
Carpathian
mathematical
publications

SCIENTIFIC JOURNAL

V.8, №2
2016

CONTENTS

Bardyla S.O., Gutik O.V. On a complete topological inverse polycyclic monoid . . . . . . . . . 183

Ben Aoua L., Aliouche A. Coupled fixed point theorems for weakly compatible mappings along
with CLR property in Menger metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Vasylyshyn T.V. Extensions of multilinear mappings to powers of linear spaces . . . . . . . . . 211

De N. The vertex Zagreb indices of some graph operations . . . . . . . . . . . . . . . . . . . . 215

Dilnyi V.M., Hishchak T.I. On the intersection of weighted Hardy spaces . . . . . . . . . . . . 224

Dmytryshyn R.I. A multidimensional generalization of the Rutishauser qd-algorithm . . . . . 230

Dobushovskyy M.S., Sheremeta M.M. Analogues of Whittaker’s theorem for Laplace-Stieltjes
integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Yolacan E., Kiziltunc H., Kir M. Coincidence point theorems for ϕ − ψ−contraction mappings
in metric spaces involving a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Kravtsiv V.V., Zagorodnyuk A.V. Representation of spectra of algebras of block-symmetric an-
alytic functions of bounded type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Kuchminska Kh.Yo. A Worpitzky boundary theorem for branched continued fractions of the
special form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Malytska H.P., Burtnyak I.V. Pointwise stabilization of the Poisson integral for the diffusion
type equations with inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Praveena M.M., Bagewadi C.S. On generalized complex space forms satisfying certain curva-
ture conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Prevysokova N.V. Family of wavelet functions on the Galois function base . . . . . . . . . . . 295

Savastru O.V. Divisor problem in special sets of Gaussian integers . . . . . . . . . . . . . . . . 305

Sharyn S.V. Application of the functional calculus to solving of infinite dimensional heat equation 313

Vitaliy Ivanovych Sushchansky (obituary) . . . . . . . . . . . . . . . . . . . . . . . . . . . 323



Карпатськi
математичнi
публiкацiї

НАУКОВИЙ ЖУРНАЛ

Т.8, №2
2016

ЗМIСТ

Бардила С.O., Гутiк O.В. Про повний топологiчний iнверсний полiциклiчний моноїд . . 183

Бен Аоуа Л., Алiуче А. Теореми про зчеплену нерухому точку для слабко сумiсних вiд-
ображень у сукупностi з CLR властивiстю в метричних просторах Менґера . . . . . 195

Василишин Т.В. Продовження мультилiнiйних вiдображень на степенi лiнiйних про-
сторiв . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Де Н. Iндекси Загреба вершин для деяких операцiй з графами . . . . . . . . . . . . . . . . 215

Дiльний В.М., Гiщак Т.I. Про перетин вагових просторiв Гардi . . . . . . . . . . . . . . . 224

Дмитришин Р.I. Багатовимiрне узагальнення qd-алгоритму Рутисхаузера . . . . . . . 230

Добушовський М.С., Шеремета М.М. Аналоги теореми Уiттекера для iнтегралiв Лапласа-
Стiлтьєса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Йолакан Е., Кiзiлтанк Г., Кiр М. Теореми про точки спiвпадiння для ϕ − ψ−скоротних
вiдображень в метричних просторах еволюцiї графiв . . . . . . . . . . . . . . . . . . . 251

Кравцiв В.В., Загороднюк А.В. Представлення спектра алгебр блочно-симетричних ана-
лiтичних функцiй обмеженого типу . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Кучмiнська Х.Й. Межова теорема Ворпiцького для гiллястих ланцюгових дробiв спецi-
ального вигляду . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Малицька Г.П., Буртняк I.В. Поточкова стабiлiзацiя iнтеграла Пуассона для рiвнянь
типу дифузiї з iнерцiєю . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Правiна М.М., Баґевадi Ц.С. Про узагальненi форми в комплексному просторi, якi задо-
вiльняють певнi умови кривини . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Превисокова Н.В. Сiмейство вейвлет-функцiй на основi функцiй Ґалуа . . . . . . . . . . 295

О.В.Савастру Проблема дiльникiв на спецiальних множинах цiлих гаусових чисел . . . . 305

Шарин С.В. Застосування функцiонального числення до розв’язання задачi Кошi для не-
скiнченновимiрного рiвняння теплопровiдностi . . . . . . . . . . . . . . . . . . . . . . 313

Вiталiй Iванович Сущанський (некролог) . . . . . . . . . . . . . . . . . . . . . . . . . . 323



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2016, 8 (2), 183–194 Карпатськi матем. публ. 2016, Т.8, №2, С.183–194

doi:10.15330/cmp.8.2.183-194

BARDYLA S.O., GUTIK O.V.

ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID

We give sufficient conditions when a topological inverse λ-polycyclic monoid Pλ is absolutely H-

closed in the class of topological inverse semigroups. For every infinite cardinal λ we construct the

coarsest semigroup inverse topology τmi on Pλ and give an example of a topological inverse monoid

S which contains the polycyclic monoid P2 as a dense discrete subsemigroup.
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In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the

terminology of [10, 12, 16, 31]. If A is a subset of a topological space X, then we denote the

closure of the set A in X by clX(A). By N we denote the set of all positive integers and by ω

the first infinite cardinal.

A semigroup S is called an inverse semigroup if every a in S possesses a unique inverse, i.e.

if there exists a unique element a−1 in S such that

aa−1a = a and a−1aa−1 = a−1.

A map that associates to any element of an inverse semigroup its inverse is called the inversion.

A band is a semigroup of idempotents. If S is a semigroup, then we shall denote the subset

of idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multipli-

cation. The semigroup operation on S determines the following partial order 6 on E(S): e 6 f

if and only if e f = f e = e. This order is called the natural partial order on E(S). A semilattice is

a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a chain if

its natural order is a linear order. A maximal chain of a semilattice E is a chain which is properly

contained in no other chain of E. The Axiom of Choice implies the existence of maximal chains

in any partially ordered set. According to [35, Definition II.5.12] a chain L is called ω-chain if

L is order isomorphic to {0,−1,−2,−3, . . .} with the usual order 6. Let E be a semilattice and

e ∈ E. We denote ↓e = { f ∈ E | f 6 e} and ↑e = { f ∈ E | e 6 f}.

If S is a semigroup, then we shall denote by R, L , D and H the Green relations on S

(see [17] or [12, Section 2.1]):

aRb if and only if aS1 = bS1; aL b if and only if S1a = S1b;

D = L ◦R = R◦L ; H = L ∩R.

The R-class (resp., L -, H -, or D–class) of the semigroup S which contains an element a of S

will be denoted by Ra (resp., La, Ha, or Da).
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The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two ele-

ments p and q subjected only to the condition pq = 1. The semigroup operation on C (p, q) is

determined as follows:

qk pl · qm pn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combina-

torial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a group

congruence [12]. Also the well known Andersen Theorem states that a simple semigroup S with

an idempotent is completely simple if and only if S does not contains an isomorphic copy of the bicyclic

semigroup (see [2] and [12, Theorem 2.54]).

Let λ be a non-zero cardinal. On the set Bλ = (λ × λ) ∪ {0}, where 0 /∈ λ × λ, we define

the semigroup operation “ · ” as follows

(a, b) · (c, d) =

{

(a, d), if b = c;

0, if b 6= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0 for a, b, c, d ∈ λ. The semigroup Bλ is called the semigroup

of λ×λ-matrix units (see [12]).

In 1970 Nivat and Perrot proposed the following generalization of the bicyclic monoid (see

[34] and [31, Section 9.3]). For a non-zero cardinal λ, the polycyclic monoid on λ generators Pλ

is the semigroup with zero given by

Pλ =
〈

{pi}i∈λ, {p−1
i }i∈λ | pi p

−1
i = 1, pi p

−1
j = 0 for i 6= j

〉

.

If λ = 1 the semigroup P1 is isomorphic to the bicyclic semigroup with adjoined zero. For ev-

ery finite non-zero cardinal λ = n the polycyclic monoid Pn is congruence free, combinatorial,

0-bisimple, 0-E-unitary inverse semigroup (see [31, Section 9.3]).

A topological (inverse) semigroup is a Hausdorff topological space together with a continu-

ous semigroup operation (and an inversion, respectively). Obviously, the inversion defined on

a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse semi-

group) and τ is a topology on S such that (S, τ) is a topological (inverse) semigroup, then

we shall call τ an (inverse) semigroup topology on S. A semitopological semigroup is a Hausdorff

topological space endowed with a separately continuous semigroup operation.

Let STSG0 be a class of topological semigroups. A semigroup S ∈ STSG0 is called

H-closed in STSG0, if S is a closed subsemigroup of any topological semigroup T ∈ STSG0

which contains S both as a subsemigroup and as a topological space. The H-closed topological

semigroups were introduced by Stepp in [39], and there they were called maximal semigroups.

A topological semigroup S ∈ STSG0 is called absolutely H-closed in the class STSG0, if any

continuous homomorphic image of S into T ∈ STSG0 is H-closed in STSG0. Absolutely

H-closed topological semigroups were introduced by Stepp in [40], and there they were called

absolutely maximal.

Recall [1], a topological group G is called absolutely closed if G is a closed subgroup of

any topological group which contains G as a subgroup. In our terminology such topologi-

cal groups are called H-closed in the class of topological groups. In [36] Raikov proved that a

topological group G is absolutely closed if and only if it is Raikov complete, i.e., G is complete

with respect to the two-sided uniformity. A topological group G is called h-complete if for every
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continuous homomorphism h : G → H the subgroup f (G) of H is closed [13]. In our terminol-

ogy such topological groups are called absolutely H-closed in the class of topological groups.

The h-completeness is preserved under taking products and closed central subgroups [13].

H-closed paratopological and topological groups in the class of paratopological groups were

studied in [37]. The paper [7] contains a sufficient condition for a quasitopological group to

be H-closed, which allowed us to solve a problem by Arhangel’skii and Choban [3] and show

that a topological group G is H-closed in the class of quasitopological groups if and only if G

is Raikov-complete. In [18] it is proved that a topological group G is H-closed in the class of

semitopological inverse semigroups with continuous inversion if and only if G is compact.

In [40] Stepp studied H-closed topological semilattices in the class of topological semi-

groups. He proved that an algebraic semilattice E is algebraically h-complete in the class of

topological semilattices if and only if every chain in E is finite. In [27] Gutik and Repovš stud-

ied the closure of a linearly ordered topological semilattice in a topological semilattice. They

obtained a characterization of H-closed linearly ordered topological semilattices in the class of

topological semilattices and showed that every H-closed linear topological semilattice is ab-

solutely H-closed in the class of topological semilattices. Such semilattices were studied also

in [11,20]. In [5] the closures of the discrete semilattices (N, min) and (N, max) were described.

In that paper the authors constructed an example of an H-closed topological semilattice in the

class of topological semilattices, which is not absolutely H-closed in the class of topological

semilattices. The constructed example gives a negative answer to Question 17 from [40]. H-

closed and absolutely H-closed (semi)topological semigroups and their extensions in different

classes of topological and semitopological semigroups were studied in [8, 18, 19, 21–26]

In [6] we showed that the λ-polycyclic monoid for an infinite cardinal λ > 2 has similar al-

gebraic properties to that of the polycyclic monoid Pn with finitely many n > 2 generators. In

particular we proved that for every infinite cardinal λ the polycyclic monoid Pλ is congruence-

free, combinatorial, 0-bisimple, 0-E-unitary, inverse semigroup. Also we showed that every

non-zero element x ∈ Pλ is an isolated point in (Pλ, τ) for every Hausdorff topology on Pλ,

such that Pλ is a semitopological semigroup; moreover, every locally compact Hausdorff semi-

group topology on Pλ is discrete. The last statement extends results of the paper [32] treating

topological inverse graph semigroups. We described all feebly compact topologies τ on Pλ

such that (Pλ, τ) is a semitopological semigroup. Also in [6] we proved that for every cardi-

nal λ > 2 any continuous homomorphism from a topological semigroup Pλ into an arbitrary

countably compact topological semigroup is annihilating and there exists no Hausdorff feebly

compact topological semigroup containing Pλ as a dense subsemigroup.

This paper is a continuation of [6]. In this paper we give sufficient conditions on a topo-

logical inverse λ-polycyclic monoid Pλ to be absolutely H-closed in the class of topological

inverse semigroups. For every infinite cardinal λ we construct the coarsest semigroup inverse

topology τmi on Pλ and give an example of a topological inverse monoid S which contains the

polycyclic monoid P2 as a dense discrete subsemigroup.

It is well known that for an arbitrary topological inverse semigroup S and every element

x ∈ S the continuity of the semigroup operation and the inversion in S implies that any L -

class Lx and any R-class Rx which contain the element x are closed subsets in S. Indeed, the

Wagner–Preston Theorem (see Theorem 1.17 from [12]) implies that Lx = Lx−1x and Rx = Rxx−1

for arbitrary x ∈ S and since the maps ϕ : S → E(S) and ψ : S → E(S) defined by the formulae

(x)ϕ = xx−1 and (x)ψ = x−1x
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are continuous, we get that Lx = (x−1x)ψ−1 and Rx = (xx−1)ϕ−1 are closed subsets of the

topological semigroup S. This implies that for any idempotents e and f of a topological inverse

semigroup S the following H -classes of S:

He = Re ∩ Le and He, f = Re ∩ L f

are closed subsets of the topological inverse semigroup S too. Moreover, the relations L , R

and H are closed subsets in S × S, but D and J are not necessary closed subsets in S × S for

an arbitrary topological inverse semigroup S (see [15, Section II]).

The following proposition describes D-equivalent H -classes in an arbitrary topological

inverse semigroup.

Proposition 1. Let S be a Hausdorff topological inverse semigroup and a, c be D-equivalent

elements of S. Then there exists b ∈ S such that aRb and bL c in S, and hence as = b, bs′ = a,

tb = c, t′c = b, for some s, s′, t, t′ ∈ S. The mappings fa,c : Ha → Hc : x 7→ txs and fc,a : Hc →

Ha : x 7→ t′xs′ are continuous and mutually inverse, and hence are homeomorphisms of closed

subspaces Ha and Hc of the topological space S. Moreover, if Ha and Hc are subgroups of S

then Ha and Hc are topologically isomorphic closed topological subgroups in the topological

inverse semigroup S.

Proof. The above arguments imply that Ha and Hc are closed subspaces of S. Also, the alge-

braic part of the statement of our theorem follows from Theorem 2.3 of [12] and Theorem 1.2.7

from [28]. The continuity of the semigroup operation in S implies that the maps fa,c : Ha → Hc

and fc,a : Hc → Ha are continuous and hence are homeomorphisms. Now, the proof of The-

orem 1.2.7 from [28] implies that in the case when Ha and Hc are subgroups of S, then there

exist u, u′ ∈ S such that the maps fa,c : Ha → Hc : x 7→ uxu′ and fc,a : Hc → Ha : x 7→ u′xu are

mutually inverse isomorphisms and the continuity of the semigroup operation in S implies

that so defined maps are topological isomorphisms.

Remark 1. The proof of Proposition 1 implies that any two D-equivalent H -classes of a Haus-

dorff semitopological semigroup S are homeomorphic subspaces in S, but they are not neces-

sary closed subspaces in S, and a similar statement holds for maximal subgroups in S (see [18]).

Lemma 1. Let T and S be a Hausdorff topological inverse semigroup such that S is an inverse

subsemigroup of T. Let G be an H -class in S which is a closed subset of the topological inverse

semigroup T and DG be a D-class of the semigroup S which contains the set G. Then every

H -class H ⊆ DG of the semigroup S is a closed subset of the topological space T.

Proof. First we consider the case when G has an idempotent, i.e., G is a maximal subgroup of

the semigroup S (see Theorem 2.16 of [12]).

In the case when the H -class H contains an idempotent, Theorem 2.16 in [12] implies that

H is a maximal subgroup of S and hence H is a subgroup of topological inverse semigroup T.

We put e and f are unit elements of the groups G and H, respectively. Since the idempotents e

and f are D-equivalent in S, Proposition 3.2.5 of [31] implies that there exists a ∈ S such that

aa−1 = e and a−1a = f . Now by Proposition 3.2.11(5) of [31] the idempotents e and f are D-

equivalent in the semigroup T. Put HT
e and HT

f be the H -classes of idempotents e and f in the

semigroup T, respectively. We define the maps fe, f : T → T and f f ,e : T → T by the formulae
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(x)fe, f = a−1xa and (x)f f ,e = axa−1, respectively. Then for any s ∈ HT
e and t ∈ HT

f we get the

equalities

(s)fe, f

(

(s)fe, f

)−1
= a−1sa(a−1sa)−1 = a−1saa−1s−1a = a−1ses−1a = a−1ss−1a = a−1ea

= a−1a = f ,
(

(s)fe, f

)−1
(s)fe, f = (a−1sa)−1a−1sa = a−1s−1aa−1sa = a−1s−1esa = a−1s−1sa = a−1ea

= a−1a = f ,

(t)f f ,e

(

(t)f f ,e

)−1
= ata−1(ata−1)−1 = ata−1at−1a−1 = at f t−1a−1 = att−1a−1 = a f a−1

= aa−1 = e,
(

(t)f f ,e

)−1
(t)f f ,e = (ata−1)−1ata−1 = at−1a−1ata−1 = at−1 f ta−1 = at−1ta−1 = a f a−1

= aa−1 = e,
(

(s)fe, f

)

f f ,e = aa−1saa−1 = ese = s,
(

(t)f f ,e

)

fe, f = a−1ata−1a = f t f = t,

because aa−1 = ss−1 = s−1s = e, ea = a, a f = a and a−1a = tt−1 = t−1 = f . Similarly, for

arbitrary s, v ∈ HT
e and t, u ∈ HT

f we have that

(s)fe, f (v)fe, f = a−1saa−1va = a−1seva = a−1sva = (sv)fe, f

and

(t)f f ,e(u)f f ,e = ata−1aua−1 = at f ua−1 = atua−1 = (tu)f f ,e.

Hence the restrictions fe, f |HT
e

: HT
e → HT

f and f f ,e|HT
f

: HT
f → HT

e are mutually invertible group

isomorphisms. Also, since a ∈ S we get that the restrictions fe, f |G : G → H and f f ,e|H : H → G

are mutually invertible group isomorphisms too. This and the continuity of left and right

translations in T imply that H is a closed subgroup of the topological inverse semigroup T.

Next we consider the case when the H -class H contains no idempotents. Then there exists

distinct idempotents e, f ∈ S such that ss−1 = e and s−1s = f for all s ∈ H. Suppose to

the contrary that H is not a closed subset of the topological inverse semigroup T. Then there

exists an accumulation point x ∈ T \ H of the set H in the topological space T. Since every

H -class of a topological inverse semigroup T is a closed subset of T we get that H and x are

contained in a same H -class Hx of the semigroup T. Then xx−1 = e and x−1x = f . Now

the H -class HT
e in T which contains the idempotent e ∈ S is a topological subgroup of the

topological inverse semigroup T and by Proposition 1 the subspace HT
e of the topological space

T is homeomorphic to the subspace Hx of T. Moreover, Theorem 1.2.7 from [28] implies that

there exists a homeomorphism f : Hx rightarrowHT
e such that the image (H)f is a topological

subgroup of the topological inverse semigroup T and (H)f is topologically isomorphic to the

topological group G. Then (H)f is not a closed subgroup of T which contradicts our above

part of the proof.

Assume that G has no idempotents. By the previous part of the proof it suffices to show that

there exists a maximal subgroup He with an idempotent e in the D-class DG such that He is a

closed subgroup of topological semigroup T. Suppose to the contrary that every maximal sub-

group in the D-class DG is not a closed in T. Fix and arbitrary subgroup He with an idempotent

e in the D-class DG such that xx−1 = e for all x ∈ G. Then Proposition 3.2.11(3) of [31] implies
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that there exist H -classes HT
G and HT

e in the semigroup T which contain the set G and group

He. Since in the topological semigroup T every H -class is a closed subset in T, we have that

G is a closed subset of the space HT
G and He is not a closed subgroup of the topological group

HT
e . Then Proposition 3.2.11 of [31] and Proposition 1 imply that there exist s, s′, t, t prime ∈ S

such that the maps fe : HT
e → HT

G : x 7→ txs and fG : HT
G → HT

e : x 7→ t′xs′ are mutually

invertible homeomorphisms of the topological spaces HT
e and HT

G such that the restrictions

fe|He : HT
e → G and fG|G : G → He are mutually invertible homeomorphisms. This is a contra-

diction, because He is not a closed subset of HT
e . This completes proof of the lemma.

Lemma 1 implies the following corollary.

Corollary 1. Let T and S be a Hausdorff topological inverse semigroup such that S is an inverse

subsemigroup of T. Let G be a maximal subgroup in S which is H-closed in the class of

topological inverse semigroups and DG be a D-class of the semigroup S which contains the

group G. Then every H -class H ⊆ DG of the semigroup S is a closed subset of the topological

space T.

Lemma 2. Let S be a Hausdorff topological inverse semigroup such following conditions hold:

(i) every maximal subgroup of the semigroup S is H-closed in the class topological groups;

(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).

If there exists a topological inverse semigroup T such that S is a dense subsemigroup of T and

T \ S 6= ∅ then for every x ∈ T \ S at least one of the points x · x−1 or x−1 · x belongs to T \ S.

Proof. First we consider the case when the topological semilattice E(S) does not have the small-

est element. Then the space E(S) is discrete and Theorem 3.3.9 of [16] implies that E(S) is an

open subset of the topological space E(T) and hence every point of the set E(S) is isolated in

E(T). Also by Proposition II.3 [15] we have that clT(E(S)) = clE(T)(E(S)) and hence the points

of the set E(T) \ E(S) are not isolated in the space E(T).

Fix an arbitrary point x ∈ T \ S. By Corollary 1 every H -class is a closed subset of the

topological inverse semigroup T. Since x is an accumulation point of the set S in the topo-

logical space T we have that every open neighbourhood U(x) of the point x in T intersects

infinitely many H -classes of the semigroup S. By Proposition II.1 of [15] the inversion on T is

a homeomorphism of the topological space T and hence (U(x))−1 is an open neighbourhood

of the point x−1 in T which intersects infinitely many H -classes of the semigroup S. Then

the continuity of the semigroup operations and the inversion in T implies that at least one of

the sets
(

U(x) (U(x))−1
)

∩ E(T) or
(

(U(x))−1 U(x)
)

∩ E(T) is infinite for every open neigh-

bourhood U(x) of the point x in the topological semigroup T. This implies that at least one of

x cdotx−1 or x−1 · x is a non-isolated point in the topological space E(T).

In the case when the semilattice E(S) has a minimal idempotent the presented above ar-

guments imply that for arbitrary point x ∈ T \ S and every open neighbourhood U(x) of the

point x in T one of the sets
(

U(x) (U(x))−1
)

∩ E(T) or
(

(U(x))−1 U(x)
)

∩ E(T) is infinite

for every open neighbourhood U(x) of the point x in the topological semigroup T. Since He

is a minimal ideal of S and it is a Raı̆kov complete topological group. Then there exists an

open neighborhood U(x) of x in T, such that U(x) ∩ He = ∅. If xx−1 = e or x−1x = e then

x = xx−1x ∈ He, which contradicts that x ∈ T \ S. Hence xx−1 ∈ T \ S or x−1x ∈ T \ S.
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Lemma 2 implies the following two corollaries.

Corollary 2. Let S be a Hausdorff topological inverse semigroup satisfying the following con-

ditions:

(i) every maximal subgroup of the semigroup S and the semilattice E(S) are H-closed in the

class of topological inverse semigroups;

(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).

Then S is H-closed in the class of topological inverse semigroups.

Corollary 3. Let λ > 2 and let Pλ be a proper dense subsemigroup of a topological inverse

semigroup S. Then either xx−1 ∈ S \ Pλ or x−1x ∈ S \ Pλ for every x ∈ S \ Pλ.

The following theorem gives sufficient condition when a topological inverse λ-polycyclic

monoid Pλ is absolutely H-closed in the class of topological inverse semigroups.

Theorem 1. Let λ be a cardinal > 2 and τ be a Hausdorff inverse semigroup topology on Pλ

such that U(0) ∩ L is an infinite set for every open neighborhood U(0) of zero 0 in (Pλ, τ) and

every maximal chain L of the semilattice E(Pλ). Then (Pλ, τ) is absolutely H-closed in the class

of topological inverse semigroups.

Proof. First we observe that the definition of the λ-polycyclic monoid Pλ implies that for every

maximal chain L in E(Pλ) the set L \ {0} is an ω-chain. Then Theorem 2 of [5] implies that ev-

ery maximal chain L in E(Pλ) with the induced topology from (Pλ, τ) is an absolutely H-closed

topological semilattice. Suppose that E(Pλ) with the induced topology from (Pλ, τ) is not an

H-closed topological semilattice. Then there exists a topological semilattice S which contains

E(Pλ) as a dense proper subsemilattice. Also the continuity of the semilattice operation in S

implies that zero 0 of E(Pλ) is zero in S. Fix an arbitrary element x ∈ S \ E(Pλ). Then for an

arbitrary open neighbourhood U(x) of the point x in S such that 0 /∈ U(x) the continuity of the

semilattice operation in S implies that there exists an open neighbourhood V(x) subseteqU(x)

of x in S such that V(x) · V(x) ⊆ U(x). Now, the neighbourhood V(x) intersects infinitely

many maximal chains of the semilattice E(Pλ), because all maximal chains in E(Pλ) with the

induced topology from (Pλ, τ) are absolutely H-closed topological semilattices. Then the semi-

group operation of Pλ implies that 0 ∈ V(x) ·V(x) ⊆ U(x), which contradicts the choice of the

neighbourhood U(0). Therefore, E(Pλ) with the induced topology from (Pλ, τ) is an H-closed

topological semilattice.

Now, by Corollary 2 the topological inverse semigroup (Pλ, τ) is H-closed in the class of

topological inverse semigroups. Since the λ-polycyclic monoid Pλ is congruence free, every

continuous homomorphic image of (Pλ, τ) is H-closed in the class of topological inverse semi-

groups. Indeed, if h : (Pλ, τ) → T is a continuous (algebraic) homomorphism from (Pλ, τ) into

a topological inverse semigroup T, then the set U(h(0)) ∩ h(L) is infinite for every open neigh-

bourhood U(h(0)) of the image zero h(0) in T. Then the previous part of the proof implies

that h(Pλ) is a closed subsemigroup of T.

Remark 2. By Remark 2.6 from [30] (also see [30, p. 453], [29, Section 2.1] and [31, Proposi-

tion 9.3.1]) for every positive integer n > 2 any non-zero element x of the polycyclic monoid
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Pn has the form u−1v, where u and v are elements of the free monoid Mn, and the semigroup

operation on Pn in this representation is defined in the following way:

a−1b · c−1d =







(c1a)−1d, if c = c1b for some c1 ∈ Mn;

a−1b1d, if b = b1c for some b1 ∈ Mn;

0, otherwise

and a−1b · 0 = 0 · a−1b = 0 · 0 = 0.

(1)

Then Lemma 2.4 of [6] implies that every any non-zero element x of the polycyclic monoid Pλ

has the form u−1v, where u and v are elements of the free monoid Mλ, and the semigroup

operation on Pλ in this representation is defined by formula (1).

Now we shall construct a topology τmi on the λ-polycyclic monoid Pλ such that (Pλ, τmi) is

absolutely H-closed in the class of topological inverse semigroups.

Example 1. We define a topology τmi on the polycyclic monoid Pλ in the following way. All

non-zero elements of Pλ are isolated point in (Pλ, τmi). For an arbitrary finite subset A of Mλ

put

UA(0) =
{

a−1b : a, b ∈ Mλ \ A
}

.

We put Bmi = {UA(0) : A is a finite subset of Mλ} to be a base of the topology τmi at zero

0 ∈ Pλ.

We observe that τmi is a Hausdorff topology on Pλ because U{a,b}(0) 6∋ a−1b for every non-

zero element a−1b ∈ Pλ. Also, since (UA(0))
−1 = UA(0) for any UA(0) ∈ Bmi, the inversion is

continuous in (Pλ, τmi). Fix an arbitrary a−1b ∈ Pλ and any basic neighbourhood UA(0) of zero

in (Pλ, τmi). Let Sb be a set of all suffixes of the word b. Put B = Pb ∪ {kb ∈ Mλ : ka ∈ A}. It

is obvious that the set B is finite and hence formula (1) implies that a−1b · UB(0) ⊆ UA(0). Let

Sa be a set of all suffixes of the word a. Put D = Sa ∪ {ta ∈ Mλ : tb ∈ A}. It is obvious that the

set D is finite and hence formula (1) implies that UD(0) · a−1b ⊆ UA(0). Also UT(0) · UT(0) ⊆

UA(0) for T = A ∪ {b ∈ Mλ : b is a suffix of some a ∈ A}. Therefore (Pλ, τmi) is a topological

inverse semigroup.

Theorem 1 and Example 1 implies the following corollary.

Corollary 4. The topological inverse semigroup (Pλ, τmi) is absolutely H-closed in the class of

topological inverse semigroups.

Definition 1 ([23]). A Hausdorff topological (inverse) semigroup (S, τ) is said to be minimal if

no Hausdorff semigroup (inverse) topology on S is strictly contained in τ. If (S, τ) is minimal

topological (inverse) semigroup, then τ is called a minimal (inverse) semigroup topology.

Minimal topological groups were introduced independently in the early 1970’s by Doı̈tchi-

nov [14] and Stephenson [38]. Both authors were motivated by the theory of minimal topologi-

cal spaces, which was well understood at that time (cf. [9]). More than 20 years earlier L. Nach-

bin [33] had studied minimality in the context of division rings, and B. Banaschewski [4] inves-

tigated minimality in the more general setting of topological algebras. In [23] on the infinite

semigroup of λ × λ-matrix units Bλ the minimal semigroup and the minimal semigroup in-

verse topologies were constructed.
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Theorem 2. For any infinite cardinal λ, τmi is the coarsest inverse semigroup topology on Pλ,

and hence (Pλ, τmi) is a minimal topological inverse semigroup.

Proof. The definition of the topology τmi on Pλ implies that the subsemigroup of idempotents

E(Pλ) of the semigroup Pλ is a compact subset of the space (Pλ, τmi). By Proposition 3.1 of [6]

every non zero-element of a semitopological monoid (Pλ, τ) is an isolated point in the space

(Pλ, τ). This and above arguments imply that the topology τmi on Pλ induces the coarsest

semigroup topology on the semilattice E(Pλ). Also by Remark 2.6 from [30] (also see [30,

p. 453], [29, Section 2.1] and [31, Proposition 9.3.1]) we have that every non-zero element of the

semilattice E(Pλ) can be represented in the form a−1a where a are elements of the free monoid

Mn, and the semigroup operation on E(Pλ) in this representation is defined by formula (1).

Also, we observe that for any topological inverse semigroup S the following maps ϕ : S →

E(S) and ψ : S → E(S) defines by the formulae ϕ(x) = xx−1 and ψ(x) = x−1x, respectively,

are continuous. Since the inverse element of u−1v in Pλ is equal to v−1u, we have that UA =

Pλ \
(

ϕ−1(A) ∪ ψ−1(A)
)

, for any finite subset A of the free monoid Mn. This implies that

UA(A) ∈ τ for every inverse semigroup topology τ on Pλ, where A is an arbitrary finite subset

of Mn. Thus, τmi is the coarsest inverse semigroup topology on the λ-polycyclic monoid Pλ.

In the next example we construct a topological inverse monoid S which contains the poly-

cyclic monoid P2 =
〈

p1, p2 | p1 p−1
1 = p2 p−1

2 = 1, p1 p−1
2 = p2 p−1

1 = 0
〉

as a dense discrete sub-

semigroup, i.e., the polycyclic monoid P2 with the discrete topology is not H-closed in the class

of topological inverse semigroups. Also, later we assume that the free monoid M2 is generated

by two element p1 and p2.

Example 2. Let F be the filter on the bicyclic semigroup C (p1, p−1
1 ) =

〈

p1, p−1
1 | p1 p−1

1 = 1
〉

,

generated by the base B = {Un : n ∈ N}, where Un =
{

p−k
1 pm

1 : k, m > n
}

. We denote

A =
{

a−1b ∈ P2 : a 6= p1a1 and b 6= p1b1 for any a1, b1 ∈ M2

}

.

For any element a−1b of the set A let Fa−1b be the filter on P2, generated by the base Ba−1b =

{Vn : n ∈ N}, where Vn = a−1Unb =
{

(pk
1a)−1 pm

1 b : k, m > n
}

. It is obvious that F = F1−11,

where 1 is the unit element of the free monoid M2.

We extend the binary operation from P2 onto S = P2 ∪
{

Fa−1b : a−1b ∈ A
}

by the following

formulae:

(I) a−1b ·Fc−1d =



















F(ea)−1d, if c = eb;

F(e)−1d, if b = pn
1 c for some n ∈ N, where e is the longest suffix

of a such that e 6= p1 f for some f ∈ M2;

0, otherwise;

(II) Fc−1d · a−1b =



















Fc−1eb, if d = ea;

Fc−1e, if a = pn
1 d for some n ∈ N, where e is the longest suffix

of b such that e 6= p1 f for some f ∈ M2;

0, otherwise;

(III) Fa−1b · Fc−1d =

{

Fa−1d, if b = c;

0, otherwise.
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It is obvious that the subset T = S \ P2 ∪ {0} with the induced binary operation from S is

isomorphic to the semigroup of ω × ω-matrix units Bω and moreover we have that

(Fa−1b)
−1 = Fb−1a in T.

We determine a topology τ on the set S in the following way: assume that the elements of

the semigroup P2 are isolated points in (S, τ) and the family

B(Fa−1b) = {Un(Fa−1b) : Un ∈ Ba−1b}

of the set Un(Fa−1b) = Un ∪ {Fa−1b} is a neighborhood base of the topology τ at the point

Fa−1b ∈ S.

Now we show that so defined binary operation on (S, τ) is continuous.

In case (I) we consider three cases.

If a−1b ·Fc−1d = 0 then we have that a−1b · Un(Fc−1d) = {0} for any positive integer n.

If a−1b · Fc−1d = F(ea)−1d then c = eb. We claim that a−1b · Un(Fc−1d) ⊆ Un(F(ea)−1d)

for any open basic neighbourhood Un(F(ea)−1d) of the point F(ea)−1d in (S, τ). Indeed, if x ∈

Un(Fc−1d) then x = (pm
1 c)−1pk

1d for some positive integers m, k > n, and hence we have that

a−1b · (pm
1 c)−1 pk

1d = a−1b · (pm
1 eb)−1 pk

1d = (pm
1 ea)−1 pk

1d ∈ Un(F(ea)−1d).

If a−1b · Fc−1d = Fe−1d, then e is the longest suffix of the word a in M2 which is not equal

to the word p1 f for some f ∈ M2. This holds when b = pt
1c for some positive integer t. We

claim that a−1b ·Un+t(Fc−1d) ⊆ Un(Fe−1d) for any open basic neighbourhood Un(Fe−1d) of the

point Fe−1d in (S, τ). Indeed, if x ∈ Un+t(Fc−1d), then x = (pm+t
1 c)−1pk+t

1 d for some positive

integers m, k > n, and hence we have that

a−1b · (pm+t
1 c)−1 pk+t

1 d = e−1p−l
1 pt

1c · (pm+t
1 c)−1pk+t

1 d = (pm+l
1 e)−1pk+t

1 d ∈ Un(Fe−1d).

In case (II) the proof of the continuity of binary operation in (S, τ) is similar to case (I).

Now we consider case (III).

If Fa−1b ·Fc−1d = 0 then Un(Fa−1b) · Un(Fc−1d) ⊆ {0}, for any open basic neighbourhoods

Un(Fa−1b) and Un(Fc−1d) of the points Fa−1b and Fc−1d in (S, τ), respectively.

If Fa−1b ·Fc−1d = Fa−1d then b = c and for every any open basic neighbourhood Un(Fa−1d)

of the point Fa−1d in (S, τ) we have that Un(Fa−1b) · Un(Fb−1d) ⊆ Un(Fa−1d). Indeed if

(pk
1a)−1 pt

1b ∈ Un(Fa−1b) and (pl
1b)−1pm

1 d ∈ Un(Fb−1d) then

(pk
1a)−1 pt

1b · (pl
1b)−1 pm

1 d = (pk
1a)−1 pt

1(b · b−1)p−l
1 pm

1 d = (ps
1a)−1 pz

1d,

for some positive integers s, z > n, and hence (ps
1a)−1 pz

1d ∈ Un(Fa−1d).

Thus, we proved that the binary operation on (S, τ) is continuous. Taking into account

that P2 is a dense subsemigroup of (S, τ) we conclude that (S, τ) is a topological semigroup.

Also, since T = S \ P2 ∪ {0} with the induced binary operation from S is isomorphic to the

semigroup of ω × ω-matrix units Bω we have that idempotents in S commute and moreover

Fa−1b ·Fb−1a ·Fa−1b = Fb−1a. This implies that S is an inverse semigroup. Also, for every open

basic neighbourhood Un(Fa−1b) of the point Fa−1b in (S, τ) we have that (Un(Fa−1b))
−1 =

Un(Fb−1a) for all n ∈ N and hence the inversion in (S, τ) is continuous.
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[27] Gutik O., Repovš D. On linearly ordered H-closed topological semilattices. Semigroup Forum 2008, 77 (3),

474–481. doi:10.1007/s00233-008-9102-4

[28] Higgins P.M. Techniques of semigroup theory. Oxford Univ. Press, New York, 1992.

[29] Jones D.G. Polycyclic monoids and their generalizations. PhD Thesis, Heriot-Watt University, 2011.

[30] Jones D.G., Lawson M.V. Graph inverse semigroups: Their characterization and completion. J. Algebra 2014, 409,

444–473. doi:10.1016/j.jalgebra.2014.04.001

[31] Lawson M. Inverse semigroups. The theory of partial symmetries. World Scientific, Singapore, 1998.
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Бардила С.O., Гутiк O.В. Про повний топологiчний iнверсний полiциклiчний моноїд // Карпатськi

матем. публ. — 2016. — Т.8, №2. — C. 183–194.

Вказано достатнi умови, за яких топологiчний iнверсний λ-полiциклiчний моноїд Pλ є абсо-

лютно H-замкненим в класi топологiчних iнверсних напiвгруп. Для довiльного нескiнченного

кардиналу λ побудовано найслабшу напiвгрупову iнверсну топологiю τmi на Pλ та наведено

приклад топологiчного iнверсного моноїда S, що мiстить полiциклiчний моноїд P2 як щiльну

дискретну пiднапiвгрупу.

Ключовi слова i фрази: iнверсна напiвгрупа, бiциклiчний моноїд, полiциклiчний, вiльний

моноїд, напiвгрупа матричних одиниць, топологiчна напiвгрупа, топологiчна iнверсна напiв-

група, мiнiмальна топологiя.
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COUPLED FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS

ALONG WITH CLR PROPERTY IN MENGER METRIC SPACES

Coupled fixed point problems have attracted much attention in recent times. The aim of this

paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled map-

pings in Menger metric space and use this notions to establish common coupled fixed point results

for four self mappings. Our work generalizes the recent results of Jian-Zhong Xiao [24] et al (2011).

The main result is supported by a suitable example.

Key words and phrases: Menger metric space, t-norm of H-type, weak compatibility coupled
common fixed point, CLR property, E.A. property, JCLR property.
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1 INTRODUCTION

The concept of a probabilistic metric space was introduced and studied by Menger [3, 19].

Since then, many authors have studied the fixed point property for mappings defined on prob-

abilistic metric spaces (see [2,4,7,12,24]). Jachymski [15] has proved some fixed point theorems

for probabilistic nonlinear contractions with a gauge function ϕ and discussed the relations be-

tween several assumptions concerning ϕ.

Bhaskar and Lakshmikantham [24] introduced the notion of coupled fixed points and

proved some coupled fixed point results in partially ordered metric spaces. The work [23]

was illustrated by proving the existence and uniqueness of the solution for a periodic bound-

ary value problem. These results were further extended and generalized by Lakshmikantham

and Ćirić [8] to coupled coincidence and coupled common fixed point results for nonlinear

contractions in partially ordered metric spaces.

Sedghi and al [5, 9–11] proved some coupled fixed point theorems under contractive con-

ditions in fuzzy metric spaces. The results proved by Fang [1] for compatible and weakly

compatible mappings under ϕ-contractive conditions in Menger spaces that provide a tool to

Hu [6] for proving fixed points results for coupled mappings and these results are the genuine

generalization of the result of [10].

Aamri and Moutawakil [22] introduced the concept of E.A. property in a metric space. Sin-

tunavarat and Kuman [14] introduced a new concept of CLR property. Very recently, Chauhan

et.al [13] introduced the notion of JCLR property. The importance of CLR property ensures

that one does not require the closeness of range subspaces.

In this paper, we give the concept of E.A. property, CLR property and JCLR property for

coupled mappings and prove a result which provides a generalization of the result of Zhong

Xiao [24].
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2 PRELIMINARIES

We now state some basic concepts and results which will be used. In the standard notation,

we suppose that R = (−∞,+∞), R
+ = [0,+∞), R = R ∪ {−∞,+∞} and Z

+ be the set of

positive integers.

A function F : R → [0, 1] is called a distribution function if it is non decreasing and

left continuous with F(−∞) = F(+∞) = 1. The class of all distribution functions is denoted

by D∞.

Suppose that D = {F ∈ D∞ : inf F D+
∞ (t) = 0, sup F (t) = 1}, D+

∞ = {F ∈ D∞ : F (0) = 0}

and D+ = D∩ D+
∞ (see [10, 17]).

A special element of D+ is the Heaviside function H defined by

H (t) =

{

1, t > 0,

0, t ≤ 0.

Definition 1 ([16, 17]). A function ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for

short, a t-norm) if the following conditions are satisfied for any a, b, c, d ∈ [0, 1] :

(∆-1) ∆ (a, 1) = a;

(∆-2) ∆ (a, b) = ∆ (b, a) ;

(∆-3) ∆ (a, b) ≥ ∆ (c, d) , for a ≥ c, b ≥ d;

(∆-4) ∆ (∆ (a, b) , c) = ∆ (a, ∆ (b, c)) .

Two examples of t-norm are ∆M (a, b) = min {a, b} and ∆P (a, b) = ab. It is evident that, as

regards the point wise ordering, ∆ ≤ ∆M for each t-norm ∆.

Definition 2 ([16–18]). A triplet (X, F, ∆) is called a generalized Menger probabilistic metric

space if X is a non-empty set, ∆ is t-norm and F is a mapping from X × X into D+
∞ satisfying

the following condition (F(x, y) for x, y ∈ X is denoted by Fx,y):

(MS-1) Fx,y (t) = H (t) for all t ∈ R if and only if x = y;

(MS-2) Fx,y (t) = Fy,x (t) for all x, y ∈ X and t ∈ R;

(MS-3) Fx,y (t + s) ≥ T
(

Fx,z (t) , Fz,y (s)
)

for all x, y, z ∈ X and t, s ∈ R
+.

A Menger probabilistic metric space (for short, a Menger PM-space) is a generalized Men-

ger space with F (X × X) ∈ D+.

Schweizer et al [1, 19] point out that if the t-norm T of a Menger PM-space satisfies the

condition sup
0<a<1

∆ (a, a) = 1, then (X, F, ∆) is a first countable Hausdorff topological space in

the (ε, λ) topology τ, i.e., the family of sets

{Ux (ε, λ) : ε > 0, λ ∈ [0, 1] , (x ∈ X)}

is the base of neighborhoods of point x for τ, where Ux (ε, λ) =
{

y ∈ X : Fx,y (ε) > 1 − λ
}

.

