to F if there exista > 0,b > 0and h > 0 such that forall x > a

x+b

| FaE®) = nf) 7)

In [4] it is proved that if F € V and f has regular variation in regard to F then 0. < ¢,. We
need also the following lemma.

Lemma 2 ( [4]). Leto, = A € (—oo,+o0] and ® € O (A). In order thatInu(c,I) < ®(c) for
allo € [0y, A), it is necessary and sufficient thatIn f(x) < —x¥(¢(x)) forall x > x.

Let L be the class of all positive continuous functions & increasing to +co on (xg, +0),
xp > —oo. Wesay thata € LY if o € L and a((1+0(1))x) = (1 +o0(1))a(x) as x — +oo, and
a € Lg;if a(cx) = (1+0(1))a(x) as x — oo for each ¢ € (0, +00).

Using Lemmas 1 and 2 first we will prove the following theorem.

Theorem 1. Let 0, = +00, ® € Q(+00), In pu(c,I) < &(0) forallc > oy and X = (xi) be
a some sequence of positive numbers increasing to +oco. Suppose that f is a nonincreasing
function. Then:

1) if eitherIn f(x;) —In f(xg1) = O(1) ask — coorln f(xx) = (1 +0(1))In f(xkyq1) as
k — ooand ® € LY orxgq —xx < H < +oo forallk > 0, or x,pq = (1+0(1))x; as
k — ocoand ® € LY, then

. Inu(o,I) . G1(xp, X1, @)
Iim ———— < lim ; 8
ooteo P(0) T peo Ga(Xk Xpp1, P) ®
2) if
(o)D" (0)
il S A > — >
Ino+ < (@ ()2 1)|In®(0) >g> -0, >0y, )

and either In f(x;) —In f(x;;1) = O(1) ask — coorln f(xx) = (1+0(1))In f(xrsq)
ask — oandIn ® € L% orln f(x;) < aln f(x441), 0 < a < 1,andIn ® € Ly, or
Xpp1 — X < H < +oo forallk > 0, or xp.1 = (1+0(1))x; ask — co and ® € LY or
g1 < Axy forallk > 0 and In ® € Lg; then

lim InIn u(o, 1) < lim In Gy (xg, Xk 1, P)

. 10
A o) = i Gy xien, D) 10

Proof. We remark that in view of the condition 0}, = +oco we have f(x) — 0as x — +o0 and
o =o(ln u(o,I)) as o — 4o0. Now, we put xo = 0 and p(c, [; X) = max { f(xx)e”* : k > 0}.
Clearly,

In p(o,I) =sup(In f(x) +ox) > sup(In f(xx) +oxx) = In u(o, I, X). (11)

x>0 k>0
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Therefore, In y(c, I; X) < ®(0) for all ¢ > 0p and by Lemma 2 In f(x;) < —x ¥ (¢(xx)) for all
k > ko. Hence it follows that In u(c, I; X) < In up(r) for o > 0p. Therefore, by Lemma 1 from
(4) we obtain

In u(o, I; X) G1(xg, Xg11, D)

lim < lim . 12
AT 00 T Gl wn ) i

On the other hand for o > 0
In p(o,I) =max sup (In f(x)+x0) < r]&e\(;((ln fxg) + x¢410). (13)

k20 <x<mi

If In f(x) = (14+0(1))In f(xxr1) as k — oo then for every ¢ > 0 we have In f(x;) <
(In f(xky1))/ (1 +¢) forall k > ko = ko(e). Therefore,

max(In f(x) + X410)
k=0

max {%g(ln fxi) + xk+10)lrlg§<§ (% In f(x41) + xk+1t7> }

< max {O((r),max <w + kaU) }

k>k 1+e

< e max(In fxi) + xe0(1+e)) +0(0), 0= oo,

Hence and from (13) it follows that In p (o, I) <In u (0(1 +¢),I; X) for o > oj. Thus,

lim In (o, I) < lim In u(oc(1+¢), LX)
r—+o00 q)(U> T—+00 (D(U') (14)
- Inp(o, X) o P(e(1+e)) . G, xp41, P)
< lim —————— Iim ——————% < A(e) im ,
T S5 CD(O’) T——+00 CD(O’) o ( )k—>—oo Gz(xk, ka,CD)
P(o(1+¢))

where A(e) = lim . For ® € L%in [7]is proved that A(e) N\, 1as e | 0. Therefore,

=400 D(0)
(14) implies (8).
If x¢ 1 = (1 +0(1))x as k — oo then for arbitrary ¢ > 0 from (13) it follows that
Inpu(o,I) <Inpu(c(l+e), LX)+ 0(0), o5(e) <o — +oo,

whence in view of the condition ® € L° as above we obtain (8).
IfIn f(xx) —In f(xrr1) = O(1) as k — oo then from (13) we have

In u(o,I) < r?>aé<(ln f(xr1) +xx0+1In f(xx) —In f(x441)) <In p(o,[; X) +const, (15)

that is in view of (12)

. Inwu(o,I) . Inu(o, ;X) . Gi(xg, 11, P)
lim ———— < lim ——————= < lim . 16
M TB0) AT 0 i Gl i, ®) (10)
Finally, if x; 1 — xx < H < 400 for all k > 0 then from (13) follows that
In p(o, I) < max(In f(xx) + xx0 + o (x, 1 — xx)) <In u(co, ; X) + Ho, (17)

k>0
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that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.
Now we will prove the second part. Since In ¢ = o(In u(c, 1)) as ¢ — +o0o, condition (9)
follows from (5).
If either In f(x) —In f(xx1) = O(1) ask — oo or xp 1 — xx < H < 400 for all k > 0 then
from either (16), or (17) in view of (12) and Lemma 1 we obtain
lim lim

InIn p(o,I) InIn (o, I; X) . In Gy(xg, xp 1, D)
m ——=— < lm < lim )
o—+00 In CD(O’) o——+00 In CD(O') k— o0 In Gz(xk, ka,CD)

If either In f(xx) < (140(1))In f(xgy1) or 21 = (1 +0(1))xx as k — o0 as x — oo
then as above from (13) we have In In p(c,I) < Inln u (c(1+e¢), I; X) for every ¢ > 0 and all
o > 0y(e), whence (10) follows in view of the condition In & € L°.

IfIn f(xx) <aln f(xx41),0 < a < 1, then from (13) we have

In p(o,I) < ar}<1>aox(ln f(xkr1) +x)10/a) = aln u(o/a, I; X);

and since In® € Lg;, we obtain

Inln p(c/a, I; X) m In ®(c/a) < lim In G1(xg, x541, P)

lim InIn pu(o,I)
oy rotee  In®(c/a) rote InP(0) T e In Go(xg, Xpi1, D)

< 1
e In @(0) o

If xp 1 < Axy forallk > 0 thenln p(o,I) < In u(Ac,I;X) 4+ O(c) as ¢ — +oco, whence in
view of the condition In ® € Lj; we obtain (10). The proof of Theorem 1 is complete. O

Now we consider the case 0, = 0. Let L be the class of all positive continuous on (cq, 0),
0p > —oo, functions B, increasing to +co0. We say that € LOif 8 € L and B((1 +0(1))0) =
(1+0(1))B(c) asc 1 0,and B € Ly; if B(co) = (1+0(1))B(c) as ¢ 1 0 for each ¢ € (0, +o0).

Lemma 3. Let € [ and B() = mw

o0 B(o)
and sufficient that B(6) — 1 as ¢ | 0.

(6 > 0). In order that B € L9, it is necessary

Proof. Suppose that B € L9 but B(§) 4 1asd | 0. Since the function B(4) is nondecreasing,
there exists 1(5%1 B(6) = b* > 1, thatis B(J) > b* > 1. We choose an arbitrary sequence (J,) | 0.

For every ¢, there exists a sequence (0;, ) T 0 such that B((1 + 6,)0, k) > bB(0y, ), 1 < b < b*.
We put 07 = 041 and 0, = min{c,, x > 0,_1 : k > n — 1} and construct a function y(c) — 0,
o 10, such that y(0,) = d,. Then B(0y /(1 + v(0w))) = B(ou/(1 4+ 6n)) > bB(0y). In view of
definition of L? it is impossible.

On the contrary, let B(6) — 1as ¢ | 0 but 8 ¢ LO. Then there exists a function y(¢) — 0,
o 10, and sequence (0,,) T 0, n — oo, such that r}gr;o B(on/(1+(0w))/B(ow) = a # 1. Clearly,
a < 1 provided y(c,) < 0and a > 1 provided y(0,) > 0. We examine, for example, the
second case. Let > 0 be an arbitrary number. Then y(0,,) < ¢ for n > ng and

B(6) :1.—5(‘7/(1 +9)) > Tim Blon/(1+9)) > Tm Blon/(1+ (o))

im im =a>1,
o0 plo)  Toame o Blow) o Blow)
which is impossible. Lemma 3 is proved. O

Theorem 2. Let o, = 0, ® € Q(0), In u(o,I) < &(c) for all ¢ > 0y and X = (xi) be some
sequence X = (xi) of positive numbers increasing to +co. Suppose that f(x) ,* +oco as
x — +oo. Then:
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1) ifeitherIn f(xg 1) —In f(xx) < Horxgy1 —xp < H < +oo forallk > 0, orln f(x;) =
(1+0(1))In f(xry1) ask — c0and @ € 1.9, orx 1 = (1+0(1))xg ask — coand @ € L0,
or X1 < Axy fork > 0 and ® € L; then

- Inp(o, 1) _ o Gr(xg Xer1, P)
lim ————2% < lim , 18
0 PO) T S Galxg Xk, @) (1)
2) if
O (0)P"(0)
il Sl > _
< (@ ()2 1) In®(0) >g> —0co, 0 € |[0p,0), (19)
. Inln (o, I) . In Gy(xg, x5 1, D)
Iim ————% < lim . 20
0 D) e In Galx xire, @) 20

Proof. As above let (o, I; X) = max{f(x;)e”* : k > 0}. Clearly, (11) holds. Therefore,
In p(o, I; X) < ®(0) forall o € [0p,0) and by Lemma 2 In f(x;) < —x¥ (¢(xx)) forall k > ko,
thatisIn p(c, I; X) <1In up(r) for o > oy. Therefore, by Lemma 1

. Inp(o, ;X) _ . Gi(xg, xpp1, D)
lim ——————= < lim . 21
o0 PO) T ke Galxk, Xpey1, P) -
On the other hand for ¢ < 0 now we have
In p(o,I) =max sup (In f(x)+x0) < r]&e\(;((ln f(xXpq1) + x40). (22)

20 3y <x<xpy

Therefore, if either In f(x;y1) —In f(xx) < Hor x4 — xx < H < +o0 for all k > 0 hence we
obtain either In y(c,I) <In u(c,; X)+ Horln u(c,I) < In u(c, I; X) + Ho, whence

h_mlny(a,l)gh_mlny(U,I;X)'

o10 CI)((T o10 P (U) (23)

Inequalities (21) and (23) imply (18).

If either x;. 1 = (1+0(1))xg orln f(xx) = (1 +0(1))In f(xgy1) as k — oo then from (23) as
in the proof of Theorem 1 for every ¢ > 0 we have correspondingly In u(c,I) < In u(c/(1+
e),;X)and In pu(c,I) < (14+¢)Inpu(c/(1+e¢),[;X) for ¢ € [0p(¢),0), whence in view of
condition In ® € L% of Lemma 3 and of the arbitrariness of ¢ we obtain (23) and, thus, (18)
holds.

Finally, if x;1 < Axy for k > 0 then In p(o,I) < In pu(c/A,I; X), whence in view of
condition ® € [ ; we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition f(x) ,* +coasx — 400
it follows that In u(c,I) T +oc0 as ¢ 1 0. Therefore, (19) implies (5). We remark also that
if either In f(xg 1) —In f(xx) < Hor xpyq —x¢ < H < 4ooforallk > 0orln f(x;) =
(1+0(1))In f(x3.1)ask = ccand In ® € [0 or x4, 1 = (1+0(1))x; ask — coand In & € [0
or X y1 < Axg fork > 0and In ® € L; then from the inequalities obtained above we get
(20). If In f(x)y1) < Aln f(xx) for k > 0 then from (21) we obtain the inequality In u(c, I) <
Aln u(c/A,TI;X), whence in view of the condition In ® € L,; inequality (20) follows. The
proof of Theorem 2 is complete. O
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2 ANALOGUES OF WHITTAKER’S THEOREM

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the
series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases
which more frequent at meet in mathematical works. The most used characteristics of growth
for integrals (2) with 0, = +o0 (by analogy with Dirichlet series) are R-order gg[I], lower R-
order Ag[I] and (if gr[I] € (0,+o0)) R-type Tr[I], lower R-type tgr[I], which are defined by
formulas

_ Tm ninlo) . InlnI(o)
orll] = lim ————, AR[I]_UL%O 7,
Tall] = Tm —21@ = fm 2 1)

o—+o0 exp{oor[I]} ctoo exp{oor(I]}

We will show that in this formulas In I(¢) can be replaced by In p(c, I) and will use the
following Lemmas for this purpose.

Lemma 4 ([4,8]). Let F € V, f has regular variation in regard to F and either 0, = +o0 or
0, =0 and lirB f(x) = +oo. Thenn p(c,I) < (1+0(1))In I(c) asc 1 0y.
X—>+00

Lemma 5 ( [4,9]). Let F € V, 0, = +o0 and lim (In F(x))/x = T < +oo. Then I(c) <

X— 400

(o +7t+e¢1) foreverye > 0andallo > o(e).
It is easy to check that these lemmas imply the following statement.

Proposition 1. Let F € V, f has regular variation in regard to F and 0, = +oo. IfIn F(x) =
O(x) as x — oo then

— Inln u(o,I) InIn pu(o,I)

QR [I] - U'ETOO f, )\R [I] - O'E%Qr-loo o ’ (24)
and ifIn F(x) = o(x) as x — +oo then
Telll = fm @D g gy @D 25)
oo exp{or|[I]} o—+oo XpLoQr[1]}
Using Theorem 1 and Proposition 1 we prove the following theorem.
Theorem 3. Let F € V, 0, = 400 and X = (xr) be some sequence of positive numbers
increasing to +co. Suppose that f is a nonincreasing function and has regular variation in
regard to F.
Ifln F(x) = O(x) asx — +o0 and In f(xx) = (1+0(1))In f(xx11) ask — oo then
. Inx
AR[I) < Berll], B = lim —* (26)

k—soo IN X4 1

Ifln F(x) = o(x) asx — 400 andIn f(x;) —In f(xx,1) = O(1) ask — oo then

tr[I] < Tr[1]

0 71n 7} 1 Y
exp< 1+ In —, = lim ——. (27)
1—o p{ 1—9 Y T k—oo Xk+1
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Proof. From (24) and (25) for every ¢ and all ¢ > op(e) we have accordingly In u(c,I) <
exp{(or[I] +€)c} and In u(c,I) < (Tr[I] + €)exp{or[I]c}. We choose ® € ((+o0) such
that ®(0) = Te? for ¢ > op(e), where either ¢ = or[I] +eand T = 1 or ¢ = ¢r|[I] and
T = Tr[I] + & ThenIn u(c,I) < ®(0) for o > op(e), In ® € L and it is well known ( [4,10])
that

D) = 1 Xk Xk+1 In Xk+1

Gl (xkl Xk+1/
0 Xj41 — Xk Xk

and

1 Xpp11In X — xp In xp
Golie T, ®) = eQ =P { : XkJ:— X '

Since ®(¢)®" (0)/®'(0)? = 1, condition (9) holds and by Theorem 1 we have

X1 X X
(xk+1 . xk) ln kAk+1 ln k+1
Xk+1 — Xk Xk

AR < 0 lim 28
R[]_Qk—>—oo Xpr1In xpqq — xpInoxg (28)
provided In f(x;) = (14+0(1))In f(x4,1) as k — oo, and
Xk Xk+1 In Xk+1

. Xk+1 — Xk Xk
tr|I] <eT lim 29
rll] < k—rc0 {xk+1lnxk+1—xklnxk} @)

exp
Xk+1 — Xk

provided In f(x;) —In f(xry1) = O(1) as k — oo.

We suppose that f < 1. Then there exist a number p* € (B, 1) and an increasing sequence
(kj) of positive integers such that In x; < p*In x¢ 1, that is x, = 0(x,11) as j — oo. There-
fore, from (28) we obtain

Xie. X . X
kM1 k]+1>

Xhj+1 — Xk; Xk

(xkj+1 - xk]) In <
AR[I] < o lim

j—s00 Xjej1 In X1 — X I,
In x, +0(1) +1In In x4 _

*
= 7

=@ ]% In xijrl
whence in view of the arbitrariness of f* and € we obtain inequality (26) follows.
Further, if v € (0,1), then xi; = (1 + 0(1))7yxk; 41 as j — oo for some increasing sequence
(k;) of positive integers and from (29) we obtain

X X, 111’1 X 1/xkA
(1 < o7 tim X In (v /)

oo Xgoo1In Xg. 1 — xg, In xp,
(xij _ xk]-) exp j j j j
Xhj+1 — Xk;
YXp, 1 In (1 /7y
=¢eT lim A /) 77 lnlexp{1+71n7},
b (I=7)exp{lnx 1 — (YIny)/1=7)} 1-79 7 1—v

1 1
whence in view of the arbitrariness of ¢ we get (27). Since 1 Z > In - exp {1 + ,)1/ fz} — 1
as v — 1, then inequality (27) is obvious if v = 1. Finally, if v = 0, then In Xje; = o(In xkﬁl) as
j — oo for some increasing sequence (k;) of positive integers and from (29) we obtain

X (In xp. 1 — In x. X Xk 41
tr[I] < eT lim I iy ) — T lim ——In ——

oo exp{In X1+ o(1)} j—roo Xkj+1 Xk;

=0,
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i.e. inequality (27) holds. The proof of Theorem 3 is complete. O

Now we consider the case 0;, = 0. The order g [I], the lower order Ag[I] and (if 0 < go[I] <
+o00) the type Tp[I] and the lower type to[I] are defined by formulas

_—InlnI(0) . InlnI(0)
Ol =R mesen M =S /i’
To[I] = Tim |o|®W1In I(0), to[I] = lim |o|¢WIn I(0).
ot0 10

We will show that in this formulas In I(c) can be replaced by In u(c, I) and will use for this
purpose the following lemmas.

Lemma 6 ([4,9]). Let F € V, 0, = 0 andIn F(x) < hln f(x) for x > xq. Then for every ¢ > 0
and all o € [op(¢),0)

lnI(U)g(l—{—h—i—e)lny( I)—I—K, K = K(¢) = const.

7
1+h+e
Lemma 7 ([4,9]). LetF € V,0, = 0 and In F(x) = o(x7y(x)) as x — 400, where v is a positive

continuous and decreasing to 0 function on [0, +o0) such that xy(x) T +co as x — +oco. Then
forevery e > 0and all o € [op(e),0)

v elel 1 o]
< 7 .
lnl(‘f)-—ln”<1+e’l>+1+e7 <41+@2

Lemmas 4, 6 and 7 imply the following statement.

Proposition 2. Let F € V, 0, = +0o, f has regular variation in regard to F and f(x) , +oo as
x — 4o0. If eitherIn F(x) = O(In f(x)) orln In F(x) = o(In x) as x — +oo then

——Inln pu(c,I) InIn u(o,I)

ell] = i /o)) Aolg] = %W' (30)
and if eitherIn F(x) = o(In f(x)) orln In F(x) = o(In x) as x — o0 then
To[l] = Iim |o|®Win u(o, 1),  to[I] = lim |o|% In u(o, 1)). (31)
o10 10

Proof. If In F(x)) = O(In f(x)) (accordingly In F(x) = o(In f(x))) as x — oo then formulas
(30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function v such that y(x) = x°~! for x > xq, where § € (0,1) is an arbitrary
numbers, then 1 satisfies the conditions of Lemma 7. Therefore, if In F(x) = o(x’) as x — +o0

then
o elo] [e(1+e)2\'"’
< -
lnI(U)_lny<1+€,l>+1+e< o] )

=Inu <1L+8, I> +e27°(14+e) 2|0’ =Inp (1;:_8,1) +o(1), o710,

whence the formulas (30) and (31) follow. It remained to notice that the condition
InIn F(x) = o(ln x) as x — +co implies the condition In F(x) = o(x°) as x — +oo for
0 € (0,1). Proposition 2 is proved. O
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Using Theorem 2 and Proposition 2 we prove the following theorem.

Theorem 4. Let F € V, 0, = 0 and X = (x;) be some sequence of positive numbers increasing
to +o0. Suppose that f has regular variation in regard to F and f(x) ,/* +oc0 as x — +oo.

If either In F(x) = O(In f(x)) or InInF(x) = o(lnx) as x — +oco and
In f(xx11) = O(In f(xx)) ask — co then

In X

Aoll] < Beoll], = lim = (32)

If either In F(x) = o(ln f(x)) or InInF(x) = o(lnx) as x — 4o and
In f(xx11) = (14+0(1))In f(xx) ask — oo then

boll] < To[IJA(y), 7 = lim %, (33)

k—so0 Xk+1

where
/(@) (1 — A1/ (1)) (1 — ye/(et1))e

(1—q)ett

Proof. 1f go[I] < +oo (Ty[I] < 4+o0) thenIn u(c,I) < &(0) =

Aly) =

T
o forall o € [op(e), 0), where
either 0 = go[I] +eand T = 1 or ¢ = gg[I] and T = Ty[I] + ¢. Clearly, ® € L0 and In ® € L;.
It is known [4, p. 40] that for this function

 T(o+1)  xxpq 1 L
Gi1(xg, Xpy1, @) = (To)?/ (@D xp i1 — % x;/(eﬂ) ]1/(1e+1)
+

and

/(0+1 /(o+1)\ ¢
(o 1)(T) 1) <"V — /)
0 X1 — Xk

Go(xp, X1, @) =T (

We remark that

Q(0)P"(0) n 1 T
( (@) 1>1 ®0) =5 g THee 10

that is (19) holds.
Therefore, if In f(x;y1) = O(In f(xx)) as k — oo then by Theorem 2 in view of arbitrariness

of e
In X Xk41 1 o 1
Xk4+1 — Xk x;/(QJFl) x;i(léﬂrl)
Aoll] < gol] lim (34)

koo :
In Xgy1 — Xk
xlgzi(lg+1) x}g/(gﬂrl)
and ifIn f(xp11) = (14+0(1))In f(xg) as k — oo then

0+1 o/(e+1) _ _o/(e+1)\ °
toll] < To[1 1 EF D fim B ( LI )(x"“ — % . (35)

0% koo Xkt1 — Xk x;/(“l) x;i(f“) Xk+1 — Xk
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We suppose that § < 1. Then there exists a number §* € (B, 1) and an increasing se-
quence (k]-) of positive integers such that In Xg; < B*In X1/ that is Xg; = o(xk].H) asj — oo.
Therefore, from (34) we obtain

! Xk Xkj+1 1 1
n —
xk].+1 — xk]. xi‘/(g”‘l) x}l/ﬁﬂ)
Ao[I] < go[I] lim ] X
J—roo Xie,41 — Xk,
11’1 ] ]
x@/(QH) . xq/(@H)
kj-i-l k]'

/(o+1
In x,f, (e+1) In Xk

= o[I] im ———— = go[I] lim
j=e oln x;j/_ﬁ+1) j—oo IN Xki+1

—

< oo[I]B",

i.e. in view of arbitrariness of f* we obtain the inequality Ag[I] < Boo[I]. For p = 1 this
inequality is trivial.

