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AN EXAMPLE OF A NON-BOREL LOCALLY-CONNECTED FINITE-DIMENSIONAL
TOPOLOGICAL GROUP

According to a classical theorem of Gleason and Montgomery, every finite-dimensional locally
path-connected topological group is a Lie group. In the paper for every natural number n we con-
struct a locally connected subgroup G C R"*! of dimension 7, which is not locally compact. This an-
swers a question posed by S. Maillot on MathOverflow and shows that the local path-connectedness
in the result of Gleason and Montgomery can not be weakened to the local connectedness.

Key words and phrases: topological group, Lie group.
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By a classical result of A. Gleason [3] and D. Montgomery [6], every locally path-connected
finite-dimensional topological group G is locally compact and hence is a Lie group. Gene-
ralizing this result of A. Gleason and D. Montgomery, T. Banakh and L. Zdomskyy [1] proved
that a topological group G is a Lie group if G is compactly finite-dimensional and locally
continuum-connected. In [5] Sylvain Maillot asked if the locally path-connectedness in the
result of A. Gleason and D. Montgomery can be replaced by the local connectedness. In this
paper we construct a counterexample to this question of S. Maillot.

We recall that a subset B of a Polish space X is called a Bernstein set in X if both B and
X'\ B meet every uncountable closed subset F of X. Bernstein sets in Polish space can be easily
constructed by transfinite induction, see [4, 8.24].

Theorem 1. For every n > 2 the Euclidean space R" contains a dense additive subgroup
G C R" such that

1) G is a Bernstein set in R";

2) G islocally connected;

3) G has dimension dim(G) =n —1;

4) G is not Borel and hence not locally compact.

Proof. Let (Fy)q<. be an enumeration of all uncountable closed subsets of R" by ordinal < «.
Fix any point p € R" \ {0}. By transfinite induction, for every ordinal « < ¢ we shall choose a
point z, € F, such that the subgroup G, C R" generated by the set {24} 3, does not contain
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4 BANAKH I., BANAKH T., VOVK M.

the point p. Assume that for some ordinal « < ¢ we have chosen points zg, B < a, so that the
subgroup G, generated by the set {zg} g, does not contain p. Consider the set

1
z={3(r-9):neZ\(0} g€ Gur
and observe that it has cardinality
1IZ| Sw - |Gey| S w +|a| <.

Since the uncountable closed subset F, of R” has cardinality |Fy| = ¢ (see [4, 6.5]), there is
a point z, € F, \ Z. For this point we get p # nz, + g forany n € Z\ {0}, and g € G,.
Consequently, the subgroup

Gu={nza+g:n€Z, gc Gy}

generated by the set {z}s<, does not contain the point p. This completes the inductive
step.

After completing the inductive construction, consider the subgroup G generated by the
set {a4}a<c and observe that p ¢ G and G meets every uncountable closed subset F of R".
Moreover, since G meets the closed uncountable set F — p, the coset p + G C R" \ G meets F.
So, both the subgroup G and its complement R” \ G meet each uncountable closed subset of
R", which means that G is a Bernstein set in R”. The following proposition implies that the
group G has properties (2)—(4). O

Proposition 1. Letn > 2. Every Bernstein subset B of R" has the following properties:

1) B is not Borel,
2) B is connected and locally connected;
3) B has dimensiondim(B) =n — 1.

Proof. 1. By [4, 8.24], the Bernstein set B is not Borel (more precisely, B does not have the Baire
property in R").

2. To prove that B is connected and locally connected, it suffices to prove that for every
open subset U C R" homeomorphic to R" the intersection U N G is connected. Assuming
the opposite, we could find two non-empty open disjoint sets U;, U, C U such that UN B =
(U3 N B) U (Uy N B). Consider the complement F = U \ (U; UU,) C U \ B and observe that F
is closed in U and hence of type F, in R". If F is uncountable, then F contains an uncountable
closed subset of R” and hence meets the set B, which is not the case. So, the closed subset F of
U is at most countable and separates the space U = R", which contradicts Theorem 1.8.14 of

[2].

3. Since the subset B has empty interior in IR"”, we can apply Theorem 1.8.11 of [2] and
conclude that dim(B) < n. On the other hand, Lemma 1.8.16 [2] guarantees that B has dimen-
sion dim(B) > n — 1 (since B meets every non-trivial compact connected subset of R"). So,
dim(B) =n—1. O



(1]

A LOCALLY-CONNECTED FINITE-DIMENSIONAL GROUP 5

REFERENCES
Banakh T., Zdomskyy L. Closed locally path-connected subspaces of finite-dimensional groups are locally compact.
Topology Proc. 2010, 36, 399—405.

Engelking R. Theory of Dimensions: Finite and Infinite. In: Sigma Series in Pure Mathematics, 10. Helder-
mann Verlag, 1995.

Gleason A. Arcs in locally compact groups. Proc. Natl. Acad. Sci. USA. 1950, 36 (11), 663—667.

Kechris A. Classical descriptive set theory. In: Graduate Texts in Mathematics, 156. Springer-Verlag, New
York, 1995.

Maillot S. A non locally compact group of finite topological dimension? Source: MathOverflow. Available at:
http:/ /mathoverflow.net/questions/230878 /a-non-locally-compact-group-of-finite-topological-dimension.

Montgomery D. Theorems on the Topological Structure of Locally Compact Groups. Ann. of Math. (2) 1949, 50 (3),
570-580. d0i:10.2307 /1969550

Received 26.12.2016
Revised 17.04.2017

banax I., banax T., BoBk M. ITpux.ad He6openisctkoi 10KanoHO 36" 93HOT CKiHUeHHO-8UMIPHOT 110N002TUHOT
epynu // Kapmartceki MaTeM. my6a. — 2017. — T.9, Nel. — C. 3-5.

3riaHO 3 KAACHMUHOK0 TeopeMoto I AicoHa-MoHTIrOMepi, AOBIABHA CKIHUEHHO-BUMipHA AOKAABHO
AIHIVHO 3B’s13Ha TOMOAOTIUHA Ipyma € rpymoro Ai. Y cTaTTi AASL KOXHOTO HaTypaAbHOTO UMCAA
1 TIO6YAOBAaHO AOKAABHO 3B'SI3HY, are He AOKAABHO KOMIAKTHY aAMTMBHY miarpymy G C R™H!
TomoAoriuHoro Bumipy n. Lleit mpukaaa Aae Biamosiab Ha mpobaemy C. Meltaro, IOcTaBAeHY Ha
MathOverflow, Ta moxasye, 110 AOKaABHO AiHIVHY 3B’s13HiCTB ¥ TeopeMi I'AicoHa-MoHTrOMepi He
MO>KHa IIOCAOMTH AO AOKAABHOI 3B SI3HOCTI.

Kntouosi ciosa i ppasu: TomoaoriuyHa rpyma, rpyma Ai.
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P D)

BANDURA A.I.}, PETRECHKO N.V.2

PROPERTIES OF POWER SERIES OF ANALYTIC IN A BIDISC FUNCTIONS OF
BOUNDED L-INDEX IN JOINT VARIABLES

We generalized some criteria of boundedness of L-index in joint variables for analytic in a bidisc
functions, where L(z) = (I1(z1,22), l2(21,22)), | : D* = R is a continuous function, j € {1,2}, D2
is a bidisc {(z1,22) € C?: |z1] < 1, |z2| < 1}. We obtained propositions, which describe a behaviour
of power series expansion on a skeleton of a bidisc. The power series expansion is estimated by a
dominating homogeneous polynomial with a degree that does not exceed some number, depending
only from radii of a bidisc. Replacing universal quantifier by existential quantifier for radii of a
bidisc, we also proved sufficient conditions of boundedness of L-index in joint variables for analytic
functions, which are weaker than necessary conditions.

Key words and phrases: analytic function, bidisc, bounded L-index in joint variables, maximum
modulus, partial derivative, dominating polynomial, power series.
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1 INTRODUCTION

Recently, we introduced a concept of boundedness of L-index in joint variables for analytic
in a bidisc functions [4]-[6]. There were obtained criteria which describes a local behaviour of
partial derivatives, give estimate maximum modulus on a skeleton of bidisc and was proved
an analog of Hayman’s Theorem.

In a fact, inequality (1) in a definition of function of bounded L-index in joint variables
(see below) contains coefficients of power series expansion at a point z = (z1,z3). M. T. Bor-
dulyak and M. M. Sheremeta [9] considered entire functions and obtained a proposition which
describe a behavior of homogeneous polynomials with power series coefficients for functions
of bounded L-index in joint variables in the case L(z) = (l1(z1), ..., In(zn)). Recently, we
generalized [5] their result for entire functions and L(z) = (I1(z), ..., I4(z)), where z € C".
Replacing universal quantifier by existential quantifier, there was proved also new theorem
which provides weaker sufficient conditions of boundedness of L-index in joint variables.

This leads to such a natural question: Is there a counterpart of the mentioned Bordulyak—
Sheremeta’s criterion for functions that are analytic in an arbitrary polydisc domain? Our answer
to the question is affirmative. In particular, it is proved in Theorems 1 and 2 of this paper for a
bidisc.

In this paper, we will prove a necessity of Bordulyak-Sheremeta’s criterion for analytic in a
bidisc functions and L(z) = (I1(z1,22), l2(z1,22)). As sufficiency for analytic in ID? functions,
we will deduce an analog of weaker sufficient conditions of boundedness of L-index in joint
variables from [5].

YAK 517.553+517.554
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PROPERTIES OF POWER SERIES OF ANALYTIC IN A BIDISC FUNCTIONS 7
2 MAIN DEFINITIONS AND NOTATIONS

We consider two-dimensional complex space C2. This helps to distinguish main methods
of investigation. We need some standard notations. Denote Ry = [0, +c0), 0 = (0,0) € R2,
1=(1,1) € R%,R=(r1,rn) € RZ,z = (z1,23) € C2. For A = (aj,a3) € R?, B = (by,b) € R?
we will use formal notations without violation of the existence of these expressions

AB = (ayby,azby), A/B = (a1/by,a2/b2), by #0, by #0, AP =alal2, b e 72,

and the notation A < B means that a; < b;, j € {1,2}; the relation A < B is defined similarly.
For K = (k1, k) € Z2 denote ||K|| = ki + ka, K! = kq'ky!.
The bidisc {z € Cz |zj — 20] <rj, j = 1,2} is denoted by D?(z°, R), its skeleton {z € C? :
|z; — z})\ =71y, j=12}is denoted by T?(z%, R), and the closed bidisc {z € C? : |z — ?! <
j = 1,2} is denoted by D?[z%, R], D> = D?(0,1),D = {z € C: |z| < 1}.Forp,q € Z, and
partial derivative of analytic in ID? function F(z) we will use the notation

8P+‘7P(zl, Zz)

FPa)(z) = FPA) (24, 25) :=
() (z1,22) azl 822

Let L(z) = (l(z),2(z)), where [;(z) : D* — Ry is a continuous function such that for all
z € D% Ii(z) > B/(1—lz]), j € {1,2}, where B > 1 is a some constant, B := (B, ). SN
Strochyk, M.M. Sheremeta, V.O. Kushnir [14], [20] imposed a similar condition for a function
[:D— Riand!: G — R4, where G is arbitrary domain in C.

An analytic function F: D2 — C is called a function of bounded L-index (in joint variables), if
there exists g € Z such that for all z = (zy,z3) € ID? and for all (py, p2) € Z%

(k1/k2)
SN
kalko! 151 (2) 132 (2)

1 |F(rup) (z)]
pilp2! 11 (z )lpz(z)

The least such integer 1 is called the L-index in joint variables of the function F(z) and is denoted
by N(F,L,ID?) = ny. This is an analog of definition of entire function of bounded L-index or
bounded index (L = 1) in joint variables in C? (see [3], [9, 10], [16, 17, 18]) and a definition of
analytic in a domain function of bounded index [12]. Note that a primary definition of entire
in C function of bounded index was supposed by B. Lepson [15]. Other approach (so-called
L-index in a direction) is considered in [7, 8].

By Q(ID?) we denote the class of functions L, which satisfy the condition for all 7; € [0, B],

jef{n2}

§k1+k2§ﬂo}- (1)

0< Al,j(R) < Az/j(R) < 00,

where

AL](R> - zlgﬂg lnf{ l((z >> Z€ D2 {ZO’ R/L(ZO)] } ,
i(2)

A2ji(R) = sup sup{l](Z 0 : :z € D? [z R/L(z )]}

z0eID?

It is easy to prove that the function L1(z1,2z2) = (B'/(1 —|z1]), B’/ (1 — |z2|)) belongs to
Q(ID?), where B’ > B. Other possible methods to construct these functions are considered in

[1].
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Let z' € ID?. We develop an analytic in ID? function F(z) in the power series written in a
diagonal form

(o]

Fiz) = Y pose(zi—2),(—29) =Y, Y bipla—2(-29)2 (2

k1+ko=0 k=0 j1+jo=k

where py are homogeneous polynomials of degree k. The polynomial py,, ko € Z, is called a
dominating polynomial in the power series expansion (2) on T?(z?, R) if for every z € T?(z°, R)
the next inequality holds:

A+ =K,

1
Yo Prik((z1—2)), (22— 29))| < 5 max{|bj, j
eyl K0

FULR2) (20)

Where b]l rj2 = jl !jz!

3 SOME PROPERTY OF POWER EXPANSION OF ANALYTIC IN A BIDISC FUNCTION OF
BOUNDED L-INDEX IN JOINT VARIABLES

Theorem 1. Let § > 1, L € Q(ID?). If an analytic function F in ID? has bounded L-index in
joint variables then there exists p € Z that for all d € (0; B] there exists n(d) € (0;d) such
that for each z° € ID? and somer = r(d,z°) € (y(d), d) k0 = k%(d,z%) < p the polynomial pyo
is the dominating polynomial in the series (2) on T?(Z°, I (I;O)) withR = (r,1).

Proof. Let F be of bounded L-index in joint variables with N = N(F,L, ]D2) < 400 and ng be
L-index in joint variables at a point z° € ID?. Then for each z € D? ny < N. We put

* ’bjlsz |F(]1,]2)(Z0)|
Y T 0N (0) i 17 (20N 2 (0
B (20 (20) il (29)15 (20)
=2((N+1)°>+6(N +3)!).

, ap =max{a; ; : j1+ o =k},

Letd € (0; B] be an arbitrary number. We put r,,, = m € Z and denote

_d_
@
pm = max{ar, k € Z.}, sy = min{k: ark, = pn}.

Since 20 is a fixed point the inequality azl ks < max{a}k1 B j1+j2 < np}isvalid for all (kp, ky) €
Zi. Then ay < a,, forallk € Z.. Hence, for all k > ng in view of ry < 1 we have akrlé < anorgo.
This implies sy < ny. Since cry, = r,—1, we obtain that for each k > s,,_

k k

Sm—1 Sm—1 ,—S 1
Qs 1Vm = Asy 4T 1C " > agty,

¢ = ary, K=sm1 > eqprk (3)
From (3) it follows that s,, < s,;,_1 for all m € IN. Thus, we can rewrite

o = max{apr: k < ng}, pm = max{ark: k <s,_1}.
We denote

uh = max{aprk: so #k <mno}, ui =max{art,: sy £k <s,_1},
st =min{k: k # s, aers = u3}, st = min{k: k # sy, aprk, = ui},m € N
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and we will show that there exists my € Z such, that

*
U 1
< 4
Hmy ¢
Suppose that for all m € Z the next inequality holds
. 1
P 2 )
Hm €
If s}, < sm (S5, # sm in view of definition) then we have
S;;1 * Sm Sm
4 rs;‘,, _AgxTm Uy Wm  As,Tm Aswlpq > g. pSm
Sm'm+1 T S oSm csmtl sl T psmtl—sy — om m+l
and for all k > s, k # s, similarly,
S k k k
A TS;I = as%rnlln Al m Al = okl = cayr
Sm' m+1 CS;% — CS;% — Ckfl Ck k'm+1/
ie. agr" > ark  forallk > s¥,. Hence
= st m1 k" m—+1 m ’
Smt1 < Sy < S — 1 (6)

On the contrary, if s,; < s;, < 5,1 then the equality s,,11 = s, may hold. But in this case the
inequalities sy | < sy and s}, # sy41 imply thats; | < Sy41, S5 # Swi1. Instead of (6)
we have the inequality s;,12 <'s;,_; < 8,41 —1 = s, — 1. Hence, if for all m € Z estimate
(5) is true then for all m € Z either inequality 5,11 < s —1 or 5,42 < s, — 1 holds, i.e.
Sm+2 < s — 1, because 5,42 < 5441. It implies that

ie. s, < 0if only m > 2N + 1, which is impossible. Therefore, there exists my < 2N + 1
such that (4) holds. We put r = ry,, 7(d) = m, p = N and ko = sy,. Then for all

j1+j2 # ko = sy on T2(2°, —L+) in view (4) we have

L(z9)
b 0l Ol — g% 42 < it < g < < sy _ 1k
| jl,szzl —zj|tz2 — 23| = aj i’ > Ajy 4,1 > MUy = El’lmo S sy Tmg = — kT
Thus, on T?(Z°, ﬁ) we obtain
0yj Y 1+ - 2k
+
| Z bjjin (21 — 27) (22 — 23)?| < | Z aj, " < Yo a(k+1)%r
Jit+i#ko Jiti2#ko k=0,k#ko
Sm0,1 o0 (7)
= Y alk+ 1)%k 4 Y. a(k+ 1)2k,
k=0, k#sm, k=smy—1+1

We will estimate two sums in (7). From (4) it follows that py, < %ymo or

1
max{akr'fnoz k # Sy, k < Spy—1} < B max{akr’fno vk # Sk < Smg—1},
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. k1. .k
i e aprt < cag,r0. Then

Smo1 ap ko N a. rko
Y (k1) < P Y e 1)2 < B (v 1) (8)
k=0, ks, ¢ k=0 ¢
For each k the inequality akrﬁqofl < Mmy—1 holds and, hence,
k
Al — _
kK _ my—1 Vmo 1
ﬂkrmo - Ck S Ck . (9)
Using (9) and (4) we deduce
00 %) 1 S 00 1
Yo ok D <1 Y (k12 =as, Y (k1)
k:SmO,1+1 k:Sn,0,1+1 ¢ k:SmO,1+1 ¢
rs'”071 0 1 0 1
-1 Smy—1
= asmofl ng(z)o—l CS’”071 Z (k + 1)2C_k S asmo—lrmOO Csmo*l Z (k + 1) (k + 2) E
k:SmO,1+1 k:SmO,1+1
Sm, 1) 2 k ma—1+3 (2)
< fomy? Ocs’"01< 5 xk+2>( ) _ T Ocsmml (xs 01T )
¢ k=Sug1+1 =1 € 1=x =t (10)

= _akorko cSmo-1 <(SMO1 +3)(Smo—1 + z)xsmofﬁl + 2(smg—1 + 3)xSmo-112

c 1—x (1—x)2
2xsm0,1+3 ay rko 2 xsr71071+1+]‘
- < _r 51710712 _ 3 _ 2 ;
e [ ) M
ko 2 ko
ay. v 1 a1
<l N4y < U _g(N+3)1,

because ¢ > 2. Hence, from (8) and (10) we obtain

ko kO
. . a1 Ay, v
Y bz =2z — )R] < (N 41)° + 62— (N +9)
- c c
j1t+j27#ko
ko
Ay, T 1
= = —((N+1)° +6(N +3)!) = Jag,r".
Therefore, the polynomial pjo is the dominating polynomial in the series (2) on the skeleton
T (ZO' L(EO) ) O]

Theorem 2. Let B > 1, L € Q(ID?). If there exist p € Z+,d € (0;1], 7 € (0;d) such that
for each z° € ID? and some R = (r1,r;) with rj = rj(d,z°) € (y,d), j € {1,2}, and cer-
tain k% = k°(d,z) < p the polynomial pyo is the dominating polynomial in the series (2) on
T?(z% R/L(z%)) then the analytic in ID? function F has bounded L-index in joint variables.

Proof. Suppose that there exist p € Z,d < 1and € (0,d) such that for each z° € ID?
and some R = (ry,r2) with r; = rj(d,2°) € (y,d), j € {1,2}, and kg = ko(d,z°) < p the
polynomial pyo is the dominating polynomial in the series (2) on T?(z%, R/L(z%)). Let us to
denote rg = max{ry,r2}. Then
: : ay ko
F) = Y biplz—2) -2k < =02 a1
j1tj2=ko

Z bjler (z1 — Z(l)>h (z2 — Z(z)>j2 =
J1t+ja#ko
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Using (11) and Cauchy’s inequality we have:

ko
; AT
|b11,fz (Zl - Z(l))]l( Zp — Zz)]2| = ‘1]1 ]27’]17’]22 < 020

forall j1,jo € Z4,ie. forallky +ky =k # ko

ko
ai.1,
akrll(l “0 0

2 < (12)
Suppose that F is not a function of bounded L-index in joint variables.

LetL € Q(IDZ). It is known [6] that an analytic function F in D? has bounded L-index in
joint variables if and only if there exist p € Z and ¢ € R such that for each z = (z1,2z;) € ID?

the next inequality holds

F ]1/]2
. {r (2)

(k1/k2)
L, j1+j2=p+1) <cmax w:h%—kgﬁp .
lh( )ljz(z)

I (2)15% (2)

This statement and its generalizations [19, 13, 9, 2, 6] are analogs of known Hayman’s Theorem
[11] in theory of functions of bounded index. Then by the Hayman Theorem for all p; € Z
and ¢ > 1 there exists z° € ID? such that the next inequality holds:

(jler) 0 kl,kz) 0
X{%:jl+j2:pl+1}>cmaX{% k +k2<p1}
H1(20)12(20) 171 (20)132(2°)

2
Weputpy =pandc = CZ;TRI) . Then for this z(py, ¢) we obtain:

|FU172) (29)] o 1 |F(kik2) (20))]
max | O:]1+]2:p—{—1 >Wmax YN O:k1+k2§p ,
Jiljally (29)15 (20) n kq ko' (20)152(20)

p+1
. a 1 g T,
ie. apy > % and, hence, ap+1rg+ > kopﬂl > ”koro This is a contradiction with (12).
Therefore, F is of bounded L-index in joint variables. O

The authors especially thank an anonymous referee for his valuable suggestions.
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Banaypa A. I, Ilerpeuxo H. B. Baacmusocmi cmeneresux padie anarimuunux y 6ikpysi gyrkyiii obme-
orceroeo L-indexcy 3a cykynuicmio sminnux // Kapmatchki matem. myba. — 2017 — T.9, Nel. — C.
6-12.

Hamm y3araabHeHO aesiki KpuTepil o6MexeHOCTi L-iHAeKkcy 3a CyKyTHICTIO 3MiHHIMX AAST aHaAi-
TraEnX y 6ikpysi dpysxuii, ae L(z) = (I1(z1,22), l2(21,22)), Ij : D* — Ry — Henepepsra dyHKuis,
j € {1,2},D? — 6ixpyr {(z1,22) € C?: |z1| < 1,|z3| < 1}. OTpumani TBepAXeHHS OMMUCYIOTH TIOBO-
AKeHHsI pO3BMHEHHs y CTeTIeHeBIIA psiA Ha KicTsKy 6ikpyra. [Tpy mpomy cyMa BiAIIOBiAHOTO cTerre-
HeBOr'o psIAy OILliHeHa Jepe3 AOMiHYBaAbHMI OAHOPiAHMII MHOTOYAEH, CTEITiHb SIKOTO He IIepeBUIITy€e
AESIKOTO UMCAA, 3aAeKHOTO TIABKM BiA paaiycis 6ikpyra. 3aMiHIOIOUIM KBaHTOP 3araAbHOCTI Ha KBaH-
TOp iCHyBaHHS AASI 3HaUeHb paAiyciB 6ikpyra, My TaKOX AOBOAMMO AOCTaTHi YMOBM Ob6MeXXeHOCTi
L-imaexcy 3a CyKyTHICTIO 3MiHHMX AAST aHAAMIHNX (PYHKIIiM, SIKi cAab1IIi 3a HeO6XiAHI yMOBM.

Kntouosi crnosa i ppasu: aHaniTMIHa pyHKIIS, 6ikpyT, obMexeHmI1 L-iHAeKC 3a CyKyIHICTIO 3MiH-
HIX, MaKCYIMYM MOAYASI, YaCTVHHA ITOXiAHa, TOAOBHIIT MHOTOUAEH, CTETIeHeBIIA PSIA.
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CONVERGENCE CRITERION FOR BRANCHED CONTINUED FRACTIONS OF THE
SPECIAL FORM WITH POSITIVE ELEMENTS

In this paper the problem of convergence of the important type of a multidimensional gener-
alization of continued fractions, the branched continued fractions with independent variables, is
considered. This fractions are an efficient apparatus for the approximation of multivariable func-
tions, which are represented by multiple power series. When variables are fixed these fractions
are called the branched continued fractions of the special form. Their structure is much simpler
then the structure of general branched continued fractions. It has given a possibility to establish
the necessary and sufficient conditions of convergence of branched continued fractions of the spe-
cial form with the positive elements. The received result is the multidimensional analog of Seidel’s
criterion for the continued fractions. The condition of convergence of investigated fractions is the di-
vergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the
convergence of this fraction which has been formulated by the divergence of series composed of par-
tial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali
Theorem the parabolic theorems of branched continued fractions of the special form with complex
elements convergence, is investigated. The sufficient conditions gave a possibility to make the con-
dition of convergence of the branched continued fractions of the special form, whose elements lie in
parabolic domains.

Key words and phrases: branced continued fraction of the special form, convergence.
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INTRODUCTION

The convergence problem for continued fractions with positive elements is solved by Sei-
del’s criterion.

© 1
Theorem 1 ([9, 12]). A continued fraction by + [) — with positive elements converges if and
n=1Yn

only if the series ij b, diverges.
n=1
Convergence criteria for the continued fractions which elements lie in angular [8], parabolic
[1, 4, 6] domains was obtained by Seidel’s criterion and Stieltjes-Vitaly Theorem.
Necessary, sufficient, necessary and sufficient conditions for convergence of the branched
continued fractions (BCF) with N-branches are establised [3, 10, 11]. But, the analog of Seidel’s
criterion in following statement is not obtained:

YAK 517.524
2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15.
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14 BODNAR D.I., BILANYK I.B.

branched continued fraction by + )
k=1i=1 bi(k)

Z rrbzcgl bj(x) are divergent.
k=11
Establishing the analog of Seidel’s criterion for the BCF resulted into construction of differ-

ent types of BCF, in particular:

o Z‘kfl a: N a:
ik) _ i(1)
bo+ D Z,: by b+ Z, ho g ’ @)
k=1 ir=1 i1=1 bz(l) 4 Z - i(2)

where a;), b € C, i(k)y eZ, T ={i(k) =iqip...0 :1<ip <ip_1 <..<ip; k>1; iy = N}.

This fraction is called the BCF of the special form. There are different convergence ctiteria
for this fraction [1, 2, 5].

In the case b;(x) = 1, and a;(;, are replaced by 4;(;)z;,, this fraction is called a multidimen-
sional regular C-fraction with independent variables. This fraction is analog of the BCF for
multiple power series. The condition of the correspondence between multiple power series
and regular multidimensional C-fraction with independent variables is established in [7].

The analog of Seidel’s criterion for the fraction (1) when a3y = 1, by > 0, i(k) € Z,
and N = 2 can be found in [6, 11]. The aim of the paper is to establish the analog of Seidel’s
criterion for arbitrary natural N. Also, using this criterion, the technique of value and elements
sets [3, 9] and Stieltjes-Vitaly Theorem [3], to obtain the parabolic convergence region for the
following BCF

k-1 g. -1
(bo+D2 ) (2)

1 %

where by, a;() are complex numbers, i(k) € Z.

1 MAIN RESULTS

In this paper, it will be proved following lemmas for obtaining an analog of Seidel’s crite-
rion for the BCF

bo+D2b 3)

=1 =

Lemma 1.1. Let the BCF (3) with positive elements converges and € be an arbitrary real positive
number. Then exists a natural m, depended of ¢, such that for each BCF with positive elements

DZE 4)

k=1 ix ()

where Ei(k) = by foralli(k) € Z,k < m, the following estimate holds

/
<

for alln, k > m and f,i be a kth approximant of BCF (4).
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Proof. If fi be a kth approximant of BCF (3) and the fraction converges, then for all € > 0 exists

m>2:|fu1 —me,z\ <&
Since fy = f,k = 1,2,..,m — 1, using the monotonicity properties of approximants of a
BCF with positive elements, we have that foralle > O foralln,k € IN,n > m, k > m,

!
1 2| = f1— fu2| <e

O

Lemma 1.2. Let Ay, Ay be absolute errors of by and by, i i(k) € Z, respectively. If by >

0, bi(k) > 0 are approximants of by and b;), respectively, then the absolute value of relative
error of f,,, mth approximant of the BCF (3), is less or equal to the value

max  max 4209 Sieen) | ©)
0s<[y] i@s+1)eT | bi(s)” byjassn)

where Ajj = Ao, Ajoxq1) = 0, if m = 2k.

x—n o —
Proof. Let 6; = — On =

[X, where @ is approximate value of w. If a > 0,2 > 0,b > 0,
i1 o

144,
m is—1

Let (51((’:)) is the relative error of calculation of the BCF b; ) + D
s=k+1,=1 "i(s)
value of relative error of f, is less or equal to:

b > 0, then: |6,,5| < max{|64],10|}, |6

| < max {|5;],

- 1521, 16 = \

. Then the absolute

mffx{ 2} < o { wl 50} < ’1"2”2{ o] o5 |} <
Y A; A;
< ...< max max (Si(zs) , ﬂ = max max ﬁ’ A1(25+1) .
0<s< %] i(25+1)eT 1+ di2541) 0<s<[g] i(2s+1)eT | Di(as) bi(2s+1)
U
Let Z0" = {i(n) = irig...in :m <iy <iy1 <..<ip; n>1;ip=N},m = 2,N. Let the

continued fractions are determined recurrently as follows

o™ _b’“+D g5 bl +]f°°) , m=1N, (6)

k=1 m[k] k=1 b )m[k]

mlk] = mm..m, i(n) € T"*+1), with the initial conditions béo) = by, bf(ok)) = by, i(k) € Z,

k
where b;; are partial denominators of BCF (3).

Theorem 2 (The multidimensional analog of Seidel’s criterion). BCF (3) with positive partial
denominators converges if and only if for each m,1 < m < N, and each i(n),i(n) € z(m+1)
the following series diverge

Z b / kzl bz( m[k (7)

that elements are determined by (6).
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Proof. Necessity. Let the fraction (3) is convergent, then the following sth tail of this fraction
converges:
= e
T’i(s) = bi(S) —+ D Z ‘—,Z(S) - I
k=s+1i=1"i(k)

The proof of this fact is analogous to the proof of the Theorem 2.1 [3]. In particular, if is = 1,
then the following continued fractions are convergent

o0 1 oo

7@, (8)

1= bk e

According to Seidel’s criterion, the series Z by o Z bty i(n) € 7@ diverge. Let
k=1

bé ) = by + r_' bf(’z) = bjn) + . ! ,i(n) € T(®. Consider the BCF of the special form with
1 i(n)1
(N — 1)-branches:
p) + ]3 - L )
0 —= )
k=1 ix=2 i(k)

We shall show that the convergence of BCF (9) follows from convergence of the fraction (3). Let
fn be the nth approximant of the BCF (3). The approximants of the BCF (9), f,, are the figured
approximants of the fraction (3).