By virtue of this topology τ a sequence {xn} in (X, F, ∆) is said to be convergent to x (we

write xn → x or lim
n→∞

xn = x) if lim
n→∞

Fxn,x (t) = 1 for all t > 0; {xn} is called a Cauchy

sequences in (X, F, ∆) if for any given ε > 0 and λ ∈ [0, 1], there exists N = N (ε, λ) ∈ Z
+ such

that Fxn,xm (ε) > 1 − λ, whenever n, m ≥ N; (X, F, ∆) is said to be complete if each Cauchy

sequence in X is convergent to some point in X.

In the sequel, we will always assume that (X, F, ∆) is a Menger space with the (ε, λ) topo-

logy.
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Lemma 1. Let (X, d) be a usual metric space. Define a mapping F : X × X → D+ by

Fx,y (t) = H (t − d (x, y)) for x, y ∈ X and t > 0.

Then (X, F, ∆m) is a Menger PM-space. It is called the induced Menger PM space by (X, d) and

it is complete if (X, d) is complete.

An arbitrary t-norm can be extended (by (∆-3)) in a unique way to an n-ary operation. For

(a1, a2, . . . , an) ∈ [0, 1]n , n ∈ Z
+, the value ∆n (a1, a2, . . . , an) is defined by ∆1 (a1) = a1 and

∆n (a1, a2, . . . , an) = ∆
(

∆n−1 (a1, a2, . . . , an−1) , an

)

.

For each a ∈ [0, 1] , the sequence {∆n (a)}∞
n=1 is defined by ∆1 (a) = a and ∆n (a) =

∆
(

∆n−1 (a) , a
)

.

Definition 3. A t-norm ∆ is said to be of H-type if the sequence of functions {∆n (a)}∞
n=1 is

equicontinuous at a = 1.

The t-norm ∆m is a trivial example of a t-norm of H-type, but there are t-norms ∆ of H-type

with ∆ 6= ∆m. It is easy to see that if ∆ is of H-type, then ∆ satisfies sup
0<a<1

∆ (a, a) = 1.

Lemma 2. Let (X, F, ∆) be a Menger PM-space. For each λ ∈ (0, 1], define a function

dλ : X × X → R
+ by

dλ (x, y) = inf
{

t > 0 : Fx,y (t) > 1 − λ
}

. (1)

Then the following statements hold:

(1) dλ (x, y) < t if and only if Fx,y (t) > 1 − λ;

(2) dλ (x, y) = dλ (y, x) for all x, y ∈ X and λ ∈ (0, 1];

(3) dλ (x, y) = 0 for all λ ∈ (0, 1] if and only if x = y.

Lemma 3. Let (X, F, ∆) be a Menger PM-space and let {dλ}λ∈(0,1] be a family of pseudo-metrics

on X defined by (1).

If ∆ is a t-norm of H-type, then for each λ ∈ (0, 1] there exists µ ∈ (0, λ] such that for each

m ∈ Z
+,

dλ (x0, xm) ≤
m−1

∑
i=0

dµ (xi, xi+1) for all x0, x1, . . . , xm ∈ X.

Lemma 4. Suppose that F ∈ D+. For each n ∈ Z
+, let Fn : R → [0, 1] be nondecreasing, and

gn : (0,+∞) → (0,+∞) satisfies lim
n→+∞

gn (t) = 0 for any t > 0. If

Fn(gn(t)) ≥ F(t) for all t > 0,

then lim
n→+∞

Fn (t) = 1 for any t > 0.

Definition 4 ( [20]). An element x ∈ X is called a common fixed point of the mappings

f : X × X → X and g : X → X if

x = f (x, x) = g (x) .
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Definition 5 ([21]). An element (x, y) ∈ X × X is called:

(i) a coupled fixed point of the mapping f : X × X → X if

f (x, y) = x, f (y, x) = y;

(ii) a coupled coincidence point of the mappings f : X × X → X and g : X → X if

f (x, y) = g(x), f (y, x) = g (y) ;

(iii) a common coupled fixed point of the mappings f : X × X → X and g : X → X if

x = f (x, y) = g(x), y = f (y, x) = g (y) .

In [22], Abbas et al introduced the concept of weakly compatible mappings. Here we give a

similar concept in Menger metric spaces as follows.

Definition 6. Let (X, F, ∆) be a Menger metric space and let f : X × X → X and g : X → X be

two mappings. f and g are said to be weakly compatible (or w-compatible) if they commute at

their coupled coincidence points, i.e.; if (x, y) is a coupled coincidence point of f and g, then

g( f (x, y)) = f (g(x), g(y)), g( f (y, x)) = f (g(y), g(x)).

Definition 7 ([23]). Let A : X × X → X, B : X × X → X, T : X → X, S : X → X be four

mappings. Then, the pairs (B, S) and (A, T) are said to have common coupled coincidence

point if there exist a, b in X such that

B (a, b) = S (a) = T (a) = A (a, b) and B (b, a) = S (b) = T (b) = A (b, a) .

3 MAIN RESULTS

Now, we introduce the following concepts.

Definition 8. Let (X, F, ∆) be a Menger metric space and let mappings A : X × X → X and

S : X → X are said to satisfy the E.A. property if there exist sequences {xn} , {yn} ∈ X such

that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = x and lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = y

for some x, y ∈ X.

Definition 9. Let (X, F, ∆) be a Menger metric space and let A : X × X → X, B : X × X → X,

T : X → X, S : X → X be four mappings.

Then the pairs (B, T) and (A, S) are said to satisfy the common E.A. property if there exist

sequences {xn} , {yn} ,
{

x́n

}

,
{

ýn

}

∈ X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = lim
n→∞

B
(

x´
n, y´

n

)

= lim
n→∞

T
(

x´
n

)

= x,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = lim
n→∞

B
(

y´
n, x´

n

)

= lim
n→∞

T
(

y´
n

)

= y

for some x, y ∈ X.
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Definition 10. Let (X, F, ∆) be a Menger metric space. The mappings A : X × X → X and

S : X → X are said to satisfy the CLRS property if there exist sequences {xn} , {yn} ∈ X such

that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = Sx and lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = Sy

for some x, y ∈ X.

Definition 11. Let (X, F, ∆) be a Menger metric space and let A : X × X → X, B : X × X → X,

T : X → X, S : X → X be four mappings.

Then the pairs (B, T) and (A, S) are said to satisfy the common CLRST property if there

exist sequences {xn} , {yn} ,
{

x́n

}

,
{

ýn

}

∈ X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = lim
n→∞

B
(

x´
n, y´

n

)

= lim
n→∞

T
(

x´
n

)

= x,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = lim
n→∞

B
(

y´
n, x´

n

)

= lim
n→∞

T
(

y´
n

)

= y,

where x, y ∈ S (X) ∩ T (X) .

Jian-Zhong Xiao [24] proved the following result.

Theorem 1. Let (X, F, ∆) be a complete Menger metric space with ∆ is a t-norm of H-type and

∆ ≥ ∆p. Let ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} and
∞

∑
n=1

ϕn (t) < +∞

for any t > 0. Let A : X × X → X, T : X → X be two mappings such that

FA(x,y),A(u,v) (ϕ(t)) ≥
[

∆
(

FTx,Tu (t) , FTy,Tv (t)
)]1/2

for all x, y, u, v ∈ X and t > 0, where A (X × X) ⊆ T (X) , T is continuous and commutative

with A. Then there exists a unique u ∈ X such that u = Tu = A (u, u) .

We now give our main result which provides a generalization of Theorem 1.

Theorem 2. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type and ∆ ≥ ∆p.

Let ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} and
∞

∑
n=1

ϕn (t) < +∞ for any

t > 0. Let A : X × X → X, S : X → X be two mappings satisfying the following conditions:

(1) for all x, y, u, v ∈ X and t > 0

FA(x,y),A(u,v) (ϕ(t)) ≥
[

∆
(

FSx,Su (t) , FSy,Sv (t)
)]1/2

; (2)

(2) the pair (A, S) is w-compatible;

(3) the pair (A, S) satisfies CLRS property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point

x ∈ X such that x = A (x, x) = S (x) .
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Proof. Since A and S satisfy CLRS property, there exist sequences {xn} and {yn} in X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = S (p) , lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = S (q) (3)

for some x, y ∈ X.

Step 1. We show that A and S have a coupled coincidence point.

Since
∞

∑
n=1

ϕn (t) < +∞, we have lim
n→∞

ϕn (t) = 0, and so there exists n0 ∈ Z
+ such that

ϕn0 (t) < t. Thus, from (2) we have

FA(xn,yn),A(p,q) (t) ≥ FA(xn,yn),A(p,q) (ϕn0 (t))

≥
[

∆
(

FS(xn),S(p)

(

ϕn0−1 (t)
)

, FS(yn),S(q)

(

ϕn0−1 (t)
))]1/2

≥
[

FS(xn),S(p)

(

ϕn0−1 (t)
)

FS(yn),S(q)

(

ϕn0−1 (t)
)]1/2

.

(4)

Letting n → ∞ in (4), we have FS(p),A(p,q) (t) = 1, that is, A (p, q) = S (p) = x. Similarly,

S (q) = A (q, p) = y.

Since the pair (A, S) is weakly compatible, it follows that A (x, y) = S (x) and A (y, x) =

S (y) . Hence A and S have a coupled coincidence point.

Step 2. To show that S (x) = y, S (y) = x.

In fact, from (2) we have

FS(xn),S(y) (ϕ (t)) = FA(xn,yn),A(y,x) (ϕ (t)) ≥
[

∆
(

FS(xn),S(y) (t) , FS(yn),S(x) (t)
)]1/2

≥
[

FS(xn),S(y) (t) FS(yn),S(x) (t)
]1/2

.

(5)

Similarly, we have

FS(x),S(yn) (ϕ (t)) ≥
[

FS(xn),S(y) (t) FS(yn),S(x) (t)
]1/2

. (6)

Suppose that Qn (t) = FS(xn),S(y) (t) FS(yn),S(x) (t) . By (5) and (6), we have Qn (ϕ (t)) ≥ Qn−1 (t)

and hence,

Qn (ϕn (t)) ≥ Qn−1

(

ϕn−1 (t)
)

≥ · · · ≥ Q0 (t) . (7)

Furthermore, from (5)–(7) it follows that

FS(xn),S(y) (ϕn (t)) ≥ [Q0 (t)]
1/2 and FS(x),S(yn) (ϕn (t)) ≥ [Q0 (t)]

1/2 . (8)

It is evident that [Q0 (t)]
1/2 ∈ D+. Since lim

n→∞
ϕn (t) = 0, from (8) and Lemma 4 we have

lim
n→∞

S (xn) = S (y) and lim
n→∞

S (yn) = S (x) .

This shows that S (x) = y and S (y) = x. Hence, A (x, y) = y and A (y, x) = x.

Step 3. Next we shall show that x = y.

By (2) we have

Fx,y (ϕ (t)) = FA(y,x),A(x,y) (ϕ (t)) ≥
[

∆
(

FS(y),S(x) (t) , FS(x),S(y) (t)
)]1/2

≥ Fx,y (t) . (9)

From (9) we have Fx,y (ϕn (t)) ≥ Fx,y (t) . Using Lemma 4, we have Fx,y (t) = 1, i.e., x = y. The

uniqueness of x follows from (2). So, the proof of Theorem 2 is finished.
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Theorem 3. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type. Let

ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} , ϕ (t) < t and lim
n→∞

ϕn (t) = 0

for any t > 0. Let A : X × X → X, S : X → X be two mappings satisfying the following

conditions:

(1) for all x, y, u, v ∈ X and t > 0

FA(x,y),A(u,v) (ϕ(t)) ≥
[

FSx,Su (t) FSy,Sv (t)
]1/2

; (10)

(2) the pair (A, S) is w-compatible;

(3) the pair (A, S) satisfies CLRS property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point

x ∈ X such that x = A (x, x) = S (x) .

Proof. Since A and S satisfy CLRS property, there exist sequences {xn} and {yn} in X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = S (p) , lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = S (q) (11)

for some x, y ∈ X.

Step 1. We show that A and S have a coupled coincidence point.

From (10) and ϕ (t) < t, we obtain

FS(xn),A(p,q) (t) ≥ FS(xn),A(p,q) (ϕ (t)) = FA(xn,yn),A(p,q) (ϕ (t))

≥
[

FS(xn),S(p) (t) FS(yn),S(q) (t)
]1/2

.
(12)

Letting n → ∞ in (12), we have lim
n→∞

S (xn) = A (p, q). Hence, S (p) = A (p, q) = x.

Similarly, we can show that S (q) = A (q, p) = y.

Since the pair (A, S) is weakly compatible, it follows that A (x, y) = S (x), A (y, x) = S (y) .

Step 2. To show that S (x) = y, S (y) = x.

In fact, from (10) we have

FS(xn),S(y) (ϕ (t)) = FA(xn,yn),A(y,x) (ϕ (t)) ≥
[

FS(xn),S(y) (t) FS(yn),S(x) (t)
]1/2

. (13)

Similarly, we have

FS(x),S(yn) (ϕ (t)) ≥
[

FS(xn),S(y) (t) FS(yn),S(x) (t)
]1/2

. (14)

Suppose that Qn (t) = FS(xn),S(y) (t) FS(yn),S(x) (t) . By (13) and (14), we have

Qn (ϕn (t)) ≥ Qn−1

(

ϕn−1 (t)
)

≥ · · · ≥ Q0 (t) ;

FS(xn),S(y) (ϕn (t)) ≥ [Q0 (t)]
1/2 and FS(x),S(yn) (ϕn (t)) ≥ [Q0 (t)]

1/2 .

Since [Q0 (t)]
1/2 ∈ D+ and lim

n→∞
ϕn (t) = 0, by Lemma 4 we conclude that

lim
n→∞

S (xn) = S (y) and lim
n→∞

S (yn) = S (x) .
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This shows that S (x) = y and S (y) = x. Hence, A (x, y) = y and A (y, x) = x.

Step 3. Finally, we prove that x = y.

By (10) we have

Fx,y (ϕ (t)) = FA(y,x),A(x,y) (ϕ (t)) ≥
[

FS(y),S(x) (t) FS(x),S(y) (t)
]1/2

≥ Fx,y (t) . (15)

From (15), we have Fx,y (ϕn (t)) ≥ Fx,y (t) . Using Lemma 4, we have Fx,y (t) = 1, i.e., x = y.

The uniqueness of x follows from (10).

Theorem 4. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type. Let

ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} , ϕ (t) < t and lim
n→∞

ϕn (t) = +∞

for any t > 0. Let A : X × X → X, S : X → X be two mappings satisfying the following

conditions:

(1) for all x, y, u, v ∈ X and t > 0

FA(x,y),A(u,v) (t) ≥ min
{

FSx,Su (ϕ (t)) , FSy,Sv (ϕ (t))
}

; (16)

(2) the pair (A, S) is w-compatible;

(3) the pair (A, S) satisfies CLRS property.

Then A and S have a coupled coincidence point in X. Moreover, there exists a unique point

x ∈ X such that x = A (x, x) = S (x) .

Proof. Since A and S satisfy CLRS property, there exist sequences {xn} and {yn} in X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = S (p) , lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = S (q) (17)

for some x, y ∈ X.

Step 1. We show that A and S have a coupled coincidence point.

From (16) and (17) it follows that

FS(xn),A(p,q) (t) = FA(xn,yn),A(p,q) (t) ≥ min
{

FS(xn),S(p) (ϕ (t)) , FS(yn),S(q) (ϕ (t))
}

. (18)

Letting n → ∞ in (18), we have lim
n→∞

S (xn) = A (p, q) . Hence, S (p) = A (p, q) = x. Similarly,

we can show that S (q) = A (q, p) = y.

Since the pair (A, S) is weakly compatible, it follows that A (x, y) = S (x), A (y, x) = S (y) .

Step 2. We claim that S (x) = y, S (y) = x.

In fact, from (16) we have

FS(xn),S(y) (t) = FA(xn,yn),A(y,x) (t) ≥ min
{

FS(xn),S(y) (ϕ (t)) , FS(yn),S(x) (ϕ (t))
}

. (19)

Similarly, we have

FS(x),S(yn) (t) ≥ min
{

FS(xn),S(y) (ϕ (t)) , FS(yn),S(x) (ϕ (t))
}

. (20)

Suppose that Mn (t) = min
{

FS(xn),S(y) (t) , FS(yn),S(x) (t)
}

. From (19) and (20) it follows that

Mn (t) ≥ Mn−1 (ϕ (t)) ≥ · · · ≥ M0 (ϕn (t)) .
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Since lim
n→∞

ϕn (t) = +∞, we have

M0 (ϕn (t)) = min
{

FS(x0),S(y) (t) , FS(y0),S(x) (t)
}

→ 1 as n → ∞.

This shows that Mn (t) → 1 as n → ∞, so

lim
n→∞

S (xn) = S (y) and lim
n→∞

S (yn) = S (x) .

Hence, S (x) = y and S (y) = x.

Step 3. Finally, we prove that x = y.

By (16) we have

Fx,y (t) = FA(y,x),A(x,y) (t) ≥ min
{

FS(y),T(x) (ϕ (t)) , FS(x),T(y) (ϕ (t))
}

= Fx,y (ϕ (t)) . (21)

From (21), we have Fx,y (t) ≥ Fx,y (ϕn (t)) . Letting n → ∞, we have Fx,y (t) = 1, i.e., x = y.

Since the uniqueness of x follows from (16), the proof of Theorem 4 is completed.

Now we give another generalization of Theorem 1.

Corollary 1. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type. Let

ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} , ϕ (t) < t and lim
n→∞

ϕn (t) = 0

for any t > 0 and let A : X × X → X, S : X → X be two mappings satisfying the following

conditions:

(1) for all x, y, u, v ∈ X and t > 0

FA(x,y),A(u,v) (ϕ(t)) ≥
[

∆
(

FSx,Su (t) , FSy,Sv (t)
)]1/2

;

(2) the pair (A, S) is w-compatible;

(3) the pair (A, S) satisfies E.A. property.

If S (X) is a closed subspace of X, then A and S have a unique common fixed point in X.

Proof. Since A and S satisfy E.A. property, there exist sequences {xn} and {yn} in X such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = x, lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = y

for some x, y ∈ X.

It follows from S (X) being a closed subspace of X that x = S (p) , y = S (q) for some

p, q ∈ X and then A and S satisfy CLRS property. By Theorem 2, we get that A and S have a

unique common fixed point in X.

Corollary 2. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type. Let

ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} , ϕ (t) < t and lim
n→∞

ϕn (t) = 0

for any t > 0. Let A : X × X → X, S : X → X be two mappings satisfying the conditions of

Corollary 1.

Suppose that A (X × X) ⊆ S (X), if range of one of the maps A or S is a closed subspace of

X, then A and S have a unique common fixed point in X.
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Proof. It follows immediately from Corollary 1.

Taking S = IX in Theorem 2, we obtain the following

Corollary 3. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type. Let

ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} , ϕ (t) < t and lim
n→∞

ϕn (t) = 0

for any t > 0. Let A : X × X → X be a mapping satisfying the following condition, for all

x, y, u, v ∈ X and t > 0 :

(1)

FA(x,y),A(u,v) (ϕ(t)) ≥
[

∆
(

Fx,u (t) , Fy,v (t)
)]1/2

;

(2) there exist sequences {xn} and {yn} in X such that

lim
n→∞

A (xn, yn) = lim
n→∞

xn = x, lim
n→∞

A (yn, xn) = lim
n→∞

yn = y

for some x, y ∈ X.

Then there exists a unique z ∈ X such that z = A (z, z) .

Now, we prove Theorem 2, Theorem 3, Theorem 4 for four mappings satisfying CLRST

property before proving our main theorems, we begin with the following observation.

Lemma 5. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type and ∆ ≥ ∆p.

Let ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} and
∞

∑
n=1

ϕn (t) < +∞ for any

t > 0. Let A : X × X → X, B : X × X → X, T : X → X and S : X → X be four mappings

satisfying the following conditions:

(1) the pair (A, S) satisfies the CLRS property (or the pair (B, T) satisfies the CLRT property);

(2) A (X × X) ⊆ T (X) (or B (X × X) ⊆ S (X));

(3) T (X) (or S (X)) is complete subspace of X;

(4) B
(

x́n, ýn

)

converges for every sequences
{

x́n

}

and
{

ýn

}

in X whenever T
(

x́n

)

, T
(

ýn

)

converges (or A (xn, yn) converges for every sequences {xn} and {yn} in X whenever

S (xn) , S (yn) converges);

(5) for all x, y, u, v ∈ X and t > 0

FA(x,y),B(u,v) (ϕ (t)) ≥
[

∆
(

FSx,Tu (t) , FSy,Tv (t)
)]1/2

. (22)

Then (A, S) and (B, T) share the CLRST property.

Proof. Suppose the pair (A, S) satisfies the CLRS property, then there exist {xn} and {yn} in X

such that

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = a ∈ S (X) ,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = b ∈ S (X) .
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Since A (X × X) ⊆ T (X) (wherein T (X) is complete), for each {xn}, {yn} in X there corre-

spond sequences
{

x́n

}

and
{

ýn

}

in X such that

A (xn, yn) = T
(

x´
n

)

and A (yn, xn) = T
(

y´
n

)

.

Therefore,

lim
n→∞

A (xn, yn) = lim
n→∞

T
(

x´
n

)

= a,

lim
n→∞

A (yn, xn) = lim
n→∞

T
(

y´
n

)

= b,

where a, b ∈ S (X) ∩ T (X). Now, we prove that B
(

x́n, ýn

)

→ a and B
(

ýn, x́n

)

→ b.

Since
∞

∑
n=1

ϕn (t) < +∞, we have lim
n→∞

ϕn (t) = 0, and so there exists n0 ∈ Z
+ such that

ϕn0 (t) < t. Thus, from (22) we have

FA(xn,yn),B(x́n,ýn) (t) ≥ FA(xn,yn),B(x́n,ýn) (ϕn0 (t))

≥
[

∆
(

FS(xn),T(x́n)

(

ϕn0+1 (t)
)

, FS(yn),T(ýn)

(

ϕn0+1 (t)
))]1/2

≥
[

FS(xn),T(x́n)

(

ϕn0+1 (t)
)

FS(yn),T(ýn)

(

ϕn0+1 (t)
)]1/2

.

(23)

Letting n → ∞ in (23), we get lim
n→∞

B
(

x́n, ý2
n

)

= a. Similarly, we can show lim
n→∞

B
(

ýn, x́n

)

= b.

Thus, the pairs (A, S) and (B, T) share the CLRST property.

Theorem 5. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type and ∆ ≥ ∆p.

Let ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} and
∞

∑
n=1

ϕn (t) < +∞ for any

t > 0. Let A : X × X → X, B : X × X → X, T : X → X and S : X → X be four mappings

satisfying the inequality (22) of Lemma 5.

If the pairs (A, S) and (B, T) share the CLRST property, then (A, S) and (B, T) have a co-

incidence point each. Moreover A, B, S and T have a unique common fixed point if both the

pairs (A, S) and (B, T) are weakly compatible.

Proof. Since both the pairs (A, S) and (B, T) share the CLRST property, there exist four se-

quences {xn} , {yn} ,
{

x́n

}

and
{

ýn

}

in X such that:

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = lim
n→∞

T
(

x´
n

)

= lim
n→∞

B
(

x´
n, y´

n

)

= a,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = lim
n→∞

T
(

y´
n

)

= lim
n→∞

B
(

y´
n, x´

n

)

= b,
(24)

where a ∈ S (X) ∩ T (X) and b ∈ S (X) ∩ T (X). It implies that there exist points r, s, p, q ∈ X

such that

S (r) = a, S (s) = b, T (p) = a and T (q) = b.

Step 1. We show that B (p, q) = T (p) and B (q, p) = T (q) . Since
∞

∑
n=1

ϕn (t) < +∞, we have

lim
n→∞

ϕn (t) = 0 and so there exists n0 ∈ Z
+ such that ϕn0 (t) < t. Thus, from (22) we have

FT(x́n),B(p,q) (t) ≥ FT(x́n),B(p,q) (ϕn0 (t)) = FA(xn,yn),B(p,q) (ϕn0 (t))

≥
[

∆
(

FS(xn),T(p)

(

ϕn0−1 (t)
)

, FS(yn),T(q)

(

ϕn0−1 (t)
))]1/2

≥
[

FS(xn),T(p)

(

ϕn0−1 (t)
)

FS(yn),T(q)

(

ϕn0−1 (t)
)]1/2

.

(25)
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Letting n → ∞ in (25), we have lim
n→∞

T
(

x́n

)

= B (p, q). By (24), T (p) = B (p, q) = a. Similarly,

we can show that T (q) = B (q, p) = b.

Since the pair (B, T) is weakly compatible, so T (p) = B (p, q) = a implies T (a) = B (a, b),

similarly T (b) = B (b, a).

Now, we show that: S (r) = A (r, s) and S (s) = A (s, r) .

Since
∞

∑
n=1

ϕn (t) < +∞, we have lim
n→∞

ϕn (t) = 0 and so there exists n0 ∈ Z
+ such that

ϕn0 (t) < t. Thus, from (22) we get

FA(r,s),S(xn) (t) ≥ FA(r,s),S(xn) (ϕn0 (t)) = FA(r,s),B(x́n,ýn) (ϕn0 (t))

≥
[

∆
(

FS(r),T(x́n)

(

ϕn0−1 (t)
)

, FS(s),T(ýn)

(

ϕn0−1 (t)
))]1/2

≥
[

FS(r),T(x́n)

(

ϕn0−1 (t)
)

FS(s),T(ýn)

(

ϕn0−1 (t)
)]1/2

.

(26)

Letting n → ∞ in (26), we have lim
n→∞

S (xn) = A (r, s). By (24), S (r) = A (r, s) = a. Similarly,

we can show that S (s) = A (s, r) = b.

Since the pair (A, S) is weakly compatible, it follows that A (a, b) = S (a), A (b, a) = S (b) .

Step 2. We claim that Ta = b, Tb = a and Sa = b, Sb = a.

In fact, from (22) we have

FT(ýn),Ta (ϕ (t)) = FA(yn,xn),B(a,b) (ϕ (t)) ≥
[

∆
(

FS(yn),T(a) (t) , FS(xn),T(b) (t)
)]1/2

≥
[

FS(yn),T(a) (t) FS(xn),T(b) (t)
]1/2

.

(27)

Similarly, we have

FT(x́n),Tb (ϕ (t)) ≥
[

FS(xn),T(b) (t) FS(yn),Ta (t)
]1/2

. (28)

Suppose that Qn(t) = FS(xn),T(b)(t)FS(yn),Ta(t). By (27) and (28), we have Qn (ϕ (t)) ≥ Qn−1 (t) ,

hence

Qn (ϕn (t)) ≥ Qn−1

(

ϕn−1 (t)
)

≥ · · · ≥ Q0 (t) . (29)

Furthermore, from (27)–(29) it follows that

FT(ýn),Ta (ϕn (t)) ≥ [Q0 (t)]
1/2 and FT(x́n),Tb (ϕn (t)) ≥ [Q0 (t)]

1/2 . (30)

It is evident that [Q0 (t)]
1/2 ∈ D+. Since limn→∞ ϕn (t) = 0, from (30) and Lemma 4 we have

lim
n→∞

T
(

y´
n

)

= Ta and lim
n→∞

T
(

x´
n

)

= Tb.

This shows that Ta = b and Tb = a. Hence B (a, b) = b and B (b, a) = a.

Similarly, we can show that Sa = b and Sb = a. Hence A (a, b) = b and A (b, a) = a.

Step 3. Now we prove that a = b.

By (22) we have

Fa,b (ϕ (t)) = FA(b,a),B(a,b) (ϕ (t)) ≥
[

∆
(

FS(b),T(a) (t) , FS(a),T(b) (t)
)]1/2

≥ Fa,b (t) . (31)

From (31), we have Fa,b (ϕn (t)) ≥ Fa,b (t) . Using Lemma 4, we obtain Fa,b (t) = 1, i.e., a = b.

The uniqueness of a follows from (22). So, the proof of Theorem 5 is finished.
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Theorem 6. Let (X, F, ∆) be a Menger metric space with ∆ is a t-norm of H-type and ∆ ≥ ∆p.

Let ϕ : R
+ → R

+ be a gauge function such that ϕ−1 ({0}) = {0} and
∞

∑
n=1

ϕn (t) < +∞ for any

t > 0. Let A : X × X → X, B : X × X → X, T : X → X and S : X → X be four mappings

satisfying the condition (1)–(5) of Lemma 1.

Then A, B, S and T have a unique common fixed point if both the pairs (A, S) and (B, T)

are w-compatible.

Proof. In view of Lemma 5, both the pairs (A, S) and (B, T) enjoy the CLRST property, therefore

there exist two sequences {xn} , {yn} ,
{

x́n

}

and
{

ýn

}

in X such that:

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = lim
n→∞

T
(

x´
n

)

= lim
n→∞

B
(

x´
n, y´

n

)

= a,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = lim
n→∞

T
(

y´
n

)

= lim
n→∞

B
(

y´
n, x´

n

)

= b,

where a ∈ S (X) ∩ T (X) and b ∈ S (X) ∩ T (X) .

The rest of the proof runs on the lines of the proof of Theorem 5.

Similarly, we can prove Theorem 3 and Theorem 4 for four mappings using CLRST prop-

erty.

Now, we present some illustrative examples which demonstrate the validity of the hypothe-

ses and degree of utility of our results.

Example 1. Let X =
[

0, 1
2

)

∪ {1} and Fx,y (t) =
t

t+|x−y|
for all x, y ∈ X and t > 0. Then (X, F, ∆)

is a Menger metric space, but it is not complete.

Obviously (X, F, ∆) is not complete. Define the mappings A : X × X → X, B : X × X → X,

T : X → X and S : X → X by

A (x, y) =

{

0 if (x, y) = (1, 1) ,
x2+y2

6 if (x, y) 6= (1, 1) ,

B (x, y) =

{

1
2 if (x, y) = (1, 1) ,
x+y

2 if (x, y) 6= (1, 1) ,

S (x) =

{

1
12 if x = 1,
x2

3 if x 6= 1,

T (x) =

{

1
2 if x = 1,

x if x 6= 1.

It is noted that A (X × X) =
[

0, 1
12

)

* T (X) =
[

0, 1
2

]

, B (X × X) =
[

0, 1
2

]

* S (X) =
[

0, 1
12

]

and T(X) and S(X) are complete.

Next, we show that our results can be used for this case.

Let us prove that A, B, S and T satisfy the CLRST property. Consider the sequences {xn} ,

{yn} ,
{

x́n

}

and
{

ýn

}

in X which are defined by

xn =
1

2n
, yn =

1

3n
, x´

n =
1

4n
and y´

n =
1

5n
, n = 1, 2, 3, . . .
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Since

lim
n→∞

A (xn, yn) = lim
n→∞

S (xn) = lim
n→∞

T
(

x´
n

)

= lim
n→∞

B
(

x´
n, y´

n

)

= 0 ∈ S (X) ∩ T (X) ,

lim
n→∞

A (yn, xn) = lim
n→∞

S (yn) = lim
n→∞

T
(

y´
n

)

= lim
n→∞

B
(

y´
n, x´

n

)

= 0 ∈ S (X) ∩ T (X) .

Thus A, B, S and T satisfy the CLRST property with these sequences.

Next, we will show that the pairs (A, S) and (B, T) are w-compatible.

It is obtained that

1. A(x, y) = S(x) and A(y, x) = S(y) if and only if x = y = 0, since A(S (0) , S (0)) =

S(A (0, 0)), mappings A and S are w-compatible, and

2. B(x, y) = T(x) and B(y, x) = T(y) if and only if x = y = 0, since B(T (0) , T (0)) =

T(B (0, 0)), mappings B and T are w-compatible.

Finally, we prove that for x, y, u, v ∈ X,

FA(x,y),B(u,v) (ϕ (t)) ≥
[

∆
(

FSx,Tu (t) , FSy,Tv (t)
)]1/2

.

Let ϕ : (0, ∞) → (0, ∞) by ϕ (t) = 1
2 t. Then lim

n→+∞
ϕn (t) = 0 for any t > 0. For x, y, u, v ∈ X,

we distinguish the following cases.

Case 1. (x, y) 6= (1, 1) and (u, v) 6= (1, 1). In this case we have

FA(x,y),B(u,v) (kt) =
t
2

t
2 +

∣

∣

∣

x2+y2

6 − u+v
2

∣

∣

∣

=
t

t +
∣

∣

∣

(

x2

3 − u
)

+
(

y2

3 − v
)
∣

∣

∣

≥
t

t +
∣

∣

∣

x2

3 − u
∣

∣

∣

≥ min
{

FSx,Tu (t) , FSy,Tv (t)
}

.

Case 2. (x, y) 6= (1, 1) and (u, v) = (1, 1) .

FA(x,y),B(u,v) (kt) =
t
2

t
2 +

∣

∣

∣

x2+y2

6 − 1
2

∣

∣

∣

=
t

t +
∣

∣

∣

x2+y2

3 − 1
∣

∣

∣

≥
t

t +
∣

∣

∣

x2

3 − 1
2

∣

∣

∣

≥ min
{

FSx,Tu (t) , FSy,Tv (t)
}

.

Case 3. (x, y) = (1, 1) and (u, v) 6= (1, 1) .

FA(x,y),B(u,v) (kt) =
t
2

t
2 +

∣

∣

∣

x+y
2

∣

∣

∣

=
t

t + |x + y|

≥
t

t +
∣

∣

∣
x − 1

12

∣

∣

∣

≥ min
{

FSx,Tu (t) , FSy,Tv (t)
}

.

Case 4. (x, y) = (1, 1) and (u, v) = (1, 1).

FA(x,y),B(u,v) (kt) =
t
2

t
2 +

1
2

=
t

t + 1
2

≥ min
{

FSx,Tu (t) , FSy,Tv (t)
}

.

Hence, all the hypotheses of Theorem 5 hold. Clearly (0, 0) is the unique common coupled

fixed point of A, B, S and T.
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Бен Аоуа Л., Алiуче А. Теореми про зчеплену нерухому точку для слабко сумiсних вiдображень

у сукупностi з CLR властивiстю в метричних просторах Менґера // Карпатськi матем. публ.

— 2016. — Т.8, №2. — C. 195–210.

Проблеми зв’язної нерухомої точки привертають значну увагу в теперiшнiй час. Мета цiєї

статтi полягає у розширеннi понять E.A. властивостi, CLR властивостi та JCLR властивостi для

зв’язних вiдображень в метричному просторi Менґера i використаннi цих понять для дослi-

дження загальних результатiв про зв’язну нерухому точку для чотирьох власних вiдображень.

Наша робота узагальнює результати Цян-Хжонг Ксяо [24] та iн. Основний результат наведено

з використанням вiдповiдного прикладу.

Ключовi слова i фрази: метричний простiр Менґера, t-норма типу H, слабка вiдповiднiсть

зв’язної нерухомої точки, CLR властивiсть, E.A. властивiсть, JCLR властивiсть.
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EXTENSIONS OF MULTILINEAR MAPPINGS TO POWERS OF LINEAR SPACES

We consider the question of the possibility to recover a multilinear mapping from the restriction

to the diagonal of its extension to a Cartesian power of a space.
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INTRODUCTION

Let X and Y be linear spaces over the same field K. It is well-known (see e. g. [1, Theo-

rem 1.10]) that every symmetric n-linear mapping A : Xn → Y can be recovered from its restric-

tion to the diagonal Â : X → Y, Â(x) = A(x, . . . , x), by means of the so-called Polarization

Formula:

A(x1, . . . , xn) =
1

n!2n ∑
ε1,...,εn=±1

ε1 . . . εn Â(ε1x1 + . . . + εnxn).

But in general if A is non-symmetric, it cannot be recovered from Â. For example, if A is alter-

nating, then Â is equal to zero. Let us recall that A is called alternating if A(x
σ(1), . . . , x

σ(n)) =

(−1)σ A(x1, . . . , xn) for every x1, . . . , xn ∈ X and σ ∈ Sn, where Sn is the group of all permuta-

tions of n elements and (−1)σ is the sign of the permutation σ.

In [1, p. 8] it has been introduced mappings between complex linear spaces, which are

linear with respect to some arguments and antilinear with respect to other arguments. If such

a mapping is symmetric with respect to “linear” and “antilinear” arguments separately, then it

can be recovered from its restriction to the diagonal by means of polarization formulas, proved

in [2] and [3]. Note that in this case there are no any requirements of symmetry between

“linear” and “antilinear” arguments. In some cases for multilinear mappings there is a similar

situation. For example, if A : Xn → Y is an n-linear mapping, then a mapping Ã : (Xn)n → Y,

defined by

Ã(x1, . . . , xn) = A(x
(1)
1 , . . . , x

(n)
n ),

where xj = (x
(1)
j , . . . , x

(n)
j ) ∈ Xn, j ∈ {1, . . . , n}, is an n-linear mapping too (in general,

non-symmetric) and its restriction to the diagonal ̂̃A(x) is equal to A(x(1), . . . , x(n)) for x =

(x(1), . . . , x(n)) ∈ Xn. Therefore, A and, consequently, Ã, can be recovered from the restriction

of Ã to the diagonal.

We consider the question of the possibility of recovering of a multilinear mapping from the

restriction to the diagonal of its extension to a power of a space.
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1 THE MAIN RESULT

Let M = (mij)
n
i,j=1 be a matrix of scalars from K. Then for every n-linear mapping A :

Xn → Y a mapping EM(A) : (Xn)n → Y, defined by

EM(A)(x1, . . . , xn) = A(m11x
(1)
1 + . . . + m1nx

(n)
1 , · · · , mn1x

(1)
n + . . . + mnnx

(n)
n ),

where x1, . . . , xn ∈ Xn, is an n-linear mapping. Its restriction to the diagonal is equal to

ÊM(A)(x) =
n

∑
k1=1

. . .
n

∑
kn=1

m1k1
. . . mnkn

A(x(k1), . . . , x(kn)). (1)

Note that if mij = 1, i = 1, . . . , n, for the fixed j ∈ {1, . . . , n}, then EM(A) is an extension of A.

Proposition 1.1. For every n-linear alternating mapping A : Xn → Y,

ÊM(A)(x) = det(M)A(x(1) , . . . , x(n)),

where x = (x(1), . . . , x(n)) ∈ Xn.

Proof. Since A is alternating, A(x(k1), . . . , x(kn)) = 0 if kl = ks for some l 6= s. Therefore, by (1),

ÊM(A)(x) = ∑
σ∈Sn

m1σ(k1)
. . . mnσ(kn)A(x(σ(1)), . . . , x(σ(n))).

Since A(x(σ(1)), . . . , x(σ(n))) = (−1)σ A(x(1), . . . , x(n)), therefore

ÊM(A)(x) = ∑
σ∈Sn

(−1)σm1σ(k1)
. . . mnσ(kn)A(x(1), . . . , x(n)) = det(M)A(x(1) , . . . , x(n)).

Let us consider recovering of multilinear mappings, which in general are neither symmetric

nor alternating. It can be easily seen that if M is a diagonal matrix, then

ÊM(A)(x) = m11 . . . mnn A(x(1), . . . , x(n))

for every n-linear mapping A. Let us construct a non-diagonal matrix M′ such that every n-

linear mapping A can be recovered from ÊM′(A). Let

M′ =




1 1 1 . . . 1

1 −1 1 . . . 1

1 1 −1 . . . 1
...

...
...

. . .
...

1 1 1 . . . −1




.

For k ∈ {1, . . . , n} let ik : X → Xn, ik(x) = (0, . . . , 0︸ ︷︷ ︸
k−1

, x, 0, . . . , 0).
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Theorem 1. The n-linear mapping A can be recovered from ÊM′(A) by means of the formula:

A(x1, . . . , xn) =
1

22n−1

1

∑
j2,...,jn=0

(−1)j2+...+jn ∑
ε1,...,εn=±1

ε1 . . . εnÊM′(A)

×
(

ε1i1(x1) + ε2p
(2)
j2

(x2) + . . . + εn p
(n)
jn

(xn)
)

,

(2)

where

p
(k)
jk
(x) =

{
i1(x), if jk = 0,

ik(x), if jk = 1

for k ∈ {2, . . . , n}.

Proof. Let y1 = i1(x1), y2 = p
(2)
j2

(x2), . . . , yn = p
(n)
jn

(xn). Notice that

∑
ε1,...,εn=±1

ε1 . . . εnÊM′(A)(ε1y1 + . . . + εnyn)

=
n

∑
k1,...,kn=1

EM′(A)(yk1
, . . . , ykn

) ∑
ε1,...,εn=±1

ε1 . . . εnεk1
. . . εkn

and

∑
ε1,...,εn=±1

ε1 . . . εnεk1
. . . εkn

=

{
2n, if k1 6= . . . 6= kn,

0, otherwise.

Therefore,

1

2n ∑
ε1,...,εn=±1

ε1 . . . εnÊM′(A)(ε1y1 + . . . + εnyn) = ∑
σ∈Sn

EM′(A)(y
σ(1), . . . , y

σ(n)).

For σ ∈ Sn such that σ(n) = n we have

1

∑
jn=0

(−1)jn EM′(A)(y
σ(1), . . . , y

σ(n−1), y
σ(n)) =

1

∑
jn=0

(−1)jn EM′(A)
(

y
σ(1), . . . , y

σ(n−1), p
(n)
jn

(xn)
)

= EM′(A)(y
σ(1), . . . , y

σ(n−1), i1(xn))− EM′(A)(y
σ(1), . . . , y

σ(n−1), in(xn))

= 2EM′(A)(y
σ(1), . . . , y

σ(n−1), i1(xn)).

For σ ∈ Sn such that σ(n) 6= n we have

1

∑
jn=0

(−1)jn EM′(A)(y
σ(1) , . . . , y

σ(n)) =
1

∑
jn=0

(−1)jn
(

y
σ(1), . . . , p

(n)
jn

(xn), . . . , y
σ(n)

)

= EM′(A)(y
σ(1), . . . , i1(xn), . . . , y

σ(n))− EM′(A)(y
σ(1), . . . , in(xn), . . . , y

σ(n)) = 0.

Therefore, the right-hand side of (2) is equal to

1

2n−2

1

∑
j2,...,jn−1=0

(−1)j2+...+jn−1 ∑
σ∈Sn, σ(n)=n

EM′(A)(y
σ(1) , . . . , y

σ(n−1), i1(xn)).

After applying this method n − 1 times we obtain that the right-hand side of (2) is equal to

EM′(A)(i1(x1), i1(x2), . . . , i1(xn)), which is equal to A(x1, x2, . . . , xn).
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THE VERTEX ZAGREB INDICES OF SOME GRAPH OPERATIONS

Recently, Tavakoli et al. [6] introduced a new version of Zagreb indices, named as vertex Zagreb

indices. In this paper explicit expressions of different graphs operations of vertex Zagreb indices are

presented and also as an application, explicit formulas for vertex Zagreb indices of some chemical

graphs are obtained.

Key words and phrases: degree, topological index, Zagreb index, graph operations.
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INTRODUCTION

In this paper, all the graphs are simple connected, having no directed or weighted edges.

Let G be such a graph with vertex set V(G) and edge set E(G). Let the number of vertices and

edges of G will be denoted by n and m respectively. Also let the edge connecting the vertices

u and v is denoted by uv. The degree of a vertex v, is the number of first neighbors of v and is

denoted by dG(v). Let N(u) denotes the first neighbor set of u; then |N(u)| = dG(u). As usual

Pn and Cn denote a path and cycle graph of order n respectively. Let, ∑ denotes the class of

all graphs, then a function T : ∑ → R+ is known as a topological index if for every graph H

isomorphic to G, T(G) = T(H). Thus a topological index transforming chemical information

of a molecular graph by means of a numeric parameter which characterize its topology and is

necessarily invariant under automorphism of graphs.