Now we suppose that 7 € (0, 1). Then there exists an increasing sequence (k;) of positive
integers such that x;; = (14 0(1))7 xk;+1 as j — co. Therefore, from (35) we obtain

o/(e+1) _  0/(e+1) ¢

e+l Xge; Xk, Xk, ki
tolI] < To[1] (QJF? lim = 1/(1+1) - 1/(1+1) = ;
Y j—roo Xkj+1 — Xk; X ¢ xkﬁ? Xki+1 — Xk
(e+1)! o 1 (1 — ¥/ (eth)e (e + 1!
< — = S
It is easy to show that A(y) — (fog)gﬂ as v — 1 that (2) is transformed in obvious inequality
tolp] < Tolg] as v — 1. If v = 0 then x;; = 0(xy;+1) as j — oo and from (2) we obtain easy that
to[I] = 0, because A(0) = 0. The proof of Theorem 4 is complete. O
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COINCIDENCE POINT THEOREMS FOR ¢ — y—CONTRACTION MAPPINGS IN
METRIC SPACES INVOLVING A GRAPH

Some new coupled coincidence and coupled common fixed point theorems for ¢ — ¢p—contrac-
tion mappings are established. We have also an application to some integral system to support the
results.

Key words and phrases: coupled coincidence point, coupled fixed point, edge preserving, directed
graph.
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INTRODUCTION AND PRELIMINARIES

In 2009, Lakshmikantham and Ciri¢ [2] introduced a generalization of monotonicity that
called mixed g-monotone property. The authors established some coupled coincidence and
coupled fixed point results related the mappings have mixed g-monotone property in the par-
tially ordered metric space.

Definition 1 ([2]). An element (x,y) € X? is said to be a coupled coincidence point of a map-
pings F: X? — Xandg: X — X if F(x,y) = gxand F (y, x) = gy.

Definition 2 ([2]). An element (x,y) € X? is said to be a coupled common fixed point of the
mappings F: X?> — Xand g: X — X if F(x,y) = gx =xand F (y,x) = gy = v.

Definition 3 ([2]). Let X be a nonempty set and F : X> — X and g : X — X. Wesay F and g
are commutative if gF (x,y) = F (gx,gy) forall x,y € X.

Now, we furnish the following class of auxiliary functions which will be used densely in
the sequel.

Definition 4 ([11]). Let ® denote all functions ¢ : [0,00) — [0, o), which satisfy following:
(1) ¢ is continuous and non-decreasing;
(¢2) @ (t) =0ifft =0;

(3) @ (t+s) < @ (t)+¢(s) forallt,s € [0,00) and ¥ denote all functions 1 : [0,00) — [0,00),
which satisfy (y1);

YAK 517.98, 515.14
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(1) ¥ is continuous function with the condition ¢ (t) >  (t) for allt > 0.

By (¢1), (2) and (1) we have that ¢ (0) = 0.

Next, we give the following coupled fixed point theorems as the main results of Isik and
Turkoglu [11].

Theorem 1 ([11]). Let (X, <,d) be a complete partially ordered metric space. Suppose that
F : X?> — X is a mapping having the mixed monotone property on X. Assume there exists
¢ € ® and ¢ € Y such that

¢ (d(F(x,y),F(u,0)) <271 x ¢ (d(x,u) +d (y,0)) (1)

forall x,y,u,v € X withx > uandy < v.
Suppose that either

(a) F is continuous or;
(b) X has the following properties:

1) if a non-decreasing sequence {x,} — x, then x,, < x for alln,

2) if a non-increasing sequence {y,} — y, theny <y, for all n.

If there exist two elements x, yo € X with xg < F (xo,Yo0) and yo > F (yo, x0). Then F has a
coupled fixed point.

The existence of fixed points of contraction mappings in metric space endowed with graph
has been initiated by Jachymski [4]. Fixed point theorems for single valued and multivalued
operators in such metric spaces have been studied by some authors since 2007 (see [5]— [10]
and so on).

Let (X, d) be a metric space, A be a diagonal of X?, and G be a directed graph with no par-
allel edges such that the set V (G) of its vertices coincides with X and A C E (G), where E (G)
is the set of the edges of the graph. That is, G is determined by (V (G),E (G)). Furthermore,
denote by G~! the graph obtained from G by reversing the direction of the edges in G. Hence,

E(G) ={(xy) €X*:(y,x) €E(G)}.
Definition 5 ([4]). A function g : X — X is G—continuous if

(a) for all x, x, € X and any sequence (n;);c\ of positive integers, (x,,) — x. and
(X, Xn;41) € E(G), forn € N, implies § (xy,) — g%+

(b) for all y, y« € X and any sequence (n;);cy of positive integers, (yu,) — Y« and
(Ynjs Yn,+1) € E(G™1), forn € N, implies § (yn,) — Y+

Definition 6 ([9]). Let (X,d) be a complete metric space, G be a directed graph and
F: X x X — X be a mapping. Then

(i) F is called G—continuous if for all (x,y), (x.,y«) € X* and for any sequence (1;);cy
of positive integers such that (x,,) — X, (Yn;) — Y« asi — oo and (xy,, xy,41) € E(G),
(Yn; Yn+1) € E(GY), for n € N, implies F(xn,yn;) — F(xs,y:) and
F (Yn;, xn;) = F (ys, x4) asi — oo;
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(ii) (X,d,G) has property A if (a) for any sequence (x,), .y in X with (x,) — x, asn —
oo and (xn,x,41) € E(G) forn € N, then (x,,x«) € E(G); (b) for any sequence
(Yn)pen in X with (yn) — y« asn — oo and (Y, Yn+1) € E(G™1) forn € N, then
(ywy:) € E(GTT).

Consider the set CCoinFix (Fg) of all coupled coincidence points of mappings F : X* — X,
g : X — X and the set (X?) g as follows:

CCoinFix (Fg) = {(x,y) €X?:gx=F(x,y)andgy =F (y,x)} and
<X2>F = {(x,y) € X?:(gx,F(x,y)) € E(G) and (gy,F (y,x)) € E (G’l)}.
4
In 2016, Eshi et al. [12] introduced the concept of G — g—contraction mapping as follows.
Definition 7 ([12]). F : X*> — X is called G — g—contraction if:
(i) § is edge preserving, ie,(gx,gu) € E(G) and (gy,gv) € E(G!Y) =
(8(gx),8(gu)) € E(G) and (g (gy) & (gv)) € E(G);
(i) F is g—edge preserving, ie.,(gx,gu) € E(G) and (gy,gv) € E(G1) =
(F (x,y),F (1,0)) € E(G) and (F (v, %), F (0,u)) € E (G);
(iii) for all x, y, u, v € X such that, (gx,qu) € E(G) and (gy,gv) € E(G™),

d(F (x,y),F(u,0)) < 5[(gx,qu) + (gy,8v)], where k € [O, %) is called the contraction
constant of F.

Proposition 1 ([12]). If F : X*> — X is g—edge preserving and F (X?) C g(X). Also, let
(Xn) pens Wn)pens (Un)pen and (vn),cn be sequences in metric space (X, d) endowed with a
directed graph G. Then

(a) (gx,gu) € E(G) and (gy,gv) € E(G™') = (F(xn,yn),F(un,0,)) € E(G) and
(Yn, xn) , F (0, un)) € E (Gfl) foralln € N;

(F
1) (x,y) € (X*)p, = (F(xu-1,Yn-1),F (xn,yn)) € E(G) and (F (yn-1,%n-1), F (yu, X)) €
E (Gil) foralln € N;

(©) (x,y) € (XZ)Fg = (F (xn,Yn) , F (Yn, xn)) € (XZ)Fg for alln € N.

In this paper, we prove coupled coincidence and coupled common fixed point theorems for
contaction mappings in metric spaces endowed with a directed graph. Our results extend and
improve the results obtained by Eshi et al. in [12], Isik and Ttirkoglu in [11], Chifu and Petrusel
in [9] so on. Moreover, we have an application to some integral system to support the results.

1 MAIN RESULTS

Definition 8. Let (X,d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 — X, ¢ : X — X are called a ¢ — (—contraction if:

1) g is edge preserving, F is g—edge preserving;
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2) there exists ¢ € ® and ¢ € Y such that for all x, y, u, v € X satisfying (gx,gu) € E (G)
and (gy,gv) € E(G™),

¢ (d(F(x,y),F(u,0))) <27 x ¢ (d(gx,gu) +d(gy,80)). 2

Lemma 1. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X*>— X, g:X — X bea ¢ — ¢—contraction and F (X?) C g (X). Also, let (xn), (yx) be
sequences in X. If for each (x,y) € (X?) rg then

On = d(8§xXn+1,8%n) +d (§Yn+1,8Yn) — 0asn — oo.

Proof. Let xp, yo € X. Since F (Xz) C ¢(X), we can constitute x1, y; € X such that
F(x0,y0) = gx1 and F(yo,x0) = gy1. Again, we can constitute xp, y» € X such that
F(x1,y1) = gxp and F (y1,x1) = gy2. Continuing this procedure above we obtain sequences
(xn) and (y,) in X such that

gxn = F(xp_1,yn—1) and gyn = F (Yn—1, Xn—1) 3)

forallm > 1, x = xoand y = yo. Let (x0,10) € (XZ)Fg such that (gxo, F (x0,40)) =

(§x0,8%1) € E(G) and (gyo, F (vo,x0)) = (gv0,8y1) € E (G™1). Then, by Proposition 1 (b),
we get (F (xy-1,Yn-1),F (xn,¥n)) € E(G) and (F (yy—1,%-1) ,F (yn, xx)) € E(G™!). Thus
we have that (gxn, gxn+1) € E(G) and (g¥n, §¥n+1) € E(G™!) forall n € N. Using the
¢ — p—contaction (2) and (3), we have that

@ (d (F (X, Yn)  F (Xn-1,Yn-1)))

¢ (d (8xnt1,8%n)) =
<271 x ¢ (d (gxn, §xn-1) + 4 (8Yn, §Yn-1)) and

(4)

¢ (d(8Yn+1,8Yyn)) = @ (A (F (Yn, xn), F (Yn-1,%n-1)))
<271 X ¢ (d (8Yn, §Yn—1) +d (§%n, §Xn-1))
for all n € N. From (4) and (5) we get

(5)

@ (d (8xut1,8%n)) + @ (d (8Yn+1,8Yn)) < ¥ (d (8xn,§%n-1) +d (8Yn,§Yn-1)) - (6)

From (¢3), we obtain that

@ (d (8xn+1,8%n) +d (8Yn+1,8Yn)) < P (d (§Xn, 8Xn—1) +d (§Yn,§Yn-1)) -

Regarding the properties ¢ and 1, we conclude that

d(8xn+1,8%n) + A (8Yn+1,8Yn) < d(8%n,§%n-1) +d (§Yn, &Yn—1) -

It follows that p, := d (§Xp+1,8%n) + d (Yn+1,8Yn) is decreasing. Then lim, 00 pn = p for
some p > 0. Taking the limit as n — oo in (6), we have ¢ (p) < ¢ (p). From the properties ¢
and ¢, we obtain that p = 0, and thus

On = d (§Xn+1,8%n) +d (§Yn+1,8Yn) — 0asn — oo.
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Theorem 2. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X?— X, g:X — X bea ¢ — p—contraction and F (X?) C g (X). Let ¢ be G—continuous
and commutes with F. Suppose that:

(i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A.
Then CCoinFix (Fg) # @ iff (Xz)Fg + .

Proof. Let CCoinFix (Fg) # . Then there exists (x.,y.) € CCoinFix (Fg) such that

(g%, F (x4,yx)) = (%4, 8%:) € A C E(G) and (gy«, F (ys, x:)) = (gy+,8y+) € A C E(G71).
It follows that (x.,y.) € (XZ)Fg, so that (XZ)Fg £ O.

pg 7 @ Then there exists (xo,y0) € (XZ)Fg, e.g.
(gx0, F (x0,y0)) € E(G), (gyo,F (yo,x0)) € E(G™!). Then, by Proposition 1 (b), we get
(F (xp—1,Yn-1), F (xu,yn)) € E(G) and (F (yu—1,%n—1) ,F (yn, xn)) € E (G~1). Thus we have
that

Now, suppose that (X?)

(8%n,&xn+1) € E(G) and (gyn,§¥n+1) € E (Gil) @)

for alln € N. By Lemma 1, we have

Pn = A (§Xn11,8%n) +d (§Yn+1,8Yn) — 0asn — oo. (8)

Next, we shall prove that {gx,} and {gy,} are Cauchy sequences. If possible, assume that at
least one of {gx,} and {gy.} is not a Cauchy sequence. Then there exists ¢ > 0 for which

we can find subsequences { 8%Xn(k) }, { gxm(k)} of {gx,} and { SYn(k) }, { gym(k)} of {gyn} with
n (k) > m (k) > k such that

Ve i=d (gxn(k)/gxm(k)> +d (gyn(k)/g]/m(k)> > €. )

Farther, corresponding to m (k), we can choose # (k) in the manner that it is the smallest integer
for which (9) holds. Then,

d <gxn(k)71/gxm(k)) +d <8yn(k)7118ym(k)> <& (10)
Using (9), (10), and triangular inequality, we obtain
e<y<etd <gxn(k)fgxn(k)fl) +d <gyn(k)/g]/n(k)fl) : (11)
Letting k — oo in (11) and by (8), we have
Y :i=d <gxn(k),gxm(k)> +d <gyn(k),gym(k)) — eask — oo. (12)
From the triangle inequality, we get

Ye=d (gxn(k)rgxm(k)) +d <g]/n(k)rgym(k))
<d <gxn(k)+1/gxm(k)+1> +d (gyn(k)+1/8]/m(k)+1> + Pn(k) + Pm(k)-
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From property ¢, we have
o) <o (d (gxn )41 8%m( +1)) ( ( Yn(k)+1 8Ym(k) +1 )) te (Pn(k) + pm(k))
< (1 (F (o) (s )
+¢(d(F (yn(k ) (ym )))+¢(p(>+pm<k))
(13)
<27l xy (d (gxn(k)rgxm(k)) +d (g]/n(k)/g]/m(k)>)
+27 %y <d <gyn(k)/g]/m(k)> +d <gxn(k)/gxm(k)>) +¢ (pn(k) + Pm(k)>
<¢P(m)+e <Pn(k) + Pm(k)) -

Taking k — oo in (13) and from (8) and (12), we obtain a following contradiction:

¢e) <p(e)+¢(0)=v(e).

Thus, {gx,} and {gy.} are Cauchy sequences in X. As (X,d) is complete, there exists
X, Yx € X such that
Xy — Xy and gy, — Y4 asn — oo. (14)

Since ¢ be G—continuous, we have

9 (gxn) — gx« and g (gyn) — QY+ as n — oo.

Moreover as F and g are commutative

8 (8xn+1) = §(F(xu,yn)) = F (8xn, 8Yn), (15)
§(8ynt1) = §(F(yn xn)) = F (gYn, g%n). (16)
We now prove that
F(x:,y<) = g« and F (ys, xx) = QY.
Suppose assumption (i) holds. From (15) and (16), we have

g%, = lim g(gxyr1) = Hm F(gxy, gyn) = F (x+,¥),
gy= = [Jim g (gyns1) = lim F(gym gxn) = F (Y x:);
that is, (x.,y«) is a coincidence point of F and g.

Suppose now assumption (ii) holds. From (7) and (14), using property A, we get (gxy, x«) €
E(G) and (gyn,y+) € E (G™1) for each n € N. By (2), we get

¢ (d (8%, F (s, yx)) + d (8Y, F (Y, x5)))

< ¢ (d (g%, 8%nv1) +d (8%ns1, F (xs,y4)) + A (85, 8Ynt1) + d (gYnt1, F (Y5, X))

< ¢ (d (g%, 8%n41)) + @ (d (F (xn,yn) , F (X, y)))

+ ¢ (d(8ys/8Yn+1)) + ¢ (d (F (yn, Xn) , F (Y5, x:)))

< (d (gxn, gxx) + A (8Yn, 8Y)) + ¢ (d (8%, 8Xn11)) + ¢ (d (8Y, Yn+1)) -
Letting n — oo, we obtain ¢ (d (gx«, F (x«,Y+)) +d (gy«, F (y«,xx))) = 0. From properties ¢,
we have d(gx«, F(x+,yx)) + d(gy«, F (ys,x+)) = 0. Hence, gx, = F (x4, ys) and
&Y« = F (Y4, ). O
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Definition 9. Let (X,d) be a complete metric space endowed with a directed graph G. The
mappings F : X> — X, ¢ : X — X are called a (— contraction if:

(i) g is edge preserving, F is g—edge preserving;
(ii) there exists p € ¥ such that for all x, y, u, v € X satisfying (gx,gu) € E(G) and
(gy,8v) € E(G™),

d(F(x,y),F(u0)) <27 x4 (d(gx,gu) +d(gy,80)) -

Theorem 3. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X?>— X, g:X — X be ap—contraction and F (X?) C g(X). Let ¢ be G—continuous and
commutes with F. Suppose that:

(i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A.
Then CCoinFix (Fg) # @ iff (X?) £y # -

Proof. Taking ¢ (t) = t, along the lines of the proof of Theorem 2, we have the requested
results. By virtue of the analogy, we skip the details of the proof. O

If we choose the functions ¢ (t) = t and ¢ (t) = kt, for t € [0,c0) and k € [O, %) in Theorem
2, we have the following corollary.

Corollary 1 ([12]). Let (X, d) be complete metric space endowed with a directed graph G, and
letF: X? - XbeaG— g—contraction with contraction constant k € [O, %) and F (XZ) C

g (X). Let g be G—continuous and commutes with F. Suppose that (i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A. Then CCoinFix (Fg) # @ iff (XZ)Fg + O

Remark 1. In the case where (X, <) is partially ordered complete metric space, taking E (G) =
{(x,y) € X x X : x <y}, the functions ¢ (t) = t and ¢ (t) = kt, fort € [0,00) and k € [0,1),
Theorem 2 generalize and improve the results obtained by Bhaskar and Lakshmikantham ( [1],
Theorem 2.1) and Chifu and Petrusel ( [9], Theorem 2.1). If we take the function (t) = ¢ (t) —
Y1 (t), fort € [0,00), where 1 € ¥, Theorem 2 generalize the results given by Luong and
Thuan ( [3], Theorem 2.1). In Theorem 2, let § be the identity mapping. Then it is easy to see
that our conclusions enhance the results achieved by Isik and Tiirkoglu [11].

Theorem 4. In addition to Theorem 2, suppose that for any two elements (x,y), (x,y.) € X?,
there exists (p,r) € X? such that

(F (o), F(p) €E(G), (F(y,2),F(r,p) €E(G') and
(F (xe,3) F (p,7)) €E(G), (F(ye,x:) F(r,p)) € E(G7).

Then, F and g have a unique coupled common fixed point.
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Proof. By Theorem 2, we have CCoinFix (Fg) # &. Suppose (x,y), (x4, y«) are coupled fixed
points of F, e.g.,

§x =F(x,y), gy =F(y,x) and gxs = F (xs, ¥«), Y« = F (Y, xx) . (17)
Consider sequences {p, } and {r,} as follows
po=p, 10 ="1,Pu+1 = F (pn,rn) and 1,41 = F (rn, pn) foralln > 0.

From assumption, we get
(F(x,y) F(pr) = (gx,8p1) € E(G), (F(y,x),F(r,p)) = (8y.811) € E (G”) and

(F (x«,y%), F(p, 7)) = (§x+,8P1) € E(G),
(F (ye, %) F (r,p)) = (8y,8n) € E(GT1).

Since F is g—edge preserving, we have
(F(x,),F (pr,m1)) = (gx,8p2) € E(G), (F(y,x),F(r1,p1)) = (3y,872) € E(G™'),

(F (x«,y%), F (p1,11)) = (§x+,8P2) € E(G),
(F (y=,x.)  F (r1,p1)) = (8¥+,872) € E(G71) .

Continuing this procedure above, we obtain

(3%,8pn) € E(G), (sy,g7) €E(G') and

(8%.,8pn) € E(G), (gy=,gra) € E (G7).
By (2), we have

¢ (d (8%, Pnt1)) + @ (d (rnt1,8Y+))
=@ (d(F (x«,¥+), F (pn, 1)) + @ (d (F (rn, pn) , F (y+, %4)))
<27 X Y (d (X, gpn) +d (Y, gTn)) + 271 X P (d (8rn, gY) +d (8P, 8X-)) -
By the property of ¢, we have
@ (d (8%, 8Pn+1) + A (87n+1,8Y+)) < P (d (8%, gPn) + A (8, 8Tn)) - (18)
By (¢1) and (1), we have

d (8%, 8Pn+1) + A (8rn+1,8Y+) < d(8%x, 8Pn) +d (Y, 87n) -

Therefore, the sequence {f,} defined by f, = d(gx«, gpn) + d(gy+,gr), is a nonnegative
decreasing sequence, and consequently, there exists some f > 0 such that

d (gx,&pn) +d (8Y+,8n) = fasn — co.