B j bi(k), ifk<nork=mn,i, #1;
fn:bo+D = ik = bi(n)+6%, ifk=ni, =1.
- p=1"i(n)1[p]

Applying the method suggested in [3], we can show that the following relation for differ-
ence f, — f, is valid:

p=1
where
(n) (n) = = <) = |
Qi(n) = bi(i’l)r Qi(s) = D Z b = bi(i’l)’ Qi(s) - bi(s) + D Z Nb—. ’
r=s+1ir=1"i(r) r=s+1i,=1Yi(r)

n=12..,s=1n-1;i(n) € Z; i(p) € Z. Obviously bin) — Ei(n) =0, ifi, # 1, and
bi(n) _Ei(n) <0,ifi, = 1. Thus, (—1)n+1 <fn _ﬁl> > 0, thatis fo, < Ey < ]’Zprl < fory1
That is to say, the convergence of the fraction (9) follows from the convergence of the frac-

toin (3). Analogically as for BCF (3), we conclude that series Z b k]' Z b ,i(n) € 709,

2[’4

e |

diverge,

k=1 ii=3 Dig)”
i(k) € IO converges.
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(m—1)

Using the same arguments by (N — 2) times, we conclude that the series ). bm[k] ,
k=1

Z b m[k] are divergence foreachm : 1 <m < N—1,i(n) € I(erl), also the continued

fraction b D i(k) € T(N) is convergent. It's equivalent by Seidel’s criterion to
k= bi(k)
the divergence of the series Z b N
k=1
Sufficiency. By mathematical induction on N, we prove the fact that from diverdgence of

the series (7) follows the convergence of the BCF (3).

—1)

. Thus, series (7) diverge.

(9]

1
N = 1, the continued fraction with positive elements by + Db— converges by Seidel’s
171K

criterion, if the series ). by is divergent.
i=1
00 k1
N = 2, the BCF with positive elements by + [) Y. B,
k= 11k 1 ( )

Theorem 2.8 [11] if series Z by k], Z bitny1x/ Z b k] diverge.

,i(k) € Z,iy = 2, converges by the

We suppose that for all N N < p, from the dlvergence of series (7) follows the convergence
of the BCF (3). Consider the convergence of the BCF (3) in the case N = p.

oo Zk 1
bo + ) €ZL,ip= 10
0 Dli ™ 0=p. (10)
If koé b1[k} = o, koZ_oﬁl bi(n)l[k] =o00,i(n) €T (2) then continued fractions

b —i—f.j ! (11)

0 A

=1 D1k
D ) eI, (12)

k=

converge to the values bél) and bf(z), respectively. We replace, the continued fractions (11) and
(12) by it’s values, and obtaine BCF of the special form with (p — 1)-branches

OOlk1

+D Z e 1?,iy = p. (13)

S by

Since, the series (7) diverge, for each m, 2 < m < N, the fraction (13) converges by the hy-
potesis of induction. We shall show that the fraction (10) is convergent. Consider the difference
between the nth approximant of BCF (10) and (13).

Let bél’”), bl((ln';) be the nth approximant of continued fractions (11) and (12) respectively.
Then the nth approximant of BCF (10) may be written as

nzkl

1" +DZ R k) e 1.

1Zk Zb()
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It's the BCF with (p — 1)-branches. The nth approximant of BCF (13) may be written as

n lk 1 1
fu =0 +D2 7 i(k) € 7.
=1 =2 bigg

According to the Lemma 1, form the convergence of the fraction (13) follows that for all

e > 0 exists m € IN such that for all n,k € IN, n > 2m + 2 takes place An < ¢, where
p i i2m I2m+1 In—1

) 1 1 1 1 1

gn=by + ),y T L (Ln—2m-2) (10)°
=2 byq) = bi) T F iy biam+1) T2 b; i(2m+2) L= biny

Next we estimate the value ‘ fn— ﬁl) : ) fn— fn < |fn — gn Qn — fn . Using the Lemma

2, we estimate the first term in the right of inequality:

(Ln—=2s) b(l) b(l,n—Zs—l) _ b(l) ‘
I < max max i(2s) i2s)| |Yi(2s+1) ies+1)| |
— 8n 0<s<m i(2s+1) b(l) ! b(l,n—Zs—l) 8n:
i(2s) i(2s+1)

Since the continued fractions (11) converge, we may choose n, n > 2m + 2, such that for all

(n-29) _ (1) €

& |y (Ln—2s—-1)
i(25) i(25)] < St

: 2
i(2s+1) € 7%, i(25+1) 2s+1

P
)< whereA:bo+Z%.

Thus, ’ fn — ]?n‘ < &. From the convergence of the fraction (13) follows the convergence of
the fraction (10). O

Since the elements of series (7) are difficult to calculate by the relation (6), it’s conviniently
to use the following sufficient condition for convergence.

Theorem 3. BCF (3) is divergent, if for each m, 1 < m < N, and each, i(n), i(n) € Z(m+1) the
following series are divergent

Y b Y biwymii- (14)
k=1 k=1

The divergence of the series (14) is suffisient for the divergence of the series (7). We shall
use the Theorem 3, to obtain the parabolic convergence domain for the BCF (2).

Lemma 1.3. Let { ik )} be the sequense of half-planes

Vigy = V—{ZEC Re< 7)>—21

i COS,Y}'k: L2,3,..., 1<y <igq, o =N,
k—1

and

Y 1
Eix = Ei = {z €C:|z| —Re <ze 217) < i 1cos ')/}

where 7'c< <7T
2 S35

Then {Vi(k)} and {Ei(k)} are the sequenses of value sets and element sets of the BCF (2).
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The proof of this Lemma is analogous to the proof of the corresponding Theorem 1.5 [3] for
the BCF with N-branches.

Theorem 4. Let the elements of the BCF (2) lie in the parabolic domains a;) € P, i(k) € Z,
where

Pi(k) (8) :Pik (8) = {ZEC: |Z| — Rez < ;—8}’ (15)
k-1
¢ be an arbitrary small real number, 0 < ¢ < 1.
Then
1) there exist a finite 11m1ts of even and odd approximants of the BCF (2);
2) BCF (2) converges if Z by = o0, Z bi(nymy) = o foreachm, 1 < m < N, and each,

i(n), i(n) € Z"+1), where bz( k) IS deﬁmtely determmed by the relations

a k)‘ = <bi(k)bi(k71))7l , ik €L, bpy=b=1

3) the value region of this fraction is the following circle

K={zeC:|z—-1] <1}.

Proof. Let ;) = e'it), where a;(r) be an argument of number 4;), —71 < a;) < 7, if

(k) # 0.

We determine the function

0, ifa; ) =0,
a0 (z) = ; i(k)
i(k) ai(k) elZlXi(k), if ai(k) 7& 0

(k)

in domain Q) = {z € C : |[Imz| < 6, |Rez| < 1+ 5}, where  is an arbitrary real number, such
that (1+6)%e™ < (1—¢) .

We shall show that a;)(z) € Pi) (0), i(k) € Z,if z € Q.

If i) = 0, then a;(y(z) € Py (0) . Let ajyy # 0 and z = x + iy. From a;) € Py (¢), we
obtain

1—¢ 1 —cosaj(x
— Rea. i ) 16
Z)’ eik) (z) < 20 _q 1 —cosa (16)
) ) 1 —cosa;(x
If we determine the extrema for the function M (ai(k),x) = ———, Where
1 —cosa;g

—7 < ajp < 7 ai) # 0, x| < 1+ 5, we obtain sup <./\/l <(xi(k),x)) = (1+ )% Thus,

1 ) .
z)‘ — Reaj(y (z) < T that is a;) (z) € P (0), i(k) € Z.
Consider the functional BCF

fk-1 aj -
(1 +) 2 ) ,i(k) € T. (17)

=1 ix=

According to the Lemma 3, where v = 0, we obtain that the value set of the reciprocal of the

1
fraction (17) is the half-plane Rez > 5 Therefore, all approximants of the BCF (17) depend on
the domain K = {ze€ C:|z—1| <1}.
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Thus, any nth approximant of the (17), f,(z), is the holomorphic function in domain ().
We use the Theorem 2.13 (Stieltjes-Vitali Therem [3]) for sequence { f,,(z) }, where in particular
a=-1,b=-2and A= {z€C : Rez=0, |Imz| < 6}.

If z € A, then we write the BCF (17) in the form

Tf_1 -1
(1+DZ > ,i(k) € T, (18)

1%

where
_ 0, ifa (k) 0,
Fi(k) = ai(k)‘ eI, if ay # 0.

By equivalence transformstion, we can write the fraction (18), into the form

. -1
00 Ig—1 1 ‘
(1 +D ) m) ,i(k) €T, (19)

-1
where b;(;) is determined by relations |a < (k=1)bi (k)) ,biy=1,i(k) € T.

The divergence of the series ). bm[k Z m[x) for each m, 1 < m < N, and each i(n),
k=1 k=1
i(n) € Tm+1), is equivalent to the divergence of the series Z byje” Y, Z bi(nympe" Y.

The convergence of the BCF (19) follows from the Theorem 2 Thus the fract1on (18) converges.
Therefore, according to Stieltjes-Vitali Therem, the BCF (17) converges on every compact
subset of (). In particular, it converges when z = 1. This is equivalent to the convergence of
the BCF (2).
Using the monotonicity properties of approximants of a BCF with positive elements, we
find that finite limits of even and odd approximants of the BCF (2) always exist. O

Analogously we can prove the following statement.

Theorem 5. Let the elements of the BCF (2) lie in the parabolic domains a;) € Py, i(k) € Z,
where

o 1—¢
Pitg (1) = P (1) = {2 € Clal = Re (2 27) < 1= costa |, 0)

e is an arbitrary small real number, 0 < & < 1.
Then
1) there exist a finite limits of even and odd approximants of BCF (2);

2) BCF (2) converges if Y by, = %, Y bi(y)mx) = o foreachm,1 < m < N, and eachi(n),
k=1 k=1

~1
i(n) € "+, where bi( is definitely determined by the relations |a k)‘ = <bi(k)bi(k71)) ,
l(k) €1, bi(()) = bo =1,

3) the value region of this fraction is the following circle

e 1

B 2(1 — 1cosy)

IC('y):{zeC: z

<! }
2(1 — 1cosy)
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Boanap A.L, Biranux 1.B. Kpumepiii 36iscHocmi einngcmux aany0208ux 0pobis cneyiaivbHoeo 6u2nsoy 3
dodamuumu enemenmamu // Kapoarceki Matem. my6a. — 2017. — T.9, Nel. — C. 13-21.

AOCAiAXYETbCSI IMTaHHS 361KHOCTI BaXKAMBOTO KAACy 6araTOBMMIpHIX y3ararbHeHb HellepepB-
HIUX Apob6iB — TiAAsICTHX AaHIFOTOBUX ApobiB (TAA) 3 HepiBHO3HauHVMM 3MiHEMME. Lli Apobu €
edpeKTMBHMMY TP HabAVDKeHHi OYHKIIIN, 3apaHMX KpaTHMMM CTelleHeBUMM psiaamit. TTpm dixco-
BaHMX 3HAUEeHHSX 3MIHHVX BOHM OTPVMaAM Ha3BY TiAASICTHX AQHIIIOTOBUX APOOiB crelliaABHOTO BU-
TASIAY. 3HAUHO ITPOCTIIlIa CTPYKTYpa MOPIiBHSIHO i3 3aTaABHVMI TAASICTMMM AQHITIOTOBMMM APObaMu
AaAa MOXAMBICTb BCTAHOBUTY HEOOXiAHY i AOCTATHIO YMOBY IX 361KHOCTi Y BUITAAKY AOAATHMX eAe-
MeHTiB. OTpUMaHMIT pe3yAbTaT € 6araTOBMMIPHMM y3araAbHEHHSIM KpUTepifo 36iKHOCTI 3eliaenst
AAST HETIepepBHIMX APObiB. YMOBOIO 361KHOCTI AochiaxyBaHux I'AA € po3biXHICTD psSAiB ereMeH-
TaMIl SIKMX € HellepepBHi Apo6u. ToMy AOBOAUTBCS AOCTaTHSI edpeKTMBHA O3HaKa 30iXHOCTI, IO
dopMyAIOEThCSI Yepe3 po3biXKHICTD PSIAIB CKAAAEHNX 3 YaCTMHHMX 3HaMeHHVKIB paaHOro I'AA,. Bu-
KOPMCTOBYIOUM BCTAHOBAEHY AOCTATHIO O3HAKY 361>KHOCTI Ta Teopemy CTiaTheca-BiTani, Aocaiaxe-
HO mapaboaiusi ob6aacTi 36iXHOCTI AAsT AA, crieniaAbHOTO BUTASIAY 3 KOMITAEKCHUMY eAeMeHTaMIL.
BcTaHOBAEHA AOCTATHS O3HaKa AaAa MOXAUBICTb ocAabuTy ymoBu 36ixHOCTI [AA, eneMeHTH KO-
TPMX A€XaTh B apabOAIIHIIX 0OAACTSIX.

Kontouosi ciosa i ¢ppasu: TiAASICTi AQHIIIOTOBi APOGY CIIEITiaABHOTO BUTASIAY, 361KHICTb.
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VASYLYSHYN T.V.

TOPOLOGY ON THE SPECTRUM OF THE ALGEBRA OF ENTIRE SYMMETRIC
FUNCTIONS OF BOUNDED TYPE ON THE COMPLEX Lo,

It is known that the so-called elementary symmetric polynomials R, (x) = || 01] (x(t))" dt form
an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Ba-
nach space Lo, which is dense in the Fréchet algebra Hy(Lo) of all entire symmetric functions of
bounded type on L. Consequently, every continuous homomorphism ¢ : Hys(Leo) — C is uniquely
determined by the sequence {¢(R;)};_;. By the continuity of the homomorphism ¢, the sequence
{¥/19(Ry)|};>; is bounded. On the other hand, for every sequence {&,}5> ; C C, such that the
sequence {{/[¢,[}5_; is bounded, there exists xz € Lo, such that R (xz) = &, for every n € N.
Therefore, for the point-evaluation functional Jxé we have (5X§(Rn) = §y for every n € IN. Thus,
every continuous complex-valued homomorphism of Hys(Leo) is a point-evaluation functional at
some point of L. Note that such a point is not unique. We can consider an equivalence relation on
Leo, defined by x ~ y < 6y = &y. The spectrum (the set of all continuous complex-valued homo-
morphisms) M of the algebra Hys(Le) is one-to-one with the quotient set L/ ~. Consequently,
My, can be endowed with the quotient topology. On the other hand, it is naturally to identify M,
with the set of all sequences {¢,}%°_; C C such that the sequence { {/[¢,|}%°_, is bounded.

We show that the quotient topology is Hausdorff and that M, with the operation of coordinate-
wise addition of sequences forms an abelian topological group.

Key words and phrases: symmetric function, topology on the spectrum.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com(Vasylyshyn T.V.)

INTRODUCTION

Algebras of symmetric functions on the spaces of Lebesgue-measurable functions were
studied by a number of authors [1], [4], [5], [6], [7] (see also a survey [2]). In [3] the spectrum
of the algebra Hys(Lo) of entire symmetric functions of bounded type on Lo (see definition
below) is described. In this paper the topology on the spectrum of Hy(Loo) is investigated.

Let L, be the complex Banach space of all Lebesgue measurable essentially bounded comp-
lex-valued functions x on [0, 1] with norm

1x[loo = ess supye o [ x(H)]-

Let E be the set of all measurable bijections of [0,1] that preserve the measure. A function
f 1 Lo — C is called symmetric if for every x € Lo, and for every ¢ € =

flxoo) = f(x).

YAK 517.98
2010 Mathematics Subject Classification: 46]20, 46E15.
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Let Hys(Loo) be the Fréchet algebra of all entire symmetric functions f : Lo — C which are
bounded on bounded sets endowed with the topology of uniform convergence on bounded
sets. By [3, Theorem 4.3], polynomials R, : Lee — C, Ry(x) = f[O,l} (x(t))"dt for n € N, form
an algebraic basis in the algebra of all symmetric continuous polynomials on Le. Since every
f € Hps(Lo) can be described by its Taylor series of continuous symmetric homogeneous
polynomials, it follows that f can be uniquely represented as

O =fO+Y Y R RY ().
n=1ki+2ky+...4+nk,=n

Consequently, for every non-trivial continuous homomorphism ¢ : H,; — C, taking into
account ¢(1) = 1, we have

o(f) =f(0)+ ) Y py, g @(R1)M - (R ),
n=1ki+2ky+...+nk,=n

Therefore ¢ is completely determined by the sequence of its values on R, :

((P(Rl)/ GD(RZ)/ .- )

By the continuity of ¢, the sequence {{/|¢(R;)|}{>_; is bounded. On the other hand we have
following statement.

Theorem 1 ([3]). For every sequence ¢ = {{,}5_; C C such that sup,n /|| < 400, there

n=1
exists xz € Lo, such that R,(xz) = &, foreveryn € N and ||xz (e < 2 su V/1&x|, where
g g Y g M SUPreN
M= ﬁ CcoS E—l . 1)
i 2n+1

Hence, for every sequence § = {ﬁn}g’:l such that sup, m < o0, there exists the
point-evaluation functional ¢ = Jy, such that ¢(R,) = ¢y for every n € IN. Since every such a
functional is a continuous homomorphism, it follows that the spectrum (the set of all contin-
uous complex-valued homomorphisms) of the algebra Hy,(Lo ), which we denote by My, can
be identified with the set of all sequences § = {¢, }_; C C such that { {1/@ o1 is bounded.

There are different approaches to the topologization of the spectra of algebras. The most
common approach is to endow the spectrum by the so-called Gelfand topology (the weakest
topology, in which all the functions f : My; — C, f(¢) = @(f), where f € Hyy(Loo), are

continuous). We consider another natural topology on M. Let v : Lo, — M, be defined by

v(x) = (R1(x),Ra(x),...).

Let T be the topology on L, generated by || - ||e. Let us define an equivalence relation on Leo
by x ~ y < v(x) = v(y). Let T be the quotient topology on My, :

T={v(V): V€ 1}

Note that v is a continuous open mapping. Therefore, T contains the Gelfand topology.
In this work we show that (M, +, T) is an abelian topological group, where “+” is the
operation of coordinate-wise addition.
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1 THE MAIN RESULT

Let us denote B(x,r) the open ball with center at x € Lo and radius ¥ > 0in L.
Theorem 2. (My, T) is a Hausdorff topological space.

Proof. Leta = (ay,a,...),b = (b1, by, ...) € Mygsuchthata # b.Letm= min{j € N : a; # b;}.
By Theorem 1, there exist x,, X, € Lo such that v(x,) = a and v(x,) = b. Let

s—min{lwmin{ 1 1 }}
" 3m ([[xallo + 1)1 ([[xp |0 + 1)1 | |

Note that V; = v(B(x4,¢)) and Vo, = v(B(xy,¢€)) are neighborhoods of a and b respectively.
Let us prove that V4 and V; are disjoint. Let y € B(x,,¢) and z € B(xy,€). Let us show that
R (y) # Ryu(z). Note that

|am — bm| =R (xa) — R (xp)| <R (xa) = Riu(Y)| + [Rin (¥) — Rin(2)| + [Rin (2) — R (x) ] (2)

Since ||y — xalloo < &,

|[Rin(xa) = R (y)] S/ | (xa(£))™ = (y(£))"™] dt

(0]

= Jo 0 (£) = ()| | (xa ()" + (xa ()" 2((1)) + ... + (xa()) (W(£))" 2 + (y(£))" Y| dt

< 8/[0/” (|xu(f)|m—1 + |xa(i')|m—2|y(t)| + ...+ |xa(t)||y(f)||m_2 + |y(t)|m_1) dt

IN

8/[01](”xa|‘°m°_1+”xa”omo_ZHyHOO"i_"'_"”xaHOOH]/HTo_Z‘FHy”glo_l)dt

IN

8/[01} (”xaHZiofl + ”xal‘giz(”xﬁ”w +€) + . + Hxa”OO(HxaHoo _|_€)I’Vl*2 + (”xaHoo +€)m71) dt

< em([|xalco +€)" 7" < em(]|xalleo +1)" 1.

Since ¢ < 3m(||“m—bm| it follows that |Ry(x;) — R (y)| < %\am — by|. Analogously, we

|%aloo+1)m 17
obtain |Ry(z) — R (xp)| < 3|am — bu|. Therefore, by (2),

bl < 2o — b + [ R () — Ron ()]
Hence,
[Ru(y) = R(2)| 2 5l — bu] > 0.
Therefore, R,,(y) # Ru(z), and, consequently, v(y) # v(z). Hence, V; and V; are disjoint. [
The operation of coordinate-wise addition + : M%s — My is defined by
a+b=(ay+by,a+0by,...)
fora = (ay,ay,...),b = (b1,by,...) € M. Note that (M, +) is an abelian group.

Theorem 3. The operation of coordinate-wise addition + : Ml%s — My is continuous with
respect to the topology T.
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Proof. Leta,b € My,. Let us show that for every neighborhood U of the point a + b there exist
neighborhoods V, and V, of points a and b respectively, such that a’ + b’ € U for every a’ € V,
and b’ € V.

By Theorem 1, there exist functions x4, X4y € Lo such that v(xy,) = (4ay,4a;,...) and
V(X4b) = (4b1,4b2, .. ) Let

[ xa,(4t), ift€[0,1],
”w_{o, if t € (1,1]

and
xp(t) = { xgp(4t —2), ifte %

.3,
0, ift €[0,4

,7) U
Thenv(x,) = aand v(x;) = b. Note that v(x, + x,) = v(x;) +v(xp). Hence, v(x; + xp) = a+b.
Therefore, x, + x, € v~1(U). Since the set v~1(U) is open in Le, it follows that there exists
e > 0 such that B(x; + x5,¢) C v—1(U). Let

e M
C2M+8
where M is defined by (1). Let V, = v(B(x,,7)) and V}, = v(B(xp,7)). Let us show thata’ + b’ €
U for every a’ € V,and b’ € V. Lety € B(x,,7) and z € B(xp,7) such that v(y) = 4’ and
v(z) = Let
[y, ifte(od], [0, ifte0 1],
1M0—{Q ifre (1] 20 =y, e (31,
L[z, ifte[y?) _ [0 ifte(y])
a0 =407 e boan =0={2 wephog
Since x,(t) = 0 for t € (1,1] and x,(t) = 0 for t € [0, 1) U (3, 1], it follows that
|y — xallo = max{[ly1 — Xalloo, [Y2llc}  and ||z — xp|l = max{[|z1 — xp ||, [|22]|c0 }-

Since y € B(x,,t) and z € B(xy, ), it follows that ||y — x4||ec < 7 and ||z — xp]|ec < 7. Conse-
quently,
1 = Xallo <70 lly2lle <7, 21 = 2plle <7 and  [lza][ec <7

By Theorem 1, for sequences { = 4v(yz) and 17 = 4v(z;) there exist functions ug, v; € Leo
such that v(uz) = & v(uy) = 1, [uglle < 2 and [vy[l < 2, where ¢ = sup,,.p /|¢n| and
d = sup, . 4/ |17n|. Note that

Cnl = [4Rn(y2)| < 4ly2llc <4"  and  |ya| = |[4Ru(z2)] < 4[z2fl5 < 4"

Therefore, ¢, d < sup, . V4r < 4r. Consequently, |||l < & and [0y || < 3. Let

. [0 ift € 0,3 U[3,1],
w0 ={ V), e
and 0 if t € [0,2]
_ ) ift 0,3,
“”:{meﬁyﬁte@a.
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Then
v(u) = v(y2) and  v(?) = v(zp). 3)

Note that ||if]|ec = [|tt¢]|eo and [|T]|cc = [|vy|co- Let ¥ = y1 + @ and Z = z; 4 7. Note that
8r rw _ &

y— oo — - 0o/ Noo < - 0o Noo - = .
17— xalleo = max{{lyr — Xalloo, [[#lleo} < fly1 = %alloo + [[itlleo <7+ i 5

Analogously, ||Z — xp|/cc < 5. Therefore,
1742 = (xa+ xp) [l <[ = Xallow + [ = 2 ]l0 <.
Hence, ¥ +Z € B(x; + xp, €). Therefore, v(iy + 2) € U. Note that
v(y +2) = v(y) +v(2).

By (3),
v(y) = v(y) +v(i) =v(yr) +v(y2) = v(y) =a
and
v(Z) = v(z1) +v(0) = v(z1) + v(z2) = v(z) = V.
Therefore, v(y +2) = a’ + V. Hence,a’' + V' € U. O

Theorem 4. The group’s inverse operation ¢ — —¢ on (Mys, +) is continuous with respect to
the topology T.

Proof. Let us prove that the inverse operation is continuous at the identity element (0,0, ...)
of M. Let U be a neighborhood of (0,0, ...). Then v~1(U) contains 0 € Le. Since v—1(U) is
open, it follows that there exists ¢ > 0 such that B(0,¢) C v~1(U). Let 0 < r < 1Me, where M
is defined by (1), and V = v(B(0, r)). Note that V is a neighborhood of (0,0, ...). Let us show
that —¢ € U forevery { € V. Let{ = ({1,82,...) € V. Then there exists yz € B(0,r) such that
v(yz) = ¢. Note that
Gnl = IRn(ye)| < [lyelleo <"

for every n € IN. Therefore,

sup /|Cn| <.

nelN
By Theorem 1, there exists x_z € Lo such that v(x_¢) = —¢ and

2 .
leglleo < 37 5P {/1 = &l

Since

sup {/| — &ul = sup {/]&| < r
nelN nelN

and r < Me, it follows that ||x_z||o < ¢ ie. x_gz € B(0,¢). Therefore, x_z € v~}(U) and,
consequently, v(x_¢) € U, ie. —¢ € U. Hence, for every neighborhood U of (0,0, ...) there
exists neighborhood V of (0,0, ...) such that —¢ € U for every ¢ € V. In other words, the
inverse operation is continuous at (0,0, .. .).

For n € My let f; : Mys — M, be defined by f,; : ¢ — ¢ + 1. By Theorem 3, f, is a
continuous function for every 7 € M. Let { be an arbitrary element of M,,. By the continuity
of the inverse operation at (0,0,...) and by the continuity of functions f_; and f; at { and
(0,0, ...) respectively, the inverse operation is continuous at { as a composition of continuous
functions. Hence, the inverse operation is continuous at every point of Mj;. 0

Corollary 1. (M, +, T) is an abelian topological group.
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Bia0MO, 1110 Tak 3BaHi eAeMeHTapHi CMMeTpyYHi moAiHOMM R, (x) = || 0] (x(t))" dt yTBOpIOIOTH
aArebpaiunmit 6asyc aATebpy ycix CMMETpUUHMX HellepepBHIX ITOAIHOMIB Ha KOMITA€KCHOMY 6a-
HAXOBOMY IPOCTOPi Loo, SIKA € CKpi3b IIiABHOIO B aarebpi dpemre Hys(Loo) yeix mmirmx cumerpu-
YHMX (PYHKIIi 0OMeXXeHOro TUIy Ha Leo. SIK HacAiAOK, KOXeH HellepepBHUIT TOMOMOPJi3M ¢ :
Hps(Leo) — € OAHO3HAYHO BU3HAYAETHCS TTOCAIAOBHICTIO { (R} ;. 32 HeTepepBHICTIO TOMOMOP-
dismy @, mocaiaosHicTs {{/|@(Ry)|}5_; € 0bMexeHOW0. 3 iHIIOro 60Ky, AAST KOXHOI MOCAI AOBHO-
cri {&,}%.; C C, Taxoi, mo nocairosricts {{/[Z,[}5; € 06MexeHOIo, icHye Xz € Lo Taxa, mo
Ru(xz) = Gn Anst xoxsoro n € IN. Tomy ars pyHKIiOHANA OOUMCAGHHS 3HAUEHHS B TOUL Ox,
6yae Ox.(Ry) = & Arst xoxHoro n € IN. OTXe, KOXeH HellepepBHII KOMIAEKCHO3HAYHWIA TO-
MoMopdism aarebpu Hys(Loo) 36iraeThbest i3 pyHKIIOHAAOM OGUMCAEHHS 3HAYEHHST B AeSIKiit TOULI
IIPOCTOPY Loo. 3ayBaXkyMo, IO TaKa TOUKA He € EAMHOIO0. PO3rAsSHeMO BiAHOILIEHHSI eKBiBaA€HTHOCTI
Ha Leo, BU3HAUEHE PABUAOM X ~ Y < Jy = Jy. TOAl ciexTp (MHOXMHA yCiX HeTllepepBHIX KOM-
IIA€KCHO3HAYHMX TOMOMOPi3MiB) Mps aarebpu Hys(Loo) € Y B3a€MHO OAHO3HAUHINM BiAIOBIAHOCTI
i3 dpaKTOP-MHOXUHOIO Lo/ ~. BiaIOBiaAHO, Ha Mjps MOXXHA PO3TASIHYTH (PaKTOP-TOIOAOT0. 3 iHIIIO-
ro 60Ky, IIPUPOAHO OTOTOXHUTU M i3 MHOXMHOIO ycix mocaiaoBHoOCTel {Cy )5 ; C C Takmx, mo
nocaiaoBHicTD { {/]Eq|}%_, € obMexeHoO.

Y poboTi mokasaHo, 110 ¢paKTOP-TOMOAOTIsI € TaycA0pdoBoIo i 0 My, 3 Omepaliero TOKOOPAN-
HaTHOTO AOAABaHHS TIOCAIAOBHOCTE yTBOPIOE abeAeBy TOIIOAOTiUHy TPYILY.

Kntouosi cnosa i ¢ppasu: cvmeTpudHa doyHKIIisI, TOITIOAOTISI Ha CTIEKTPi.
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SUPEREXTENSIONS OF THREE-ELEMENT SEMIGROUPS

A family A of non-empty subsets of a set X is called an upfamily if for each set A € A any set
B O Abelongs to A. An upfamily £ of subsets of X is said to be linked if ANB # @ forall A,B € L.
A linked upfamily M of subsets of X is maximal linked if M coincides with each linked upfamily
L on X that contains M. The superextension A(X) consists of all maximal linked upfamilies on X.
Any associative binary operation * : X x X — X can be extended to an associative binary operation

o: A(X) x A(X) = A(X) by the formula Lo M = <UueLﬂ*Ma L e L, {M}aer C M> for
maximal linked upfamilies £, M € A(X). In the paper we describe superextensions of all three-

element semigroups up to isomorphism.

Key words and phrases: semigroup, maximal linked upfamily, superextension, projective retrac-
tion, commutative.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: vgavrylkiv@gmail.com

INTRODUCTION

In this paper we investigate the algebraic structure of the superextension A(S) of a three-
element semigroup S. The thorough study of various extensions of semigroups was started
in [11] and continued in [1-7,12-16]. The largest among these extensions is the semigroup
v(S) of all upfamilies on S. A family A of non-empty subsets of a set X is called an upfamily
if for each set A € A any subset B O A belongs to .A. Each family B of non-empty subsets of
X generates the upfamily (B C X : B € B) = {A C X : 3B € B(B C A)}. An upfamily F
that is closed under taking finite intersections is called a filter. A filter U is called an ultrafilter if
U = F for any filter F containing U . The family B(X) of all ultrafilters on a set X is called the
Stone-Cech compactification of X, see [17], [20]. An ultrafilter {x}, generated by a singleton
{x}, x € X, is called principal. Each point x € X is identified with the principal ultrafilter
({x}) generated by the singleton {x}, and hence we consider X C B(X) C v(X). It was shown
in [11] that any associative binary operation * : S X S — S can be extended to an associative
binary operation o : v(S) x v(S) — v(S) by the formula

£OM:<U11*MH:L€£, {Mg}aELCM>

aeL

for upfamilies £, M € v(S). In this case the Stone-Cech compactification B(S) is a subsemi-
group of the semigroup v(S).