The first and second Zagreb indices of a graph were introduced in 1972 [1], denoted by

M1(G) and M2(G) and are respectively defined as

M1(G) = ∑
v∈V(G)

dG(v)
2 = ∑

uv∈E(G)

[dG(u) + dG(v)] and M2(G) = ∑
uv∈E(G)

dG(u)dG(v).

These indices are among one of the most important vertex-degree based topological indices

and have good application, so that get lots of attention from chemists and mathematicians

(see [2–5, 7]).

There are various study of different versions of Zagreb indices. One of the modified ver-

sions of classical Zagreb indices, the vertex version of first and second Zagreb indices were

introduced by Tavakoli et al. in [6] to calculate the eccentric connectivity index and Zagreb

coindices of graphs under generalized hierarchical product and are defined as

УДК 519.1
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M̄∗
1(G) = ∑

{u,v}⊆V(G)

[dG(u) + dG(v)], M̄∗
2(G) = ∑

{u,v}⊆V(G)

dG(u)dG(v).

In that paper, they also derived explicit expressions of first and second vertex Zagreb in-

dices of generalized hierarchical product graphs. Till date, the study of these indices are largely

limited and hence we have attracted in studying mathematical properties of these vertex ver-

sion of Zagreb indices.

Graph operations played a very important role in chemical graph theory, as some chem-

ically interesting graphs can be obtained by different graph operations on some general or

particular graphs. In [7], Khalifeh et al. derived some exact formula for computing first and

second Zagreb indices under some graph operations. In [8], Ashrafi et al. presented some

explicit formulae of Zagreb coindices under some graph operations. In [9], Das et al. derived

some upper bounds for multiplicative Zagreb indices for different graph operations. In [10]

and [11], the present author obtained F-index and F-coindex of different graph operations.

In [12] the present author found reformulated first Zagreb index under different graph opera-

tions. In [13], Azari and Iranmanesh presented explicit formulas for computing the eccentric-

distance sum of different graph operations. There are several other results regarding various

topological indices under different graph operations are available in the literature (for details

see [14–23]). In this paper, we derive some exact expression of the first and second vertex Za-

greb indices of different graph operations such as union, join, Cartesian product, composition

and corona product of graphs.

1 MAIN RESULTS

In this section, we study the first and second vertex Zagreb indices under union, join, Carte-

sian product, composition and corona product of graphs. All these operations are binary,

and the join and Cartesian product of graphs are commutative operations, whereas the com-

position and corona product operations are noncommutative. Let G1 and G2 be two simple

connected graphs, so that their vertex sets and edge sets are represented as V(Gi) and E(Gi)

respectively, for i ∈ {1, 2}. Also let, ni and mi denote the number of vertices and edges of Gi

respectively, for i ∈ {1, 2}.

1.1 Union

Definition 1.1. The union of two graphs G1 and G2 is the graph denoted by G1 ∪ G2 with the

vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2). In this case we assume that V(G1) and

V(G2) are disjoint.

The degree of a vertex v of G1 ∪ G2 is equal to degree of that vertex in the component Gi,

i = 1, 2, that contains it. In the following we calculate the first and second vertex Zagreb

indices of G1 ∪ G2.

Theorem 1. Let G1 and G2 be two connected graphs, then

M̄∗
1 (G1 ∪ G2) = M̄∗

1(G1) + M̄∗
1(G2) + 2n2m1 + 2n1m2.

Proof. From definition, it is clear that, the vertex Zagreb index of G1 ∪ G2 is equal to the sum

of the vertex Zagreb index of the components Gi, in addition to that the contributions of the
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missing edges between the components, which makes the edge set of the complete bipartite

graph Kn1,n2 . Thus we have

M̄∗
1(G1 ∪ G2) = ∑

{u,v}∈V(G1)

[

dG1
(u) + dG1

(v)
]

+ ∑
{u,v}∈V(G2)

[dG2
(u) + dG2

(v)]

+ ∑
u∈V(G1)

∑
v∈V(G2)

[

dG1
(u) + dG2

(v)
]

,

which proves the desired result.

Theorem 2. Let G1 and G2 be two connected graphs, then

M̄∗
2 (G1 ∪ G2) = M̄∗

2(G1) + M̄∗
2(G2) + 4m1m2.

Proof. From definition, similar to last theorem, we have

M̄∗
2(G1 ∪ G2) = ∑

{u,v}∈V(G1)

dG1
(u)dG1

(v) + ∑
{u,v}∈V(G2)

dG2
(u)dG2

(v)

+ ∑
u∈V(G1)

∑
v∈V(G2)

dG1
(u)dG2

(v),

which proves the desired result.

1.2 Join

Definition 1.2. The join of two graphs G1 and G2 with disjoint vertex sets V(G1) and V(G2) is

the graph denoted by G1 + G2 with the vertex set V(G1)∪V(G2) and edge set E(G1)∪ E(G2)∪

{uv : u ∈ V(G1), v ∈ V(G2)}.

Thus in the sum of two graphs all the vertices of one graph are connected with all the

vertices of the other graph, keeping all the edges of both graphs. So, the degree of the vertices

of G1 + G2 is given by

dG1+G2
(v) =

{

dG1
(v) + n2, v ∈ V(G1)

dG2
(v) + n1, v ∈ V(G2).

In the following Theorem the first vertex Zagreb index of G1 + G2 is calculated.

Theorem 3. The first vertex Zagreb index of G1 + G2 is given by

M̄∗
1 (G1 + G2) = M̄∗

1(G1) + M̄∗
1(G2) + 2n1m2 + 2n2m1 + 2n1n2(n1 + n2 − 1).
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Proof. Using definition of first vertex Zagreb index, we have

M̄∗
1(G1 + G2) = ∑

{u,v}⊆V(G1+G2)

[

dG1+G2
(u) + dG1+G2

(v)
]

= ∑
{u,v}∈V(G1)

[

dG1+G2
(u) + dG1+G2

(v)
]

+ ∑
{u,v}⊆V(G2)

[

dG1+G2
(u) + dG1+G2

(v)
]

+ ∑
u∈V(G1),v∈V(G2)

[

dG1+G2
(u) + dG1+G2

(v)
]

= ∑
{u,v}⊆V(G1)

[

dG1
(u) + dG1

(v) + 2n2

]

+ ∑
{u,v}⊆V(G2)

[dG2
(u) + dG2

(v) + 2n1]

+ ∑
u∈V(G1),v∈V(G2)

[

dG1
(u) + n2 + dG2

(v) + n1

]

= ∑
{u,v}⊆V(G1)

[

dG1
(u) + dG1

(v)
]

+ 2n2.
n1(n1 − 1)

2

+ ∑
{u,v}⊆V(G2)

[dG2
(u) + dG2

(v)] + 2n1.
n2(n2 − 1)

2
+ n1n2(n1 + n2) + 2n1m2 + 2n2m1,

which proves the desired result.

In the following, next we calculate the second vertex Zagreb index of G1 + G2.

Theorem 4. The second vertex Zagreb index of G1 + G2 is given by

M̄∗
2(G1 + G2) = M̄∗

2(G1) + n2M̄∗
1 (G1) + M̄∗

2(G2) + n1M̄∗
1(G2) +

1

2
n1n2

2(n1 − 1)

+
1

2
n1

2n2(n2 − 1) + 4m1m2 + 2n1n2(m1 + m2) + n1
2n2

2.

Proof. Using definition of first vertex Zagreb index, we have

M̄∗
2(G1 + G2) = ∑

{u,v}⊆V(G1+G2)

dG1+G2
(u)dG1+G2

(v)

= ∑
{u,v}⊆V(G1)

dG1+G2
(u)dG1+G2

(v) + ∑
{u,v}⊆V(G2)

dG1+G2
(u)dG1+G2

(v)

+ ∑
u∈V(G1),v∈V(G2)

dG1+G2
(u)dG1+G2

(v) = ∑
{u,v}⊆V(G1)

(dG1
(u) + n2)(dG1

(v) + n2)

+ ∑
{u,v}⊆V(G2)

(dG2
(u) + n1)(dG2

(v) + n1) + ∑
u∈V(G1),v∈V(G2)

(dG1
(u) + n2)(dG2

(v) + n1)

= ∑
{u,v}⊆V(G1)

dG1
(u)dG1

(v) + n2 ∑
{u,v}⊆V(G1)

[

dG1
(u) + dG1

(v)
]

+ n2
2.

n1(n1 − 1)

2
+ ∑

{u,v}⊆V(G2)

dG2
(u)dG2

(v) + n1 ∑
{u,v}⊆V(G2)

[dG2
(u) + dG2

(v)]

+ n1
2.

n2(n2 − 1)

2
+ ∑

u∈V(G1),v∈V(G2)

(dG1
(u)dG2

(v) + n1dG1
(u) + n2dG2

(v) + n1n2)

= M̄∗
2(G1) + n2M̄∗

1(G1) +
1

2
n1n2

2(n1 − 1) + M̄∗
2(G2) + n1M̄∗

1(G2)

+
1

2
n1

2n2(n2 − 1) + 4m1m2 + 2n1n2m2 + 2n1n2m1 + n1
2n2

2,

from where the desired result follows.
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Example 1. The complete bipartite graph Kp,q can be defined as Kp,q = K̄p + K̄q. So its vertex

Zagreb indices can be calculated from the previous theorem as

(i) M̄∗
1(Kp,q) = 2pq(p + q − 1),

(ii) M̄∗
2(Kp,q) = pq

[

2pq − 1
2(p + q)

]

.

The suspension of a graph G is defined as sum of G with a single vertex. So from the

previous proposition the following corollary follows.

Corollary 1.1. The first and second vertex Zagreb indices of suspension of a graph G is given

by

(i) M̄∗
1(G + K1) = M̄∗

1(G) + 2n2 + 2m,

(ii) M̄∗
2(G + K1) = M̄∗

1(G) + M̄∗
2 (G) + 2mn + 1

2 n(3n − 1).

Example 2. The star graph Sn with n vertices is the suspension of empty graph K̄n−1. So its first

and second vertex Zagreb indices can be respectively calculated from the previous corollary

as

(i) M̄∗
1(Sn) = 2(n − 1)2,

(ii) M̄∗
2(Sn) =

3
2(n − 1)2 − 1

2(n − 1).

Example 3. The wheel graph Wn on (n + 1) vertices is the suspension of Cn. So from the

previous corollary its first and second vertex Zagreb indices are given by

(i) M̄∗
1(Cn + K1) = 4n2,

(ii) M̄∗
2(Cn + K1) =

15
2 n2 − 9

2 n.

Example 4. The fan graph Fn on (n+1) vertices is the suspension of Pn. So from the previous

corollary its first and second vertex Zagreb indices are given by

(i) M̄∗
1(Pn + K1) = 2n(2n − 1),

(ii) M̄∗
2(Pn + K1) = 2n(2n − 1).

1.3 The Cartesian product

Definition 1.3. Let G1 and G2 be two connected graphs. The Cartesian product of G1 and G2

denoted by G1 × G2, is the graph with vertex set V(G1)× V(G2) and any two vertices (up, vr)

and (uq, vs) are adjacent if and only if [up = uq ∈ V(G1) and vrvs ∈ E(G2)] or [vr = vs ∈ V(G2)

and upuq ∈ E(G1)] and r, s = 1, 2, ..., |V(G2)|.

In the following Theorem we express the first and second vertex Zagreb indices of the

Cartesian product of graphs.

Theorem 5. Let G1 and G2 be two connected graphs, then

(i) M̄∗
2(G1 × G1) = 2n1n2(n1m2 + n2m1)− 2m1n2 − 2m2n1,

(ii) M̄∗
2(G1 × G2) = 2(n1m2 + n2m1)

2 − 4m1m2 −
1
2 n2M1(G1)−

1
2 n1M1(G2).
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The proof of the above Theorem follows by applying Theorem 1 and 4 of [7] and Proposition

13 of [8] respectively and using the fact that M1(G) = M̄∗
1(G)− M̄1(G) and M2(G) = M̄∗

2(G)−

M̄2(G).

Example 5. The Ladder graph Ln , made by n square and (2n + 2) vertices is the cartesian

product of P2 and Pn+1. So the first and second vertex Zagreb indices of Ln are given by

(i) M̄∗
1(Ln) = 2(6n2 + 5n + 1),

(ii) M̄∗
2(Ln) = 3(6n2 + n + 1).

Example 6. We have C4-nanotorus TC4(m, n) = Cn × Cm. So its first and second vertex Zagreb

indices are given by

(i) M̄∗
1(TC4(m, n)) = 4mn(mn − 1),

(ii) M̄∗
2(TC4(m, n)) = 8mn(mn − 1).

Example 7. We have C4-nanotube TUC4(m, n) = Pn × Pm. So from the last theorem, its first

and second vertex Zagreb indices are given by

(i) M̄∗
1(TUC4(m, n)) = 2(2mn − n − m)(mn − 1),

(ii) M̄∗
2(TUC4(m, n)) = 2(2mn − n − m)− 4(n − 1)(m − 1)− (4mn − 3(n + m)).

1.4 Composition

Definition 1.4. The composition or lexicographic product of two graphs G1 and G2 is denoted

by G1[G2] and any two vertices (u1, u2) and (v1, v2)are adjacent if and only if u1v1 ∈ E(G1)or

[u1 = v1 and u2v2 ∈ E(G2)].

The vertex set of G1[G2] is V(G1)×V(G2) and the degree of a vertex (a, b) of G1[G2] is given

by dG1[G2](a, b) = n2dG1
(a) + dG2

(b).

The proof of the next Theorem follows similarly from the expressions of Zagreb indices

and Zagreb coindices of composition of graphs from Theorem 3 and 6 of [7] and Proposition

18 of [8] respectively.

Theorem 6. Let G1 and G2 be two connected graphs, then the first and second vertex Zagreb

indices of G1[G2] is given by

(i) M̄∗
1(G1[G2]) = 2n1n2(n1m2 + n2

2m1)− 2m1(n1 + n2
2),

(ii) M̄∗
2(G1[G2]) = 2m1n2

2(2n1m2 + n2
2m1) + 2n1

2m2
2 − 4m1m2n2 −

1

2
n2

3M1(G1)

−
1

2
n1M1(G2).

Example 8. The fence graph is defined as Pn[P2]. So from the last theorem its first and second

vertex Zagreb indices are given by

(i) M̄∗
1(Pn[P2]) = 18n2 − 22n + 8,

(ii) M̄∗
2(Pn[P2]) = 50n2 − 105n + 64.

Example 9. The closed fence graph is defined as Cn[P2] so that from the last theorem its first

and second vertex Zagreb indices are given by

(i) M̄∗
1(Cn[P2]) = 18n2 − 8n,

(ii) M̄∗
2(Cn[P2]) = 18n2 + 7n.
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1.5 Corona Product

The corona product G1 ◦ G2 of two graphs G1 and G2 is obtained by taking one copy of G1

and n1 copies of G2 and by joining each vertex of the i-th copy of G2 to the i-th vertex of G1,

where 1 ≤ i ≤ n1. Thus, the corona product of G1 and G2 has total (n1n2 + n1) number of

vertices and (m1 + n1m2 + n1n2) number of edges. A variety of topological indices under the

corona product of graphs have already been studied by researchers [24, 26]. The degree of a

vertex v of G1 ◦ G2 is given by

dG1◦G2
(v) =

{

dG1
(v) + n2, v ∈ V(G1)

dG2
(v) + 1, v ∈ V(G2,i), i = 1, 2, . . . , n1,

where, G2,i is the i-th copy of the graph G2. In the following theorem, the first and second

vertex Zagreb indices of the corona product of two graphs are computed. The proof of the

following theorem follows by manipulating the definition of corona product of graphs and

hence we omit it.

Theorem 7. The first and second vertex Zagreb indices of G1 ◦ G2 is given by

(i) M̄∗
1(G1 ◦ G2) = M̄∗

1 (G1) + n1M̄∗
1(G2) + 2n1n2[(n2 + m2)(n1 − 1) + m1 + n1 + n2 − 1]

+ 2m2n1
2,

(ii) M̄∗
2(G1 ◦ G2) = M̄∗

2 (G1) + n1M̄∗
2(G2) + 2n1

2(n2 + m2)
2 + 2n1m1(n2 + m2)− 2n1m2

2

− 2(n1m2 + n2m1)−
1

2
n1n2(n2 + 1).

Let for a graph G, n and m are number of vertices and edges of G, respectively. If degree

of any end vertex of an edge is one then it is call a thorn or pendent edge. The t-thorny graph

Gt of a given graph G is obtained by joining t-number of thorns to each vertex of G. Different

topological indices of thorn graphs have already been studied by researcher (see [14,25,27,28]).

We know that, the t-thorny graph of G is defined as the corona product of G and complement

of complete graph with t vertices K̄t. So, from the previous theorem we get the following

corollary.

Corollary 1.2. The first and second vertex Zagreb indices of the t-thorny graph are given by

(i) M̄∗
1(G

t) = M̄∗
1(G) + 2nt(nt + n + m − 1),

(ii) M̄∗
2(G

t) = M̄∗
2(G) + 2n2t2 − 1

2 nt2 + 2mt(2n − 1)− 1
2 nt.

where, n and m are number of vertices and edges of G, respectively.

Example 10. The first and second vertex Zagreb indices of t-thorny graph of Cn are given by

(i) M̄∗
1(Cn

t) = 2n(n − 1) + 2nt(nt + 2n − 1),

(ii) M̄∗
2(Cn

t) = 2n(n − 1) + nt(6n − 1
2 t − 5

2).

Example 11. The first and second vertex Zagreb indices of t-thorny graph of Pn are given by

(i) M̄∗
1(Pn

t) = 2(n − 1)2 + 2nt(nt + 2n − 2),
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(ii) M̄∗
2(Pn

t) = 2n2 − 6n + 2n2t2 + 4n2t − 1
2 nt2 − 13

2 nt + 2t + 5.

Example 12. Let, n and m are the number of vertices and edges of G, respectively. One of the

hydrogen suppressed molecular graph is the bottleneck graph (B) of a given graph G, which

is defined as the corona product of K2 and G. Using last theorem, the first and second vertex

Zagreb indices of bottleneck graph of G are given by

(i) M̄∗
1(B) = 2M̄∗

1(G) + 8n2 + 4nm + 8n + 8m + 2,

(ii) M̄∗
2(B) = 2M̄∗

2(G) + 7n2 + 4m2 + 16nm + 5n + 4m + 1.

2 CONCLUSION

In this paper, we have studied the first and second vertex Zagreb indices of different graph

operations. Also we apply our results to compute the vertex Zagreb indices for some special

classes of graphs and nano-structures. For further study, vertex Zagreb indices of some other

graph operations and for different composite graphs can be computed.
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ON THE INTERSECTION OF WEIGHTED HARDY SPACES

Let H
p
σ(C+), 1 ≤ p < +∞, 0 ≤ σ < +∞, be the space of all functions f analytic in the half plane

C+ = {z : Rez > 0} and such that

‖ f ‖ := sup
ϕ∈(− π

2 ; π
2 )







+∞
∫

0

| f (reiϕ)|pe−pσr| sin ϕ|dr







1/p

< +∞.

We obtain some properties and description of zeros for functions from the space
⋂

σ>0
H

p
σ (C+).

Key words and phrases: zeros of functions, weighted Hardy space, angular boundary values.
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INTRODUCTION

Let Hp(C+), 1 6 p < +∞, be the Hardy space of holomorphic in C+ = {z : Rez > 0}
functions f such that

|| f ||p = sup
x>0







+∞
∫

−∞

| f (x + iy)|pdy







< +∞.

Let H
p
σ(C+), 1 ≤ p < +∞, 0 ≤ σ < +∞, be the space of all functions f analytic in the half

plane C+ and such that

‖ f‖ := sup
ϕ∈(− π

2 ; π
2 )







+∞
∫

0

| f (reiϕ)|pe−pσr| sin ϕ|dr







1/p

< +∞.

We denote by H∞
σ (C+), 0 ≤ σ < +∞, the space of all functions analytic in the right half-

plane satisfying the condition

|| f || := sup
z∈C+

{

| f (z)|e−σ|Imz|
}

< +∞.

The space H
p
σ(C+), 1 ≤ p ≤ +∞, 0 ≤ σ < +∞, is a weighted Hardy space, as it follows

from results of А. M. Sedletskii [9]. The theory of weighted Hardy space for the case if the

weight is an exponential function considered in [2, 3, 10–13]. Functions f ∈ H
p
σ(C+) have

angular boundary values almost everywhere on ∂C+ (we denote the extension by the same

УДК 517.5
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symbols f ) and f ∈ Lp(∂C+). Thus, the space H
p
σ(C+), p ≥ 1, is a Banach space. For functions

f ∈ H
p
σ(C+) there exists [4, 12] an integral boundary function defined by the equality

h(t2)− h(t1) = lim
x→0+

t2
∫

t1

ln | f (x + it)|dt −
t2
∫

t1

ln | f (it)|dt, t1 < t2

up to an additive constant and to values at continuity points. The integral boundary function

h is nonincreasing on R and h′(t) = 0 almost everywhere on R. The interest to the space

H
p
σ(C+) is generated by studies of completeness [3], by the theory of integral operators and

the shift operator [1, 8].

A number of papers have been devoted to the intersection of Hardy and related spaces

(see [5, 7]). The aim of our research is to describe some properties of the following space

H
p
∩(C+) =

⋂

σ>0

H
p
σ(C+).

Obviously, H
p
∩(C+) ⊃ Hp(C+) and H

p
∩(C+) ⊂ H

p
ε (C+) for all ε.

1 THE MAIN RESULTS

Theorem 1. H
p
∩(C+) 6= Hp(C+).

Proof. Let f (z) = e−z
√

ln(z+2). We choose the branch of the logarithm that ln 1 = 0 and
√

1 = 1.

Let us prove that the function f belongs to H
p
σ(C+) for all σ > 0. Indeed,

ln | f (reiϕ)| = −r 4

√

ln2
√

4r cos ϕ + r2 + 4 + arctg2 r sin ϕ

r cos ϕ + 2

×









cos ϕ cos
arctg

arctg
r sin ϕ

r cos ϕ+2

ln
√

4r cos ϕ+r2+4

2
− sin ϕ sin

arctg
arctg

r sin ϕ
r cos ϕ+2

ln
√

4r cos ϕ+r2+4

2









≤ r 4

√

ln2
√

4r cos ϕ + r2 + 4 + arctg2 r sin ϕ

r cos ϕ + 2
sin ϕ sin

arctg
arctg

r sin ϕ
r cos ϕ+2

ln
√

4r cos ϕ+r2+4

2

≤ r

2
ϕ sin ϕ

1√
ln r

, r → +∞.

It follows easily that f ∈ H
p
σ(C+). Consequently, f ∈ H

p
∩(C+).

Let us show that f (z) = e−z
√

ln(z+2) 6∈ Hp(C+). Indeed,

ln | f (iy)| = y 4

√

ln2
√

4 + y2 + arctg2 y

2
sin

arctg
arctg

y
2

ln
√

4+y2

2

=
y√
2

4

√

ln2
√

4 + y2 + arctg2 y

2

√

√

√

√1 − ln
√

4 + y2
√

ln2
√

4 + y2 + arctg2 y
2

≥ y
√

2 ln(4 + y2)
for y ≥ C > 0.

Therefore f (iy) 6∈ Lp(0;+∞). Hence, f 6∈ Hp(C+).
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Proposition 1. Suppose that f ∈ H
p
∩(C+), 1 ≤ p ≤ ∞. Then the following conditions are

fulfilled :

a) angular boundary values exist almost everywhere on iR ;

b) | f (it)|e−ε|t| ∈ Lp(R) for any ε > 0;

c) H
p
∩(C+) is a Banach space for uniform convergence on compact sets.

Proof. Let f ∈ H
p
∩(C+), then f ∈ H

p
ε (C+) for some ε > 0. In [11] B. V. Vinnitskii proved that

a function f ∈ H
p
σ(C+), p ∈ (1;+∞), has almost everywhere on iR angular boundary values

f (iy) and f (iy)e−σ|y| ∈ Lp(R). Therefore f (iy)e−ε|y| ∈ Lp(R) for some positive ε.

In [10] B. V. Vinnitskii showed that a function f ∈ H∞
σ (C+) has almost everywhere on iR

angular boundary values f (it) and f (it)e−ε|t| ∈ L∞(R) for all ε. In [11] inequality

| f (z)| ≤ c2 exp(c2|z|)
Re(z)

1
p

proved for each function f belonging to H
p
σ(C+). Furthermore, H

p
∩(C+) is a Banach space with

respect to uniform convergence on compact sets.

Let B is a class of continuous, increasing functions η : [0;+∞) → (0;+∞) such that

η(r) = o(r) as r → +∞. We denote by H
p
⊖(C+) the space of functions analytic in C+ for

which there exists η ∈ B

sup
|ϕ|< π

2







+∞
∫

0

| f (reiϕ)|pe−η(r)| sin ϕ|dr







1
p

< +∞,

where η ∈ B.

Theorem 2. If f ∈ H
p
⊖(C+), then f ∈ H

p
∩(C+).

Proof. Let f ∈ H
p
⊖(C+), then f ∈ H

p
σ(C+) for all σ > 0. Furthermore,

+∞
∫

0

| f (reiϕ)|pe−prσ| sin ϕ|dr =

+∞
∫

0

| f (reiϕ)|pe−η(r)| sin ϕ|e−prσ| sin ϕ|+η(r)|sin ϕ|dr.

Since −prσ| sin ϕ|+ η(r)| sin ϕ| = | sin ϕ|(−prσ + η(r)) < 0 as r > r0, we have

+∞
∫

r0

| f (reiϕ)|pe−prσ| sin ϕ|dr ≤
+∞
∫

r0

| f (reiϕ)|pe−η(r)| sin ϕ|dr < +∞.

This implies that

sup







+∞
∫

r0

| f (reiϕ)|pe−prσ| sin ϕ|dr







≤ sup







+∞
∫

r0

| f (reiϕ)|pe−η(r)| sin ϕ|dr
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and

sup







r0
∫

0

| f (reiϕ)|pe−η(r)| sin ϕ|dr







≤ sup







r0
∫

0

| f (reiϕ)|p exp{ min
r∈[0;r0]

{−η(r)}| sin ϕ|}dr







≤ sup







exp{ min
r∈[0;r0]

{−η(r)}| sin ϕ|}
r0
∫

0

| f (reiϕ)|pdr







≤ c1

r0
∫

0

| f (reiϕ)|pdr < +∞.

In particular, choosing c2 =
2pσr0

η(0)
we can achieve that

+∞
∫

0

| f (reiϕ)|pe−prσ| sin ϕ|dr ≤ c2 < +∞.

It follows that f ∈ H
p
⊖(C+).

B. V. Vinnitskii described [11] zeros for functions f ∈ H
p
σ(C+) in terms of the following

function

S(r) = ∑
1<|λn|≤r

(

1

|λn|
− |λn|

r2

)

Reλn

|λn|
,

where λn ∈ C+. We obtain the following statement.

Theorem 3. If f ∈ H
p
∩(C+), then S(r) = o(ln r), r → +∞.

Proof. Suppose f ∈ H
p
∩(C+), then f ∈ H

p
σ(C+) for all σ > 0. Use the following version of the

Carleman formula [4, 6, 12]

S(r) =
1

πr

∫ π
2

− π
2

ln | f (reiϕ)| cos ϕdϕ +
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

ln | f (it)|dt

− 1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

|dh(t)| + O(1).

(1)

In [11] it is shown that for each function f ∈ H
p
σ(C+), σ > 0, the first term on the right

side of the last equality is bounded by an independent of r and σ constant. Hence, this term is

bounded for each function of the space H
p
∩(C+). Consider the second addend

1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

ln | f (it)|dt =
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

(ln | f (it)|e−σ|t| + eσ|t|)dt

≤ 1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

(| f (it)|e−σ|t| + σ|t|)dt.

Since 1
2π

∫

1<|t|≤r

(

1
t2 − 1

r2

)

σ|t|dt = 1
π σ ln r and f (iy)e−σ|y| ∈ Lp(R), this yields

1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

ln | f (it)|dt ≤ c3 +
1

π
σ ln r.
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Therefore

S(r) = c4 +
1

π
σ ln r − 1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

|dh(t)|.

Then, the last addend is negative, we deduce

S(r) ≤ c4 +
σ

π
ln r.

Since the result is true for on of an arbitrary σ, we obtain the statement of the theorem.

Theorem 4. If f ∈ H
p
∩(C+), then P(r) = o(ln r), r → +∞, where

P(r) =
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

|dh(t)|.

Proof. Let f ∈ H
p
∩(C+), then f ∈ H

p
σ(C+) for everyone σ > 0. Using (1), we get

P(r) = K(r)− S(r) + O(1), r → +∞, where

K(r) =
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

ln | f (it)|dt.

Since

K(r) =
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

ln | f (it)|e−σ|t|dt +
1

2π

∫

1<|t|≤r

(

1

t2
− 1

r2

)

σ|t|dt

≤ c3 +
1

π
σ ln r for all σ > 0,

we deduce K(r) = o(ln r) as r → +∞. From Theorem 3 we get the following S(r) = o(ln r),

r → +∞. Thus P(r) = o(ln r), r → +∞.

Theorem 5. Let (λn) be an arbitrary sequence in C+. Then S(r) = o(ln r), r → +∞, if and only

if S0(r) = o(ln r), r → +∞, where

S0(r) = ∑
1<|λn|≤r

Reλn

|λn|2
.

Proof. It is clear that

S0(r)− S(r) = ∑
1<|λn|≤r

Reλn

r2
≤ ∑

1<|λn|≤r

Reλn

|λn|r
=

s(r)

r
,

where s(r) = ∑
1<|λn|≤r

Reλn
|λn| .

In [10] B. V. Vinnitskii proved that

S(2r) ≥ 3s(r)

4r
.

It follows that

S0(r)− S(r) ≤ 4rS(2r)

3r
=

4

3
S(2r).

Since S(r) = o(ln r), we have S(2r) = o(ln r). Hence, S0(r)− S(r) = o(ln r), r → +∞.

The converse implication is trivial.
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Нехай H
p
σ(C+), 1 ≤ p < +∞, 0 ≤ σ < +∞, – простiр функцiй, аналiтичних у пiвплощинi

C+ = {z : Rez > 0}, для яких

‖ f ‖ := sup
ϕ∈(− π

2 ; π
2 )







+∞
∫

0

| f (reiϕ)|pe−pσr| sin ϕ|dr







1/p

< +∞.

Отримано деякi властивостi i опис нулiв для функцiй з простору
⋂

σ>0
H

p
σ(C+).

Ключовi слова i фрази: нулi функцiй, ваговий простiр Гардi, кутовi граничнi значення.
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A MULTIDIMENSIONAL GENERALIZATION OF THE RUTISHAUSER

QD-ALGORITHM

In this paper the regular multidimensional C-fraction with independent variables, which is a

generalization of regular C-fraction, is considered. An algorithm of calculation of the coefficients

of the regular multidimensional C-fraction with independent variables correspondence to a given

formal multiple power series is constructed. Necessary and sufficient conditions of the existence of

this algorithm are established. The above mentioned algorithm is a multidimensional generalization

of the Rutishauser qd-algorithm.

Key words and phrases: regular multidimensional C-fraction with independent variables, corre-
spondence, multiple power series, algorithm.
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INTRODUCTION

In constructing the branched continued fractions for a given formal multiple power series

the concept of correspondence is used. Some general theory of correspondence for functions of

one variables is developed in [15, pp. 148–160] (see also [11, pp. 241–274]) and some aspects of

it for functions of several variables are considered in [7], [6, pp. 107–109]. As a result, different

types of functional fractions are constructed in [1–6, 8–10, 12–14, 16].

In the present paper we construct and investigate an algorithm for the expansion of a given

formal multiple power series into a corresponding regular multidimensional C-fraction with

independent variables, which is a generalization of the regular C-fraction [15, p. 128-129]. It is

a further expansion of the results obtained in [2].

1 CORRESPONDENCE

Let L be set of all formal multiple power series of the form

L(z) = ∑
|m(N)|≥0

cm(N)z
m(N), (1)

where m(N) = m1, m2, . . . , mN is multiindex, mi ∈ Z+, 1 ≤ i ≤ N, 0(N) = 0, 0, . . . , 0,

|m(N)| = m1 + m2 + · · ·+ mN, cm(N) ∈ C, zm(N) = zm1
1 zm2

2 · . . . · zmN
N , z = (z1, z2, . . . , zn) ∈ C

N .

Obviously, this set forms a ring with unity respect to the operations addition and multiplica-

tion of series. We define the mapping λ : L → N0 ∪ {∞} as follows: λ(L(z)) = ∞, if L(z) ≡ 0;

УДК 517.524
2010 Mathematics Subject Classification: 11A55, 65D15, 11J70.
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λ(L(z)) = n, if L(z) 6≡ 0, where n is the smallest degree of homogeneous polynomial for

which cm(N) 6= 0, that is n = |m(N)|. We consider the sequence of rational functions

fn(z) =
Pmn(z)

Qln
(z)

, n ≥ 1,

where Pmn(z), Qln
(z) are polynomials of degrees mn and ln respectively, z ∈ CN , moreover,

Qln
(0, 0, . . . , 0) 6= 0.

The sequence { fn(z)} corresponds to series (1) at z = (0, 0, . . . , 0), if

lim
n→+∞

λ(L(z)− L( fn(z))) = +∞,

where L( fn(z)) is expansion of function fn(z) into Taylor series at z = (0, 0, . . . , 0). The order

of correspondence of fn(z) is defined by the formula νn = λ(L(z)− L( fn(z))). This means that

the expansion fn(z) into formal multiple power series coincides with L(z) for all homogeneous

polynomials to the degree (νn − 1) inclusively.

Let us introduce the following set of multiindices

J = {m(N) : m(N) = m1, m2, . . . , mN, mp ∈ Z+, 1 ≤ p ≤ N}.

And now, let us define arithmetical operations on the set J componentwise. If

r(N) = r1, r2, . . . , rN ∈ J , s(N) = s1, s2, . . . , sN ∈ J , k ∈ Z+,

then

r(N) + s(N) = r1 + s1, r2 + s2, . . . , rN + sN , kr(N) = kr1, kr2, . . . , krN .

We consider the regular multidimensional C-fraction with independent variables

a0

1 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)zik

1

=
a0

1 +
N

∑
i1=1

ai(1)zi1

1 +
i1

∑
i2=1

ai(2)zi2

1 + . . .

, (2)

where i(k) = i1, i2, . . . , ik is multiindex, a0 6= 0, ai(k) 6= 0, k ≥ 1, 1 ≤ in ≤ in−1, 1 ≤ n ≤ k,

i0 = N, z ∈ CN .

Let e0 = 0, 0, . . . , 0, er = δr,1, δr,2, . . . , δr,N be a multiindex, δr,s be a Kronecker symbol, 1 ≤

r, s ≤ N. Let us introduce the following sets of multiindices

I = {i(k) : i(k) = i1, i2, . . . , ik, 1 ≤ ip ≤ ip−1, 1 ≤ p ≤ k, k ≥ 1, i0 = N},

I∗ = {iN
i(k) : iN

i(k) = ei1 + ei2 + · · ·+ eik
, i(k) ∈ I}

and the mapping ϕ : I → I∗, such that ϕ(i(k)) = iN
i(k)

for all i(k) ∈ I (we can show that the

mapping ϕ is bijective).

Let a0 = b0, ai(k) = biN
i(k)

, i(k) ∈ I , iN
i(k)

∈ I∗. Then we write fraction (2) in the form

b0

(

1 +
∞

D
k=1

ik−1

∑
ik=1

biN
i(k)

zik

1

)−1

, (3)
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where b0 6= 0, biN
i(k)

6= 0, iN
i(k)

∈ I∗, z ∈ CN .

Let

gn(z) = b0

(

1 +
n−1

D
k=1

ik−1

∑
ik=1

biN
i(k)

zik

1

)−1

be the nth approximant of regular multidimensional C-fraction with independent variables

(3), n ≥ 1.

The correspondence of fraction (3) to series (1) means that the sequence of approximants

{gn(z)} corresponds to L(z).

2 ALGORITHM

We shall construct and investigate the algorithm for the expansion of the formal multiple

power series (1) into the corresponding regular multidimensional C-fraction with independent

variables (3).

Let c0(N) 6= 0 and

Re0(z) = ∑
|m(N)|≥0

cm(N)

c0(N)
zm(N).

Next, let

R′
e0
(z) = ∑

|m(N)|≥0

c
(e0)
m(N)

zm(N) (4)

be reciprocal to series Re0(z). The coefficient of FMPS (4) are uniquely determined by recurrent

formulas

c
(e0)
m(N)

= −
|m(N)|

∑
|r(N)|=1

c
(e0)
m(N)−r(N)

cr(N)

c0(N)
, mj ≥ 0, 1 ≤ j ≤ N, |m(N)| ≥ 1, (5)

where c
(e0)
0(N)

= 1, moreover, c
(e0)
m(N)

= 0, if here exist an index j, 1 ≤ j ≤ N, such that nj < 0.

By condition c
(e0)
ej

6= 0, 2 ≤ j ≤ N, we write the series (4) in the form

R′
e0
(z) = Pe1(z1) +

N

∑
j=2

c
(e0)
ej

zjRej
(z),

where

Pe1(z1) =
∞

∑
m1=0

mj=0, 2≤j≤N

c
(e0)
m(N)

zm1
1 , Rej

(z) = ∑
|r(N)|≥0

ri=0, j+1≤i≤N

c
(e0)
ej+r(N)

c
(e0)
ej

zr(N).

Then L(z) can be written

L(z) =
c0(N)

Pe1(z1) +
N

∑
j=2

c
(e0)
ej

zjRej
(z)

.

Let
∞

∑
m1=0

mj=0, 2≤j≤N

cm(N)z
m1
1
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be a normal series (for the notion of normality of formal power series, see [15, pp. 185-190]).

Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers q
(n)

iN
i(k)

, e
(n)

iN
i(k)

, ip = 1,

1 ≤ p ≤ k, k ≥ 1, n ≥ 0, of qd-table for h = 0 :

q
(0)

iN
i(1)

+jN
j(h)

e
(1)

iN
i(0)

+jN
j(h)

e
(0)

iN
i(2)

+jN
j(h)

q
(1)

iN
i(1)

+jN
j(h)

q
(0)

iN
i(2)

+jN
j(h)

e
(2)

iN
i(0)

+jN
j(h)

e
(1)

iN
i(1)

+jN
j(h)

e
(0)

iN
i(2)

+jN
j(h)

q
(2)

iN
i(1)

+jN
j(h)

q
(1)

iN
i(2)

+jN
j(h)

...
. . .

e
(3)

iN
i(0)

+jN
j(h)

e
(2)

iN
i(1)

+jN
j(h)

...

... q
(3)

iN
i(1)

+jN
j(h)

...

...

(6)

the entries of which are defined by the initial conditions

e
(n)

iN
i(0)

+jN
j(h)

= 0, q
(n)

iN
i(1)

+jN
j(h)

=
c
(jN

j(h)
−ejh

)

m(N)+ei1
+ejh

c
(jN

j(h)
−ejh

)

m(N)+ejh

, |m(N)| = mi1 = n, n ≥ 0, (7)

moreover,

q
(n)

iN
i(1)

=
cm(N)+ei1

cm(N)
, |m(N)| = mi1 = n, n ≥ 0,

and the rhombus rule

e
(n)

iN
i(r)

+jN
j(h)

+ q
(n)

iN
i(r)

+jN
j(h)

= q
(n+1)

iN
i(r)

+jN
j(h)

+ e
(n+1)

iN
i(r−1)

+jN
j(h)

, r ≥ 1, n ≥ 0,

e
(n)

iN
i(r)

+jN
j(h)

q
(n)

iN
i(r+1)

+jN
j(h)

= q
(n+1)

iN
i(r)

+jN
j(h)

e
(n+1)

iN
i(r)

+jN
j(h)

, r ≥ 1, n ≥ 0,
(8)

The procedure of calculation of the elements of table (6) the entries of which are defined by

the initial conditions (7) and the rhombus rule (8) is called the Rutishauser qd-algorithm [15, p.

227].

We put biN
i(2k−1)

= −q
(0)

iN
i(2k−1)

, biN
i(2k)

= −e
(0)

iN
i(2k)

, ip = 1, 1 ≤ p ≤ k, k ≥ 1. According to

Theorem 7.7 [15, pp. 230-231]

∞

∑
m1=0

mj=0, 2≤j≤N

cm(N)

c0(N)
zm1

1 ∼









1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

z1

1









−1

.

Here the symbol "∼" means the correspondence between the series and the fraction. Moreover,

according to Lemma 3 [4] we have

Pe1(z1) ∼ 1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

z1

1
,
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since the series Pe1(z1) is reciprocal to series

∞

∑
m1=0

mj=0, 2≤j≤N

cm(N)

c0(N)
zm1

1 .

Thus we can write

L(z) ∼
c0(N)

1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

z1

1
+

N

∑
j=2

c
(e0)
ej

zjRej
(z)

.

Let l be an arbitrary natural number, moreover, 2 ≤ l ≤ N. Next, let

∞

∑
ml=0

mj=0, j 6=l, 1≤j≤N

cm(N)z
ml
l

be a normal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

q
(n)

iN
i(k)

, e
(n)

iN
i(k)

, ip = l, 1 ≤ p ≤ k, k ≥ 1, n ≥ 0, of qd-table (6) the entries of which are defined by the

initial conditions (7) and the rhombus rule (8) for h = 0.

We put b′
iN
i(2k−1)

= −q
(0)

iN
i(2k−1)

, b′
iN
i(2k)

= −e
(0)

iN
i(2k)

, ip = l, 1 ≤ p ≤ k, k ≥ 1. According to Theo-

rem 7.7 [15, pp. 230-231]

∞

∑
ml=0

mj=0, j 6=l, 1≤j≤N

cm(N)z
ml
l

c0(N)
∼









1 +
∞

D
k=1

ip=l, 1≤p≤k

b′
iN
i(k)

zl

1









−1

.

Since

c
(e0)
m(N)

= −
cm(N)

c0(N)
= b′

iN
i(1)

, ml = 1, mj = 0, j 6= l, 1 ≤ j ≤ N, i1 = l,

then we put biN
i(1)

= b′
iN
i(1)

, i1 = l.

Thus we can write

L(z) ∼
c0(N)

1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

z1

1
+

N

∑
j1=2

bjN
j(1)

zj1 RjN
j(1)

(z)

.

Again, let l be an arbitrary natural number, moreover, 2 ≤ l ≤ N. Next, let

R′
el
(z) = ∑

|m(N)|≥0
mi=0, l+1≤i≤N

c
(el)
m(N)

zm(N) (9)
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be reciprocal to series Rel
(z). The coefficients of series (9) are uniquely determined by recurrent

formulas for mi = 0, jh + 1 ≤ i ≤ N, |m(N)| ≥ 1, and jN
j(h)

= el

c
(jN

j(h)
)

m(N)
= −

|m(N)|

∑
|r(N)|=1

c
(jN

j(h)
)

m(N)−r(N)

c
(jN

j(h)
−ejh

)

r(N)+ejh

c
(jN

j(h)
−ejh

)

ejh

, (10)

where c
(jN

j(h)
)

0(N)
= 1, moreover, c

(jN
j(h)

)

n(N)
= 0, if here exist an index p, 1 ≤ p ≤ N, such that np < 0.