Suppose that f > 0. Then taking limit as n — co in (18) and using the continuity of ¢ and ¢,
we get

o (f) < (f)
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which implies, from the properties of ¢ and ¢, that ¢ (f) = 0 and eventually, f = 0. Hence
d(gx«,gpn) +d(gY«,grm) — 0asn — oo,

which implies
lim d (gx.,gpn) = 0= lim d (gy.,grn).

Similarly
lim d (gx,gpn) =0 = hm d(gy,8rn) -

n—o0

By the triangular inequality we obtain

d(8xx,8%) < d(8x«, 8Pn) +d (gPn, %), A (gY+, 8Yy) < d(8Ys,8n) +d(gn,8y),  (19)

for all n € IN. Letting n — oo in (19), we obtain that d (gx., gx) = 0 = d (gy+«, gy). Hence, we
get
8x:x = gx and gy. = gy. (20)

Let gx, = gx = tand gy« = gy = s.
Owing to commutativity of F and g, by (17), we have

¢ (gx:) = ¢ (F (x4,y+)) = F(gxs,gy+) = gt = F(t,5) and

g (gys«) = & (F(ys, xx)) = F (gY+,8x+) = g5 = F (s, 1).

Hence, (t,s) is a coupled coincidence point. Thus, by repeating previous argument for (x, )
and (t,s),
gxy =gt =t =gt and gy, = gs = s = gs.

Therefore, t = gt = F (t,s) and s = gs = F (s, t). Hence, (¢, s) is a coupled common fixed point
of Fand g.
To show the uniqueness, suppose that (k,I) is another coupled common fixed point of F
and g. Hence,
k=gk=F(k1) and | =gl = F (L k). (21)

By (20), we have
gk=gt=t and gl = gs =s. (22)

Thus, from (21) and (22), wegetk = tand/ =s.Then, k =gk =gt =tand | =gl = gs =s. [

2 APPLICATION

We consider the following integral system:

+A/ (t,s,x(s),y(s))ds,

(23)
y(t +A/ (t,s,y(s),x(s))ds,

fort € [-T,T], T >0,A €R.
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Recall that the Bielecki-type norm on X := C ([-T, T],R"),

|x|lp = T[naTXT] )x (t) e_T(t_T)) forall x € X,

where T > 0, is arbitrarily chosen. Consider ||x —y||z = max;c_77) |x (t) —y (£)| e~ Tt=T) for
allx,y € X.
Define the graph G with partial order relation by

xyeX,x<y&sx(t)<y(t) foranyte I

Thus (X, ||x||5) is complete metric space endowed with a directed graph G.
If we take into consideration E (G) := {(x,y) € X*>: x <y}, then A (X?) C E(G). On the
other hand E (G !) := {(x,y) € X? : y < x}. Furthermore, (X, ||x||5, G) has property A.
Then (Xz)Fg = {(x,y) € X*: gx < F(x,y) and F (y,x) < gy} . We consider the following
conditions:

1. A:[-T,T] x [-T,T] x R* x R" = R" and h : [-T,T] — R" are continuous;

2. for all x,y,u,v € R" withx < u, v < y we have A (t,s,x,y) < A(t,s,u,v) for all ¢,
e [-T,T];

3. forallt,s € [-T,T| and for all x,y,u,v € R"
A s, 29) — Alts,u,0) < (v —ul+ly—ol),
where ¢ € ¥ such that ¢ (af) < ay (t) forall t € [T, T] and for all « > 0;

4. there exists (xg,yo) € X? such that

xo (1) < —{—A/ (t,s,x0(s),y0(s))ds,
() = b +A [ A1), % ()
wheret € [-T,T].

Theorem 5. Suppose that conditions (1)—(4) are satistied. Then there exists at least one solu-
tion of (23).

Proof. Let F: X> — X and ¢ : X — X be defined as

F(x,y)(t —{—A/ (t,s,x(s),y(s))ds, t € [-T,T],
8 (x) (1) =x(t).
Then (23) can be indicated as

gx=F(x,y) andgy = F (y,x) . (24)
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By (24), the solution of this system is a coupled coincidence point of the mappings F and g, if
we prove the assumptions in Theorem 3.
Let x,y,u,v € X be such that gx < gu and gv < gy,

F(x,y) (t) = h(t +A/ (t,5,x(s),y(s)) ds
B +A [ A8 () (5),8 () () ds
B0+ [ Alsg W) ($),8(0) () ds
(t) +A/ (t,5,u(s),(s)) ds = F (u,0) ()
forall t € [T, T]. Therefore (F (x, 1), F (1, 0)) GE(G)
F(o,u) () = h (1) +A/ (t,5,0(s), u(s))ds

+A/ (5,8 () ()., 8 (x) (5)) ds

+A/ (t,5,y(s),x(s))ds = F (y, %) (t)

forall t € [T, T]. Therefore (F (y,x),F (v,u)) € E (G 1) . Then, F is g—edge preserving.
We shall show that F is {y—contraction. We have

|F (x,y) (t) — F (u,0) (t)]
< M\/ 1A (t,s,%(s),y(s)) — A(t,s,u(s),0(s))| ds

<l [ v ()| + Iy (s) =0 (s)]) (e Tert=T))

A
< P =l + 1y = o) 7D

T
for all t € [—T, T]; therefore,

C(f— A
IF (x,y) (#) = F (u,0) (5)] e 7T < ‘71119 (> = ullp +lly = ©llp)- (25)
Applying maximum in (25), we have
A
prm»—FWmmBsigwmx—um+wy—w@»
If we take T such that M' =1 < |A| = F, then F is p—contraction.

From assumption (4) show that there exists (xo,¥0) € X? such that gxg < F (xg,y0) and
gyo < F (yo, x0), which implies that (X?) pg 7 @- Also, F and g are commutative.

On the other hand, by virtue of (1) and of the fact that (X, ||x||5z, G) has property A we
get that (i) or (ii) from Theorem 3 is fulfilled. Hence, there exists a coupled coincidence point
(x4, y+) € X? of the mapping F and g, which is the solution of the integral system (23). O
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REPRESENTATION OF SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC
ANALYTIC FUNCTIONS OF BOUNDED TYPE

The paper contains a description of a symmetric convolution of the algebra of block-symmetric
analytic functions of bounded type on /;-sum of the space C2. We show that the specrum of such
algebra does not coincide of point evaluation functionals and we describe characters of the algebra
as functions of exponential type with plane zeros.
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INTRODUCTION

In resent years there is an increasing interest to investigations of invariants of the permu-
tation group Se of positive integers. This group can be represented on a Banach space X
with symmetric basis as a group of operators of perturbation of basis vectors. The action of
this group has a natural extension to the action on the algebra H,(X) of analytic functions
of bounded type on X. Invariants of this representation of S, are so-called symmetric ana-
lytic functions of bounded type on X. The algebras of symmetric analytic functions Hy,(X)
were investigated by many authors ([1, 2, 9]). In particular, it is known that Hps(¢) admits an
algebraic basis for 1 < p < co.

On the other hand, there are more representations of S, in Banach spaces. For example, if
X is a directs sum of infinite many of “blocks” which consists of linear subspaces isomorphic
each to other, then So may to act as a group of permutations of the “blocks”. For this case
we have invariants — the algebra of block-symmetric analytic functions. Note that this algebra
is much more complicated and in the general case has no algebraic basis (see e.g. [6, 12]). In
the case dim & < oo, block-invariant polynomials were investigated in the classical theory of
invariants [5, 11].

1 MAIN RESULTS

Let
X% = @glcz =/ ® C?

YAK 517.98
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be an infinite /;-sum of copies of Banach space C2. So any element u = ( * ) € X2 can be

represented as a sequence u = < X ) = << *1 ),...,(xn ),...),where ( An ) e C?,
y Ul Yn Yn

with the norm ||u|| = ¥ (|x¢| + |yk|) - Also, we will use notation u(x,y), where x,y € {4,
k=1

[ee) [ee)
X =Y xkex, ¥ = Y Yyxex. Here ¢ is the standard symmetric basis in /5.
k=1 k=1

A polynomial P on the space X2 is called block-symmetric (or vector-symmetric) if:
n Ym Yo(1) Yo (m)

for every permutation ¢ on the set of natural numbers IN, where < ;Ci > € C2. Let us denote
i
by Pyus(X?) the algebra of block-symmetric polynomials on X2,
In [7] it was shown that the following vectors form an algebraic bases of “power” block-

symmetric polynomials of Pys(X?) :
Hor(oy) = F iy, W
i=1

where 0 < p < n, (x;,y;) € C?,i > 1. Also, there is a basis of “elementary” block-symmetric

polynomials:

RPP(x,y) = X Xj... Xi)Yjy Yy
i <e.<ip (2)
]1<...<]n,p
i
where 0 < p <n,n > 1land (x;,y;) € C2.
In the finite case, generating elements of algebra of block-symmetric polynomials on the
space X2 = @ZCZ are algebraic dependent. In [12] was proved the following theorem.

Theorem 1. For every nonsymmertic polynomial { of a system of generating elements of
Pus(X2) there exist symmetric polynomials ay in this system such that

gm! _ ﬂlgm!il 4. 4 (_1>m!flam!_1€1 + (_1>m!am! =0.

Let o be some permutation on the set of natural numbers IN. We denote by T, the linear
operator on X' associated with ¢ by the formula

Ta<§ xkekréykek) = <§x0(k)ek'liy"(k)ek)'

For any (x,y), (z,t) € X2 we denote (x,y) ~ (z,t) if there exists a permutation ¢ on IN such
that (x,y) = T, (z,t).

Theorem 2. Let (x,y),(z,t) € X? and HP"'~P(x,y) = HP'~P(z,t), where 0 < p < i for every
i > 1. Then (x,y) ~ (z,t).
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Proof. Let G(x) be a symmetric polynomial of degree n in the algebra of symmetric polynomi-
als Ps(¢1) on £1. We set P(x,y) = G(x + jy), where 0 < j < n, (x,y) € X2. Obviously, P(x,y)
is a block-symmetric polynomial. In [13] it was proved that the block-symmetric polynomial

P(x,y) will be represented as an algebraic combination of Fi(x + jy), where F,(x) = of: Xy
k=1
So for the polynomial P(x,y) according to [1, Theorem 1.3] we obtain that x + jy = T, (z + jt).
On the other hand, we can denote by T, (x) = Ty (x,0), To(y) = T,(0,y) and we obtain that
X+ jy = Tol(2,0) + (0, ) = To(z) + jTo (1)
For us it is enough to consider j = 1,2. We obtain two equalities

x+y=T,(2)+ Ts(t), x+2y=Ts(z)+2Ts(t),

which imply x = T,(z), y = T, (). Thatis, (x,jy) = To(z, t).
Since HP"~P(x,y) = HP'"P(z,t),0 < p < iforevery i > 1 it follows that F;(x + jy) =
Fi(z+jt) and so (x,y) ~ (z,t). O

Let Hy,s(X?) be the algebra of block-symmetric analytic functions of bounded type (that is,
bounded on bounded subsets) on X2. This algebra is generated by polynomials
HYW, . HPP, HO, ., wheren > 1,0 < p < n. Let us denote by My, (X?) the specrum
of algebra Hy,(X?).

For given (x,y), (z,t) € A2,

(23
(21) = ((2 )(j:: ))

where (x;,v;), (z;,t;) € C?, we put
o= (3. (3)o- () ()

Tien(H(xy) = f((x,y) o (1)) ©)

We will say that (x,y) — (x,y)  (z,t) is the intertwining and the operator 7, ;) is the intertwin-
ing operator. Some elementary properties of 7, ;) was proved in [6].

Let C{t1,t,} be the space of all pover series over C2. We denote by R and H the following
maps from My, (X?) into C{t, 2}

and

and define

R(g)= ), tty "o(RP"P),
()g;gn

and
o0

Hip)= ), thty "o(HP"P).
O%Z%n
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Note
R((x,y) e (z1)) =R(x,y)R(zt),

and

H((x,y) o (z,1) = H(x,y) + H(z 1),

where (x,v), (z,t) € X2. We will prove these equalities in Theorem 4 for more general situa-
tion.
Following [3] we define the symmetric convolution.

Definition 1. Forany f € Hy,(X?) and 0 € Hy,s(X?)', symmetric convolution 6 x f is defined
by
(05 f)(x,y) = 6[T(xy) (f)].

Definition 2. For any ¢,0 € Hy,s(X?)’, symmetric convolution ¢ x 0 is defined by

(px0)(f) = (0 *f) = ¢((z,£) = 0(Tznf))-

Theorem 3. For any ¢,0 € My,s(X?) the symmetric convolution is commutative, associative
and

(px0)(HP"™F) = @(HP"™P) + 6(HP"F), 4)

where 0 < p < n.
Proof. First we will prove the equality (4). Indead, for polynomials H?"*~? we have

(6% HP"P)(x,y) = 6(T(y,) (HP" 7))
= O(HP"P(x,y) + HP""P) = HP""P(x,y) + O(HP"P).

Therefore,

(¢ 0)(H"P) = o(HP"P(x,y) + 6(H"""F))
= @(HP""F) +0(HP"F).

From this equality it follows the associativity and commutativity of ¢ x 0 € My,s(X?). O

Similarly to Lemma 3.1 and Proposition 8.2 in [4] (see also [12]) it is possible to show that

_ 2
[[RPHP]] < oin =)l
and R(¢)(t) is a function of exponential type for every fixed ¢ € My, (X?).
Theorem 4. The following identities hold

1. H(p*0) =H(p) +H(0),

2. R(gx0) = R(¢)R(6).
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Proof. The first statement it follows from Theorem 3. To prove the second statement we observe
that

RP"P((x,y) o (2,)) = Z Rr,i—r(x’y)RP—r,n—P_(i—r)(Z,t>.

i=0
0<p<n
0<r<i
Thus
(0% RP*P)(x,y) = 0(T(3,52)(RP7))
n . .
_ 9( Z Rr,zfr(x,y>Rp7r,nfpf(zfr))
Ogi?%n
0<r<i
Z R~ r x ]/ (Rpfr,nfpf(ifr)).
0<p<n
0<r<i
Therefore
(o) (Rr) =g £ et (o)
0<p<n
0<r<i
_ Z (P<Rr1 r) (Rpfr,nfpf(ifr)).
0<p<n
0<r<i
On the other hand
'R, Z tktz kq) sz k Z t;itzm—re(Rr,m—r)
05k% 02 m
Z Z tpfn P Rkl k)e(Rr,m—r)
o??qu,z P
Z tptn p Z 90 sz k Rr,m—r) _ Z flft;lip(q’*e) <RP,n—P)
= k+r=p n=0
0<P<” i+m=n O<p=n
=R(px0).
O
Lemma 1. If 9 = 4, ), then for every (x,y) € X*:
R(é(x,y))(tll i’z) H(l + x;t1 +]/1t2 = Z xt1 + ytz
i=1 n=0
where (x;,y;) € C2,i > 1and G, (xt; +yt2) = Y (gt +ykgt2) - (Xt F Yk, t2) and
ki1 <kp<..<ky

Go =1.
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Proof. For every (x,y) € X2, the product

(e 9]

[T+ xit1 +yit2)
im1

is absolutely convergent if the series Y (x;t1 + y;t2) is absolutely convergent. Since
i=1
Yo Ixits +yita] < Y (x| +lyillt2]) = ] Y |xil + [t2] Y [l

i=1 i=1 i=1 i=1

< max{|ta], lal} (X il + X Ll
i=1 i=1
< max{|t1], \tﬂ}ﬁ( ) (i + ‘%"2)1/2) < oo,

i=1
we obtain that H (14 xjt1 + yit2) is absolutely convergent, and so the product is convergent
=1

as well. Since for every 1 < m < co will be performed the equality

m

Z ity f’é J(RPMP) = [T+ xits +yit2)
O<p<n i=1

and series and product are convergent, we obtain that

(9]

R(é(x,y))(tll tz) = H(l + xit1 + ]/ii'z).
i=1

It is known from Combinatorics [8] that Y "G, (x) = TT(1+ x;t1) for every x € cgp, where

n=0 i=1
o0

Gu(x) = ¥ Xg,...X, is the basis of elementary symmetric polynomials of algebra H,(¢1).
k1<...<kp

Since it is true for every x € ¢y,

Z Gn(xty +ytp) =
n=0

¢

(151152)”(3;1(15i +1y = ﬁ <1 + <ﬁ + ﬁ)hh)

0 2 h i=1

3
I

(1 + x;t1 + yitz).

I
':]8

N
Il
—_

Now we show that the spectrum of the algebra of block-symmetric analytic functions of
bounded type on X2 does not coincide of point evaluation functionals.

Example 1. Letk,| are same fixed nonzero complex numbers. Now we consider the sequence

T () (3) - (3) )
cwn=((3): (F): e (2).)

BRI S

~
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in X? and for every n put
1
on(k 1) = —(ex(k, 1) +ea(k D) + ... +ealk 1)) € A2,

Then 5071(k,l)(H0'1) — 1, 51,71(,(,1)(17]1'0) — k, 51,71(,(,1)(17]”'1'_?) — 0asn — oo forevery 1 < k <1,
where 1 < p < i. By the reletive compactness of bounded subset of My,s(X 2) there is an
accumulation point ¢ ;) of the sequence 6, (), such that (p(k,l)(HO'l) =1, q)(k,l)(Hl'O) =k,
q)(k,l)(Hp"*p) = 0foralll <i < m,wherel < p < i. From Theorem 2 it follows that there is
no poit (x,y) € X2, such that 6, ) = ¢)- Indeed, if such a point exists, then (x,y) ~ (0,0).
Therefore (5vn(k,l)(HO'1) = 51,71(,(,1)(17]1'0) = 0, but we have that&vn(k,l)(HO'l) =1, (5vn(k,l)(H1'O) =
k.

Example 2. Let be as in Example 1. We know that H = k41 To find R
1% 203 p. P (k1) P (k1)

note that kPIs—p
RSP (o (k1)) =~ (Z) (;)
hence
B ' - kPIs—P
(RP*P) = lim RP*™P (0, (k,1)) = o5 —p)!
and so

n
R(Go(k,l))(tlltz) = lim Z tft;_p(p(RP'S*V)
=

n—r00
0<p<s

~ lim Z": (kt )P ()" P tysity
n—oo =i pl(s — p)!
0<p<s
Theorem 5. The invertible elements of semigroup (My,s(X?), ) are functionals only of the

form ¢ i1y = R(@(i1)) (tr, t2) = e 1E2,
Proof. Since by Theorem 4 R (¢ x0) = R(¢)R(0), ¢k 1) is inverse to ¢ ;. In the other hand,
if ¢ is invertible and ¢ = ¢!, then R(¢)) = m is an entire function of exponential type

and so has no zeros. So we have that R(¢)(t1,t,) = k172 for some complex numbers k,I. [

Corollary 1. Let ® be a homomorphism on the subspace of block-symmetric polynomials in
Hy,s(X?) to itself such that ®(HP*~F) = —HP*~P for every p, k. Then ® is discontinuous.

Proof. If @ is continuous it may be extended to continuous homomorphism & of Hy,,(X?).
Then for (x,y) € X2
HPRP(x,y) + @(HPFP) (x,y) =0 )

for all p, k. Note that this equality is true for

<x0yo>:(<})(8) (8) )

Let us denote ¢ = J(y, ,,) © . From the continuity of homomorphism & we have, that
1 € My,s(X?). From equality (5) we have, that Sxy) * ¥ =000y, ¥ = 6.1 . According to the

. . . (xOryO)
Theorem 5 ¢ ( is not invertible. O

X0,40)
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Let f(z) be an entire function of many variable. We will say that f(z), where z € C", has
"plane" zeros if the set of zeros is

Zs = {zeC”:f(z) :o} = GHk,
k=1

where Hy = {z : (z,d"|a = 1} is hyperplane in C". Here a* € C" are feets of perpendicu-
lars dropped from the origin onto zeros hyperplanes Hy of the function f(z) (see [10]).

k|—2>

Theorem 6. Let ¢ be a character such that R(¢) is a polynomial. Then R(¢) have a plane
zeros, that is KerR(¢) consists of one-codimensional linear subspaces.

Proof Let us denote A4, (Gy) = Gpu(xt; + yfz). Now we consider the equation

m

Z A"@(Ant,(Gn)) = 0 with m solutions z;, 1 < k < m. Hence J[(1 +zA) = 0. Obvi-
i=1

ously, every solution z; can be represented as zy = xxt; + yxt;, where xy, y are indetermi-

nants and t,t; are some complex numbers. If we take t; = 1,t, = Oand t; = 2,t, = 1,
then can fined xi, yx. So we have the system of 2m equation and 2m indeterminants xy, y,
1 < k < m. The solutions of that system are x; = z, yx = —z¢, 1 < k < m. Hence xy, y,x can be
clearly define. If A = 1, then we obtain the equality

m

R(g)(t,12) = io (Ao G0) =[]0+t +yt) =0

Hence ¢ has plane zeros. O

According to the analog of Hadamard’s Theorem [10] the function R (¢)(t1, t2) with plane
zeros is of the form
k
R(@)(t1,t2) = exp(P(t1, £2)) I—[l <1 - (t1| e T bl k|2)>
1

where {(aX,ak)} are the zeros of R(¢)(t1,t2), P(t1, t2) is analytic polynomial and we have
n

)3

k=1

< o0.
|ﬂk\

According to the Lemma 1

m

R(Oxy)) (t1, 02) = [ [(1 + xit1 + yit2),
i=1
and so the zeros of R(,,))(t1, t2) are
S S S | S
[kl + [yl |kl + [yl
On the other hand, if f(#1, f2) is the function of the exponential type with plane zeros, then
it can be represented as

R(p)(t1,12) = exp(P(t1, 1) TT (1= (aifls + i) ).

if .
1
,El fad <
So for ¢ € Myys(X?), which we can represanted as ¢ = P (k1) * O(x,y), Where (x,y) € X2,
=k =k
(X, y) = (|:k|2, ‘;k‘z) and ¢ ;) was defined in Example 1, we have that

R(g)(t1, t2) = f(t1, t2).
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A WORPITZKY BOUNDARY THEOREM FOR BRANCHED CONTINUED
FRACTIONS OF THE SPECIAL FORM

For a branched continued fraction of a special form we propose the limit value set for the
Worpitzky-like theorem when the element set of the branched continued fraction is replaced by
its boundary.