The semigroup v(S) contains many other important extensions of S. In particular, it con-
tains the semigroup A(S) of maximal linked upfamilies. The space A(S) is well-known in

YAK 512.53
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General and Categorial Topology as the superextension of S, see [19]- [21]. An upfamily £ of
subsets of S is linked if ANB # & for all A,B € L. The family of all linked upfamilies on
S is denoted by N,(S). It is a subsemigroup of v(S). The superextension A(S) consists of all
maximal elements of N, (S), see [10], [11].

Each map f : X — Y induces the map

Af i AMX) =5 AY), Af M= (f(M)CY:Me M) (see [10]).

A non-empty subset I of a semigroup S is called an ideal if ISU SI C I. A semigroup S is
called simple if S is the unique ideal of S. An element z of a semigroup S is called a zero (resp.
a left zero, a right zero) in S if az = za = z (resp. za = z,az = z) for any a € S. A semigroup S
is said to be a left (right) zeros semigroup if ab = a (ab = b) for any a,b € S. A semigroup S is
called a null semigroup if there exists an element ¢ € S such that xy = c for any x,y € S. By Oy,
LO; and RO, we denote a null semigroup, a left zero semigroups and a right zero semigroup
of order n respectively. Following the algebraic tradition, we denote by C,, the cyclic group of
order n.

Let S be a semigroup and e ¢ S. The binary operation defined on S can be extended to
SU {e} putting es = se = s for all s € SU {e}. The notation S*! denotes a monoid S U {e}
obtained from S by adjoining an extra identity e (regardless of whether S is or is not a monoid).
Analogous to the above construction, for every semigroup S one can define S*9, a semigroup
with attached an extra zero to S.

Let us recall that a semilattice is a commutative idempotent semigroup. Idempotent semi-
groups are called bands. So, in a band each element x is an idempotent, which means that
xx = x. By L, we denote the linear semilattice {0,1,...,n} of order n, endowed with the
operation of minimum. A semigroup S is called Clifford if it is a union of groups.

A semigroup (a) = {a"},,en generated by a single element a is called monogenic or cyclic. If
a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup IN. A finite
monogenic semigroup S = (a) also has very simple structure (see [8], [18]). There are positive
integer numbers r and m called the index and the period of S such that

e S={aa?. .., a"" Nandm+r—1=|S|;
e foranyi,j € w the equality a”* = a’*/ holds if and only if i = j mod m;

o Cp = {d’, atl ., am“*l} is a cyclic and maximal subgroup of S with the neutral ele-
ment e = a" € Cy;, where m divides n.

We denote by C,; ; a finite monogenic semigroup of index r and period m.

An isomorphism between S and S’ is one-to-one function ¢ : S — S’ such that ¢(xy) =
¢(x)p(y) forall x,y € S. If there exist an isomorphism between S and S/, then S and S’ are said
to be isomorphic, denoted S = S’. An antiisomorphism between S and S’ is one-to-one function
¢ : S — S such that ¢(xy) = ¢(y)@(x) for all x,y € S. If there exist an antiisomorphism
between S and S, then S and S’ are said to be antiisomorphic, denoted S =, S'. If (S, *) is a
semigroup, then (S, o), where x oy = y * x, is a semigroup as well. The semigroups (S, *) and
(S, 0) are called dual. It is easy to see that dual semigroups are antiisomorphic.

There are exactly five pairwise non-isomorphic semigroups having two elements: C,, Lo,
Oy, LO3, RO,. The superextension A(S) of two-element semigroups S consists of two principal
ultrafilters and therefore A(S) = S.
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In this paper we concentrate on describing the structure of the superextensions A(S) of
three-element semigroups S. Among 19683 different operations on a three-element set S =
{a,b,c} there are exactly 113 operations which are associative, see [9]. In other words, there
exist exactly 113 three-element semigroups, and many of these are isomorphic so that there
are essentially only 24 pairwise non-isomorphic semigroups of order 3.

1 PROJECTIVE RETRACTIONS AND SUPEREXTENSIONS

In this section we will apply some properties of proretract semigroups to study the struc-
ture of the superextensions of semigroups.

A subset R of a set X is called a retract if there exists a retraction of X onto R, that is a map
of X onto R which leaves each element of R fixed. A retractionr : S — T of a semigroup
S onto a subsemigroup T of S is called a projective retraction if xy = r(x)r(y) for any x,y €
S. A semigroup S is said to be a proretract-semigroup provided that there exists a projective
retractionr : S — T of S onto some proper subsemigroup T of S. In this case T will be called a
projective retract of S under a projective retraction r, and S will be called a proretract extension of
T under a projective retraction r. If r : S — T is a projective retraction of a semigroup S onto a
subsemigroup T of S, then r is a homomorphism and T is an ideal of S.

If a semigroup S is simple, then it is not a proretract-semigroup. In particular, groups, left
zero and right zero semigroups are not proretract-semigroups.

Proposition 1. A finite monogenic semigroup C,,, of index r and period m is a proretract-
semigroup if and only ifr = 2.

Proof. Let Cppy = {a,a?,...,a",...,a "1 | g"t™" = g™} If r = 1, then C,, is simple and thus
it is not a proretract-semigroup.

Let r = 2. Consider the map ¢ : Co,y — Cpy = {a?,...,a" 1}, ¢(s) = es, where e is the
identity of the maximal subgroup C,, of Cy,,. Then st € Cy, and st = eset = ¢(s)¢(t) for any
s, t € Cy,y. Consequently, ¢ is a projective retraction.

Let r > 2. Suppose that ¢ : C;,, — I is a projective retraction onto some proper ideal I of
S. Then aa = ¢(a)@(a). In monogenic semigroups of index r > 2 the equality a®> = ¢(a)? is
possible only in the case ¢(a) = a. Since ¢ is a homomorphism, then ¢ leaves each element of
C;,m fixed. Therefore, I = C; ;;, a contradiction. O

Let us note that for a subsemigroup T of a semigroup S the homomorphism i : A(T) —
A(S),i: A — (A)s is injective, and thus we can identify the semigroup A(T) with the sub-
semigroup i(A(T)) C A(S). Therefore, for each family B of non-empty subsets of T we identify
the upfamilies

(Byy={Ae€T|3BeBBCA)}eA(T) and (B)s={Ae€S|IBB(BC A)} € A(S).

In the following proposition we show that proretract-semigroup property is preserved by
superextensions.

Proposition 2. Ifr : S — T is a projective retraction of a semigroup S onto a subsemigroup T
of S, then Ar : A(S) — A(T) is a projective retraction of the superextension A(S) onto A(T).
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Proof. Let L, M € A(S). Then

Ar(L) 0 Ar(M) :< U axr(M)a:r(L) € Ar(L), {r(M)a}ser) C Ar(/\/l)>

acr(L)

= (Ur@+r(M):Le L, {r(M)a}aer C Ar(M))
ael

:<UQ*MHZL€£, {Ma}aeLCM>:£o/\/l_
ael

Corollary 1. If S is a proretract-semigroup, then A(S) is a proretract-semigroup as well.

In the next section we show that there exists a semigroup S that is not a proretract-semi-
group, but the superextension A(S) is a proretract-semigroup.

Theorem 1. If S is a null semigroup, then A(S) is a null semigroup as well.

Proof. Let S be a null semigroup. So there exists c € S such that xy = cforall x,yy € S. Then the
map r: S — {c}, r(s) = cforany s € S, is a projective retraction. According to Proposition 2
the map Ar: A(S) — A{c} = {({c})} is a projective retraction as well. Therefore,

LoM=Ar(L) oAr(M) = ({c}) o ({c}) = ({c})
for any £, M € A(S). Consequently A(S) is a null semigroup. O

A semigroup S is said to be an almost null semigroup if there exist the distinct elements
a,c € Ssuch thataa = aand xy = ¢ forany (x,y) € S x S\ {(a,a)}.

Theorem 2. If S is an almost null semigroup, then A(S) is an almost null semigroup as well.

Proof. Let S be an almost null semigroup, so there exist the elements a,c € S, ¢ # a, such that
aa = a and xy = c for any (x,y) € Sx S\ {(a,a)}. Thenthemapr :S — {a,c}, r(a) =a
and r(s) = c for any s # a, is a projective retraction. According to Proposition 2 the map
Ar : A(S) — Aa,c} is a projective retraction as well. It is easy to see that the semigroup
Ma,c} = {({a}), ({c})} = {a,c} is isomorphic to the semilattice L, = {0,1} with operation
of minimum.

It is obvious that ({a}) o ({a}) = ({a}). If A # ({a}), then there exists A € A such that
a ¢ A and therefore r(A) = c. This implies that Ar(A) = {({c})}. If (L, M) € A(S) x
AS)\{({{a}), ({a}))}, then Ar(L) = ({c}) or Ar(M) = ({c}). Therefore, Lo M = Ar(L) o
Ar(M) = ({c}). Consequently, A(S) is an almost null semigroup. O

Theorem 3. If S is a left (right) zero semigroup, then A(S) is a left (right) zero semigroup as
well.

Proof. Let S be a left zero semigroup. Then
LoM={JasMi:LEL, (Mo M) =(Ula}:LeL) =2
acL acL

for any £, M € A(S). Thus A(S) is a left zero semigroup as well.
For a right zero semigroup the proof is similar. O
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2 SUPEREXTENSIONS OF COMMUTATIVE SEMIGROUPS OF ORDER 3

In this section we describe the structure of superextensions of commutative three-element
semigroups. Among 24 pairwise non-isomorphic semigroups of order 3 there are 12 commu-
tative semigroups.

For a semigroup S = {a,b,c} the semigroup A(S) contains the three principal ultrafilters
({a}), ({b}), ({c}) and the maximal linked upfamily A = ({a,b},{a,c},{b,c}). Since semi-
groups S and {({a}), ({b}), ({c})} are isomorphic, then we can assume that A(S) = SU{A}.

In the sequel we will describe the structure of superextensions of three-element semigroups
S = {a,b,c} defined by Cayley tables using the formula

EoM:<Ua*Ma:L€/J, {Ma}geLCM>

a€l

of product of maximal linked upfamilies £, M € A(S).

The superextension A(C3) (described by the following Cayley table) of the cyclic group Cj is
isomorphic to (C3)*? and therefore A(C3) is a commutative Clifford semigroup. The thorough
study of superextensions of groups was started in [7] and continued in [1-3].

L Jalbfc[A]
allal|b|c|A
bllb|lcla|A
cleclalb|A
VAN VAN VAR VAN VAN

The superextensions of monogenic semigroups were studied in [13]. The cyclic semigroup
Cy, is a proretract extension of cyclic subgroup {b,c} = C, under retraction ¢ : {a,b,c} —
{b,c} with ¢(a) = c. The superextension A(C,,) is also a proretract extension of A{b,c} =
{b, ¢} according to Proposition 2. The monogenic semigroup Cs 1 is not a proretract-semigroup
by Proposition 1, but its superextension A(Cs 1) is a proretract extension of C3 1 under retraction
r:A(Cs1) — C3q with r(A) = ¢, and, therefore, A(C31) is a proretract-semigroup. Here are
the Cayley tables of A(Cy7) and A(Cj3 1) respectively:

- Jlalb[c]A] [ Jla[b]c[A]
al|lblclb|b al|blclc]| c
blc|blc|c blclclc]|c
cllblc|b|b clclclclc
AN|blc|b|b ANlclclc] ¢

The following Cayley tables for the semigroups A((C;)™) and A((Cp)*1), where C; =
{a, b}, imply that
AM(C2)*0) 2 {a, b, A} = ((G) ")+

and
AM(C)*Y) = {a, b, A} = ((C)* )™
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L Jlalb[c[A] L Jlalb] c [A]
allal|blc|lA alalblala
bl|lblalclA blbla|lb|b
cllclclclc cllalb|c|A
AN|AIAlc| A Allalb|A|A

The superextensions of a null semigroup and an almost null semigroup are a null semi-
group and an almost null semigroup as well according to Theorems 1 and 2:

- Jalbfe]A] - Jafbfe]A]

a
b
c

c|c|c|c ajc|c| ¢
c|c|c| c c|c|c| c
c|c|c|c cic|c| c
c|c|c| c c|c|c| c

Dlals s

A

The following Cayley tables for the semigroups A((02)*?) and A((O)*!) imply that
M(02)™) = {a,b,A}° = (03)™  and  A((02)™!) = {a,b, A} = (05)T

The semigroups (O,2)*% and A((O) ") are proretract extensions of the subsemigroup {b, c} =
Ly.

- Jlalbc[A] - Jlalb] c [A]
al|blblc| b al|blblalb
b|lb|blc|b b|lb|lb|b|b
clclc|c| c cllalb|c|A
AN|blblc| b AN|blb|A|Db

The superextensions of semilattices were studied in [4]. The following Cayley tables imply
that A(L3) = Ly is a linear semilattice, but the superextension of the non-linear semilattice is
its proretract extension and it is not even a Clifford semigroup:

L Jlafefc][A] L Jlafbfc]A]
alalblc|A al|lalclc| c
b|b|blc|b blc|blc|c
clclclelc clclclc|c
AN|NA|b|c| A Nl|clc|c]| c

The structure of the superextension of the last commutative semigroup is shown in the fol-

lowing table. This semigroup and its superextension are proretract extensions of the subgroup
{a,c} = C,.

| Jlalblc]A]
a|clalal|a
blalc|lc|c
cllalc|c]|c
Alflalclc|c
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3 SUPEREXTENSIONS OF NON-COMMUTATIVE SEMIGROUPS OF ORDER 3

There are 12 pairwise non-isomorphic non-commutative three-element semigroups. Non-
commutative semigroups are divided into the pairs of dual semigroups that are antiisomor-
phic.

The superextension of a left (right) zero semigroup is a left (right) zero semigroup as well
according to Theorem 3. Therefore A(LO3) = LO4 and A(RO3) = ROj.

L Jalb]c[A] [ Jlab]c[A]
alla|lalala alalblc|A
b|b|b|b|b bla|blc|A
cllecleclclc clalblc| A
ANIATA|TA A Alalblc| A

The following Cayley tables for the semigroups A((LO,)*?) and A((ROz)*?) imply that
AM(LO2) ) 22 {a,b, A} ™0 = (LO3) ™0

and
A((RO2)™0) = {a,b, A} = (RO5)* :

L Jlalbfc]A] - Jlalbc[A]
allalalc|a alalblc| A
bl b|blc|b blalblc|A
cllc|cleclec clclclc| c
A|NA|Ac| A ANlal|lblc| A

The following Cayley tables for the semigroups A(( LOZ)H) and A(( ROZ)“) imply that
A(LO) ™) 2 {a,b, A} =2 ({a, b} T 22 ((LO,) TH !

and

A((RO2)™) = {a,b, A}1 = ({a,b} 7)™ = ((RO2)TH)* -

L Jlalb]c[A] L Jlalb]c[A]
allalalala allalblala
bbbl b|b blalb|b|b
cllalb|c|A clalblc|A
Allalb|A|A Allalb|A|A

The following three-element semigroups and its superextensions are proretract extensions
of its subsemigroups, which are isomorphic to LO; and RO; respectively:

| Jlalblc]A] [ Jafb[c][A]
alclclc|c alc|blc]|c
b|b|b|lb|b blcliblc|c
clclclc]|c clclblc|c
Alclclc| ¢ Allc|blc]| c
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Other two pairs of non-Clifford non-commutative dual superextensions of three-element

semigroups are given by the following Cayley tables:

[ Jalb[c][A] L Jlafb]c[A]
alclclc|c alclalc|c
bllalblc|A blc|blc|c
cllclclc|c cllc|lclc|ec
Alclc|c]c Alc|Alc]| ¢
L Jaf[b]c[A] L Jlafb[c]A]
alalalal|a a||albla|a
bbbl b|Db bla|bla|a
cllalalc|a cllalblc|A
ANlala|AN|a Ala|blal|a

The last two three-element semigroups are the examples of non-commutative bands whose

superextensions are not Clifford semigroups.
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Cim’st A HeOPOXXHIX MAMHOXMH MHOXMHM X HasUBA€TbCSI MOHOMIOHHOI0, SIKIIIO AAST KOXKHOI
mHOXVHU A € A poBinbHa MHOXmMHa B O A Hanrexuts A. MoHOTOHHaA ciM’s £ miAMHOXVH
MHOXWHM X HA3MBAEThCST 3uenieHot, sikio A N B # @ aas Bcix A, B € L. 3uernneHa MOHOTOH-
Ha ciM’ss M miAMHOXVH MHOXMHM X € MAKCUMANOHOW 3UenieHow, sIKIo M 36iraerbcst 3 KOXHOIO
3YEILACHOK MOHOTOHHOIO ciM’eto £ Ha X, sika micturs M. Cynepposuiupenns A(X) cKaapaeTsest 3
yciX MaKCMMaABHIMX 3UelIA€HNX MOHOTOHHMX ciMelt Ha X. Koxkna acomiaTmsHa 6iHapHa omepariist
% : X X X — X mpoAOBXYEThCST A0 acouiaTuBHOI 6iHapHOI omeparii o : A(X) x A(X) — A(X) 3a
dopmyaoro Lo M = < Usera* My :L € L, {Mg}aer C /\/l> AASI MAKCYIMaABHIMX 3UeTIAeHMX MOHO-
ToHHMX ciMent £, M € A(X). VY il cTaTTi OIMCYIOTHCSI CYIIepPO3LUIMPEHHST BCIX TPhOXEA€MEHTHIIX
HaIIiBIPYII 3 TOUHICTIO AO i30MOpdisMy.

Kntouosi cnoea i ¢ppasu: HamiBrpyIia, MaKkCMMaAbHa 39eTIAeHa CHCTeMa, CYTIeppO3IIVPeHHs], TPo-
©KTUBHA PeTPaKllisl, KOMyTaTUBHICTb.
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POINTS OF NARROWNESS AND UNIFORMLY NARROW OPERATORS

It is known that the sum of every two narrow operators on L is narrow, however the same is false
for L, with 1 < p < co. The present paper continues numerous investigations of the kind. Firstly,
we study narrowness of a linear and orthogonally additive operators on Kéthe function spaces and
Riesz spaces at a fixed point. Theorem 1 asserts that, for every Kéthe Banach space E on a finite
atomless measure space there exist continuous linear operators S,T : E — E which are narrow
at some fixed point but the sum S + T is not narrow at the same point. Secondly, we introduce
and study uniformly narrow pairs of operators S,T : E — X, that is, for every e € E and every
e > 0 there exists a decomposition e = ¢’ + ¢” to disjoint elements such that [|S(e’) — S(e”)|| < ¢
and ||T(e’) — T(e"”)|| < e. The standard tool in the literature to prove the narrowness of the sum
of two narrow operators S 4 T is to show that the pair S, T is uniformly narrow. We study the
question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having
no counterexample, we prove several theorems showing that the answer is affirmative for some
partial cases.

Key words and phrases: narrow operator, orthogonally additive operator, Kéthe Banach space.
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INTRODUCTION

The class of narrow operators includes some other classes of “small” operators defined
on atomless function spaces and Riesz spaces, such as weakly compact, Dunford-Pettis, abso-
lutely summing etc. It was introduced and studied in [11] for function spaces and in [7] for
Riesz spaces, however some results on these operators appeared in 80-th years of XXth cen-
tury. The importance of narrow operators is explained by different geometric implications of
their properties, see survey [13] and textbook [14]. Then the notion was naturally generalized
to (nonlinear) orthogonally additive operators in [12]. An operator (linear or, more general,
orthogonally additive) T : E — X from an atomless function space or atomless Riesz space
E to a topological vector space X is said to be narrow if for every e € E and every neighbor-
hood V of zero in X there exists a decomposition to disjoint summands ¢ = ¢’ + ¢” such that
T(¢e') — T(e") € V. Although it would be natural to consider narrowness at a fixed pointe € E,
no investigation before [12] (2014) took this point into account. However in [12] the authors
considered narrowness of an operator T at a fixed point ¢ € E only for technical reasons to
prove the main result.
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One of the most interesting facts concerning narrow operators is that, for some pairs of
spaces (E,F) the sum S + T of every two narrow operators S, T : E — X is narrow, but for
other pairs the same is not true. For instance, the sum of every two narrow operators on L;
is narrow, however every operator on L, with 1 < p < oo is a sum of two narrow operators.
A number of published papers of different authors devoted to the questions of narrowness of
a sum of two narrow operators (see, e.g. [2, 7, 8, 11]). A very different situation appears for
narrowness at a fixed point. Theorem 1 asserts that for every Kothe Banach space E on a finite
atomless measure space there exist continuous linear operators S, T : E — E which are narrow
at some fixed point but the sum S + T is not narrow at the same point.

A very natural proof that the sum S + T of two narrow operators S, T : E — X is narrow
is reduced to the proof that, for every e € E and every ¢ > 0 there exists a partition e =
¢’ Ue’ (common for both S and T) such that ||Se’ — Se”’|| < ¢/2 and ||Te’ — Te”|| < e/2. This
naturally leads us to a new notion of uniformly narrow pair of operators and to the question
of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no
counterexample, in Section 2 we prove several theorems showing that the answer is affirmative
for some partial cases.

Now we give a brief preliminaries on the notions used below. An F-space is a complete
metric linear space X over a scalar field K € {R,C} with an invariant metric p (i.e., p(x,y) =
p(x 4+ z,y+ z) for each x,y,z € X). We set ||x|| = p(x,0), and so, p(x,y) = ||x — y|| and call
the defined map || - || : X X X — [0, +o0) the F-norm of the F-space X. A very important class
of F-spaces is the class of Banach spaces. Let ((), X, ) be a finite measure space. An F-space
E of equivalence classes of measurable functions on (2 is called a Kéthe F-space if the following
conditions hold: (K;) if y € E and |x| < |y| then x € E and ||x|| < |ly|l; (Ki;) 1o € E. If,
moreover, E is a Banach space and (Kj;;) E C Li(u) then E is called a Kothe Banach space.

By £(X,Y) we denote the set of all continuous linear operators acting from X to Y.

Let E be a Riesz space (in particular, a Kothe F-space) and X a vector space. Amap T : E —
X is called an orthogonally additive operator if T(x +vy) = T(x) + T(y) forall x,y € E with x Ly
(for Kothe F-space it means that x and y have disjoint supports). If, moreover, X is a Riesz space
then an order bounded orthogonally additive operator T : E — X is called an abstract Uryson
operator. We refer the reader to [4, 5, 6, 10] and the bibliography therein for examples and some
usual facts on orthogonally additive operators. An element y of a Riesz space E is called a
fragment (in another terminology, a component) of an element x € E, provided y_L (x —y). The
notation y T x means that y is a fragment of x. A net (x4),en in E order converges to an element
x € E (notation x, — x) if there exists a net (i1 )uca in E such that u, | 0 and lxg — x| < ug
for all B € A. The equality x = | [_; x; means that x = }3'; x; and x; Lx; if i # j. Note that
in this case one has that x; C x for all i. If E is a Riesz space and e € ET then by §. we denote
the set of all fragments of e. We say that a net (x4 )yea in E up-laterally converges to an element

x € E (notation x, ﬁ> x) if x, 2y xand x, C xgasa < B. A function f : E — F between
Riesz spaces is said to be up-laterally continuous if for every net (x4 )4ea in E and every x € E
the condition x, M x implies f(xy) A, f(x)inF.

An element e of a Riesz space E is called a projection element if the band B, generated by
e is a projection band. A Riesz space E is said to have the principal projection property if every

element of E is a projection element. For instance, every Dedekind o-complete Riesz space
has the principal projection property. An element u # 0 of a Riesz space E is called an atom
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whenever 0 < x < |u|, 0 <y < |u| and x A y = 0 imply that either x = 0 or y = 0. Evidently, if
u € Eisan atom then §, = {0, u}. A Riesz space without a nonzero atom is said to be atomless.

1 TPOINTS OF NARROWNESS

Below we give main definitions of narrow operators adapted to the idea to consider nar-
rowness at a fixed point.

Definition 1.1 (of a narrow map). Let E be a Riesz space and X be a topological vector space.
A function f : E — X is said to be:

e narrow at a point e € E if for every neighborhood of zero U in X there exists a decom-
position e = ey Ll e, such that f(e;) — f(e2) € U. The set of all points of E at which f is
narrow is denoted by N (f);

e narrow if N'(f) = E.

Observe that, for linear maps the definition is equivalent to the following one. A linear
operator T : E — X is said to be narrow at a point e € E if for every neighborhood of zero U in
X there exists f € E such that |f| = |e|] and Tf € U.

Definition 1.2 (of a strictly narrow map). Let E be a Riesz space and X be a set. A function
f+ E — X issaid to be

e strictly narrow at a point e € E if there exists a decomposition e = e; Ll e such that
f(e1) = f(e2). The set of all points of E at which f is strictly narrow is denoted by N*(f);

e strictly narrow if N*(f) = E.

Likewise, if X is a linear space, a linear operator T : E — X is strictly narrow at a point
e € E if and only if there exists f € E such that |f| = |e| and Tf = 0.

Definition 1.3 (of an order narrow map). Let E, X be Riesz spaces. A function f : E — X is
said to be:

e order narrow at a pointe € E if there is a net of decompositionse = ¢, Le/, A € A such
that (f(¢}) — f(e})) — 0in X. The set of all points of E at which f is order narrow is
denoted by N°(f);

e order narrow if N°(f) = E.

Similarly, a linear operator T : E — X is order narrow at a point e € E if and only if there
exists a net f, € E with |f,| = |e| for all indices a such that Tf, — 0.

Observe that a narrow (in any sense) function sends any atom to zero. So, to avoid triviality
one may consider atomless Kothe F-spaces and atomless Riesz spaces to be the domain spaces
of narrow maps. Another simple observation is that 0 is a point of narrowness of any map in
any sense of narrowness.

Obviously, if X is a topological vector space then every strictly narrow (at a point, on a set)
function is narrow. So, N*(f) C N (f) for any map f : E — X. Similarly, if X is a Riesz space
then every strictly narrow (at a point, on a set) function is order narrow. So, N*(f) C N°(f)
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for any map f : E — X. If one considers a compact linear operator T with zero kernel acting
from a Kothe F-space E to an F-space X then N°(T) = {0}, however N (T) = E, because
every compact operator is narrow [14, Proposition 2.1]. If, moreover, X is an order continuous
Banach lattice then N°(T) = E as well, because in this case every narrow operator is order
narrow [14, Proposition 10.9].

The connections between narrowness and order narrowness of a map is not so obvious,
however it can be easily deduced from the arguments of [7]. Recall that a Banach lattice E is
said to be order continuous if for each net (x,) in E the condition x, | 0 implies that ||x,| — O.
Note that in this case the weaker condition x, —- 0 also implies that ||x,| — 0.

Proposition 1.1. Let E be a Riesz space and X a Banach lattice. Then
(1) every narrow at a pointe € E map f : E — X is order narrow ate;

(2) if, moreover, X is order continuous then every order narrow at a pointe € E map f :
E — X is narrow ate;

(3) there exists an order narrow positive operator T € L(L« ) that is not narrow.

Proof. (1) For each n € IN we choose a decomposition e = ¢}, L e]l with || f(e],) — f(x)))|| < 27"
and set u, = Y >, [f(e;) — f(x})| (the series obviously satisfies Cauchy’s condition and hence
converges). To show that (f(e},) — f(e!)) — 01is a standard technical exercise.

(2) Let f be order narrow at e. We choose a net of decompositions e = ¢} Ue}, A € A

such that (f(e}) — f(e})) — 0. By the definition of an order continuous Banach lattice,
£ (ey) — f(e)) || = 0, and thus, f is narrow ate.
(3) See Example 3.3 of [7]. O

The following two propositions are simple exercises.
Proposition 1.2. Let E be a Riesz space and X a topological vector space.
1. For a linear operator T : E — X the following assertions are equivalent:
(i) T is narrow;
(if) ET C N(T).
2. For an orthogonally additive operator T : E — X the following are equivalent:
(i) T is narrow;
(if) EYUE~ C N(T).
Similar statements are true for strictly narrow and order narrow operators.

Remark that the condition E* C N/(T) for an orthogonally additive operator T does not
imply that T is narrow, as the following simple example shows: Tx = x~ forall x € E.

Proposition 1.3. Let E be a Riesz space and X a topological vector space.
1. Assume T : E — X is a linear operator.

(a) Ife,f € E,e € N(T) and |f| = |e| then f € N(T).
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(b) Ife;,ep € N(T),e1 L exanda,b € R then ae; + be, € N (T).

2. Assume T : E — X is an orthogonally additive operator. If e1,e; € N(T) and e; L e
then e, + e, € N(T).

Similar statements are true for strictly narrow and order narrow operators.

Proposition 1.4. Let E be a Kothe F-space on a finite atomless measure space (), %, 1), X a
topological vector space, T : E — X a uniformly continuous orthogonally additive operator.
Then the set of narrowness N (T) is closed in E.

Proof. Let e belong to the F-norm closure of A/(T). We show that T is narrow at e. Let V be any
neighborhood of zero in X. Choose a neighborhood of zero V; in X sothat Vi +V; +V; C V
and 6 > 0 so thatif x,y € E with ||x — y|| < 6 then T(x) — T(y) € V;. Now choose e; € N (T)
so that ||e; — e|| < ¢ and choose a decomposition e; = ¢} Ll ¢{ so that T(e]) — T(ef) € V. Set
QO =suppe], ' =Q\Q, ¢ =e-1gand e’ = e-1q.. Thene = ¢/ Ue”. We show that
Te' — Te"” € V. Indeed, observe that

e’ —eill = He-IQ/ —el-IQ/H <l|le—e] <6
and analogously |l¢” —e{|| < . Then Te’ — Te} € V; and Te” — Te{ € V;. Hence,
Te' — Te" = (Te' — Te}) + (Tey — Tef) + (Tef —Te") e Vi + V1 +V; C V. ]

Next we provide an example of a linear operator the set of narrowness of which coincides
with the set of all functions with constant modulus.

Example 1. Let (), %, u) be an atomless probability space (that is, a measure space with
Q) =1),1 < p < oo Let ) = AU B be any partition to measurable sets A, B. Then for
the operator T € L(L,(p)) given by

Tx:x—</0rxdy)r, wherer =14 —1p, x € Ly(n)

one has N*(T) = N(T) = {e € E: |e(w)] = A a.e.on ), A € R}

Proof. The inclusion {¢ € E : |e(w)] = Aae.on, A € R} C N°(T) follows from the
observation that T(Ar) = 0 and |Ar| = |e| for any element e € E with |e(w)| = A a.e. on Q). To
show that T is not narrow at each point e € E with |e| # Ar, A € R, consider any element of
the form x = e-1¢c — e - 1p, where Q = CU D (i.e., an arbitrary element x € E with |x| = |e|).
SetFF =ANC, KL =AND,Fs=BNCandFE;, = BND. Then

def
= d:/d_/d—/d du,
o /ery Fley er;/l F3e U+ F4e]/t

which implies |a| < fQ le| du = ”e”Ll(y)-
Hence,

1Tl = [l —arl] = |[x[| = lecl 7]l = Nell = lac] = llellr,, ) = Nell, o)- 1)

If we assume that T is narrow at e then by (1), [le[| () — llel|1, (4) = O which yields that |e|
is a constant. U
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The following theorem provides an example of narrow at a fixed point operators on an
arbitrary Kothe Banach space with nonnarrow sum at the same point.