By condition c
(el)
ej

6= 0, 2 ≤ j ≤ l, we write the series (9) in the form

R′
el
(z) = Pel+e1(z1) +

l

∑
j=2

c
(el)
ej

zjRel+ej
(z),

where

Pel+e1(z1) =
∞

∑
m1=0

mj=0, 2≤j≤N

c
(el)
m(N)

zm1
1 , Rel+ej

(z) = ∑
|r(N)|≥0

ri=0, j+1≤i≤N

c
(el)
ej+r(N)

c
(el)
ej

zr(N).

Then Rel
(z) can be written as follows

Rel
(z) =

(

Pel+e1(z1) +
l

∑
j=2

c
(el)
ej

zjRel+ej
(z)

)−1

.

Let
∞

∑
m1=0

mj=0, 2≤j≤N

c
(e0)
m(N)+el

zm1
1

be a normal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

q
(n)

iN
i(k)

+el
, e

(n)

iN
i(k)

+el
, ip = 1, 1 ≤ p ≤ k, k ≥ 1, n ≥ 0, of qd-table (6) the entries of which are defined

by the initial conditions (7) and the rhombus rule (8) for jN
j(h)

= el .

We put biN
i(2k−1)

+el
= −q

(0)

iN
i(2k−1)

+el
, biN

i(2k)
+el

= −e
(0)

iN
i(2k)

+el
, ip = l, 1 ≤ p ≤ k, k ≥ 1. According to

Theorem 7.7 [15, pp. 230-231]

∞

∑
m1=0

mj=0, 2≤j≤N

c
(e0)
m(N)+el

c
(e0)
el

zm1
1 ∼









1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

+el
z1

1









−1

.

Since the series Pel+e1(z1) is reciprocal to series

∞

∑
m1=0

mj=0, 2≤j≤N

c
(e0)
m(N)+el

c
(e0)
el

zm1
1 ,



236 DMYTRYSHYN R.I.

then according to Lemma 3 [4] we obtain

Pel+e1(z1) ∼ 1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

+el
z1

1
.

Let t be an arbitrary natural number, moreover, 2 ≤ t ≤ l − 1. Next, let

∞

∑
mt=0

mj=0, j 6=t, 1≤j≤N

c
(e0)
m(N)+el

zmt
t

be a normal series. Then according to Theorem 7.5 [15, pp. 228-229] there exist the real numbers

q
(n)

iN
i(k)

+el
, e

(n)

iN
i(k)

+el
, ip = t, 1 ≤ p ≤ k, k ≥ 1, n ≥ 0, of qd-table (6) the entries of which are defined

by the initial conditions (7) and the rhombus rule (8) for jN
j(h)

= el .

We put b′
iN
i(2k−1)

+el
= −q

(0)

iN
i(2k−1)

+el
, b′

iN
i(2k)

+el
= −e

(0)

iN
i(2k)

+el
, ip = t, 1 ≤ p ≤ k, k ≥ 1. According to

Theorem 7.7 [15, pp. 230-231]

∞

∑
mt=0

mj=0, j 6=t, 1≤j≤N

c
(e0)
m(N)+el

c
(e0)
el

zmt
t ∼









1 +
∞

D
k=1

ip=t, 1≤p≤k

b′
iN
i(k)

+el
zt

1









−1

.

Since the series Pel+er(zt) is reciprocal to series

∞

∑
mt=0

mj=0, j 6=t, 1≤j≤N

c
(e0)
m(N)+el

c
(e0)
el

zmt
t ,

then according to Lemma 3 [4] we obtain

Pel+er(zt) ∼ 1 +
∞

D
k=1

ip=t, 1≤p≤k

b′
iN
i(k)

+el
zt

1
.

Since

c
(el)
et

= −
c
(e0)
el+et

c
(e0)
el

= −
c0(N)cel+et − c2

el

cel
c0(N)

= b′el+et
, c

(el)
el

= −
c
(e0)
2el

c
(e0)
el

= −
c0(N)c2el

− c2
el

cel
c0(N)

= b′2el
,

than we put bel+et = b′el+et
, b2el

= b′2el
.

Thus we can write

L(z) ∼
c0(N)

QjN
j(0)

(z1) +
N

∑
j1=2

bjN
j(1)

zj1

QjN
j(1)

(z1) +
j1

∑
j2=2

bjN
j(2)

zj2 RjN
j(2)

(z)

,
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where

QjN
j(h)

(z1) = 1 +
∞

D
k=1

ip=1, 1≤p≤k

biN
i(k)

+jN
j(h)

z1

1
, h ≥ 0,

moreover, jr 6= 1, 1 ≤ r ≤ h, jN
j(h)

∈ I∗, if h ≥ 1.

Next, computing the coefficients

c
(jN

j(h)
)

m(N)
, mi = 0, jh + 1 ≤ i ≤ N, |m(N)| ≥ 1, jr 6= 1, 1 ≤ r ≤ h, jN

j(h) ∈ I∗,

by recurrent formulas (10) and continuing process of iteration under the conditions that the

series

∞

∑
ml=0

mi=0, i 6=l, 1≤i≤N

cm(N)z
ml
l ,

∞

∑
mt=0

mi=0, i 6=t, 1≤i≤N

c
(e0)
m(N)+ep

zmt
t ,

∞

∑
mr=0

mi=0, i 6=r, 1≤i≤N

c
(jN

j(h)
)

m(N)+ejh

zmr
r , (11)

where 1 ≤ l ≤ N, 1 ≤ t ≤ p − 1, 2 ≤ p ≤ N, 1 ≤ r ≤ jh − 1, jr 6= 1, 1 ≤ r ≤ h, jN
j(h)

∈ I∗,

are normal, for series (1) we obtain fraction (3), where c0 = c0(N), biN
i(2k−1)

+jN
j(h)

= −q
(0)

iN
i(k)

+jN
j(h)

,

biN
i(2k)

+jN
j(h)

= −e
(0)

iN
i(k)

+jN
j(h)

, ip = n, 1 ≤ p ≤ k, 1 ≤ n ≤ jh − 1, k ≥ 1, jr 6= 1, 1 ≤ r ≤ h, jN
j(h)

∈ I∗

(the numbers q
(0)

iN
i(k)

+jN
j(h)

, e
(0)

iN
i(k)

+jN
j(h)

, ip = n, 1 ≤ p ≤ k, 1 ≤ n ≤ jh − 1, k ≥ 1, jr 6= 1,

1 ≤ r ≤ h, jN
j(h)

∈ I∗, are the diagonal elements of the qd-table (6) the entries of which are

defined by the initial conditions (7) and the rhombus rule (8)).

Thus, if the coefficients of the formal multiple power series (1) are given, then the recurrent

algorithm of calculation of the coefficients of the regular multidimensional C-fraction with

independent variables (3) is constructed. This algorithm is a multidimensional generalization

of Rutishauser qd-algorithm [15, p. 227]. The correspondence of fraction (3) to series (1) can be

proved by a scheme proposed in [5].

Hence, the following theorem holds:

Theorem. The regular multidimensional C-fraction with independent variables (3) corres-

ponds to the given formal multiple power series (1) if and only if the formal power series

(11) are normal.

We remark that some examples of functions of two variables represented by regular two-

dimensional C-fractions with independent variables are given in [2].
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Розглядається регулярний багатовимiрний C-дрiб з нерiвнозначними змiнними, який є уза-

гальненням регулярного C-дробу. Побудовано алгоритм обчислення коефiцiєнтiв багатови-

мiрного C-дробу з нерiвнозначними змiнними, вiдповiдного заданому формальному кратно-

му степеневому ряду, який є узагальненням qd-алгоритму Рутисхаузера. Встановлено необхi-

днi та достатнi умови iснування такого алгоритму.

Ключовi слова i фрази: регулярний багатовимiрний C-дрiб з нерiвнозначними змiнними,
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Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals

are found. Using these estimates we obtained analogues of Whittaker’s theorem for entire functions

given by lacunary power series.
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INTRODUCTION

For an entire function

g(z) =
∞

∑
n=0

anzλn , z = reiθ , (1)

let Mg(r) = max{|g(z)| : |z| = r} and ̺ = lim
r→+∞

ln ln Mg(r)

ln r
, λ = lim

r→+∞

ln ln Mg(r)

ln r
be the

order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that λ ≤ ̺β,

where β = lim
n→+∞

(ln λn)/ ln λn+1. For an analytic in {z : |z| < 1} function (1) of the order

̺0 = lim
r↑1

ln ln Mg(r)

− ln (1 − r)
and the lower order λ0 = lim

r↑1

ln ln Mg(r)

− ln (1 − r)
L.R. Sons [2] tried to prove

that λ0 + 1 ≤ (̺0 + 1)β. In [3] this result is disproved and it is showed that λ0 ≤ ̺0β, i. e.

absolute analogue of Whittaker’s theorem is valid. Moreover, in [3] it is obtained analogues of

Whittaker’s theorem for Dirichlet series
∞

∑
n=0

aneλns, s = σ + it, with an arbitrary abscissa of the

absolute convergence σa = A ∈ (−∞, +∞], where 0 = λ0 < λn ↑ +∞, n → ∞.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right

functions F on [0,+∞). We say that F ∈ V(l) if F ∈ V and F(x)− F(x − 0) ≤ l < +∞ for all

x ≥ 0.

For a nonnegative function f on [0,+∞) the integral

I(σ) =

∞
∫

0

f (x)exσdF(x), σ ∈ R, (2)

УДК 517.5
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is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace

integral I(σ) =
∫ ∞

0 f (x)exσdx and of the Dirichlet series
∞

∑
n=0

aneλnσ with nonnegative coeffi-

cients an and exponents λn, 0 ≤ λn ↑ +∞, n → ∞, if we choose F(x) = n(x) = ∑
λn≤x

1 and

f (λn) = an ≥ 0 for all n ≥ 0. The maximal therm of this Dirichlet series is defined by formula

µ(σ) = max{aneλnσ : n ≥ 0}.

By Ω(A) we denote the class of all positive unbounded on (−∞, A) functions Φ such that

the derivative Φ′ is positive continuously differentiable and increasing to +∞ on (−∞, A).

From now on, we denote by ϕ the inverse function to Φ′, and let Ψ(x) = x − Φ(x)/Φ′(x) be

the function associated with Φ in the sense of Newton. It is clear that the function ϕ is con-

tinuously differentiable and increasing to A on (0,+∞). The function Ψ is [4–6] continuously

differentiable and increasing to A on (−∞, A).

For Φ ∈ Ω(A) and 0 < a < b < +∞ we put

G1(a, b, Φ) =
ab

b − a

b
∫

a

Φ(ϕ(t)

t2
dt, G2(a, b, Φ) = Φ





1

b − a

b
∫

a

ϕ(t)dt



 .

It is known [5] that G1(a, b, Φ) < G2(a, b, Φ), and in [3] the following Lemma is proved.

Lemma 1. Let (xk) be an increasing to +∞ sequence of positive numbers, Φ ∈ Ω(A) and

µD(σ) be the maximal term of formal Dirichlet series

D(s) =
∞

∑
k=1

exp{−xkΨ(ϕ(xk)) + sxk}, s = σ + it.

Then

lim
σ↑A

ln µD(σ)

Φ(σ)
= 1, lim

σ↑A

ln ln µD(σ)

ln Φ(σ)
= 1, (3)

lim
σ↑A

ln µD(σ)

Φ(σ)
= lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
(4)

and if

ln µD(σ) +

(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ 0, σ ∈ [σ0, A), (5)

then

lim
σ↑A

ln ln µD(σ)

ln Φ(σ)
= lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (6)

It is clear that integral (2) either converges for all σ ∈ R or diverges for all σ ∈ R or there

exists a number σc such that integral (2) converges for σ < σc and diverges for σ > σc. In the

latter case the number σc is called abscissa of the convergence of integral (2). If integral (2)

converges for all σ ∈ R then we put σc = +∞, and if it diverges for all σ ∈ R then we put

σc = −∞.

Let

µ(σ, I) = sup{ f (x)exσ : x ≥ 0}, σ ∈ R,

be the maximum of the integrand. Then either µ(σ, I) < +∞ for all σ ∈ R or µ(σ, I) = +∞ for

all σ ∈ R or there exists a number σµ such that µ(σ, I) < +∞ for all σ < σµ and µ(σ, I) = +∞
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for for all σ > σµ. By analogy the number σµ is called abscissa of maximum of the integrand.

It is well known ( [4]) that if F ∈ V and ln F(x) = o(x) as x → +∞ then σc ≥ σµ.

For each Dirichlet series σc ≤ σµ. In general case this inequality can be not executed. We

will say in this connection as in [4] that a nonnegative function f has regular variation in regard

to F if there exist a ≥ 0, b ≥ 0 and h > 0 such that for all x ≥ a

x+b
∫

x−a

f (t)dF(t) ≥ h f (x). (7)

In [4] it is proved that if F ∈ V and f has regular variation in regard to F then σc ≤ σµ. We

need also the following lemma.

Lemma 2 ( [4]). Let σµ = A ∈ (−∞,+∞] and Φ ∈ Ω(A). In order that ln µ(σ, I) ≤ Φ(σ) for

all σ ∈ [σ0, A), it is necessary and sufficient that ln f (x) ≤ −xΨ(ϕ(x)) for all x ≥ x0.

Let L be the class of all positive continuous functions α increasing to +∞ on (x0, +∞),

x0 ≥ −∞. We say that α ∈ L0 if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞, and

α ∈ Lsi if α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0, +∞).

Using Lemmas 1 and 2 first we will prove the following theorem.

Theorem 1. Let σµ = +∞, Φ ∈ Ω(+∞), ln µ(σ, I) ≤ Φ(σ) for all σ ≥ σ0 and X = (xk) be

a some sequence of positive numbers increasing to +∞. Suppose that f is a nonincreasing

function. Then:

1) if either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or ln f (xk) = (1 + o(1)) ln f (xk+1) as

k → ∞ and Φ ∈ L0, or xk+1 − xk ≤ H < +∞ for all k ≥ 0, or xk+1 = (1 + o(1))xk as

k → ∞ and Φ ∈ L0, then

lim
σ→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
; (8)

2) if

ln σ +

(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ q > −∞, σ ≥ σ0, (9)

and either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or ln f (xk) = (1 + o(1)) ln f (xk+1)

as k → ∞ and ln Φ ∈ L0, or ln f (xk) ≤ a ln f (xk+1), 0 < a < 1, and ln Φ ∈ Lsi, or

xk+1 − xk ≤ H < +∞ for all k ≥ 0, or xk+1 = (1 + o(1))xk as k → ∞ and Φ ∈ L0 or

xk+1 ≤ Axk for all k ≥ 0 and ln Φ ∈ Lsi then

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (10)

Proof. We remark that in view of the condition σµ = +∞ we have f (x) → 0 as x → +∞ and

σ = o(ln µ(σ, I)) as σ → +∞. Now, we put x0 = 0 and µ(σ, I; X) = max { f (xk)e
σxk : k ≥ 0}.

Clearly,

ln µ(σ, I) = sup
x≥0

(ln f (x) + σx) ≥ sup
k≥0

(ln f (xk) + σxk) = ln µ(σ, I, X). (11)
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Therefore, ln µ(σ, I; X) ≤ Φ(σ) for all σ ≥ σ0 and by Lemma 2 ln f (xk) ≤ −xkΨ(ϕ(xk)) for all

k ≥ k0. Hence it follows that ln µ(σ, I; X) ≤ ln µD(r) for σ ≥ σ0. Therefore, by Lemma 1 from

(4) we obtain

lim
σ→+∞

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (12)

On the other hand for σ > 0

ln µ(σ, I) = max
k≥0

sup
xk≤x<xk+1

(ln f (x) + xσ) ≤ max
k≥0

(ln f (xk) + xk+1σ). (13)

If ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞ then for every ε > 0 we have ln f (xk) ≤

(ln f (xk+1))/(1 + ε) for all k ≥ k0 = k0(ε). Therefore,

max
k>0

(ln f (xk) + xk+1σ)

= max

{

max
k≤k0

(ln f (xk) + xk+1σ), max
k≥k0

(

ln f (xk)

ln f (xk+1)
ln f (xk+1) + xk+1σ

)}

≤ max

{

O(σ), max
k≥k0

(

ln f (xk+1)

1 + ε
+ xk+1σ

)}

≤
1

1 + ε
max
k≥0

(ln f (xk+1) + xk+1σ(1 + ε)) + O(σ), σ → +∞.

Hence and from (13) it follows that ln µ(σ, I) ≤ ln µ (σ(1 + ε), I; X) for σ ≥ σ∗
0 . Thus,

lim
r→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

σ→+∞

ln µ(σ(1 + ε), I; X)

Φ(σ)

≤ lim
r→+∞

ln µ(σ, I; X)

Φ(σ)
lim

σ→+∞

Φ(σ(1 + ε))

Φ(σ)
≤ A(ε) lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
,

(14)

where A(ε) = lim
r→+∞

Φ(σ(1 + ε))

Φ(σ)
. For Φ ∈ L0 in [7] is proved that A(ε) ց 1 as ε ↓ 0. Therefore,

(14) implies (8).

If xk+1 = (1 + o(1))xk as k → ∞ then for arbitrary ε > 0 from (13) it follows that

ln µ(σ, I) ≤ ln µ (σ(1 + ε), I; X) + O(σ), σ∗
0 (ε) ≤ σ → +∞,

whence in view of the condition Φ ∈ L0 as above we obtain (8).

If ln f (xk)− ln f (xk+1) = O(1) as k → ∞ then from (13) we have

ln µ(σ, I) ≤ max
k≥0

(ln f (xk+1) + xkσ + ln f (xk)− ln f (xk+1)) ≤ ln µ(σ, I; X) + const, (15)

that is in view of (12)

lim
r→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

σ→+∞

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (16)

Finally, if xk+1 − xk ≤ H < +∞ for all k ≥ 0 then from (13) follows that

ln µ(σ, I) ≤ max
k≥0

(ln f (xk) + xkσ + σ(xk+1 − xk)) ≤ ln µ(σ, I; X) + Hσ, (17)



ANALOGUES OF WHITTAKER’S THEOREM FOR LAPLACE-STIELTJES INTEGRALS 243

that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.

Now we will prove the second part. Since ln σ = o(ln µ(σ, I)) as σ → +∞, condition (9)

follows from (5).

If either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or xk+1 − xk ≤ H < +∞ for all k ≥ 0 then

from either (16), or (17) in view of (12) and Lemma 1 we obtain

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

σ→+∞

ln ln µ(σ, I; X)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
.

If either ln f (xk) ≤ (1 + o(1)) ln f (xk+1) or xk+1 = (1 + o(1))xk as k → ∞ as x → +∞

then as above from (13) we have ln ln µ(σ, I) ≤ ln ln µ (σ(1 + ε), I; X) for every ε > 0 and all

σ ≥ σ0(ε), whence (10) follows in view of the condition ln Φ ∈ L0.

If ln f (xk) ≤ a ln f (xk+1), 0 < a < 1, then from (13) we have

ln µ(σ, I) ≤ a max
k≥0

(ln f (xk+1) + xk+1σ/a) = a ln µ(σ/a, I; X);

and since ln Φ ∈ Lsi, we obtain

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

r→+∞

ln ln µ(σ/a, I; X)

ln Φ(σ/a)
lim

r→+∞

ln Φ(σ/a)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
.

If xk+1 ≤ Axk for all k ≥ 0 then ln µ(σ, I) ≤ ln µ (Aσ, I; X) + O(σ) as σ → +∞, whence in

view of the condition ln Φ ∈ Lsi we obtain (10). The proof of Theorem 1 is complete.

Now we consider the case σµ = 0. Let L̂ be the class of all positive continuous on (σ0, 0),

σ0 ≥ −∞, functions β, increasing to +∞. We say that β ∈ L̂0 if β ∈ L̂ and β((1 + o(1))σ) =

(1 + o(1))β(σ) as σ ↑ 0, and β ∈ L̂si if β(cσ) = (1 + o(1))β(σ) as σ ↑ 0 for each c ∈ (0, +∞).

Lemma 3. Let β ∈ L̂ and B(δ) = lim
σ↑0

β(σ/(1 + δ))

β(σ)
(δ > 0). In order that β ∈ L̂0, it is necessary

and sufficient that B(δ) → 1 as δ ↓ 0.

Proof. Suppose that β ∈ L̂0 but B(δ) 6→ 1 as δ ↓ 0. Since the function B(δ) is nondecreasing,

there exists lim
δ↓0

B(δ) = b∗ > 1, that is B(δ) ≥ b∗ > 1. We choose an arbitrary sequence (δn) ↓ 0.

For every δn there exists a sequence (σn,k) ↑ 0 such that β((1 + δn)σn,k) ≥ bβ(σn,k), 1 < b < b∗.

We put σ1 = σ1,1 and σn = min{σn,k ≥ σn−1 : k ≥ n − 1} and construct a function γ(σ) → 0,

σ ↑ 0, such that γ(σn) = δn. Then β(σn/(1 + γ(σn))) = β(σn/(1 + δn)) ≥ bβ(σn). In view of

definition of L̂0 it is impossible.

On the contrary, let B(δ) → 1 as δ ↓ 0 but β 6∈ L̂0. Then there exists a function γ(σ) → 0,

σ ↑ 0, and sequence (σn) ↑ 0, n → ∞, such that lim
n→∞

β(σn/(1 + γ(σn))/β(σn) = a 6= 1. Clearly,

a < 1 provided γ(σn) < 0 and a > 1 provided γ(σn) > 0. We examine, for example, the

second case. Let δ > 0 be an arbitrary number. Then γ(σn) < δ for n ≥ n0 and

B(δ) = lim
σ↑0

β(σ/(1 + δ))

β(σ)
≥ lim

n→∞

β(σn/(1 + δ))

β(σn)
≥ lim

n→∞

β(σn/(1 + γ(σn)))

β(σn)
= a > 1,

which is impossible. Lemma 3 is proved.

Theorem 2. Let σµ = 0, Φ ∈ Ω(0), ln µ(σ, I) ≤ Φ(σ) for all σ ≥ σ0 and X = (xk) be some

sequence X = (xk) of positive numbers increasing to +∞. Suppose that f (x) ր +∞ as

x → +∞. Then:
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1) if either ln f (xk+1)− ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0, or ln f (xk) =

(1+ o(1)) ln f (xk+1) as k → ∞ and Φ ∈ L̂0, or xk+1 = (1+ o(1))xk as k → ∞ and Φ ∈ L̂0,

or xk+1 ≤ Axk for k ≥ 0 and Φ ∈ L̂si then

lim
σ↑0

ln µ(σ, I)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
, (18)

2) if
(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ q > −∞, σ ∈ [σ0, 0), (19)

lim
σ↑0

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (20)

Proof. As above let µ(σ, I; X) = max { f (xk)e
σxk : k ≥ 0}. Clearly, (11) holds. Therefore,

ln µ(σ, I; X) ≤ Φ(σ) for all σ ∈ [σ0, 0) and by Lemma 2 ln f (xk) ≤ −xkΨ(ϕ(xk)) for all k ≥ k0,

that is ln µ(σ, I; X) ≤ ln µD(r) for σ ≥ σ0. Therefore, by Lemma 1

lim
σ↑0

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (21)

On the other hand for σ < 0 now we have

ln µ(σ, I) = max
k≥0

sup
xk≤x<xk+1

(ln f (x) + xσ) ≤ max
k≥0

(ln f (xk+1) + xkσ). (22)

Therefore, if either ln f (xk+1)− ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0 hence we

obtain either ln µ(σ, I) ≤ ln µ(σ, I; X) + H or ln µ(σ, I) ≤ ln µ(σ, I; X) + Hσ, whence

lim
σ↑0

ln µ(σ, I)

Φ(σ)
≤ lim

σ↑0

ln µ(σ, I; X)

Φ(σ)
. (23)

Inequalities (21) and (23) imply (18).

If either xk+1 = (1 + o(1))xk or ln f (xk) = (1+ o(1)) ln f (xk+1) as k → ∞ then from (23) as

in the proof of Theorem 1 for every ε > 0 we have correspondingly ln µ(σ, I) ≤ ln µ(σ/(1 +

ε), I; X) and ln µ(σ, I) ≤ (1 + ε) ln µ(σ/(1 + ε), I; X) for σ ∈ [σ0(ε), 0), whence in view of

condition ln Φ ∈ L̂0, of Lemma 3 and of the arbitrariness of ε we obtain (23) and, thus, (18)

holds.

Finally, if xk+1 ≤ Axk for k ≥ 0 then ln µ(σ, I) ≤ ln µ(σ/A, I; X), whence in view of

condition Φ ∈ L̂si we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition f (x) ր +∞ as x → +∞

it follows that ln µ(σ, I) ↑ +∞ as σ ↑ 0. Therefore, (19) implies (5). We remark also that

if either ln f (xk+1) − ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0 or ln f (xk) =

(1 + o(1)) ln f (xk+1) as k → ∞ and ln Φ ∈ L̂0 or xk+1 = (1 + o(1))xk as k → ∞ and ln Φ ∈ L̂0

or xk+1 ≤ Axk for k ≥ 0 and ln Φ ∈ L̂si then from the inequalities obtained above we get

(20). If ln f (xk+1) ≤ A ln f (xk) for k ≥ 0 then from (21) we obtain the inequality ln µ(σ, I) ≤

A ln µ(σ/A, I; X), whence in view of the condition ln Φ ∈ L̂si inequality (20) follows. The

proof of Theorem 2 is complete.
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2 ANALOGUES OF WHITTAKER’S THEOREM

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the

series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases

which more frequent at meet in mathematical works. The most used characteristics of growth

for integrals (2) with σc = +∞ (by analogy with Dirichlet series) are R-order ̺R[I], lower R-

order λR[I] and (if ̺R[I] ∈ (0,+∞)) R-type TR[I], lower R-type tR[I], which are defined by

formulas

̺R[I] = lim
σ→+∞

ln ln I(σ)

σ
, λR[I] = lim

σ→+∞

ln ln I(σ)

σ
,

TR[I] = lim
σ→+∞

ln I(σ)

exp{σ̺R[I]}
, tR[I] = lim

σ→+∞

ln I(σ)

exp{σ̺R[I]}
.

We will show that in this formulas ln I(σ) can be replaced by ln µ(σ, I) and will use the

following Lemmas for this purpose.

Lemma 4 ( [4, 8]). Let F ∈ V, f has regular variation in regard to F and either σµ = +∞ or

σµ = 0 and lim
x→+∞

f (x) = +∞. Then ln µ(σ, I) ≤ (1 + o(1)) ln I(σ) as σ ↑ σµ.

Lemma 5 ( [4, 9]). Let F ∈ V, σµ = +∞ and lim
x→+∞

(ln F(x))/x = τ < +∞. Then I(σ) ≤

µ(σ + τ + ε, I) for every ε > 0 and all σ ≥ σ(ε).

It is easy to check that these lemmas imply the following statement.

Proposition 1. Let F ∈ V, f has regular variation in regard to F and σµ = +∞. If ln F(x) =

O(x) as x → +∞ then

̺R[I] = lim
σ→+∞

ln ln µ(σ, I)

σ
, λR[I] = lim

σ→+∞

ln ln µ(σ, I)

σ
, (24)

and if ln F(x) = o(x) as x → +∞ then

TR[I] = lim
σ→+∞

ln µ(σ, I)

exp{σ̺R[I]}
, tR[I] = lim

σ→+∞

ln µ(σ, I)

exp{σ̺R[I]}
. (25)

Using Theorem 1 and Proposition 1 we prove the following theorem.

Theorem 3. Let F ∈ V, σµ = +∞ and X = (xk) be some sequence of positive numbers

increasing to +∞. Suppose that f is a nonincreasing function and has regular variation in

regard to F.

If ln F(x) = O(x) as x → +∞ and ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞ then

λR[I] ≤ β̺R [I], β = lim
k→∞

ln xk

ln xk+1
. (26)

If ln F(x) = o(x) as x → +∞ and ln f (xk)− ln f (xk+1) = O(1) as k → ∞ then

tR[I] ≤ TR[I]
γ

1 − γ
exp

{

1 +
γ ln γ

1 − γ

}

ln
1

γ
, γ = lim

k→∞

xk

xk+1
. (27)
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Proof. From (24) and (25) for every ε and all σ ≥ σ0(ε) we have accordingly ln µ(σ, I) ≤

exp{(̺R [I] + ε)σ} and ln µ(σ, I) ≤ (TR[I] + ε) exp{̺R[I]σ}. We choose Φ ∈ Ω(+∞) such

that Φ(σ) = Te̺σ for σ ≥ σ0(ε), where either ̺ = ̺R[I] + ε and T = 1 or ̺ = ̺R[I] and

T = TR[I] + ε. Then ln µ(σ, I) ≤ Φ(σ) for σ ≥ σ0(ε), ln Φ ∈ L0 and it is well known ( [4, 10])

that

G1(xk, xk+1, Φ) =
1

̺

xkxk+1

xk+1 − xk
ln

xk+1

xk

and

G2(xk, xk+1, Φ) =
1

e̺
exp

{

xk+1 ln xk+1 − xk ln xk

xk+1 − xk

}

.

Since Φ(σ)Φ′′(σ)/Φ′(σ)2 = 1, condition (9) holds and by Theorem 1 we have

λR[I] ≤ ̺ lim
k→∞

(xk+1 − xk) ln

(

xkxk+1

xk+1 − xk
ln

xk+1

xk

)

xk+1 ln xk+1 − xk ln xk
(28)

provided ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞, and

tR[I] ≤ eT lim
k→∞

xkxk+1

xk+1 − xk
ln

xk+1

xk

exp

{

xk+1 ln xk+1 − xk ln xk

xk+1 − xk

} (29)

provided ln f (xk)− ln f (xk+1) = O(1) as k → ∞.

We suppose that β < 1. Then there exist a number β∗ ∈ (β, 1) and an increasing sequence

(kj) of positive integers such that ln xk j
≤ β∗ ln xk j+1, that is xk j

= o(xk j+1) as j → ∞. There-

fore, from (28) we obtain

λR[I] ≤ ̺ lim
j→∞

(xk j+1 − xk j
) ln

(

xk j
xk j+1

xk j+1 − xk j

ln
xk j+1

xk j

)

xk j+1 ln xk j+1 − xk j
ln xk j

≤ ̺ lim
j→∞

ln xk j
+ o(1) + ln ln xk j+1

ln xk j+1
≤ ̺β∗,

whence in view of the arbitrariness of β∗ and ε we obtain inequality (26) follows.

Further, if γ ∈ (0, 1), then xk j
= (1 + o(1))γxk j+1 as j → ∞ for some increasing sequence

(kj) of positive integers and from (29) we obtain

tR[I] ≤ eT lim
j→∞

xk j
xk j+1 ln (xk j+1/xk j

)

(xk j+1 − xk j
) exp

{

xk j+1 ln xk j+1 − xk j
ln xk j

xk j+1 − xk j

}

= eT lim
j→∞

γxk j+1 ln (1/γ)

(1 − γ) exp{ln xk j+1 − (γ ln γ)/(1 − γ)}
= T

γ

1 − γ
ln

1

γ
exp

{

1 +
γ ln γ

1 − γ

}

,

whence in view of the arbitrariness of ε we get (27). Since
γ

1 − γ
ln

1

γ
exp

{

1 +
γ ln γ

1 − γ

}

→ 1

as γ → 1, then inequality (27) is obvious if γ = 1. Finally, if γ = 0, then ln xk j
= o(ln xk j+1) as

j → ∞ for some increasing sequence (kj) of positive integers and from (29) we obtain

tR[I] ≤ eT lim
j→∞

xk j
(ln xk j+1 − ln xk j

)

exp{ln xk j+1 + o(1)}
= eT lim

j→∞

xk j

xk j+1
ln

xk j+1

xk j

= 0,
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i.e. inequality (27) holds. The proof of Theorem 3 is complete.

Now we consider the case σµ = 0. The order ̺0[I], the lower order λ0[I] and (if 0 < ̺0[I] <

+∞) the type T0[I] and the lower type t0[I] are defined by formulas

̺0[I] = lim
σ↑0

ln ln I(σ)

ln (1/|σ|)
, λ0[ϕ] = lim

σ↑0

ln ln I(σ)

ln (1/|σ|)
,

T0[I] = lim
σ↑0

|σ|̺0 [I] ln I(σ), t0[I] = lim
σ↑0

|σ|̺∗ [I] ln I(σ).

We will show that in this formulas ln I(σ) can be replaced by ln µ(σ, I) and will use for this

purpose the following lemmas.

Lemma 6 ( [4, 9]). Let F ∈ V, σµ = 0 and ln F(x) ≤ h ln f (x) for x ≥ x0. Then for every ε > 0

and all σ ∈ [σ0(ε), 0)

ln I(σ) ≤ (1 + h + ε) ln µ

(

σ

1 + h + ε
, I

)

+ K, K = K(ε) = const.

Lemma 7 ( [4,9]). Let F ∈ V, σµ = 0 and ln F(x) = o(xγ(x)) as x → +∞, where γ is a positive

continuous and decreasing to 0 function on [0,+∞) such that xγ(x) ↑ +∞ as x → +∞. Then

for every ε > 0 and all σ ∈ [σ0(ε), 0)

ln I(σ) ≤ ln µ

(

σ

1 + ε
, I

)

+
ε|σ|

1 + ε
γ−1

(

|σ|

ε(1 + ε)2

)

.

Lemmas 4, 6 and 7 imply the following statement.

Proposition 2. Let F ∈ V, σµ = +∞, f has regular variation in regard to F and f (x) ր +∞ as

x → +∞. If either ln F(x) = O(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ then

̺0[I] = lim
σ↑0

ln ln µ(σ, I)

ln (1/|σ|)
, λ0[ϕ] = lim

σ↑0

ln ln µ(σ, I)

ln (1/|σ|)
, (30)

and if either ln F(x) = o(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ then

T0[I] = lim
σ↑0

|σ|̺0 [I] ln µ(σ, I), t0[I] = lim
σ↑0

|σ|̺0 [I] ln µ(σ, I)). (31)

Proof. If ln F(x)) = O(ln f (x)) (accordingly ln F(x) = o(ln f (x))) as x → +∞ then formulas

(30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function γ such that γ(x) = xδ−1 for x ≥ x0, where δ ∈ (0, 1) is an arbitrary

numbers, then γ satisfies the conditions of Lemma 7. Therefore, if ln F(x) = o(xδ) as x → +∞

then

ln I(σ) ≤ ln µ

(

σ

1 + ε
, I

)

+
ε|σ|

1 + ε

(

ε(1 + ε)2

|σ|

)1−δ

= ln µ

(

σ

1 + ε
, I

)

+ ε2−δ(1 + ε)1−2δ|σ|δ = ln µ

(

σ

1 + ε
, I

)

+ o(1), σ ↑ 0,

whence the formulas (30) and (31) follow. It remained to notice that the condition

ln ln F(x) = o(ln x) as x → +∞ implies the condition ln F(x) = o(xδ) as x → +∞ for

δ ∈ (0, 1). Proposition 2 is proved.
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Using Theorem 2 and Proposition 2 we prove the following theorem.

Theorem 4. Let F ∈ V, σµ = 0 and X = (xk) be some sequence of positive numbers increasing

to +∞. Suppose that f has regular variation in regard to F and f (x) ր +∞ as x → +∞.

If either ln F(x) = O(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ and

ln f (xk+1) = O(ln f (xk)) as k → ∞ then

λ0[I] ≤ β̺0[I], β = lim
k→∞

ln xk

ln xk+1
. (32)

If either ln F(x) = o(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ and

ln f (xk+1) = (1 + o(1)) ln f (xk) as k → ∞ then

t0[I] ≤ T0[I]A(γ), γ = lim
k→∞

xk

xk+1
, (33)

where

A(γ) =:
γ̺/(̺+1)(1 − γ1/(̺+1))(1 − γ̺/(̺+1))̺

(1 − γ)̺+1
.

Proof. If ̺0[I] < +∞ (T0[I] < +∞) then ln µ(σ, I) ≤ Φ(σ) =
T

|σ|̺
for all σ ∈ [σ0(ε), 0), where

either ̺ = ̺0[I] + ε and T = 1 or ̺ = ̺0[I] and T = T0[I] + ε. Clearly, Φ ∈ L̂0 and ln Φ ∈ L̂si.

It is known [4, p. 40] that for this function

G1(xk, xk+1, Φ) =
T(̺ + 1)

(T̺)̺/(̺+1)

xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1





and

G2(xk, xk+1, Φ) = T





(̺ + 1)(T̺)1/(̺+1)

̺

x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k

xk+1 − xk





−̺

.

We remark that
(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) =
1

̺
ln

T

|σ|̺
↑ +∞, σ ↑ 0,

that is (19) holds.

Therefore, if ln f (xk+1) = O(ln f (xk)) as k → ∞ then by Theorem 2 in view of arbitrariness

of ε

λ0[I] ≤ ̺0[I] lim
k→∞

ln





xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1









ln





xk+1 − xk

x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k





̺ (34)

and if ln f (xk+1) = (1 + o(1)) ln f (xk) as k → ∞ then

t0[I] ≤ T0[I]
(̺ + 1)̺+1

̺̺ lim
k→∞

xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1









x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k

xk+1 − xk





̺

. (35)
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We suppose that β < 1. Then there exists a number β∗ ∈ (β, 1) and an increasing se-

quence (kj) of positive integers such that ln xk j
≤ β∗ ln xk j+1, that is xk j

= o(xk j+1) as j → ∞.

Therefore, from (34) we obtain

λ0[I] ≤ ̺0[I] lim
j→∞

ln





xk j
xk j+1

xk j+1 − xk j





1

x
1/(̺+1)
k j

−
1

x
1/(̺+1)
k j+1









ln





xk j+1 − xk j

x
̺/(̺+1)
k j+1 − x

̺/(̺+1)
k j





̺

= ̺0[I] lim
j→∞

ln x
̺/(̺+1)
k j

̺ ln x
1/(̺+1)
k j+1

= ̺0[I] lim
j→∞

ln xk j

ln xk j+1
≤ ̺0[I]β

∗,

i.e. in view of arbitrariness of β∗ we obtain the inequality λ0[I] ≤ β̺0[I]. For β = 1 this

inequality is trivial.

Now we suppose that γ ∈ (0, 1). Then there exists an increasing sequence (kj) of positive

integers such that xk j
= (1 + o(1))γ xk j+1 as j → ∞. Therefore, from (35) we obtain

t0[I] ≤ T0[I]
(̺ + 1)̺+1

̺̺ lim
j→∞

xk j
xki+1

xk j+1 − xk j





1

x
1/(̺+1)
k j

−
1

x
1/(̺+1)
k j+1









x
̺/(̺+1)
k j+1 − x

̺/(̺+1)
k j

xk j+1 − xk j





̺

≤ T0[I]
(̺ + 1)̺+1

̺̺

γ

γ − 1

(

1

γ1/(̺+1)
− 1

)

(1 − γ̺/(̺+1))̺

(1 − γ)̺ = T0[I]
(̺ + 1)̺+1

̺̺ A(γ).

It is easy to show that A(γ) → ̺̺

(̺+1)̺+1 as γ → 1 that (2) is transformed in obvious inequality

t0[ϕ] ≤ T0[ϕ] as γ → 1. If γ = 0 then xk j
= o(xk j+1) as j → ∞ and from (2) we obtain easy that

t0[I] = 0, because A(0) = 0. The proof of Theorem 4 is complete.
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INTRODUCTION AND PRELIMINARIES

In 2009, Lakshmikantham and Ćirić [2] introduced a generalization of monotonicity that
called mixed g-monotone property. The authors established some coupled coincidence and
coupled fixed point results related the mappings have mixed g-monotone property in the par-
tially ordered metric space.

Definition 1 ([2]). An element (x, y) ∈ X2 is said to be a coupled coincidence point of a map-
pings F : X2 → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2 ([2]). An element (x, y) ∈ X2 is said to be a coupled common fixed point of the
mappings F : X2 → X and g : X → X if F (x, y) = gx = x and F (y, x) = gy = y.

Definition 3 ([2]). Let X be a nonempty set and F : X2 → X and g : X → X. We say F and g

are commutative if gF (x, y) = F (gx, gy) for all x, y ∈ X.

Now, we furnish the following class of auxiliary functions which will be used densely in
the sequel.

Definition 4 ([11]). Let Φ denote all functions ϕ : [0, ∞) → [0, ∞) , which satisfy following:

(ϕ1) ϕ is continuous and non-decreasing;

(ϕ2) ϕ (t) = 0 iff t = 0;

(ϕ3) ϕ (t + s) ≤ ϕ (t)+ ϕ (s) for all t, s ∈ [0, ∞) and Ψ denote all functions ψ : [0, ∞) → [0, ∞) ,
which satisfy (ψ1);

УДК 517.98, 515.14
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c© Yolacan E., Kiziltunc H., Kir M., 2016



252 YOLACAN E., KIZILTUNC H., KIR M.

(ψ1) ψ is continuous function with the condition ϕ (t) > ψ (t) for all t > 0.

By (ϕ1), (ϕ2) and (ψ1) we have that ψ (0) = 0.

Next, we give the following coupled fixed point theorems as the main results of Işık and
Türkoğlu [11].

Theorem 1 ([11]). Let (X,≤, d) be a complete partially ordered metric space. Suppose that
F : X2 → X is a mapping having the mixed monotone property on X. Assume there exists
ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ (d (F (x, y) , F (u, v))) ≤ 2−1 × ψ (d (x, u) + d (y, v)) (1)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v.
Suppose that either

(a) F is continuous or;

(b) X has the following properties:

1) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,

2) if a non-increasing sequence {yn} → y, then y ≤ yn for all n.

If there exist two elements x0, y0 ∈ X with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Then F has a
coupled fixed point.

The existence of fixed points of contraction mappings in metric space endowed with graph
has been initiated by Jachymski [4]. Fixed point theorems for single valued and multivalued
operators in such metric spaces have been studied by some authors since 2007 (see [5]— [10]
and so on).

Let (X, d) be a metric space, ∆ be a diagonal of X2, and G be a directed graph with no par-
allel edges such that the set V (G) of its vertices coincides with X and ∆ ⊆ E (G), where E (G)

is the set of the edges of the graph. That is, G is determined by (V (G) , E (G)). Furthermore,
denote by G−1 the graph obtained from G by reversing the direction of the edges in G. Hence,
E
(

G−1
)

=
{

(x, y) ∈ X2 : (y, x) ∈ E (G)
}

.

Definition 5 ([4]). A function g : X → X is G−continuous if

(a) for all x, x∗ ∈ X and any sequence (ni)i∈N of positive integers, (xni) → x∗ and
(

xni
, xni+1

)

∈ E (G), for n ∈ N, implies g (xni) → gx∗;

(b) for all y, y∗ ∈ X and any sequence (ni)i∈N of positive integers, (yni) → y∗ and
(

yni
, yni+1

)

∈ E
(

G−1
)

, for n ∈ N, implies g (yni) → gy∗.

Definition 6 ([9]). Let (X, d) be a complete metric space, G be a directed graph and
F : X × X → X be a mapping. Then

(i) F is called G−continuous if for all (x, y), (x∗, y∗) ∈ X2 and for any sequence (ni)i∈N

of positive integers such that (xni) → x∗, (yni) → y∗ as i → ∞ and
(

xni
, xni+1

)

∈ E (G),
(

yni
, yni+1

)

∈ E
(

G−1
)

, for n ∈ N, implies F (xni
, yni) → F (x∗, y∗) and

F (yni
, xni) → F (y∗, x∗) as i → ∞;
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(ii) (X, d, G) has property A if (a) for any sequence (xn)n∈N in X with (xn) → x∗ as n →

∞ and (xn, xn+1) ∈ E (G) for n ∈ N, then (xn, x∗) ∈ E (G); (b) for any sequence
(yn)n∈N in X with (yn) → y∗ as n → ∞ and (yn, yn+1) ∈ E

(

G−1
)

for n ∈ N, then
(yn, y∗) ∈ E

(

G−1
)

.