Key words and phrases: element set, value set, branched continued fraction of special form.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: khkuchminska@gmail.com

INTRODUCTION

A lot of convergence criteria for continued fractions are characterized by convergence do-
mains. Such domains are indicated in the complex plane, that if elements ay, by of a continued
fraction belong to these domains then the continued fraction

a = a
1 k
a» ID bk
_— =1

as
by +
2 b3+_

b1+

converges. At first convergence domains for continued fractions we can find in papers of Wor-
pitzky (1865), Pringsheim (1899) and Van Vleck (1901) [8].

Despite of the fact that a well known convergence theorem for continued fractions was
proposed by J. Worpitzky in 1865, its new proofs, generalizations and applications are actual
even at present [3, 6, 8].

H. Waadeland [10] formulated the Worpitzky theorem in a slightly more general form than
classical one [8], using conditions on the coefficients of the continued fraction proposed by F.
Paydon and H. Wall [9].

Theorem 1. Letp € (0,1/2] be any positive number, and let all elements of a continued fraction

ai = a;
2 D Tl’ @

a;, i =1,2,..., be complex numbers, bounded by
] <p(1—p), i=12,.... 2)
Then the continued fraction (1) converges and its values are contained in the disk |w| < p.

YAK 517.524
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For the continued fraction (1) Haakon Waadeland raised the question: What happens to
the set of values of the continued fraction (1) when the condition (2) in the Worpitzky theorem
would be replaced by |a;| = p(1 —p), i = 1,2,...2 Answering on his question H.Waadeland
proved [10], that the set of all possible values of the continued fraction (1) is the annulus

1-p
< |w| <
P 1 T Slel=e
In the classical case of the theorem (p = 1/2), i.e. |a;| = 1/4, i = 1,2,..., the annulus is

1/6 < |w| <1/2.

The same question one can put for multidimensional generalizations of the continued frac-
tion, such as for example,

a branched continued fraction (BCF) [3]

N © N .
aj,Zj Ai(k)Ziy
1+ h =1+ , (3)
zlz:ll+ g ailizziz ll:_)likz_:l 1
= 11+ Z AiyipizZiy
13 1 1+

where a; ;, ; be complex numbers, z;, be complex variables, i(k) = ijip ... i be multiindex;
a branched continued fraction with independent variables [1]

aopo a00
= i , 4
143 Oy %y 1o D % ki @
' i +k 11k21 1

11:1 1 + Z alﬂZZlZ

12 11+ 122 a111213zl3
13 1 +

where a; ;, ; be complex numbers, z; be complex variables, i(k) = iip.. .1 be multiindex
1< ik < ik*lr k = 1,2,..., i() =N;
or a two-dimensional continued fraction (TDCF) [6]
© ;212 % © aji4iZ
D 1,112, @, _1+D z+],zl+D i,i+j 2’
i=0 D =1 1 =1 1

(5)

where al-,]-,i =0,1,...,7=1,2,..., be complex numbers, z1,z, be complex variables.
It was found this question for the branched continued fraction (3) withz; = z, = ... =
zny = 1is answered by the following theorem [11].

Theorem 2. Letp € (0,1/2] and N > 2 be an integer. In the family of branched continued

fractions N N
a; = i)
1 ! =
tL N iy 1+D-Z 1’ ©)
=11 + ¥ 1 2 k=11i=1

12 1 111213
1
+ El 1+)

where a; ;, ; be complex numbers, i(k) = iiiy...i be multiindex, a;(x) satisty the conditions

p(1—p)

“i(k)’ =N then the set of possible branched continued fraction values is the closed
disk |w| < p.
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Thus, in this case the set of possible BCF values is unchanged when all elements of (6) are
restricted to the boundary of the disk.
For TDCF (5) with z; = zo = 1 the answer is proposed by the following theorem [7].

Theorem 3. Let p be a real number in (0,1/2], and let F, be the family of two-dimensional

continued fractions .

1,1
—, o, =1+
0 D; : j

T3

(7)

© Aitji | R Aijitj
-1 1 =1 1 !

i

1
where i, i=0,1,...,j=12,..., be complex numbers that satisfy conditions ‘ai,]-} = Ep(l -

p), i,j=>1.
Then the set of all possible values f of the TDCF (7) in F, is the annulus A,, given by

Rt < il <R R= 312 p+ Il )

In the case p = 1/2 the annulus is <8+ \/§> /124 < |f| < 1/2v/2.

In the present paper the answer will be done for the branched continued fraction with
independent variables (4) with z; = z; = ... = zy = 1 (named the branched continued
fraction of the special form [2, 5, 4]).

1 THE WORPITZKY-LIKE THEOREMS FOR BRANCHED CONTINUED FRACTIONS OF THE
SPECIAL FORM

Since the beginning we prove the Worpitsky-like theorem in a slightly more general form
than it was done in [1].

Theorem 4. Letp € (0,1/2] and N > 2 be an integer. In the BCF of the special form

apo
oo ix_1 ai(k) ! (8)
1+ D —
+k:1ik§1 1

where a;,;, ; be complex numbers, i(k) = iiy...i be multiindex1 < i < i1,k =1,2,...,

1—
”i(k)‘ S Xy = %, |ago] < p(1—p).
Then the BCF of the special form (8) converges, and its values are contained in the disk

[w| < p.

ip = N, a;() satisty the conditions

Proof. 1t is not difficult to show that a periodic continued fraction

p(L—p)
1 Pd=p) ©)
1 Pd—p)
1_.

is the majorant fraction for the BCF of special form (8).
It means that approximants of these fractions satisfy the relation:

|fn = fil < M- |80 — &ml,
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where f,,, g» are the nth approximants of the BCF of the special form (8) and continued fraction
(9) respectively, M is a certain constant, m, n are natural numbers.

For the difference between the nth and mth approximants of the BCF of the special form (8)
the following relation is true [1]:

m
im—1 oo - H ai(k)

fn— Z Z Y - k;lil p— n>m>1, (10)
h1=1i= im=1 H Q kIjO Qi(k)

where

N ai) 400
QW) =l —14 ¥ 2 5>, f= 0
R Qlfy”

Using the method of complete mathematical induction it is easy to prove that

<] =

s—ks (11)
where h, is the m th approximant of the continued fraction

1 _pO—p
;_pd—p
1_-

for all possible index sets.
Let us write the difference formula for approximants of the continued fraction (9)

m+1 1— m+1
&n —8&m = — P ( m_ﬁ) . (12)

H hnfifl 1—10 hmfifl
1=

i=0

From (11) follows that all QE(SIE) # 0. Hence, taking into account (10) and (12) we have

lm 1 |a00| ’ H

fm|<11211221 P P T =y
fi o el

m+1 1— m+1
< mp ( mfi) =&~ &m:

H hnfkfl H hmfkfl
k=0 k=0

ai(k) ’

The continued fraction (9) converges, and therefore the BCF of the special form (8) is also
convergent.
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Let us write the m th approximant of (8) in the form

aOO a00

- .
1+Z o D

i1=1 <1)

y—

From the conditions of the theorem on the fraction coefficients and inequalities (11) one can
write

N g4 _

i(1) p(1—p)
Z m— = gT’H71'
i1=1 Qz((l) D 2

Putting ¢, = P,/ Qn, where P, is the nth numerator and Q, is the nth denominator of the
approximant g, it is easy to find by induction that

IN

|w| =

n .
Qu=7) p'(1—p)""
i=0
If Q is the value of the infinite fraction (9),and Q, > 0, n =1,2,.. ., then we get

(p(1—p))"
—g, =TV >
sn sn-1 Qn Qn—l o
i.e., the sequence {g,} grows monotonically. Hence,|w| < Q. Since Q = p(1 —p) - (1 —Q)~},
and taking into account that Q = 0, if p = 0, the solution of this quadratic equation with

respect to Q gives Q = p.
Therefore, |w| < p, and |z| < p. O

Now we obtain the boundary version of this theorem.

Theorem 5. Letp € (0,1/2] and N > 2 be an integer. In the family of branched continued
fractions of the special form F,
a00
0o ix_1 El'(k) ’

1+ D ¥ —~

k=1 ir=1 1

(13)

where a;,;, ; be complex numbers, i(k) = 1112 zk be multiindex1 < i, < i1, k=1,2,.

ip = N, a() satisfy the conditions |a ’ = ——"%, lag| = p(1 — p), the set of all possible

branched continued fractions of the spec1a] form Values is the annulus A, given by

o 1 n ‘; < [w] <p.

Proof. Let f be a possible value of the BCF of the special form (13). Then all values f with |f| =

| fo| are possible BCF of the special form values in F,. Hence the set of values of such fraction

must be a disk or an annulus, in both cases centered at the origin. From the Worpitzky-like

theorem (Theorem 4) follows that this disk or annulus must be contained in the disk |f| < p.
We shall first prove that the set of all values must be contained in A,. Any BCF of the special

form in F, can be written in the form

N6 N .
fo =0 007, w = y fi) .
1+w =1 o Ik (ki)
Y14+ D X

k=1 ir1=1
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611-(1) -N

Since ‘ € F, we have, using the previous Theorem 4

ook Ai(k41)

1+ D Y —
k=1i1=1 1

It means that

: -1
00 'k a;
ai(l) . <1 + 1_) . Z (q+1)> S %/

and |w| < p. Since |w| < p it follows that for any value f of a BCF of the special form in F, we
1-p
h >0 —.
avelf] 2 p- 122
That is sharp, follows from the fact that

and that the right-hand side is in F,.

We next prove that A, is contained in the set of values of BCFs of the special form in F,
with independent variables |w| < p.

By the mapping ¢ = 1/1 + w the circle w = p is mapped onto the circle

1 P
‘é_l—ﬁ 1—p?
Then, by & — p(1 — p)e¢, for all 6 € [0,27) we get all points in the annulus A,.
Hence, A, is contained in the set of BCF with independent variables values for Ep. O
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POINTWISE STABILIZATION OF THE POISSON INTEGRAL FOR THE DIFFUSION
TYPE EQUATIONS WITH INERTIA

In this paper we consider the pointwise stabilization of the Poisson integral for the diffusion type
equations with inertia in the case of finite number of parabolic degeneracy groups. We establish
necessary and sufficient conditions of this stabilization for a class of bounded measurable initial
functions.

Key words and phrases: Poisson integral, Kolmogorov equation, diffusion type equation with
inertia, stabilization, degenerate parabolic equation, surface level, average on border.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: bvanya@meta.ua (Burtnyak L.V.)

INTRODUCTION

In this paper we consider pointwise stabilization of the Poisson integral for diffusion type
equations with inertia which have finite number groups of variables with diffusion degenera-
tion.

Stabilization problems for solutions of the Cauchy problem for parabolic equations were
studied by S.D. Eidelman and V.P. Repnikov [1, 2]. Necessary and sufficient conditions of
pointwise stabilization of the Poisson integral for the Kolmogorov equation were obtained by
S.D. Eidelman, V.P. Repnikov and G.P. Malytska [3, 4]. Generalization of these results in the
case of three degeneration groups can be found in the work [5].

1 NOTATIONS AND PROBLEM STATEMENT

Let x = (%11, X120 -/ X1nys 5 XK1 Xk2r -+ -0 Xk -5 Xpls Xp2s - s Xpiys Xpi1,1 - - s Xml),
4

m=>n>-->2n>l,neNk=1Lp peNm=>p Ym+m—-—p=mn xe&R"
k=1

Consider the Cauchy problem

P ng m
oru (t,x) — Z Z xkjakau (t,x) = Z 832{2u (t,x), (1)
k=1j=1 o=1 "
u(t,x)|t=r =ug(x), 0<T<t<T< 400, x eR", (2)
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where ug (x) is a Lebesgue measurable and bounded function in R”. The fundamental matrix
of solutions G(t — 7, x, §) witht > 7,x € R",¢ € R" of the Cauchy problem (1), (2) was found
in [6]. Hence,

Gt—1, % &) = (2y7) " (t— 1) F ﬁ 1 k(k+1)...(2k—2)(2k —1)"2ep(txTd)(3)

v=1k=1

where

o(t,x;T,8) = f X1 — G P41t — 1)t z ¥ (k— 122, (2k —3)%(2k — 1)
k=2

‘[/_

k 1xv (t—7)/ k= va t—T _
(t— 7))y 2 ;]' —é‘uk—< % Eor 1)(t_T)2 1L
j=0 j=0
- —-— “D)—1) (t—1) kD L=t x, i(t—)
+(_1>k 121(2141) (21+]g<“(2<721))(21+2(k 1—-1) (t(k?l)! (_2 1,]' —(;Iul>
2 ¥ (=17

LD 6D

o (1 =8| =g

Here p(t, x;0,&) = r? is the family of surfaces of the fundamental solutions of the problem (1),
(2). Let us denote by Pr’f'to a figure which is bounded by the ellipsoid

o(t, x;0,¢) = 12, (4)

where ¢ is a variable. Let v, be the volume of the figure which is bounded by the surface
p1(x) =1, where
2y 1/2 1/2 1
pr(e) = Ly + L L (o — (26 =3) 52k = 1)k = 1) ae)-

v=1k=2

Let Mj(r) is the average of ug(x) with respect to F; which is bounded by surfaces (4).

Definition 1. Function ug(x) has threshold average M*(r) on bodies F}, if there exists the
following limit tlim M (r) = M*(r).
—00

2 POINTWISE STABILIZATION OF THE POISSON INTEGRAL OF THE CAUCHY PROBLEM (1), (2)

Theorem 1. If ug(x) has a threshold average on ellipsoids F to, which almost for all r is equal

to M*(r), then the Poisson integral of the equation (1) stabilizes (ast — o0) to the number

“+0o0
1= (2m) "2y, / e M (r)dr.
0

Proof. Consider the Poisson integral of the equation (1)

u(t, x) = / G(t, x;0,&)uo (€)de. 5)
IR}'l



POINTWISE STABILIZATION OF THE POISSON INTEGRAL 281

Let us make the following change of variables

=G =212, v="1,m,
k=1, -
(k—1k...(2k — 3)(2k — 1)/2t~ % [ r % —
=
k=2
(L e )
j=0
Sty 6D (20 41)...(20 4 (k—1)—2) (214 2(k—1) 1) { 'L x (1)) 6
+ & (k(_l)!) e IE...(Z%c—l))( L )<E0 l o — Cul) (©)
k=174 -\ (k=1)
oo (=R 2 — 1) (k2) xvzkf-vlz)_._((tZkT)g)vl 4 1)k...(gtk—r2)) (21 — (;Iul)]
= — (o — (2k =3)2(2k = V2 (k= 1) Payp_g + - 4 (1) ]
L+1)... 24+ (k—1)—2)2k+2(k —1) —1)(2k — 1)~ V2((2(k = 1) — 1))~}
k-=DT2k -1 -2 (=D 120, 2k —1D)V2), v=1,p,k=1,n,.
Then equation (5) takes the form
u(t,x) = 772 [ expl—p1(a) o (@ e x,))da, %

RX

where 1((&(a, x, t)) is the value of u((¢), and ¢(w, x, t) is determined by the system (6). Let us
consider positively defined quadratic form

m ny
= Z Z Cukj&vk&vjs
v=1k,j=1
and respective family of disjoint ellipsoids
m ny
Z Z Cukj&vkyj =T
v=1k,j=1

In the integral (7) we consider new integration variables

a1 = r®(Y) cos ¥y,
a1 = r®(Y) sin ¥q cos ¥y, ®)

app = 1®(¥)sin¥ysinYy...sin'¥,_q,

where 0 <r < 400, ¥ = (¥1...¥,-1), 0<Y<m, ]—1 n—2,0<%Y,_1 <2 The function
®(Y) is defined by the equality

where oclll = cos ¥y, 0/12 = sin¥Yqcos¥Yy,.. .,a;nl =sin¥Y;sin¥,...sin¥Y,_>cos¥,_1. Note
that ] = r"~1]; is the Jacobian of the transformation (8), where

J1=®"(¥)sin"™ 29, sin" %Y, ...sin¥,_1.
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Let us denote ug(t,r,'¥, x) := up(¢(a, x, t)), where  is defined by (8). Then we obtain

+00 +oo r
u(t,x)= n_”/z/r”_le_’zdr/uo(t, r,‘I’,x)]d‘P:n_”/z/e_’zai/p”_ldp /uo(t, r,'Y, x)1d¥dr
0 o 0 " o
+o0 r
= 2n’"/2/re”2/p”’1dp/uo(t,r,‘P,x)]d‘Pdr,
0 0 N

where ¥; is the unit sphere in IR”, ] is the Jacobian of the transformation (8). Therefore for
M7 (r) we have

+o00 r
u(t,x) =212, / r”“e”z(r”vn)’l/p”’ldp/uo(t,r,‘I’,n)]d‘I’dr
0 0 %
~+o0
=2 "2y, / e M (r)dr.
0
It remains to pass to the limit in the above integral as t — oo. It can be done according to
the Lebesgue theorem because there exists a threshold average. From boundedness of u(x)
immediately follows uniform boundedness of M} (r) by t.
Note that it is sufficient to show the existence of threshold average in some fixed point
x1 that leads to existence of threshold average in any point x and to stabilization at every
compact. 0

Theorem 2. Let ug(x) > 0. For stabilization of the Poisson integral (5) to zero it is necessary
and sufficient that ug(x) has a threshold average M*(r), which almost everywhere is equal to
zero.

Proof. The sufficiency follows from Theorem 1. Let us show that from stabilization of the
integral (5) it follows the existence of a zero threshold average on F;:

1 _
) =—— / ug(8)dg < ctM/3 / exp{—p(t"/%,x,0,8) }uo(8)d = cru(t'/?,x),  (9)
r,t Fr’ft RN
p
where N; = 52 + ¥ nZ. In the inequality (9) mesF}, replaced by volume of the paral-
k=1

lelepiped

&1 — x| < H6, v="1,m,

&k — x0k] < tﬂ%,v =1p k=2n,
Since u(t,x) — 0 ast — oo, then from (9) it follows that Mf,, — 0ast — oo for any r. O

3 CONCLUSION

If there exists a threshold average of a measurable bounded initial function, then theorems
about pointwise stabilization of the Poisson integral for diffusion type equations with inertia
also take place for systems of Kolmogorov equations with constant coefficients [7, 8]. Stabiliza-
tion of the Poisson integral of the equation (1) is related to the stability problem of derivative
prices on financial markets [9, 10, 11].
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B pob6oTi po3rastHyTO IOTOUKOBY cTabirizamito iHTerpana IlyaccoHa aast piBHSHD THITY AMdYy-
3ii 3 iHepIieo y BUIIAAKY CKiHUEHHOI KiABKOCTI IPYII BUPOAXKEHHSI IapaboAidHOCTi, BCTAaHOBAEHO
HeobOXiAHI i AocTaTHI yMOBM Takoi cTabiaizarii y Kaaci oOMeXXeHMX BUMipHMX MOYaTKOBMUX DYHKIIIIA.

Kntouosi cnosa i ¢ppasu: inrerpan Ilyaccona, piBHsHHS KoaMoroposa, piBHSHHS TuIy AMdysii 3
iHepiIiero, crabirizaltisi, BMpoAkeHe apaboaiuHe piBHSIHHS, TOBEPXHi PiBHSI, I'paHNUHE CepeAHE.
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PRAVEENA M.M., BAGEWADI C.S.

ON GENERALIZED COMPLEX SPACE FORMS SATISFYING CERTAIN CURVATURE
CONDITIONS

We study Ricci soliton (g, V,A) of generalized complex space forms when the Riemannian,
Bochner and W, curvature tensors satisfy certain curvature conditions like semi-symmetric, Ein-
stein semi-symmetric, Ricci pseudo symmetric and Ricci generalized pseudo symmetric. In this
study it is shown that shrinking, steady and expansion of the generalized complex space forms de-
pend on the solenoidal property of vector V. Also we prove that generalized complex space form
with conservative Bochner curvature tensor is constant scalar curvature.

Key words and phrases: generalized complex space forms, Ricci soliton, Einstein manifold, Ein-
stein semi-symmetric, pseudo symmetric.
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1 INTRODUCTION

A Kéhler manifold with constant holomorphic sectional curvature is a complex space form
and it has a specific form of its curvature tensor. More generally an almost Hermition manifold
M is called a generalized complex space form M(f1, f») if its Riemannian curvature tensor R
satisfies,

R(X,Y)Z = fi{g(Y, 2)X — g(X, Z2)Y} + fo{g(X, ] Z)]Y

1
—g(Y,JZ)]X +25(X, JY)] Z}, @

for all X,Y,Z € TM, where f; and f, are smooth functions on M [21]. In [21], an impor-
tant obstruction for such a space was presented by Tricerri and Vanhecke: if M is connected,
dim > 6 and f; is not identically zero, then M is a complex-space-form (in particular, f; and
f» must be constant). Olszak [16] proved the existence of generalized complex space form. The
authors Alegre and Carriazo studied structures on generalized Sasakian space forms [1]. The
authors De [7], Kim [12], Atceken [13], Nagaraja [14], et. al., have contributed to the study of
Sasakian space forms in which they put different symmetric conditions on projctive curvature
tensor etc.

A Riemannian manifold (M, g) is called locally symmetric if its curvature tensor R is par-
allel [5],i.e. VR = 0, where V denotes the Levi-Civita connection. As a proper generalization
of locally symmetric manifold the notion of semi-symmetric manifold was defined by

(R(X,Y)-R)(U,V,W) =0, X,Y,U,V,W e x(M)
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and it is studied by many authors [15,17]. A complete intrinsic classification of these was given
by Szabo [20].