Theorem 1. Let E be a Koéthe Banach space on a finite atomless measure space (0, %, u). Then
there are continuous linear operators Ty, T, € L(E) each of which is strictly narrow at the point
1 = 1, however the sum T, + T, is not narrow at 1.

Proof. Assume for simplicity of the notation that #(Q)) = 1 and ||1|] = 1. Decompose Q) =
AU Ay U Az U Ay with measure u(A;) = 1/4 each. Setry = 14, +14, — 14, — 14, and
ry =14, — 14, + 14, — 14,. Define operators Ty, T, € L(E) by setting

Tix:x—</ rixdy)ri, xeE i=1,2
0

It is immediately that T; are strictly narrow at 1, because T;r; = 0,1 = 1,2. We show that
T; + T, is not narrow at 1. Let r € E be any element of the form r = 14 — 15, where A,B € &
with ) = AU B. Weset D, = AN Ay and F, = BN Ay fork = 1,2,3,4. Then set

A= /eridy, i=1,2.
Taking into account that u(Dy) + u(F;) = 1/4 for all k, we obtain

A = u(D1) + u(D2) — u(D3) — u(Dy) — p(Fr) — p(F2) + u(F3) + p(Fy)
= 2u(D1) + 2u(D2) — 2u(D3) — 2u(Dy)

and analogously

(2)

Az = 2p(Dy) — 2u(D3) + 2(D3) — 2u(Ds). 3)
Since |A;] <1 fori = 1,2 and E is a Kéthe Banach space,
I(Ty+ To) r[| = [|12r — Mr1 = Aara| = [[(2 = A1 = A2)1p, + (2 — A1+ A2)1p,
+(2+ A1 —A2)1p, + (2+ Ay +A2)1p, + (=2 — A1 — A2)1p
+ (=2 =AM+ A1 + (=2 + A1 — A)1g + (=24 A1+ A2) 15|

> max{ (2 = M = 22)[[1p, |, (2 = A1+ A2) [T, |, (24 A1 = A2) [ 1,
(2+ M+ A2)[1p, [, 2+ A1+ A2) 1R [, (24 A1 — A2) |15 ||,
(2= M +22) 18], (2= A1 = A2)l[1g 1}

Since 1= 1p, +1p, + 1p, + 1p, + 15 + 15, + 1f, + 1f,, one of the summands has norm at
least 1/8. Of course, it is a matter of similar cases, which one. Say, ||1p, || > 1/8. Then

(i + T2)r[| = (2= A1 = A2)[[1p, [| = (2 — A1 — A2) /8.
Fix any € > 0 and assume that r is chosen so that || (T} 4+ T») r|| < e. Then by the above,
2 A — Ay < 8e. 4)

We claim that A; > 1 —8efori =1,2. Indeed,if A; <1—8ethen2— A1 — Ay >1— A1 > 8¢,
which contradicts (4). Analogously, A, > 1 — 8e. Then by (2),

#(D1) + u(D2) — u(D3) —u(Dy) = - > 5 —4e (5)
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and by (3),
A 1
#(D1) — u(D2) + u(D3) — u(Dy) = 72 > 5 —de (6)
Averaging (5) and (6), one gets 1 > u(D;) > u(D;) — u(Ds) > 1 — 4e, which implies
e > 1/16. Thus, Ty 4+ T; is not narrow at 1. O

The following statement characterizes the set of strict narrowness of linear maps.

Proposition 1.5. Let E be a Riesz space, X a linear space and T : E — X a linear operator. Then
N3(T) = {x €E: (JeckerT)|x| = |e|}.

Proof. Let x € N5(T). Choose a decomposition x = x’ LI x” so that T(x') = T(x"). Then for
e = x' — x” one has that |e| = |x| and e € ker T.
Assumee € ker T x € E and |x| = |e|. Then

e=(x"AeT ) U Aet)U(=(xT AeT))U(=(x" AeT)) (7)

and
x=(xtAe)U(=(x Aeh))U(xT Ae)U(=(x AeT)). (8)
Then setting x’ = (xt Aet) — (x~ Ae”) and ¥/ = —(x~ Aet) + (xT Ae), we obtain

x = x'Ux"” and by (7) and (8),
 To — T(xT Aot — Aot + Ao —Ae—) = Ty I
O0=Te=T(x"Ne")+T(x ANe")—T(x " ANe")—T(x" Ne ) =Tx"—Tx". 0

In particular, N°(T) need not be a linear subspace of E. For instance, if ker T is the set of
all constant functions then N*(T) equals the set of all functions with constant modulus.

Remark that Proposition 1.5 is not longer true for orthogonally additive operators due to the
obvious example Tx = x~ for which N*(T) = E™. To provide more examples for orthogonally
additive operators we recall some necessary information from [9]. Given any two elements x, y
of a Riesz space E, by xy we denote the greatest lower bound of the two-element set {x,y} in
E with respect to the lateral order u T v on E, if it exists. If E is a Riesz space of functions then

[ (), i x() = y(0)
Wi ={ 0 0 2o

A Riesz space is said to have the intersection property if every two-point subset {x,y}
of E has the lateral infimum xy. In particular, the principal projection property implies the
intersection property [9].

Example 2. Let E be a Riesz space with the intersection property and e € E. Then the function
T : E — E given by Tx = ex is an orthogonally additive operator with N*(T) = {0} U (E \ ).

Example 3. Let E be a Riesz space with the intersection property and e € E. Then the function
T : E — E given by Tx = x — ex is an orthogonally additive operator with N*(T) = .

The following example [7, Example 4.2] shows that, a continuous linear functional on an
atomless Banach lattice may have the only zero point of narrowness.
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Example 4. There is a continuous linear functional f € L}, for which N'(f) = N°(f) = {0}.

Proof. Denote by B the Boolean algebra of Borel subsets of [0, 1] equals up to measure null sets.
Let U be any ultrafilter on B. Then the linear functional f : E — R defined by

. 1
f(x) = lim W/AXdy

AeU Y

is obviously bounded. However it is not narrow in any sense at every nonzero point. Indeed,
for each x € Lo \ {0} of the form x = 14 — 15 where [0,1] = AU B one has f(x) = +£1
depending on whether A € U/ or B € U. O

2  UNIFORMLY NARROW PAIRS OF OPERATORS

Below we define a uniformly narrow pair of operators; even though one can consider an
arbitrary uniformly narrow set of operators.

Definition 2.1. Let E be a Riesz space and X be an F-space. We say that an orthogonally
additive operators S, T : E — X are uniformly narrow if for every e € E and every € > 0 there
exists a partitione = ¢’ L ¢” such that ||Se’ — Se’’|| < e and ||Te’ — Te"|| < e.

As was noted in the introduction, a simple argument shows that, if orthogonally additive
operators S, T : E — X are uniformly narrow then the sum S + T is narrow. The following
question naturally arises.

Problem 1. Let E be a Riesz space and X be an F-space. Are the following assertions equivalent
for every pair of narrow linear (orthogonally additive operators) S,T : E — X?

(i) S+ T is narrow;
(ii) S, T are uniformly narrow.

Although we do not know any example of spaces with negative answer to Problem 1, we
present below an affirmative solution for some partial cases. We refer the reader to [1] for
further standard terminology concerning operators on Riesz spaces.

We say that a Banach space X has the contains its square if there are a subspace Y of X and
a decomposition Y = X; @ X, onto subspaces Xj, X, isomorphic to X.

Theorem 2. Let E be a Riesz space and X be a Banach space containing its square. Let the
sum of every two narrow linear bounded operators from E to X is narrow. Then every pair
S,T : E — X of narrow linear bounded operators is uniformly narrow.

Proof. Let Y be a subspace of X, Y = Xj & X, with subspaces Xj, X, isomorphic to X. Let
T; : X — X; be isomorphisms, i = 1,2. Let S, T : E — X be narrow linear operators. Then the
linear operators S’, T" : E — Y C X defined by setting S’ = 1y oS and T’ = 1 o T are narrow
as compositions of a narrow operator from the right by a bounded operator from the left. By
the assumption, the operator A = S’ 4 T’ is narrow. Denote by P the projection of Y onto X;
parallel to X, and by Q the projection of Y onto X parallel to X;. Observe that Po A = S§’ and
QoA =T .Givenanye € E" and ¢ > 0, we choose a decomposition e = ¢’ Ll ¢” such that

€
|Ae’ — Ae"|| < —— :
I~ max{{[| P[], [| QI }
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Then
Ise' = 5" < e llz(S¢ — Se")| = [T 18"’ — |
= [THIIP(Ae" — Ae") | < [T [[[IP][| A’ — A" <.
Analogously, || Te’ — Te"|| < e. O

For example, the assumptions of Theorem 2 are valid for E = F = L (see [2] or [14, Theo-
rem 7.46] for the fact that a sum of every two narrow operators on L; is narrow).

We say that a Banach lattice X regularly contains its square if there are a subspace Y of X
and a decomposition Y = X; @ X5 onto subspaces X1, X, isomorphic to X by means of regular
isomorphisms 7; : X — X;,i =1,2.

Theorem 3. Let E be a Riesz space and X be a Banach lattice regularly containing its square.
Let the sum of every two narrow regular linear operators from E to X is narrow. Then every
pair S, T : E — X of narrow regular linear operators is uniformly narrow.

Proof. LetY be a subspace of X, Y = X; @ X, with subspaces Xj, X, isomorphic to X by means
of regular isomorphisms 7; : X — X;,i = 1,2. Let S,T : E — X be narrow regular linear
operators. Then the linear operators S, T’ : E — Y C X defined by setting S’ = 7y o S and
T' = 1 o T are narrow regular as compositions of a narrow regular operator from the right
by a bounded regular operator from the left. By the assumption, the operator A = S’ + T' is
narrow. Starting from this point, the proof is the same as that of Theorem 2. O

Corollary 2.1. Let E, F be order continuous Banach lattices with E atomless and F regularly
containing its square. Then every pair of narrow regular operator S,T : E — F is uniformly
narrow.

Proof. Accordingly to Theorem 11.8 of [7] (see also [14, Theorem 10.41]), the set of all narrow
regular linear operators is a band in the Riesz space of all regular linear operators from E to F.
In particular, the sum of every two narrow regular linear operators from E to X is narrow. By
Theorem 3, every pair of narrow regular operator S, T : E — F is uniformly narrow. O

Now we pass to orthogonally additive operators. Let E and F be Riesz spaces. An orthog-
onally additive operator T : E — F is called:

e positive provided Tx > 0 holds in F for all x € E;
e order bounded it T maps order bounded sets in E to order bounded sets in F.

Observe that if T : E — F is a positive orthogonally additive operator and x € E is such
that T(x) # 0 then T(—x) # —T(x) (otherwise both T(x) > 0 and T(—x) > 0 would imply
T(x) = 0). Thus, this positivity turns out to be more restrictive than the usual one for linear
operators because the only linear operator which is positive in the above sense is zero.

A positive orthogonally additive operator need not be order bounded. Indeed, every func-
tion T : R — R with T(0) = 0 is an orthogonally additive operator, and obviously, not each of
them is order bounded.

Banach lattices E and F are said to be Riesz isomorphic if there exists a Riesz isomorphism
7 : E — F, that is, an isomorphism between Banach spaces such that both T and 7! are order
preserving operators.
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We say that a Banach lattice X contains its Riesz square if there are a subspace Y of X and a
decomposition Y = X; @ X5 onto subspaces Xj, X, Riesz isomorphic to X and, moreover, the
corresponding projections of Y onto X; parallel to X3_; are order continuous. For example, the
Banach lattice L, [0,1] with 1 < p < oo obviously contains its Riesz square.

Theorem 4. Let E be an atomless Riesz space and F be an order continuous Banach lattice
containing its Riesz square. Let the sum of every two narrow up-laterally continuous abstract
Uryson operators from E to X is narrow. Then every pair S,T : E — X of narrow up-laterally
continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator
B : E — F is narrow if and only if B is order narrow. Let Y be a subspace of X, Y = X; ® X»
and 7; : X — X; be Riesz isomorphisms, i = 1,2. Let S,T : E — X be narrow up-laterally
continuous abstract Uryson operators. Then the maps S’, T’ : E — Y C X defined by setting
S" =7 o0Sand T' = 1, o T are narrow up-laterally continuous abstract Uryson operators as
compositions of such an operator from the right by a bounded regular operator from the left.
By the theorem assumptions, the operator A = S’ + T’ is narrow and so, is order narrow.
Denote by P the projection of Y onto X; parallel to X, and by Q the projection of Y onto X,
parallel to X;. Observe that Po A = §’and Qo A = T'. Givenany ¢ € ET and ¢ > 0, we
choose a net of decompositions e = ¢}, Ll ¢!/ with (Ael, — Ae!’) > 0. Since the operators 7~
and P are order continuous,

Sel — Se! = 771(S'el, — §'e!!) = TTIP(Ae, — Ael') - 0.

By the order continuity of F, ||Se}, — Sel/|| — 0. Analogously, || Te, — Tel/|| — 0. We choose « so
that ||Se, — Sel/|| < e and || Te}, — Tel/|| < e. O

As a consequence of [12, Theorem 8.2], we obtain the following assertion.

Corollary 2.2. Let E be an atomless Riesz space with the principal projection property and F be
an order continuous Banach lattice containing its Riesz square. Then every pair S,T : E — X
of narrow up-laterally continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator
B : E — F is narrow if and only if B is order narrow. So, by [12, Theorem 8.2], the sum of every
two narrow up-laterally continuous abstract Uryson operators from E to X is narrow. Then
apply Theorem 4. O

Recall that an operator T € L(E,X) from a Kothe Banach space E on a finite atomless
measure space ((), X, i) to a Banach space X is called hereditarily narrow if for every A € %,
#(A) > 0 and every atomless sub-o-algebra F of 2(A) the restriction of T to E(F) is narrow
(hereX(A) ={BeX: BC A}and E(F) = {x € E(A) : x is F — measurable}). We refer the
reader to [14, Section 11.1] for more information on hereditarily narrow operators.

Proposition 2.1. Let E be a Kéthe Banach space on [0, 1] with an absolutely continuous norm
and X be a Banach space. If S € L(E, X) is a hereditarily narrow operator and T € L(E, X) is
a narrow operator then the pair S, T is uniformly narrow.

The proof of Proposition 2.1 just repeats the proof of [14, Proposition 11.2] (see also [3]).
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I'ymenuyk A.I, Kpacikosa I.B., TTorroB M.M. Touxu sysvkocmi i 00HocmaiiHo 8y3vki niHiliHi ma opimoeo-
HavHo adumueHi onepamopu // KapmaTtcpki mateMm. myba. — 2017. — T.9, Nel. — C. 37-47.

Biaomo, 1m0 cyMa AOBIABHMX ABOX BY3bKMX OIlepaTOpiB Ha Lj € By3bKOIO, IIPOTe AASI IIPOCTOPIB
Ly 31 < p < co aHaroTiuHe TBepAXKeHHs X1bHe. AaHa CTATTSI MPOAOBXY€e UMCAeHHI AOCAIAKEHHS
Ha 1o TeMy. [lo-mepiire, Mu BUBYaeMO BY3bKiCTb AiHIVTHIX Ta OPTOrOHAABHO AAUTMBHIX OepaTopPiB
Ha pyHKIIOHaABHMX ITpocTopax Kere i BekTopHMX rpaTkax y dixkcopaniit Tourii. Teopema 1 cTBep-
AXYe€, IO AT KOXXHOTO 6aHaxoBoro mpocTopy Kere Ha mpocTopi 3i ckiHgeHHO0 6€3aTOMHOIO MipOO
icHyIOTb AiHiVHI HerrepepsHi onepaTopu S, T : E — E, sKi € By3bKMMU y Aesikilt dpikcoBaHilt Toui,
npore cyMma S + T He € By3bKOIO Y Lili Xe camili Touti. [To-apyre, M yBOAMMO i AOCAIAXY€EMO OAHO-
cTarHo By3bKi mapu onepatopis S, T : E — X, To6T0, AAsT KoXHOTO e € E Ta KoxHoro € > 0 icHye
poskaaa e = ¢’ + ¢ Ha an3'oHKTHI eneMerTH Takwmit, wo ||S(e’) — S(e”)|| < eTa | T(e") — T(e")| <e.
CranaapTHMIT METOA B AiTepaTypi AOBeAEHHS BY3bKOCTi CyMM ABOX BY3bKMX omepaTopis S + T mo-
AsiTa€ B TOMY, 06U TI0KasaTy, o mapa S, T € OAHOCTalfHO By3bKOM. MM BUBUAEMO IUTaHHSI, UM
KO>XKHa Tlapa BY3bKMX OIepaTOpiB 3 By3bKOKIO CYyMOIO € OAHOCTalHO By3bkol. He maroum xoaHo-
TO KOHTPIPMKAAAY, MU AOBOAMMO KiAbKa TeOpeM, siKi HAAalOTh MO3UTUBHY BiATIOBiAb AAST A@STKMX
YaCTKOBUX BUITAAKiB.

Kntouosi cnoea i ppasu: By3bKMI OIlepaToOp, OPTOrOHAABHO aAMTHBHMI OllepaTop, 6aHaxiB mpo-
ctip Kere.
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DzHALIUK N.S., PETRYCHKOVYCH V.M.

THE STRUCTURE OF SOLUTIONS OF THE MATRIX LINEAR UNILATERAL
POLYNOMIAL EQUATION WITH TWO VARIABLES

We investigate the structure of solutions of the matrix linear polynomial equation
A(A)X(A) + B(A)Y(A) = C(A), in particular, possible degrees of the solutions. The solving of
this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix
coefficients in triangular forms with invariant factors on the main diagonals, to which the matri-
ces A(A), B(A) and C(A) are reduced by means of semiscalar equivalent transformations. On the
basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solu-
tions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree
are established. An effective method for constructing minimal degree solutions of the equations is
suggested. In this article, unlike well-known results about the estimations of the degrees of the solu-
tions of the matrix polynomial equations in which both matrix coefficients are regular or at least one
of them is regular, we have considered the case when the matrix polynomial equation has arbitrary
matrix coefficients A(A) and B(A).

Key words and phrases: matrix polynomial equation, solution of equation, semiscalar equivalence
of polynomial matrices.
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INTRODUCTION

Let F be a field and F[A] be a polynomial ring over F. The matrix linear polynomial

equations
A(A)X(A) +B(A)Y(A) = C(A), (1)

AA)X(A) +Y(A)B(A) = C(A), (2)

where A(A), B(A) and C(A) are known, X(A) and Y(A) are unknown m X m matrices over
ring F[A], find application in the dynamical systems theory, the optimal control theory and in
other areas [6,7,12-14].

It is clear, that if equations (1) and (2) are solvable, then they have solutions of unlimited
on top degrees. Therefore, when we describe the solutions of such equations, it is important
to establish their minimal degrees. Some estimations of the degrees of the solutions of the
matrix polynomial equation (2) are known in [1,5,9]. In [1], it has been established that if in
the matrix polynomial equation (2) both matrices A(A), B(A) are regular, then there exists a
solution X(A), Y(A), such that

degX(A) < degB(A), degY(A) < degA(A) (3)

YAK 512.64
2010 Mathematics Subject Classification: 15A21, 15A24.

@ Dzhaliuk N.S., Petrychkovych V.M., 2017



THE STRUCTURE OF SOLUTIONS OF THE MATRIX LINEAR UNILATERAL POLYNOMIAL EQUATION 49

and it is unique if and only if
degC(A) < degA(A) +degB(A) —1 and (detA(A),detB(A)) =1.

In [5], this result has been extended for the matrix equation (2) if at least one of the matrices
A(A) or B(A) is regular. We don’t know similar estimates of the degrees of the solutions of the
matrix polynomial equation (1).

In [2, 8], the matrix linear unilateral and bilateral equations in the form (1) and (2) over
other domains have been studied.

In [3], we have obtained some bounds of the degrees of the solutions of the matrix polyno-
mial equation (1) with singular matrix coefficients. In this paper, we have continued studing
the structure of solutions of this matrix polynomial equation. The triple of matrices A(A), B(A)
and C(A) can be simultaneously reduced to triangular forms T4(A), TB(A) and T¢ (1) with in-
variant factors on main diagonals by means of semiscalar equivalence transformations [10,11].
Following this, the bounds of the degrees of the solutions of the matrix polynomial equation
(1) have been pointed out. Necessary and sufficient conditions for the uniqueness of a solution
with a minimal degree have been established. There is also suggested an effective method for
constructing minimal degree solutions of such matrix polynomial equations.

1 PRELIMINARY RESULTS

We denote the ring of m x m matrices over F[A] by M(m, F[A]), groups of invertible
matrices over F and F[A] by GL(m,F) and GL(m, F[A]), respectively.

It is well known, that every matrix A(A) € M(m, F[A]), rankA = r, is equivalent to the
Smith normal form S4 (A), that is,

SAA) = UM AW V(A) = diag(u(A), ..., 1l (A),0, ...,0),

where U(A), V(A) € GL(m, F[A]), u*(A) | uft1(A), i=1,...,r — 1. The polynomials pi{*(7)
are called the invariant factors of matrix A(A).

Definition 1 ( [10,11]). Collection of polynomial matrices

where A;(A), Bi(A) € M(m,F[A]), if there exist matrices Q € GL(m,F) and R;(A) €
GL(m, F[A]) such that Bi(A) = QA:(MRi(A), i=1, ..., k.

Theorem 1 ( [10,11]). Collection of nonsingular polynomial matrices
A1(A), ..., Ar(A), Ai(A) € M(m, F[A]),
i=1,..., k, issemiscalar equivalent to the collection of triangular matrices

T4 (M), ..., T4(A),



50 DzHALIUK N.S., PETRYCHKOVYCH V.M.

that is, there exist an upper unitriangular matrix Q € GL(m, F) and invertible matrices R4i(A) €
GL(m, F[A]) such that

uii(A) 0 0
() 1) A,
TA(A) = QA; (AR (M) = tor (Muy" (A) Hy'(A) 0 ’ @)
ED ) D) - u )

where deg tl(fq) (A) < deg y?i(}\) — deg yf;" (A), if deg y;‘" (A) > deg yf?i()\) and tgq) (A) =0, if
y?i()\) = yf;"(}\), forallp,q=1,.... m,p>q;i=1,...,k

Triangular form T#i(A) is called standard form of polynomial matrix A;(A) with respect
to semiscalar equivalence. Note that the matrix T4/(A) may be written in the form T4i(A) =
T;(A)S4i(A), where T;(A) is a lower unitriangular matrix, S% (1) is the Smith normal form of
matrix A;(A).

) It should be noted that this theorem holds if the field F is infinite or if it is finite but
Y. s; < |F|, where |F| is the number of elements of finite field F,s; = degdetA;(A), i =

i=1
1, ..., k.

2 SOLUTIONS OF MINIMAL DEGREE OF MATRIX POLYNOMIAL EQUATIONS

By Theorem 1, the triple of nonsingular polynomial matrices A(A), B(A),
C(A) € M(m, F[A]) from equation (1) is semiscalar equivalent to the triple of triangular poly-
nomial matrices TA(A), TB(A), TC(A) in standard form, that is,

T4(A) = QA(MRA(A), TP(A) = QB(MRP(A), TE(A) = QC(A)R(A),

where Q € GL(m, F), RA(A), RB(A), RE€(A) € GL(m, F[A)).
Matrices T4(A), TB(A) and TC(A) have the form (4), that is,

ui(A) 0 0

Ay — || OO Oy 0
Tyt (M)t (A) T (Mgt (A) - (M)

ui(A) 0 e 0

TB(A) = by (M)uf (M) U5 () 0
byt (M) pB(A) b (A)uB (M) b (A)

s (A) 0 0

o = | IR () 0
Cml (A)Pﬁ (A) 5m2(/\)ﬂz (A) Vr% (A)
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Then from equation (1) we obtain the matrix polynomial equation
TAMX(A) + TE(A)Y(A) = TE(A), (5)

where X(A) = (R4(A))"'X(A)RE(A), Y(A) = (RB(A))"1Y(A)RE(A).
We will call the equation (5) associate to the equation (1).

Lemma 1. The equation (1) is solvable if and only if the equation (5) is solvable. Each solution
X(A), Y(A) of the equation (1) corresponds to a solution X(A), Y(A) of the equation (5) and the
converse each solution X(A), Y(A) of the equation (5) corresponds to a solution X(A), Y(A) of
the equation (1).

Proof. It is well known [6, 13], that the matrix equation (1) is solvable if and only if the left
greatest common divisor D(A) of matrices A(A) and B(A) is the left divisor of the matrix C(A).
Then the greatest common divisor of triangular forms T4 (1) and T2(A) is D1(A) = QD(A).
Is it easy to see that if the matrix D(A) is the left divisor of the matrix C(A), then D1 (A) is the
divisor of the matrix T¢()\) and | conversely.

Furthermore, each solution X(A), Y(A) of the equation (5) corresponds to the solution

X(A) = RAOX(A)(R(A) ™, Y(A) = REY(A)(RE(A) ™
of the equation (1) and conversely. O

Thus, the description of solutions of the matrix equation (1) is reduced to the description
of solutions of the associated equation (5).

Solutions X(A), Y(A) and X(A), Y(A) of the matrix equations (1) and (5) are associate.

We denote the i-th row of matrix A by row;(A).

Theorem 2. Let the matrix equation (5) be solvable. Then, it has the solution

Xi(A) = |7 W, ) =117 e

such that
row;(X1(A)) =0 if deguP(A)=0 (uP(A)=1),i=1,...k (6)

deg row;(X1(A)) < deguP(A) if deguP(A) >1,i=k+1,...,m, 7)

and the solution X, (A) = Hfl(jz)()\)ﬂ’f“, Yo (A) = Hyzj (A)||]* such that
row;(Y2(A)) =0 if degui(A) =0 (uf(A)=1),i=1,...,] ®)
deg row;(Y2(A)) < degut(A) if deguf(A) >1,i=1+1,...,m. )

Proof. From the matrix equation (5), we obtain the system of linear polynomial equations

i( (T (A) + BN (N)) = s AT (), (10

i, j=1,...,m, where El-l-()\) =b;i(A) =ci(A) = 1.
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The description of solutions of this system is reduced to the description of solutions of
linear polynomial equations in the following form

ui MTA) + pf (Mg (A) =E(A), 0, j=1,...,m. (11)

If the equation (11) is solvable, then it has the solution X;j(A) = ( ), Yij(A) = A{..l) (A)
such that degfl(jl)()\) < degu? (1) and the solution Xjj(A) = xz( )( ) yij(A) = f/f])( ) such
that degysz) (A) < deguft(A) [4,7]. If deguP(A) > 1,i = k+1,...,m, then for each element

in the row row;(X;(A)) the condition (7) of the theorem is true. Similarly, if degu?'(A) > 1,
i=1+1,...,m,the condition (9) is true.
Among equations of the system (10) there are such polynomial equations

Hit (DTi(A) + i (MFi(A) = p (1) (12)

If (1) = 1 and pB(A) = 1, then this equation has solutions ¥;;(A) = 0, 7;;(A) = u$(A) and
%i(A) = us(A), 7iu(A) = 0. If only one of (1) = 1 or u#(A) = 1, then this equation has

solutions ¥;;(A) = 0, (1) = & ) and Xi(A) = H 1) yii(A) =0, respectively.

ni (A) un)’
The system (10) also has polynomlal equations in the following form
TH ()\)xi]-()\) + ub (Myii(A) =0, i<ji=1,....m—-1,j=2,...,m (13)
These equations always have a zero solution, that is, X;;(A) = 0, y;;(A) = 0. Thus, the condi-
tions (6) and (8) of the theorem are true. This completes the proof. O

From the proof of this theorem, we get a method for constructing solutions of the matrix
equation (5). Since, the following inequalities degu!(A) < deguZi(A), i = 1,...,m —1, are
true for the invariant factors of matrix A(A), then degS#(A) = degus(A). Therefore, from
Theorem 2 we get the following corollary.

Corollary 1. Let the matrix equation (5) be solvable. Then it has the solution
XA, K@)
such that
Xi(A) =0 if degSB(A) =0 (B(A) is an invertible matrix),
degX;(A) < deg SB(A) if degSB(A) >1,
and the solution
X2(A), Ya(A)
such that
Y2(A) =0 if degS?(A) =0 (A(A) is an invertible matrix),
degY>(A) < deg SA(A) if degSA(A) > 1.
Theorem 3. Let

SA(A) =diag(l,..., Luf j(A), ..., um (1), k>0, (14)
k
and
SE(A) =diag(1,..., L uf 4 (A), ..., ub(A)), 1 >0, (15)

l
be the Smith normal forms of the matrices A(A) and B(\), respectively, and let the matrix
equation (5) be solvable. Without loss of generality, letk > .
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(i) If degu®(A) > degut(A) +degub(A), u(A) # 1, uB(A) #1, i=1,...,m, then the
matrix equation (5) has the solution

X(A) = |Z;MIE, Y(A) = [[7;(MD)]|F
such that

deg row;(X(1)) < degu? (1), deg row;(Y(A)) = degut (1) —deguf(A),  (16)

(ii) if deguf(A) = degpf'(A) +deguf(A), pf'(A) = LoruP(A) =1, i=1,...,k, then the

i

matrix equation (5) has solutions X(A), Y(A) such that
row;(X(A)) = 0, deg row;(Y(A)) < degu’(A) — degu?(A), (17)

and

deg row; (X(1)) < degu (1) — deguf (1), row;(Y(A)) = 0, (18)

(iii) if degu(A) < deguf*(A) +deguB(A), i=k+1,...,m, then the matrix equation (5) has

the solution X(A), Y(A) such that

deg row;(X(A)) < degul(7), deg row;(Y(A)) < deguf(A). (19)

Proof. Case (i). In the proof of Theorem 2, it has been shown that the solving of the matrix
equation (5) is reduced to the solving of the system of linear polynomial equations (10). This
system has equations (12). Then, there exists a solution with the condition deg X;;(A) <
degu? (1) of the i-th equation (12) [4,7]. So, deg ¥ij(A) = degu{(A) — degu?(A) for a fixed
value of i and all values of j = 1,...,m. Thus, the matrix equation (5) has the solution
X(A), Y(A) with the condition (16).

Case (ii). In this case the condition has the form degu&(A) = degu (1) or degut(A) =
deguB(A) if uB(A) =1or uf(1) =1forafixed value of i. If u8(A) =1and uf(A) =1fora
fixed value of i, then the condition has the form degyic(}\) = 0. In the proof of Theorem 2, it
has been shown that the system of linear polynomial equations (11) has equations (12) and (13).
In this case, these equations have zero solutions. Thus, the matrix equation (5) has solutions

X(A), Y(A) with the conditions (17) and (18).

Case (iii). There exists a solution of the equation (11) with the condition deg 371-]-()\) <
degy}3 (A), degyij(A) < deguf (M) if the condition degpu{(A) < deguf*(A) + degul (A) is true
for a fixed value of i and all values of j = 1, ..., m [4,7]. This completes the proof. O

Remark 1. We should note that in cases (ii) and (iii), opposite propositions hold, that is, their
conditions are necessary for the existence of solutions with the conditions (17)—(19).

Theorem 4. Let the equation (5) be solvable. Then it has solutions
X(A) = [1ZMIT YA) = 75T

of lower triangular forms such that

(i) degx;i(A) < degub(A), degyii(A) < degu(A)

if degyf(}\) < degyiA(A) + degy? A), i=1,...,m;
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(i) degX;i(A) < deguP (M), degyii(A) = degul(A) — degu?(A)

if deguS(A) > degu(A) +deguf(A), i=1,...,m.