Consider the set CCoinFix (Fg) of all coupled coincidence points of mappings F : X2 → X,
g : X → X and the set

(

X2
)

Fg
as follows:

CCoinFix (Fg) =
{

(x, y) ∈ X2 : gx = F (x, y) and gy = F (y, x)
}

and
(

X2
)

Fg
=

{

(x, y) ∈ X2 : (gx, F (x, y)) ∈ E (G) and (gy, F (y, x)) ∈ E
(

G−1
)}

.

In 2016, Eshi et al. [12] introduced the concept of G − g−contraction mapping as follows.

Definition 7 ([12]). F : X2 → X is called G − g−contraction if:

(i) g is edge preserving, i.e.,(gx, gu) ∈ E (G) and (gy, gv) ∈ E
(

G−1
)

⇒

(g (gx) , g (gu)) ∈ E (G) and (g (gy) , g (gv)) ∈ E
(

G−1
)

;

(ii) F is g−edge preserving, i.e.,(gx, gu) ∈ E (G) and (gy, gv) ∈ E
(

G−1
)

⇒

(F (x, y) , F (u, v)) ∈ E (G) and (F (y, x) , F (v, u)) ∈ E
(

G−1
)

;

(iii) for all x, y, u, v ∈ X such that, (gx, gu) ∈ E (G) and (gy, gv) ∈ E
(

G−1
)

,

d (F (x, y) , F (u, v)) ≤ k
2 [(gx, gu) + (gy, gv)], where k ∈

[

0, 1
2

)

is called the contraction
constant of F.

Proposition 1 ([12]). If F : X2 → X is g−edge preserving and F
(

X2
)

⊆ g (X). Also, let
(xn)n∈N , (yn)n∈N , (un)n∈N and (vn)n∈N be sequences in metric space (X, d) endowed with a
directed graph G. Then

(a) (gx, gu) ∈ E (G) and (gy, gv) ∈ E
(

G−1
)

⇒ (F (xn, yn) , F (un, vn)) ∈ E (G) and
(F (yn, xn) , F (vn, un)) ∈ E

(

G−1
)

for all n ∈ N;

(b) (x, y) ∈
(

X2
)

Fg
⇒ (F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈

E
(

G−1
)

for all n ∈ N;

(c) (x, y) ∈
(

X2
)

Fg ⇒ (F (xn, yn) , F (yn, xn)) ∈
(

X2
)

Fg for all n ∈ N.

In this paper, we prove coupled coincidence and coupled common fixed point theorems for
contaction mappings in metric spaces endowed with a directed graph. Our results extend and
improve the results obtained by Eshi et al. in [12], Işık and Türkoğlu in [11], Chifu and Petrusel
in [9] so on. Moreover, we have an application to some integral system to support the results.

1 MAIN RESULTS

Definition 8. Let (X, d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 → X, g : X → X are called a ϕ − ψ−contraction if:

1) g is edge preserving, F is g−edge preserving;
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2) there exists ϕ ∈ Φ and ψ ∈ Ψ such that for all x, y, u, v ∈ X satisfying (gx, gu) ∈ E (G)

and (gy, gv) ∈ E
(

G−1
)

,

ϕ (d (F (x, y) , F (u, v))) ≤ 2−1 × ψ (d (gx, gu) + d (gy, gv)) . (2)

Lemma 1. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ϕ − ψ−contraction and F

(

X2
)

⊆ g (X). Also, let (xn), (yn) be
sequences in X. If for each (x, y) ∈

(

X2
)

Fg
, then

ρn := d (gxn+1, gxn) + d (gyn+1, gyn) → 0 as n → ∞.

Proof. Let x0, y0 ∈ X. Since F
(

X2
)

⊆ g (X), we can constitute x1, y1 ∈ X such that
F (x0, y0) = gx1 and F (y0, x0) = gy1. Again, we can constitute x2, y2 ∈ X such that
F (x1, y1) = gx2 and F (y1, x1) = gy2. Continuing this procedure above we obtain sequences
(xn) and (yn) in X such that

gxn = F (xn−1, yn−1) and gyn = F (yn−1, xn−1) (3)

for all n ≥ 1, x = x0 and y = y0. Let (x0, y0) ∈
(

X2
)

Fg
such that (gx0, F (x0, y0)) =

(gx0, gx1) ∈ E (G) and (gy0, F (y0, x0)) = (gy0, gy1) ∈ E
(

G−1
)

. Then, by Proposition 1 (b),
we get (F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈ E

(

G−1
)

. Thus
we have that (gxn, gxn+1) ∈ E (G) and (gyn, gyn+1) ∈ E

(

G−1
)

for all n ∈ N. Using the
ϕ − ψ−contaction (2) and (3), we have that

ϕ (d (gxn+1, gxn)) = ϕ (d (F (xn, yn) , F (xn−1, yn−1)))

≤ 2−1 × ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) and
(4)

ϕ (d (gyn+1, gyn)) = ϕ (d (F (yn, xn) , F (yn−1, xn−1)))

≤ 2−1 × ψ (d (gyn, gyn−1) + d (gxn, gxn−1))
(5)

for all n ∈ N. From (4) and (5) we get

ϕ (d (gxn+1, gxn)) + ϕ (d (gyn+1, gyn)) ≤ ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) . (6)

From (ϕ3), we obtain that

ϕ (d (gxn+1, gxn) + d (gyn+1, gyn)) ≤ ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) .

Regarding the properties ϕ and ψ, we conclude that

d (gxn+1, gxn) + d (gyn+1, gyn) ≤ d (gxn, gxn−1) + d (gyn, gyn−1) .

It follows that ρn := d (gxn+1, gxn) + d (gyn+1, gyn) is decreasing. Then limn→∞ ρn = ρ for
some ρ ≥ 0. Taking the limit as n → ∞ in (6), we have ϕ (ρ) ≤ ψ (ρ). From the properties ϕ

and ψ, we obtain that ρ = 0, and thus

ρn := d (gxn+1, gxn) + d (gyn+1, gyn) → 0 as n → ∞.
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Theorem 2. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ϕ − ψ−contraction and F

(

X2
)

⊆ g (X). Let g be G−continuous
and commutes with F. Suppose that:

(i) F is G−continuous, or

(ii) the tripled (X, d, G) has a property A.

Then CCoinFix (Fg) 6= ∅ iff
(

X2
)

Fg 6= ∅.

Proof. Let CCoinFix (Fg) 6= ∅. Then there exists (x∗, y∗) ∈ CCoinFix (Fg) such that
(gx∗, F (x∗, y∗)) = (gx∗, gx∗) ∈ ∆ ⊂ E (G) and (gy∗, F (y∗, x∗)) = (gy∗, gy∗) ∈ ∆ ⊂ E

(

G−1
)

.
It follows that (x∗, y∗) ∈

(

X2
)

Fg
, so that

(

X2
)

Fg
6= ∅.

Now, suppose that
(

X2
)

Fg
6= ∅. Then there exists (x0, y0) ∈

(

X2
)

Fg
, e.g.,

(gx0, F (x0, y0)) ∈ E (G), (gy0, F (y0, x0)) ∈ E
(

G−1
)

. Then, by Proposition 1 (b), we get
(F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈ E

(

G−1
)

. Thus we have
that

(gxn, gxn+1) ∈ E (G) and (gyn, gyn+1) ∈ E
(

G−1
)

(7)

for all n ∈ N. By Lemma 1, we have

ρn := d (gxn+1, gxn) + d (gyn+1, gyn) → 0 as n → ∞. (8)

Next, we shall prove that {gxn} and {gyn} are Cauchy sequences. If possible, assume that at
least one of {gxn} and {gyn} is not a Cauchy sequence. Then there exists ε > 0 for which

we can find subsequences
{

gxn(k)

}

,
{

gxm(k)

}

of {gxn} and
{

gyn(k)

}

,
{

gym(k)

}

of {gyn} with

n (k) > m (k) ≥ k such that

γk := d
(

gxn(k), gxm(k)

)

+ d
(

gyn(k), gym(k)

)

≥ ε. (9)

Farther, corresponding to m (k), we can choose n (k) in the manner that it is the smallest integer
for which (9) holds. Then,

d
(

gxn(k)−1, gxm(k)

)

+ d
(

gyn(k)−1, gym(k)

)

< ε. (10)

Using (9), (10), and triangular inequality, we obtain

ε ≤ γk < ε + d
(

gxn(k), gxn(k)−1

)

+ d
(

gyn(k), gyn(k)−1

)

. (11)

Letting k → ∞ in (11) and by (8), we have

γk := d
(

gxn(k), gxm(k)

)

+ d
(

gyn(k), gym(k)

)

→ ε as k → ∞. (12)

From the triangle inequality, we get

γk = d
(

gxn(k), gxm(k)

)

+ d
(

gyn(k), gym(k)

)

≤ d
(

gxn(k)+1, gxm(k)+1

)

+ d
(

gyn(k)+1, gym(k)+1

)

+ ρn(k) + ρm(k).
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From property ϕ, we have

ϕ (γk) ≤ ϕ
(

d
(

gxn(k)+1, gxm(k)+1

))

+ ϕ
(

d
(

gyn(k)+1, gym(k)+1

))

+ ϕ
(

ρn(k) + ρm(k)

)

≤ ϕ
(

d
(

F
(

xn(k), yn(k)

)

, F
(

xm(k), ym(k)

)))

+ ϕ
(

d
(

F
(

yn(k), xn(k)

)

, F
(

ym(k), xm(k)

)))

+ ϕ
(

ρn(k) + ρm(k)

)

≤ 2−1 × ψ
(

d
(

gxn(k), gxm(k)

)

+ d
(

gyn(k), gym(k)

))

+ 2−1 × ψ
(

d
(

gyn(k), gym(k)

)

+ d
(

gxn(k), gxm(k)

))

+ ϕ
(

ρn(k) + ρm(k)

)

≤ ψ (γk) + ϕ
(

ρn(k) + ρm(k)

)

.

(13)

Taking k → ∞ in (13) and from (8) and (12), we obtain a following contradiction:

ϕ (ε) ≤ ψ (ε) + ϕ (0) = ψ (ε) .

Thus, {gxn} and {gyn} are Cauchy sequences in X. As (X, d) is complete, there exists
x∗, y∗ ∈ X such that

gxn → x∗ and gyn → y∗ as n → ∞. (14)

Since g be G−continuous, we have

g (gxn) → gx∗ and g (gyn) → gy∗ as n → ∞.

Moreover as F and g are commutative

g (gxn+1) = g (F (xn, yn)) = F (gxn, gyn) , (15)

g (gyn+1) = g (F (yn, xn)) = F (gyn, gxn) . (16)

We now prove that
F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗.

Suppose assumption (i) holds. From (15) and (16), we have

gx∗ = lim
n→∞

g (gxn+1) = lim
n→∞

F (gxn, gyn) = F (x∗, y∗) ,

gy∗ = lim
n→∞

g (gyn+1) = lim
n→∞

F (gyn, gxn) = F (y∗, x∗) ;

that is, (x∗, y∗) is a coincidence point of F and g.
Suppose now assumption (ii) holds. From (7) and (14), using property A, we get (gxn, x∗) ∈

E (G) and (gyn, y∗) ∈ E
(

G−1
)

for each n ∈ N. By (2), we get

ϕ (d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗)))

≤ ϕ (d (gx∗, gxn+1) + d (gxn+1, F (x∗, y∗)) + d (gy∗, gyn+1) + d (gyn+1, F (y∗, x∗)))

≤ ϕ (d (gx∗, gxn+1)) + ϕ (d (F (xn, yn) , F (x∗, y∗)))

+ ϕ (d (gy∗, gyn+1)) + ϕ (d (F (yn, xn) , F (y∗, x∗)))

≤ ψ (d (gxn, gx∗) + d (gyn, gy∗)) + ϕ (d (gx∗, gxn+1)) + ϕ (d (gy∗, gyn+1)) .

Letting n → ∞, we obtain ϕ (d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗))) = 0. From properties ϕ,
we have d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗)) = 0. Hence, gx∗ = F (x∗, y∗) and
gy∗ = F (y∗, x∗).
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Definition 9. Let (X, d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 → X, g : X → X are called a ψ−contraction if:

(i) g is edge preserving, F is g−edge preserving;

(ii) there exists ψ ∈ Ψ such that for all x, y, u, v ∈ X satisfying (gx, gu) ∈ E (G) and
(gy, gv) ∈ E

(

G−1
)

,

d (F (x, y) , F (u, v)) ≤ 2−1 × ψ (d (gx, gu) + d (gy, gv)) .

Theorem 3. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ψ−contraction and F

(

X2
)

⊆ g (X). Let g be G−continuous and
commutes with F. Suppose that:

(i) F is G−continuous, or

(ii) the tripled (X, d, G) has a property A.

Then CCoinFix (Fg) 6= ∅ iff
(

X2
)

Fg 6= ∅.

Proof. Taking ϕ (t) = t, along the lines of the proof of Theorem 2, we have the requested
results. By virtue of the analogy, we skip the details of the proof.

If we choose the functions ϕ (t) = t and ψ (t) = kt, for t ∈ [0, ∞) and k ∈
[

0, 1
2

)

in Theorem
2, we have the following corollary.

Corollary 1 ([12]). Let (X, d) be complete metric space endowed with a directed graph G, and

let F : X2 → X be a G − g−contraction with contraction constant k ∈
[

0, 1
2

)

and F
(

X2
)

⊆

g (X). Let g be G−continuous and commutes with F. Suppose that (i) F is G−continuous, or
(ii) the tripled (X, d, G) has a property A. Then CCoinFix (Fg) 6= ∅ iff

(

X2
)

Fg
6= ∅.

Remark 1. In the case where (X,4) is partially ordered complete metric space, taking E (G) =

{(x, y) ∈ X × X : x 4 y}, the functions ϕ (t) = t and ψ (t) = kt, for t ∈ [0, ∞) and k ∈ [0, 1),
Theorem 2 generalize and improve the results obtained by Bhaskar and Lakshmikantham ( [1],
Theorem 2.1) and Chifu and Petrusel ( [9], Theorem 2.1). If we take the function ψ (t) = ϕ (t)−

ψ1 (t), for t ∈ [0, ∞), where ψ1 ∈ Ψ, Theorem 2 generalize the results given by Luong and
Thuan ( [3], Theorem 2.1). In Theorem 2, let g be the identity mapping. Then it is easy to see
that our conclusions enhance the results achieved by Işık and Türkoğlu [11].

Theorem 4. In addition to Theorem 2, suppose that for any two elements (x, y) , (x∗, y∗) ∈ X2,
there exists (p, r) ∈ X2 such that

(F (x, y) , F (p, r)) ∈ E (G) , (F (y, x) , F (r, p)) ∈ E
(

G−1
)

and

(F (x∗, y∗) , F (p, r)) ∈ E (G) , (F (y∗, x∗) , F (r, p)) ∈ E
(

G−1
)

.

Then, F and g have a unique coupled common fixed point.
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Proof. By Theorem 2, we have CCoinFix (Fg) 6= ∅. Suppose (x, y) , (x∗, y∗) are coupled fixed
points of F, e.g.,

gx = F (x, y) , gy = F (y, x) and gx∗ = F (x∗, y∗) , gy∗ = F (y∗, x∗) . (17)

Consider sequences {pn} and {rn} as follows

p0 = p, r0 = r, pn+1 = F (pn, rn) and rn+1 = F (rn, pn) for all n ≥ 0.

From assumption, we get

(F (x, y) , F (p, r)) = (gx, gp1) ∈ E (G) , (F (y, x) , F (r, p)) = (gy, gr1) ∈ E
(

G−1
)

and

(F (x∗, y∗) , F (p, r)) = (gx∗, gp1) ∈ E (G) ,

(F (y∗, x∗) , F (r, p)) = (gy∗, gr1) ∈ E
(

G−1
)

.

Since F is g−edge preserving, we have

(F (x, y) , F (p1, r1)) = (gx, gp2) ∈ E (G) , (F (y, x) , F (r1, p1)) = (gy, gr2) ∈ E
(

G−1
)

,

(F (x∗, y∗) , F (p1, r1)) = (gx∗, gp2) ∈ E (G) ,

(F (y∗, x∗) , F (r1, p1)) = (gy∗, gr2) ∈ E
(

G−1
)

.

Continuing this procedure above, we obtain

(gx, gpn) ∈ E (G) , (gy, grn) ∈ E
(

G−1
)

and

(gx∗, gpn) ∈ E (G) , (gy∗, grn) ∈ E
(

G−1
)

.

By (2), we have

ϕ (d (gx∗, pn+1)) + ϕ (d (rn+1, gy∗))

= ϕ (d (F (x∗, y∗) , F (pn, rn))) + ϕ (d (F (rn, pn) , F (y∗, x∗)))

≤ 2−1 × ψ (d (gx∗, gpn) + d (gy∗, grn)) + 2−1 × ψ (d (grn, gy∗) + d (gpn, gx∗)) .

By the property of ϕ, we have

ϕ (d (gx∗, gpn+1) + d (grn+1, gy∗)) ≤ ψ (d (gx∗, gpn) + d (gy∗, grn)) . (18)

By (ϕ1) and (ψ1), we have

d (gx∗, gpn+1) + d (grn+1, gy∗) ≤ d (gx∗, gpn) + d (gy∗, grn) .

Therefore, the sequence { fn} defined by fn = d (gx∗, gpn) + d (gy∗, grn), is a nonnegative
decreasing sequence, and consequently, there exists some f ≥ 0 such that

d (gx∗, gpn) + d (gy∗, grn) → f as n → ∞.

Suppose that f > 0. Then taking limit as n → ∞ in (18) and using the continuity of ϕ and ψ,
we get

ϕ ( f ) ≤ ψ ( f )
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which implies, from the properties of ϕ and ψ, that ψ ( f ) = 0 and eventually, f = 0. Hence

d (gx∗, gpn) + d (gy∗, grn) → 0 as n → ∞,

which implies
lim

n→∞
d (gx∗, gpn) = 0 = lim

n→∞
d (gy∗, grn) .

Similarly
lim

n→∞
d (gx, gpn) = 0 = lim

n→∞
d (gy, grn) .

By the triangular inequality we obtain

d (gx∗, gx) ≤ d (gx∗, gpn) + d (gpn, gx) , d (gy∗, gy) ≤ d (gy∗, grn) + d (grn, gy) , (19)

for all n ∈ N. Letting n → ∞ in (19), we obtain that d (gx∗, gx) = 0 = d (gy∗, gy). Hence, we
get

gx∗ = gx and gy∗ = gy. (20)

Let gx∗ = gx = t and gy∗ = gy = s.
Owing to commutativity of F and g, by (17), we have

g (gx∗) = g (F (x∗, y∗)) = F (gx∗, gy∗) ⇒ gt = F (t, s) and

g (gy∗) = g (F (y∗, x∗)) = F (gy∗, gx∗) ⇒ gs = F (s, t) .

Hence, (t, s) is a coupled coincidence point. Thus, by repeating previous argument for (x∗, y∗)

and (t, s) ,
gx∗ = gt ⇒ t = gt and gy∗ = gs ⇒ s = gs.

Therefore, t = gt = F (t, s) and s = gs = F (s, t). Hence, (t, s) is a coupled common fixed point
of F and g.

To show the uniqueness, suppose that (k, l) is another coupled common fixed point of F

and g. Hence,
k = gk = F (k, l) and l = gl = F (l, k) . (21)

By (20), we have
gk = gt = t and gl = gs = s. (22)

Thus, from (21) and (22), we get k = t and l = s. Then, k = gk = gt = t and l = gl = gs = s.

2 APPLICATION

We consider the following integral system:

x (t) = h (t) + λ

∫ t

−t
A (t, s, x (s) , y (s)) ds,

y (t) = h (t) + λ

∫ t

−t
A (t, s, y (s) , x (s)) ds,

(23)

for t ∈ [−T, T], T > 0, λ ∈ R.
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Recall that the Bielecki-type norm on X := C ([−T, T] , Rn),

‖x‖B = max
t∈[−T,T]

∣

∣

∣
x (t) e−τ(t−T)

∣

∣

∣
for all x ∈ X,

where τ > 0, is arbitrarily chosen. Consider ‖x − y‖B = maxt∈[−T,T] |x (t)− y (t)| e−τ(t−T) for
all x, y ∈ X.

Define the graph G with partial order relation by

x, y ∈ X, x ≤ y ⇔ x (t) ≤ y (t) for any t ∈ I.

Thus (X, ‖x‖B) is complete metric space endowed with a directed graph G.
If we take into consideration E (G) :=

{

(x, y) ∈ X2 : x ≤ y
}

, then ∆
(

X2
)

⊆ E (G). On the
other hand E

(

G−1
)

:=
{

(x, y) ∈ X2 : y ≤ x
}

. Furthermore, (X, ‖x‖B , G) has property A.
Then

(

X2
)

Fg =
{

(x, y) ∈ X2 : gx ≤ F (x, y) and F (y, x) ≤ gy
}

. We consider the following
conditions:

1. A : [−T, T]× [−T, T]× Rn × Rn → Rn and h : [−T, T] → Rn are continuous;

2. for all x, y, u, v ∈ Rn with x ≤ u, v ≤ y we have A (t, s, x, y) ≤ A (t, s, u, v) for all t,
s ∈ [−T, T];

3. for all t, s ∈ [−T, T] and for all x, y, u, v ∈ Rn

|A (t, s, x, y)− A (t, s, u, v)| ≤ ψ (|x − u|+ |y − v|) ,

where ψ ∈ Ψ such that ψ (αt) ≤ αψ (t) for all t ∈ [−T, T] and for all α ≥ 0;

4. there exists (x0, y0) ∈ X2 such that

x0 (t) ≤ h (t) + λ

∫ t

−t
A (t, s, x0 (s) , y0 (s)) ds,

y0 (t) ≥ h (t) + λ

∫ t

−t
A (t, s, y0 (s) , x0 (s)) ds,

where t ∈ [−T, T] .

Theorem 5. Suppose that conditions (1)—(4) are satisfied. Then there exists at least one solu-
tion of (23).

Proof. Let F : X2 → X and g : X → X be defined as

F (x, y) (t) = h (t) + λ

∫ t

−t
A (t, s, x (s) , y (s)) ds, t ∈ [−T, T] ,

g (x) (t) = x (t) .

Then (23) can be indicated as

gx = F (x, y) and gy = F (y, x) . (24)
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By (24), the solution of this system is a coupled coincidence point of the mappings F and g, if
we prove the assumptions in Theorem 3.

Let x, y, u, v ∈ X be such that gx ≤ gu and gv ≤ gy,

F (x, y) (t) = h (t) + λ

∫ t

−t
A (t, s, x (s) , y (s)) ds

= h (t) + λ

∫ t

−t
A (t, s, g (x) (s) , g (y) (s)) ds

≤ h (t) + λ

∫ t

−t
A (t, s, g (u) (s) , g (v) (s)) ds

= h (t) + λ

∫ t

−t
A (t, s, u (s) , v (s)) ds = F (u, v) (t)

for all t ∈ [−T, T]. Therefore (F (x, y) , F (u, v)) ∈ E (G) .

F (v, u) (t) = h (t) + λ

∫ t

−t
A (t, s, v (s) , u (s)) ds

= h (t) + λ

∫ t

−t
A (t, s, g (v) (s) , g (u) (s)) ds

≤ h (t) + λ

∫ t

−t
A (t, s, g (y) (s) , g (x) (s)) ds

= h (t) + λ

∫ t

−t
A (t, s, y (s) , x (s)) ds = F (y, x) (t)

for all t ∈ [−T, T]. Therefore (F (y, x) , F (v, u)) ∈ E
(

G−1
)

. Then, F is g−edge preserving.
We shall show that F is ψ−contraction. We have

|F (x, y) (t)− F (u, v) (t)|

≤ |λ|
∫ t

−t
|A (t, s, x (s) , y (s))− A (t, s, u (s) , v (s))| ds

≤ |λ|
∫ t

−t
ψ (|x (s)− u (s)|+ |y (s)− v (s)|)

(

e−τ(t−T)eτ(t−T)
)

≤
|λ|

τ
ψ (‖x − u‖B + ‖y − v‖B) eτ(t−T)

for all t ∈ [−T, T]; therefore,

|F (x, y) (t)− F (u, v) (t)| e−τ(t−T) ≤
|λ|

τ
ψ (‖x − u‖B + ‖y − v‖B) . (25)

Applying maximum in (25), we have

‖F (x, y)− F (u, v)‖B ≤
|λ|

τ
ψ (‖x − u‖B + ‖y − v‖B) .

If we take τ such that |λ|
τ = 1

2 ⇔ |λ| = τ
2 , then F is ψ−contraction.

From assumption (4) show that there exists (x0, y0) ∈ X2 such that gx0 ≤ F (x0, y0) and
gy0 ≤ F (y0, x0), which implies that

(

X2
)

Fg 6= ∅. Also, F and g are commutative.
On the other hand, by virtue of (1) and of the fact that (X, ‖x‖B , G) has property A we

get that (i) or (ii) from Theorem 3 is fulfilled. Hence, there exists a coupled coincidence point
(x∗, y∗) ∈ X2 of the mapping F and g, which is the solution of the integral system (23).
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Йолакан Е., Кiзiлтанк Г., Кiр М. Теореми про точки спiвпадiння для ϕ−ψ−скоротних вiдображень

в метричних просторах еволюцiї графiв // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 251–
262.

У статтi отримано деякi новi теореми про зв’язнi точки спiвпадання та зв’язнi фiксованi
точки для ϕ − ψ−скоротних вiдображень. Також були отриманi застосування отриманих ре-
зультатiв у дослiдженнi iнтегральних систем.

Ключовi слова i фрази: зв’язна точка спiвпадання, зв’язна фiксована точка, вершина збере-
ження, напрямлений граф.
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REPRESENTATION OF SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC

ANALYTIC FUNCTIONS OF BOUNDED TYPE

The paper contains a description of a symmetric convolution of the algebra of block-symmetric

analytic functions of bounded type on ℓ1-sum of the space C
2. We show that the specrum of such

algebra does not coincide of point evaluation functionals and we describe characters of the algebra

as functions of exponential type with plane zeros.
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INTRODUCTION

In resent years there is an increasing interest to investigations of invariants of the permu-

tation group S∞ of positive integers. This group can be represented on a Banach space X

with symmetric basis as a group of operators of perturbation of basis vectors. The action of

this group has a natural extension to the action on the algebra Hb(X) of analytic functions

of bounded type on X. Invariants of this representation of S∞ are so-called symmetric ana-

lytic functions of bounded type on X. The algebras of symmetric analytic functions Hbs(X)

were investigated by many authors ([1, 2, 9]). In particular, it is known that Hbs(ℓp) admits an

algebraic basis for 1 ≤ p < ∞.

On the other hand, there are more representations of S∞ in Banach spaces. For example, if

X is a directs sum of infinite many of “blocks” which consists of linear subspaces isomorphic

each to other, then S∞ may to act as a group of permutations of the “blocks”. For this case

we have invariants — the algebra of block-symmetric analytic functions. Note that this algebra

is much more complicated and in the general case has no algebraic basis (see e.g. [6, 12]). In

the case dimX < ∞, block-invariant polynomials were investigated in the classical theory of

invariants [5, 11].

1 MAIN RESULTS

Let

X 2 = ⊕ℓ1
C

2 = ℓ1 ⊗ C
2

УДК 517.98
2010 Mathematics Subject Classification: 46J15, 46E10, 46E50.
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be an infinite ℓ1-sum of copies of Banach space C2. So any element u =

(

x

y

)

∈ X 2 can be

represented as a sequence u =

(

x

y

)

=

((

x1

y1

)

, . . . ,

(

xn

yn

)

, . . .

)

, where

(

xn

yn

)

∈ C
2,

with the norm ‖u‖ =
∞

∑
k=1

(|xk|+ |yk|) . Also, we will use notation u(x, y), where x, y ∈ ℓ1,

x =
∞

∑
k=1

xkek, y =
∞

∑
k=1

ykek. Here ek is the standard symmetric basis in ℓ1.

A polynomial P on the space X 2 is called block-symmetric (or vector-symmetric) if:

P

((

x1

y1

)

, . . . ,

(

xm

ym

)

, . . .

)

= P

((

xσ(1)

yσ(1)

)

, . . . ,

(

xσ(m)

yσ(m)

)

, . . .

)

,

for every permutation σ on the set of natural numbers N, where

(

xi

yi

)

∈ C2. Let us denote

by Pvs(X 2) the algebra of block-symmetric polynomials on X 2.

In [7] it was shown that the following vectors form an algebraic bases of “power” block-

symmetric polynomials of Pvs(X 2) :

Hp,n−p(x, y) =
∞

∑
i=1

x
p
i y

n−p
i , (1)

where 0 ≤ p ≤ n, (xi, yi) ∈ C2, i ≥ 1. Also, there is a basis of “elementary” block-symmetric

polynomials:

Rp,n−p(x, y) =
∞

∑
i1<...<ip

j1<...<jn−p

ik 6=jl

xi1 . . . xip
yj1 . . . yjn−p

,
(2)

where 0 ≤ p ≤ n, n ≥ 1 and (xi, yi) ∈ C2.

In the finite case, generating elements of algebra of block-symmetric polynomials on the

space X 2
m = ⊕m

ℓ1
C

2 are algebraic dependent. In [12] was proved the following theorem.

Theorem 1. For every nonsymmertic polynomial ξ of a system of generating elements of

Pvs(X 2
m) there exist symmetric polynomials ak in this system such that

ξm! − a1ξm!−1 + · · ·+ (−1)m!−1am!−1ξ1 + (−1)m!am! = 0.

Let σ be some permutation on the set of natural numbers N. We denote by Tσ the linear

operator on X 2 associated with σ by the formula

Tσ

( ∞

∑
k=1

xkek,
∞

∑
k=1

ykek

)

=
( ∞

∑
k=1

xσ(k)ek,
∞

∑
k=1

yσ(k)ek

)

.

For any (x, y), (z, t) ∈ X 2 we denote (x, y) ∼ (z, t) if there exists a permutation σ on N such

that (x, y) = Tσ(z, t).

Theorem 2. Let (x, y), (z, t) ∈ X 2 and Hp,i−p(x, y) = Hp,i−p(z, t), where 0 ≤ p ≤ i for every

i ≥ 1. Then (x, y) ∼ (z, t).
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Proof. Let G(x) be a symmetric polynomial of degree n in the algebra of symmetric polynomi-

als Ps(ℓ1) on ℓ1. We set P(x, y) = G(x + jy), where 0 ≤ j ≤ n, (x, y) ∈ X 2. Obviously, P(x, y)

is a block-symmetric polynomial. In [13] it was proved that the block-symmetric polynomial

P(x, y) will be represented as an algebraic combination of Fk(x + jy), where Fn(x) =
∞

∑
k=1

xn
k .

So for the polynomial P(x, y) according to [1, Theorem 1.3] we obtain that x + jy = Tσ(z + jt).

On the other hand, we can denote by Tσ(x) = Tσ(x, 0), Tσ(y) = Tσ(0, y) and we obtain that

x + jy = Tσ((z, 0) + j(0, t)) = Tσ(z) + jTσ(t).

For us it is enough to consider j = 1, 2. We obtain two equalities

x + y = Tσ(z) + Tσ(t), x + 2y = Tσ(z) + 2Tσ(t),

which imply x = Tσ(z), y = Tσ(t). That is, (x, jy) = Tσ(z, t).

Since Hp,i−p(x, y) = Hp,i−p(z, t), 0 ≤ p ≤ i for every i ≥ 1 it follows that Fi(x + jy) =

Fi(z + jt) and so (x, y) ∼ (z, t).

Let Hbvs(X 2) be the algebra of block-symmetric analytic functions of bounded type (that is,

bounded on bounded subsets) on X 2. This algebra is generated by polynomials

H1,0, . . . , Hp,n−p, . . . , H0,n, . . . , where n ≥ 1, 0 ≤ p ≤ n. Let us denote by Mbvs(X 2) the specrum

of algebra Hbvs(X 2).

For given (x, y), (z, t) ∈ X 2,

(x, y) =

((

x1

y1

)

, . . . ,

(

xm

ym

)

, . . .

)

and

(z, t) =

((

z1

t1

)

, . . . ,

(

zm

tm

)

, . . .

)

,

where (xi, yi), (zi, ti) ∈ C2, we put

(x, y) • (z, t) =

((

x1

y1

)

,

(

z1

t1

)

, . . . ,

(

xm

ym

)

,

(

zm

tm

)

, . . .

)

and define

T(z,t)( f )(x, y) := f ((x, y) • (z, t)). (3)

We will say that (x, y) → (x, y) • (z, t) is the intertwining and the operator T(z,t) is the intertwin-

ing operator. Some elementary properties of T(z,t) was proved in [6].

Let C{t1, t2} be the space of all pover series over C2. We denote by R and H the following

maps from Mbvs(X 2) into C{t1, t2}

R(ϕ) =
∞

∑
n=0

0≤p≤n

t
p
1 t

n−p
2 ϕ(Rp,n−p),

and

H(ϕ) =
∞

∑
n=1

0≤p≤n

t
p
1 t

n−p
2 ϕ(Hp,n−p).
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Note

R((x, y) • (z, t)) = R(x, y)R(z, t),

and

H((x, y) • (z, t)) = H(x, y) +H(z, t),

where (x, y), (z, t) ∈ X 2. We will prove these equalities in Theorem 4 for more general situa-

tion.

Following [3] we define the symmetric convolution.

Definition 1. For any f ∈ Hbvs(X 2) and θ ∈ Hbvs(X 2)′, symmetric convolution θ ⋆ f is defined

by

(θ ⋆ f )(x, y) = θ[T(x,y)( f )].

Definition 2. For any ϕ, θ ∈ Hbvs(X 2)′, symmetric convolution ϕ ⋆ θ is defined by

(ϕ ⋆ θ)( f ) = ϕ(θ ⋆ f ) = ϕ((z, t) 7→ θ(T(z,t) f )).

Theorem 3. For any ϕ, θ ∈ Mbvs(X 2) the symmetric convolution is commutative, associative

and

(ϕ ⋆ θ)(Hp,n−p) = ϕ(Hp,n−p) + θ(Hp,n−p), (4)

where 0 ≤ p ≤ n.

Proof. First we will prove the equality (4). Indead, for polynomials Hp,n−p we have

(θ ⋆ Hp,n−p)(x, y) = θ(T(x,y)(Hp,n−p))

= θ(Hp,n−p(x, y) + Hp,n−p) = Hp,n−p(x, y) + θ(Hp,n−p).

Therefore,

(ϕ ⋆ θ)(Hp,n−p) = ϕ(Hp,n−p(x, y) + θ(Hp,n−p))

= ϕ(Hp,n−p) + θ(Hp,n−p).

From this equality it follows the associativity and commutativity of ϕ ⋆ θ ∈ Mbvs(X 2).

Similarly to Lemma 3.1 and Proposition 8.2 in [4] (see also [12]) it is possible to show that

||Rp,n−p|| ≤ 2

p!(n − p)!

and R(ϕ)(t) is a function of exponential type for every fixed ϕ ∈ Mbvs(X 2).

Theorem 4. The following identities hold

1. H(ϕ ⋆ θ) = H(ϕ) +H(θ),

2. R(ϕ ⋆ θ) = R(ϕ)R(θ).
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Proof. The first statement it follows from Theorem 3. To prove the second statement we observe

that

Rp,n−p((x, y) • (z, t)) =
n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)Rp−r,n−p−(i−r)(z, t).

Thus

(θ ⋆ Rp,n−p)(x, y) = θ(T(x1,x2)(Rp,n−p))

= θ
( n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)Rp−r,n−p−(i−r)
)

=
n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)θ
(

Rp−r,n−p−(i−r)
)

.

Therefore

(ϕ ⋆ θ)
(

Rp,n−p
)

= ϕ
( n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x1, x2)θ
(

Rp−r,n−p−(i−r)
))

=
n

∑
i=0

0≤p≤n
0≤r≤i

ϕ
(

Rr,i−r
)

θ
(

Rp−r,n−p−(i−r)
)

.

On the other hand

R(ϕ)R(θ) =
∞

∑
i=0

0≤k≤i

tk
1ti−k

2 ϕ(Rk,i−k)
∞

∑
m=0

0≤r≤m

tr
1tm−r

2 θ(Rr,m−r)

=
∞

∑
n=0

0≤p≤n

∑
k+r=p
i+m=n

t
p
1 t

n−p
2 ϕ(Rk,i−k)θ(Rr,m−r)

=
∞

∑
n=0

0≤p≤n

t
p
1 t

n−p
2 ∑

k+r=p
i+m=n

ϕ(Rk,i−k)θ(Rr,m−r) =
∞

∑
n=0

0≤p≤n

t
p
1 t

n−p
2 (ϕ ⋆ θ)

(

Rp,n−p
)

= R(ϕ ⋆ θ).

Lemma 1. If ϕ = δ(x,y), then for every (x, y) ∈ X 2 :

R(δ(x,y))(t1, t2) =
∞

∏
i=1

(1 + xit1 + yit2) =
∞

∑
n=0

Gn(xt1 + yt2),

where (xi, yi) ∈ C
2, i ≥ 1 and Gn(xt1 + yt2) =

∞

∑
k1<k2<...<kn

(xk1
t1 + yk1

t2) . . . (xkn
t1 + ykn

t2) and

G0 = 1.
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Proof. For every (x, y) ∈ X 2, the product
∞

∏
i=1

(1 + xit1 + yit2)

is absolutely convergent if the series
∞

∑
i=1

(xit1 + yit2) is absolutely convergent. Since

∞

∑
i=1

|xit1 + yit2| ≤
∞

∑
i=1

(|xi||t1|+ |yi||t2|) = |t1|
∞

∑
i=1

|xi|+ |t2|
∞

∑
i=1

|yi|

≤ max{|t1|, |t2|}
( ∞

∑
i=1

|xi|+
∞

∑
i=1

|yi|
)

≤ max{|t1|, |t2|}
√

2
( ∞

∑
i=1

(

|xi|2 + |yi|2
)1/2

)

< ∞,

we obtain that
∞

∏
i=1

(1 + xit1 + yit2) is absolutely convergent, and so the product is convergent

as well. Since for every 1 ≤ m < ∞ will be performed the equality
m

∑
n=0

0≤p≤n

t
p
1 t

n−p
2 δ(x,y)(Rp,n−p) =

m

∏
i=1

(1 + xit1 + yit2)

and series and product are convergent, we obtain that

R(δ(x,y))(t1, t2) =
∞

∏
i=1

(1 + xit1 + yit2).

It is known from Combinatorics [8] that
∞

∑
n=0

tnGn(x) =
∞

∏
i=1

(1+ xit1) for every x ∈ c00, where

Gn(x) =
∞

∑
k1<...<kn

xk1
...xkn

is the basis of elementary symmetric polynomials of algebra Hbs(ℓ1).

Since it is true for every x ∈ ℓ1,
∞

∑
n=0

Gn(xt1 + yt2) =
∞

∑
n=0

(t1t2)
nGn(

x

t2
+

y

t1
) =

∞

∏
i=1

(

1 +
( xi

t2
+

yi

t1

)

t1t2

)

=
∞

∏
i=1

(1 + xit1 + yit2).

Now we show that the spectrum of the algebra of block-symmetric analytic functions of

bounded type on X 2 does not coincide of point evaluation functionals.

Example 1. Let k, l are same fixed nonzero complex numbers. Now we consider the sequence

of elements

e1(k, l) =

( (

k

l

)

,

(

0

0

)

, . . . ,

(

0

0

)

, . . .

)

,

e2(k, l) =

( (

0

0

)

,

(

k

l

)

, . . . ,

(

0

0

)

, . . .

)

,

. . . . . . . . . . . .

en(k, l) =

( (

0

0

)

,

(

0

0

)

, . . . ,

(

k

l

)

, . . .

)

,

. . . . . . . . . . . .
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in X 2 and for every n put

vn(k, l) =
1

n
(e1(k, l) + e2(k, l) + . . . + en(k, l)) ∈ X 2.

Then δvn(k,l)(H0,1) → l, δvn(k,l)(H1,0) → k, δvn(k,l)(Hp,i−p) → 0 as n → ∞ for every 1 ≤ k ≤ i,

where 1 ≤ p ≤ i. By the reletive compactness of bounded subset of Mbvs(X 2) there is an

accumulation point ϕ(k,l) of the sequence δvn(k,l), such that ϕ(k,l)(H0,1) = l, ϕ(k,l)(H1,0) = k,

ϕ(k,l)(Hp,i−p) = 0 for all 1 ≤ i ≤ m, where 1 ≤ p ≤ i. From Theorem 2 it follows that there is

no poit (x, y) ∈ X 2, such that δ(x,y) = ϕ(k,l). Indeed, if such a point exists, then (x, y) ∼ (0, 0).

Therefore δvn(k,l)(H0,1) = δvn(k,l)(H1,0) = 0, but we have that δvn(k,l)(H0,1) = l, δvn(k,l)(H1,0) =

k.

Example 2. Let ϕ(k,l) be as in Example 1. We know that H(ϕ(k,l)) = k + l. To find R(ϕ(k,l))

note that

Rp,s−p(vn(k, l)) =
kpls−p

npns−p

(

n

s

)(

s

p

)

,

hence

ϕ(Rp,s−p) = lim
n→∞

Rp,s−p(vn(k, l)) =
kpls−p

p!(s − p)!

and so

R(ϕ(k,l))(t1, t2) = lim
n→∞

n

∑
s=0

0≤p≤s

t
p
1 t

s−p
2 ϕ(Rp,s−p)

= lim
n→∞

n

∑
s=0

0≤p≤s

(kt1)
p(lt2)

s−p

p!(s − p)!
= ekt1+lt2.

Theorem 5. The invertible elements of semigroup
(

Mbvs(X 2), ⋆
)

are functionals only of the

form ϕ(k,l) = R(ϕ(k,l))(t1, t2) = ekt1+lt2.

Proof. Since by Theorem 4 R(ϕ ⋆ θ) = R(ϕ)R(θ), ϕ(−k,−l) is inverse to ϕ(k,l). In the other hand,

if ϕ is invertible and ψ = ϕ−1, then R(ψ) = 1
R(ϕ)(t1,t2)

is an entire function of exponential type

and so has no zeros. So we have that R(ϕ)(t1, t2) = ekt1+lt2 for some complex numbers k, l.

Corollary 1. Let Φ be a homomorphism on the subspace of block-symmetric polynomials in

Hbvs(X 2) to itself such that Φ(Hp,k−p) = −Hp,k−p for every p, k. Then Φ is discontinuous.

Proof. If Φ is continuous it may be extended to continuous homomorphism Φ̃ of Hbvs(X 2).

Then for (x, y) ∈ X 2

Hp,k−p(x, y) + Φ(Hp,k−p)(x, y) = 0 (5)

for all p, k. Note that this equality is true for

(x0, y0) =

((

1

1

)

,

(

0

0

)

, . . . ,

(

0

0

)

, . . .

)

.