For a (0, k)-tensor field T on M, k > 1, and a symmetric (0,2) tensor fields ¢ and S on M,
we define the (0, k + 2) tensor fields R - T, Q(A, T) and Q(B, T) by

(R-T)(X1,..., X, X,Y) =

—T(R(X,Y)X1,Xo, ..., X — - — T(X1,Xo, ..., X1, R(X, Y) Xs),
Qg T)(Xy,..., X, X, Y) =

—T((X A V)X1, Xpy oo, Xg = oo = T(X1, Xa, o, Xpo1, (X Ag Y)Xg),
Q(S, T)(X1,..., X X, Y) =

—T((XAsY)X1, Xa, ., X — -+ — T(X1, Xo, -, X1, (X As Y) Xp),

where (X AgY) and (X Ag Y) are the endomorphism given by
(XA Y)Z =3g(Y,Z)X —g(X,Z2)Y, (XNAsY)Z=5(Y,Z)X -S5(X,2)Y.
A Riemannian manifold is said to be pseudo symmetric (in the sense of Deszcz [6,9]) if

R-R=LrQ(g R)

holds on the set Ug = {x € M | R — n(+_1)G # 0 at x}, where G is the (0,4)-tensor defined
by G(X1, X2, X3, X4)=g((X1 A X2)X3, X4) and Ly is some function on Ug.
A Riemannian manifold is said to be Ricci generalized pseudo symmetric (in the sense of

Deszcz [6,9]) if
R-R = LgQ(S,R)

holds on the set U = {x € M : Q(S,R) # 0 at x}, and Lg is some function on Ug. A
Riemannian manifold is said to be Bochner Ricci generalized pseudo symmetric if

R-B = LgQ(S,B)

holds on the set Us = {x € M : B # 0 at x}, and Lp is some function on Up and B is
the Bochner curvature tensor. If Ly = 0 on Up, then a Bochner Ricci generalized pseudo
symmetric manifold is Bochner semisymmetric. But Lp need not be zero, in general and hence
there exists Bochner Ricci generalized pseudo symmetric manifolds which are not Bochner
semisymmetric manifolds. Thus the class of Bochner Ricci generalized pseudo symmetric
manifolds is a natural extension of the class of Bochner semisymmetric manifolds.

Also we need the notion of Ricci solitons. It is a natural generalization of an Einstein metric
and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V,A) with g a
Riemannian metric such that

Lyg+25+2Ag =0, (2)

where V is the potential vector field, A a real scalar, S is Ricci tensor of M and Ly denotes the
Lie derivative operator along V. The Ricci soliton is said to be shrinking, steady and expanding
accordingly as A is negative, zero and positive respectively [10].



286 PRAVEENA M.M., BAGEWADI C.S.

In the context of generalized complex space forms, the authors Bharathi and Bagewadi [3],
Bagewadi and Praveena [2,19] extended the study to W, curvature, H-projective, Bochner and
pseudoprojective curvature tensors. Motivated by these ideas, in this paper, we extend the
study of Ricci soliton in which curvature tensor on generalized complex space forms satisfy
several semi-symmetric and pseudo-symmetric conditions. The paper is organized as follows.
In the section 2 we give definitions, notions and basic results for generalized complex space
forms. In sections 3 and 4 we study Bochner semi-symmetric and Einstein semi-symmetric on
generalized complex space forms. In sections 5 and 6 we find the characterizations of general-
ized complex space forms satisfying the pseudo-symmetric conditions like R - B = LgQ(S, B).
and B - W, = L1Q(g, W>). Finally we obtain generalized complex space form with conservative
Bochner curvature tensor is of constant scalar curvature.

2 PRELIMINARIES

Let M be a complex n-dimensional Kdhler manifold, with a complex structure | and a
positive—definite metric ¢ which satisfies the following conditions [4]

J?=—1, g(JX,JY)=g(X,Y) and VJ=0,

where V means covariant derivation according to the Levi-civita connection. The scalar cur-
vature r = LS(e;, ¢;), therefore

(sz)(ei, 61') = er = dT(X)
Let Q be the Ricci operator defined by g(QX,Y) = S(X,Y). Then

(VzS)(X,Y) = g((VzQ)(X),Y).
Taking Y = Z = ¢; and taking summation over i in the above equation we get
(Ve:S) (X, er) = g((Ve;Q)(X),ei),
(divQ)(X) = tr(Z = (VzQ)(X)) = }_8((V,Q)(X), &).

But it is known [8, 18] that (divQ)(X) = 3idr(X). Hence (V,S)(X,e;)) = 3dr(X) and
(Ve,S)(JX,e;) = dr(JX). It is known [11] that in a Kahler manifold the Ricci tensor S sat-
isfies

(divR)(X,Y)Z = (VzS)(X,Y) = (VxS)(Z,Y) = (V)x5)(X, Z). )

Using equation (1) we have

S(X,Y) ={(n—-1)f1 +3f2}g(X,Y), (4)
QX =[(n—1)f1 +3f]X, 5)
r=n[(n—1)f1 +3f], (6)

where S is the Ricci tensor, Q is the Ricci operator and r is scalar curvature of the space form

M(f1, f2)-
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Given a complex n-dimensional Kdhler manifold M, the Bochner curvature tensor and W,
curvature tensor are given by [11]

B(X,Y,Z,U) = R(X, Y, Z,U) — ﬁ[g(Y,Z)S(X, U) — S(X, 2)g(Y, U)
+8(JY, 2)S(JX, U) — S(JX, Z)g(JY, U) + S(Y, Z)g(X, U)

o 25(Y, ]X)g(]Z, U) - 25(]21 U)g(]X, Y)]
53 ) B 2800 U) — (X )30 U) +8(Y, 2)3(%,U)

—8(UX,2)g(JY,U) = 28(JX,Y)g(JZ,U)],

(7)

+

Wy (X,Y)Z =R(X,Y)Z + ﬁ[g(X,Z)QY —g(Y,2)QX]. (8)
Definition 1. The Einstein Tensor denoted by E is defined by
E(X,Y) = S(X,Y) = —g(X,Y), 9)
where S is a Ricci tensor and r is the scalar curvature.
Definition 2 ( [9,20]). A n-dimensional generalized complex space form is said to be:

1) Bochner-Semi-symmetric if it satisties

(R(X,Y)-B)(U,V,W) =0 forall X,Y € x(M);

2) Einstein-Semi-symmetric if it satisties

(R(X,Y)-E)(U,V,W) =0 forall X, Y € x(M).

3 BOCHNER SEMI-SYMETRIC GENERALIZED COMPLEX SPACE FORMS

Let generalized complex space form M(fi, f») be Bochner semi-symmetric and by defini-
tion it satisfies the equation R - B = 0, i.e. for any tangent vectors X, Y, U, Z and W, this implies

(R(X,Y)-B)(U,Z,W) =0.
Therefore
R(X,Y)B(U,Z)W — B(R(X,Y)U,Z)W — B(U,R(X,Y)Z)W — B(U,Z)R(X,Y)W = 0.
Taking inner product with T we have,
¢(R(X,Y)B(U,Z)W,T) —g(B(R(X,Y)U,Z)W,T) — g(B(U,R(X,Y)Z)W, T) (10)
—g(B(U,Z)R(X, Y)W, T) =0.

Using equations (1) and (7) in (10) and putting X = Z = ¢;, further again puttingY = T = ¢; to
the simplified equation, where e; is an an orthonarmal basis of the tangent space at each point
of the manifold and taking summation overi,1 <i < n, we get

2n —8 5n+2
f2 {2n—|—45(u'w) - (2n+4)(2n+2)rg(u'w)} =0
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If f» # 0, then

2n—8 5n +2
{2n 25U - a2 W)} =0
This implies,
sSuW) = — "2 w. (11)

(2n —8)(2n +2)
That is M(f1, f») is an Einstein manifold. Hence we can state the following result.

Theorem 1. A generalized complex space form M(fi, f») is an Einstein manifold provided by
f2 # 0 if Bochner curvature tensor satisties R - B = 0.

Using equation (11) in (2), we get
5n +2

(2n —8)(2n +2)
setting U = W = ¢; in (12) and then taking summation over i,1 < i < n, we obtain

. S5Sn+2
divV An = 0. 13
iv +(2n—8)(2n+2)m+ n (13)
If V is solenoidal then divV = 0. Therefore the equation (13) can be reduced to
5Sn+2

T T 2n-8)2n+2)

(Lvg)(U, W) +2

rg(U, W) +2Ag(U, W) =0, (12)

Thus, we can state the following.

Corollary 1. Let (g,V,A) be a Ricci soliton in a generalized complex space form satisfying
Bochner semi-symmetric. If V is solenoidal then it is shrinking, steady and expanding accord-
ingly scalar curvature is positive, zero and negative respectively.

4 FEINSTEIN SEMI-SYMMETRIC GENERALIZED COMPLEX SPACE FORM

Let R and E satisfy the equation R - E = 0 in M(f1, f2). Then this equation leads to
(R(X,Y) - E(U,W)) =0,
where X, Y, U and W are any tangent vectors. The above equation can be expressed as
E(R(X,Y)U,W) +E(U,R(X,Y)W) =0. (14)
In view of (9) equation (14) becomes
S(R(X, Y)U,W) = 5g(R(X, Y)U, W) + S(U, R(X, )W) = Zg(U, R(X,Y)W) =0.  (15)
Using equation (1) in (15) and by replacing X = U = e¢;, where {¢;} is an orthonormal basis of
the tangent space at each point of the manifold and taking summation over i,1 < i < n, we get
fil[=nS(Y,W) +rg(Y,W)] = 0.
If f1 # 0, then

S(Y, W) = —g(Y, W). (16)

.
n
Then we can state the following.
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Theorem 2. If generalized complex space form is Einstein semi-symmetric then it is an Einstein
manifold provided f; # 0.

Using equation (16) in (2), we get
(Lvg)(Y, W) +2.g(¥, W) +2g(Y, W) = 0. (17)

Let {¢; : i = 1,2,..,n} be an orthonormal basis of the tangent space at each point of the
manifold. Then setting Y = W = ¢; in (17) and then taking summation over i,1 < i < n, we
obtain

,
(Lvg)(eirei) +2-g(e; ei) +2Ag(ei, 1) = 0.
This implies
dioV +r+An = 0. a18)

If V is solenoidal then divV = 0. Therefore the equation (18) can be reduced to

P
n

Thus we can state the following.

Corollary 2. Let (g,V,A) be a Ricci soliton in a generalized complex space form satisfying
Einstein semi-symmetric condition. Then V is solenoidal if and only if it is shrinking, steady
and expanding accordingly scalar curvature is positive, zero and negative respectively.

5 BOCHNER RICCI-GENERALIZED PSEUDO-SYMMETRIC GENERALIZED COMPLEX SPACE
FORMS

Let us consider the Ricci-generalized Bochner pseudosymmetric generalized complex spa-
ce form M(f1, f2). Then we have

(R(X,Y)-B)(U,Z,W) = Lg((XAsY - B)(U, Z,W).
This implies
R(X,Y)B(U,Z)W — B(R(X,Y)U,Z)W — B(U,R(X,Y)Z)W — B(U, Z)R(X, Y)W
= Lp[(XAsY)B(U,Z)W — B((XAsY)U,Z)W — B(U, (XAsY)Z)W — B(U, W) (XAsY)W].
Taking inner product with T we have,
¢(R(X,Y)B(U,Z)W,T) — ¢(B(R(X,Y)U,Z)W,T) — g(B(U,R(X,Y)Z)W, T)
— @(B(U, Z)R(X, Y)W, T) = Ly[g((XAsY)B(U, Z)W, T) — g(B((XAsY)U, Z)W,T) (19)
— 2(B(U, (XAsY)Z)W, T) — g(B(U, Z)(XAs Y)W, T)].
Using equations (7), (4) and (5) in (19) and substituting X = Z = e;, further again substituting

Y = T = ¢, in the resulting equation, where {¢;}, i,1 < i < #, is an orthonormal basis of the
tangent space at each point of the manifold and taking summation over i, we get

2n—8 5n+2
fz{

2n+4“u”W_me+®Qn+2fﬁuﬂw}
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This implies that
{fz(Zn —8) — Lp(4((n ;nl)f;r 3f, —1) —n(r+ 1))} S(ULW)
fo(5n+2) + Lg(r(n+2) — (n+4)) B
- [ : (2n —f4)(2n +2) } rg(U, W) = 0.

The above equation implies
[S(U, W) — prg(U, W)] =0,

where o« = . This im-

f2(2n78)fLB(4((n;nlj)Lj2+3fzfl)fn(r+1 ] and g = { 2(5n+2) 24:1?4 ;:;22)) (n+4))}
plies

s, W) = %g(u, W), (20)

Theorem 3. A Bochner Ricci-generalized pseudo-symmetric generalized complex space form
is an Einstein manifold.

Using equation (20) in (2), we get
(Lvg) (W) + 22 g(u, ) +27g(u, W) =0, @)

Contraction of (21) over U and W gives

r
(Lvg) e e) + 22 g(er e0) + 2Ag(er, ) =0
This implies
divV + %n +An =0. (22)

If V is solenoidal then divV = 0. Therefore the equation (22) can be reduced to

P
o
Thus we can state the following.

Corollary 3. Let (g,V,A) be a Ricci soliton in a generalized complex space form satisfying
Bochner Ricci-Generalized pseudo-symmetric generalized complex space forms. Then V is
solenoidal if and only if it is shrinking or steady or expanding depending upon the sign of
scalar curvature.

6 GENERALIZED COMPLEX SPACE FORM SATISFYING B - W, = L1Q(g, W;)
We assume that B - W, = L1Q(g, W») hold on M(f1, f), then we have

(B(X,Y) - Wa)(U, V, Z) = Ly (X A Y) - Wp) (U, V)Z].
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This implies,
B(X,Y)Wo(U,V)Z —Wo(B(X,Y)U,V)Z —Wo(U,B(X,Y)V)Z — W, (U, V)B(X,Y)Z
= Li[(XAY)Wo (U, V)Z = Wo(XAY)U, V)Z — W (U, (XAY)V)Z — Wo (U, V)(XAY)Z.
Taking inner product with T we have,
gBX,Y)Wo(U,V)Z,T) —g(Wa(B(X,Y)U,V)Z,T) —g(Wa(U,B(X,Y)V)Z,T)
—sWo(U,V)B(X,Y)Z,T) = Lp[g((XAY)Wo (U, V)Z,T) — g(Wo ((XAY)U,V)Z, T) (23)
—sWa(U, (XAgY)V)Z, T — g(Wo (U, V)(XAgY)Z, T)].

Applying equations (1), (7) and (8) in (23) and putting X = V = ¢;, further again putting
Y = T = ¢; in the resulting equation and taking summation over i,1 < i < n, we get

S Z) + g rs(U, ) = Ll nS(U,Z)  rg(U, 2)]) (24
where
_ (2n+42)[(6n®> —8n? —39n —22)f, —2(n® +4n> +7n — 18)(n + 1) f1] + rn(2n + 4)
N (2n+2)(2n +4) ’
5— —f2n+2)(4n+2)+6H(2n+2)(n+1)+r
N (2n +2)(2n +4) '
Equation (24) implies

[yS(U, W) + drg(U,W)] = L1[nS(U, Z) — rg(U, Z)].
The above equation implies

S(U,W) = Arg(U, W), (25)

(L1+9)
Lin—y

where A = . Thus we can state.

Theorem 4. A n-dimensional generalized complex space form satisfying B - W, = L1Q(g, W»)
is an Einstein manifold.

Using equation (25) in (2), we get
(Lyg)(U, W) +2Arg(U, W) +2Ag(U, W) = 0. (26)
Taking U = W = ¢; and summing over i = 1,2,..., n in (26) we obtain
(Lvg)(ei,ei) + 2Arg(e;, e;) +2Ag(ei, ei) = 0.
This implies
divV + Arn+ An = 0. (27)
If V is solenoidal then divV = 0. Therefore the equation (27) can be reduced to
A= —Ar. (28)
Thus we can state the following.

Corollary 4. Let (g,V,A) be a Ricci soliton in a generalized complex space form satisfying
B-W, = L1Q(g, W2). Then V is solenoidal if and only if it is shrinking or steady or expanding
depending upon the sign of scalar curvature.
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7 GENERALIZED COMPLEX SPACE FORM WITH divB = 0

Assume that the Bochner curvature tensor of a generalized complex space form is conser-
vative that is divB = 0. Using equations (4) and (5) in (7), then we obtain

n — 1>f1 +3f2]
2n+4
—8UX,Z2)]Y —2¢(JX,Y)] Z]

T 8 AX X 2)Y +2(Y, 2)]X

—8UX,2)]Y =23(JX,Y)]Z],

Differentiating (29) covariantly, contracting and our assumption yields.

B(X,Y,Z) = R(X,Y,Z) —2 ( g(Y,Z)X — g(X, Z)Y +g(JY, Z)] X

(29)

0= (divR)(X,Y)Z — 21" _231)-{1: 3l o (v, 2)x

—8(X, Z)Y +8(JY, 2)] X = g(JX, Z)]Y — 28(] X, Y)] Z]
dr
(2n+2)(2n +4)
—gUX, Z2)]Y —23(JX,Y)]Z],

Using equation (3) in (30) we obtain

(30)

+ [g(Y,2)X — (X, Z2)Y +¢(JY, Z)]X

n— 1)f1 + 3f2]
2n+4

+8UY, Z2)]X = g(JX, Z)]Y — 28(] X, Y)]Z]

@n+ zE)ZZzn Ty B 2)X =g(X, Z)Y +8(JY, Z)]X

—3(X,2)]Y ~ 2(JX,Y)]Z].
Taking [(n — 1) f1 + 3f2] = constant = k; # 0 in equation (31) we obtain
dr
ot s AX XY
+8(JY, Z2)]X = g(JX, Z)]Y — 28(] X, Y)]Z].
Again using equation (3) in (32) we get
dr
(2n+2)(2n +4)
—8(UX,Z2)]Y = 23(JX,Y)] Z].
Replace Z by JZ in the above equation we get
ST E TSI KDY e ZX
—-9(X,2)JY +2¢(J]X,Y)Z].
Contraction of (33) over Y and Z after simplification we get dr(JX) = 0. If dr(JX) = 0 then

dr(X) = 0 so r is constant. Using r = constant in (32) we get

(VxS)(Y, Z) = (VyS)(X, Z).

0 = (VxS)(Y,2) — (VyS)(X,Z) — 221 8(Y, Z)X — g(X,Z)Y

(31)

+

0= (VxS)(Y,2) = (VyS)(X,Z) +

0=(VzS)(JY, X) +

[8(Y,2)X — (X, Z2)Y +¢(JY, Z)]X

(VzS)(JY, X) =

We can state the following.



ON GENERALIZED COMPLEX SPACE FORMS SATISFYING CERTAIN CURVATURE CONDITIONS 293

Theorem 5. A n-dimensional generalized complex space form with conservative Bochner cur-
vature tensor is constant scalar curvature provided [(n — 1) fi + 3f2] = ki (constant).

Theorem 6 ( [8]). Let M be a Kaehler manifold of dimensionn > 4. Then div R=0 and div C=0
are equivalent.

Using above Theorem we can state the following.

Theorem 7. Let M be a generalized complex space form of dimension n > 4. Then div R=0,
div C=0 and div B=0 are equivalent provided [(n — 1) f1 + 3f2] = k1 (constant).
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ITpasina M.M., baresaai L1.C. I[Ipo y3aeanvHeHi hopmu 8 KOMIIEKCHOMY NPOCIOpi, 9Ki 3008i1bHIIONb
nesri ymosu kpusury // Kapmarceki maTeM. my6oa. — 2016. — T.8, Ne2. — C. 284-294.

Mu BuBuaemo coriton Piudi (g, V, A) Ha y3araapHeHMX (pOpMax B KOMIIAEKCHOMY IIPOCTOPI mpu
yMOBax, IIO TeH30pM 3 KpuBuHOWO Pimana, BoxHepa i W, 3apO0BIABHSIIOTH IIeBHI yMOBU KPWMBUHI,
a caMe HaMiBCMMeTPMYHOCTI, ENHIITelHOBOI HaliBCMeTPMYHOCTI, IICeBAOCMMETPUYHOCTI Piuu Ta
y3araAbHEHOI MCeBAOCMMETPUYHOCTI Piudi. Y poboTi mokasaHo, IO CTUCHEHHsI, BUIPSIMAEHHS i
PO3ILIMPEHHs y3araAbHEHMX (pOPM B COMIIA@KCHOMY ITPOCTOPI 3aA€XMUTD BiA COAEHOIAAABHMX BAA-
cTuBOCTel BekTopa V. TakoX AOBeAeHO, IO y3araibHeHa popMa y KOMIIAEKCHOMY IPOCTOpi 3
3BMYAHIM TEeH30POM KpuBM3HM BoxHepa Mae cTary cKaAspHY KPMBU3HY.

Kortouosi crnosa i ppasu: y3ararbHeHi (pOpMU Y KOMIIAEKCHOMY IIPOCTOPi, MHOTOBMA EifHinTeliHa,
HamniBcyMeTpuuHicTh EifHIIITelHa, ICeBAOCHMETPIYHICTD.
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FAMILY OF WAVELET FUNCTIONS ON THE GALOIS FUNCTION BASE

We construct a family of wavelet systems on the Galois function base. We research and prove
properties of systems of the built family.
Key words and phrases: wavelet, Galois function, scaling function, wavelet function.
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INTRODUCTION

The main methods of solving problems of a digital signal processing are spectral analy-
sis, synthesis, filtering, coding and compressing based on discrete orthogonal transforms and
wavelet transforms [1-5]. The signal is presented in the form of a function of time. Wavelet
transforms may be considered as time-frequency representations or decompositions of a sig-
nal. A signal decomposition can be done by the basis built from a single wavelet function using
wavelet scale changes and shifts [1-4, 6]. Each function of the basis describes some frequency
of the signal and its location in the time domain.

An important step of a wavelet analysis is the choice of transform basis which depends
on the processing tasks and on the signal. The problem of choice of a basis and the wavelet
transform based on it is rather relevant and it is being researched subject.

The paper [4] systematizes basises of wavelet functions and wavelet transforms, but the
problem of choice of a wavelet is solved only partially [14, 6]. For descrete analysis the
wavelets of Daubechies, Haar, Meyer, Coifman, symlets, biorthogonal wavelets and wavelet-
packet Walsh functions are used [1-4, 6].

To solve practical problems orthogonal or symmetric wavelets with compact carrier that
ensure efficient transform algorithm can be chosen. But wavelets that simultaneously satisfy
all of this properties are unknown. The only symmetric orthogonal wavelets with compact
support are Haar wavelets but they do not satisfy the given processing qualities in many prob-
lems. To ensure symmetry multivalued biorthogonal wavelets are used. Daubechies wavelets
are much smoother than Haar wavelets but they are multivalued and do not have analytical
expression that complicates the process of their forming and calculation transforming.

From the recursively ordered Walsh system the Galois functions are generated [5], the latter
take only two values (+1) and the sequence of values is in full correlation. These features can
provide simple algorithms for information processing in the basis based on Galois functions
[5], but the researches of the Galois functions properties in various spaces and the possibility
of its application for wavelet transform have not been done yet.
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Thus performing of a time-frequency analysis and processing of a broad class of one-
dimensional signals with finite and limited energy, mathematical models of which are func-
tions in space L, ([0, T)), necessitated the construction of wavelet basis on the base of Galois
functions in this space and research their properties.