Proof. We prove this theorem in a similar way to Theorem 2 and Theorem 3. ]
We get solutions of the matrix equation (1) from solutions of the matrix equation (5):
X(A) = RYA)X(A)(RE(M) 7, Y(A) = RE()Y(A)(RE(A) !
3 THE UNIQUENESS OF SOLUTIONS OF MINIMAL DEGREES OF MATRIX POLYNOMIAL

EQUATIONS

We will establish the conditions for the uniqueness of solutions of minimal degrees of the
matrix equation (5).

Theorem 5. The matrix equation (5) has a unique solution

W) = 17D, @) = 17

and
2
X0 = IEZ W, 20 = 172 Wl
such that
rowi()?él)(}\)) =0 if deguP(A)=0,i=1,...,k (20)
deg rowi(}?él)(}\)) < degub(A) if deguP(A)>1,i=k+1,...,m, (21)
and
rowi(fféz) (A) =0 if degu?(A)=0,i=1,...,k (22)
deg rowi(l?éz) (A) < deguft(A) if deguf(A)>1,i=k+1,...,m, (23)
if and only if

(U (A, 1 (A)) = 1.

Proof. It is clear that the matrix equation (5) has a unique solution Xél)(}\), 1751)()\) with
%1)( A)

the condition (21) if and only if each equation (11) has a unique solution x(l)( A), Y j

such that degfl(]-l) < deguP(A). This solution of the equation (11) is unique if and only

if (;tiA(A),yf(A)) =1 forall i,j =1,...,m[4,7]. The last condition holds if and only if
(AN, (V) = 1.

As it has been shown in the proof of Theorem 2, the system (10) has equations (12) and (13).
By the condition of the theorem, these equations have a zero solution, which is unique. Thus,

the solution }N(él) (A), 1751) (A) with the condition (20) is unique.
Similarly we prove the existence of a unique solution X(()z) (A), 1752) (A) with the conditions
(22) and (23). This completes the proof. O
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Theorem 6. Let the matrix equation (5) be solvable and let S4(A), and SB(A) be the Smith
normal forms (14) and (15) of the matrices A(A) and B(A), respectively. Then, there exists a
unique solution

X(A) = % M)IT, YA) = 7M1
of the matrix equation (5) with the conditions (17) and (18) if and only if
deguf (1) = degpf (A) +degul (1), i=1,....k and (up(A),up(A) =1,
and with the condition (19) if and only if
degus (M) < deguft(A) +deguP(A), i=k+1,...,m, and (ui(A),ul(7)) =1.

Proof. It is clear that a unique solution of the matrix equation (5) exists if and only if a unique
solution of the system of linear polynomial equations (10) exists, that is, a unique solution of
each linear polynomial equation (11) exists. This system has equations (12). If p#(A) = 1
and #P(A) = 1, then by the conditions of the theorem, this equation has solutions ¥;;(A) =
0, 7ii(A) = uS(A) and ;5(A) = uS(A), ¥ii(A) = 0. If only one of u'(A) = 1 or P (A) =1, then
this equation has solutions

Xii(A) =0, yii(A) = 1 ()

- c(A)
],{F(A) and xii()\) = ‘Z:TEA;, yll()\) = O,
respectively. The equations (13) always have a zero solution, that is, X;;(A) = 0, y;;(A) = 0.
This solution is unique. So, there exists a unique solution with the conditions (17) and (18) of
the matrix equation (5).

If uA(A) # 1 and pB(A) # 1, then by the results [4,7] the solution with the condition
(19) of the matrix equation (5) is unique if and only if the solution Xx;;(A), y;j(A) such that
deg¥;j(A) < deguP(A) and degyij(A) < degpus'(A) of the equation (11) is unique. There exist
such solutions and they are unique if and only if degu®(A) < degu?!(A) + degu?(A) and

A, (A) =14,j=1,...,m.

The last conditions are true if and only if (u7(A), #5 (1)) = 1. This completes the proof. [
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AOCAIAXYETBCSI CTPYKTypa PO3B'SI3KiB MaTPUUYHOTO AiHIHOTO MOAIHOMIaABHOTO pPiBHSIHHSI
A(A)X(A) 4+ B(A)Y(A) = C(A), 30xkpeMa MOXAMBI cTeleHi IMX po3B’si3KiB. P03B’s13yBaHHS LIbO-
TrO MaTpUYHOTO IIOAIHOMIaABHOTO PiBHSIHHSI 3BOAMTECSI AO PO3B’SI3yBaHHSI €KBiBaA€THOTO MaTpu-
YHOT'O TIOAIHOMIaABHOTO PiBHSIHHS 3 MaTpULISIMM-KoedpillieHTaMM y TPUMKYTHMX popMax 3 iHBapiaH-
THMMM MHOXHMKAMM Ha TOAOBHMX AlarOHAASIX, AO SIKMX 3BOASITHCS IIOAIHOMIiaAbHI MaTpPWIIi A(A),
B(A) i C(A) HamiBcKaASIPHMMM €KBiBaA€HTHUMIU ITepeTBopeHHs M. Ha OCHOBI 1IbOTO BKa3aHO MeXXi
AASL CTETIEHIB pO3B’sI3KiB MaTPUYHIX HOAIHOMiaABHIMX PiBHSIHB. BcTaHOBAEHO HeobXiaHi i AocTaTHI
YMOBU €AMHOCTI PO3B’sI3Ky MiHIMAABHOTO CTEIeHsI. 3allpOIIOHOBAHO e(PeKTUBHII METOA IOOYAOBI
PO3B’sI3KiB MiHIMaABHMX CTeIleHiB ImX piBHsHb. Ha BiaAMiHy Bia BiAOMIX pe3yAbTaTiB PO OLIHKM
CTEIeHiB PO3B’SI3KiB MaTPMUIHNX TOATHOMIaABHMX PiBHSIHB, B SIKMX 06MABa ab60 MpMHAVMHI OAVH i3
KoedpiIlieHTiB € PeryAsIpHOIO MaTPHIIEO, Y Lilf CTaTTi PO3TASHYTO BUMITAAOK MaTPIIHOTO TIOATHOMI-
AABHOTO PIBHSIHHS 3 AOBiAbHVMY KoedpitieHTamm A(A) i B(A).

Kntouosi cnosa i ¢ppasu: MaTpudHe OAIHOMiaAbHe piBHSIHHS, PO3B’SI30K PiBHSIHHS, HaIliBCKaASIP-
Ha €KBiBaA€HTHICTh TOAIHOMiaABHMX MaTpUILIb.
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POINCARE SERIES FOR THE ALGEBRAS OF JOINT INVARIANTS AND
COVARIANTS OF n QUADRATIC FORMS

We consider one of the fundamental objects of classical invariant theory, namely the Poincaré
series for an algebra of invariants of Lie group SL;. The first two terms of the Laurent series ex-
pansion of Poincaré series at the point z = 1 give us an important information about the structure
of the algebra Z,. It was derived by Hilbert for the algebra Z; = C[V,] °/2 of invariants for binary
d—form (by V; we denote the vector space over C consisting of all binary forms homogeneous of
degree d). Springer got this result, using explicit formula for the Poincaré series of this algebra. We
consider this problem for the algebra of joint invariants Z,,=C [V, &V, - - - @V%]S L2 and the algebra

~——
n times

of joint covariants Cp, =C[V2@V2® - - - Vo BC?|5L2 of n quadratic forms. We express the Poincaré

n times
series P (Cop, z) = 2o dim(Can); Z and P(Tp,, z) = Y2 o dim(Zz,); 2/ of these algebras in terms of
Narayana polynomials.
Also, for these algebras we calculate the degrees and asymptotic behavious of the degrees, using
their Poincaré series.
Key words and phrases: classical invariant theory, invariants, Poincaré series, combinatorics.

Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine
E-mail: ilashnadya@yandex.ua

INTRODUCTION

Let V, be the complex vector space of quadratic binary forms endowed with the natural ac-
tion of the special linear group SL,. Consider the corresponding action of the group SL, on the
algebras of polynomial functions C[nV,] and C[nV, @ C?], where nVs := Vo, @V, @ -+ @ V3.

N
n times

Denote by T,, = C[nV;] 52 and by C,, = C[nV, @ C?] L2 the corresponding algebras of invari-
ant polynomial functions. In the language of classical invariant theory the algebras 7,, and C,,
are called the algebra of joint invariants and the algebra of joint covariants for the n quadratic
binary forms respectively.

Let R = Ry @ Ry @ - - - be a finitely generated graded complex algebra, Ry = C. Denote by

P(R,z) =) _ dim R]-zj
j=0
its Poincaré series. Letting r be the transcendence degree of the quotient field of R over C, the
number

deg(R) :=lim(1 — z)"P(R, z)

z—1

YAK 512.647
2010 Mathematics Subject Classification: 13N15, 13A50, 05A19, 05E40 .
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is called the degree of the algebra R. The first two terms of the Laurent series expansion of P (R, z)
at the point z = 1 have the following form

_ deg(R) P(R)
P(R,z) = 1—z) + (1—z)y-1 T

The numbers deg(R), P(R) are important characteristics of the algebra R. For instance, if R is
(R)
deg(R)

an algebra of invariants of a finite group G then deg(R) ! is order of the group G and 2

is the number of pseudo-reflections in G (see [3]).

Let V; be the standard (d + 1)—dimensional complex representation of SL,. Consider the
corresponding algebras of invariants I; := C[V4]°2 and C; = C[V; © C?]°"2 be the corre-
sponding algebra of invariants. Explicit formula for the degree of algebra of invariants for
binary d—forms deg(Z;) was derived by Hilbert in [4] and Springer in [8]. In [2] explicit for-
mula for the degree of algebra of covariants for binary d—forms of deg(C;) was derived. For
this purpose, in [8] and [2] authors used an explicit formula for the Poincaré series of those
algebras.

The formal power series

P(Con,z) = Zdim(Czn)]-zj and P(Zy,,z) = Zdim(IZn)]- 2
j=0 j=0

are called the Poincaré series of the algebras Cy, and Z,,. In the paper [1] the following expres-
sions for the Poincaré series of those algebras was derived:

-1 n—k dkfl n—k n—k n)i(n),_ _iZankfifl
PCn(z) = ), (n—(k)!)k — 1)l dzk-1 (Z < i ) (i : i ”+i(k1 —zz)zn_k_i> ’

(

(-pr*  d! ni( n—k\ _(n)i(n)y__iz" 1
=Rk —=1)d=1 \ Z\ i J(1—z)ntil(1—z2)nk=i |7
where (1), :==n(n+1)---(n+m—1),(n)y := 1 denotes the shifted factorial.

In the present paper those formulas are reduced to the following forms:

anl(Zz)
(1 _ 2)3"71(1 + Z)anl

W,_1(z?) — nzN,_1(z?)

P(CanZ) = (1 _ Z)3n71(1 _}_Z)anl 4

and P(Zp,,z) =

where )
% 1/n-1 n —1 % (n\
Nn(z)_k;E<k—1> (k_1>z and WH(Z)_I(;)(k) z
denotes the Narayana polynomials and the Narayana polynomials of type B respectively.

Also, the degrees of algebras 7,,, Cp, and asymptotic behaviors of the degrees are calcu-
lated using the explicit expressions for the Poincaré series.

1 COMBINATORIAL IDENTITIES

Let us prove several auxiliary combinatorial identities.
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Lemma 1. Let m, n be positive integers. The following identities hold:

' W,_ 1(22 n qk—1 o2n—k=14+a  gn—k 1
(@) (1—z)2(1—22)2~ L= Z (n—k)! k 1)tdzk=1 \ (1—z)2n—kta gzn—k <z“(1+z)”> ’

- nan_l(zz) B n 1 dk-1 z2n—k+a qn—k 1
() A=zt~ k; (k)1 (k—1)! dzF—1 ((1—2)2nk+u dznF <z”(1—|—z)”>) '

Proof. We shall prove the relations by induction in a.
For a = 0 the statements follow immediately from the next identities (see [5]):

Z (—1)"7]((71)”,]( dk—1 < S2n—k—1 ) Z ( ) 2k
(k=1 (n—k)ldzk-1\ (1 —z2)2n-k | — (1—22)2"*1 ’

Xn: (—1)"7]((71)”,]( dk—1 < S2n—k ) _ er(t;g (n;Z) (k—T—l)sz+1
(k—=1)1(n —k)!dzk-1 \ (1 —z2)2n—k (1 —z2)2n-1 '

(i) Assume there is a non-negative m such that

i 1 gk—1 y2n—k=14+m  gn—k 1 _ Z?:Ol (nz 1)2 2i .
= (n=k)!{(k=1)tdzk=1 \ (1—z)2n—ktm dzn=k \ z7(14-z)" (1—z)m(1—z2)2n-1
We must prove the formula (i) is true fora =m+1:

n 1 k1 Z2n—k+m qn—k 1 Z ( )2 2i
,; (n—k)!(k=1)! dzF—1 \ (1—z)2kbm gzn—k zm 1 (14z)n | ~— (1= z)m“(l z2)2n-1"

That is,

n 1 dk—l ZZn—k—1+m+1 dn—k 1
(1-2) ), (n—k)!(k—=1)! dzk=1 \ (1—z)Zn—ktm+1 gzn—k zm+1(14z)n

k=1
n 1 dkfl Zankfqum dnfk 1
:k;l (n—k)!(k — 1)l dzk-1 \ (1 — z)2n—k+m gzn—k <zm(1 + Z)”) '

It sufficed to show that (we expanded the functions into the Taylor series about z)

min{sz”—l}"zf <n+k—j—1> <n+m—|—k—i—1> (1) <n+i—1> <i—m>
j=0  i=0 k k—j—i i J
B mf”{g‘l}"z{ <<n+k—] 1) <n+m+k ) <n+k—j—2> <n—|—m—|—k—i—1>>
=0 =0 ) k=j—i k=1 k=j=imd
y (_1)i<n+;—1> <z—rr.z—1>_
J
Using following formulas

() =5G22 ()= ()= G2)

after some algebraic transformations we obtain the last equality.
The proof of (ii) is completely analogous to that of (7). O
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2 THE POINCARE SERIES OF THE ALGEBRAS OF INVARIANTS AND COVARIANTS

We use the derived above combinatorial identities to express the Poincaré series P(Zy;, z)
and P(Cyy, z) in terms of Narayana polynomials.

Theorem 1. The following formulas hold:

anl(Zz)
W,_1(z%) — nzN,,_1(z?)
(1 _ Z)"(l _ ZZ)anl

(i) P(Con,z) =

(ii) P(Zpn,z) =

Proof. (i) Note that
-1 n—k — n—k " ; 2n—k—i—1
P(CZn/Z) = Z (n£k>')(k 1 'de 1 <Z < i ) 1—2z) 3+1(k1 ZZZ>2n k— 1)

n 1 3nk1 dnk 1
:k;l(n—k)' —1'dzk1( z)3n— kdz”k<( (1—1—2))”))'

Substituting n for a in Lemma 1 (i), we get

n 1 dk—l ZBn—k—l dn—k 1 _ Wn, (ZZ)
g (n—k)!(k—1)! dzk—1 ((1—2)3”—k dzn—k ((z(l—{—z))”)) _(1—2)”(11—22)2”—1'

1

(i)

1)n k dk 1 n—k )( )n P ZZankfifl
P(Zzn,2) ]; —k)I(k—1)1 dzk—1 Z( ; ) 1—z)nti-1(]—z2)2n—k-i

—_

n 1 3n k—1 qr k 1
; k)l(k_l 'dzk 1 < 2)3n—k—1 dznF (z (1+Z))n>
n 31— k—1 dnfk 1
; —k)! (k—l'dzk 1( z)3n—k dzn- k((l—i—z))”)
n
"L

1 3nk dnk 1
k)(k—l'dzk1 (1 —z)3n—kdzn—k(z(14+2z))" |

Substituting n for m in Lemma 1, we get

Wn—l(zz) — nZNn—l(ZZ)
(1 _ Z)”(l _ ZZ)Zn—l

P(Izn, Z) =

3 THE DEGREES OF THE ALGEBRAS OF INVARIANTS AND COVARIANTS

Let us calculate the degrees of the algebras of joint invariants and covariants of n quadratic
binary forms using the formulas for the Poincaré series P (Zy,, z) and P (Cyy, 2).
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Theorem 2. The following formulas hold
(i) trdegeCoy =3n—1,
(ii) trdegcZy, = 3n —3.

Proof. The transcendence degrees over C for the algebras Izn, Coy is equal to order of the pole
for P(Zpn,z), P(Can, z) respectively, see [7]. Since W?_n = # 0. for all n then trdeg.Cp, =

3n —1.
Note that
n—1 2 n—1
5 > n—1 1/n-2\ (n—-1
(W1 (%)~ 2Ny (22)) |z_1=k§( 3 )‘”ZEQ_J (1=

e e 2 () B2 () ()
(Wa-1(z2) —nzNy1(2))" [e=1= z 2K(2k — 1) ( . 1)

n—1\/n—-2\(2n—-4
—nz (2k —1)( 2k—2)<k_1><k_1><n_2>7é0.
Thus, the function (W,,_1(z?) — nzN,,_ 1( 2)) has the pole of order 2 at z = 1. Let us remem-

W,_1(z%) — nzN,_1(z%)
ber that P(Z,,z) = (=2 i(1 1 2
Note that the proof of previous Theorem is direct. Luna’s Slice Theorem (see [6]) gives us
more general result.
We know explicit forms for the Poincaré series for the algebras of joint invariants and co-
variants of n linear forms. Thus we can prove the following statement.

. This implies that tr deg: Z,, = 3n — 3. O

Theorem 3. The degrees of the algebras of joint covariants and invariants of n quadratic binary
forms are equal to

' B (2nn:12)
(i) deg(Can2) = S5y

) )
(ii)  deg(Zon, z) = -1 1

Proof. (i) Using Theorem 1 and Theorem 2, we have:

=l —1\? 5
- - AL A =
deg(Ca) = lzlirll(l —z) P(Cn,z) = 121311(1 —z) (1—z)7(1 — z2)2n1 ~ o1

(ii) Similarly, we have

W,,_1(z%)—nzN,_1(z?)
3n—3 _ n—1 n-1
deg(Izn)—hm(l z) P(Z,,z) = 1211 (—2)2(1z)2 1

W (@) 2N ()" (G5)
z=1 ((1_2)2(1+Z)2n—1>/’ (n—1)22n-1
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Note that asymptotically, the Catalan numbers grow as

o _ 1 (2 g
" n+1\n n3/2\/m

It is easy to calculate asymptotic behaviours of the degrees of the algebras 7, and Cy,:

Corollary 1. Asymptotic behaviours of the degrees of the algebras of joint invariants and co-
variants of n quadratic binary forms as n — oo are follows

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

1

deg (IZ}’I ) ~ F .

1
——— and deg(Cy,) ~
S/ (Can)
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Mu posrasiaaeMo oaHY 3 pyHAAMEHTAABHIX ITPOOAEM KAACHYIHOI Teopil iHBapiaHTiB — AOCAiAXKe-
HHs psAy [lyaskape aare6p igBapianTis rpymm Ai SLy. BiaoMo, 1o mepii AOAAHKM PO3KAAAY PSIAY
Ilyankape B psia AopaHa B OKOAl Touky z = 1 HeCcyTb BaXAMBY iH¢pOpMaiio Ipo CTPYKTYPY el
aarebpu. Ans aarebpu Z,; = C[V,] L2 insapiantis oaniei 6inapHoi dpopmu BoEM 6yAM obumcAeH-
Hi mie I'iapbepTom (TyT V;— KoMmaexkcHmit d + 1— BUMipHMIT BEKTOpHIIA IpOCTip b6iHapHMX popM
crenensi d). Ilisgimme 11eit ke pe3yabraT oTpuMas CIIpiHTep, BUKOPMCTOBYIOUM SIBHY (POPMYAY AAS
psiay Ilyankape aarebpu Z;. Posrasiaaerbest aHaAoOriuHa 3apava AAS aATeOp CHIABHMX iHBapiaHTiB
Ty =C[Va, & Vo @ - - @ Vo] 52 Ta ciinbsmx xoBapianTis Cpy, = C[Vo © Vo @ - - - @ Vo ®C?] 512 1 xBa-

n times n times
ApatiaHux cbopM. Mu Bupasuan psiau Ilyamxape P(Cop,z) = Yi2odim(Con)j 2/ 1a P(Zon,2) =
Z}?io dim(Zy,); 7 umx aarebp uepes noainomu Hapasaa. Takox My 06UMCAMAY CTeTIeH 11X aAre6p
Ta aCUIITOTMYHY MTOBEAIHKY LVX CTeleHiB, BUKOPUCTOBYIoun 11i psiau [lyaHkape.
Kntouosi cnosa i ¢ppasu: xracwdHa Teopisl iHBapiaHTiB, iEBapianTy, psiau [lyankape, koMbiHaTO-
prka.
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ON THE GROWTH OF A KLASSS OF DIRICHLET SERIES ABSOLUTELY
CONVERGENT IN HALF-PLANE

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series

F(s) = Y ayexp{sA,} with the abscissa of asolute convergence A € (—oo, +o0) and the growth of
n=1

o0
Dirichlet series Fj(s) = 21 yj exp{sA,}, 1 < j < 2, with the same abscissa of absolute convergence
n=
if the coefficients a, are connected with the coefficients a,, ; by correlation

An m A “
/3 <ln (|an|eA)‘“)> Hﬁ (ln (|an]|eA/\”)> , n— o,

=

wherew; >0,1<j<m, Zw]—l
j=1
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INTRODUCTION

For an entire function f(z) = Z a,z" let o[f] be its order and o[f] be its type. Using
=0

Hadamard’s formulas for the fmdlng of these characteristics, E.G. Calys [1] proved the follow-
ing theorems.

Theorem A. Suppose that entire functions f1(z) = 2 a,12" and fr(z) = Z a, 22" have finite
=0

orders and regular growth (in sence of the equality of order o[f] and Iower order A[f]) and the
sequences ( ) and ( ) are nondecreasing for n > ng. If

n(1/]au]) = (14 0(1))y/In (1/[ay1[) In (1/ |ay 2])

asn — oo, then the function f has regular growth and o[f] = +\/o[f1]o[f2]-

Theorem B. Suppose that functions fi and f, from Theorem A have the same order o[f1] =
o[f2] = 0 € (0,+00) and the types o[f1] = o1, o[f2] = 0». Also suppose that a,; # 0 and
> |an1|/1(1/]ay1]) for alln > ny, wherel is slowly varying function. If

|an| = (1+0(1))y/lanal|anz]|

asn — oo, then the function f has the order o[f] = ¢ and the type o|[f] < \/o107.

YAK 517.537.72
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In [2] Theorems A and B are generalized on the case of entire Dirichlet series of finite
generalized orders by Sheremeta, moreover instead two functions f; and f, were considered
n > 2 entire Dirichlet series.

Here we will obtain analogues results for Dirichlet series absolutely convergent in a half-
plane.

Let A = (A,) be an increasing to +oco sequence of nonnegative numbers and S(A, A) be a
class of Dirichlet series

Z apexp{sl,}, s=oc+it (1)

with a given sequence (A,) of exponents and an abscissa of absolutely convergence
0 = A € (—oo, +00) and M(c, F) = sup{|F(c +it)| : t € R} foro € (—oc0, A).

By L we denote a class of positive continuous functions a on (—oo, +00) such that
a(x) = a(xg) for x < xpand 0 < a(x) T +ooas xp < x T +oo. We say that a € L if
a € Land a((1+4+0(1))x) = (1 +o0(1))a(x) as x — +oco. Finally, « € Ly, if « € L and
a(cx) = (1+0(1))a(x) as x — +oo for each ¢ € (0, +0), i. e. a is slowly increasing function.
Clearly, Ly; C L.

Fora € L and B € L the values

—«a(In M(o, F))

B a(In M((T F))
Qul?,ﬁ[ ] = ‘lflg‘lm )\D‘gﬁ[F] lim

ota P(1/(A —0))
are called [3] generalized order and lower order correspondly of Dirichlet series (1) from the

class S(A, A).

1 ANALOGUES OF THEOREM A.

We need the following lemmas from [3].
Lemma 1.1. Leta € Ly, B € Lg; and

X

B T(ca() | T " (ﬁ‘l(cw(x»

as xg < x — +oo foreach c € (0,4).
Ifa(Ay) =0 (B (Ay/Inn)) asn — oo, then

) = (- ol)atx) @

B B a(Ay)
0splFl = ki glF] = 1115130;3()\ /1n (|a,|eArn))’

In |a,11] —In
Apt1 — An

An
A ﬁ[ ] = %22,5[1:] h_ri}olg()x /ln((|tl)n|€A)‘"))

and if, moreover, (A, 1) = (14 0(1))a(A,) and 2]  Aasng < n — oo, then

Remark 1.1 ([3]). In order that A% 5[ ] > %01313 [F], it is sufficient that « (A, 11) = (14 0(1))a(An)
asn — oo,
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Lemma 1.2. Leta € Ly;, B € Lg; and

g 1 A () — 08 ®
as xg < x — +oo foreachc € (0, +00).
Ifa(ln n) = o(B(An)) asn — oo, then
— o« (In (|ay]ed))

A _ 1A% I
le,ﬁ[F] - k[x,ﬁ[F] — JE)I(}O ‘B()\n> ’

In | 41| = In [an| S Aasng < n — o
An+1_)\n - ’

e alin ()
NoplF] = seplF] =: lim ===

Remark 1.2 ([3]). In order thatAfﬁ[P] > %32*[13], it is sufficient that B(A, 1) = (14 0(1))B(Ay)
asn — oo,

and if, moreover, f(A,+1) = (1+0(1))B(Ay) and
then

Suppose that F; € S(A, A), 1 < j < m,and

Fi(s) = ) ayjexp{sA,}. 4)
n=1

Using Lemma 1.1, at first we prove the following analog of Theorem A.

Theorem 1. Let functions « € Lg; and B € Lg; satisfy conditions (2), a(Ay) = o (B (An/In n))

and a(Ay41) = (14 0(1))a(Ay) as n — oo. Suppose that all functions (4) have regular

In |a,41i| —In |a,;
aB-growth (i.e. Aul?,ﬁ [F;] = Qp‘gﬁ[Fj] < 4o0) and n eyl —1n Ja,|

S Aasng < n— oo,

A1 — An
m
Ifw]->0,1§j§m, ijzland
=1
ﬁ<L>—(1+0(1))ﬁIB A K n— oo 5)
In (|ay,|eAr) i1 \In (layjleAr) ’ ’
then function (1) has regular af-growth and Qf, P [F] = I@[ ( 0’?’ P [Fi])*“1.

1

~

Proof. Since Af,/a [F;] = Qrf,/% [Fj] = 0j < +00, by Lemma 1.1 we have

lim *(An) = Q
n=eo B (Ay/In (|ayjleArn)) —

Therefore, from (5) we obtain

N
.1 An . YR An :
1 =1 [[8| —————

5 e <1n<|an|e%>> L ) 1P <ln<|an,]-|eAM>>

om0 An Y 1 An Y
N nlglt}og (oc()\n)ﬁ (ln (|an,]-|eA)‘n)>> _]llnlglt}o (oc()\n)'g (ln (|an,]-|eA)‘n)>>
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that is, N .
«
LAYPN /ln((|a) ) EQ;}]
Using Lemma 1.1 and the Remark 1.1, hence we get H Q] <A ﬁ[ | < Qf, P [F] = jf:n[l Q;"f, that
is the function F has regular af-growth and ¢;’ ﬁ[ | = ]_Ir;”[l(ga, 5[ ])“i. Theorem 1 is proved. O

From (2) it follows that the function « increases less rapidly than the function . Itis easy to
verify that the functions a(x) = In In x and B(x) = In x for x > x satisfy (2) and the condition
a(Ay) = 0(B(Ay/Inn)) holds as n — oo, provided Eo(ln Inn)/In A, < 1. Therefore,

Theorem 1 implies the following statement.
Corollary 1.1. Let @ (Inlnn)/InA, <1, Inln A,y = (1+0(1))Inln Ay asn — oo. Sup-
n—oo

I InlnIn M(c, F)) In [a,, 1] —In |a,;]
pose A e m(/(A—0)) 4 A1 — A
1<j<m.lIf

S Aasny < n — oo forall

An

In(—2> ) =(1 n [ — 2 ), =1,
“(muanremn)) +ell H“ <ln ([ ]|e/w>> 5

Inlnln M(c,F)) m o
hen lim = /
astt = oo then I /(A —0)) ALY

For the proof of the following theorem we will use Lemma 1.2.

Theorem 2. Let the functions « € Lg; and B € Ly; satisfy the condition (3), a(In n) = o(B(An))
and B(Ay11) = (1 +0(1))B(An) as n — oo. Suppose that all functions (4) have regular ap-

In |a |1 —=1In |a,;
growth and | nH’]‘ il S Aasng < n— oo,
)\n—i—l_)\n
m
Ifw]->0,1§j§m, ijzland
j=1

bt <ln (\an\eA)‘”)) =(1 +0(1))ﬁrx“’f <ln (\an,]-\eA)‘”» , N — 00, (6)

then function (1) has regular «f-growth and o7 IS[ | = H (02 IS[ )i,
=

Proof. Since Aﬁﬁ [F;] = Qul?,ﬁ [Fj] = 0j < +00, by Lemma 1.2 we have
a (1 |eArn
i SO0 (™)
n—00 ,B()\n>
Therefore, from (6), as in the proof of Theorem 1,

a (In (|an|edt))

‘ ln <|‘1n |eAAn)) ‘Uj_ m w;
A R ) HJE’&( 5(Ai) ) =I1e"

j=1

whence, as above, we obtain the regular a-growth of the function f and the equality Qf, 8 [F] =

m
I1(ez g[F])*/. Theorem 2 is proved. 0
=
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From (3) it follows that the function 8 increases less rapidly than the function B. It is easy
to verify that the functions a(x) = In x and B(x) = In In x for x > xq satisfy (3). Therefore,
Theorem 2 implies the following statement.

Corollary 1.2. LetInlnn = o(lnln Ay)) andInln Ay = (14+0(1))Inln A, asn — oo.
Suppose that lim In In M{c, F;)) = ¢;j an In 1] = In Jan,

PP cAlnIn(1/(A—0)) 9 At — An
1<j<m.If

S Aasnyg < n — oo forall

M
£
I
=

m
In In <|an|eA)‘"> — (140(1)) []1n In <|an,]-|eA)‘">,
j=1

~
I
—_

. Inln M(co,F)) M o
asn%mtbeﬂgﬁlnln(l/(A—U)) —Jl;[le .

2 ANALOGUES OF THEOREM B.

Suppose, as above, that x € Ly; and B € Lg;. In order to get the analogues of Theorem B,
except the generalized order Q{f’ 8 [F] € (0,+00), it is needed to enter a (generalized) type. A
definition of the type depends on what from the functions a or g grows slower.

Suppose at first that the function § increases less rapidly than the function « and define a
type by the formula

Ar(pl — T In M(o, F)
Al = O T FIR (A o))

Since ng [F| = quﬁl [F], where aq(x) = x ¢ Lg; and Bq(x) = a‘l(gﬁﬁ[F]ﬁ(x)) for x > xg, we
can apply none from the lemmas indicated above. However the following statement is true [3].

Lemma 2.1. Letaq(x) = x forx > xo, f1 € Ls; and

1400, P <m> =(1+40(1))B1(x), xp <x— +oo.

X
pr(x)
Ifln n = 0(B1(Ay)) as n — oo then prﬁl [F] = lim

Since B1(x) = a~! (Qf, 8 [F]B(x)) for x > xp then Lemma 2.1 implies the following statement.