Let us denote ψ = δ(x0,y0) ◦ Φ̃. From the continuity of homomorphism Φ̃ we have, that

ψ ∈ Mbvs(X 2). From equality (5) we have, that δ(x,y) ⋆ ψ = δ(0,0), ψ = δ−1
(x0,y0)

. According to the

Theorem 5 δ(x0,y0) is not invertible.
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Let f (z) be an entire function of many variable. We will say that f (z), where z ∈ Cn, has

"plane" zeros if the set of zeros is

Z f =
{

z ∈ C
n : f (z) = 0

}

=
∞
⋃

k=1

Hk,

where Hk = {z : 〈z, ak|ak |−2〉 = 1} is hyperplane in C
n. Here ak ∈ C

n are feets of perpendicu-

lars dropped from the origin onto zeros hyperplanes Hk of the function f (z) (see [10]).

Theorem 6. Let ϕ be a character such that R(ϕ) is a polynomial. Then R(ϕ) have a plane

zeros, that is KerR(ϕ) consists of one-codimensional linear subspaces.

Proof. Let us denote Λt1t2(Gn) = Gn(xt1 + yt2). Now we consider the equation
m

∑
n=0

λn ϕ(Λt1t2(Gn)) = 0 with m solutions zk, 1 ≤ k ≤ m. Hence
m

∏
i=1

(1 + zkλ) = 0. Obvi-

ously, every solution zk can be represented as zk = xkt1 + ykt1, where xk, yk are indetermi-

nants and t1, t2 are some complex numbers. If we take t1 = 1, t2 = 0 and t1 = 2, t2 = 1,

then can fined xk, yk. So we have the system of 2m equation and 2m indeterminants xk, yk,

1 ≤ k ≤ m. The solutions of that system are xk = zk, yk = −zk, 1 ≤ k ≤ m. Hence xk, yk can be

clearly define. If λ = 1, then we obtain the equality

R(ϕ)(t1, t2) =
m

∑
n=0

ϕ(Λt1t2(Gn)) =
m

∏
i=1

(1 + xit1 + yit2) = 0.

Hence ϕ has plane zeros.

According to the analog of Hadamard’s Theorem [10] the function R(ϕ)(t1, t2) with plane

zeros is of the form

R(ϕ)(t1, t2) = exp(P(t1, t2))
n

∏
i=1

(

1 −
(

t1
ak

1

|ak|2 + t2
ak

2

|ak|2
)

)

,

where {(ak
1, ak

2)} are the zeros of R(ϕ)(t1, t2), P(t1, t2) is analytic polynomial and we have
n

∑
k=1

1
|ak| < ∞.

According to the Lemma 1

R(δ(x,y))(t1, t2) =
m

∏
i=1

(1 + xit1 + yit2),

and so the zeros of R(δ(x,y))(t1, t2) are

ak
1 = − xk

|xk |2 + |yk|2
, ak

2 = − yk

|xk|2 + |yk|2
.

On the other hand, if f (t1, t2) is the function of the exponential type with plane zeros, then

it can be represented as

R(ϕ)(t1, t2) = exp(P(t1, t2))
∞

∏
i=1

(

1 −
(

t1
ak

1

|ak|2 + t2
ak

2

|ak|2
)

)

,

if
∞

∑
k=1

1
|ak| < ∞.

So for ϕ ∈ Mbvs(X 2), which we can represanted as ϕ = ϕ(k,l) ⋆ δ(x,y), where (x, y) ∈ X 2,

(xk, yk) = −
( ak

1
|ak|2

,
ak

2
|ak|2

)

and ϕ(k,l) was defined in Example 1, we have that

R(ϕ)(t1, t2) = f (t1, t2).
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У статтi описано симетричну згортку характерiв алгебри блочно-симетричних аналiти-

чних фнкцiй обмеженого типу на ℓ1-сумi простору C
2. Авторами показано, що спектр такої

алгебри не не збiгається з множиною класiв еквiвалентностi функцiоналiв значеннi в точках,

описано характери такої алгебри, як функцiї експоненцiального типу з “плоскими” нулями.
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A WORPITZKY BOUNDARY THEOREM FOR BRANCHED CONTINUED

FRACTIONS OF THE SPECIAL FORM

For a branched continued fraction of a special form we propose the limit value set for the
Worpitzky-like theorem when the element set of the branched continued fraction is replaced by
its boundary.

Key words and phrases: element set, value set, branched continued fraction of special form.
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INTRODUCTION

A lot of convergence criteria for continued fractions are characterized by convergence do-
mains. Such domains are indicated in the complex plane, that if elements ak, bk of a continued
fraction belong to these domains then the continued fraction

a1

b1 +
a2

b2 +
a3

b3+...

=
∞

D
k=1

ak

bk

converges. At first convergence domains for continued fractions we can find in papers of Wor-
pitzky (1865), Pringsheim (1899) and Van Vleck (1901) [8].

Despite of the fact that a well known convergence theorem for continued fractions was
proposed by J. Worpitzky in 1865, its new proofs, generalizations and applications are actual
even at present [3, 6, 8].

H. Waadeland [10] formulated the Worpitzky theorem in a slightly more general form than
classical one [8], using conditions on the coefficients of the continued fraction proposed by F.
Paydon and H. Wall [9].

Theorem 1. Let ρ ∈ (0, 1/2] be any positive number, and let all elements of a continued fraction

a1

1 +
a2

1 +
a3

1+...

=
∞

D
i=1

ai

1
, (1)

ai, i = 1, 2, . . . , be complex numbers, bounded by

|ai| ≤ ρ(1 − ρ), i = 1, 2, . . . . (2)

Then the continued fraction (1) converges and its values are contained in the disk |w| ≤ ρ.
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2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15.

c©Kuchminska Kh.Yo., 2016



A WORPITZKY BOUNDARY THEOREM FOR BCFS OF THE SPECIAL FORM 273

For the continued fraction (1) Haakon Waadeland raised the question: What happens to
the set of values of the continued fraction (1) when the condition (2) in the Worpitzky theorem
would be replaced by |ai| = ρ(1 − ρ), i = 1, 2, . . .? Answering on his question H.Waadeland
proved [10], that the set of all possible values of the continued fraction (1) is the annulus

ρ · 1 − ρ

1 + ρ
≤ |w| ≤ ρ.

In the classical case of the theorem (ρ = 1/2), i.e. |ai| = 1/4, i = 1, 2, . . . , the annulus is
1/6 ≤ |w| ≤ 1/2.

The same question one can put for multidimensional generalizations of the continued frac-
tion, such as for example,

a branched continued fraction (BCF) [3]

1 +
N

∑
i1=1

ai1zi1

1 +
N

∑
i2=1

ai1i2zi2

1 +
N

∑
i3=1

ai1i2i3zi3

1+...

= 1 +
∞

D
k=1

N

∑
ik=1

ai(k)zik

1
, (3)

where ai1i2...ik
be complex numbers, zik

be complex variables, i(k) = i1i2 . . . ik be multiindex;
a branched continued fraction with independent variables [1]

a00

1 +
N

∑
i1=1

ai1 zi1

1 +
i1
∑

i2=1

ai1i2zi2

1 +
i2
∑

i3=1

ai1i2i3zi3

1+...

=
a00

1 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)zik

1

, (4)

where ai1i2...ik
be complex numbers, zik

be complex variables, i(k) = i1i2 . . . ik be multiindex
1 ≤ ik ≤ ik−1, k = 1, 2, . . . , i0 = N;

or a two-dimensional continued fraction (TDCF) [6]

∞

D
i=0

ai,iz1z2

Φi
, Φi = 1 +

∞

D
j=1

ai+j,iz1

1
+

∞

D
j=1

ai,i+jz2

1
, (5)

where ai,j, i = 0, 1, . . . , j = 1, 2, . . . , be complex numbers, z1, z2 be complex variables.
It was found this question for the branched continued fraction (3) with z1 = z2 = . . . =

zN = 1 is answered by the following theorem [11].

Theorem 2. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the family of branched continued
fractions

1 +
N

∑
i1=1

ai1

1 +
N

∑
i2=1

ai1i2

1 +
N

∑
i3=1

ai1i2i3

1+...

= 1 +
∞

D
k=1

N

∑
ik=1

ai(k)

1
, (6)

where ai1i2...ik
be complex numbers, i(k) = i1i2 . . . ik be multiindex, ai(k) satisfy the conditions

∣

∣

∣
ai(k)

∣

∣

∣
=

ρ(1 − ρ)

N
, then the set of possible branched continued fraction values is the closed

disk |w| ≤ ρ.
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Thus, in this case the set of possible BCF values is unchanged when all elements of (6) are
restricted to the boundary of the disk.

For TDCF (5) with z1 = z2 = 1 the answer is proposed by the following theorem [7].

Theorem 3. Let ρ be a real number in (0, 1/2], and let Fρ be the family of two-dimensional
continued fractions

∞

D
i=0

ai,i

Φi
, Φi = 1 +

∞

D
j=1

ai+j,i

1
+

∞

D
j=1

ai,i+j

1
, (7)

where ai,j, i = 0, 1, . . . , j = 1, 2, . . . , be complex numbers that satisfy conditions
∣

∣ai,j
∣

∣ =
1
2

ρ(1 −
ρ), i, j ≥ 1.

Then the set of all possible values f of the TDCF (7) in Fρ is the annulus Aρ, given by

R · ρ(1 − ρ)

4R − ρ(1 − ρ)
≤ | f | ≤ R, R =

1
2
(
√

1 − 2ρ(1 − ρ) +
√

1 − 4ρ(1 − ρ)).

In the case ρ = 1/2 the annulus is
(

8 +
√

2
)

/124 ≤ | f | ≤ 1/2
√

2.
In the present paper the answer will be done for the branched continued fraction with

independent variables (4) with z1 = z2 = . . . = zN = 1 (named the branched continued
fraction of the special form [2, 5, 4]).

1 THE WORPITZKY-LIKE THEOREMS FOR BRANCHED CONTINUED FRACTIONS OF THE

SPECIAL FORM

Since the beginning we prove the Worpitsky-like theorem in a slightly more general form
than it was done in [1].

Theorem 4. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the BCF of the special form

a00

1 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)

1

, (8)

where ai1i2...ik
be complex numbers, i(k) = i1i2 . . . ik be multiindex 1 ≤ ik ≤ ik−1, k = 1, 2, . . . ,

i0 = N, ai(k) satisfy the conditions
∣

∣

∣
ai(k)

∣

∣

∣
≤ αik−1

=
ρ(1 − ρ)

ik−1
, |a00| ≤ ρ(1 − ρ).

Then the BCF of the special form (8) converges, and its values are contained in the disk
|w| ≤ ρ.

Proof. It is not difficult to show that a periodic continued fraction

ρ(1 − ρ)

1 − ρ(1 − ρ)

1 − ρ(1 − ρ)

1−...

(9)

is the majorant fraction for the BCF of special form (8).
It means that approximants of these fractions satisfy the relation:

| fn − fm| ≤ M · |gn − gm| ,
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where fn, gn are the nth approximants of the BCF of the special form (8) and continued fraction
(9) respectively, M is a certain constant, m, n are natural numbers.

For the difference between the nth and mth approximants of the BCF of the special form (8)
the following relation is true [1]:

fn − fm = (−1)m
N

∑
i1=1

i1

∑
i2=1

. . .
im−1

∑
im=1

a00 ·
m

∏
k=1

ai(k)

m

∏
k=0

Q
(n−1)
i(k)

m−1
∏

k=0
Q

(m−1)
i(k)

, n > m ≥ 1, (10)

where

Q
(s)
i(s)

= 1, Q
(s)
i(k)

= 1 +
i(k)

∑
ik+1=1

ai(k+1)

Q
(s)
i(k+1)

, k = 1, s − 1, s ≥ 2,

Q(s) = Q
(s)
i(0) = 1 +

N

∑
i1=1

ai(1)

Q
(s)
i(1)

, s ≥ 1, fn =
a00

Q
(n−1)
i(0)

.

Using the method of complete mathematical induction it is easy to prove that
∣

∣

∣
Q

(s)
i(k)

∣

∣

∣
≥ hs−k, (11)

where hm is the m th approximant of the continued fraction

1 − ρ(1 − ρ

1 − ρ(1 − ρ

1−...

for all possible index sets.
Let us write the difference formula for approximants of the continued fraction (9)

gn − gm =
ρm+1(1 − ρ)m+1

m

∏
i=0

hn−i−1
m−1
∏
i=0

hm−i−1

. (12)

From (11) follows that all Q
(s)
i(k)

6= 0. Hence, taking into account (10) and (12) we have

| fn − fm| ≤
N

∑
i1=1

i1

∑
i2=1

. . .
im−1

∑
im=1

|a00| ·
m

∏
k=1

∣

∣

∣
ai(k)

∣

∣

∣

m

∏
k=0

∣

∣

∣
Q

(n−1)
i(k)

∣

∣

∣

m−1
∏

k=0

∣

∣

∣
Q

(m−1)
i(k)

∣

∣

∣

≤ ρm+1(1 − ρ)m+1

m

∏
k=0

hn−k−1

m−1
∏

k=0
hm−k−1

= gn − gm.

The continued fraction (9) converges, and therefore the BCF of the special form (8) is also
convergent.
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Let us write the m th approximant of (8) in the form

z =
a00

1 +
N

∑
i1=1

ai(1)

Q
(m−1)
i(1)

=
a00

(1 + w)
.

From the conditions of the theorem on the fraction coefficients and inequalities (11) one can
write

|w| =

∣

∣

∣

∣

∣

∣

N

∑
i1=1

ai(1)

Q
(m−1)
i(1)

∣

∣

∣

∣

∣

∣

≤ ρ(1 − ρ)

hm−2
= gm−1.

Putting gn = Pn/Qn, where Pn is the nth numerator and Qn is the nth denominator of the
approximant gn it is easy to find by induction that

Qn =
n

∑
i=0

ρi(1 − ρ)n−i.

If Q is the value of the infinite fraction (9), and Qn > 0, n = 1, 2, . . ., then we get

gn − gn−1 =
(ρ(1 − ρ))n

QnQn−1
≥ 0,

i.e., the sequence {gn} grows monotonically. Hence,|w| ≤ Q. Since Q = ρ(1 − ρ) · (1 − Q)−1,
and taking into account that Q = 0, if ρ = 0, the solution of this quadratic equation with
respect to Q gives Q = ρ.

Therefore, |w| ≤ ρ, and |z| ≤ ρ.

Now we obtain the boundary version of this theorem.

Theorem 5. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the family of branched continued
fractions of the special form Fρ

a00

1 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)

1

, (13)

where ai1i2...ik
be complex numbers, i(k) = i1i2 . . . ik be multiindex 1 ≤ ik ≤ ik−1, k = 1, 2, . . . ,

i0 = N, ai(k) satisfy the conditions
∣

∣

∣
ai(k)

∣

∣

∣
=

ρ(1 − ρ)

ik−1
, |a00| = ρ(1 − ρ), the set of all possible

branched continued fractions of the special form values is the annulus Aρ, given by

ρ · 1 − ρ

1 + ρ
≤ |w| ≤ ρ.

Proof. Let f0 be a possible value of the BCF of the special form (13). Then all values f with | f | =
| f0| are possible BCF of the special form values in Fρ. Hence the set of values of such fraction
must be a disk or an annulus, in both cases centered at the origin. From the Worpitzky-like
theorem (Theorem 4) follows that this disk or annulus must be contained in the disk | f | ≤ ρ.

We shall first prove that the set of all values must be contained in Aρ. Any BCF of the special
form in Fρ can be written in the form

f =
ρ(1 − ρ)eiθ

1 + ω
, θ ∈ [0, 2π), ω =

N

∑
i1=1

ai(1)

1 +
∞

D
k=1

ik

∑
ik+1=1

ai(k+1)

1

.
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Since
ai(1) · N

1 +
∞

D
k=1

ik

∑
ik+1=1

ai(k+1)

1

∈ Fρ we have, using the previous Theorem 4

∣

∣

∣

∣

∣

∣

ai(1) · N ·
(

1 +
∞

D
k=1

ik

∑
ik+1=1

ai(k+1)

1

)−1
∣

∣

∣

∣

∣

∣

≤ ρ.

It means that
∣

∣

∣

∣

∣

∣

ai(1) ·
(

1 +
∞

D
k=1

ik

∑
ik+1=1

ai(k+1)

1

)−1
∣

∣

∣

∣

∣

∣

≤ ρ

N
,

and |ω| ≤ ρ. Since |ω| ≤ ρ it follows that for any value f of a BCF of the special form in Fρ we

have | f | ≥ ρ · 1 − ρ

1 + ρ
.

That is sharp, follows from the fact that

ρ =
ρ(1 − ρ)

1 − ρ(1 − ρ)

1−...

,

and that the right-hand side is in Fρ.
We next prove that Aρ is contained in the set of values of BCFs of the special form in Fρ

with independent variables |ω| ≤ ρ.
By the mapping ξ = 1/1 + ω the circle ω = ρ is mapped onto the circle

∣

∣

∣

∣

ξ − 1
1 − ρ2

∣

∣

∣

∣

=
ρ

1 − ρ2 .

Then, by ξ → ρ(1 − ρ)eiθξ, for all θ ∈ [0, 2π) we get all points in the annulus Aρ.
Hence, Aρ is contained in the set of BCF with independent variables values for Fρ.
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Кучмiнська Х.Й. Межова теорема Ворпiцького для гiллястих ланцюгових дробiв спецiального ви-

гляду // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 272–278.

Для гiллястого ланцюгового дробу спецiального вигляду запропоновано межову множину
значень у теоремi типу Ворпiцького, коли множина елементiв гiллястого ланцюгового дробу
замiнена її межею.

Ключовi слова i фрази: множина елементiв, множина значень, гiллястий ланцюговий дрiб
спецiального вигляду.
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POINTWISE STABILIZATION OF THE POISSON INTEGRAL FOR THE DIFFUSION

TYPE EQUATIONS WITH INERTIA

In this paper we consider the pointwise stabilization of the Poisson integral for the diffusion type

equations with inertia in the case of finite number of parabolic degeneracy groups. We establish

necessary and sufficient conditions of this stabilization for a class of bounded measurable initial

functions.

Key words and phrases: Poisson integral, Kolmogorov equation, diffusion type equation with
inertia, stabilization, degenerate parabolic equation, surface level, average on border.
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INTRODUCTION

In this paper we consider pointwise stabilization of the Poisson integral for diffusion type

equations with inertia which have finite number groups of variables with diffusion degenera-

tion.

Stabilization problems for solutions of the Cauchy problem for parabolic equations were

studied by S.D. Eidelman and V.P. Repnikov [1, 2]. Necessary and sufficient conditions of

pointwise stabilization of the Poisson integral for the Kolmogorov equation were obtained by

S.D. Eidelman, V.P. Repnikov and G.P. Malytska [3, 4]. Generalization of these results in the

case of three degeneration groups can be found in the work [5].

1 NOTATIONS AND PROBLEM STATEMENT

Let x := (x11, x12, . . . , x1n1
; . . . ; xk1, xk2, . . . , xknk

; . . . ; xp1, xp2, . . . , xpnp ; xp+1,1, . . . , xm1),

n1 ≥ n2 ≥ · · · ≥ np > 1, nk ∈ N, k = 1, p, p ∈ N, m ≥ p,
p

∑
k=1

nk + m − p = n, x ∈ R
n.

Consider the Cauchy problem

∂tu (t, x)−
p

∑
k=1

nk

∑
j=1

xkj∂xk j+1
u (t, x) =

m

∑
v=1

∂2
x2

v
u (t, x) , (1)

u (t, x) |t=τ = u0 (x) , 0 ≤ τ < t ≤ T < +∞, x ∈ R
n, (2)
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where u0 (x) is a Lebesgue measurable and bounded function in R
n. The fundamental matrix

of solutions G(t − τ, x, ξ) with t > τ, x ∈ R
n, ξ ∈ R

n of the Cauchy problem (1), (2) was found

in [6]. Hence,

G(t − τ, x, ξ) = (2
√

π)−n(t − τ)−µ
p

∏
ν=1

nν

∏
k=1

k(k + 1) . . . (2k − 2)(2k − 1)−
1
2 e−ρ(t,x;τ,ξ), (3)

where

ρ(t, x; τ, ξ) =
m

∑
ν=1

|xν1 − ξν1|24−1(t − τ)−1
p

∑
ν=1

nν

∑
k=2

(k − 1)2k2 . . . (2k − 3)2(2k − 1)

(t − τ)−(2k−1)
∣

∣

∣

k−1

∑
j=0

xνk−j(t−τ)j

j! − ξνk −
( k−2

∑
j=0

xνk−1−j(t−τ)j

j! − ξνk−1

)

(t − τ)2−1 + . . .

+(−1)k−l 2l(2l+1)...(2l+(k−l)−2)(2l+2(k−l)−1)
k...(2k−1)

(t−τ)(k−l)

(k−l)!
(

l−1

∑
j=0

xνl−j(t−τ)j

j! − ξνl) + . . .

+ (−1)k−1(t−τ)(k−1)

k...(2k−2)
(xν1 − ξν1)

∣

∣

∣

2
, µ = m

2 +

p

∑
k=1

(nk−1)2

2 .

Here ρ(t, x; 0, ξ) = r2 is the family of surfaces of the fundamental solutions of the problem (1),

(2). Let us denote by Fx,0
r,t a figure which is bounded by the ellipsoid

ρ(t, x; 0, ξ) = r2, (4)

where ξ is a variable. Let vn be the volume of the figure which is bounded by the surface

ρ1(α) ≡ 1, where

ρ1(α) =
m

∑
ν=1

α2
ν1 +

m

∑
ν=1

nν

∑
k=2

(ανk − (2k − 3)1/2(2k − 1)1/2(k − 1)−1ανk−1).

Let Mx
t (r) is the average of u0(x) with respect to Fx

r,t which is bounded by surfaces (4).

Definition 1. Function u0(x) has threshold average Mx(r) on bodies Fx
r,t if there exists the

following limit lim
t→∞

Mx
t (r) = Mx(r).

2 POINTWISE STABILIZATION OF THE POISSON INTEGRAL OF THE CAUCHY PROBLEM (1), (2)

Theorem 1. If u0(x) has a threshold average on ellipsoids Fx,0
r,t , which almost for all r is equal

to Mx(r), then the Poisson integral of the equation (1) stabilizes (as t → ∞) to the number

ι = (2π)−n/2vn

+∞
∫

0

rn+1e−r2
Mx(r)dr.

Proof. Consider the Poisson integral of the equation (1)

u(t, x) =
∫

Rn

G(t, x; 0, ξ)u0(ξ)dξ. (5)
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Let us make the following change of variables























































































xν1 − ξν1 = −2t1/2αν1, ν = 1, m,

(k − 1)k . . . (2k − 3)(2k − 1)1/2t−
2k−1

2

[ k−1

∑
j=0

xνk−j(t−τ)j

j! − ξνk

−
( k−2

∑
j=0

xνk−1−j(t−τ)j

j! − ξνk−1

)

t−τ
2 + . . .

+ (−1)k−l(t−τ)(k−l)

(k−l)!
2l(2l+1)...(2l+(k−l)−2)(2l+2(k−l)−1)

k...(2k−1)

( l−1

∑
j=0

xνl−j(t−τ)j

j! − ξνl

)

+ · · ·+ (−1)k−2(t − τ)(k−2) xν2−ξν2+(t−τ)xν1

2(k+1)...(2k−3)
+ (−1)k−1(t−τ)(k−1)

k...(2k−2)
(xν1 − ξν1)

]

= −(ανk − (2k − 3)1/2(2k − 1)1/2(k − 1)−1ανk−1 + · · ·+ (−1)lαk−ll

(2l + 1) . . . (2l + (k − l)− 2)(2k + 2(k − l)− 1)(2k − 1)−1/2((2(k − l)− 1)!)−1

(k − l)−1(2(k − l)− 1)1/2 + · · ·+ (−1)k−12αν1(2k − 1)1/2), ν = 1, p, k = 1, nν.

(6)

Then equation (5) takes the form

u(t, x) = π−x/2
∫

Rx

exp{−ρ1(α)}u0(ξ(α, x, t))dα, (7)

where u0(ξ(α, x, t)) is the value of u0(ξ), and ξ(α, x, t) is determined by the system (6). Let us

consider positively defined quadratic form

ρ1(α) =
m

∑
ν=1

nν

∑
k,j=1

cνkjανkανj,

and respective family of disjoint ellipsoids

m

∑
ν=1

nν

∑
k,j=1

cνkjανkανj = r2.

In the integral (7) we consider new integration variables



















α11 = rΦ(Ψ) cos Ψ1,

α21 = rΦ(Ψ) sin Ψ1 cos Ψ2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αm1 = rΦ(Ψ) sin Ψ1 sin Ψ2 . . . sin Ψn−1,

(8)

where 0 ≤ r < +∞, Ψ = (Ψ1 . . . Ψn−1), 0 ≤ Ψj ≤ π, j = 1, n − 2, 0 ≤ Ψn−1 ≤ 2π. The function

Φ(Ψ) is defined by the equality

Φ2(Ψ)
m

∑
ν=1

nν

∑
k,j=1

cνkjα
′
νkα′νj = 1,

where α
′
11 = cos Ψ1, α

′
12 = sin Ψ1 cos Ψ2, . . . , α

′
m1 = sin Ψ1 sin Ψ2 . . . sin Ψn−2 cos Ψn−1. Note

that J = rn−1 J1 is the Jacobian of the transformation (8), where

J1 = Φn(Ψ) sinn−2 Ψ1 sinn−3 Ψ2 . . . sin Ψn−1.
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Let us denote u0(t, r, Ψ, x) := u0(ξ(α, x, t)), where α is defined by (8). Then we obtain

u(t, x)= π−n/2

+∞
∫

0

rn−1e−r2
dr

∫

Σ1

u0(t, r, Ψ, x)JdΨ=π−n/2

+∞
∫

0

e−r2 ∂

∂r

r
∫

0

ρn−1dρ
∫

Σ1

u0(t, r, Ψ, x)J1dΨdr

= 2π−n/2

+∞
∫

0

re−r2

r
∫

0

ρn−1dρ
∫

Σ1

u0(t, r, Ψ, x)JdΨdr,

where Σ1 is the unit sphere in R
n, J is the Jacobian of the transformation (8). Therefore for

Mx
t (r) we have

u(t, x) = 2π−n/2υn

+∞
∫

0

rn+1e−r2
(rnυn)

−1

r
∫

0

ρn−1dρ
∫

Σ1

u0(t, r, Ψ, n)JdΨdr

= 2π−n/2υn

+∞
∫

0

rn+1e−r2
Mx

t (r)dr.

It remains to pass to the limit in the above integral as t → ∞. It can be done according to

the Lebesgue theorem because there exists a threshold average. From boundedness of u0(x)

immediately follows uniform boundedness of Mx
t (r) by t.

Note that it is sufficient to show the existence of threshold average in some fixed point

x1 that leads to existence of threshold average in any point x and to stabilization at every

compact.

Theorem 2. Let u0(x) ≥ 0. For stabilization of the Poisson integral (5) to zero it is necessary

and sufficient that u0(x) has a threshold average Mx(r), which almost everywhere is equal to

zero.

Proof. The sufficiency follows from Theorem 1. Let us show that from stabilization of the

integral (5) it follows the existence of a zero threshold average on Fx
r,t:

Mx
t (r) =

1

mesFx
r,t

∫

Fx
r,t

u0(ξ)dξ ≤ ct−N1/3
∫

RN

exp{−ρ(t1/3 , x, 0, ξ)}u0(ξ)dξ = c1u(t1/3, x), (9)

where N1 = m−p
2 +

p

∑
k=1

n2
k. In the inequality (9) mesFx

r,t replaced by volume of the paral-

lelepiped
{

|ξν1 − xν1| ≤ t1/6, ν = 1, m,

|ξνk − xνk| ≤ t
2k−1

6 , ν = 1, p, k = 2, np.

Since u(t, x) → 0 as t → ∞, then from (9) it follows that Mx
t,r → 0 as t → ∞ for any r.

3 CONCLUSION

If there exists a threshold average of a measurable bounded initial function, then theorems

about pointwise stabilization of the Poisson integral for diffusion type equations with inertia

also take place for systems of Kolmogorov equations with constant coefficients [7, 8]. Stabiliza-

tion of the Poisson integral of the equation (1) is related to the stability problem of derivative

prices on financial markets [9, 10, 11].
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PRAVEENA M.M., BAGEWADI C.S.

ON GENERALIZED COMPLEX SPACE FORMS SATISFYING CERTAIN CURVATURE

CONDITIONS

We study Ricci soliton (g, V, λ) of generalized complex space forms when the Riemannian,

Bochner and W2 curvature tensors satisfy certain curvature conditions like semi-symmetric, Ein-

stein semi-symmetric, Ricci pseudo symmetric and Ricci generalized pseudo symmetric. In this

study it is shown that shrinking, steady and expansion of the generalized complex space forms de-

pend on the solenoidal property of vector V. Also we prove that generalized complex space form

with conservative Bochner curvature tensor is constant scalar curvature.

Key words and phrases: generalized complex space forms, Ricci soliton, Einstein manifold, Ein-
stein semi-symmetric, pseudo symmetric.
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1 INTRODUCTION

A Kähler manifold with constant holomorphic sectional curvature is a complex space form

and it has a specific form of its curvature tensor. More generally an almost Hermition manifold

M is called a generalized complex space form M( f1, f2) if its Riemannian curvature tensor R

satisfies,

R(X, Y)Z = f1{g(Y, Z)X − g(X, Z)Y} + f2{g(X, JZ)JY

− g(Y, JZ)JX + 2g(X, JY)JZ},
(1)

for all X, Y, Z ∈ TM, where f1 and f2 are smooth functions on M [21]. In [21], an impor-

tant obstruction for such a space was presented by Tricerri and Vanhecke: if M is connected,

dim ≥ 6 and f2 is not identically zero, then M is a complex-space-form (in particular, f1 and

f2 must be constant). Olszak [16] proved the existence of generalized complex space form. The

authors Alegre and Carriazo studied structures on generalized Sasakian space forms [1]. The

authors De [7], Kim [12], Atceken [13], Nagaraja [14], et. al., have contributed to the study of

Sasakian space forms in which they put different symmetric conditions on projctive curvature

tensor etc.

A Riemannian manifold (M, g) is called locally symmetric if its curvature tensor R is par-

allel [5], i.e. ∇R = 0, where ∇ denotes the Levi-Civita connection. As a proper generalization

of locally symmetric manifold the notion of semi-symmetric manifold was defined by

(R(X, Y) · R)(U, V, W) = 0, X, Y, U, V, W ∈ χ(M)

УДК 514.743
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and it is studied by many authors [15,17]. A complete intrinsic classification of these was given

by Szabo [20].

For a (0, k)-tensor field T on M, k ≥ 1, and a symmetric (0, 2) tensor fields g and S on M,

we define the (0, k + 2) tensor fields R · T, Q(A, T) and Q(B, T) by

(R · T)(X1, . . . , Xk, X, Y) =

− T(R(X, Y)X1 , X2, . . . , Xk − · · · − T(X1, X2, . . . , Xk−1, R(X, Y)Xk),

Q(g, T)(X1 , . . . , Xk, X, Y) =

− T((X ∧g Y)X1 , X2, . . . , Xk − . . . − T(X1, X2, . . . , Xk−1, (X ∧g Y)Xk),

Q(S, T)(X1 , . . . , Xk, X, Y) =

− T((X ∧S Y)X1, X2, . . . , Xk − · · · − T(X1, X2, . . . , Xk−1, (X ∧S Y)Xk),

where (X ∧g Y) and (X ∧S Y) are the endomorphism given by

(X ∧g Y)Z = g(Y, Z)X − g(X, Z)Y, (X ∧S Y)Z = S(Y, Z)X − S(X, Z)Y.

A Riemannian manifold is said to be pseudo symmetric (in the sense of Deszcz [6, 9]) if

R · R = LRQ(g, R)

holds on the set UR = {x ∈ M | R − r
n(n−1)

G 6= 0 at x}, where G is the (0, 4)–tensor defined

by G(X1, X2, X3, X4)=g((X1 ∧ X2)X3, X4) and LR is some function on UR.

A Riemannian manifold is said to be Ricci generalized pseudo symmetric (in the sense of

Deszcz [6, 9]) if

R · R = LRQ(S, R)

holds on the set UR = {x ∈ M : Q(S, R) 6= 0 at x}, and LR is some function on UR. A

Riemannian manifold is said to be Bochner Ricci generalized pseudo symmetric if

R · B = LBQ(S, B)

holds on the set UB = {x ∈ M : B 6= 0 at x}, and LB is some function on UB and B is

the Bochner curvature tensor. If LB = 0 on UB, then a Bochner Ricci generalized pseudo

symmetric manifold is Bochner semisymmetric. But LB need not be zero, in general and hence

there exists Bochner Ricci generalized pseudo symmetric manifolds which are not Bochner

semisymmetric manifolds. Thus the class of Bochner Ricci generalized pseudo symmetric

manifolds is a natural extension of the class of Bochner semisymmetric manifolds.

Also we need the notion of Ricci solitons. It is a natural generalization of an Einstein metric

and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a

Riemannian metric such that

LV g + 2S + 2λg = 0, (2)

where V is the potential vector field, λ a real scalar, S is Ricci tensor of M and LV denotes the

Lie derivative operator along V. The Ricci soliton is said to be shrinking, steady and expanding

accordingly as λ is negative, zero and positive respectively [10].
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In the context of generalized complex space forms, the authors Bharathi and Bagewadi [3],

Bagewadi and Praveena [2, 19] extended the study to W2 curvature, H-projective, Bochner and

pseudoprojective curvature tensors. Motivated by these ideas, in this paper, we extend the

study of Ricci soliton in which curvature tensor on generalized complex space forms satisfy

several semi-symmetric and pseudo-symmetric conditions. The paper is organized as follows.

In the section 2 we give definitions, notions and basic results for generalized complex space

forms. In sections 3 and 4 we study Bochner semi-symmetric and Einstein semi-symmetric on

generalized complex space forms. In sections 5 and 6 we find the characterizations of general-

ized complex space forms satisfying the pseudo-symmetric conditions like R · B = LBQ(S, B).

and B ·W2 = L1Q(g, W2). Finally we obtain generalized complex space form with conservative

Bochner curvature tensor is of constant scalar curvature.

2 PRELIMINARIES

Let M be a complex n-dimensional Kähler manifold, with a complex structure J and a

positive–definite metric g which satisfies the following conditions [4]

J2 = −I, g(JX, JY) = g(X, Y) and ∇J = 0,

where ∇ means covariant derivation according to the Levi-civita connection. The scalar cur-

vature r = ΣS(ei, ei), therefore

(∇XS)(ei, ei) = ∇Xr = dr(X).

Let Q be the Ricci operator defined by g(QX, Y) = S(X, Y). Then

(∇ZS)(X, Y) = g((∇ZQ)(X), Y).

Taking Y = Z = ei and taking summation over i in the above equation we get

(∇ei
S)(X, ei) = g((∇ei

Q)(X), ei),

(divQ)(X) = tr(Z → (∇ZQ)(X)) = ∑ g((∇ei
Q)(X), ei).

But it is known [8, 18] that (divQ)(X) = 1
2 dr(X). Hence (∇ei

S)(X, ei) = 1
2 dr(X) and

(∇ei
S)(JX, ei) = 1

2 dr(JX). It is known [11] that in a Kähler manifold the Ricci tensor S sat-

isfies

(divR)(X, Y)Z = (∇ZS)(X, Y) − (∇XS)(Z, Y) = (∇JYS)(JX, Z). (3)

Using equation (1) we have

S(X, Y) = {(n − 1) f1 + 3 f2}g(X, Y), (4)

QX = [(n − 1) f1 + 3 f2]X, (5)

r = n[(n − 1) f1 + 3 f2], (6)

where S is the Ricci tensor, Q is the Ricci operator and r is scalar curvature of the space form

M( f1, f2).
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Given a complex n-dimensional Kähler manifold M, the Bochner curvature tensor and W2

curvature tensor are given by [11]

B(X, Y, Z, U) = R(X, Y, Z, U) −
1

2n + 4
[g(Y, Z)S(X, U) − S(X, Z)g(Y, U)

+ g(JY, Z)S(JX, U) − S(JX, Z)g(JY, U) + S(Y, Z)g(X, U)

− g(X, Z)S(Y, U) + S(JY, Z)g(JX, U) − g(JX, Z)S(JY, U)

− 2S(Y, JX)g(JZ, U) − 2S(JZ, U)g(JX, Y)]

+
r

(2n + 2)(2n + 4)
[g(Y, Z)g(X, U) − g(X, Z)g(Y, U) + g(JY, Z)g(JX, U)

− g(JX, Z)g(JY, U) − 2g(JX, Y)g(JZ, U)],

(7)

W2(X, Y)Z = R(X, Y)Z +
1

n − 1
[g(X, Z)QY − g(Y, Z)QX]. (8)

Definition 1. The Einstein Tensor denoted by E is defined by

E(X, Y) = S(X, Y)−
r

n
g(X, Y), (9)

where S is a Ricci tensor and r is the scalar curvature.

Definition 2 ( [9, 20]). A n-dimensional generalized complex space form is said to be:

1) Bochner-Semi-symmetric if it satisfies

(R(X, Y) · B)(U, V, W) = 0 for all X, Y ∈ χ(M);

2) Einstein-Semi-symmetric if it satisfies

(R(X, Y) · E)(U, V, W) = 0 for all X, Y ∈ χ(M).

3 BOCHNER SEMI-SYMETRIC GENERALIZED COMPLEX SPACE FORMS

Let generalized complex space form M( f1, f2) be Bochner semi-symmetric and by defini-

tion it satisfies the equation R · B = 0, i.e. for any tangent vectors X, Y, U, Z and W, this implies

(R(X, Y) · B)(U, Z, W) = 0.

Therefore

R(X, Y)B(U, Z)W − B(R(X, Y)U, Z)W − B(U, R(X, Y)Z)W − B(U, Z)R(X, Y)W = 0.

Taking inner product with T we have,

g(R(X, Y)B(U, Z)W, T) − g(B(R(X, Y)U, Z)W, T) − g(B(U, R(X, Y)Z)W, T)

− g(B(U, Z)R(X, Y)W, T) = 0.
(10)

Using equations (1) and (7) in (10) and putting X = Z = ei, further again putting Y = T = ei to

the simplified equation, where ei is an an orthonarmal basis of the tangent space at each point

of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

f2

{

2n − 8

2n + 4
S(U, W)−

5n + 2

(2n + 4)(2n + 2)
rg(U, W)

}

= 0.
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If f2 6= 0, then
{

2n − 8

2n + 4
S(U, W)−

5n + 2

(2n + 4)(2n + 2)
rg(U, W)

}

= 0.

This implies,

S(U, W) =
5n + 2

(2n − 8)(2n + 2)
rg(U, W). (11)

That is M( f1, f2) is an Einstein manifold. Hence we can state the following result.

Theorem 1. A generalized complex space form M( f1, f2) is an Einstein manifold provided by

f2 6= 0 if Bochner curvature tensor satisfies R · B = 0.

Using equation (11) in (2), we get

(LV g)(U, W) + 2

[

5n + 2

(2n − 8)(2n + 2)

]

rg(U, W) + 2λg(U, W) = 0, (12)

setting U = W = ei in (12) and then taking summation over i, 1 ≤ i ≤ n, we obtain

divV +
5n + 2

(2n − 8)(2n + 2)
rn + λn = 0. (13)

If V is solenoidal then divV = 0. Therefore the equation (13) can be reduced to

λ = −
5n + 2

(2n − 8)(2n + 2)
r.

Thus, we can state the following.

Corollary 1. Let (g, V, λ) be a Ricci soliton in a generalized complex space form satisfying

Bochner semi-symmetric. If V is solenoidal then it is shrinking, steady and expanding accord-

ingly scalar curvature is positive, zero and negative respectively.

4 EINSTEIN SEMI-SYMMETRIC GENERALIZED COMPLEX SPACE FORM

Let R and E satisfy the equation R · E = 0 in M( f1, f2). Then this equation leads to

(R(X, Y) · E(U, W)) = 0,

where X, Y, U and W are any tangent vectors. The above equation can be expressed as

E(R(X, Y)U, W) + E(U, R(X, Y)W) = 0. (14)

In view of (9) equation (14) becomes

S(R(X, Y)U, W) −
r

2
g(R(X, Y)U, W) + S(U, R(X, Y)W) −

r

2
g(U, R(X, Y)W) = 0. (15)

Using equation (1) in (15) and by replacing X = U = ei, where {ei} is an orthonormal basis of

the tangent space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

f1[−nS(Y, W) + rg(Y, W)] = 0.

If f1 6= 0, then

S(Y, W) =
r

n
g(Y, W). (16)

Then we can state the following.
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Theorem 2. If generalized complex space form is Einstein semi-symmetric then it is an Einstein

manifold provided f1 6= 0.

Using equation (16) in (2), we get

(LV g)(Y, W) + 2
r

n
g(Y, W) + 2λg(Y, W) = 0. (17)

Let {ei : i = 1, 2, ..., n} be an orthonormal basis of the tangent space at each point of the

manifold. Then setting Y = W = ei in (17) and then taking summation over i, 1 ≤ i ≤ n, we

obtain

(LV g)(ei, ei) + 2
r

n
g(ei, ei) + 2λg(ei, ei) = 0.

This implies

divV + r + λn = 0. (18)

If V is solenoidal then divV = 0. Therefore the equation (18) can be reduced to

λ = −
r

n
.

Thus we can state the following.

Corollary 2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form satisfying

Einstein semi-symmetric condition. Then V is solenoidal if and only if it is shrinking, steady

and expanding accordingly scalar curvature is positive, zero and negative respectively.

5 BOCHNER RICCI-GENERALIZED PSEUDO-SYMMETRIC GENERALIZED COMPLEX SPACE

FORMS

Let us consider the Ricci-generalized Bochner pseudosymmetric generalized complex spa-

ce form M( f1, f2). Then we have

(R(X, Y) · B)(U, Z, W) = LB((XΛSY · B)(U, Z, W).

This implies

R(X, Y)B(U, Z)W − B(R(X, Y)U, Z)W − B(U, R(X, Y)Z)W − B(U, Z)R(X, Y)W

= LB[(XΛSY)B(U, Z)W − B((XΛSY)U, Z)W − B(U, (XΛSY)Z)W − B(U, W)(XΛSY)W].

Taking inner product with T we have,

g(R(X, Y)B(U, Z)W, T) − g(B(R(X, Y)U, Z)W, T) − g(B(U, R(X, Y)Z)W, T)

− g(B(U, Z)R(X, Y)W, T) = LB[g((XΛSY)B(U, Z)W, T) − g(B((XΛSY)U, Z)W, T)

− g(B(U, (XΛSY)Z)W, T) − g(B(U, Z)(XΛSY)W, T)].

(19)

Using equations (7), (4) and (5) in (19) and substituting X = Z = ei, further again substituting

Y = T = ei in the resulting equation, where {ei}, i, 1 ≤ i ≤ n, is an orthonormal basis of the

tangent space at each point of the manifold and taking summation over i, we get

f2

{

2n − 8

2n + 4
S(U, W)−

5n + 2

(2n + 4)(2n + 2)
rg(U, W)

}

= LB

[

4((n − 1) f1 + 3 f2 − 1)− n(r + 1)

2n + 4
S(U, W) +

r(n + 2)− (n + 4)

(2n + 2)(2n + 4)
rg(U, W)

]

.
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This implies that

[

f2(2n − 8)− LB(4((n − 1) f1 + 3 f2 − 1)− n(r + 1))

2n + 4

]

S(U, W)

−

[

f2(5n + 2) + LB(r(n + 2)− (n + 4))

(2n + 4)(2n + 2)

]

rg(U, W) = 0.