The goal of this article is the construction of a family of wavelet systems based on mother
or generating Galois functions and proving properties of the constructed systems to create
basises for discrete wavelet transform in the space L, ([0, T)).

The article provides the results of building of wavelet systems based on Galois functions,
of synthesed scaling functions for built wavelets systems and proves the required properties
of wavelets basises in the space L, ([0, T)).

1 DEFINING WAVELET SYSTEM ON GALOIS FUNCTIONS BASE

For the purpose of constructing of a system of wavelet functions for discrete transforms of
signals presented by functions f € L, ([0, T)) as a mother wavelet the first function Gal, ()
of a recursively ordered Galois system, which is defined in [5] is used.

The Galois functions system [5, p. 46] with the recursive ordering [5, p. 36] {Gal,,;(0)},
6 € [0, M) is defined according to the generating vector of Galois field GF(2") from a recursive
sequence or a recursive orderly system of Walsh functions [5, p. 36], where M = 2", M < T,
n =1,2,3,...1is a degree of irreducible polynomial Galois fields GF(2"); i = 0,1,... 2" — 1.
Examples of creating recursive sequences are shown in the following text.

Example 1. Vector of coefficients (po, p1, 2) = (1,1,1) corresponds to irreducible polynomial
x? + x + 1, which generates Galois field GF(2?). Non-zero elements of vector determine the
rule pj1» = p; ® pi+1 for the formation of a recursive sequence. Initial vector with unitary
elements (vy,v1) = (1,1) is chosen as a primary vector. From the primary vector according
to this rule v;1p = v; ® v;;1 there are defined the elements of a recursive sequence wich are
repeated with period 2" — 1. Fragment of n — 1 zero elements of the sequence is supplemented
by one zero. Elements of supplemented sequence are denoted as g;:

{0/ 0i+2,0i, viJrl} = {gO/ 81,82, g3} - {0/ O/ 1/ 1}/
where @ denotes the addition modulo two.

Example 2. Vector of coefficients (po, p1, p2, p3) = (1,1,0,1) corresponds to irreducible poly-
nomial x® + x> + 1, which generates Galois field GF(2®). This vector also determines the
rule pi13 = p; @ piy1 for the formation of a recursive sequence. From the initial vector
(vo,v1,v2) = (1,1,1) according to the rule vi,3 = v; @ v;y1 there are defined the elements
of a recursive sequence, supplemented by zero and submitted the following fragment:

{0/ 0i+3,0i+4,0i+5,Vi+6, 0is Vit1,s Ui+2} - {gO/ 81,82, - /g7} == {0/ O/ 0/ 1/ 0/ 1/ 1/ 1}

Example 3. Vector of coefficients (po, p1) = (1,1) corresponds to irreducible polynomial x + 1,
which generates Galois field GF(2!). This vector also determines the rule p;;, = p; for the
formation of a recursive sequence. From the initial vector (vyg) = (1) according to this rule
viy1 = v; @ 1 there are defined the elements of a recursive sequence, supplemented by zero
and submitted the following fragment: {0,v;} = {g0,81} = {0,1}.
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Elements of the fragment of a recursive sequence supplemented by zero are signed as
{80,81,82 -, g2n1}-

The value of the first function Gal, () of a recursively ordered Galois system {Gal,, ; (6)}
of order n at the points 6 = 0; = j in the interval § € [0, M) is obtained from an element of a
recursive sequences fragment via transform

Gl}lln,o(ej) =1- Zg]', (1)

wherej=0,1,... 2" —1, g; — elements of a fragment of a recursive sequence.
In the intervals 6 € [j, j + 1) functions Gal, () are continuous constants and take values

Galn,o(e) = Gﬂlln,()((?j). (2)

Since gj = 1 or g; = 0, therefore according to (1) and (2) functions Gal,,o(0) = +1.

Each next function of Galois system {Gal,, ;(0)} is received from the previous unit cyclic
shift either left or right by 6 = 1 [5], so the first function can create two different systems. For
each irreducible polynomial of Galois field GF(2") or generating vector several systems Galois
functions can be built.

These functions Gal,, () are defined as mother wavelets for systems of order n

Gal,(0) = Gal,(6).

Mother wavelet Gal, (0) is defined in the interval [0, M), outside this interval the function
Galn (9) - O.

M
The norm of function Gal, (0) equals ||Gal,, (6)|| = (| Gal3(0) d6) 2. Wavelet-functions must
0

have unitary norm ||Gal, (6)|| = 1, that is why function values are Gal, (8) = £/ 5.

The graphics mother Galois wavelets Galy(6), Galy(0), Galz(6), Galy(6) are shown in
fig. 1 — fig. 4 accordingly.

Galy(6) Gal,(6)
1' '.
0.8 0.8
056 06
04 04
0.2 0.2
01 02 04 06 038 12 14 16 18 3¢ . 1 3 e
02 0.2
‘0A‘- _0‘4
06/ 06
08 084
-1- 1
Figure 1: Galois wavelet, n = 1. Figure 2: Galois wavelet, n = 2.

On the basis of each mother function Gal,(0) with the help of scale and parralel shift a
system of wavelet-function is formed and defined as

m—1

Galyx(t) =27 Gal, (2" 't — Nk), (3)

where t = %9; N = 27 is the quantity of functions in the system; p = 1,2,3,..,;
m=20,1,...,log, N+1;,k=0,1,...,N-27™,
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Gals(6) Galy(©)
1] o 11
0.8 0.8
0.6 0.6
0.4 0.4

021 0.2 _\ lj
0 1 2 ] 6 7 #¢ 0

3 6 2 4 & 1 12| 1] e
0.2 021 U’ \j

044 0.4
08 0.6
4.3 0.8
KT 4
Figure 3: Galois wavelet, n = 3. Figure 4: Galois wavelet, n = 4.

Non-normalized functions are Gal,, ,, x(t) = +1fort € [0,T), T = N and Gal,, ,, x(t) = 0
for other t.

Normalized functions Gal, ,,k(f) = =4/ Zm—l\;l are piecewise constants in intervals
t e H,qlil),whereq =0,1,...,IN—1;1 =21

The graphics of eight wavelet functions {Gal, ,, x (f) } built by the formula (3) from mother
Galois wavelet Galy(6) are shown in fig. 5.

Galyof?) >
Gals; 4(t) L ;
o e g e St t
Gals; (1) S e,

Gals 5 4() _‘_l !
Gal, z (1) —’_‘_I t
Galy3.2(1) R = o -
Gal;;.3(1) l_\— t

Figure 5: Graphics of wavelet functions of two-order system with mother Galois wavelet.

The graphics of eight wavelet functions {Gals ,, x(t) }, built by the formula (3) from mother
Galois wavelet Gal3(6) are shown in fig. 6.

The set {Gal, , x(t)} of systems, based on mother wavelets for different values of n =
1,2,3,... forms a family of wavelet functions on the Galois functions basis.

From the result of construction of wavelet functions according (1) — (2) and fig. 1 — fig. 2
we can conclude that mother wavelets Galy (6) i Galy(0) of systems by orders n = 1 and n = 2
are Haar wavelets and the system wavelet functions built on their basis (fig. 5) is an orthogonal
Haar system.

It is known that Haar system or Haar wavelet functions is the orthonormal basis [1-6] in
the space L, ([0, T)), that is why in this paper proving properties and synthesis of scaling
functions will be done for cases n > 3.



FAMILY OF WAVELET FUNCTIONS ON THE GALOIS FUNCTION BASE 299

Gaij’g'g_(f) l—

Gals 1 4(t) e
Galyza) oF—f Loy
Gals (1) - B 4
Galsot) |1 .r
Gal; 3 (1) —I_\_I_l_[ t
Gals 3 5(1) l_U_I_.Ii {
Gal; ; 3(1) I_Lﬂ_ t

Figure 6: Graphics of wavelet functions of third-order system with mother Galois wavelet,
n=3.
2 SYNTHESIS OF SCALING FUNCTION

To execute the multiresolution decomposition [6, p. 86] or multiresolution analysis and to
record wavelet transform in the filter form the scaling functions are used.

Scaling functions must form the basis, in which mother wavelet decomposes [1, 3,4, 6].

To build scaling functions for Galois wavelets a well known method of construction of
scaling functions for Haar systems [3, 6] is used.

For mother wavelet Gal,, (0) the scaling function ¢(0) is defined as

[ 1,0€[01),
#(0) = { 0,0 € [1,M).

In the space Ly(R) there is build the system of functions ¢ ,(6), b € Z, received from ¢(0)
by shifts on integer number b

Pob(6) = ¢(6 —b).

Space in L(R), being generated by linear combinations of shift functions, is a closure of
linear span of system ¢ ;(6), signed V. Obviously, the system ¢ ,(6) forms an orthonormal
basis of space Vj.

On the next step a system of functions ¢4 ;,(0) is created by scaling and shifting of function
Po,p(0)

916(0) = V29(20 — b).

System @1 ,(6) creates an orthonormal basis in space V;, which is the closure of the linear
span of the system @1 ;(6).
Function ¢(0) € Vj is a linear combination of elements of space V;

¢(0) = 9(20) + (20 — 1),
4
p(60) = %901,0(29) + %q)m (260 —1). @)
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On the next step there is built a space V,, generated by functions

¢2,5(0) = 2¢(2°0 — b).

For constructed spaces Vp, V1, Vj insertion Vj C V; C V, is right. The procedure of con-
struction of functions system is extended for any k € Z. It results in a constructed orthonormal
functions system

Prp(0) = V2kp(2F0 — b).

There are the following inclusion of spaces Vo C Vi C Vo C ... C V.
According to the definition [6, p. 76] the function ¢(0) € Ly(R) is called a scaling function
if it can be presented in the following form

=2 Y hsp(26 —s),

SEZ

where numbers /; satisfy the condition Y |hs|? < oo.
seZ

Decomposition (4) proves performing of the scaling function definition for ¢(6).
Mother wavelet Gal,, (0) is decomposed into the functions system {¢(260) }
2n+1_1
Gal,(0) = V2 Y. hep(20 —s),
s=0

where the coefficients kg are called filters.

Example 4. Non-normalized wavelet function Galz(0) is decomposed in the system of scaling
functions ¢(20) by the following way

Gal3(0) =1-@(20) +1-@(20 —1) +1- (20 —2) +1- ¢(20 —3) +1- (26 — 4)
+1-9(20—5)+ (=1)- (20 —6) + (=1) - 9(20 —=7) +1- (20 — 8) + 1 - ¢(20 — 9)
+(=1)- 920 —10) + (=1) - @(20 — 11) + (=1) - ¢(20 — 12) + (1) - ¢(26 — 13)
+(=1) - (20 — 14) + (=1) - p(26 — 15).

The corresponding filters are hy = 1,hy = 1,hy = 1,h3 = 1,hy = 1,hs = 1,hg = —1,hy =
3 PROPERTIES OF WAVELET SYSTEMS BASED ON GALOIS FUNCTIONS IN L ([0, T))

The wavelets system (3) based on Galois functions may be used as a basis for wavelet trans-
forms if the following properties of wavelet basises are performed [3,4, 6]:

1) it has a compact carrier (a finite time interval);
2) it has at least one zero moment;

3) abasis is orthogonal or it is a Riesz basis.
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These properties for systems of wavelets with mother Galois functions are proved by the
following propositions.

1) The existence of a compact carrier of a wavelet.

It is known that the function f(t) has a compact carrier if f(t) = 0 for t < a or t > b, where
—0co < a < b < oo [3,p. 15]. Wavelets with a compact carrier have a finite number of nonzero
coefficients of expansion.

Proposition 1. Mother wavelet Gal, (8) of Galois wavelet system has a compact carrier.

Proof. According to the definition (1)—(2) function Gal, (@) in interval [0, M) is piecewise con-

stant, it has non-zero values Gal, (6) = +,/ zl" and outside the interval its value equals zero,
therefore it has a compact carrier. O

2) The existence of one zero moment.
According to the definition [6, p. 129], function f(¢) € Ly(R) has L zero moment if equality

is satisfied
[ee]

/ FE()dt =0 5)

—00

for all integers r = 0,1, ..., L — 1. If the mother-wavelet has successive moments equal to zero
the wavelet coefficients decrease quickly.

Proposition 2. The mother wavelet Gal,, (6) of the Galois wavelet system has one zero moment
/ Gal,,(6) d6 = 0.
Proof. According to the property of Galois function [5] it is
M
/ Gal,,(6) d6 = 0,
0

and outside the interval [0, M) value of function is zero.

Sums of lengths the intervals where Gal, (8) = \/; and Gal,(0) = — \/; are equal. There-
fore, according to the definition (5) functions Gal,, (6) have a zero moment and satisfy the basic
requirements for wavelet functions. However, there is only one zero moment because the di-
rect checking shows that

/ 6Gal, (8) d9 # 0.

0

3) Orthogonality of system or Riesz basis. Built systems {Galy ,, x(t)} and {Galy, (t)}
coincide with the orthogonal Haar system. Built systems {Gal,, ,,(t)} for n = 3,4,... are
nonorthogonal. We know that the demand for orthogonality of wavelets system may be weak-
ened, but it is necessary for the system to form the Riesz basis [2—4, 6].
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According to the definition [6, p. 111] system ¢, (t) in Hilbert space H called Riesz basis if
there are such positive constants A i B that for any element f(t) € H the following inequality
is performed

AllfBI? < )%1|<f(t),90v(t)>|2 < BJf()]*. 6)

Proposition 3. System {Gal,, ,, (t)} is the Riesz basis in space L, ([0, T)).

Proof. To prove that the properties (6) of wavelet systems with mother Galois functions form
Riesz basis, it must be established that there are such constants Ai B, 0 < A < B < oo for
which the inequality is performed

N
Allf(B)]I* < Z ), Galy ())[* < B|f ()|, )

where ||f(1)|?> = f f2(t)dt, v = 1,2,...,N is serial number of the wavelet in the system

{Galn,m,k ( ) }

Numbers m and k in the system {Gal, , x(t)} with the triple numeration are connected
with the serial number v of the wavelet by the formula v = 2"~! + k + 1.

Since the number of functions in the proposed system is finite and equals N, the sum in the
middle of inequality (7) contains a finite number of components

T
/f - Galy(
0

2

b b
With Bunyakovsky inequality | [x(t)-y(t)dt | < fx t) dt fy t) dt for any x(t), y(t)
a

a

i ), Galy, ( %

Z]:

an assessment of the latter expression and following transforms there are performed

i(/f  Galy(t ) %(/fz £ dt /Gal2 )
= [IfF®)?- ZHGalv

Functions {Gal,(t)} are normalized and the norm is ||Gal,(t)|| = 1. Selection of the first
and the last expressions in latest inequality sets the ratio

Z! ), Galu (1)) * < | ()| ):I!Gal I*=IF@)I*-N

So there exists the constant N > 0 and the right side of inequality (7) is proved. On the other
hand, we must prove that there exists a constant A > 0 and there performs the inequality

All£(8) |!2<Z| ), Galy (1)) |? or ®)
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N
L [(f(2), Galo(£)) 2
A<E . 9)
IF )17

Since function f(f) is bounded and it is designated as p < f(t) < P, then the following

g+1 g+1 q+1 q+1

inequalities are executed [ f(t)dt > f pdt and f ))dt > f

q

Since normalized functions Gal,(t ) = £/ Tl are piecewise constants in intervals
t € [%,ﬂ) g =0,1,...,IN — 1 and each function Gal,(t) = Gal, ,, x(t) # 0 is not zero-

value in the interval t € [ Zm—lo];ZN—ll 2m—]§¢;§21N—1 ) , then

kt1 2
2 szlogszl

N N | T N
Z ), Galy ()2 =Y / F(£)Galy () dt :21 / F(£)Galy i (£) dt
0 o= W

Assume designation I; = U [%, qsfl) — for combining intervals, where values of func-
q

tions are Gal,(t) = \/zm—l\;l, and I, = [Tr,

functions are Galy(t) = —\/#5~,5=0,1,...,IN—1,r=0,1,...,IN— 1L

r+1

) — for combining intervals, where values of

k1 2

N om—logyN—1

2
)y / F(6)Galy (1) dt :;I/ Wt [ ) at

The function f2(t) is bounded. It is assumed that f2(t) < S, S € R, then the inequality is
executed

T T
2 N
O/f (t)dth/Sdt 5-N

Substituting the last result in (9) allows to reach the following conclusion: when choosing

N P
A S 2(£+1 S)

inequalities (8) i (7) are performed. The statement is proved. O

According to proven propositions 1 — 3 mother Galois wavelet functions have a compact
carrier, one vanishing zero moment, wavelet function systems Gal,, ,,, ¢ (t) for different n form
Riesz basises, that satisfy the necessary conditions for wavelet basises in space L; ([0, T)).
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4 CONCLUSIONS

Thus, it was proved that the first functions of recursively ordered Galois systems are mother
or generating wavelets. There was synthesized the orthogonal scaling functions system in
which mother wavelets decompose.

On the basis of mother wavelets of different orders n there were built wavelet functions
systems. The set of built systems is a family of wavelet functions that are generated by Galois
functions.

The article also proves necessary conditions (properties) of wavelet system for the built sys-
tem. It is proved that each system of family is the Riesz basis. The proved conditions enable
using wavelet systems with generating functions Galois as basises of discrete wavelet trans-
forms in the space L, ([0, T)). A significant advantage of implementation of these transforms
compared to others is that all the basic functions are piecewise constant and take only two
values.

Transforms in built basises can be used for analysis and processing of one-dimensional
signals with finite energy.
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DIVISOR PROBLEM IN SPECIAL SETS OF GAUSSIAN INTEGERS

Let A; and A; be fixed sets of gaussian integers. We denote by 74, 4, (w) the number of repre-
sentations of w in form w = B, where a € A, B € Ay. We construct the asymptotical formula for
summatory function T4, 4,(w) in case, when w lie in the arithmetic progression, A is a fixed sector
of complex plane, A, = Z[i].

Key words and phrases: Gaussian numbers, divisor problem, asymptotic formula, arithmetic pro-
gression.
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INTRODUCTION

Let A; and A; be fixed infinite sets of natural numbers. We let T4, 4,(1) denote the number
of representations of n in form n = mymy, where my € Aj,my € Aj,. To investigate average
order of function 74, a,(n), it is usual to consider the summatory function

Z TA1,A; (”)r

n<x
where x is a large real variable. For Ay = A; = NN, this is the classical Dirichlet divisor
problem about the number of lattice points (#,v) under the hyperbola uv < x, u,v > 1.
Historical review results on the divisor problem can be found in the monograph of Kratzel [4].

The best estimate to-date is due to Huxley [3]
Y mon(n) = xlogx + (2 —1) +O(xtt (log x) ).

n<x

In articles [5-9] the authors discussed special cases of sets of natural numbers A;, A;.
The similar problem was considered over the ring of the Gaussian integers Z[i] in the work
of Varbanets and Zarzycki [9] in case, when

Ay =7ZJi], Ay={a€Z]i]:a=wny (mod y)}, w7y € Z.
The following asymptotic formula was obtained

n?xlog x x x O\ x )’ .
L, TN *“"‘0'”)@*0((@) )*O«N(m))*o(")'

a=ag (mod 7)
N(ap)<x

YAK 511.3
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where 0 < %, a1 is a number of form ag + By, B € {0,£1, £i} with the smallest norm, the

constant c(«, y) is computable and depends on «y and .

In the present paper, we investigate the distribution of values of the divisor function not
only in an arithmetic progression, but in narrow sectorial region also. By the 7s(w) we denote
the function 74, 4,(w) in case, when Ay = Z[i], A, = S(¢) is a fixed sector of complex plane

S(p):={a€Z[i]: g1 <arga < @2, ¢ = @2 — ¢1}.

The main point of this paper is to construct an asymptotic formula for sum

T(x,7,wo,5(9)) = Y,  ww)

w=wy (mod v),
N(w)<x
in particular to investigate the ranges of v and x for which this formula is nontrivial. Apply-
ing the method of Vinogradov we get the asymptotic formula in case, when the norm of a
difference of progression grows.
In this paper we denote by Z[i] the ring of Gaussian integers

ZJi| = {a+bi|a,b € Z).

For w € Z[i] we put Sp(a) = a« +® = Rea, N(«) = a - @, where @ denotes a complex conjugate
with a. Sp(a) and N(«) we name a trace and a norm (respectively) of a from Z[i]. Moreover,
exp (x) :=e*, e4(z) := ™ for g € IN. The Vinogradov’s symbol as in f(x) < g(x) means
that f(x) = O(g(x)); € is an arbitrary small positive number that is not necessarily the same
at each occurence; the constants implied by the O (or <) — notation depend at most on e.
(s) is the Riemann zeta-function; L(s, x4) is the Dirichlet L-function with the non-principal
character modulo 4. B := {0,+1, +i}. @(a) = N(a)[T(1 - N(p)~') denotes the Euler

function in Z[i].

1 PRELIMINARIES

We begin this section with few background definitions and facts. Note that every non-zero
Gaussian number has associated element in each quadrant of the complex plane. Therefore
without loss of generality, we assume 0 < ¢ < ¢ < 5. Let x(¢) be a characteristic function
of sector S. We will follow the idea of Vinogradov [1]. We first mention some classical results.

Lemma 1 ( [1]). Supposer is an integer, r > 0, ) > 0,0 < A < % Q, @1, @2 are real numbers,
A < ¢ — 91 < Q) —2A. Then there exists a periodic function f(¢) = f(¢; ¢1, ¢2) with period
Q) such that:

1. f(p) = 1 in the interval (@1, ¢2]; 0 < f(¢) < 1 in the intervals [¢p1 — A, ¢1] and
(92, 2+ A];

2. f(¢) = 0in the interval [p2 + A, ¢2 + Q — A);

3. f(¢) can be expanded into Fourier series of the form

flp) = i A €XP <2m,m_(;p>,

m=—0oo



DIVISOR PROBLEM IN SPECIAL SETS OF GAUSSIAN INTEGERS 307

Qg2 — g1 +4),
S N -1
whereag = 5 (92 — @1+ A), |an| < § 2(7tjm|)~7,
2(7t|m]) = (rQu(r|m|A) 7).