Lemma 2.2. Leta € Lg; and B € Ly; be such that a~!(cB(x)) € L; for eachc € (0, +00) and

X X

i e & (cﬁ (W)) — (1+0(1))a (cB(x)) %

as xg < x — +oo for eachc € (0, +o0). IfInn = o(a'(cf(A,)) asn — oo for each c €

(0, +0), then
_ 1 ANy,
TA(E] = T 0 (™)

B n—co a—l(Qo‘gﬁ[F]ﬁ()\H)).

The following theorem generalizes Theorem B.
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Theorem 3. Let B € Ly, a(e®) € LY a='(cB(x)) € Ls, conditions (7) hold and In n =

o(a=1(cB(An))) asn — oo for each ¢ € (0, +o0). Suppose that all Dirichlet series (4) have
the same generalised order o, 5[ ] = 0 € (0,+00) and the types TAE[ ] € (0,4+00). Suppose
also thata, # 0 for alln > ng and forall2 <j<m

In In (\an,j\eA)‘”> >(140(1))InIn (\anll\em‘”> , 1 — oo, (8)

m
Ifwj>0,1§j§m,2w]-:1and
j=1

m

W
n (|agle™) = (1+0(1 H In (|ayle?)) ", n— oo )
() = 1 o T n o))
then Dirichlet series (1) has the generalized order Q{f’ 8 [F] = o and the type
m
< [T T8 1R)
j=1

Proof. Since a(e*) € LY, then for each ¢ € (0, +o0) we have
a(cx) = a(em N e) = g(eMToMInxy — (1 4 o(1))a(e™ *) = (1+0(1))a(x)

as x — +oo, that is & € Lg;. Hence it follows that a=1((1 — 77)x) = o(a"!(x)) as x — oo
for each 7 € (0, 1), because if a1 ((1 — 17)x;) > ha~!(x;)) for some number & > 0 and an
increasing to +oco sequence (xy) then (1 —77)x; > a(ha=1(x;)) = (1 +0(1))x; as k — oo, that
is impossible.

Therefore, conditions (7) imply the conditions (3). Indeed, if for some ¢ € (0, +o0),
7 € (0, 1) and an increasing to oo sequence (xx) the inequality

B (x/a 7 (eplx0)) < (1—1)Blxe)

is true then a1 (¢B (xx/a 1 (cB(xr))) < a7t (c(1—n)B(xx)) = o(a™t (cB(xx)) as k — oo, that
is impossible in view of (7).

Finally, from the condition In n = o(a~!(cB(A,)) as n — oo for each ¢ € (0, +o0) we have
Inn < a~1(cB(An)) for n > np and each ¢ € (0, +o0), that is a(In 1) < cB(A,) and in view of
the arbitrariness of ¢ we obtain a(In n) = 0(B(A,)) as n — oo.

Thus, from the conditions on the functions « and § and the sequence (A, ) in Theorem 3 the
conditions of Lemma 1.2 follows.

Since all Dirichlet series (4) have the same generalized order Qul?, 8 [F;] = ¢ € (0, +00), then

by Lemma 1.2 for every ¢; > ¢ and all n > ng(01) we have In (|a,j[e?*) < a™1(018(An)).
Therefore, from (9) we obtain

m

olyle] = Jim 1 g&'jm)) = Jim, ﬁ(L)“ (H (tn ('”"'f'eAM»wj)

j=1
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that is in view of the arbitrariness of ¢; we obtain the inequality Q;?, 8 [F] <o.
On the other hand, in view of the conditions (8) and a(e*) € L we have

Qf,/a[F] = }}g{}o ,3(1 )oc (exp {i“’] In In (\an,jyeﬂn) })

- mﬁ ' (e"p {“’1 intn (Jaale®"”) + Lyintn 1, \)D

2 lim, /3 (eXP {wl inin (|aylet) +]§w (1 +o(1)InIn (Jay]et) })
m

:nlgf}oﬁ )\n (exp{ 1+0 ];w]-ln In <|an,1|eA)‘">})

ZYHOO( 28} ()))(x (exp{Zw]ln In <]an1\eA)‘”)}>

X (In (|an,]e™)) .

n—00 ,B()\n)

Thus, Qa‘?, 8 [F] = o0 and for T;}E [F] by Lemma 2.2 from (9) we obtain

—  In (Jag|e) — il

= lim = lim 1 n(|a -eA’\” “i
TEHIF) = J, oo (A — o g gty L1 (7 (1))

1 Aly Yiomo 1 | pAMn Yiom
= lim H n (Ja,le™) <JT lim ? (La”']‘e ) =[112F 1~
el I\ a (ol FIB()) ) T i \a (o FIBA)) ) i
The proof of Theorem 3 is complete. O

It is easy to verify that the functions a(x) = In x and B(x) = In In x for x > x; satisfy the
conditions of Theorem 3. Therefore, the following statement is true.

Corollary 2.1. Let Diriclet series (4) be such that forall1 < j <m

In In M(c, F;) In M(c, F;))

b e n(/(A—0) % Mieaja-o) U

andIn n = O(In In A,) asn — oo. Then the conditions (8) and (9) imply

In In M(c, F) lim In M(c, F)

e I (/(A—0) % M/ A —o) 1}

T In exp{a(ln M(c, F)}
ot In exp{B(1/(A - o)}’

" _ Tm exp{a(In M(c,F)}
TaplF) = 00 ool [FIB(L/ (A — )}

and for the finding by the coefficients we use Lemma 1.1. We obtain the following statement.

Since Qul?, glF] = we define the type also by the formula
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Lemma 2.3. Suppose that the function ¢**) and eP(*) belongs to Ly; and

e | P (e )| 0@

as x — +oo foreach c € (0, +00). Ifexp{a(An)} =0 (exp{B (An/Inn)}) asn — co then
th}ﬁ[F] — Tim exp{a(An)}

e {aty 78 (e ) |

Theorem 4. Let the function e*¥) and eP(%) belongs to L;, the conditions (2) and (10) hold
and a(Ay,) = o(B(An/Inn)) asn — co. Suppose that all Dirichlet series (4) have the same

generalized order ¢}, ﬁ[ ] = 0 € (0,+00) and the types Té‘}ﬁ[Fj] € (0,4o0). Suppose also that
a,1 7 0 foralln > ny andfora]]Z <j<m
An An
— | < (1 1 —_— |, . 11
ﬁ(mu%mﬂﬂ>—(+“>m<mwmwmo> "o ()

m
Ifwj>0,1§j§m,2w]-:1and
j=1

exp {[3 (W) } (1+ o Hexp { (W) } (12)

as n — oo then Dirichlet series (1) has the generahzed order ¢ a,ﬁ[ | = 0 and type

Proof. From (12) we have

An i Ay
P <W> =)L wip (W) +o(1) (13)

j=1
An 1
In (\an,j\eA)‘n) 0

Lt < lim i J B ( A > _1
Qo’?,ﬁ[F] T e i a(An)" \Un (a,q|eAr) o

that is Qul?, 5 [F] = 0. From (12) and Lemma 2.3 also it follows that

as n — oo. Therefore, by Lemma 1.1

=

1 . 1 An ) UL . w]
——— = lim > lim
@ﬁ];%wwwﬁme>—§ﬂwww

On the other hand, in view of (11) from (13) we obtain

— im;ex )\—
IWHﬁ%mWWHP&NMWWW»
him ot TTexpdowB [ M
_;L—ooexP{a }H p{Q ]ﬁ< (la J‘eAM)>}

1 tm eXp{Qﬁ (m <\_a27‘1e%>>} W] ﬁ( o ]>

1 n—eo exp{a(An)} i
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Theorem 4 is proved. 0

It is easy to verify that the functions #(x) = In In x and B(x) = In In x for x > x satisfy
the conditions (2) and (10). The condition #(A,) = o (B (Ax/In n)) as n — oo holds, provided
@ (InIn n)/In A, < 1. Therefore, Theorem 4 implies the following statement.

n—oo

Corollary 2.2. Let m (ln Inn)/In A, <landforalll <j<m

1_ln InlnIn M(c, F)) 1__ln In In M(c, F;)) Tl
/A=) % MmMyea/a_oey U< O+
Suppose thata,1 # 0 for alln > ng and forall2 < j <m

An

An
— < (1 H)nln ———, .
In (g ler) = oI o eany e

In In

Ifwj>0,1<j<m, Zw = 1and
j=1

An

i)
11’1 —_— 1+0 — 0
In (|‘1n|eAA"> i= (‘an]‘eAA")

asn — oo then

—InInInIn M(c, F) —lnlnlnMUF LSS

lim = li T

A Inln(1/(A—0) ¥ Faml(1/(A E j
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Y TepMiHax y3araAbHEHMX MOPSIAKIB AOCAIAKEHO 3B 130K MiX 3pocTaHHsIM psiay Aipixae F(s) =
y y

(e8]
Y. ayexp{sA,} 3 abcumcoro abcoaroTHOL 361KHOCTI A € (—00,4+00) i 3pocTaHHsIM psiaiB Aipixae
n=1

Fi(s) = Z ayjexp{siy}, 1 < j < 2,3 Takoro X abCmicoro abCOAIOTHOI 361KHOCTI, SIKII0, Harpu-

KAaA, KOGClDlHlGHTI/I ay TIOBsI3aHi 3 KOGClDH.IlGHTaMI/I lZn] CHlBBlAHOI_HeHSIM

A m A “
n
’B<ln (|an|eA)\n)) (1+o0(1 H.B (ln |an]|eA/\,1)> , n— 0o,

=

m
Aewi>0,1§j§m,2w]-:1.
j=1

Kntouosi crosa i ppasu: psia Aipixae, y3ararbHeHUI MOPSIAOK.
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PARABOLIC SYSTEMS OF SHILOV-TYPE WITH COEFFICIENTS OF BOUNDED
SMOOTHNESS AND NONNEGATIVE GENUS

The Shilov-type parabolic systems are parabolically stable systems for changing its coefficients
unlike of parabolic systems by Petrovskii. That’s why the modern theory of the Cauchy problem
for class by Shilov-type systems is developing abreast how the theory of the systems with constant
or time-dependent coefficients alone. Building the theory of the Cauchy problem for systems with
variable coefficients is actually today. A new class of linear parabolic systems with partial deriva-
tives to the first order by the time t with variable coefficients that includes a class of the Shilov-type
systems with time-dependent coefficients and non-negative genus is considered in this work. A
main part of differential expression concerning space variable x of each such system is parabolic
(by Shilov) expression. Coefficients of this expression are time-dependent, but coefficients of a
group of younger members may depend also a space variable. We built the fundamental solution
of the Cauchy problem for systems from this class by the method of sequential approximations.
Conditions of minimal smoothness on coefficients of the systems by variable x are founded, the
smoothness of solution is investigated and estimates of derivatives of this solution are obtained.
These results are important for investigating of the correct solution of the Cauchy problem for this
systems in different functional spaces, obtaining forms of description of the solution of this problem
and its properties.

Key words and phrases: fundamental matrix of solutions, Cauchy problem, Shilov-type parabolic
systems.

Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
E-mail: vladlit4@mail.ru (Litovchenko V.A)), galuna_unguryan@ukr.net (Unguryan G.M.)

INTRODUCTION

The definition of parabolicity formulated by G.Ye. Shilov [12] generalizes the definition
of parabolicity by I.G. Petrovskii [11] and extends considerably the Petrovskii’s class of the
tirst-order on time systems by the systems with constant coefficients with order different form
the parabolicity factor. The parabolic (by Shilov) systems were investigated, in part, in pa-
pers [2,4,6,7] containing the results on description of the classes of uniqueness and correct-
ness of the Cauchy problem, developing the methods of study of fundamental solution, rating
the correct solvability of the Cauchy problem at various functional spaces, and ascertaining
qualitative properties of solutions for such systems. However, these results concern to the sys-
tems with constant or time-dependent coefficients alone. The attempts to derive any results
for parabolic (by Shilov) systems with variable coefficients, which are space-dependent ones,
were unsuccessful, while it has been shown [5] that such systems are parabolically unstable to
changing coefficients.
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Interesting approach to expansion of the Shilov class of parabolic systems has been pro-
posed by Ya.l. Zhitomirskii [13] defining a new class of parabolically stable systems to varia-
tions of the lower coefficients. This class adds naturally to the Petrovskii’s class of systems with
variable coefficients and covers the parabolic (by Shilov) systems. These systems are referred
to as the Shilov-type parabolic systems with variable coefficients.

The Shilov-type parabolic systems of the p-th order are of the form

oru(t; x) = {Po(t;idx) + P1(t, x;i0x) yu(t; x), t € (0;T], x € R", (1)

where u := col(uy, ..., um), Po(t;idx) and P (t, x;i0y) are the matrix differential expressions of
the orders p and p;, respectively, with coefficients dependent on time t, and for P; on spatial
variable x as well. For that, the system

oru(t; x) = Py(t;idy)u(t;x), t€(0;T], x € R", (2)

is the parabolical (by Shilov) system with the parabolicity factor i, 0 < h < p, kind of # and of
reduced order py (see [4, p.72, p.133]), and p; satisfies the following conditions:

(A) O§p1<h—n<1—hy/p0>—(m—l)(p—h), 0<u;
(A)  0<p<h-n(l—p)—(m-1)(p—h), u<O0.

For the systems (1) Ya.l. Zhitomirskii has ascertained by the method of sequential approxi-
mations correct solvability of the Cauchy problem at the class of smooth bounded initial func-
tions for the case, when the coefficients of the differential expression for Py are constant, and
the coefficients of the expression P; are limited being dependent on x, alone functions, which
are differentiable up to some order.

Further elaboration of the Cauchy problem for the Shilov-type parabolic systems with vari-
able coefficients presumed construction of the fundamental solution of the Cauchy problem
(FSCP) and comprehensive investigation of it.

For the systems (1) of nonnegative kind u and the coefficients, which are boundedly con-
tinuous on t and infinitely differentiable on x, the FSCP has been derived and its main prop-
erties have been studied [8]. These results enable to develop the theory of the Cauchy prob-
lem [1,9,10] for such systems at spaces S of M. Gelfand and G.Ye. Shilov and, in part, to
prove correct solvability of the Cauchy problem with generalized initial conditions of kind of
the Gevrey’s ultra-distributions, to find out the form of classical solutions with generalized
boundary values at initial hyperplane, to study the properties of localization and stabilization
of the solutions, and to describe the sets of generalized initial functions for which the corre-
sponding solutions are the elements of the L. Swartz space S or any of spaces of .M. Gelfand
and G.Ye. Shilov.

In this paper, we continue the study of the systems (1) for 4 > 0 with coefficients of
bounded smoothness. We determine the conditions of minimal smoothness of the coefficients
with respect to the variable x, for which the classical FSCP exists, construct this solution and
investigate its main properties. These results are important for further development of the
classical theory of the Cauchy problem for parabolic systems and its unification.

1 AUXILIARY DATA

Let T be a fixed number from (0; +o0), IN be the set of natural numbers; N, := {1,...,m};
R" be the real n-dimension space; R := R1; Z!: be the set of all n-dimension multi-indices,
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Z. :=7!;i-imaginary unit; (-, -) — scalar product at the space R”; ||x| := (x, x)l/2 X € IR";
x+iyl = (2 + )% {xy} C R [(ay)]iy] = amax lagjl; Jzl4 = lz] + ..+ |zal, 2 =

2 itz e RY, 1€ Z; Ty = {(5x)] t € M,x € R"}, M C R.
We will consider here only the systems (1) with u > 0, where the differential expressions
for Py and P; are of the form

0(ti0x) = Y Agr(dk, Pi(t,xidx) = Y Apx(tx)ok,
k|+<p [kl +<p1

Nk Ij m Nk Ij m . .
where Ag(t) := ilkl+ (aOk(t)>l - Apg(t;x) = ilkl+ (alk(t;x))l _ are matrix coefficients.
/7 ’]: 4 ’]:
By G(t,7;-), 0 < T < t < T, we denote FSCP of system (2). It is known that G(t,7;-) =

F [®L(¢)] (t,T;+), where F[] is the Fourier transformation operator, and © (-) is a matriciant
of the corresponding Fourier duality of the system. The following statement is proper [1,6].

Proposition 1.1. Forall T > 0 there exists 6 > 0 and for all k € Z' there exists ¢ > 0 such that
forallt € (t;T|, Tt € [0;T) and {x,} C R" takes place

1
n+ |k _g(Ix=2l T-a
ntiaty o({=5h) 3)

105G (t, ;0 — &) < c(t— 1)~ ,
wherey := (m —1)(p —h) and a := u/py.

Here, we consider systems (1), which satisfy, in addition to condition (A), the following
condition:

(B) the coefficients aéj (1), allj . (t; x) are continuous in the variable ¢ uniformly with respect to
x, differentiable with respect to the variable x up to the order a inclusively, and bounded
together with their derivatives by complex-valued functions in a ball ITjo, 7.

n [8], FSCP of system (1) was constructed in the form
Z(t, 57,8 =Gt T;x — &) +W(t,x;1,8), (tx1,8) €113, 4)

where I12 := {(t,x,7,8)|0< T <t < T,{x,¢} C R"} and

Wit x7,) /dﬁ/Gtﬁx— (B, ;7 )y ©

Here -
O(t,x;T;¢) = Z (t,x;7,8), (6)
where )
Ki(t,x;7,8) = Pl(t x;104)G(T, 5 x —§),
7
Ki(t,%7,8) /dﬁ/KltX5y)Kz1(/3%T€')dy,l>1 7

In this case, it was established that condition (A) and the boundedness of the coefficients of
system (1) ensure the absolute uniform convergence of the functional series (6) for all {x,{} C
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R", t € (1;T], and T € [0,T). Moreover, its sum ® and the iterated kernels K; satisfy the
estimates

1
_s5 (Ix=¢\ T«
Bt 17,8)] < eyt — o (a1 (G550) (8)

-1
Ki(t, %7, 8)] < ¢ ( c(je) B(ao, jao )
j=1

)
x|\ T
« (t _ T)ltxof(Htxn)e_‘s( —(I-1)e )(( T)zx) = (0;1),

4

with the estimating constants independent of ¢, 7, x, and ¢. Here
ap:=1+an—(mn+p1+7vy)/h>0

and B(+, -) is the Euler beta-function.

We note that estimates (3) and (8) for {x,{} C R"and 0 < 7 < t < T guarantee the absolute
convergence of the integral, by which the potential W is determined. Thus, the matrix function
Z(t,x; 7, ¢) is properly determined by formula (4) on the whole set I'2.

Completing this item, we present the following estimates from [3], which will be of impor-
tance in what follows:

1 1
™™} ey

< ; (10)

DTG g e (B
, 0>0, 11
/e ((t_ﬁ>(ﬁ_T))aﬂ < (t_T>1xn > ( )

(here, {x,y,¢} CR", € (1;1),0<T<t<T,e€ (0;1),and § > 0, and the quantity c,
depends only on ¢).

2 PROPERTIES OF FSPC

First, we estimate the derivatives of the iterated kernels K.

According to representation (7), the smoothness of the kernel K; (¢, x; T, ) in the spatial
variables x and ¢ is determined, respectively, by the smoothness of the coefficients of system
(1) and the function G(¢, T; x — ¢). Therefore, there exist the derivatives 828,‘11(1 for{r,q} C Z%,
||+ < &, and the following equality holds:

q
Atk (txT,8)= Y Y. C (a;Al,k(t;x)) <a'(‘:12)ﬂ*lc(t, T;x — g)) ,

k| +<p11=0

where C,l7 is a binomial coefficient. From whence, with regard for condition (B) and estimate
(3) for {r,q} C Z", |q|+ < &, (t,x;7,&) € T13, we get

1
ntpitrtlrgly ( x|l ) jry
T h e o (t—7)%

957Ky (t,%;7,)| < crglt — )" (12)



76 LITOVCHENKO V.A., UNGURYAN G.M.

(here, the estimating constants are independent of ¢, T, x, and ¢).
For ] > 1, we will use the representation

fq
Ki(t,x;T,8) = /d,B/Kl(t,x;,B,n+§)K1_1(5,17+§;T,§)d17
T R

(13)

t
+/dlB/Kl(t’x;ﬁlx_Z>Klfl(,B,x—Z;T,€>dZ, H o t—|2—’l’.
o R7?

According to it,

ty
GaIK (L x;T,8) = ). O / dp / (agaZKl(t,x;ﬁ,HC))

|1’1‘+§‘}’|+ T Rn

t
" (aganlfl(ﬁ,nJrC;r,é’)) g+ ), C;“/dﬁ/ (K (t,x; 8, x — 2))
‘q1‘+§|‘ﬂ+ t R"
X <82817Q1K1_1(/3,x —z;r,g’,‘)) dz, |ql+ < as, (t,x,7,8) € HZT.
(14)

Hence, the estimation of |828ZKl(t, x;7,8)| is reduced to that of the expressions
95K (b 17,7+ ©)), 02K (b5, x — )], 198K 1 (b + &, 8], 190K (6% — 27, ).

In view of the boundedness of aiallj; ((t:x), |q]+ < &y, and estimate (3), for all {g,7} € Z';,
9]+ <as, {x,7,} €eR", t € (;T],and T € [0; T), we have

\agaZKl(t, T, +E)| <m Z Z Cgl }ailAllk(t;x)‘ \a’(jj;igflc(t, Tx—1n—2C)|

[kl+<p1 |91+ <lql+

1
_ntprtytlrtgly ,5( HX*'?*CH) T—a

< eyt — 1) P ) T
(15)
01Ky (t, %7, x — )] = a,i( Y An(tx)dkG(t T g)) ‘ <m BZALO(t;x)’ ‘G(t,r;é)‘
\k|+SP1 (16)
; Izl )™ wipty _g( L YT
< oyt — T)_%eﬂs(ﬁfﬂ”‘ <cg(t—71)" h e TNETF
We now estimate the expression }agKl(t, n+&7T,¢)|. Since
Kb+ 51,8 = Y %Aty + )Gt Ty), (tx1,E) €117, (17)

[kl +<p1

we have, according to condition (B), that the iterated kernels K;(t, 17 4 &; T, {) are differentiable

with respect to the variable & only to the order .. This fact and (14) imply that 97K, (t, x; T, &),

|9« < ax, is also a function differentiable with respect to ¢ only to this order a..
Representation (17) and estimate (3) yield

1
n+p1+y _ 17l T
et o ()

02K (11 + &7, 8)| < et —7) (18)
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We note that

t
EKZ(trn+€;Tr€) :ag(/dﬁ/Kl(tlﬂ+CI,Bry>K1(ﬁ/err€)dy>
T R”

Let us change the order of integration in the last integral by the formula y = z + ¢. In view of
estimates (18) and (11) and the equalities

t
[ (¢ = B)(B =) = (¢ 7)™ Blao, a0) (19)
and
Kilt,n+ 81,24 8) =0 Ki(t, (n —2) + 57, 0) —_—
we get

|05Ka(t, 1 + &7, 8)|

<m rl/dﬁ/

a“1<1 t 17—|—§ﬁz—|—€)‘

o K (B2 + &7, 8)|dz

|71\+<\ |+
t 1 1
_ n+p1+y .y ”’Y*Z\i 1*N+ HZH“ T-a
<m Z G C1,r1€1,(r—1) / )) ! /e <((t7ﬁ) ) (( - ) >d2d5
Iril+<[rl+ Rn
lnl T
n+p1+y _ _ 7 —a
< 2,(e)Blao, ao) (t — )00~ 7 e 00 o) ™ e (0;1).
(20)
By reasoning analogously step by step, we arrive at the inequality
1
n —5(1—(1— Il ) T==
02K (t, 1 + &7, 8)| < cpple (HB o, g ) (t — 7)U-Dro— "5 =01 De) () @

which is satisfied for all {#,{} C R", |r|y < a,, 0 <7<t <T,ec (0;1),and! € N\ {1}
and, hence, until the existence of such number [, for which

L1 NI =
0LK (7 + & T,8)| < e (e <HBa0,]oc0> (1= (1=1)e) () 22)

(here, the quantities ¢; ,(¢) > 0 do not depend on the variables f, 7, %, and ¢, which vary in the
above-indicated way).
Since
ALK (1, %7, + €) = LIKI(t, %7, ) L__H
and
LK (t,x — 2;7,8) = DKty T, g))

y=x—z
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then the expressions agaZKl(t, x; T, +¢E), BEBZKZ(t, x—z71,¢&) and BEBZKZ(t, x; T, ¢) are of the
same type. Therefore, with regard for representation (14) and estimates (15), (16), (21), and (11),

we have

fy

|0201Ks (8, x; 7, 8)| < m2’+‘7+< Y. CrugCiir—r) /(t —B)”

]+ <Ir[+ T

ntprty+in+aly
h

1 1
[x—n—¢|I\ T—a 7l \ T—a
o (ﬁ _ T)_71+Ph1+’Y /e—5<< (tJI]S)"‘ ) +((/3l1‘r)06) )dﬂd’B + Z Cq c, (4-a1)
1 A4—Y1
R 91|+ <lql+
t Iz [[x—z—¢]|

X/(ﬁ_T)W(t_ﬁ)Hr’hm/e—é((uw)”Jr(w)”)dzdﬁ)

tq R"

1
[x—¢|| } T-a
< m2lr ke ce 1" ) (=) (t—T)m< Y. CraCi—n)
1|4 <Irl+

t

X /(t - IB)Dm_ (:3 - T)lxo_ld:B + Z 01 Cr,(g—q1)
T l7l+<lql+
t

< [e—proip—o)

f

n+pr a4
h

n+pq +'y+|r+q7q1\+
h

@B), Irl+ < aelgls < aee € (01).

In view of the estimates

t
/(t B ﬁ)minwwv;\rﬁqu (ﬁ )rXo 1dﬁ < 2| 1 q\+( B T)Zao— (1+|r1+hql+) B((Xo, 060)

T

and

t
/(t B I[g)ﬂéo—l(lg B T)Dm_n+r?1+7+}llr+ﬂ*ﬂl\+ d,B < 2\r+q;ﬂ1|+ (t _ T)2a07(1+\r+q;ﬂ1\+)B(“0, 010),

f1

we get the inequality

_ [r+ql+
9K (1,7, 8)| < (e — o (b5

By continuing stepwise the process of estimation, we obtain
q log— (1+an+m)
|0RTK (1, 27, )| < /8t — 7)™ ),

|+4]
9L (1,37, 8)| < (e — 7yl (1t )

Tl

< 00009 (=5) ’“( B(ao, jao) ),

—_

~
[

forall |r|; < as, |q|+ <ay, {x,} CR",0<T<t<T,ec (0;1)and! € N\{1}.

(23)

(24)
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Let us pass to the estimation of the expression }BEBZKZ (t,x;7,¢)|, which will be suitable for
the establishment of the differentiability of the matrix function ® with respect to the spatial
variables. Directly from (24), we arrive at the existence of a number [* such that

1
61— (1F—1)e) (=gl 1= 1]
|050%K- (t, x;7,8)| < e 6(1=(1"=1e) (=54 < I B(oco,joco)>
j=1
Let us set I := max{l,,I*}, I_ := min{l,,I*}, where I, is the corresponding number from

(22), € := 6y i =6(1— —) r« > 2, Tp := max{1, T}, and

1
V*l+,

- 1—

1
e max <cq1,,C (o, jao) ), Cra, Cr K, o ,
S ey U (€ 1 0-j%0) ) €ras i ] (20, o)

—_

I
=

s 1= ¢(Tp)"*~". Then (21) and (24) imply that, for all {x,& 7} C R", 0 < 1 <t < T,
‘1"_._ < a, and ‘q’-i- < A,

1
llx=¢ll ) =

1
=\ = il ) T—=
‘agaZKu(t,x;T,é’)} < cye 5*(@77)%) 1 )1 .

2K1+(t' n+a&T, C)} < C*eﬂs* ( (t=1)%

In view of this result, estimate (10), the equality

1
~ao(gg) Ty _ / ool T gy . E
/e (t—ﬁ)“" e z =: b < +o0,

R” R”

representation (14), and inequalities (15) and (16), we obtain

|0:Ky, 41 (b + 87,

< C”/d,[%/}a”Kl b+ 8Bz + O K, (B2 + &, 8)|dz
\71\+<|V\+

—o;((—””*zl)ll_u(—u—'z'a)llT“> _A(HfifZH)llfa dz

<m?( Y o) / (=g [ T Tor) ) i) T2 g

i p
Ir1l+<|rl+ T R
1
= _ Il ) T==
< mcYEc?B(ag, 1) (t — T)™e 5*<(tjr>“) , )= Y, oy

[r1]+ <|r|+

(25)
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|0%0%Ky, 1(t, x; T, (3)}

< Y C“/dﬁ/ 01K, (8, x; B, + €03} "KL, (B, + &7, 8)|dy

[r1]+<|r|+

+ ) C‘“/dﬁ/}aqlKltxﬁx 2)9de MK, (B x =z, §)|dz

lq1]+<lql+ h

< mcﬁ( y /(t _ ﬁ)txr(H%)

Inl+<rl+ 7

1 1 1
[ R ES) a

]Rﬂ
t . . 1
_ —5, 2l Y T=a y (lx=z—ClyT=a ) 5 ¢ Jz) \T-a
o Lo fampet [T e
lq1]+<lq]+ h R
1t
~ g (Ix=Ell) T-w |+l
et o 5 - o)
T Iral+<Ir[+
eg] ) T I+l il
~ _ X— —a r+ 1+
< m2Be (655 (t—T)'XOB(on,l)((Z PL e > +C")
Iraf+<rl+
- Ir+q] gy g (Jx=g]yT-=
< mcglqciE(ZTo) +1?+B(1xo,1)(t—r)“0’ e 6*((H>“) , c9,q = ¢ +cq.
Applying the method of induction, we can verify firstly the validity of the estimate
‘agKl++l(t/ U) + é/' T, é) ‘
1
~ s (Al YT ]
< co(mc2c, E(t — 1)%)le 5*<<tff>“) <HB(0¢0,1 —l—joco)),
j=1
and, hence, the estimate
[r+4] [r+4]
91K, 411, 357,8)| < . (mcdge.B(2Ty) ”*) (f — 7)lo—"9E

s (L2l T 11
X e 5*<(t—r)a)1 (HB((X(),l—i-]'lX())),

j=1
for |4 < ay, |ql+ <a., (t,x7,¢) € [12and | € N\{1}.
The following propositions hold true.

(26)

(27)

(28)

Lemma 2.1. The matrix function ®(t,x;7,¢) on the set 11 is a function differentiable with
respect to each of the spatial variables x and ¢ to the order . inclusively, and their derivatives

satisfy the following estimates:

L
Sl (t,x;7,8)| < oyt — o (rent 5 () T

4

(29)
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3Lty + & 7,8)| < eaft — o rame = (aem) gy o (30)

(here, the estimating constants c1, c2, and 6, are independent oft, T, x,¢, 7).

Proof. In any way, let us fix a point (xo; &) from R?", and consider a ball ]K((Sxo;éo) with radius
0 > 0, which is centered at the point (xo; {p), in this space. Then, in view of structure (6) of the
function ® and the differentiability of the iterated kernels K; with respect to spatial variables
on IR?" to the order &, inclusively, we can conclude that, in order to prove the differentiability
of the matrix function @ at the point (x; o) to the indicated order, it is necessary only to prove
the uniform convergence of the formally differentiated series (6) in the variables x and ¢ on the

set ]K((Sxo'é'o)’ 0 >0(ateveryfixedtand 7, 0 <7 <t < T):

(e 9]

2 PIK(E % T,8), [l < lgle < a (31)

Directly from estimates (24) and (28) and the equality

1—

! (M)’
B(wg, 1+ jao) 7,
1 1) = F(1 1 lag)

where I'(+) is the Euler gamma-function, for {r,q} C Z", |r|+ < ay, |q|+ < ay, and (¢, x;7,¢) €
HZT, we have

l+ oo

Yotk v o) < X [tk v )|+ %
I=1

%A (%7, 8) ‘

=1 l:l++1
Iy |r+q| 00 ~ [r+q| [r+q]
< ¢, (Z(t_,()ltxo(1+rxn+hq+) + Z (mCOqC*E(ZT()) Ij+)l(t—T>llX07 Ij+ (32)
=1 =1

=1 s (llx=2]l = r lx—¢]] =z
( B(ao, 1+ jaro) )> (@) T < g (¢ - gy (e ) o0 (R T
j=1

Frow here, we get the uniform convergence of series (31) in x and ¢ and, hence, the validity
of estimates (29).