The above equation implies

[αS(U, W) − βrg(U, W)] = 0,

where α =
[

f2(2n−8)−LB(4((n−1) f1+3 f2−1)−n(r+1))
2n+4

]

and β =
[

f2(5n+2)+LB(r(n+2)−(n+4))
(2n+4)(2n+2)

]

. This im-

plies

S(U, W) =
βr

α
g(U, W). (20)

Theorem 3. A Bochner Ricci-generalized pseudo-symmetric generalized complex space form

is an Einstein manifold.

Using equation (20) in (2), we get

(LV g)(U, W) + 2
βr

α
g(U, W) + 2λg(U, W) = 0. (21)

Contraction of (21) over U and W gives

(LV g)(ei, ei) + 2
βr

α
g(ei, ei) + 2λg(ei, ei) = 0.

This implies

divV +
βr

α
n + λn = 0. (22)

If V is solenoidal then divV = 0. Therefore the equation (22) can be reduced to

λ = −
βr

α
.

Thus we can state the following.

Corollary 3. Let (g, V, λ) be a Ricci soliton in a generalized complex space form satisfying

Bochner Ricci-Generalized pseudo-symmetric generalized complex space forms. Then V is

solenoidal if and only if it is shrinking or steady or expanding depending upon the sign of

scalar curvature.

6 GENERALIZED COMPLEX SPACE FORM SATISFYING B · W2 = L1Q(g, W2)

We assume that B · W2 = L1Q(g, W2) hold on M( f1, f2), then we have

(B(X, Y) · W2)(U, V, Z) = L1[((X ∧ Y) · W2)(U, V)Z].
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This implies,

B(X, Y)W2(U, V)Z − W2(B(X, Y)U, V)Z − W2(U, B(X, Y)V)Z − W2(U, V)B(X, Y)Z

= L1[(XΛgY)W2(U, V)Z − W2((XΛgY)U, V)Z − W2(U, (XΛgY)V)Z − W2(U, V)(XΛgY)Z.

Taking inner product with T we have,

g(B(X, Y)W2(U, V)Z, T) − g(W2(B(X, Y)U, V)Z, T) − g(W2(U, B(X, Y)V)Z, T)

− g(W2(U, V)B(X, Y)Z, T) = LB[g((XΛgY)W2(U, V)Z, T) − g(W2((XΛgY)U, V)Z, T)

− g(W2(U, (XΛgY)V)Z, T − g(W2(U, V)(XΛgY)Z, T)].

(23)

Applying equations (1), (7) and (8) in (23) and putting X = V = ei, further again putting

Y = T = ei in the resulting equation and taking summation over i, 1 ≤ i ≤ n, we get

γ

(n − 1)
S(U, Z) +

δ

(n − 1)
rg(U, Z) = L1[

1

n − 1
[nS(U, Z)− rg(U, Z)]] (24)

where

γ =
(2n + 2)[(6n3 − 8n2 − 39n − 22) f2 − 2(n3 + 4n2 + 7n − 18)(n + 1) f1] + rn(2n + 4)

(2n + 2)(2n + 4)
,

δ =
− f1(2n + 2)(4n + 2) + 6 f2(2n + 2)(n + 1) + r

(2n + 2)(2n + 4)
.

Equation (24) implies

[γS(U, W) + δrg(U, W)] = L1[nS(U, Z)− rg(U, Z)].

The above equation implies

S(U, W) = Arg(U, W), (25)

where A = (L1+δ)
L1n−γ . Thus we can state.

Theorem 4. A n-dimensional generalized complex space form satisfying B · W2 = L1Q(g, W2)

is an Einstein manifold.

Using equation (25) in (2), we get

(LV g)(U, W) + 2Arg(U, W) + 2λg(U, W) = 0. (26)

Taking U = W = ei and summing over i = 1, 2, ..., n in (26) we obtain

(LV g)(ei, ei) + 2Arg(ei , ei) + 2λg(ei , ei) = 0.

This implies

divV + Arn + λn = 0. (27)

If V is solenoidal then divV = 0. Therefore the equation (27) can be reduced to

λ = −Ar. (28)

Thus we can state the following.

Corollary 4. Let (g, V, λ) be a Ricci soliton in a generalized complex space form satisfying

B ·W2 = L1Q(g, W2). Then V is solenoidal if and only if it is shrinking or steady or expanding

depending upon the sign of scalar curvature.
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7 GENERALIZED COMPLEX SPACE FORM WITH divB = 0

Assume that the Bochner curvature tensor of a generalized complex space form is conser-

vative that is divB = 0. Using equations (4) and (5) in (7), then we obtain

B(X, Y, Z) = R(X, Y, Z) − 2
[(n − 1) f1 + 3 f2]

2n + 4
[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y)JZ]

+
r

(2n + 2)(2n + 4)
[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y)JZ],

(29)

Differentiating (29) covariantly, contracting and our assumption yields.

0 = (divR)(X, Y)Z − 2
d[(n − 1) f1 + 3 f2]

2n + 4
[g(Y, Z)X

−g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ]

+
dr

(2n + 2)(2n + 4)
[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y)JZ],

(30)

Using equation (3) in (30) we obtain

0 = (∇XS)(Y, Z) − (∇YS)(X, Z) − 2
d[(n − 1) f1 + 3 f2]

2n + 4
[g(Y, Z)X − g(X, Z)Y

+ g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ]

+
dr

(2n + 2)(2n + 4)
[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y)JZ].

(31)

Taking [(n − 1) f1 + 3 f2] = constant = k1 6= 0 in equation (31) we obtain

0 = (∇XS)(Y, Z) − (∇YS)(X, Z) +
dr

(2n + 2)(2n + 4)
[g(Y, Z)X − g(X, Z)Y

+ g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ].

(32)

Again using equation (3) in (32) we get

0 = (∇JZS)(JY, X) +
dr

(2n + 2)(2n + 4)
[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y)JZ].

Replace Z by JZ in the above equation we get

(∇ZS)(JY, X) =
dr

(2n + 2)(2n + 4)
[g(Y, JZ)X − g(X, JZ)Y + g(Y, Z)JX

− g(X, Z)JY + 2g(JX, Y)Z].

(33)

Contraction of (33) over Y and Z after simplification we get dr(JX) = 0. If dr(JX) = 0 then

dr(X) = 0 so r is constant. Using r = constant in (32) we get

(∇XS)(Y, Z) = (∇YS)(X, Z).

We can state the following.
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Theorem 5. A n-dimensional generalized complex space form with conservative Bochner cur-

vature tensor is constant scalar curvature provided [(n − 1) f1 + 3 f2] = k1(constant).

Theorem 6 ( [8]). Let M be a Kaehler manifold of dimension n ≥ 4. Then div R=0 and div C=0

are equivalent.

Using above Theorem we can state the following.

Theorem 7. Let M be a generalized complex space form of dimension n ≥ 4. Then div R=0,

div C=0 and div B=0 are equivalent provided [(n − 1) f1 + 3 f2] = k1(constant).
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Правiна М.М., Баґевадi Ц.С. Про узагальненi форми в комплексному просторi, якi задовiльняють

певнi умови кривини // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 284–294.

Ми вивчаємо солiтон Рiччi (g, V, λ) на узагальнених формах в комплексному просторi при

умовах, що тензори з кривиною Рiмана, Бохнера i W2 задовiльняють певнi умови кривини,

а саме напiвсиметричностi, Ейнштейнової напiвсиметричностi, псевдосиметричностi Рiчч та

узагальненої псевдосиметричностi Рiччi. У роботi показано, що стиснення, випрямлення i

розширення узагальнених форм в сомплексному просторi залежить вiд соленоїдальних вла-

стивостей вектора V. Також доведено, що узагальнена форма у комплексному просторi з

звичайним тензором кривизни Бохнера має сталу скалярну кривизну.

Ключовi слова i фрази: узагальненi форми у комплексному просторi, многовид Ейнштейна,

напiвсиметричнiсть Ейнштейна, псевдосиметричнiсть.
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INTRODUCTION

The main methods of solving problems of a digital signal processing are spectral analy-
sis, synthesis, filtering, coding and compressing based on discrete orthogonal transforms and
wavelet transforms [1–5]. The signal is presented in the form of a function of time. Wavelet
transforms may be considered as time-frequency representations or decompositions of a sig-
nal. A signal decomposition can be done by the basis built from a single wavelet function using
wavelet scale changes and shifts [1–4, 6]. Each function of the basis describes some frequency
of the signal and its location in the time domain.

An important step of a wavelet analysis is the choice of transform basis which depends
on the processing tasks and on the signal. The problem of choice of a basis and the wavelet
transform based on it is rather relevant and it is being researched subject.

The paper [4] systematizes basises of wavelet functions and wavelet transforms, but the
problem of choice of a wavelet is solved only partially [1–4, 6]. For descrete analysis the
wavelets of Daubechies, Haar, Meyer, Coifman, symlets, biorthogonal wavelets and wavelet-
packet Walsh functions are used [1–4, 6].

To solve practical problems orthogonal or symmetric wavelets with compact carrier that
ensure efficient transform algorithm can be chosen. But wavelets that simultaneously satisfy
all of this properties are unknown. The only symmetric orthogonal wavelets with compact
support are Haar wavelets but they do not satisfy the given processing qualities in many prob-
lems. To ensure symmetry multivalued biorthogonal wavelets are used. Daubechies wavelets
are much smoother than Haar wavelets but they are multivalued and do not have analytical
expression that complicates the process of their forming and calculation transforming.

From the recursively ordered Walsh system the Galois functions are generated [5], the latter
take only two values (±1) and the sequence of values is in full correlation. These features can
provide simple algorithms for information processing in the basis based on Galois functions
[5], but the researches of the Galois functions properties in various spaces and the possibility
of its application for wavelet transform have not been done yet.
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Thus performing of a time-frequency analysis and processing of a broad class of one-
dimensional signals with finite and limited energy, mathematical models of which are func-
tions in space L2 ([0, T)), necessitated the construction of wavelet basis on the base of Galois
functions in this space and research their properties.

The goal of this article is the construction of a family of wavelet systems based on mother
or generating Galois functions and proving properties of the constructed systems to create
basises for discrete wavelet transform in the space L2 ([0, T)).

The article provides the results of building of wavelet systems based on Galois functions,
of synthesed scaling functions for built wavelets systems and proves the required properties
of wavelets basises in the space L2 ([0, T)).

1 DEFINING WAVELET SYSTEM ON GALOIS FUNCTIONS BASE

For the purpose of constructing of a system of wavelet functions for discrete transforms of
signals presented by functions f ∈ L2 ([0, T)) as a mother wavelet the first function Galn,0(θ)

of a recursively ordered Galois system, which is defined in [5] is used.
The Galois functions system [5, p. 46] with the recursive ordering [5, p. 36] {Galn,i(θ)},

θ ∈ [0, M) is defined according to the generating vector of Galois field GF(2n) from a recursive
sequence or a recursive orderly system of Walsh functions [5, p. 36], where M = 2n, M ≤ T,
n = 1, 2, 3, . . . is a degree of irreducible polynomial Galois fields GF(2n); i = 0, 1, . . . 2n − 1.
Examples of creating recursive sequences are shown in the following text.

Example 1. Vector of coefficients (p0, p1, p2) = (1, 1, 1) corresponds to irreducible polynomial
x2 + x + 1, which generates Galois field GF(22). Non-zero elements of vector determine the
rule pi+2 = pi ⊕ pi+1 for the formation of a recursive sequence. Initial vector with unitary
elements (v0, v1) = (1, 1) is chosen as a primary vector. From the primary vector according
to this rule vi+2 = vi ⊕ vi+1 there are defined the elements of a recursive sequence wich are
repeated with period 2n − 1. Fragment of n − 1 zero elements of the sequence is supplemented
by one zero. Elements of supplemented sequence are denoted as gi:

{0, vi+2, vi, vi+1} = {g0, g1, g2, g3} = {0, 0, 1, 1},

where ⊕ denotes the addition modulo two.

Example 2. Vector of coefficients (p0, p1, p2, p3) = (1, 1, 0, 1) corresponds to irreducible poly-
nomial x3 + x2 + 1, which generates Galois field GF(23). This vector also determines the
rule pi+3 = pi ⊕ pi+1 for the formation of a recursive sequence. From the initial vector
(v0, v1, v2) = (1, 1, 1) according to the rule vi+3 = vi ⊕ vi+1 there are defined the elements
of a recursive sequence, supplemented by zero and submitted the following fragment:

{0, vi+3, vi+4, vi+5, vi+6, vi, vi+1, vi+2} = {g0, g1, g2, . . . , g7} = {0, 0, 0, 1, 0, 1, 1, 1}.

Example 3. Vector of coefficients (p0, p1) = (1, 1) corresponds to irreducible polynomial x + 1,
which generates Galois field GF(21). This vector also determines the rule pi+1 = pi for the
formation of a recursive sequence. From the initial vector (v0) = (1) according to this rule
vi+1 = vi ⊕ 1 there are defined the elements of a recursive sequence, supplemented by zero
and submitted the following fragment: {0, vi} = {g0, g1} = {0, 1}.
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Elements of the fragment of a recursive sequence supplemented by zero are signed as
{g0, g1, g2, . . . , g2n−1}.

The value of the first function Galn,0(θ) of a recursively ordered Galois system {Galn,i(θ)}
of order n at the points θ = θj = j in the interval θ ∈ [0, M) is obtained from an element of a
recursive sequences fragment via transform

Galn,0(θj) = 1 − 2gj, (1)

where j = 0, 1, . . . 2n − 1, gj — elements of a fragment of a recursive sequence.
In the intervals θ ∈ [j, j + 1) functions Galn,0(θ) are continuous constants and take values

Galn,0(θ) = Galn,0(θj). (2)

Since gj = 1 or gj = 0, therefore according to (1) and (2) functions Galn,0(θ) = ±1.
Each next function of Galois system {Galn,i(θ)} is received from the previous unit cyclic

shift either left or right by θ = 1 [5], so the first function can create two different systems. For
each irreducible polynomial of Galois field GF(2n) or generating vector several systems Galois
functions can be built.

These functions Galn,0(θ) are defined as mother wavelets for systems of order n

Galn(θ) = Galn,0(θ).

Mother wavelet Galn(θ) is defined in the interval [0, M), outside this interval the function
Galn(θ) = 0.

The norm of function Galn(θ) equals ‖Galn(θ)‖ = (
M
∫

0
Gal2

n(θ) dθ)
1
2 . Wavelet-functions must

have unitary norm ‖Galn(θ)‖ = 1, that is why function values are Galn(θ) = ±
√

1
2n .

The graphics mother Galois wavelets Gal1(θ), Gal2(θ), Gal3(θ), Gal4(θ) are shown in
fig. 1 — fig. 4 accordingly.

Figure 1: Galois wavelet, n = 1. Figure 2: Galois wavelet, n = 2.
On the basis of each mother function Galn(θ) with the help of scale and parralel shift a

system of wavelet-function is formed and defined as

Galn,m,k(t) = 2
m−1

2 Galn(2
m−1t − Nk), (3)

where t = N
M θ; N = 2p is the quantity of functions in the system; p = 1, 2, 3, . . .;

m = 0, 1, . . . , log2 N + 1; k = 0, 1, . . . , N · 2−m.
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Figure 3: Galois wavelet, n = 3. Figure 4: Galois wavelet, n = 4.

Non-normalized functions are Galn,m,k(t) = ±1 for t ∈ [0, T), T = N and Galn,m,k(t) = 0
for other t.

Normalized functions Galn,m,k(t) = ±
√

2m−1

N are piecewise constants in intervals

t ∈
[

q
l , q+1

l

)

, where q = 0, 1, . . . , lN − 1; l = 2n−1.

The graphics of eight wavelet functions {Gal2,m,k(t)} built by the formula (3) from mother
Galois wavelet Gal2(θ) are shown in fig. 5.

Figure 5: Graphics of wavelet functions of two-order system with mother Galois wavelet.

The graphics of eight wavelet functions {Gal3,m,k(t)}, built by the formula (3) from mother
Galois wavelet Gal3(θ) are shown in fig. 6.

The set {Galn,m,k(t)} of systems, based on mother wavelets for different values of n =

1, 2, 3, . . . forms a family of wavelet functions on the Galois functions basis.

From the result of construction of wavelet functions according (1) — (2) and fig. 1 — fig. 2
we can conclude that mother wavelets Gal1(θ) i Gal2(θ) of systems by orders n = 1 and n = 2
are Haar wavelets and the system wavelet functions built on their basis (fig. 5) is an orthogonal
Haar system.

It is known that Haar system or Haar wavelet functions is the orthonormal basis [1–6] in
the space L2 ([0, T)), that is why in this paper proving properties and synthesis of scaling
functions will be done for cases n ≥ 3.
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Figure 6: Graphics of wavelet functions of third-order system with mother Galois wavelet,
n = 3.

2 SYNTHESIS OF SCALING FUNCTION

To execute the multiresolution decomposition [6, p. 86] or multiresolution analysis and to
record wavelet transform in the filter form the scaling functions are used.

Scaling functions must form the basis, in which mother wavelet decomposes [1, 3, 4, 6].
To build scaling functions for Galois wavelets a well known method of construction of

scaling functions for Haar systems [3, 6] is used.
For mother wavelet Galn(θ) the scaling function ϕ(θ) is defined as

ϕ(θ) =

{

1, θ ∈ [0, 1),
0, θ ∈ [1, M).

In the space L2(R) there is build the system of functions ϕ0,b(θ), b ∈ Z, received from ϕ(θ)

by shifts on integer number b
ϕ0,b(θ) = ϕ(θ − b).

Space in L2(R), being generated by linear combinations of shift functions, is a closure of
linear span of system ϕ0,b(θ), signed V0. Obviously, the system ϕ0,b(θ) forms an orthonormal
basis of space V0.

On the next step a system of functions ϕ1,b(θ) is created by scaling and shifting of function
ϕ0,b(θ)

ϕ1,b(θ) =
√

2ϕ(2θ − b).

System ϕ1,b(θ) creates an orthonormal basis in space V1, which is the closure of the linear
span of the system ϕ1,b(θ).

Function ϕ(θ) ∈ V0 is a linear combination of elements of space V1

ϕ(θ) = ϕ(2θ) + ϕ(2θ − 1),

ϕ(θ) =
1√
2

ϕ1,0(2θ) +
1√
2

ϕ1,1(2θ − 1).
(4)
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On the next step there is built a space V2, generated by functions

ϕ2,b(θ) = 2ϕ(22θ − b).

For constructed spaces V0, V1, V0 insertion V0 ⊂ V1 ⊂ V2 is right. The procedure of con-
struction of functions system is extended for any k ∈ Z. It results in a constructed orthonormal
functions system

ϕk,b(θ) =
√

2k ϕ(2kθ − b).

There are the following inclusion of spaces V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vk.

According to the definition [6, p. 76] the function ϕ(θ) ∈ L2(R) is called a scaling function
if it can be presented in the following form

ϕ(θ) =
√

2 ∑
s∈Z

hs ϕ(2θ − s),

where numbers hs satisfy the condition ∑
s∈Z

|hs|2 < ∞.

Decomposition (4) proves performing of the scaling function definition for ϕ(θ).

Mother wavelet Galn(θ) is decomposed into the functions system {ϕ(2θ)}

Galn(θ) =
√

2
2n+1−1

∑
s=0

hs ϕ(2θ − s),

where the coefficients hs are called filters.

Example 4. Non-normalized wavelet function Gal3(θ) is decomposed in the system of scaling
functions ϕ(2θ) by the following way

Gal3(θ) = 1 · ϕ(2θ) + 1 · ϕ(2θ − 1) + 1 · ϕ(2θ − 2) + 1 · ϕ(2θ − 3) + 1 · ϕ(2θ − 4)

+ 1 · ϕ(2θ − 5) + (−1) · ϕ(2θ − 6) + (−1) · ϕ(2θ − 7) + 1 · ϕ(2θ − 8) + 1 · ϕ(2θ − 9)

+ (−1) · ϕ(2θ − 10) + (−1) · ϕ(2θ − 11) + (−1) · ϕ(2θ − 12) + (−1) · ϕ(2θ − 13)

+ (−1) · ϕ(2θ − 14) + (−1) · ϕ(2θ − 15).

The corresponding filters are h0 = 1, h1 = 1, h2 = 1, h3 = 1, h4 = 1, h5 = 1, h6 = −1, h7 =

−1, h8 = 1, h9 = 1, h10 = −1, h11 = −1, h12 = −1, h13 = −1, h14 = −1, h15 = −1.

3 PROPERTIES OF WAVELET SYSTEMS BASED ON GALOIS FUNCTIONS IN L2 ([0, T))

The wavelets system (3) based on Galois functions may be used as a basis for wavelet trans-
forms if the following properties of wavelet basises are performed [3, 4, 6]:

1) it has a compact carrier (a finite time interval);

2) it has at least one zero moment;

3) a basis is orthogonal or it is a Riesz basis.
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These properties for systems of wavelets with mother Galois functions are proved by the
following propositions.

1) The existence of a compact carrier of a wavelet.
It is known that the function f (t) has a compact carrier if f (t) = 0 for t < a or t > b, where

−∞ < a < b < ∞ [3, p. 15]. Wavelets with a compact carrier have a finite number of nonzero
coefficients of expansion.

Proposition 1. Mother wavelet Galn(θ) of Galois wavelet system has a compact carrier.

Proof. According to the definition (1)—(2) function Galn(θ) in interval [0, M) is piecewise con-

stant, it has non-zero values Galn(θ) = ±
√

1
2n and outside the interval its value equals zero,

therefore it has a compact carrier.

2) The existence of one zero moment.
According to the definition [6, p. 129], function f (t) ∈ L2(R) has L zero moment if equality

is satisfied
∞
∫

−∞

tr f (t) dt = 0 (5)

for all integers r = 0, 1, . . . , L − 1. If the mother-wavelet has successive moments equal to zero
the wavelet coefficients decrease quickly.

Proposition 2. The mother wavelet Galn(θ) of the Galois wavelet system has one zero moment

∞
∫

−∞

Galn(θ) dθ = 0.

Proof. According to the property of Galois function [5] it is

M
∫

0

Galn(θ) dθ = 0,

and outside the interval [0, M) value of function is zero.

Sums of lengths the intervals where Galn(θ) =
√

1
2n and Galn(θ) = −

√

1
2n are equal. There-

fore, according to the definition (5) functions Galn(θ) have a zero moment and satisfy the basic
requirements for wavelet functions. However, there is only one zero moment because the di-
rect checking shows that

∞
∫

−∞

θGaln(θ) dθ 6= 0.

3) Orthogonality of system or Riesz basis. Built systems {Gal1,m,k(t)} and {Gal2,m,k(t)}
coincide with the orthogonal Haar system. Built systems {Galn,m,k(t)} for n = 3, 4, . . . are
nonorthogonal. We know that the demand for orthogonality of wavelets system may be weak-
ened, but it is necessary for the system to form the Riesz basis [2–4, 6].
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According to the definition [6, p. 111] system ϕv(t) in Hilbert space H called Riesz basis if
there are such positive constants A i B that for any element f (t) ∈ H the following inequality
is performed

A‖ f (t)‖2
6

∞

∑
v=1

|〈 f (t), ϕv(t)〉|2 6 B‖ f (t)‖2 . (6)

Proposition 3. System {Galn,m,k(t)} is the Riesz basis in space L2 ([0, T)).

Proof. To prove that the properties (6) of wavelet systems with mother Galois functions form
Riesz basis, it must be established that there are such constants A i B, 0 < A ≤ B < ∞ for
which the inequality is performed

A‖ f (t)‖2
6

N

∑
v=1

|〈 f (t), Galv (t)〉|2 6 B‖ f (t)‖2 , (7)

where ‖ f (t)‖2 =
N
∫

0
f 2(t) dt, v = 1, 2, . . . , N is serial number of the wavelet in the system

{Galn,m,k(t)}.
Numbers m and k in the system {Galn,m,k(t)} with the triple numeration are connected

with the serial number v of the wavelet by the formula v = 2m−1 + k + 1.
Since the number of functions in the proposed system is finite and equals N, the sum in the

middle of inequality (7) contains a finite number of components

N

∑
v=1

|〈 f (t), Galv(t)〉|2 =
N

∑
v=1

∣

∣

∣

∣

∣

∣

T
∫

0

f (t) · Galv(t) dt

∣

∣

∣

∣

∣

∣

2

.

With Bunyakovsky inequality

(

b
∫

a
x(t) · y(t) dt

)2

≤
b
∫

a
x2(t) dt

b
∫

a
y2(t) dt for any x(t), y(t)

an assessment of the latter expression and following transforms there are performed

N

∑
v=1





T
∫

0

f (t) · Galv(t) dt





2

≤
N

∑
v=1





T
∫

0

f 2(t) dt ·
T
∫

0

Gal2
v(t) dt





= ‖ f (t)‖2 ·
N

∑
v=1

‖Galv(t)‖2 .

Functions {Galv(t)} are normalized and the norm is ‖Galv(t)‖ = 1. Selection of the first
and the last expressions in latest inequality sets the ratio

N

∑
v=1

|〈 f (t), Galv(t)〉|2 ≤ ‖ f (t)‖2 ·
N

∑
v=1

‖Galv(t)‖2 = ‖ f (t)‖2 · N.

So there exists the constant N > 0 and the right side of inequality (7) is proved. On the other
hand, we must prove that there exists a constant A > 0 and there performs the inequality

A‖ f (t)‖2 ≤
N

∑
v=1

|〈 f (t), Galv (t)〉|2 or (8)
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A ≤

N
∑

v=1
|〈 f (t), Galv (t)〉|2

‖ f (t)‖2 . (9)

Since function f (t) is bounded and it is designated as p ≤ f (t) ≤ P, then the following

inequalities are executed
q+1
∫

q
f (t) dt ≥

q+1
∫

q
p dt and

q+1
∫

q
(− f (t)) dt ≥

q+1
∫

q
(−P) dt.

Since normalized functions Galv(t) = ±
√

2m−1

N are piecewise constants in intervals

t ∈
[

q
l , q+1

l

)

, q = 0, 1, . . . , lN − 1 and each function Galv(t) = Galn,m,k(t) 6= 0 is not zero-

value in the interval t ∈
[

k
2m−log2N−1 , k+1

2m−log2N−1

)

, then

N

∑
v=1

|〈 f (t), Galv(t)〉|2 =
N

∑
v=1

∣

∣

∣

∣

∣

∣

T
∫

0

f (t)Galv(t) dt

∣

∣

∣

∣

∣

∣

2

=
N

∑
v=1

∣

∣

∣

∣

∣

∣

∣

∣

k+1

2m−log2N−1
∫

k

2m−log2N−1

f (t)Galn,m,k(t) dt

∣

∣

∣

∣

∣

∣

∣

∣

2

.

Assume designation I1 = ∪
[

qs
l , qs+1

l

)

— for combining intervals, where values of func-

tions are Galv(t) =
√

2m−1

N , and I2 = ∪
[

qr
l , qr+1

l

)

— for combining intervals, where values of

functions are Galv(t) = −
√

2m−1

N , s = 0, 1, . . . , lN − 1, r = 0, 1, . . . , lN − 1.

N

∑
v=1

∣

∣

∣

∣

∣

∣

∣

∣

k+1

2m−log2N−1
∫

k

2m−log2N−1

f (t)Galn,m,k(t) dt

∣

∣

∣

∣

∣

∣

∣

∣

2

=
N

∑
v=1

∣

∣

∣

∣

∣

∣

∫

I1

√

2m−1

N
f (t) dt +

∫

I2

√

2m−1

N
(− f (t)) dt

∣

∣

∣

∣

∣

∣

2

=
N

∑
v=1

2m−1

N

∣

∣

∣

∣

∣

∣





∫

I1

f (t) dt +
∫

I2

(− f (t)) dt





∣

∣

∣

∣

∣

∣

2

≥
N

∑
v=1

2m−1

N

∣

∣

∣

∣

∣

∣





∫

I1

p dt +
∫

I2

(−P) dt





∣

∣

∣

∣

∣

∣

2

=
N

∑
v=1

2m−1

N

∣

∣

∣

∣

∣

∣



p
∫

I1

dt + (−P)
∫

I2

dt





∣

∣

∣

∣

∣

∣

2

=
N

∑
v=1

2m−1

N

∣

∣

∣

∣

(

p
N

2m + (−P)
N

2m

)∣

∣

∣

∣

2

=
N

∑
v=1

2m−1N2

N22m (p − P)2 = 2−m−1N2(p − P)2.

The function f 2(t) is bounded. It is assumed that f 2(t) ≤ S, S ∈ R, then the inequality is
executed

T
∫

0

f 2(t) dt ≤
T
∫

0

S dt = S · N.

Substituting the last result in (9) allows to reach the following conclusion: when choosing

A ≤ N(p−P)2

2m+1S
inequalities (8) i (7) are performed. The statement is proved.

According to proven propositions 1 — 3 mother Galois wavelet functions have a compact
carrier, one vanishing zero moment, wavelet function systems Galn,m,k(t) for different n form
Riesz basises, that satisfy the necessary conditions for wavelet basises in space L2 ([0, T)).
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4 CONCLUSIONS

Thus, it was proved that the first functions of recursively ordered Galois systems are mother
or generating wavelets. There was synthesized the orthogonal scaling functions system in
which mother wavelets decompose.

On the basis of mother wavelets of different orders n there were built wavelet functions
systems. The set of built systems is a family of wavelet functions that are generated by Galois
functions.

The article also proves necessary conditions (properties) of wavelet system for the built sys-
tem. It is proved that each system of family is the Riesz basis. The proved conditions enable
using wavelet systems with generating functions Galois as basises of discrete wavelet trans-
forms in the space L2 ([0, T)). A significant advantage of implementation of these transforms
compared to others is that all the basic functions are piecewise constant and take only two
values.

Transforms in built basises can be used for analysis and processing of one-dimensional
signals with finite energy.
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DIVISOR PROBLEM IN SPECIAL SETS OF GAUSSIAN INTEGERS

Let A1 and A2 be fixed sets of gaussian integers. We denote by τA1,A2
(ω) the number of repre-

sentations of ω in form ω = αβ, where α ∈ A1, β ∈ A2. We construct the asymptotical formula for

summatory function τA1,A2
(ω) in case, when ω lie in the arithmetic progression, A1 is a fixed sector

of complex plane, A2 = Z[i].

Key words and phrases: Gaussian numbers, divisor problem, asymptotic formula, arithmetic pro-
gression.
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INTRODUCTION

Let A1 and A2 be fixed infinite sets of natural numbers. We let τA1,A2
(n) denote the number

of representations of n in form n = m1m2, where m1 ∈ A1, m2 ∈ A2. To investigate average

order of function τA1,A2
(n), it is usual to consider the summatory function

∑
n6x

τA1,A2
(n),

where x is a large real variable. For A1 = A2 = N, this is the classical Dirichlet divisor

problem about the number of lattice points (u, v) under the hyperbola uv 6 x, u, v > 1.

Historical review results on the divisor problem can be found in the monograph of Krätzel [4].

The best estimate to-date is due to Huxley [3]

∑
n6x

τN,N(n) = x log x + (2γ − 1) + O(x
131
416 (log x)

26947
8320 ).

In articles [5–9] the authors discussed special cases of sets of natural numbers A1, A2.

The similar problem was considered over the ring of the Gaussian integers Z[i] in the work

of Varbanets and Zarzycki [9] in case, when

A1 = Z[i], A2 = {α ∈ Z[i] : α ≡ α0 (mod γ)}, α0, γ ∈ Z[i].

The following asymptotic formula was obtained

∑
ω=αβ

α≡α0 (mod γ)
N(αβ)6x

1 =
π2x log x

N(γ)
+ c(α0, γ)

x

N(γ)
+ O

(

(

x

N(γ)

) 1
2+ε
)

+ O

(

(

x

N(α1)

)θ
)

+ O(xε),

УДК 511.3
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where θ <
1
3 , α1 is a number of form α0 + βγ, β ∈ {0,±1,±i} with the smallest norm, the

constant c(α0, γ) is computable and depends on α0 and γ.

In the present paper, we investigate the distribution of values of the divisor function not

only in an arithmetic progression, but in narrow sectorial region also. By the τS(ω) we denote

the function τA1,A2
(ω) in case, when A1 = Z[i], A2 = S(ϕ) is a fixed sector of complex plane

S(ϕ) := {α ∈ Z[i] : ϕ1 < arg α 6 ϕ2, ϕ = ϕ2 − ϕ1}.

The main point of this paper is to construct an asymptotic formula for sum

T(x, γ, ω0, S(ϕ)) = ∑
ω≡ω0 (mod γ),

N(ω)≤x

τS(ω),

in particular to investigate the ranges of γ and x for which this formula is nontrivial. Apply-

ing the method of Vinogradov we get the asymptotic formula in case, when the norm of a

difference of progression grows.

In this paper we denote by Z[i] the ring of Gaussian integers

Z[i] = {a + bi | a, b ∈ Z}.

For α ∈ Z[i] we put Sp(α) = α + α = Re α, N(α) = α · α, where α denotes a complex conjugate

with α. Sp(α) and N(α) we name a trace and a norm (respectively) of α from Z[i]. Moreover,

exp (x) := ex, eq(z) := e
2πi z

q for q ∈ N. The Vinogradov’s symbol as in f (x) ≪ g(x) means

that f (x) = O(g(x)); ε is an arbitrary small positive number that is not necessarily the same

at each occurence; the constants implied by the O (or ≪) — notation depend at most on ε.

ζ(s) is the Riemann zeta-function; L(s, χ4) is the Dirichlet L-function with the non-principal

character modulo 4. B := {0,±1,±i}. ϕ(α) = N(α)∏p|α(1 − N(p)−1) denotes the Euler

function in Z[i].

1 PRELIMINARIES

We begin this section with few background definitions and facts. Note that every non-zero

Gaussian number has associated element in each quadrant of the complex plane. Therefore

without loss of generality, we assume 0 6 ϕ1 < ϕ2 6 π
2 . Let χ(ϕ) be a characteristic function

of sector S. We will follow the idea of Vinogradov [1]. We first mention some classical results.

Lemma 1 ( [1]). Suppose r is an integer, r > 0, Ω > 0, 0 < ∆ <
1
2 Ω, ϕ1, ϕ2 are real numbers,

∆ 6 ϕ2 − ϕ1 6 Ω − 2∆. Then there exists a periodic function f (ϕ) = f (ϕ; ϕ1, ϕ2) with period

Ω such that:

1. f (ϕ) = 1 in the interval [ϕ1, ϕ2]; 0 6 f (ϕ) 6 1 in the intervals [ϕ1 − ∆, ϕ1] and

[ϕ2, ϕ2 + ∆];

2. f (ϕ) = 0 in the interval [ϕ2 + ∆, ϕ2 + Ω − ∆];

3. f (ϕ) can be expanded into Fourier series of the form

f (ϕ) =
∞

∑
m=−∞

am exp
(

2πi
mϕ

Ω

)

,
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where a0 = 1
Ω
(ϕ2 − ϕ1 + ∆), |am| 6







Ω−1(ϕ2 − ϕ1 + ∆),

2(π|m|)−1,

2(π|m|)−1(rΩ(π|m|∆)−1)r.

Remark 1. There exist numbers θi, |θi| 6 1, i = 1, 2, such that

χ(ϕ) = f (ϕ; ϕ1, ϕ2) + θ1 f (ϕ; ϕ1 − ∆, ϕ1) + θ2 f (ϕ; ϕ2, ϕ2 + ∆). (1)

Let δ, δ0 ∈ Q[i] and m ∈ Z. Let for Re s > 1 we define the Hecke Z-function with the shift

Zm(s; δ, δ0) = ∑
ω∈Z[i]
ω 6=−δ

exp (4mi arg (ω + δ))

N(ω + δ)
exp (2πi Re(δ0ω)).

Lemma 2. Zm(s; δ, δ0) is an entire function if m 6= 0 and δ0 6∈ Z[i]. For m = 0 and δ0 ∈ Z[i]

Hecke Z-function Z0(s; δ, δ0) is a holomorphic function in the whole complex plane except at

s = 1, where it has a simple pole with residue π. It satisfies the functional equation

π−sΓ(2|m|+ s)Zm(s; δ, δ0) = π−(1−s)Γ(2|m|+ 1 − s)Zm(1 − s;−δ0, δ) exp (−2πi Re(δ0δ)) (2)

in all cases.

For the proof in the case δ = δ0 = 0 see [2]. The proof in other cases similar.

Lemma 3 ( [9]). Let δ be a Gaussian rational, N(δ) < 1. Then Z0(s; δ, 0) has the following

Laurent expansion

Z0(s; δ, 0) =
π

s − 1
+ a0(δ) + a1(δ)(s − 1) + . . . ,

where

a0(δ) =







πγ + 4L′(s, χ4), i f δ ∈ Z[i],

πγ + 4L′(s, χ4) + ∑
β∈B

(N(δ + β))−1 + b0(γ), i f 0 < N(δ) < 1;

γ is the Euler’s constant, b0(γ) = −4 + O
(

N
1
2 (δ)

)

.

By the Stirling’s formula for Gamma-function to the terms of the second order O(t−2) we

have for |t| > 1, σ > 0

Γ(σ + it) =
√

2πtσ− 1
2

× exp

(

i

(

t log t − t +
π

2

(

σ − 1

2

)

+

(

σ − σ2 − 1

6

)

(2t)−1 + O(t−2)

))

exp

(

−π|t|
2

)

.

Hence,

Γ(2|m|+ 1 − s)

Γ(2|m|+ s)
= exp

(

it(2 − log(4m2 + t2) +
|2m|+ 1

4m2 + t2
+

(2|m|+ 1)2

(4m2 + t2)2
)

)

× 1

2
(4m2 + t2)1−2σ exp

(

σ − 1

2
+

t2

16
(4m2 + 2|m|+ t2)−1

)

×
(

1 + O(m2 + t2)−
1
2

)

.

(3)
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Applying the estimations for |t| > 2, σ = 1

Z∗
m(s; δ, δ0) := Zm(s; δ, δ0)− ∑

ω∈B

e4mi arg (ω+δ)

N(ω + δ)s
e2πi Re(δ0ω) ≪ log4(t2 + m2)

and functional equation (2), from (3) and Phragmen–Lindelöf theorem in the strip

−1 6 Re(s) 6 1 we infer

Z∗
m(s; δ, δ0) ≪ (m2 + t2)

1−σ
2

(

log(m2 + t2)
)

1−σ
2

, |m| > 1. (4)

Let α, β, γ ∈ Z[i]. We define the Kloosterman sum for the ring of Gaussian integers

K(α, β; γ) = ∑
ξ ,ξ ′(modγ)
ξ ·ξ ′≡1(γ)

e
πiSp

(

αξ+βξ ′
γ

)

.

Lemma 4. Let α, β, γ ∈ Z[i], γ 6= 0. Then the estimate

K(α, β; γ) ≪ (N(γ)N((α, β, γ)))
1
2 τ(γ)

holds. Moreover,

K (α, β; γ) = ∑
δ|(α,β,γ

N(δ)K

(

1,
αβ

δ2
;

γ

δ

)

. (5)

Proof. This lemma follows from multiplicative property of K (α, β; γ) on γ and the Bombieri

estimate of an exponential sum on the algebraic curve over the finite field. The formula (5) is a

generalized Kuznetsov’s identity for Kloosterman sums.

2 THE MAIN RESULTS

Lemma 5. Let γ, ω0 ∈ Z[i], N(γ) > 1, (ω0, γ) = β, N(β) < N(γ). Then for every ε > 0,

N(γ) ≪ x
2
3−ε we have

T0(x, γ, ω0) = c0(γ, ω0)
x

N(γ)
log

x

N(β)
+ c1(γ, ω0)

x

N(γ)
+ O

(

x
1
2+ε

N
1
4 (γ)

)

,

where c0(γ, ω0), c1(γ, ω0) are computable constants

c0(γ, ω0) = π2N(β)ϕ

(

γ

β

)

N−1(γ)τ(β), (6)

c1(γ, ω0) = π2 ∑
δ|γ



2E − 1 + 2
L′(1, χ4)

L(1, χ4)
+ ∑

p|γ/δ

∗ log N(p)

N(p)− 1



 ∏
p|γ/δ

∗(1 − N(p)−1). (7)

Proof. Without loss of generality we will consider a case (ω0, γ) = 1. For Re s > 1 we denote

F(s) := ∑
ω∈Z[i]

ω≡ω0(γ)

τ(ω)

N(ω)s
, F∗(s) := F(s)− ∑

β∈B

τ(ω0 + βγ)

N(ω0 + βγ)s
.
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It is clear, that

F(s) = N−2s(γ) ∑
αi∈(modγ)

α1α2≡ω0(γ)

Z0

(

s,
α1

γ
, 0

)

Z0

(

s,
α2

γ
, 0

)

.

By using the Abel’s Lemma about partial summation of Dirichlets’ series, we have for c = 1+ ε,

1 < T ≤ x, where ε > 0 is arbitrary small

T0(x, γ, ω0) =
1

2πi

c+iT
∫

c−iT

F∗(s)
xs

s
ds + O

(

xc

TN(γ)

)

. (8)

From Lemma 4 we have the functional equation

F(s) =
π2(2s−1)

N2s(γ)

Γ2(1 − s)

Γ2(s)
Ψ(1 − s),

where

Ψ(1 − s) = ∑
ω

1

N(ω)s ∑
αβ=ω

Φ(α, β; γ), Φ(α, β; γ) = ∑
α1,α2(modγ)

α1α2≡ω0(γ)

e
πiSp

(

αα1+βα2
γ

)

.

We consider the function F∗(s) in the strip −1
4 ≤ Re s ≤ 1 + ε. It is obviously that F∗(1 +

ε + it) ≪ N(γ)−1−ε. On the line Re s = −1
4 we apply the functional equation for Z0(s; δ, 0),

(3), Lemma 4 and then obtain F∗(1 + ε + it) ≪ N(γ)1/2+ε(|t|+ 3)3.

Applying the Phragmen-Lindelöf theorem in the strip −1
4 6 Re(s) 6 1 + ε we infer for

|t| ≤ T

F∗(−ε + it) ≪ N(γ)1/5+εT12/5+ε.

To deal with integral in (8) we shift the line of integration to Re s = −ε. By the Theorem of

residues we obtain

T0(x, γ, ω0) = res
s=0

(

F∗(s))
xs

s

)

+ res
s=1

(

F∗(s))
xs

s

)

+
1

2πi

−ε+iT
∫

−ε−iT

F∗(s)
xs

s
ds

+ O (xε) + O
(

x−εN(γ)1/5+εT7/5+ε
)

+ O

(

x1+ε

TN(γ)

)

.

(9)

Further, applying Lemma 2 we get

res
s=1

(

F∗(s))
xs

s

)

=
π2x log x

N(γ) ∏
p|γ

∗(1 − N(p)−1)

+
π2x

N(γ) ∏
p|γ

∗(1 − N(p)−1)



−1 + 2



E +
L′(1, χ4)

L(1, χ4)
+ ∑

p|γ

∗(
log N(p)

N(p) − 1
)







 ,

(10)

where sign ∏
∗ means that the product conducts by all the non-associated prime Gaussian

numbers. Moreover, F(0) = 0 if N(γ) > 1.

res
s=0

(

F∗(s)
xs

s

)

= res
s=0

(

− ∑
β∈B

τ(ω0 + βγ)

N(ω0 + βγ)s

xs

s

)

≪ N(γ)ε. (11)
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Observe that by Lemma 4

∑
αβ=ω

|Φ(α, β; γ)| = ∑
αβ=ω

|K(α, βω0; γ)| ≪ N(γ)1/2 N((ω, γ))1/2τ(γ)τ(ω).