Remark 1. There exist numbers 6;, |60;| < 1, i = 1,2, such that

xX(@) = f(@: 91, 92) +01f(@; 1 — D, @1) + O2f (@; 92, 92 + D). (1)

Let 4, 6y € Qli] and m € Z. Let for Res > 1 we define the Hecke Z-function with the shift

exp (4mi arg (w + 9)) .
Zm(s;0,00) = exp (27ti Re(épw)).
weZZ[i] N(w +9)
w#—06

Lemma 2. Z,(s;6,dp) is an entire function if m # 0 and 6y ¢ Z[i]. Form = 0 and &y € Z]i]
Hecke Z-function Zy(s; 6, ¢y) is a holomorphic function in the whole complex plane except at
s = 1, where it has a simple pole with residue 7. It satisfies the functional equation

T (2m| + ) Zm(s;6,80) = = IT(2|m| +1 — §)Zu (1 — 5; =30, 8) exp (—27i Re(6p6)) (2)
in all cases.

For the proof in the case § = Jy = 0 see [2]. The proof in other cases similar.

Lemma 3 ( [9]). Let § be a Gaussian rational, N(5) < 1. Then Zy(s;6,0) has the following
Laurent expansion

Zo(s;6,0) = % +ao(8) +a1(8)(s—1)+...,
where

wy +4L'(s, x4), if 6 € Z]i],
20(8) =\ 7y +4L'(s, xa) + P (N@+8)) " +bo(y), if 0<N(@©) <1;

7 is the Euler’s constant, by(y) = —4+ O (N% (5)) .

By the Stirling’s formula for Gamma-function to the terms of the second order O(t~2) we
have for [t| > 1,0 >0

I'(c+it) = V2mt

X exp (i <tlogt — t+§ (a— %) + <U—02 — %) (2t)~1 +O(t—2)>> exp <—%>

Hence,
[(2[m|+1—5) : 2, 2y, [2m[+1  (2]m] +1)?
= t(2 —log(4 t
Tam sy~ O\ M2 loglm™ +8)+ p G r )
2, 2\1-20 1 2 5 2\-1 (3)
X =(4m* +t°) exp U—§+E(4m +2|m| + t°)

X

~—~ NI| P~

1+0(m? + tz)—%) .
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Applying the estimations for |t| > 2, 0 =1

pimiarg (w+9)

Z5(8;0,00) := Zm(s;8,00) —
m(5:8,80) 1= Zn(5:0,00) = L, Nt oy

leciRe((SOw) < 10g4(t2 +m2)

and functional equation (2), from (3) and Phragmen-Lindeltf theorem in the strip
—1 < Re(s) < 1 weinfer

1-c

71 (5;6,80) < (m? + 12)' 7 <1og(m2 + t2)>T, m| > 1. (4)

Let a, B,y € Z]i]. We define the Kloosterman sum for the ring of Gaussian integers

!

msp(aé+ﬁé)

K(a,B;v) = Z e .
/&' (mod7)
&E=1(y)

Lemmad4. Letw, B,y € ZJi],v # 0. Then the estimate

K&, B;7) < (N(Y)N((a,8,7)))27(7)

holds. Moreover,
x
Kwpn) = ¥ NOK(1557). 6
S| (a, By

Proof. This lemma follows from multiplicative property of K («, B;y) on 7y and the Bombieri
estimate of an exponential sum on the algebraic curve over the finite field. The formula (5) is a
generalized Kuznetsov’s identity for Kloosterman sums. O

2 THE MAIN RESULTS

Lemma 5. Let y,wy € Z[i|, N(y) > 1, (wo,v) = B,N(B) < N(7v). Then for every ¢ > 0,
N(y) < 3¢ we have

To(x, 7, o) = co(7, wO)NEC’)/) log N?ﬁ) +a(, wo)ﬁ +0 (%) ,

where cy(7y, wy), c1(7y, wo) are computable constants

co(y,w0) = PN(B)P (%) N (1)T(B), ©®)
Jwp) = 2 Y 2B — 140X |y i logN(p) “1-N(p)™). (@)
(’Y 0) = 7T 5% |: L(LX4 p%& (P) 1 ;}’}5 ( (P )

Proof. Without loss of generality we will consider a case (wp, y) = 1. For Res > 1 we denote

G v T@ e o v @t )
FO= L Ny TO=FO - L Nt

wzwo('y)
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It is clear, that

F(s) = N"%(y) ¥ Z (s,%,O) Zo <s, %,0) .

a;€(mody)
aqap=wp ()

By using the Abel’s Lemma about partial summation of Dirichlets’ series, we have forc = 1 +¢,
1 < T < x, where ¢ > 0 is arbitrary small

c+iT

To(x, 7y, wp) = = / F*(s)x—sds+O x (8)
01 o) = 5 s TN(7) )
c—iT
From Lemma 4 we have the functional equation
2(25—1) 12(1 _
Py = Z T8y g,

T NZ(y) I2(s)

where

Y15 = Dyr L 0whn, owpm = x5

B=w aq,&p (mody)
aqay=wp(7y)

We consider the function F*(s) in the strip — < Res < 1+e. It is obviously that F*(1 +
e+it) < N(7)717% On the line Res = — we apply the functional equation for Z(s;4,0),
(3), Lemma 4 and then obtain F*(1 4 ¢ + it) < N(y)Y2*¢(Jt| +3)3.

Applying the Phragmen-Lindelof theorem in the strip —; < Re(s) < 1+ ¢ we infer for
[t| <T

F*(—S + it) < N(7)1/5+8T12/5+£.
To deal with integral in (8) we shift the line of integration to Res = —e. By the Theorem of
residues we obtain
—e+iT
x° x° x°
To(x, 7y, wp) = res (F*(s))—) + res (F*(s))—) +— / F*(s)—ds
s=0 s s=1 S 2 s
—e—iT )
xlite

+0(x*)+0 <x’£N(’y)1/5+8T7/5+8) +0 <7TN(7)> )

Further, applying Lemma 2 we get

res <F*(s))x—s> = MH "1-N(p)™)

s=1 s N(7) oy
2 L'(1, x4) log N(p) -
ﬂ *01 -1 _ ’ x (10
+ NCY g (1-N(p)™H [-1+2 (E+L(1,;c4) +p§ (71\1(;?) 1))] ,

where sign [T* means that the product conducts by all the non-associated prime Gaussian
numbers. Moreover, F(0) = 0if N(y) > 1.

* x® o T(w0+,37) x® e
res (F <S>?> = e (‘ ﬁez% W?> <N (an
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Observe that by Lemma 4
Y @, p)l = Yo 1K pwo; 1) < N(1) 2N ((w, 1) 1(1)7(w).
af=w xf=w

Now by the termwise integration and applying the Stirling formula for gamma function and
the method of stationary phase we get

—e+iT

1 vy X° 2 /8 11 9
i | FOE= T NW)XZ@WﬁﬂM¢ZE4}§_Zﬂ )
—e—iT 0<N(w)<Y ap=w

< (04 )+ o

1+¢
TN(7)

>+ogﬂ (12)

(@)>Y

( Z 8T1+48N ’)/)1/2+8N((w,7))1/2T(w)N(w)1)

4
where Y < X = <%> T4I\f(7), y = nl\ﬁ\(’ ()) Thus, by combining (8)—(12) and taking T =

x/2N(y)~3/4, Y = x/3 we obtain the assertion of Lemma 5. O

Theorem 1. Let vy, wy € Z[] N(v) > 1, (wo,v) = B, N(B) < N(7). Then for every ¢ > 0,
szZ()andgoz— N()

, the following formula holds

T(x, Y, (,L)O,S(QD)) = 2“’&77;@1) (CO(')// wO)N?’)’) log N?ﬁ)

+ (c1(7,wo) + Ao(g)) ﬁ) +0 (%) ,

where co(7y, wo), ¢1(7, wo), Ao(¢) are computable constants, which defined in (6), (7). The con-
stant in symbol "O” depends only on e.

Proof. Let m # 0. Denote

— Z e4mi arga

xf=w
For Res > 1 we have
cm(w) e4miargfy < aq ) < Xo )
Fn(s) = = Zmls,—,0)Zys,—,0]),
" wezzzlf] N(w)* st(v)a,.e(;dwm v v
w=wg(7) aqap=wp(y)

Bl =Enls) = L Niao sy

zxﬁ:w0+ﬁ’y

plmiarga

Thus, repeating the arguments of the proof of Lemma 5, we obtain for m # 0

Txedmiargy o
Tu(x,v,w0) = Y, mlw)=""F—— Y 'Zu (1, 71,0>

2
wezli] N (,Y) a1 € (mod-y)
wzwo(’y) (13)

1
+0 <N(’)/)1/5+8|m|6/5+€> L0 (;;:e)) ’
(y
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where sign’ in summation ) denotes that a1 runs reduced residue system modulo 1.
By the Lemma 1 and (1) we have

T(X, v, w(),S(QD)) = Z TS(w> = Z ZXS arg“

w=wq (mod 7), w=wq (mod 7), a|w
N(w)<x N(w)<x
= Y (flargaip, 92) +0rf(arga; g1 — A, 1) (14)
af=wy (mod )
N(aB)<x

+0a2f (arg a; g2, 2 +A)) :=) (61 +62) ,,

where f is the function from Lemma 1, associated, respectively, with segments [¢1, ¢2],
(91 — A, ¢1], [92, 92 + A]. The sums Y, Y1, Y, can be investigated similarly, so we consider
the case ) ;. We have

—+o00
Zo - Y, flarga g1, 92) = ) Y amexp(4miarg )

af=wy (mod ) af=wpy (mod ) M=—00
N(aB)<x N(ap)<x (15)
—+o00
Y. am ) exp(4miarga) = aoTo(x, v, wo) + Y amTu(x, 7, wo),
m=—00  gf=w; (mod ) |m|>1
N(ap)<x

where ap = (1)(4)2 —¢1+A), Q = 7, the exact value of A will be defined later The sum
over m we split into two parts 1 < |ml < AL, |m| > A'. For |m| < A~! we use the
estimation |a,,| < (27t|m|)~!, when |m| > A~ we apply |an| < 2(7t|m|)~ (rQ(ﬂ|m|A) by,
r = 2. Substituting these estimates into (15), using the Lemma 5, (4) and (13) we obtain

2 X : o
Yo = (92— @1+ A)To(x, 7, wo) + N () Y. Y ame™MEIZ, (1, —1,O>
T ) wye(mody) |m[>1 v

xite
+0 Z mfl N(7)1/5+8‘m’6/5+£+ .
1<|m|<A-1 N4(7)

x2te
+0 Z m73A72 N(7)1/5+8‘m’6/5+£+ .
m|>A-1 N4(7)

1 X
= 2 #2 = 1+ A)To(x, 7, w0) + (92 = o) gy Ao(92 = 91, 4)

S+e
+0 (N()"¥ A7) +0 (; ( )) :
Hr

W=

where Ag(@a — ¢1,A) = Ag(@) + O(A) limited for g — @1 — 0and A — 0. Let A~ = 3

In such case we have
2(¢2 — 1) X X
ZO = T CO(’)/r wO)N(’)/) log N(ﬁ)

x y3te (16)
+ (c1(y, wo) + Ao(9)) N(“Y)) +0 (N%(7)> :
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The sums } 1, Y, have similar representations, but we write A instead ¢, — ¢1. Ao(¢) can

be obtained using Lemma 1 for the case r = 1. The assertion of the Theorem 1 follows from
(14), (16). The proof is completed. O

In the same way the asymptotic formula for summary function of T4, 4,(w) can be proved,

where A1 = S(¢), Ay = {a € Z][i] : « = ag(mod 7)}.

The asymptotic formula for the Ty(x,y,wp) can be used for investigation of number of

solutions in Gaussian integers of the equation ajay — azag = B, N(w1ap) < x.

(1]
(2]

(3]

(4]
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6]
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Hexait A Ta Ay — Ile 3aAaHi MHOXMHM LIAMX raycoBux umceA. epes T4, a,(w) mo3Haummo
KiABKICTD YSIBAHD W y BUTASIAL w = aff, ae & € Ay, B € Aj. Tlobyaosana acumnToTidHa cpop-
MyAa AASI CyMaTOPHOI (pYHKIIiI, sika BiAmOBiAae dpyHKIIT T4, 4,(w), Y BUTIAAKY, KOAM W HAA€XKWUTH
aprdpMeTHUHIl Iporpecii, A] — CeKTOp pOCTBOPY ¢ Y KOMIIAEKCHIl maommmHi, Ay = Z[i].

Kntouosi cnoea i ppasu: raycosi umcaa, mpobaeMa AIABHUKIB, aCMMIOTOTIUHA popMyAa, apudpMe-
TIYHA IIPOrPecisl.
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SHARYN S.V.

APPLICATION OF THE FUNCTIONAL CALCULUS TO SOLVING OF INFINITE
DIMENSIONAL HEAT EQUATION

In this paper we study infinite dimensional heat equation associated with the Gross Laplacian.
Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the
space of polynomial ultradifferentiable functions. The semigroup approach is considered as well.

Key words and phrases: infinite dimensional heat equation, Gross Laplacian, space of polynomial
ultradifferentiable functions, space of polynomial ultradistributions.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: sharyn.sergii@gmail.com

INTRODUCTION

The mathematical framework of white noise analysis, which was founded in works of
Yu. Berezansky, Yu. Samoilenko [1] and T. Hida [5], is based on an infinite dimensional ana-
logue of the Schwartz distribution theory.

In 1967 L. Gross [4] introduced Laplacian Ag on an abstract Wiener space as a natural in-
finite dimensional analogue of the finite dimensional Laplacian and studied potential theory
associated with Ag. Within the white noise framework, the Gross Laplacian has been formu-
lated by Kuo in [8] as a continuous linear operator acting on test white noise functions. The
Gross Laplacian and appropriate Cauchy problem have been studied for example in [2, 9].

The aim of this work is to use the functional calculus constructed in [12] in order to solve
the infinite dimensional heat equation associated with the Gross Laplacian.

1 PRELIMINARIES

1.1 Spaces of functions

Denote Z; := {0} UN and o := 9*/9tk. Fix any real B > 1. An infinitely differen-
tiable function ¢ is called an ultradifferentiable function of the Gevrey class (see [7]) if for
each segment [y, v] C R there exist constants # > 0 and C > 0 such that the inequality
SUP; e [1,4] 0@ (t)| < CH*K* holds for all k € Z... For a fixed h > 0 let us consider the subspace

Fo(t)]
Qh[y,v] ={p e C”:suppo C [u,v], ||l¢llgi,, = sup sup 7’ < ool
P { Gl keZy te[u,v) h kP }

YAK 517.98
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Each subspace gg [i,v] is a Banach space (see [7]) and all maps Qg n,v] & gé (i, v] with
h < I are compact inclusions. Consider the space

Gp = U Qg[y,v], Gg ~ limind Qg[y,v],

J<v >0 u<v,h>0

of Gevrey ultradifferentiable functions with compact supports and endow it with topology of
inductive limit with respect to above mentioned compact inclusions. Let G ;3 be its dual space
of Roumieu ultradistributions.

Let i > 0 be any positive real and y,v € R be any reals such that 4 < v. In the space of
entire functions of exponential type we consider the subspace Eg[]/t, v] of functions with the

finite norm

|2 (z)e” )
¥l znp, 1 := sup sup , where Hp, ,1(17) :== sup 1.
Eﬁ[yﬂ keZ, zeC hkKkP 2] teu,v]

Each space EE (i, v] is a Banach one, and all maps Eg[;/l, v] & Eg/ [/, V'] with [u,v] C [/, V],

h < I, are compact inclusions. Consider the space
Eg:= |J Eplwvl,  Eg=~limind E4[u,v],

u<v,h>0 p<v, >0

and endow it with the topology of inductive limit with respect to above mentioned compact
inclusions.
Consider the Fourier-Laplace transformation

9(:) = (F)a) = [ e ™o, geGyzec

Let F': Ey — Gj; be the adjoint mapping. It is known [13], that F(Gg) = Eg and F'(Ey) = Gj.

1.2 Polynomial ultradifferentiable functions and polynomial ultradistributions

For any locally convex space X, let X @1 5 € N, be the symmetric nth tensor degree of X,
leted in th jective t topology. F X we denote x*" == x® - - -
completed in the projective tensor topology. For any x € X we denote x IR -®x €

n
X", neN. Set X0 :=C,x*":=1€C.

To define the locally convex space P(”Q;;) of n-homogeneous polynomials on Ql’3 we use
the canonical topological linear isomorphism P(”Qk) ~ ( é@)”)’ , described in [3]. We equip
P(”Qk) with the locally convex topology b of uniform convergence on bounded sets in g/g.
Set P(ng) := C. The space P(g/g) of all continuous polynomials on Qk is defined to be the
complex linear span of all P("Gg), n € Z,, endowed with the topology b. Let P'(G;) mean
the strong dual of P(Gj). Elements of the spaces P(Gg) and P'(Gy) we call the polynomial
test ultradifferentiable functions and polynomial ultradistributions, respectively.

Denote

T(Gg) == @ﬁng[g@"c @ g5" and  T(Gp) = X gy

neZ ﬂEZ+ neZ4
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Note, that we consider only the case when the elements of direct sum consist of finite but not
fixed number of addends. It is well known [11, 4.4], that (T (Qk), ['(Gp)) is a dual pair with
respect to the bilinear form

<f,p>:< X fur @D Pn>: i (faspn), pPET(G), feT(Gp), (1)

HEZ+ I’ZEZ+ H€Z+

where p,, € Ql;é” and f, € Q;S@" ~ (QE)”)’.
By analogy we can construct the dual pairs (T (Ej), I'(Eg) ) and (P'(Ej), P(Ep) ).
We have the following assertion (see also [10, Proposition 2.1]).

Proposition 1.1. There exist the linear topological isomorphisms
Y:P'(Gy) — T(Gy),  ¥:P'(E;) — T(Ep).
Using the Proposition 1.1 and tensor structure of the space I'(G 1’3), we extend the map F'~!

onto I'(G }g) First, for elements of total subset of the space G /g@’” we define the operator /" :

Fon —y fon F1E0 . — I where 2" := (F'-1£)®". Next, we extend the map F'®" onto whole

space G ;3®” by linearity and continuity. As a result we obtain the map F'®" € Z(G !’3@", Ek@)")
And finally, we define the mapping F'® by the formula
F'O= (F¥"):T(Gg) > f = (fu) +— fi= (fn) € I'(Ep),
where f,, € Q}g@’”,ﬁq = F®nf, e El’f’”.
The following commutative diagram
Fi
P'(Gy) —— P'(Ep)
v| v @

r(g}) 7 T(E

uniquely defines the operator Fy° € £ (P’ (Gg), P'(Ep))-

2 CONVOLUTION OF POLYNOMIAL ULTRADISTRIBUTIONS

Let g € Gg. Define the shift operator on the space P(Gg) with the formula

FP(f)=P(f+g),  PEP(Gy), feTh

It is easy to see, that .7 is a linear continuous operator from the space P (G [’3) into itself.

Let the symbol ©; denotes the (right) k-contraction [6] of symmetric tensor product, i.e.,
8 @ 9% = (g, 0) 9",k <5,g € G}, 9 € Gp.

Let us show, that for any g € Q;S the shift operator ; acts as follows P = >}, (- ©", p,)

~

TP =3, (- ", qun), where p,, q, € gff’”, n=0,1,...,m m = deg P, and the elements g, can
be obtained by the formula
m-—n
(n+k)!
qn = Z T

nlk! g®k @k Pn+k-

k=0
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Without loss of generality we can prove this for polynomials of view Py, = >t o( - @, 9®F),
where (1, ¢, 9®2,...,¢%™,0,...) € I(Gp),pcGpmeZ,.
Indeed,

Z C]Cl <f®n ®g®(k—n), (P®k>
n=0
m—n

TgPom(f) = Pom(f + ) ok ok _

I
]
<
_l_
=

®
RNgE

o~
Il
o
o
o

CZ+k <f®n ®g®k’ qD@(n+k)>
=0

I
Ms

I
M=

m
ZCIZI f®n®g ®(k—n) g0®k>

n

3
Il
S

3
Il

0k

! Z n+k g' k ®n>
=5 (S et

Let us define the convolution of a polynomial ultradlstrlbutlon uetp (glg) and a test
function P € P(g/g) with the formula (U * P)(g) := (U, Z,P), g € Qk, where in the right side
there is the pairing of the dual pair (7'(Gg), P(Gp;)) (see Proposition 1.1 and formula (1)).

If U € P'(Gg) and P € P(Gy) are represented in the form U = X (uy, -@M) and P =

nez

=

Cr o (FO", (g, 9) ™)

[
=
JgMS
-
o
||
[ NgE
/\ b

3|l

Z (-®", p,) respectively, then the convolution may be written in the explicit form

m - o m—
U*P Z <u”’ Z Cn+kg ©k pn+k> = Z Z n+k un®g /pn+k>
ok . ©
- Z Z n+k un On Puvk) = Z <g®k, Z CZ+kun Oy pn+k>-
= k=0 n—=0

It is clear, that g5 = an_o Chiiiln ©n Py belongs to the space Q?k foreachk =0,1,...,m. It
follows, that the convolution U * P is a polynomial from the space P (G ;3)

For any polynomial ultradistribution U € P’(G [’3) the mapping Cy;, defined with the for-
mula Cy; : P(Q;;) >P— UxP e P(Q;;), is said to be the convolution operator, associated
with U.