Due to the corresponding estimates (21) and (27), we can verify analogously the validity of
estimate (30). The lemma is proven. O

Lemma 2.2. The volumetric potential W(t, x;T,{) on the set HzT is a function differentiable
with respect to each of the spatial variables x and ¢ to the orders «. + p1 and . respectively
inclusively. In this case,

ARIW(t, %7, €) = ZCl/dﬁ/alathﬁx y— )3 DBy + &1, E)dy

TR (33)

+ / dp [ G (t,Bix — )o@ (B YT, Oy, gl < pulrls < e,
H R"
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r tl
AW (7, §) = ZCZ/dﬁ/&éBZG(t,ﬁ;x—y—g)ag_lcb(ﬁ,y—l—é,‘;r,g’f)dy
=L

_ (34)
+ / ap [ 3G (t, Bl (B x — ;T )y, Irl <
tq n

|+ = p1, p1 < lql+ < ax +p1.

Proof. For |q|+ < py and |r|+ < a., we use the representation

ty
Wit x7,8) = / ap / G(t,Bix —y = )O(By + &7, )y

+/dﬁ/Gtﬁx— (B, v, E)dy

From here, by the formal d1fferent1at10n under the sign of integral, we obtain equality (33).
Hence, in order to substantiate the validity of equality (33), it is sufficient to prove the uniform
convergence of the following integrals in the variables x and ¢ on R?":

M, %7,0) /dﬁflagaquﬁx v =0 P,y + T, 2)ldy, Il < Il

T R7 (35)

t
(x5 0,8) = [ dp [ 016 Bix — )0 (B, yi T, D)ldy.
t R"
This convergence becomes obvious, if we take condition (A) and the following estimates into

account for {x,¢{} CR"and0 <71t <t < T:

1
lx=2]| ) T-a
Irlq(tl,x 7,¢8) < ccoEe” ( = T>“) (t—t1)"
h (36)
< [(B=o)ap, il < Irl-;

T

nty+|l+ql4

1
llx=¢ll ) T-w n Ir| —lq|
Tt x501,) < cerBe ) 1y - ) I [ ppo e titap @)
f
These estimates follow directly from (3), (29), and (30).
We now prove the validity of formula (34). For this purpose, we fix any k € Z'} such that
|k|+ = p1. Then, according to (33) for p; < |q|+ < ax + p1 and ||+ < a,, we have

FOIW(t,x;T,8) = an‘f k/d,[%/a G(t, B;x — y—@)ag_l©(ﬁ,y+§;T,§)dy

+o1” k/dﬁ/ak (t, B;1)0z®(B,x —m;T,8)dy, (t,x7,6) € I13.

f
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Hence, it remains to substantiate the possibility to introduce the operation a?f" under the
signs of the corresponding integrals. In other words, we should prove the uniform convergence
in x and ¢ of the following integrals on R for0 <t <t<T:

51
[ 8 [ G Bix =y — )08,y + &, D)y,
T R”

t
/ dp / G(t, B;1)asdl (B, x — ;7 8)dy.
i R

By reasoning similarly to the case of integrals (35) and using estimates (3), (29), and (30),
we get the necessary convergence of the indicated integrals. The lemma is proven. O

The main result can be formulated as the following proposition.

Theorem 1. Let the system (1) satisfy conditions (A) and (B). Then the corresponding function
Z(t,x;T,¢) defined by equality (4) is a function differentiable with respect to each of the spatial
variables x and ¢ on the set I1% to the orders a, + p; and «, respectively inclusively, and exists
§>0forall{r,q} C Z", |q|+ < as+ p1, 1]+ < ay, existsc > 0 forall (t,x;7,¢) € 115

1
771+\r+lq\++’y _5( |X*§|) T-a
1 e ;

]828ZZ(1‘, xT,6)| <c(t—1) (=) (38)
%
e o (el )T
EZ(tx +&7,8)| < crlt — )i 1<<”’ ) : (39)
where k|4 < a,, 0 < T <t <T, {x¢} CR" B := { 2’ 2;8’ (here, the estimating
0r

constants are independent of t, T, x, and ¢).

Proof. With regard for structure (4) and the infinite differentiability of the function G(t,T;¢)
with respect to the variable ¢, the smoothness of the function Z(t, x; T, ¢) in the variables x and
¢ becomes obvious directly from the assertion of Lemma 2.

Let |g]+ < p1 and |r|;+ < as. Then, according to (33), we get

.
0:01Z(t, x;7,8)| < |8::%G(t, Tx— &)+ Y. CTM(ty, x1,8) + Tyt x; 1, 8).
1=0

From here, by using estimates (3), (36), and (37), we obtain assertion (38).

In a similar way, by using formula (34), we verify the validity of assertion (38) also for
pr < lqls < @ and |l < .

Then, according to estimates (3) and (30), we have

t
Yiltwim,) = | [ap [ Gt pix—0)50(p,L + & 0)d
T R”

< CC2T/(t — 5>txo+p71*1(5 _ T)aolR/n exp{ B 50{ <ytx_;ﬁ€)|lx>ﬁ

gl dydp
(-or) Hpe o=

8o :=min{J, .}, |k|+ < as.
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Using estimate (11) and equality (19), we get

1

)1“’ e€ (0;1),

e 51— < T
Yi(t, 2,7, 8) < cet — T)"‘O_%e NS
where |k|;+ <., 0 <71 <t<Tand {x,{} C R". From whence, with regard for inequality (3)
and the representation

t
Z(t,x +¢;7,8) = G(t,T;x)+/d/5/G(tlﬁ;x—C)q)(ﬁrCﬂLC;ﬁ,C)dC,
T R"

we arrive at estimate (39).
The theorem is proven. O
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Airosuenko B.A., Yarypsmm I'M. Iapaboriuni cucmemu muny Ilunoea i3 koegpiyienmamu 06 mexceHoi

enadkocmi ma Heeid e mHum podom // Kapnarcexi mateMm. myba. — 2017 — T.9, Nel. — C. 72-85.

Ha BiamiHy Bia mapaboaivrmx 3a [TeTpoBcbkmm cucreM, mapaboaivdi 3a [Inaosum cucremu, B3a-
raai Kaxyun, € mapaboAiqHO HeCTiIKIMM A0 3MiHM cBOIX KoedpinieHTiB. CaMe TOMy CcydJacHa Teopis
3aaaui Komri aast ccteM kaacy IlnaoBa po3BrHeHa Ha piBHI cCTeM i3 cTaamMu, abo 3aAeXKHIMU AU-
1Ie Bia vacy t koedimienTamu. ITpobaema mobyaosm Teopii 3apaui Komri Aast Takumx cycTeM i3 3MiH-
HyMM KoedpillieHTaMM AOCi 3aAMIITAETHCS BIAKPUTOO. Y AaHil po60Ti po3rASIHYTO HOBIMI KAAC AiHili-
HIIX TTapabOAiIHMX C1CTeM PiBHSIHD i3 YaCTMHHMMM ITOXiAHMMM TIEPIIIOTO TTOPSIAKY 3a t i3 aMiHHMMN;
KoedpillieHTaMM, SIKMI IOBHICTIO 0XOTIAIO€ KAac IlImaoBa cucTeM 3 KoedpillieHTaMy, 3aAeXXKHUMM BiA, ¢
Ta HeBiA'eéMHMM poAOM. ['0AOBHA UacTMHA AMdpepeHIIiaAbHOTO Bpa3y CTOCOBHO IIPOCTOPOBOI 3MiH-
HOI X KOXHO] Takoi cucTeMy € napaboaiusmm 3a IlInaoBum Brpas3oM, KoedpillieHTH SKOTO 3aAeXKaTh
BiA t TOAI, SIK KOedpillieHTV IPyIIM MOAOAILIMX UAE€HIB MOXYTb 3aAeXKaTH 1ile 1 Bia IPOCTOpOBOi 3MiH-
Hoi. MeTOAOM IIOCAIAOBHOTO HaOAVKEHHS TO6YAOBaHO (PYHAAMEHTaABHIMI PO3B’s130K 3aaaui Komi
AASI CCTeM i3 IbOTO KAacy. 3’ siCOBaHO YMOBM MiHIMaABHOI TAAAKOCTI Ha KoedpillieHTM crcTeM 3a
3MIiHHOIO X, 32 SIKMX icCHye (pyHAAMEeHTaAbHMI PO3B’ 30K, AOCAIAXKEHO JIOT0 TAAAKICTD Ta OAEPXKAHO
OLIIHKM IIOXiAHMX IIbOTO PO3B’sI3KY. 3a3HaueHi pe3yAbTaTy € BaXXAMBMMM, 30KpeMa, AASL BCTAHOBAE-
HHSI KOPEeKTHOI po3B’s13HOCTi 3apaui Koliri AAsI Takmx crcTeM y pisHMX (pyHKITIOHAABHIX IIPOCTOpPaX,
oaep>kaHHI popM 306pakeHHsI pO3B’sI3Ky i€l 3aaadi Ta AOCAIAXKEHHI JI0T0 BAACTUBOCTEIA.

Kntouosi cnosa i ¢ppasu: dpyHAaMeHTaAbHa MaTpUIIS po3B’s3KiB, 3apava Korri, mapaboaiuni cu-
cremu tuny [nnosa.
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BOUNDARY PROBLEM FOR THE SINGULAR HEAT EQUATION

The scheme for solving of a mixed problem with general boundary conditions is proposed for a

heat equation
oT 0 oT

with coefficient a(x) that is the generalized derivative of a function of bounded variation, A(x) > 0,
A~1(x) is a bounded and measurable function. The boundary conditions have the form

{pllT(Or T) + plZT)E” (0/ T) + ‘711T(l, T) + quTF] (Z/ T) = l)bl (T)r
p21T(0,T) + PzzT;[cl] (0,7) +quT(l,7) + 42273[:1] (L, T) = ¥2(7),

where by T,[Cl] (x,T) we denote the quasiderivative A(x) 3—5. A solution of this problem seek by the
reduction method in the form of sum of two functions T(x,T) = u(x,T) + v(x, 7). This method
allows to reduce solving of proposed problem to solving of two problems: a quasistationary bound-
ary problem with initial and boundary conditions for the search of the function u(x, T) and a mixed
problem with zero boundary conditions for some inhomogeneous equation with an unknown func-
tion v(x, T). The first of these problems is solved through the introduction of the quasiderivative.
Fourier method and expansions in eigenfunctions of some boundary value problem for the second-
order quasidifferential equation (A(x)X’(x))" + wa(x)X(x) = 0 are used for solving of the second
problem. The function v(x, T) is represented as a series in eigenfunctions of this boundary value
problem. The results can be used in the investigation process of heat transfer in a multilayer plate.
Key words and phrases: boundary problem, quasiderivative, eigenfunctions, Fourier method.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: oleksandr.makhnei@pu.if.ua

INTRODUCTION

Boundary problems for differential equations of heat conduction with smooth coefficients
were studied quite comprehensively in the literature (e.g., see [5]). However, during the mod-
eling of heat transfer processes, the boundary problems with piecewise continuous coefficients
or coefficients that have generalized derivatives of discontinuous functions are often appeared.
Such problems have already begun to be studied in the works [3, 4].

The present paper deals with solving of a boundary problem for a heat equation with a
coefficient that is the generalized derivative of a function of bounded variation. A reduction
method [5] is used for solving of this problem. This method allows to reduce solving of this
problem to solving of two problems: a quasistationary boundary problem with initial and
boundary conditions and a mixed problem with zero boundary conditions for some inhomo-
geneous equation. Fourier method and expansions in eigenfunctions of some boundary value

YAK 517.95
2010 Mathematics Subject Classification: 35K20.
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problem for the second-order quasidifferential equation are used for solving of the second of
these problems.

Quasidifferential equations are equations that contain terms of the form (p(x)y(™)(),
These equations cannot be reduced to conventional differential equations by n-fold differenti-
ation if the coefficient p(x) is not sufficiently smooth. The introduction of quasiderivatives is
used for their research [2].

1 FORMULATION OF THE PROBLEM

Consider the next boundary value problem for a differential heat equation. It is necessary
to find a solution T (x, T) of the equation

J 0 0
103 = 5 (M5 ()

with boundary conditions

{PllT(Oz T) + plZTJ[cl] (0,7) +quT(l,T) + Q12T3[c1] (I, 7) = P1(7), )

pnT(0,7T) + PzzT;[cl] (0,7) +guT(l,T) + Q22T3[c1] (I, T) = a(7)

and initial condition
T(x,0) = ¢(x), 3)

where a(x) = b/(x), b(x) is a right continuous nondecreasing real function of bounded vari-
ation on the interval [0,1], A(x) > 0, A~!(x) is a bounded and measurable function on the
interval [0,1], ¢(x) is a continuous function on the interval [0, ], ¥1(7) and (7) are continu-
ously differentiable functions for T > 0, Pijs 4ij (i,j = 1,2) are real numbers. By T,[cl] (x,T) we
denote the quasiderivative A(x)3L. The prime in the formula a(x) = b'(x) stands for the gen-
eralized differentiation, and hence the function a(x) is a measure, i.e., a zero-order distribution
on the space of continuous compactly supported functions [1].

A solution of problem (1)—(3) seek by the reduction method in the form of sum of two
functions

T(x,7) = u(x,7) +0(x, 7). 4)

Any of functions u or v can be chosen by a special way, then another one will be determined
uniquely.

2 QUASISTATIONARY BOUNDARY PROBLEM FOR (X, T)

We define u(x, T) as the solution of the boundary problem

d ou
Y <)\(x)$> =0, (5)

{Pllu(O, T)+ PlZugcl] (0,7) + gquu(l, ) + q12u3[c1] (I,7) = ypi(7),

(6)
pau(0,7) + Pzzugcl] (0,7) + goau(l, T) + ‘]22”3[(1] (1,T) = ¢a(7),
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af

which is derived from problem (1)—(3) if T is a parameter. Here the quasiderivative u,[cu X,T)=
p p q
Alx) then 5% a” = Ll]) With the help of the vector 7 = (u, ul!l)T equation (5) is reduced to the

ox’ Alx
u / 0 -1 u
_ Alx
(i) =(0 %) () ?

system
Boundary conditions (6) are also represented in the vector form

P-(0,7) +Q-a(l,7) = [(1), (8)

p_ ( pii P12 )/ _ ( qu1 12 >, T(r) = ( P1(7) )
P21 p22 421 422 P2(7)
By direct verification one can make sure such that the Cauchy matrix B(x, s) of system (7)
has the form

where

(1 o(x,s) _[xodt
B(x,s) = (0 1 ), o(x,s) = A0
Then #(x, ) = B(x,0)ilp, where i = (O 7). We shall determine . From boundary condi-
tions (8) we obtain P - i1y + Q - B(1,0) - #ip = I whence iip = (P + Q- B(1,0)) ! - T. Therefore,
a(x,7) = B(x,O) -(P+Q-B(1,0))"-T(1). 9)

3 MIXED PROBLEM FOR (X, T)

We substitute u(x, T) and v(x, T) into equation (1)

) (G 5) =5 (0 (4 5))

In consequence of (5) we have the equation

a(x)g—: = % <A(x)g—z> —a(x)g—z. (10)
According to formula (9) the der1vat1ve % is a continuous function of the variable x on [0, ]
and so the last term in equation (10) is Correct.
By taking into account formula (4), we define the boundary conditions for v from condi-
tions (2)
1

pt(0,T) + prous (0,7) + quuu(l, T) + qrau (1, 7)

+p110(0,T) + pr2od (0, T) + guio(l, T) + gt (1, T) = (1),
p2u1t(0,7) + prau (0,7) + qa1u(l, ) + g1y (1, 7)

+p20(0,7) + poy (0,7) +4210(1,7) + 4208 (1, 7) = $2(7).

By virtue of (6), we obtain

{Pllv(ol T) + Plzvgcl] (0,7) +quo(l,T)+ fhzv[ ]( I,T) =0, (1)
pnv(0,T) + Pzzvgcl] (0,7) +gqmo(l, T) + fhzv[ ]( l,t)=0.

The initial condition is determined similarly

o(x,0) = p(x) — u(x,0) L ¢(x). (12)
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4 FOURIER METHOD AND EIGENVALUE PROBLEM

We search for non-trivial solutions of the homogeneous differential equation

05 = 55 (M03 )
with boundary conditions (11) in the form
v(x, T) =e “TX(x), (13)
where w is a parameter, and X(x) is a function. Then
—wa(x)e “TX(x) = (AMx)X'(x)) e T
whence we get the quasidifferential equation
(A(x) X' (x)) + wa(x)X(x) = 0. (14)

Substituting formula (13) in boundary conditions (11), we obtain

(15)

p11X(0) 4+ p12 XM (0) 4+ g11 X(1) + g X1(1) = 0,
p21X(0) 4+ p2X1(0) + 421 X (1) + g2 X1 (1) = 0.

We denote by wy the eigenvalues of boundary problem (14), (15). Let Xi(wy, x) be the
corresponding eigenfunctions, k = 1,2, ..., c.

By [6], all eigenvalues wy of boundary problem (14), (15) are real, there are a countable
number of them, and their set has not a finite limit point. The eigenfunctions X (wy, x) that
are corresponded to the different eigenvalues are orthogonal in the sense

/Ole(wm,x)Xn(wn,x)db(x) =0, wy # wy.

5 METHOD OF THE EIGENFUNCTIONS

We seek v(x, T) in the form of the series
v(x,T) = Z e (T) Xi (wy, x), (16)
k=1

where X (wy, x) are the eigenfunctions of boundary problem (14), (15). We substitute formula
(16) into equation (10)

a(x)% (ki tk(T)Xk> = % <)‘(X>% (g tk(T)Xk)) ‘“mg—j

where, under the assumption of uniform convergence of series (16) and series derived from it
by differentiation by x or 7, we have

o) Y (DX = Y (D) (A2)X) — a(x)or.
k=1 k=1
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As a result of equation (14) there is equality (A(x)X] )/ = —wia(x) Xy, then
>, ou
x) Y ()X Z te(T)wpa(x) Xy — a(x)g.
k=1
Therefore,
i T) + Wit (7)) Xi = au- (17)
= ot

We expand the known function g” in a series in the eigenfunctions of boundary problem

(14), (15):

de Xk Wi, X )/ (18)
h
o () = 1 [ (wop )db(x), X H—/lxz(w *)db(x)
k — HXkH 0 o7 k\ Wk, ’ kIl — 0 k\Wkr .

By substituting formula (18) into (17), we obtain
t;((T) + wktk(r) = —dk(T>, k=1,2,...,00. (19)

Since formulas (12) and (16), we have
Z te(0) Xk (wi, x) = ¢(x).
We expand the function ¢(x) in a series in the eigenfunctions

x) =Y ¢iXe(we, x), @ = HXkH/ x) Xi (wy, x)db(x).
k=1

Consequently,
i'k(O) = Pk, k= 1,2,...,00. (20)

Then for all positive integer k we have Cauchy problems (19), (20) for ordinary differential
equations.
General solutions of linear inhomogeneous equations (19) acquire the formulas

T
te(T) = <Ck _/0 dk(s)e“’ksds> e~ VKT,

where Cy are arbitrary constants. Therefore, by using initial conditions (20), we find for each
positive integer k the solution of the corresponding Cauchy problem

te(T) = re” kT — /T di(s)e“r=T s,
0

Then, by virtue of formula (16), we obtain

o]

o(x,7) =) (goke_“’kT - /OT dk(s)e“’k(s_f)ds> Xy (wy, x).

k=1
Thus, by using the reduction method, Fourier method and the expansion in a series in
eigenfunctions, we built the solution of the boundary problem for the heat equation with a
distribution. The results can be used in the investigation of the process of heat transfer in a
multilayer plate.
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3anporoOHOBAHO CXeMY pO3B’I3yBaHHSI MIilllaHOI 3aAaUi 3a 3aTaAbHMX KPaOBUX YMOB AAS PiBHSI-

HHSI TeIIAOIIPOBIAHOCTI
oT 0 oT
o055 = 3¢ (V05 )

3 xoedpirtieHTOM 4(X), SIKMI € y3araAbHEHOIO IOXiAHOW (PYHKINI obMeXxeHOI Bapiarii, A(x) > 0,
A~1(x) — obMexena i BumipHa dyrkiis. KpartoBi yMoBI MarOTh BUTASIA

{pllT(Or T) + plZTJEH (0/ T) + ‘711T(l, T) + quTJ[Cl] (l/ T) = l)bl (T)r
paT(0,7)+ PzzT;[(l] (0,7) +qunT(l,7) + QZZTP](Z/ T) = Pa(7),

Ae gepes T;El] (x, T) mo3HaUYeHO KBasimoxiaHy A(x) 3—§ Po3B’s130K 1€l 3aAadi IITyKAETHCSI METOAOM Pe-
AyKIT y Burasiai cymu aBox pyskuiii T(x, T) = u(x, T) + v(x, 7). Lleit MeToA Aae 3MOTY 3BECTI PO3-
B’sSI3yBaHHSI IIOCTaBAEHOI 3aAa4i A0 pO3B’SI3yBaHHS ABOX 3aAa4: KpaloBol KBasicTallioHapHOI 3aAadi
3 [IOYATKOBYMM i KPalfOBMMM YMOBAMM AAST BIATITYKAHHST (PYHKIILT # (X, T) i MiIraHoI 3aaadi 3 HyABO-
BYIMM KPaViOBVMM YMOBAaMM AASI A€SIKOTO HEOAHOPIAHOTO PiBHSIHHS 3 HEBIAOMOIO (PYHKIIIEIO U(X, T).
INepma 3 11X 3aaa4 pO3B’SI3Y€ThCSI 3 AOTIOMOTOIO BBEACHHSI KBa3iIOXiAHOL. AAs pO3B’sI3yBaHHS ApPY-
roi 3apadi 3aCTOCOBYEThCsI MeToA Dyp’e i po3BUMHEHHS 3a BAACHMMM (DYHKIISIMU AeSKOI KpalioBol
3apaui AAsI KBasiAvdpepeHIiaAbHOrO piBHSIHHS Apyroro mopsiaky (A(x)X'(x))" + wa(x)X(x) = 0.
Dyrkuis v(X, T) MOAAETHCSI Y BUTASIAL PSIAY 3a BAacHMMM (pyHKIIisIMM i€l KparioBol 3apaui. Otpu-
MaHi pe3yAbTaTi MOXKHA BUKOPMCTOBYBATH AAsI AOCAIAKEHHS IIpoLIeCy TeIlAoIepeAadi B 6araTora-
POBilt IAMTI.

Kntouosi crosa i ppasu: xpaiioBa 3apava, KBasiloxiaHa, BAacHi dpyHKIiT, MeTopa Dype.
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APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES

For a space of non-additive regular measures on a metric compactum with the Prokhorov-style
metric, it is shown that the problem of approximation of arbitrary measure with an additive measure
on a fixed finite subspace reduces to linear optimization problem with parameters dependent on
the values of the measure on a finite number of sets.

An algorithm for such an approximation, which is more efficient than the straighforward usage
of simplex method, is presented.

Key words and phrases: Prokhorov metric, non-additive measure, approximation, compact metric
space.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different
branches of mathematics. Spaces of upper semicontinuous capacities on compacta were sys-
tematically studied in [5]. In particular, in the latter paper functoriality of the construction of
a space of capacities was proved and Prokhorov-style and Kantorovich-Rubinstein-style met-
rics on the set of capacities on a metric compactum were introduced. Needs of practice require
that a capacity can be approximated with capacities of simpler structure or with some conve-
nient properties.

We follow the terminology and notation of [5] and denote by exp X the set of all non-empty
closed subsets of a compactum X. We call a function ¢ : expX U {@} — I a capacity on
a compactum X if the three following properties hold for all subsets F, G C1 X:

C

1. ¢c(@)=0;
2. if F C G, then ¢(F) < ¢(G) (monotonicity);

3. if ¢(F) < a, then there is an open subset U D F such that for all G C U the inequality
¢(G) < ais valid (upper semicontinuity).

If, additionally, c¢(X) = 1 (or ¢(X) < 1) holds, then the capacity is called normalized (resp.
subnormalized). We denote by MX, MX, and MX the sets of all capacities on X, of all normal-
ized, and of all subnormalized capacities on X respectively.

It was shown in [5] that M X carries a compact Hausdorff topology with the subbase of all
sets of the form

O_(F,a) = {c € MX | ¢(F) < a}, whereF < X,a€el,
C

YAK 515.12, 517.518.11
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and

O+(U,a) ={ce MX | c(U) > a}
= {c € MX | there is a compactum F C U, c(F) > a},where U C X,a € I.
op
The same formulae determine a subbase of a compact Hausdorff topology on MX so that
MX C MX is a subspace.
Previously we have considered the following subclasses of MX:

1) MX is the set of the so-called N-capacities (or necessity measures) with the property:
c(ANB) =min{c(A),c(B)} forall A,B C1 X.
C

2) M X is the set of the so-called U-capacities (or possibility measures) with the property:
c(AUB) = max{c(A),c(B)} forall A, B C1 X.
C

3) Class M X of capacities defined on a closed subspace Xy C X. We regard each capacity co
on Xy as a capacity on X extended with the formula ¢(F) = ¢o(F N Xp), F C1 X.
C

4) Class My ;, X of capacities that are non-expanding w.r.t. the Hausdorff metric on exp X.

Analogous subclasses are defined in MX and M X, with the obvious denotations.

It was proved in [2, 3] that the subsets M,X, M X, MpipX, and MXj are closed in MX,
hence for a compactum X they are compacta as well, similarly for the respective subsets in
MX and MX.

We consider the metric on the set M X of capacities on a metric compactum (X, d) :

d(c,c’) = inf{e > 0| c(Oc(F)) +¢& = c/(F),c’(O¢(F)) +¢& > c(F),VF G X},

here O(F) is the closed e-neighborhood of a subset F C X. The restrictions of this metric on
MX and MX are admissible [5].

For an arbitrary capacity c on a metric compactum X, explicit constructions for the closest
to ¢ point in the four above subclasses were presented in [3, 4].

Now we consider probably the most important class of additive regular measures.

Our goal is to approximate a capacity c on a metric compactum X with an additive measure
on a finite subspace of X. Such measures are dense in the space PX of all finite additive regular
measures and have nice representation as linear combinations of Dirac measures.

1 ALGORITHM FOR APPROXIMATION OF A CAPACITY WITH AN ADDITIVE MEASURE ON
A FINITE SUBSPACE

Consider a capacity ¢ on a metric compactum (X, d) and a finite subspace Xo = {x1,x2,...,
xn} C X. We are going to find the distance between ¢ € MX and the subspace PXy C MX, in
particular to find an additive measure m on X, that is (almost) the closest to ¢ with respect to
the distance d.

The inequality d(c, m) < e means that there is 0 < z < ¢ satisfying

m(A) < c(O¢ A) +z,
c(A) <m(O:A)+z
for all A C X. Obviously it is sufficient to verify the first inequality m(A) < ¢ (A) + z, where

cl
we denote ¢;7 = ¢(Og(A)), only for all A C Xp. Similarly, for the second condition we verify
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o(

B) < m(A)+zforall BC Xand A C X; such that (O, B) N Xy C A. This is equivalent to
m(A) > c

- (A) —zforall A C Xy, where

¢z (A) =c(X\ O¢(Xo\ A)) =sup{c(B) | B G X,BNO:(Xg\ A) = o}.

Obviously ¢; (A) < ¢ (A) forall A C X,.

All additive measures on Xy are of the form m = y16y, + y20x, + -+ + yuby,. Thus, to
find the least z that satisfies the above conditions for some m, we have to solve the linear
programming problem w.r.t. the variables y1,y2,..., ¥4,z = 0:

]/1/]/2r~ . ~/}/n/Z > 0/
YaealVi<ci(A)+z forall A C Xy,
YweaVi = (A) —z forall A C X,

z — min,
which we rewrite as follows:

Y1,Y2,- ., Yn, 220,
—YiealVitz>—ci(A) forall A C X,

YaeaYitz>= ¢ (A) forall A C X,
Z — min.

We embed the set Exp Xy into R" by identifying each subset A C X, with the vector containing
1 at all i-th positions such that x; € A and 0 at all other positions. E.g., @ is represented by
(0,...,0),and Xy by (1,...,1). By — Exp X, we denote the set of the opposites to elements of
Exp Xo C R". Define a function ¢, : Exp Xo U (— Exp Xp) — R by the formula

c(A) = c; (A), A € Exp X,
—cf(—A), A€ (—ExpXp).

The common element @ = (0,...,0) € Exp X N (— Exp Xp) leads to no contradiction because
c; (9) =cf(2)=0.

We also denote by (A|1) the vector obtained by appending a trailing 1 to the sequence
A = (m,ay,...,a,) € ExpXoU (—Exp Xp). Then the linear optimization problem can we
written as

]/1/]/2/ .. -ryl’lrz > Or
(A1) - (y1,Y2,---,Yn, 2) = ce(A) forall A € Exp Xo U (— Exp Xp),
Z — min.

It has a straightforward geometric interpretation: of all functionals of the form

Y(t1,ta, . tn) =it F yato + -+ Yntn + 2

such that y(A) > c¢.(A) for all A € Exp Xo U (— Exp Xp), choose one with the minimal z,
i.e., with the least value ')/(6) Now it is clear that, due to monotonicity of the function c,
the restrictions y1,¥2,...,y» = 0 can be dropped. Observe also that the restriction z > 0 is
equivalent to

@) - (Y1, Y2, Y, 2) = ce(D),
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hence can be dropped as well.
Geometric arguments also show that the problem is solved if affinely independent

A1, Ay, ..., A1 € Exp Xo U (— Exp Xo)

are found such that 0 is in their convex hull (in the sequel we call such Ay, Ay, ..., A,41 basic
subsets), and the solutions y1, 2, . .., yu, z of the system

(A1|1) ’ (yllyZI- . -,]/n,Z) = Cg(Al),
(A2|1) : (ylryZI- . -;]/n;z) = Cg(Az),

(Ap+1l1) - (v, vz, ynz) = ce(Apyr)
satisfy
(A1) - (y1, Y2, Y, 2) = ce(A)

forall A € Exp Xo U (— Exp Xp).

Therefore we propose the following algorithm, which essentially is equivalent to the sim-
plex algorithm, but is better suited for our needs. Choose initial basic subsets, e.g., A1 = {x1},
Ay ={x2},..., An = {xn}, Ays1 = —{x,}, then calculate y1, 2, ..., Yn, z as

1,2y 2)T = (M(A1, Ag, ..., An)) " (c(Ar), c(A), ..., c(Ans1))T,

where (—)T means transposition, and

A |1
A 1

M(A]./AZ/---/AH) - 2 | 7
An+1 | 1

i.e., it is the matrix with the rows (A1]1), (A2|1), ..., (An+11).
We will permanently need the inverse matrix

A1 Az oo A
Al A oo Agpq
(M(A1, Ay, ..., Ap)) " =
)\nl AnZ oo )\n,nJrl
| H1 M2 o Myl

For any A € Exp Xy U (— Exp Xp) the column (M(Al,Az,...,An))fl(A|1)T consists of
the coefficients aq, a3, ..., 4,11 such that g +ap +--- + a1 = 1 and a1 A1 + Ay + - +
&p+1Ay11 = A (in the above sense). In particular, 1Ay + uoAs + - + py414,41 = 9, and
)\ilAl + AQAZ + -+ Ai,n+1An+1 = {xi} forall 1 < i < n.