Now by the termwise integration and applying the Stirling formula for gamma function and

the method of stationary phase we get

1

2πi

−ε+iT
∫

−ε−iT

F∗(s)
xs

s
ds = ∑

ω
0<N(ω)≤Y

π2

N(ω) ∑
αβ=ω

Φ(α, β; γ)
y3/8

4
√

2/π
e

(

−1

8
− 1

2π
y1/4

)

× (1 + O(y−1/8)) + O

(

x1+ε

TN(γ)

)

+ O (xε)

+ O



 ∑
ω

N(ω)>Y

y−εT1+4εN(γ)1/2+εN((ω, γ))1/2τ(ω)N(ω)−1





(12)

where Y ≤ X =
(

4
π

)4 T4N2(γ)
x , y = π4xN(ω)

N2(γ)
. Thus, by combining (8)—(12) and taking T =

x1/2N(γ)−3/4, Y = x1/3 we obtain the assertion of Lemma 5.

Theorem 1. Let γ, ω0 ∈ Z[i], N(γ) > 1, (ω0, γ) = β, N(β) < N(γ). Then for every ε > 0,

x ≥ N
3
2 (γ) and ϕ2 − ϕ1 ≫ N

3
4 (γ)

x
1
2−ε

, the following formula holds

T(x, γ, ω0, S(ϕ)) =
2(ϕ2 − ϕ1)

π

(

c0(γ, ω0)
x

N(γ)
log

x

N(β)

+ (c1(γ, ω0) + A0(ϕ))
x

N(γ)

)

+ O

(

x
1
2+ε

N
1
4 (γ)

)

,

where c0(γ, ω0), c1(γ, ω0), A0(ϕ) are computable constants, which defined in (6), (7). The con-

stant in symbol ”O” depends only on ε.

Proof. Let m 6= 0. Denote

cm(ω) = ∑
αβ=ω

e4mi arg α.

For Re s > 1 we have

Fm(s) = ∑
ω∈Z[i]

ω≡ω0(γ)

cm(ω)

N(ω)s
=

e4mi arg γ

N2s(γ) ∑
αi∈(modγ)

α1α2≡ω0(γ)

Zm

(

s,
α1

γ
, 0

)

Z0

(

s,
α2

γ
, 0

)

,

F∗
m(s) = Fm(s)− ∑

β∈B
αβ=ω0+βγ

e4mi arg α

N(ω0 + βγ)s
.

Thus, repeating the arguments of the proof of Lemma 5, we obtain for m 6= 0

Tm(x, γ, ω0) = ∑
ω∈Z[i]

ω≡ω0(γ)

cm(ω) =
πxe4mi arg γ

N2(γ) ∑
α1∈(modγ)

′Zm

(

1,
α1

γ
, 0

)

+ O
(

N(γ)1/5+ε|m|6/5+ε
)

+ O

(

x
1
2+ε

N
1
4 (γ)

)

,

(13)
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where sign ′ in summation ∑ denotes that α1 runs reduced residue system modulo γ.

By the Lemma 1 and (1) we have

T(x, γ, ω0, S(ϕ)) = ∑
ω≡ω0 (mod γ),

N(ω)≤x

τS(ω) = ∑
ω≡ω0 (mod γ),

N(w)6x

∑
α|ω

χs(arg α)

= ∑
αβ≡ω0 (mod γ)

N(αβ)6x

( f (arg α; ϕ1, ϕ2) + θ1 f (arg α; ϕ1 − ∆, ϕ1)

+θ2 f (arg α; ϕ2, ϕ2 + ∆)) := ∑0
+θ1 ∑1

+θ2 ∑2
,

(14)

where f is the function from Lemma 1, associated, respectively, with segments [ϕ1, ϕ2],

[ϕ1 − ∆, ϕ1], [ϕ2, ϕ2 + ∆]. The sums ∑0, ∑1, ∑2 can be investigated similarly, so we consider

the case ∑0. We have

∑0
= ∑

αβ≡ω0 (mod γ)
N(αβ)6x

f (arg α; ϕ1, ϕ2) = ∑
αβ≡ω0 (mod γ)

N(αβ)6x

+∞

∑
m=−∞

am exp(4mi arg α)

=
+∞

∑
m=−∞

am ∑
αβ≡ω0 (mod γ)

N(αβ)6x

exp(4mi arg α) = a0T0(x, γ, ω0) + ∑
|m|>1

amTm(x, γ, ω0),

(15)

where a0 = 1
Ω
(ϕ2 − ϕ1 + ∆), Ω = π

2 , the exact value of ∆ will be defined later. The sum

over m we split into two parts: 1 ≤ |m| 6 ∆−1, |m| > ∆−1. For |m| 6 ∆−1 we use the

estimation |am| ≤ (2π|m|)−1 , when |m| > ∆−1 we apply |am| ≤ 2(π|m|)−1(rΩ(π|m|∆)−1)r,

r = 2. Substituting these estimates into (15), using the Lemma 5, (4) and (13) we obtain

∑0
=

2

π
(ϕ2 − ϕ1 + ∆)T0(x, γ, ω0) +

πx

N2(γ) ∑
α1∈(modγ)

′ ∑
|m|>1

ame4mi arg γZm

(

1,
α1

γ
, 0

)

+ O



 ∑
1≤|m|≤∆−1

m−1

(

N(γ)1/5+ε|m|6/5+ε +
x

1
2+ε

N
1
4 (γ)

)





+ O



 ∑
|m|>∆−1

m−3∆−2

(

N(γ)1/5+ε|m|6/5+ε +
x

1
2+ε

N
1
4 (γ)

)





=
1

2π
(ϕ2 − ϕ1 + ∆)T0(x, γ, ω0) + (ϕ2 − ϕ1)

x

N(γ)
A0(ϕ2 − ϕ1, ∆)

+ O
(

N(γ)1/5+ε∆−2−ε
)

+ O

(

x
1
2+ε

N
1
4 (γ)

)

,

where A0(ϕ2 − ϕ1, ∆) = A0(ϕ) + O(∆) limited for ϕ2 − ϕ1 → 0 and ∆ → 0. Let ∆−1 = x
1
4

N
9

40 (γ)
.

In such case we have

∑0
=

2(ϕ2 − ϕ1)

π

(

c0(γ, ω0)
x

N(γ)
log

x

N(β)

+ (c1(γ, ω0) + A0(ϕ))
x

N(γ)

)

+ O

(

x
1
2+ε

N
1
4 (γ)

)

.

(16)
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The sums ∑1, ∑2 have similar representations, but we write ∆ instead ϕ2 − ϕ1. A0(ϕ) can

be obtained using Lemma 1 for the case r = 1. The assertion of the Theorem 1 follows from

(14), (16). The proof is completed.

In the same way the asymptotic formula for summary function of τA1,A2
(ω) can be proved,

where A1 = S(ϕ), A2 = {α ∈ Z[i] : α ≡ α0(mod γ)}.

The asymptotic formula for the T0(x, γ, ω0) can be used for investigation of number of

solutions in Gaussian integers of the equation α1α2 − α3α4 = β, N(α1α2) ≤ x.
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О.В.Савастру Проблема дiльникiв на спецiальних множинах цiлих гаусових чисел // Карпатськi

матем. публ. — 2016. — Т.8, №2. — C. 305–312.

Нехай A1 та A2 — це заданi множини цiлих гаусових чисел. Через τA1,A2
(ω) позначимо

кiлькiсть уявлень ω у виглядi ω = αβ, де α ∈ A1, β ∈ A2. Побудована асимптотична фор-

мула для суматорної функцiї, яка вiдповiдає функцiї τA1,A2
(ω), у випадку, коли ω належить

арифметичнiй прогресiї, A1 — сектор роствору ϕ у комплекснiй площинi, A2 = Z[i].

Ключовi слова i фрази: гаусовi числа, проблема дiльникiв, асимптотична формула, арифме-

тична прогресiя.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2016, 8 (2), 313–322 Карпатськi матем. публ. 2016, Т.8, №2, С.313–322

doi:10.15330/cmp.8.2.313-322

SHARYN S.V.

APPLICATION OF THE FUNCTIONAL CALCULUS TO SOLVING OF INFINITE

DIMENSIONAL HEAT EQUATION

In this paper we study infinite dimensional heat equation associated with the Gross Laplacian.
Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the
space of polynomial ultradifferentiable functions. The semigroup approach is considered as well.
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INTRODUCTION

The mathematical framework of white noise analysis, which was founded in works of
Yu. Berezansky, Yu. Samoilenko [1] and T. Hida [5], is based on an infinite dimensional ana-
logue of the Schwartz distribution theory.

In 1967 L. Gross [4] introduced Laplacian ∆G on an abstract Wiener space as a natural in-
finite dimensional analogue of the finite dimensional Laplacian and studied potential theory
associated with ∆G. Within the white noise framework, the Gross Laplacian has been formu-
lated by Kuo in [8] as a continuous linear operator acting on test white noise functions. The
Gross Laplacian and appropriate Cauchy problem have been studied for example in [2, 9].

The aim of this work is to use the functional calculus constructed in [12] in order to solve
the infinite dimensional heat equation associated with the Gross Laplacian.

1 PRELIMINARIES

1.1 Spaces of functions

Denote Z+ := {0} ∪ N and ∂k := ∂k/∂tk. Fix any real β > 1. An infinitely differen-
tiable function ϕ is called an ultradifferentiable function of the Gevrey class (see [7]) if for
each segment [µ, ν] ⊂ R there exist constants h > 0 and C > 0 such that the inequality
supt∈[µ,ν] |∂

k ϕ(t)| ≤ Chkkkβ holds for all k ∈ Z+. For a fixed h > 0 let us consider the subspace

Gh
β[µ, ν] :=

{

ϕ ∈ C∞ : supp ϕ ⊂ [µ, ν], ‖ϕ‖Gh
β [µ,ν] := sup

k∈Z+

sup
t∈[µ,ν]

|∂k ϕ(t)|

hkkkβ
< ∞

}

.

УДК 517.98
2010 Mathematics Subject Classification: 46F05, 46F25, 46H30, 46G20, 60H40.
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Each subspace Gh
β[µ, ν] is a Banach space (see [7]) and all maps Gh

β[µ, ν] # G l
β[µ, ν] with

h < l are compact inclusions. Consider the space

Gβ :=
ď

µ<ν, h>0

Gh
β[µ, ν], Gβ ≃ lim ind

µ<ν, h>0
Gh

β[µ, ν],

of Gevrey ultradifferentiable functions with compact supports and endow it with topology of
inductive limit with respect to above mentioned compact inclusions. Let G ′

β be its dual space
of Roumieu ultradistributions.

Let h > 0 be any positive real and µ, ν ∈ R be any reals such that µ < ν. In the space of
entire functions of exponential type we consider the subspace Eh

β[µ, ν] of functions with the
finite norm

‖ψ‖Eh
β [µ,ν] := sup

k∈Z+

sup
z∈C

|zkψ(z)e−H[µ,ν](η)|

hkkkβ
, where H[µ,ν](η) := sup

t∈[µ,ν]

tη.

Each space Eh
β[µ, ν] is a Banach one, and all maps Eh

β[µ, ν] # Eh′

β [µ
′, ν′] with [µ, ν] ⊂ [µ′, ν′],

h < h′, are compact inclusions. Consider the space

Eβ :=
ď

µ<ν, h>0

Eh
β[µ, ν], Eβ ≃ lim ind

µ<ν, h>0
Eh

β[µ, ν],

and endow it with the topology of inductive limit with respect to above mentioned compact
inclusions.

Consider the Fourier-Laplace transformation

pϕ(z) := (Fϕ)(z) =

ż

R

e−itzϕ(t) dt, ϕ ∈ Gβ, z ∈ C.

Let F′ : E′
β −→ G ′

β be the adjoint mapping. It is known [13], that F(Gβ) = Eβ and F′(E′
β) = G ′

β.

1.2 Polynomial ultradifferentiable functions and polynomial ultradistributions

For any locally convex space X , let X p⊗n, n ∈ N, be the symmetric nth tensor degree of X ,
completed in the projective tensor topology. For any x ∈ X we denote x⊗n := x ⊗ · · · ⊗ xlooooomooooon

n

∈

X p⊗n, n ∈ N. Set X p⊗0 := C, x⊗0 := 1 ∈ C.
To define the locally convex space P(nG ′

β) of n-homogeneous polynomials on G ′
β we use

the canonical topological linear isomorphism P(nG ′
β) ≃ (G ′p⊗n

β )′, described in [3]. We equip

P(nG ′
β) with the locally convex topology b of uniform convergence on bounded sets in G ′

β.

Set P(0G ′
β) := C. The space P(G ′

β) of all continuous polynomials on G ′
β is defined to be the

complex linear span of all P(nG ′
β), n ∈ Z+, endowed with the topology b. Let P ′(G ′

β) mean

the strong dual of P(G ′
β). Elements of the spaces P(G ′

β) and P ′(G ′
β) we call the polynomial

test ultradifferentiable functions and polynomial ultradistributions, respectively.
Denote

Γ(Gβ) :=
à

f in
n∈Z+

G
p⊗n
β ⊂

à

n∈Z+

G
p⊗n
β and Γ(G ′

β) :=
ą

n∈Z+

G ′⊗̂n
β .
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Note, that we consider only the case when the elements of direct sum consist of finite but not
fixed number of addends. It is well known [11, 4.4], that 〈 Γ(G ′

β), Γ(Gβ) 〉 is a dual pair with
respect to the bilinear form

〈 f , p 〉 =
〈 ą

n∈Z+

fn,
à

n∈Z+

pn

〉

=
ÿ

n∈Z+

〈 fn, pn 〉, p ∈ Γ(Gβ), f ∈ Γ(G ′
β), (1)

where pn ∈ G
p⊗n
β and fn ∈ G ′p⊗n

β ≃ (G
p⊗n
β )′.

By analogy we can construct the dual pairs 〈 Γ(E′
β), Γ(Eβ) 〉 and 〈 P ′(E′

β), P(E′
β) 〉.

We have the following assertion (see also [10, Proposition 2.1]).

Proposition 1.1. There exist the linear topological isomorphisms

Υ : P ′(G ′
β) −→ Γ(G ′

β), Ψ : P ′(E′
β) −→ Γ(E′

β).

Using the Proposition 1.1 and tensor structure of the space Γ(G ′
β), we extend the map F′−1

onto Γ(G ′
β). First, for elements of total subset of the space G ′p⊗n

β we define the operator F ′⊗n :

f⊗n 7−→ pf⊗n, F ′⊗0 := IC, where pf⊗n := (F′−1 f )
⊗n

. Next, we extend the map F ′⊗n onto whole

space G ′p⊗n
β by linearity and continuity. As a result we obtain the map F ′⊗n ∈ L

(

G ′p⊗n
β , E′p⊗n

β

)

And finally, we define the mapping F ′⊗ by the formula

F ′⊗ :=
(

F ′⊗n
)

: Γ(G ′
β) ∋ f =

(

fn

)

7−→ pf :=
(pfn

)

∈ Γ(E′
β),

where fn ∈ G ′p⊗n
β , pfn := F ′⊗n fn ∈ E′p⊗n

β .
The following commutative diagram

P ′(G ′
β)

Υ

��

F ′⊗
P // P ′(E′

β)

Γ(G ′
β)

F ′⊗
// Γ(E′

β)

Ψ
−1

OO
(2)

uniquely defines the operator F ′⊗
P ∈ L

(

P ′(G ′
β),P

′(E′
β)
)

.

2 CONVOLUTION OF POLYNOMIAL ULTRADISTRIBUTIONS

Let g ∈ G ′
β. Define the shift operator on the space P(G ′

β) with the formula

TgP( f ) := P( f + g), P ∈ P(G ′
β), f ∈ G ′

β.

It is easy to see, that Tg is a linear continuous operator from the space P(G ′
β) into itself.

Let the symbol ⊚k denotes the (right) k-contraction [6] of symmetric tensor product, i.e.,
g⊗k

⊚k ϕ⊗s := 〈g, ϕ〉k ϕ⊗(s−k), k ≤ s, g ∈ G ′
β, ϕ ∈ Gβ.

Let us show, that for any g ∈ G ′
β the shift operator Tg acts as follows P =

ř
n〈 ·

⊗n, pn〉 7→

TgP =
ř

n〈 ·
⊗n, qn〉, where pn, qn ∈ G

p⊗n
β , n = 0, 1, . . . , m, m = deg P, and the elements qn can

be obtained by the formula

qn =
m−nÿ

k=0

(n + k)!

n!k!
g⊗k

⊚k pn+k.
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Without loss of generality we can prove this for polynomials of view Pϕ,m =
řm

k=0〈 · ⊗k, ϕ⊗k〉,
where (1, ϕ, ϕ⊗2, . . . , ϕ⊗m, 0, . . . ) ∈ Γ(Gβ), ϕ ∈ Gβ, m ∈ Z+.

Indeed,

TgPϕ,m( f ) = Pϕ,m( f + g) =
mÿ

k=0

〈( f + g)⊗k, ϕ⊗k〉 =
mÿ

k=0

kÿ

n=0

Cn
k 〈 f⊗n p⊗g⊗(k−n), ϕ⊗k〉

=
mÿ

n=0

mÿ

k=n

Cn
k 〈 f⊗n p⊗g⊗(k−n), ϕ⊗k〉 =

mÿ

n=0

m−nÿ

k=0

Cn
n+k〈 f⊗n p⊗g⊗k, ϕ⊗(n+k)〉

=
mÿ

n=0

m−nÿ

k=0

Cn
n+k

〈

f⊗n, 〈g, ϕ〉k ϕ⊗n
〉

=
mÿ

n=0

〈

f⊗n,
m−nÿ

k=0

Cn
n+k〈g, ϕ〉k ϕ⊗n

〉

=
mÿ

n=0

〈

f⊗n,
m−nÿ

k=0

Cn
n+kg⊗k

⊚k ϕ⊗(n+k)
〉

.

Let us define the convolution of a polynomial ultradistribution U ∈ P ′(G ′
β) and a test

function P ∈ P(G ′
β) with the formula (U ∗ P)(g) := 〈U, TgP〉, g ∈ G ′

β, where in the right side

there is the pairing of the dual pair
〈

P ′(G ′
β),P(G ′

β)
〉

(see Proposition 1.1 and formula (1)).

If U ∈ P ′(G ′
β) and P ∈ P(G ′

β) are represented in the form U =
ą

n∈Z+

〈un, · ⊗n〉 and P =

mÿ

n=0

〈 · ⊗n, pn〉 respectively, then the convolution may be written in the explicit form

(U ∗ P)(g) =
mÿ

n=0

〈

un,
m−nÿ

k=0

Cn
n+kg⊗k

⊚k pn+k

〉

=
mÿ

n=0

m−nÿ

k=0

Cn
n+k〈un p⊗g⊗k, pn+k〉

=
mÿ

k=0

m−kÿ

n=0

Cn
n+k〈g⊗k, un ⊚n pn+k〉 =

mÿ

k=0

〈

g⊗k,
m−kÿ

n=0

Cn
n+kun ⊚n pn+k

〉

.

(3)

It is clear, that qk =
řm−k

n=0 Cn
n+kun ⊚n pn+k belongs to the space G

p⊗k
β for each k = 0, 1, . . . , m. It

follows, that the convolution U ∗ P is a polynomial from the space P(G ′
β).

For any polynomial ultradistribution U ∈ P ′(G ′
β) the mapping CU, defined with the for-

mula CU : P(G ′
β) ∋ P 7→ U ∗ P ∈ P(G ′

β), is said to be the convolution operator, associated
with U.

Let us show, that the composition of two convolution operators CV and CU, associated with
any V, U ∈ P ′(G ′

β), is a convolution operator, associated with some polynomial ultradistribu-

tion, which we denote by V ∗ U. Let V, U ∈ P ′(G ′
β) and P ∈ P(G ′

β) are represented in the

form V =
ą

n∈Z+

〈g⊗n, · ⊗n〉, U =
ą

n∈Z+

〈 f⊗n, · ⊗n〉 and P =
mÿ

n=0

〈 · ⊗n, ϕ⊗n〉 respectively, where

f , g ∈ G ′
β, ϕ ∈ Gβ.

Using formula (3), we obtain the following equalities.

(CV ◦ CU)(P) = V ∗ (U ∗ P) =
mÿ

n=0

〈

· ⊗n,
m−nÿ

j=0

C
j
n+jg

⊗j
⊚j qn+j

〉

=
mÿ

n=0

〈

· ⊗n,
m−nÿ

j=0

C
j
n+jg

⊗j
⊚j

(

m−n−jÿ

k=0

Ck
n+j+k f⊗k

⊚k ϕ⊗(n+j+k)
)〉
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=
mÿ

n=0

〈

· ⊗n,
m−nÿ

j=0

m−n−jÿ

k=0

C
j
n+jC

k
n+j+k〈g, ϕ〉j〈 f , ϕ〉k ϕ⊗n

〉

=
mÿ

n=0

〈

· ⊗n,
m−nÿ

j+k=0

(n + j + k)!

n!j!k!
(g⊗j p⊗ f⊗k)⊚j+k ϕ⊗(n+j+k)

〉

=
mÿ

n=0

〈

· ⊗n,
m−nÿ

s=0

(n + s)!

n!s!

ÿ

j+k=s

s!

j!k!
(g⊗j p⊗ f⊗k)⊚s ϕ⊗(n+s)

〉

=
mÿ

n=0

m−nÿ

s=0

(n + s)!

n!s!

ÿ

j+k=s

s!

j!k!

〈

· ⊗n, (g⊗j p⊗ f⊗k)⊚s ϕ⊗(n+s)
〉

=
mÿ

s=0

m−sÿ

n=0

(n + s)!

n!s!

ÿ

j+k=s

s!

j!k!

〈

· ⊗n p⊗g⊗j p⊗ f⊗k, ϕ⊗(n+s)
〉

=
mÿ

s=0

〈 ÿ

j+k=s

s!

j!k!
g⊗j p⊗ f⊗k,

m−sÿ

n=0

Cs
n+s( ·

⊗n)⊚n ϕ⊗(n+s)
〉

.

It follows, that the composition CV ◦ CU is the convolution operator, associated with

V ∗ U =
ą

n∈Z+

〈 ÿ

j+k=n

n!

j!k!
g⊗j p⊗ f⊗k, · ⊗n

〉

∈ P ′(G ′
β). (4)

For any polynomial ultradistribution U ∈ P ′(G ′
β) let us define the formal series

e∗U :=
ÿ

n∈Z+

1

n!
U∗n, where U∗n := U ∗ · · · ∗ Ulooooomooooon

n

. (5)

Note, that each partial sum of this series belongs to the space P ′(G ′
β).

3 HEAT EQUATION ASSOCIATED WITH THE GROSS LAPLACIAN

Let {Ut : t ∈ J} be a family of elements from the space P ′(G ′
β), let J be an arbitrary interval

[0, α], α ∈ R, α ≥ 0. Let us assume, that the function t 7−→ Ut is a continuous map from J

into P ′(G ′
β). Then the function t 7−→ F ′⊗

P Ut is continuous map from J into P ′(E′
β), where the

mapping F ′⊗
P is defined with formula (2). Therefore, for each t ∈ J the set {F ′⊗

P Us : s ∈ [0, t]}

is a compact subset in P ′(E′
β). In particular, it is bounded. It follows, that the element

ż t

0
F ′⊗
P Us ds,

belongs to the space P ′(E′
β) for each t ∈ J. Hence, in the space P ′(G ′

β) there exists a unique

element, which we denote
şt

0 Us ds, such that

F ′⊗
P

ż t

0
Us ds =

ż t

0
F ′⊗
P Us ds.

Moreover, the map Et =
şt

0 Us ds, t ∈ J, is differentiable and satisfies the equality ∂
∂t Et = Ut.
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Let {Ut : t ∈ J} be any described above family of elements from P ′(G ′
β). Let us consider

the Cauchy problem
{

∂
∂t Xt = Ut ∗ Xt, t ∈ J,

X0 = P, P ∈ P(G ′
β).

(6)

Theorem 1. Cauchy problem (6) has a unique solution in P(G ′
β), which can be presented in

the view
Xt = e∗

şt
0 Us ds ∗ P, t ∈ J, (7)

where e∗
şt

0 Us ds is treated in the sense of the formula (5).

Proof. Using Picard’s iteration, the solution Xt of Cauchy problem (6) is written informally
in the form (7). Since the polynomial P ∈ P(G ′

β) has a finite number of addends, a value

of e∗
şt

0 Us ds ∗ P depends on some partial sum of the series e∗
şt

0 Us ds. Formula (3) implies that
solution (7) belongs to the space P(G ′

β).

As an application of Theorem 1 we consider the generalized heat equation, associated with
the Gross Laplacian.

Let the trace operator τ be defined by

〈

τ, ϕ p⊗ψ
〉

:=

ż

Rd
+

ϕ(t)ψ(t) dt, ϕ, ψ ∈ Gβ.

It is clear, that τ ∈ L (G
p⊗2
β , C) = (G

p⊗2
β )′ ≃ G ′p⊗2

β .
The Gross Laplacian ∆G by definition (see e.g. [8]) is the following operator

∆G : P =
mÿ

n=0

〈 · ⊗n, ϕ⊗n〉 7−→ ∆GP :=
m−2ÿ

n=0

(n + 2)(n + 1)
〈

τ, ϕ⊗2〉〈 · ⊗n, ϕ⊗n
〉

, ϕ ∈ Gβ.

Theorem 2. The Gross Laplacian ∆G acts as a convolution operator, i.e.

1

2
∆GP = Uτ ∗ P, P ∈ P(G ′

β),

where Uτ is a polynomial ultradistribution from the space P ′(G ′
β), that corresponds to the

element (0, 0, τ, 0, . . . ) ∈ Γ(G ′
β).

Proof. The polynomial ultradistribution Uτ can be written in the form

Uτ =
ą

n∈Z+

〈uτ,n, · ⊗n〉 =
(

0, 0, 〈τ, · ⊗2〉, 0, . . .
)

,

where uτ,n = τ if n = 2 and uτ,n = 0 if n =/ 2.
Let the polynomial P ∈ P(G ′

β) be of the form P =
řm

n=0〈 ·
⊗n, ϕ⊗n〉, ϕ ∈ Gβ. Using equali-

ties (3), we obtain the required result

Uτ ∗ P =
mÿ

n=0

〈

· ⊗n,
m−nÿ

k=0

Ck
n+kuτ,k ⊚k ϕ⊗(n+k)

〉

=
m−2ÿ

n=0

〈

· ⊗n, C2
n+2τ ⊚2 ϕ⊗(n+2)〉

=
m−2ÿ

n=0

C2
n+2

〈

τ, ϕ⊗2〉〈 · ⊗n, ϕ⊗n
〉

=
1

2
∆GP.
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Theorem 3. Cauchy problem
{

∂
∂t Xt =

1
2 ∆GXt, t ∈ J,

X0 = P, P ∈ P(G ′
β),

(8)

for heat equation, associated with the Gross Laplacian, has a unique solution in P(G ′
β) given

by
Xt = e∗tUτ ∗ P, t ∈ J.

Proof. Theorem 2 allows us to rewrite the heat equation in the view ∂
∂t Xt = Uτ ∗ Xt. It follows

from Theorem 1 that the Cauchy problem has a unique solution given by

Xt = e∗
şt

0 Uτ ds ∗ P = e∗tUτ ∗ P.

We can rewrite it in explicit form. Using formula (4), let us find (tUτ)∗n. For n = 2 we obtain

(tUτ) ∗ (tUτ) =
ą

n∈Z+

〈

t2
ÿ

j+k=n

n!

j!k!
uτ,j p⊗uτ,k, · ⊗n

〉

=
(

0, 0, 0, 0,
4!

2!2!
t2〈τ⊗2, · ⊗4〉, 0, . . .

)

,

since uτ,n does not vanish only for n = 2. Using the mathematical induction, it is easy to prove
that

(tUτ)
∗n =

(

0, . . . , 0loomoon
2n

,
(2n)!

2n
tn〈τ⊗n, · ⊗2n〉, 0, . . .

)

.

It follows

e∗tUτ =
ÿ

n∈Z+

1

n!
(tUτ)

∗n =
ÿ

n∈Z+

1

n!

(

0, . . . , 0loomoon
2n

,
(2n)!

2n
tn〈τ⊗n, · ⊗2n〉, 0, . . .

)

=
(

1, 0, t〈τ, · ⊗2〉, 0, 3t2〈τ⊗2, · ⊗4〉, 0, . . . , 0,
(2n)!

n!

tn

2n
〈τ⊗n, · ⊗2n〉

loooooooooooomoooooooooooon
2n-th place

, 0, . . .
)

.
(9)

It only remains to find the convolution e∗tUτ ∗ P. Let the polynomial P ∈ P(G ′
β) be written in

the form P =
řm

n=0〈 ·
⊗n, ϕ⊗n〉, ϕ ∈ Gβ. For any n ∈ Z+ let us denote e2n := (2n)!

n!
tn

2n τ⊗n and
e2n+1 := 0. Then e∗tUτ can be rewritten as e∗tUτ =

Ś
n∈Z+

〈en, · ⊗n〉. Therefore, we obtain

e∗tUτ ∗ P =
mÿ

n=0

〈

· ⊗n,
m−nÿ

k=0

Ck
n+kek ⊚k ϕ⊗(n+k)

〉

=
mÿ

n=0

〈

· ⊗n,

⌊m−n
2 ⌋ÿ

k=0

C2k
n+2ke2k ⊚2k ϕ⊗(n+2k)

〉

=
mÿ

n=0

〈

· ⊗n,

⌊m−n
2 ⌋ÿ

k=0

(n + 2k)!

(2k)!n!

(2k)!

k!

tk

2k
〈τ⊗k, ϕ⊗2k〉ϕ⊗n

〉

=
mÿ

n=0

⌊m−n
2 ⌋ÿ

k=0

(n + 2k)!

k!n!

tk

2k
〈τ⊗k, ϕ⊗2k〉

〈

· ⊗n, ϕ⊗n
〉

,

where the symbol ⌊ · ⌋ denotes the floor function.

Hence, if the polynomial P from (8) has the form P =
řm

n=0〈 ·
⊗n, pn〉, pn ∈ G

p⊗n
β , then

the solution of Cauchy problem for heat equation associated with the Gross Laplacian can be
expressed as

Xt =
mÿ

n=0

〈

· ⊗n,

⌊m−n
2 ⌋ÿ

k=0

(n + 2k)!

k!n!

tk

2k
τ⊗k

⊚2k pn+2k

〉

.
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4 SEMIGROUP GENERATED BY THE GROSS LAPLACIAN

Our next goal is to construct an one-parameter semigroup {Gt : t ≥ 0} with the infinitesi-

mal generator 1
2 ∆G. This semigroup can be formally expressed as Gt = et 1

2 ∆G .
Since 1

2 ∆GP = Uτ ∗ P, results of previous section imply

GtP :=
mÿ

n=0

⌊m−n
2 ⌋ÿ

k=0

(n + 2k)!

k!n!

tk

2k
〈τ⊗k, ϕ⊗2k〉

〈

· ⊗n, ϕ⊗n
〉

, (10)

where P =
řm

n=0〈 ·
⊗n, ϕ⊗n〉, ϕ ∈ Gβ.

Proposition 4.1. The mapping R+ ∋ t 7−→ Gt ∈ L (P(G ′
β)), where Gt is defined by formula

(10), is a strongly continuous one-parameter semigroup of continuous linear operators from
P(G ′

β) into itself with infinitesimal generator 1
2 ∆G.

Proof. Formula (10) can be rewritten as

GtP = P +
m−2ÿ

n=0

⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

tk

2k
〈τ⊗k, ϕ⊗2k〉

〈

· ⊗n, ϕ⊗n
〉

, (11)

therefore the equality G0 = IP(G ′
β)

is clear.

Formulas (4), (9) and the following equalities

GtGs = et 1
2 ∆Ges 1

2 ∆G = e∗tUτ ∗ e∗sUτ = e∗(t+s)Uτ = e(t+s) 1
2 ∆G = Gt+s

imply the semigroup property GtGs = Gt+s.
To prove the strong continuity of the semigroup, we need to show that for any P ∈ P(G ′

β)

the function t 7−→ GtP is continuous. Using representation (11), we obtain

lim
t→0

sup
f

|GtP − P| = lim
t→0

sup
f

∣

∣

∣

mÿ

n=0

⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

tk

2k
〈τ⊗k, ϕ⊗2k〉

〈

f⊗n, ϕ⊗n
〉

∣

∣

∣

≤ lim
t→0

sup
f

mÿ

n=0

⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

|t|k

2k

∣

∣〈τ⊗k, ϕ⊗2k〉
∣

∣

∣

∣

〈

f⊗n, ϕ⊗n
〉∣

∣

=
mÿ

n=0

sup
f

∣

∣

〈

f⊗n, ϕ⊗n
〉
∣

∣ lim
t→0

⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

|t|k

2k

∣

∣〈τ⊗k, ϕ⊗2k〉
∣

∣ = 0.

It remains to show that the Gross Laplacian is the generator of the semigroup Gt. Using
representation (11), we can write

GtP − P

t
−

1

2
∆GP =

mÿ

n=0

⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

tk−1

2k
〈τ⊗k, ϕ⊗2k〉

〈

· ⊗n, ϕ⊗n
〉

−
m−2ÿ

n=0

(n + 2)(n + 1)

2

〈

τ, ϕ⊗2〉〈 · ⊗n, ϕ⊗n
〉

.
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Note, that
⌊

m−n
2

⌋

= 0 for n = m − 1 and for n = m. So, we can rewrite the above equality

GtP − P

t
−

1

2
∆GP =

m−2ÿ

n=0

( ⌊m−n
2 ⌋ÿ

k=1

(n + 2k)!

k!n!

tk−1

2k
〈τ⊗k, ϕ⊗2k〉

−
(n + 2)(n + 1)

2

〈

τ, ϕ⊗2〉
)

〈

· ⊗n, ϕ⊗n
〉

.

It is clear that (n+2k)!
k!n!

tk−1

2k 〈τ⊗k, ϕ⊗2k〉 = (n+2)(n+1)
2

〈

τ, ϕ⊗2
〉

with k = 1, therefore

GtP − P

t
−

1

2
∆GP =

m−2ÿ

n=0

( ⌊m−n
2 ⌋ÿ

k=2

(n + 2k)!

k!n!

tk−1

2k
〈τ⊗k, ϕ⊗2k〉

)

〈

· ⊗n, ϕ⊗n
〉

.

Note, that
⌊

m−n
2

⌋

= 1 for n = m − 2 and for n = m − 3. So, we obtain

GtP − P

t
−

1

2
∆GP =

m−4ÿ

n=0

( ⌊m−n
2 ⌋ÿ

k=2

(n + 2k)!

k!n!

tk−1

2k
〈τ⊗k, ϕ⊗2k〉

)

〈

· ⊗n, ϕ⊗n
〉

.

From the above formula we can derive the required result

lim
t→0

sup
f

∣

∣

∣

GtP( f )− P( f )

t
−

1

2
∆GP( f )

∣

∣

∣

≤
m−4ÿ

n=0

sup
f

∣

∣

〈

f⊗n, ϕ⊗n
〉
∣

∣ lim
t→0

⌊m−n
2 ⌋ÿ

k=2

(n + 2k)!

k!n!

|t|k−1

2k
|〈τ⊗k, ϕ⊗2k〉| = 0.

Corollary 4.1. Cauchy problem

{

∂
∂t Xt =

1
2 ∆GXt, t ∈ J,

X0 = P, P ∈ P(G ′
β),

for heat equation associated with the Gross Laplacian has a unique solution in P(G ′
β) given by

Xt = GtP, t ∈ J.
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Шарин С.В. Застосування функцiонального числення до розв’язання задачi Кошi для нескiнченнови-

мiрного рiвняння теплопровiдностi // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 313–322.

У цiй роботi ми вивчаємо нескiнченновимiрне рiвняння теплопровiдностi, породжене ла-
пласiаном Ґросса. Використовуючи метод функцiонального числення, ми отримуємо розв’я-
зок вiдповiдної задачi Кошi у просторi полiномiальних ультрадиференцiйовних функцiй. Та-
кож розглянуто напiвгруповий пiдхiд розв’язання такої задачi.

Ключовi слова i фрази: нескiнченновимiрне рiвняння теплопровiдностi, лапласiан Ґросса,
простiр полiномiальних ультрадиференцiйовних функцiй, простiр полiномiальних ультра-
розподiлiв.
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Вiталiй Iванович Сущанський

14.11.1946 — 29.10.2016

29 жовтня 2016 року, пiсля тривалої важкої хвороби, у м. Глiвiцах (Польща) помер
видатний український математик, доктор фiзико-математичних наук, професор кафед-
ри алгебри та математичної логiки Київського нацiонального унiверситету iменi Тараса
Шевченка, професор Iнституту математики Сiлезької полiтехнiки (Польща) Вiталiй Iва-
нович Сущанський.

Вiталiй Iванович народився 14 листопада 1946 року в селi Ходоркiв Попiльнянського
району Житомирської областi, де i пройшло його дитинство. Пiсля успiшного закiн-
чення у 1964 роцi середньої школи вiн був зарахований на механiко-математичний фа-
культет Київського унiверситету iменi Тараса Шевченка. У цей час завiдувачем кафедри
алгебри та математичної логiки був її засновник, вiдомий математик Л.А. Калужнiн, яко-
го завжди оточувала здiбна студентська молодь, серед якої був i Вiталiй Сущанський.

У 1969 роцi Вiталiй Iванович з вiдзнакою закiнчив механiко-математичний факультет
та вступив до аспiрантури при кафедрi алгебри та математичної логiки, де займався
науково-дослiдницькою роботою пiд керiвництвом Л.А. Калужнiна. У лютому 1972 року
В.I. Сущанський захистив кандидатську дисертацiю за темою "Вiнцевi добутки елемен-
тарних абелевих груп та їх застосування". Докторську дисертацiю за спецiальнiстю "ал-
гебра, теорiя чисел та математична логiка" за темою "Вiнцевi добутки, iзометрiї напiв-
скiнченних метрик Бера i резидуально скiнченнi групи" було захищено у березнi 1991
року у Ленiнградському вiддiленнi Iнституту математики АН СРСР iменi В.А. Стеклова.
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У 1971–2004 роках Вiталiй Iванович Сущанський працює на кафедрi алгебри та ма-
тематичної логiки Київського нацiонального унiверситету iменi Тараса Шевченка, прой-
шовши шлях вiд асистента до професора та її завiдувача (1998–2004). Протягом цього
перiоду все його життя та енергiя були спрямованi на наукову роботу з обдарованими
студентами. Серед них В. Некрашевич, А. Олiйник, Я. Лавренюк, Ю. Леонов, Є. Бонда-
ренко, Д. Савчук та багато iнших. Пiдготувавши собi достойну змiну, В.I. Сущанський,
на запрошення адмiнiстрацiї Сiлезької полiтехнiки (м. Глiвiци, Польща), у 2004 роцi стає
звичайним професором Iнституту математики, а пiзнiше керiвником вiддiлу алгебри
цього навчального закладу.

Вiталiй Iванович проводив величезну органiзацiйно-наукову роботу. Був постiйним
членом програмних комiтетiв та одним з органiзаторiв мiжнародних алгебраїчних кон-
ференцiй в Українi. Ним було органiзовано семiнар з теорiї груп у Київському унiвер-
ситетi, який досi є одним з найбiльш важливих координацiйних центрiв теорiї груп в
Українi. Йому належить iдея органiзувати Київський науковий алгебраїчний семiнар
"Пiд кiнець року", щоб українськi алгебраїсти, що працюють за кордоном, могли на
рiздвянi канiкули приїхати та зробити доповiдь про свої науковi досягнення. Впродовж
багатьох рокiв Вiталiй Iванович був членом спецiалiзованої вченої ради iз захисту док-
торських дисертацiй з алгебри i дискретної математики у Київському нацiональному
унiверситетi iменi Тараса Шевченка, спочатку як вчений секретар, а пiсля захисту док-
торської дисертацiї певний час головою ради, членом редколегiй журналiв "Алгебра та
дискретна математика", "Математичнi студiї", "Карпатськi математичнi публiкацiї", го-
ловним редактором єдиного в Українi математичного науково-популярного журналу "У
свiтi математики", членом Київського та Польського математичних товариств.

Широта та рiзностороннiсть iнтересiв В.I. Сущанського та його наукова мобiльнiсть
вражали. Вiн одночасно проводив спiльнi алгебраїчнi дослiдження у рiзних напрямках
як iз українськими так i зарубiжними математиками. Ним видано понад 150 наукових
робiт майже iз сорока зарубiжними авторами, пiд його керiвництвом захищено 27 канди-
датських дисертацiй в Українi та 5 у Польщi i 5 докторських дисертацiй. Вiталiй Iванович
вiзитував у багатьох закордонних унiверситетах: у Фрайбурзькому унiверситетi (1998,
Нiмеччина), Манiтобському унiверситетi (1999, Канада), унiверситетi Бразилiї (2000), Уп-
сали (2003, Швецiя), Техаському A&M унiверситетi (2006, США). Серед грантiв та нагород
Вiталiя Iвановича INTAS Award (1994–1998), Research and Conference Grant, J. Soros Foun-
dation (1994), J. Soros Professorship (1995–1996), Research Grant DAAD (1998), нагорода рек-
тора Сiлезької полiтехнiки за науковi досягнення.

У працях В.I. Сущанського (разом з професором Л.А. Калужнiним) отримали подаль-
ший розвиток дослiдження будови вiнцевих добуткiв груп, систематично вивчалися опе-
рацiї на групах пiдстановок. Вiталiй Iванович застосував вiнцевi добутки за нескiнченни-
ми послiдовностями груп пiдстановок для побудови нових прикладiв груп бернсайдiвсь-
кого типу — нескiнченних перiодичних груп зi скiнченним числом твiрних, розв’язав
за допомогою оригiнальних конструкцiй вiдомi проблеми теорiї факторизовних груп,
разом зi своїми учнями отримав низку важливих результатiв про будову груп автомор-
фiзмiв дерев, заклав основи теорiї груп та напiвгруп автоматних перетворень, дослiдив
класи спряженостi в групах автоморфiзмiв рiзних типiв дерев, описав нормальну будову
груп автоморфiзмiв шарово-однорiдних дерев, охарактеризував широкi класи пiдгруп
бернсайдiвського типу в групах автоморфiзмiв однорiдного кореневого дерева. У працях



325

з Р.I. Григорчуком i В.В. Некрашевичем розвинув теорiю скiнченно-автоматних груп пе-
ретворень як для випадку синхронних автоматiв типу Мiлi та Мура, так i для випадку
асинхронних автоматiв. У спiльних роботах з Р.I. Григорчуком, Ю.Г. Леоновим i В.В. Нек-
рашевичем побудував теорiю унiтрикутних зображень самоподiбних груп i пов’язав її
з теорiєю пiдстановочних динамiчних систем. Разом зi своїми учнями А.Бєр, Я.Шаш-
сковським, Ю.Лещенко вивчав групи, що занурюються у групи автоморфiзмiв дерев та їх
силовськi пiдгрупи. Разом з В.В. Некрашевичем i П.Ґавроном описав класи спряженостi
основних груп автоморфiзмiв дерев. Разом з А.С. Олiйником побудував приклади вiль-
них груп нескiнченних унiтрикутних матриць. Це далеко неповний перелiк наукового
доробку Сущанського Вiталiя Iвановича. Не забував Вiталiй Iванович i про школярiв.
Ним було написано чимало науково-популярних статей спецiально для журналу ”У свiтi
математики”.

Свiтла пам’ять про Вiталiя Iвановича як скромну, високо iнтелiгентну, чуйну людину,
здатну завжди прийти на допомогу, назавжди залишиться в наших серцях.
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