Let us show, that the composition of two convolution operators Cy and Cy;, associated with
any V,U € P'(G ;3), is a convolution operator, associated with some polynomial ultradistribu-
tion, which we denote by V x U. Let V,U € P’ (g;;) and P € P(gg) are represented in the

m

form V. = X (g%, -9"), U = X (f*",-“")and P = Z (-®", ") respectively, where
nezy nez n=0
f,8 €Gp ¢ € G
Using formula (3), we obtain the following equalities.
m
(CyoCu)(P)=Vx(UxP) = (" Z Q8 @)
n=0

= i < . Z Cn+]g®] @f (mzn ]Cn+]+kf®k ©k ¢®(ﬂ+j+k))>

n=0
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m n )
=2 (- Y G Chalg @) (f 9) ™)
n=0 j=0 k=0
m m—n
_ ®n (”"‘]"‘k)!( ®j 5 (ok ®(n+j+k)
= , - Rf) @jr @
ford < o n!jlk! >
m m-—n n+s | S
— Z < ®n, ( n|su) Z - '( ®]®f®k)@ ¢ (n+s)>
n=0 s=0 o j+k:s]
m m—n n+s)! .
_ Z ( n|su) Z T '< ®n (g®]®f®k) ©s q)®(n+s)>
n=0 s=0 o j+k:s]'
& (1 45)! < BN B & FOK o® (n+s)
= ®g°I&f )
m
= Z< 2 ]lk|g®]®f®k Z Corvs(- ") ©n (P®(H+S)>'

s=0 j+k=s =0

It follows, that the composition Cy o Cy; is the convolution operator, associated with

viu= X (Y ,k,g®f®f®" 1) € P(Gh). (4)
neZy  jt+k= n
For any polynomial ultradistribution U € P’(Gy) let us define the formal series
1
el = Z =u, where U™ :=Ux---xU. 5)
! %/_J
nezy n

Note, that each partial sum of this series belongs to the space P’(G }g)

3 HEAT EQUATION ASSOCIATED WITH THE GROSS LAPLACIAN

Let {U; : t € J} be a family of elements from the space P'(G k), let ] be an arbitrary interval
[0,a], x € R, « > 0. Let us assume, that the function t — Uj; is a continuous map from |
into P'(G ;3) Then the function t — F7°U; is continuous map from J into P’ (E;S), where the

mapping F7’ is defined with formula (2). Therefore, for each t € | the set { F°Us : s € [0, 4]}
is a compact subset in P’ (E’ﬁ) In particular, it is bounded. It follows, that the element

t
JO ]-‘,;)® U ds,

belongs to the space P’ (E;s) for each t € J. Hence, in the space P’ (Q[’;) there exists a unique

element, which we denote Sé U, ds, such that
t t
0 0

Moreover, the map E; = S(t) Usds, t € ], is differentiable and satisfies the equality %Et = Uy.
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Let {U; : t € J} be any described above family of elements from P’ (glg) Let us consider

the Cauchy problem
d
=Xy =UWUx Xy, te],
{ ot (6)

Xo =P, Pec P(Q/g).

Theorem 1. Cauchy problem (6) has a unique solution in P(gl’;), which can be presented in
the view t
Xp=etholsdsyp  peg )

* Sé U ds

where e is treated in the sense of the formula (5).

Proof. Using Picard’s iteration, the solution X; of Cauchy problem (6) is written informally
in the form (7). Since the polynomial P € P(g;;) has a finite number of addends, a value

of e*loUsds 4 p depends on some partial sum of the series e* folsds Formula (3) implies that
solution (7) belongs to the space P(G k) O

As an application of Theorem 1 we consider the generalized heat equation, associated with
the Gross Laplacian.
Let the trace operator T be defined by

(T, 929) : fﬁo dt, ¢, € Gp.

It is clear, that T € ,Z(Q?Z,C) = (g?z)’ ~ g/g®2.
The Gross Laplacian Ag by definition (see e.g. [8]) is the following operator

m—2

Ag:P= Z D) — AP = ) (n+2)(n+1)(T, %) ( - ©", "), ¢ € Gp.
n=0

Theorem 2. The Gross Laplacian Ag acts as a convolution operator, i.e.

1
58P =UcxP,  Pe P(Gp),

where U is a polynomial ultradistribution from the space P’ (Qk), that corresponds to the
element (0,0,7,0,...) € F(gé).

Proof. The polynomial ultradistribution U can be written in the form

u’l’ - >< <u’l’,?l/ ‘®n> = (OrO/ <T/ '®2>70/-..)!
nez
where u,, = tifn =2and u,, = 0if n #2.
Let the polynomial P € P(Gg) be of the form P = Yino(- " 9%"), ¢ € Gg. Using equali-
ties (3), we obtain the required result

m—2

m m—n
Urx P =3 (- 3 Chapmek @k g0 H) = 37 (-9, C ot 029%02)
n k=0 n=0
m—2

= > Caio(T, ) (- O, ) = —AGP
n=0
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Theorem 3. Cauchy problem

{%Xt =1IAcX:, te], -

Xo="P, P € P(Gp),
for heat equation, associated with the Gross Laplacian, has a unique solution in P(g[g) given
by
X; = e*tUr 4 P, te.

Proof. Theorem 2 allows us to rewrite the heat equation in the view %Xt = U * X;. It follows
from Theorem 1 that the Cauchy problem has a unique solution given by

Xy = e*géufdS x P = *tUr 4 P,
We can rewrite it in explicit form. Using formula (4), let us find (tU.)*". For n = 2 we obtain

41
(t) * (tU;) = X <t2 » T uT,]®uTk, > (0,0,0,0, 5 #(x2,-4),0,...),
nez ]+k n

since 1+, does not vanish only for n = 2. Using the mathematical induction, it is easy to prove
that

2n)!
(tU)™" = (0,...,0, (2’1) (TN, M) 0, ).
2n
It follows
ettt — Z a(tuﬁ n_ Z H(O""’O’ T t”<T®n, _®2n>’01.“)
neZ neZ4 m
(21’1)! " )

= (1,0,t(t, - ¥2),0,3t*(2, . ®4),0,...,0, (T, B2 0,..).

n! 2n
.

2n-th place

It only remains to find the convolution e*‘Ur x P. Let the polynomial P € P(G IIS) be written in

the form P = 7" (- ®", ¢®"), ¢ € Gg. Forany n € Z let us denote ey, := (Zn”,) L1 and

e2nt1 := 0. Then e*!Ur can be rewritten as e*'Ur = X nez, (en, - “"). Therefore, we obtain

m—n

m m—n m 2
et p =) < <MY Cok Ok €0®(n+k)> =D < SO Y CRlokenr O §0®(n+2k)>
n=0 k=0 n=0 k=0

Lm;n

m ] n ! | $k
Z < Lon Y ((2‘;{‘)'2:? (2kk!>~%<r®k’ q)®2k>q)®n>

k=0

m 122 (n +2k)! t*
= Z Z kin! et 2k<T®k' g=H) (- P 9"T),

where the symbol L : J denotes the floor function.

Hence, if the polynomial P from (8) has the form P = Y7 (- ®", p,), pn € Q®” then
the solution of Cauchy problem for heat equation associated with the Gross Laplac1an can be
expressed as

m |27 P
Xt = Z < : ®n/ kZ;) %;k @Zk pn+2k>
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4 SEMIGROUP GENERATED BY THE GROSS LAPLACIAN

Our next goal is to construct an one-parameter semigroup {G; : t > O} with the infinitesi-
mal generator %AG. This semigroup can be formally expressed as G; = e t1¢,
Since %AGP = Uy * P, results of previous section imply

o (4 2k)!
Z Z nklnl : 2k<T®kf 97N (- ), (10)

where P = 37" (- ®", ¢®"), ¢ € Gg.

Proposition 4.1. The mapping Ry > t — G; € .,2”(73(9%)), where G; is defined by formula
(10), is a strongly continuous one-parameter semigroup of continuous linear operators from
PG [’3) into itself with infinitesimal generator 1Ac.

Proof. Formula (10) can be rewritten as

S Lm;nj P
n+2k)!t
GtP =P+ E E ( P ) 2k <T®k, q)®2k>< . ®ﬂ’ ¢®n>, (11)
n=0 k=1 o

therefore the equality Gy = pr(%) is clear.
Formulas (4), (9) and the following equalities

1 1 1
G;Gg = e'286p5386 — p*tlr  prslc _ ()l _ ,(t+s)70c — Giys

imply the semigroup property G;Gs = Gs.
To prove the strong continuity of the semigroup, we need to show that for any P € P(G ;3)
the function t — G;P is continuous. Using representation (11), we obtain

m 2] r
l1msup\GtP P\—hmsup)z Z Mt—(r®k,¢®2k><f®”,(p®">

= & kln! 2k
R o |t| .
<limsup 31 3 g (T IS o)
m LmEnJ k
_ n n (Tl—I—Zk ‘t’ 2k\| __
= 2 sup [(f* 9™)lim D, ST [ 9| = 0.

k=1

It remains to show that the Gross Laplacian is the generator of the semigroup G;. Using
representation (11), we can write

GP-P 1, m U2 ) opy e
3t Z TR (T, ) (- O, 0)
n—|—2 (n+1)
DL 7, oy o, gomy

n=0
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Note, that L@J = 0 forn = m — 1 and for n = m. So, we can rewrite the above equality

GP—P 1 m—2 \_mEnJ (1’1 + Zk)' tkfl ok @k
P gaar= 2 (3 P e e
n=0 k=1
n+2)(n+1
_( )2( )<r, q)®2>>< L On o)

It is clear that 2K £ (pok (@2k) — w (T, 2) with k = 1, therefore

k!n! 2k

GP—-P 1 2 L) (n+2k) 1 o oo
- EAGPZ ZO < kzz W7<T® , 9% >>< L1, p®n),
n= =

Note, that | 252 | =1 for n = m — 2 and for n = m — 3. So, we obtain

GP—-P 1 s L2 (n+2k) 1 e oo
R I = L) [
n—= =

From the above formula we can derive the required result

limsu
t—0 f

p| PP L, i)

m—n

m—4 2 J k—1
. n+2k)! |t
< ZO Sl}lp ‘<f®n’ ¢®n>} lim kz ( e ) ’ ‘2]( ‘<T®k, ¢®2k>‘ —0.
n= 2

t—0

Corollary 4.1. Cauchy problem

SXp = 306X, te€],
Xo =P, P e P(%),

for heat equation associated with the Gross Laplacian has a unique solution in P (G ;3) given by

(1]

(2]

(3]
(4]
(5]

X; = G4P, fE].
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D)

Bitaaint IsanoBrma CymaHchkmin

14.11.1946 — 29.10.2016

29 xoBTHS 2016 poKy, mcAsl TpMBaAol BaXKkoi xBopoby, y M. I'aisinax (IToabna) momep
BMAATHUI yKpaiHChbKMII MaTeMaTHK, AOKTOP ¢pi3MKo-MaTeMaTMUHIX HayK, Ipodecop Kadpea-
pu aATebpm Ta MaTeMaTHIHOI AOTiky KMiBChbKOro HalliOHAABHOTO YHiBepcnreTy imeHi Tapaca
[leBuenka, npodecop IncTuTyTy MaremaTuky Ciresbkoi noaitexsikm (IToabia) Bitanin Isa-
HOoBMY CyIIaHCHKMIA.

Bitaniit IsanoBiu HapoauBcst 14 ancronmaaa 1946 poxy B ceai Xoaopkis IlomiAbHSHCBKOTO
paiiony >KuromMmpchkoi obaacTi, Ae i MPOMIIIAO OTO AMTMHCTBO. IlicAst ycHimmHOro 3akiH-
yeHHsI y 1964 pomi cepeaHBOI IIKOAM BiH 6YB 3apaxoBaHMII Ha MexaHiKO-MaTeMaTUJHII da-
KyabTeT KuiBcbkoro yHiBepcutety imeni Tapaca IlleBuenka. VY 1eit yac 3aBiayBadeM KadpeApu
aATebpy Ta MaTeMaTUIHOI AOTiKM 6yB ii 3acHOBHMK, Biaomuit MateMatuk A.A. KaayxHiH, siko-
IO 3aBXAM OTOUyBaAa 3Ai6Ha CTy A€HTCbKa MOAOAB, cepea sKoi 6yB i Bitaaint CymiaHcbKuii.

Y 1969 poui Bitaniit IBaHOBMY 3 BiA3HAKOIO 3aKiHUMB MeXaHiKO-MaTeMaTUYHUA paKyAbTET
Ta BCTyIMB AO acHipaHTypu mpu Kadpeapi aarebpm Ta MaTeMaTMUHOI AOTiKM, Ae 3aliMaBCsI
HayKOBO-AOCAIAHMIIBKOIO po60ToI0 Tia KepiBHMITBOM A.A. KaayxHiHa. Y AtoToMy 1972 poky
B.I. CymaHChKIII 3aXMCTMB KaHAVIAATCBKY AMCepTallifo 3a TeMoro "BiHIeBi A0OyTKM ereMeH-
TapHMX abeAeByX TPYI Ta iX 3acTOCyBaHHS. AOKTOPCHKY AMCEpTaIlilo 3a CIeliaAbHICTIO "aA-
rebpa, Teopis wceA Ta MaTeMaTM4HA Aorika" 3a Temorlo "BiHmeBi A00yTky, i3oMeTpii Harmis-
ckiHyeHHMX MeTpuK bepa i pesmayasbHO cKkiHdeHHi rpyma’ 6yao 3axuieHo y bepesni 1991
poxy y Aeninrpaacbkomy BiaaineHHi IHctuTyTy MaTemaTkn AH CPCP imeni B.A. CtexaoBa.
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Y 1971-2004 poxax Bitaniit Isanosuu Cy1iaHcbKkiit mpairfoe Ha Kadpeapi aarebpu Ta Ma-
TeMaTU4JHOI Aoriky KuiBchbkoro HaioHaAbHOTO yHiBepcureTy iMeni Tapaca Illesuenka, mpoii-
IIOBIIM IIIASIX BiA acMCTeHTa AO Mpodpecopa Ta ii 3aBiayBaua (1998-2004). Ilpotsrom mporo
IIepioAy Bce JI0TO XUTTSI Ta eHeprist 6yAM cIpsiIMOBaHi Ha HAyKOBY PO6OTY 3 06AapOBaHMMMU
cryaeHTtamn. Cepea Hux B. Hexpamesny, A. Oaittauk, fI. AaBpeniox, 0. Aeonos, €. bonaa-
perko, A. CaBuyk Ta baraTo iHmmx. IliaroryBsasmm cobi aocTovHy 3MiHy, B.I. Cymrarchkii,
Ha 3aIrpollleHHsI aaMiHicTpanii Cinesbkoi moaitexsiky (M. I'aisitm, IToabia), y 2004 poui crae
3BUYAMHUM IIpodpecopoM [HCTUTYTYy MaTeMaTmky, a Ii3Hillle KepiBHMKOM BiAAiry aarebpm
LIbOTO HABYAABHOTO 3aKAAAY.

BiTanaiit IBaHOBIY IPOBOAMB BeAMUe3HY OpraHi3alilfHO-HayKoOBY poboTy. ByB mocTittamm
YAEHOM IIPOTPaMHMX KOMITETiB Ta OAHMM 3 OpTaHi3aTOpiB Mi>KHApPOAHMX aATebpaiuHNMX KOH-
depentiint B Ykpaini. Hum 6yao oprariszoBaHo ceMiHap 3 Teopii rpymn y KuiBcbkoMy yHiBep-
CHUTETi, SIKMIf AOCi € OAHMM 3 HalbiABII BaXXAMBMX KOOPAMHAILIMHIX IIEHTPiB Teopil Tpym B
Ykpaini. oMy HaaexuTh iaest opraisysatyt KuiBChbKuit HayKOBUit aATebpaiuHmii ceMiHap
"Tlia xiHemp poky", 06 yKpaiHChbKi aArebpaicTy, IO MPAIOIOTh 3a KOPAOHOM, MOTAM Ha
Pi3ABSIHI KaHIKYAM IPpUiXaTy Ta 3pO6UTH AOTIOBiAb IIPO CBOI HAyKOBi AOCATHEHHS. Bripoaosx
baraTbox pokiB Bitaiit IBaHOBIMY 6yB UAEHOM creniari3oBaHOI BUEHOI paAM i3 3aXVCTy AOK-
TOPCBKIMX AMCepTaliil 3 aarebpm i AmckpeTHoi MaTeMaTuky y KuiBcbkoMy HalliOHAABHOMY
yHiBepcuTeTi iMeHi Tapaca IlleBuenka, cmoyaTKy sIK BUYEHMII ceKpeTap, a MiCASI 3aXUCTy AOK-
TOPCBHKOI AMCepTalliil IIeBHMIA Yac TOAOBOIO paAl, YAEHOM PEAKOAETIN XypHaAis "Aarebpa Ta
AVICKpeTHa MareMaTyka', "Martemarmusi cTyaii’, "KapmaTcbki MmaTemMaTmusi my6baikamii”, ro-
AOBHMM PeAAKTOPOM €AVMHOIO B YKpaiHi MaTeMaTUYHOIO HayKOBO-TIOMYASIPHOTO XypHaAy Y
cBiTi MaTeMaTukm', ureHoM KuiBcbkoro ta IToAbCchbKOro MaTeMaTMUHIMX TOBApPUCTB.

[InpoTa Ta pisHOCTOpOHHICTH iHTepeciB B.I. CymiaHcbKoro Ta 110ro HaykoBa MOGiABHICTD
BpaXaan. BiH 0AHOUACHO MPOBOAMB CHiABHI aArebpaiuHi AOCAIAXKEHHS Y pi3HMX HaIlpsSIMKaX
K 13 yKpaiHChbKMMM Tak i 3apybixemMy Marematnkamu. Hum BuaaHOo moHaa 150 HaykoBmx
PpobiT MarKe i3 copoka 3apybi>KHIMM aBTOpaMI, ITiA JI0TO KepiBHUIITBOM 3aXVIIIEHO 27 KaHAM-
AATCBKMX AMcepTawili B YkpaiHi Ta 5 y [Toabmii i 5 AokTopchbkux amcepTauint. Bitaaii Isanosuu
Bi3sUTyBaB y 6araTbOX 3aKOpAOHHUX YHiBepcureTax: y @panbypsbkomy yHiBepcurerti (1998,
Himeuunsa), ManiTobcbkomy yHiBepcnreti (1999, Kanaaa), yHiBepcureTi bpasmaii (2000), Y-
caan (2003, IIBewist), Texacbkomy A&M yHaiBepcuterti (2006, CIIIA). Cepea rpaHTiB Ta HATOPOA
BiTtanist IBanoBuua INTAS Award (1994-1998), Research and Conference Grant, J. Soros Foun-
dation (1994), ]. Soros Professorship (1995-1996), Research Grant DAAD (1998), Haropoaa pek-
Topa Ciae3bKoi MOAITeXHIKM 3a HayKOBi AOCSTHEHHSI.

Y npansx B.I. Cymascbkoro (pasom 3 mpodpecopom A.A. KaayXHiHIM) OTpMMaAM IIOAAAD-
IV PO3BUTOK AOCAiAXKEHHSI 6y AOBM BiHIIEBMX AOOYTKiB IPYII, CUCTeMATUYHO BUBYAANCS OTIe-
pauii Ha rpymax macTaHOBOK. BiTaailt [BaHOBMY 3acTOCyBaB BiHIEBI AOOYTKM 32 HECKIHUEHHN-
M TTOCAI AOBHOCTSIMM TPYTI I ACTAaHOBOK AASI TOOY AOBM HOBMX IIPMKAAAIB IpyI 6epHCaiiAiBCh-
KOTO TUITy — HeCKiHUYeHHMX NMepiOAVYHMX I'PYII 31 CKIHYEeHHVM YMCAOM TBipHMX, pO3B’si3aB
3a AOIIOMOTOIO0 OPMIiHAABHMX KOHCTPYKIIl BiaoMi mpobaemu Teopii paKTOPM3OBHUX TPYTI,
pa3oM 3i CBOIMM YUHSIMIU OTPMMAaB HU3KY Ba’KAVMBIUX Pe3yAbTaTiB PO 6yAO0BY TPYII aBTOMOP-
di3MiB AepeB, 3aKAaB OCHOBM TeOpil IPyIl Ta HaIliBIpyIl aBTOMaTHMX TIepeTBOPeHb, AOCAIAMB
KAACH CIIPSIKEHOCTI B IpyIiaX aBTOMOP(i3MiB pisHNX THUIIB A€peB, OIicaB HOPMAABHY Oy AOBY
IpyI aBTOMOP(i3MiB IIIapOBO-OAHOPIAHMX A€PeB, OXapaKTepu3yBaB IIMPOKi KAACH MATPYII
bepHCalAiBCHKOTO TUITY B TPyIIax aBTOMOPdi3MiB OAHOPiAHOTO KOPEHEBOTO AepeBa. Y Mpallsx
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3 P.I. I'puropuyxom i B.B. Hexpaiesudem po3BuHYyB TeOpPito CKiHU€HHO-aBTOMaTHMX IPYII Me-
PeTBOpPEHD SIK AASI BUTIAAKY CMHXPOHHMX aBTOMarTiB Tuiry Mini Ta Mypa, Tak i AAST BUITAAKY
aCMHXPOHHMX aBTOMATIB. Y ciabHMX poboTax 3 P.I. I'puropuyxom, JO.I'. Aeornosum i B.B. Hek-
palieBdyeM o6yAyBaB TeOpilo YHITPMKYTHMX 306pa’keHb CaMOIOAIOHMX I'PyII i oB’s13aB i
3 TEOPi€r0 MACTAHOBOYHMX AMHaMiuHMx cucreM. Pasom 3i cBoimm yuHsmu A.bep, fl.Iamm-
cKOBChKIMM, 0. AelieHKO BMBYAB rpyI, 110 3aHYPIOIOTHCS y TPy aBTOMOP(Pi3MiB AepeB Ta ix
crAOBChKi miarpymm. Pasom 3 B.B. Hexparnieuuem i I1.T aBpoHOM omcaB KAacy CIpsi>KeHOCT]
OCHOBHUIX I'pyIl aBTOMOpi3miB aepeB. Pasom 3 A.C. OailtHnKoM mobyayBaB IPUKAAAN BiAb-
HMX TPYIl HeCKIHUeHHVIX YHITPUMKYTHUX MaTpuub. Lle Aaaeko HemoBHMI IepeAik HayKOBOI'O
Aopobky CymaHcbkoro Bitanist IBaHoBmua. He 3abyBas Bitaaiit IBaHOBMY i TIPO IIKOASIPiB.
Hwum 6yaro HarmicaHO uMMaA0 HayKOBO-TIOIYASIPHMX CTaTel CrielliaAbHO AASI XKypHaAy Y cBiTi
MaTeMaTukKn” .

CsiTAa nam’saTh npo BiTtaais [BaHOBMYA SIK CKPOMHY, BMCOKO iIHTEAIT€HTHY, UyVHY AIOAVHY,
3MATHY 3aBXXAV IPVIATY Ha AOIIOMOTI'Y, Ha3aBXXAM 3aAVILIATHCSI B HALLIMX CePLISIX.
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