Now, having 1,12, . .., yu, z calculated, compare the differences

ce(A) — (A (y1,y2, -+, Yn, 2)

for all A € ExpXo U (—Exp Xp). If the basic subsets Ay, Ay, ..., Ay41 provide a solution,
then all the differences are not greater than 0. Otherwise find the greatest difference A =
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ce(A”) = (A1) (y1,y2, - -

is in the convex hull of A4, Ay, ...

Let (aq,a2,...,0,11)7 =
&y +1Ap+1, then
1
Aj=—A
n;
Therefore
@ = (1 — pi
_|_ PN (;’li’l+1

The coefficients in the new decompos1t10n of & should be nonnegative, hence «; > 0 is
> 0, then the latter

required, as well as either

inequality is equivalent to

that o > 0.

Now we replace A; with Al =

(M(Aq, Ay, ...,

is adjusted accordingly:

-
Hi= «
Ars
/ ki
)\ki o ’
Now look how y1, 1, ..

z = p1ce(Aq1) +
+ piv1Ce(Aipr) + -

Z' = (1 — al%)cg(Al) +o
1

LI

— Wi
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/
’ Ai*l/ A 7 Ai+1/ sy An+1'

(M(A1, A, ..., An)) " (A’]1)T, hence A

o
+ (piz1 — P‘i[x—il)Aifl + (His1

| Hi 41
A —=A.
) et

1

., Yn,z have changed. Taking into account

iy Vi—lcs(Ai—1> + Vics(Ai>
+ ,un+1An+1r

1

_I’li

(piz1 — “ifl%)ce(Aifl) + %Ce(AQ

,Yn,z), which is positive, and replace with A" a subset A; such that 0

/:061A1+062A2+"'

Xit1
A.
& ) i+1

<j <

aj < 0orpj— yz > 0forallj # i If a;
i Pl— Hence Hi should be the least of — Hj for1l <
rx]- o; o; o;
A’, and the inverse matrix
_)‘ill )‘ilz A:l 1|
. Ay Ay )‘2 n+1
Ai, AL Aigr, ., An) =L N
A%l A%z )‘:q n+1
LH Ko [z
_ Hi . .
y iy 1<j<n+1,j#4
1
A-—)\‘—(x‘@ 1<kj<n+1,j#i
ki — kj ] & ’ X /] X ;] .

)

i

+ (pit1 — “i+1%)CS(Ai+1) 4t (g — fxn+1%)ce(1‘1n+1)/
1 1
obtain 1 "
7 —z= j(ce(Ag) — (agce(Ar) + -+ “n+1C8(An+1))) = (x_l A
1 1
Similarly
Ay / Ay
Vi — Yk = 7<C€(Ai) — (@1ce(Ar) + - Faprice(Any))) = — - A

1 1

n + 1 such
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This simplifies calculation of z’ and all ;. We iterate the above step until A = 0. The final
value of z, which we denote z(¢), is the least z such that

m(A) < c(O A) +z,
c(A) <m(O:A) +z

for some m € PXj and all A C1 X.
C

Observe that z(¢) is non-increasing with respect to ¢, hence the distance between ¢ and PXj
is the least € such that z(¢) < e. This distance is not greater than z(0), therefore it is easy to
bisect the segment [0,z(0)] to find the distance and an approximating additive measure with
arbitrary precision.

2 CONCLUDING REMARKS

The proposed algorithm was implemented as a C program and tested on data sets with
cardinality of Xo up to 10.

However, each iteration of the presented algorithm requires previously calculated values
of a capacity for all 2cardinality of the space g;hsets, which is not appropriate even for > 40 points.
Hence, to handle subspaces of greater cardinality, we need to cut memory and time require-
ments using the metric structure and the only reliable property of a capacity, i.e., its monotonic-
ity. This requires deeper investigation combining both topological properties of non-additive
measures, e.g., their dimensional characteristics, and computational aspects.
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AAST IPOCTOPY HEaAUTUBHMX PEryASPHMX Mip Ha METPUYHOMY KOMIIAKTi 3 BIiACTAHHIO B CTMAL
ITpoxopoBsa IHoKa3aHo, IO 3aAava HabAVDKEHHS AOBIABHOI Mipy aAMTMBHOIO MipoIo Ha dpikcoBaHOMY
CKiHYeHHOMY T AIIPOCTOpPi 3BOAMTBCSI AO 3aAadvi AiHIVHOI ONTMMI3alil 3 mapaMeTpaMy, 3aAeXHIMNI
BiA 3HaueHb BMXiAHOI Mipy Ha CKiHUEHHOMY UMCAL MHOXMH.

3ampoOrOHOBAHO AaATOPUTM TaKOTO HabAVDKeHHS, e(peKTHBHIIINMIT IIOPIiBHSIHO 3 MpSIMOAIHIHIM
3aCTOCYBaHHSIM CUMIIA€KC-METOAY .

Konwouosi cnosa i ¢ppasu: merpuxa IIpoxopopa, HeaAUTMBHA Mipa, allpOKCMMAIIisl, KOMIIAKTHMI
MeTPUYHMIA ITPOCTIp.
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A NOTE ON THE NECESSITY OF FILTERING MECHANISM FOR POLYNOMIAL
OBSERVABILITY OF TIME-DISCRETE WAVE EQUATION

The problem of uniform polynomial observability was recently analyzed. It is shown that, when
the continuous model is uniformly polynomially observable, it is sufficient to filter initial data to de-
rive uniform polynomial observability inequalities for suitable time-discretization schemes. In this
note, we prove that a filtering mechanism of high frequency modes is necessary to obtain uniform
polynomial observability.

More precisely, we give a counterexample which proves that this latter fails without filtering the
initial data for time semi-discrete approximations of the wave equation.

Key words and phrases: observability inequality, time discretization, filtering techniques.

Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
E-mail: hajjej.zayd@gmail.com
1 INTRODUCTION
We consider the following wave equation on interval of length 1

up(x,t) — uxx(x,t) =0, 0<x<1,0<t<T,
u(0,) = u(1,t) =0, 0<t<T, (1)
u(x,0) = u(x), us(x,0) =ul(x), 0<x<1,

where (19, u') € H}(0,1) x L2(0,1). It is easy to check (see [1]) that this system is well posed
in the energy space H}(0,1) x L?(0,1). More precisely, for any (u®,ul) € H}(0,1) x L?(0,1)
there exists a unique solution u € C((0,T), H}) N C'((0, T), L?(0,1)) of (1).

The energy of solutions of (1) is conserved in time, i.e.,

1
E(t) = %/0 <|ut(x, 1) + |ux(x, t)|2> dx =E(0) forall 0<t<T.

Define the output function
y(t) =u(G 1), &€ (01) 2)

It was proved in [1] that system (1) is polynomially observable when ¢ € S, where § is the set
of all numbers p € (0,1) such that p ¢ Q (the set of rational numbers) and if [ag, a1, ..., 4y, ... ]
is the expansion of p as a continued fraction, then (a,) is bounded. More precisely, we have
the following assertion.

YAK 517.9
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Proposition 1. Let T > 0 be fixed. Then for all { € S the solution u of (1) satisties

Ce | (600t 2 10 By + 11 2 0 @
where (1%, u) € H}(0,1) x L?(0,1), C; is a constant depending only on ¢.

In the remainder of this paper, ¢ is fixed and belongs to S. In this paper, we are interested
in time discretization of system (1). The analysis of observability properties of numerical ap-
proximation schemes for the wave equation has been the object of intensive studies. However
most analytical results concern the case of exact observability for discrete systems ([2, 7]). Re-
cently in [3, 4], time semi-discretization of polynomial observability was analyzed. The author
shows that a filtering technique allows to restore a uniform (with respect to the parameter of
discretization) polynomial observability for the discrete model. But there is no result provided
the necessity of this method. Consequently the main goal of our note is to give a counterexam-
ple which proves that uniform polynomial observability fails without filtering the initial data
for time semi-discrete approximations of the wave equation.

2 NON UNIFORM POLYNOMIAL OBSERVABILITY

We set the time step At by At = T/(N + 1), where N > 0 is a given integer. Denote by uy
the approximation of the solution u of system (1) at time t, = kAt, forany k = 0,...,N + 1.
We then introduce the following trapezoidal time semi-discretization of system (1)

Ujy1+HUg_1—2U - 02 UppptUg—1\ __ —
M1 g =20 _<f) =0, k=1,...,N,0<x<1,

(At)? 9x2
ue(0) = uk(1) =0, k=0,...,N+1, (4)
ug = u% u; = u® + (At)ul, 0<x<l
Here (u°,u') € H}(0,1) x L2(0,1) are the initial data given in system (1). As in the contin-

uous case, we w111 check an observability inequality for system (4) which can be formulated as
follows:
we must find positive constant C such that we have

N _ 2
CAt ). ukH@At wle) | (0, 1) 1 T2(0,1) < E-10,1) (5)
=0

for all (ug, u1) € H}(0,1) x L?(0,1). But there is not the case. Indeed, as in [6], we will choose
a particular initial data which don’t satisty (5) uniformly with respect to the discretization
parameter. The following theorem provides a quantitative statement of this negative result.

Theorem 1. For all T > 0, there exist a positive constant C(T,At) and initial data
(uo,u1) € HY(0,1) x L?(0,1), such that the solution uy of (4) satisfies

N u —Uu 2
C(T,At)At ) kH(C)At 20 < [ (uo, 1) | T2(0.1) x H-1(0.) -
=0

Proof. We denote by (y]z) j>1 the eigenvalues of the Dirichlet Laplacian and (¢;);>1 the corre-
sponding eigenvectors. Assume that

[ee]

up = Y_ajp;, u1 =Y (aj+bjAt)g;.
=1 =1
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Then, by proceeding as in Lemma 2.2 of [6], we easily show that the solution of system (4) is
given by

=Y 1/9j, (6)
j=1
where . |
iw; iw;
g (€ = D)aj — Aty (1= €)a; + Aty
/ 2isin(w;) 2i sin(w;) ’
and

1
w] = arccos (W) .

If a; and b; are chosen so that (eiwi —1)a; = Atbj forj =1,2,..., then
ug =Y, a]-eiwfkq)]-.
j=1

Now, by using continuous fractions (see [5] and references therein for details) we construct a
sequence (g;) C IN such that g,, — oo and

| sin(gytg)| < ql forall m >1. (7)
m
Since g, — 400 as m — +o00, one can choose a my = my(At) such that
1
—— < Gmy, (8)
ani =T
which leads to
GmoAt — +o00, as At — 0. )

We choose uy = ag,,, ¢q,,, U1 = aqmoelw"’"o P, then uy = ﬂqmoezmq’”o Pgnyr k= 0. A simple
calculations give HMOH%Z(OJ) = a%mo /2 and |juq |‘%I*1(0,1) =a / Zyémo. On the other hand, one

Gmygy
has
2 a2

e 1(8) — (@) _ (Ai")lg 92, (&)(1 = cos(wy, ),

At
and then, since (N + 1) = T/At,

2 2 2
At ﬁ urs1(8) — uk(9) ‘2 _ 2005, Hang P (&)

k=0 At 2 + (VQmOAt)Z
Using (7), we get
N _ 2
C(T,At)ALY uk“(g)m (6 ‘ < (o, u1) 20,0y 1i-1(0.1)
k=0
where C(T, At) = (2 + (pg,,,At)?) /4T 7" O

The above inequality and (9) claim that (5) fails uniformly with respect to the discretization
parameter. Indeed, it is clear that C(T, At) — +oc0 as At — 0, and then

2
”(”01”1)”L2(0,1)xH71(0,1) s 4o as Af - 0.

2
Atki uk+1(§)At— ug(g)

Consequently, filtering the initial data is needed to obtain (5) uniformly with respect to the
discretization parameter.
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3 FILTERING MECHANISM

We first transform system (4) into a first order time-discrete scheme as in [2]. For simplicity,
we denote Ay = —02%/9x2. We have

At
(I 4 —=A0) (i1 + 1) — 2ux =0,

then
2

At
(I+ TAO)(ukJrl + g — 2ug) = —AP Aguy,
which gives

At?
(I + ——Ao) (1 + ug—1 — 2uy) = — At Ag(

Upr1 + Up—1 + 2uk)
1 .

4

Consequently (4) can be rewritten as

U1 + Ug—1 — 2y
(At)?

U1 + U1 + 21y

+ Aq( 4

), (10)

with Ay = Ao(I + ATtZAO)_l. Now using the following change of variables

1 _ U1~ U -2 1/2 Upypq U
Vir1 = A +1A1/ (55,
U 1—U cA1/2 U q+u
Voo = et A} (g,
we obtain )
yk%t Ye A(yk+12 yk),
" an
0= (i)
with
1
Z'A%/Z 0 kil Yi1
1 2
Y1

Note that the spectrum of A is explicitly given by the spectrum of Ag. More precisely, the
eigenvalues of A are iA; with corresponding eigenvectors

~(2) #im () sen
@j <0 s P 9; s ] ’
where Aj = p;/ 1/1—1—At2]/t]2‘/4. Moreover we define

Cs = span{¢; such that p; <s}.

We are ready to prove the following uniform boundary polynomial observability of the time
discrete wave equation.
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Theorem 2. For any § > 0, there exists T; > 0 such that for any T > Ty, there exists a positive
constant C = Cr 5, independent of At, such that for At small enough, the solution uj of (4)
satisfies

N 1, _ 2
k=0
Proof. We have, for all k # I, |Ay — A = |f(ux) — f(uy)|, where f is defined by

f(t) = t/(/1+ (?At?)/4). Applying the mean value theorem to the function f, there ex-
ists a point ¢ between py and y; such that

A=Al = 1 ()l = pul-

Simple calculations give that f'(c) = 1/ (1+AtT202)3/ 2, It is easy to check that

If'(c)] > 1/(1+ ‘Z—Z)e‘/z, and |px — | > 7 forall k # 1. Consequently there exists v > 0
such that, for all k # I |[Ax — A;| > 7. Besides, we have (see [1]) | sin(j7c¢)| > %, forall j > 1, for

some v > 0, and then |sin(jng)| > %, forall j > 1, with = vm/4/1+ %. Hence, applying
Proposition 2.5 of [3], we obtain the desired result. O

Remark 1. In the last proof, we used Proposition 2.5 of [3] in which we assumed that the
damping operator is bounded, but this assumption is not needed in the proof of Proposition
2.5, and the result still correct even if the dissipation is unbounded.

4 OPEN PROBLEMS

1. In this paper we dealt with the polynomial observability of time discrete wave equa-
tion. The question of space semi-discrete polynomial observability for wave equation
still open. Another interesting open problem is whether the fully discrete schemes have
these properties of observability uniformly with respect to the discretization parameters.

2. At the continuous case, it is well-known that polynomial observability implies polyno-
mial stability for associated dissipative system (see [1]). At the discreet level, the only
result excitant, in this context, is [3] which deals with bounded dissipation. However the
situation is complicated when the dissipation is unbounded, as for example the case of
wave equation with punctual dissipation (which correspond to the associated dissipative
system of (1)—(2)), and this issue requires further work.

3. Other question arise when discretizing in time and/or in space semilinear dissipative
wave equations. It would be interesting to analyze the uniform (with respect to the
steps) decay properties of solutions when the conservative system satisfies a polynomial
observability inequality. Actually, this question is also open at the continuous level.
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Xapxex 3. ITpo HeobxioHicmb Mexanizmy pirvmpayii 019 noniHoMiaN6HO20 00CHi0HCeHHS UAc080 OUcKpe-
mHux xeunvosux pisHano // Kapmarceki Marem. myba. — 2017. — T.9, Nel. — C. 98-103.

Y crarTi mpoaHaAi30BaHO MMTaHHS TOAIHOMiaABHOTO AocAiakeHHs . [TokasaHo, IO SIKIIIO Helle-
PpeBHi MOAeAi € piBHOMIPHO MOATHOMiaABHO AOCAIAXKYBaHi, TO AOCTATHBO BiA(PiABTpPYBaTH IOYATKO-
Bi AaHi AAST BUOKPEMAEHHSI TOAIHOMIaABHO AOCAIAXYBaAbHMX HEPiBHOCTEN y BiAIIOBIAHMX UacOBO
AVICKPETM30BaHIX cXeMax. Y 3B’SI3Ky 3 MM MM AOBOAMMO, IIIO MeXaHi3M (piAbTpyBaHHS YaCTOTHMX
MOAYAIB € HEOOXiAHMM AAST iCHYBaHHSI PiBHOMiPHOTO ITOAIHOMiaABHOTO AOCAIAKEHHSI.

A came, mobyA0BaHO KOHTPIPUKAAA, KWL ITOKA3ye, 10 IPOLeAypa AOCAIAXKEHHS Mi3Hillle He
peanaisyeTbest 6e3 TOUaTKOBOTO PiABTPYBaHHSI AAHMX Y HaIliBAVCKPETHIl alipOKCHMATllil XBUABOBOTO
PiBHSIHHSL.

Kntouosi cnosa i hpasu: HepiBHICTD CIIOCTepeXXeHHs, YacoBa AMCKpeTH3allisl, TeXHiky dpiabTpaliii.
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boraan Mocumosuy I ITarramk

28.09.1937 — 22.02.2017

22 atororo 2017 poky mepectano 6utucst ceprie Boraana Mocumosnya ITammHka — BuaaT-
HOTO YKpaiHChbKOTO MaTeMaTuKa, mpodecopa, ureHa-kopecriouaeHTa HAH Ykpaiam, aiticHoro
unreHa HayxoBoro ToBapuctsa imeHi llleBuenka, modecHoro coxropa I IpukapnaTchkoro Hairio-
HaABHOTO YHiBepcuTeTy iMeHi Bacuas Credpanmka.

Boraan Mocumosiru TTTanmmk Hapoansest 28 BepecHst 1937 poky B ceamii Boropoadanmu
CranicaaBepkoi (HvHI IBaHO-®DpaHKiBebKOI) 06AacTi. Y 1959 poui 3akiHumMB 3 BiAsHaKOO ¢isu-
Ko-MaTeMaTUuHMA paxyAbTeT CTaHICAABCHKOTO Aep>KaBHOTO MEAAroriuHOro iHCTUTYTY, 3A0-
OyBILM CHIeliaABHICTD “yunTeAb MaTeMaTUKM i pisuky cepeaHbOI MIKOAN”. BXe y cTyAeHTChKi
poKM BiH po6uTh mepii BaroMi kpoku y Hayni. HaykoBo-aocaiaHMITBKA po6OTa TPETHOKYPC-
Huka boraana Ilrammnka “BupomnryBaHHST MOHOKpHCTaAiB IMHKY 6yAa Bia3HaueHa Ipamo-
Tot0 OprkoMiTeTy MiXKOOAACHOTO OTASIAY HayKOBMX PObIT CTyAeHTiB. MaTeMaTMKOK0 Mali-
Oy THIN ureH-KOopecrtoHAeHT HAH YxpaiHu modas cepif03HO 3alIMaTHCSI 3 YETBEPTOTO KypCy
miA KepisamurBom B.II. 3apoBHoro, yuns Biaomoro reomerpa O.C. CMoropxescbkoro. 3a
poboty “IlTocrabreHHST yMOB, IO 3a6e3MedyiOTh BUKOHAHHS B abCTpaKTHIiN TPy akcioMu
napaaeAbHOCTI EBkaiaa”, BukoHaHy y 1959 poiri, MOAOAOTrO HayKOBIISI HATOPOAKEHO IpaMo-
Toro MiHicTepcTBa BUIIIOI i cepeaHboi cieniaabHOI ocBiT! YPCP.

TpyaoBy aisiabHicTs B.U. TITammmk posnodas y ceprHi 1959 poky BumMTeAreM MaTeMaTH-
KM cepeAHbOI MIKOAM Y ceai PociabHa boropoaudascskoro paiiony CraHicaaBcbKoi obaacti. Y
1961-1963 pp. mpairoBaB acucTeHTOM Kadpeapy MaTeMaTuky CTaHiICAABCHKOTO Aep>KaBHOTO
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neAarorigysoro iHcturyTy. Y 1963-1966 pp. HaBYaBCs B acHipaHTYpi BiAAIAY AMdpepeHIIianb-
Hux piBHsHb [HcTUTYTY MaTematuku AH YPCP. HaykoBuM KepiBHMKOM MOAOAOTO HayKOB-
st 6yB mpodpecop Bitaaiit SIkosmua Ckopoboratsko. ITicast 3akindeHHs acmipasTypu y 1966—
1969 pp. B.W. [TramHmk npargosas acucTeHToM KadpeAp AudpepeHIiiaAbHIX PiBHSIHD AbBiBCh-
KOro Aep>XaBHOTO YHiBepcureTy iMeHi [Bana @dpanka. Y HbOMYy X YyHiBepCUTETi 26 AIOTOTrO
1968 p. BiH 3axmcTuB AMcepTanio “3asada Baare-Ilyccena Ta aesiki KpaiioBi 3apaui AAST Ai-
HIiTHVIX TilepboAiUHMX piBHSHB” Ha 3A00yTTsI HAyKOBOTO CTYIIEHsI KaHAMAATa pisMKo-Mare-
MaTMYHMX HayK 3a CreliaAbHICTIO “AMdpepeHIlianbHi Ta iHTerpaAbHi piBHSHHS.

3 1969 poKy A0 OCTaHHBOTO AHSI CBOTO XUTTs B.M. [TTaIiHuK mpaioBas B ycTaHOBaX Axa-
AeMii Hayk Ykpaimm. Y 1969-1972 poxkax — cTapIimii HayKOBMIA CIIBpOGITHIK BiAAiAY Teopii
AndpepeHniaAbHNX piBHSIHDb Disnko-MexaHiuHoro iHcTuryTy AH VYkpaimm (M. AbBiB), 3 1973
POKy — CTapIIvif HayKOBMI CHiBpobiTHMK ABBIiBCBKOTO hiniany Biariny MaTeMaTmdHOI dpi-
suxu [HeturyTy Matematuku AH Ykpaiam (3 1978 poxky — [HCTUTYTY npuKaaaHMX IpobaeM
MexaHiky i MaTematnky AH Yxpaianm). 3 1982 o 1990 pik odoatoBaB AabopaTOpito HeKAaCHI-
HJX 3apa4 MaTeMaTW4HOI (pi3yky [HCTUTY Ty NpUKAAAHMX IPOOAEM MeXaHIKM i MaTeMaTuKI
AH Yxpaimm. 4 xsiTHS 1989 p. B IHCTHMTYTI MaTematnku AH Yxpainu (M. KniB) 3axuctus
AmcepTauiio “HexaacuyHi KpalioBi 3apadi AAST AMidpepeHIIiaAbHNMX PiBHSIHD i3 YaCTVHHVIMU 110~
xiaAHMMIM” Ha 3006y TTSI HAYKOBOTO CTYIIEHSI AOKTOpa pisMKo-MaTeMaTUUHNMX HayK 3a CIlelliaAb-
HicTIO “AndpepenttianbHi piBHSIHHS ", a y 1990 poui ioMy IpMcBOEHO BUeHe 3BaHHS Mpodpecopa.
31990 poxy — 3aBiayBau BiAAIAY MaTeMaTUUHOI (Pi3MKM Ta KepiBHMK MaTeMaTUYHOTO CEKTOpa
[HCTUTYTY IpUKAAAHMX IIpObAeM MexaHiky i MaTeMaTuky iMm. S1.C. ITiactpuraga HAH Ykpa-
iHm, a 3 2003 poKy — roaoBa CeKIlii TEOPeTMUHMX i IPUKAAAHMX IPOOAEM MaTeMaTUKM IpK
Buenii paai i€l HayKOBO1 yCTaHOBM.

T[Mpodecop B.U. Itaummk — aBrop moHaa 200 HayKOBMX Mpallb 3 Teopii ArdpepeHiianb-
HVIX PiBHSIHB i3 YaCTMHHMMM TIOXiAHVIMY, TeOPil TiAASICTMIX AQHIFOTOBMX APObOIB Ta icTopii Ma-
TEeMaTMKM, 30KpeMa, Tpbox MoHorpadpint. Haiibinbir Baromi, BcecBiTHbO BU3HaHI pe3yAbTaTH
OTpMMaHI HMM Yy TeOpii piBHSIHb 13 YaCTVHHUMY IOXIAHMMM. [1ia 100 KepiBHMIITBOM YCIIIITHO
3axuIIeHo 18 KaHAMAAQTCHKMX 1 3 AOKTOPCBKI AMcepTariil.

Pasom i3 yunssmu B.1. TITammmk po3pobus opuTiHaAbHI METOAM AOCAIAXKEHHSI KOPeKT-
HOCTi Ta TIO6YAOBM pO3B’SI3KiB 6araTboX HEKAACMUHMX 3aAad AASI PiBHSIHD i cHCTeM piBHSHD
i3 YaCTMHHMMM IIOXiAHMMIU, a TaKOX AASI AMdpepeHIliaAbHO-OIlepaTOPHUX PiBHSIHD, 30KpeMa,
3aAaY 3 AOKaABHMMM 6araTOTOUKOBMMM YMOBaMI, 3 yMOBaMM TUITy yMOB Aipixae, 3aaad po
NepioAMYHi Ta Mavbke NEePiOAVYHI pO3B’I3KM, HEAOKAABHMX KPalOBMX Ta 6araTOTOUKOBMIX 3a-
Aad. Taxi 3apaui €, B3araai, HeKOpeKTHVMMM, a IX pO3B’SI3HICTh Y 6araTboX BUITaAKaX IIOB’sI3aHa
3 IpobAEMOI0 MaAMX 3HAMeHHMKIB. IIpm AOCAiAKeHHI IMX 3apau AASI TillepOOAivHMX, Ta-
paboriuHmx i 6e3TUIHMX piBHSHD Ta CUCTeM PiBHSHD BUMHMKAM MaAi 3HAMEHHMKM CKAAAHOT
HEeAIHIVHOI CTPYKTYpM, OLIHIOBAHHSI 3HU3Y SIKMX IIPM3BEAO AO HOBMX, paHillle He PO3B’sI3aHMX,
3aAau MeTPUUHOI Teopii umcer. Y pobortax B.M. [TrammHmka BCTAHOBAGHO YMOBM iCHYBaHHSI,
€AVHOCTI Ta HellepepBHOI 3aAeXXHOCTI BiA ITpaBMX YaCTUH PiBHSIHD i KpallOBUX YMOB PO3B’sI3KiB
HaBeAEHNX 3aAad y pisHMX PYHKIIOHAABHNX IIPOCTOPaX, a TaAKOX IMO6YAOBAHO SIBHI PpopMyAn
AASL PO3B’SI3KiB Y BUT'ASIAL y3araabHeHNX psiaiB Dyp’e 3a cucTeMaMy OpTOrOHAABHMX (PYHKITIN
Ta pPO3POOAEH] aATOPUTMM 3HAXOAXKEHHSI HabAVDKeHMX po3B’si3kiB. Ha BiaMiHy Bia pobiT iH-
X aBTOPiB, y poboTax mpodpecopa B.1. [TrarmHmka He TiAbKM aKCIOMATUIHO HAKAQAQIOTHCS
YMOBM Ha MaAi 3HaMeHHMKM, III0 3abe3redye po3B’sSI3HICTh 3aAadi, aAe 7 AOBOASITBCSI TBEPA-
JKeHHSI MeTPUUYHOTO XapaKTepy PO OLIHKM 3HM3y MaAMX 3HAMEHHMKIB, 3 SIKMX BUIIAMBAE OA-
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HO3Ha4YHa PO3B’SI3HICTD 3apadi AASI MaviKe BCiX (CTOCOBHO Mipu Aebera) BeKTOPiB, KOMIIOHEHT
SIKMX BMPaKalOThCs depe3 MapaMeTpy obaacTi, koedpillieHTn piBHSHD i KpaitoBux ymos. Lli
Aocaiaxenns B.M. [TramHuka cTaAM HOBMM €TaroM PO3BUTKY 3araAbHOI Teopii KparoBux 3a-
Ay, CTUMYAIOBAAM PO3BUATOK HOBMX aCIeKTiB TeOpii YMOBHO KOPEKTHMX 3aAad i METPUUYHOI
Teopil umceA.

CBoimMy 3HAHHSIMM i A0CBiAOM Boraan Mocumosiy [TTarmHmK meApo AiAMBCS 3 MOAOAAO.
YHIpoAOBX 6araTbOX pOKiB BiH UMTaB CHELKYPCH Ta KepyBaB HayKOBOIO POOOTOIO MaricTpis,
acripaHTiB 1 AOKTOpaHTiB y IlpukapnaTchbkoMy HalliOHaABHOMY yHiBepcuTeTi iMeHi Bacmas
Credranmka, HanionaabHOMY yHiBepcuTeTi “AbBiBcbKa MoAiTexHika”, y AbBIBCbKOMY Hallio-
HaABHOMY VHiBepcuTeTi iMeHi IBana ®panka, [HCTUTYTI npukAarHMX IpobAeM MeXaHIKM Ta
matematuky im. SI.C. ITiactpuraywa HAH VYxpainn, 6yB mpodecopom HamioHaabHOTO yHi-
BepcuTeTy “AbBiBcbKa MOAiTeXHiKa”, KepiBHMKOM AbBiBCBKOTO MiCbKOIrO ceMiHapy 3 Aude-
PEHLIIaABHMX PiBHSIHD Ta 3araAbHOIHCTUTYTCHKOTO MaTeMaTUYHOIO ceMiHapy IHCTUTy Ty mpuk-
AapHUX Tpobaem MexaHikym Ta MaTteMatuky iMm. SL.C. ITiactpurava HAH VYkpainu, ureHOM
PEeAKOAerili MpOBIAHMX MaTeMaTUYHMX XYpPHaAiB “YKpaiHCbKMI MaTeMaTMYHMIA XypHar”,
“MareMaTiuHi MeTOAM Ta (pi3uKO-MexaHiuHi moas”, “MaTeMaTnuHi cTyaii” Ta “KapnaTchki
MaTeMaTuuHi ITybaikarii”, ureHoM ¢pismko-MaTeMaTndHOI cex1il HaykoBoro ToBapucTsa iMe-
Hi IlleBueHKa, y paMKax sIKO1 3AIJICHIOBaB AOCAIAKEHHsI 3 icTopil MaTeMaTuku y I'aavuamHi.

B.1. TTtammmk 6yB OpraHi3aTopoM i HATXHEHHIKOM BCeyKPaiHChKIX HayKOBUX KOHdpepeH-
it “HoBi miaxoan A0 po3B’sI3yBaHHS AMdpepeHITiaabHIX piBHSHD” (M. Aporo6tmya) ta “Heai-
HiltHI mpobaemn aHaAizy” (M. IBano-DpankiBebk). Y 2007 p. 70ro 06paHO MOUECHMM AOKTO-
pom IpuxapnaTchkoro HallioHaAbHOTO yHiBepcuTeTy imMeHi Bacuas Credpannka — HaBYaAb-
HOTO 3aKAaAy, Ae BiH pobuB cBoi meprui kpoku y Hayii. Y 1989 p. B.M. [Tramsuka obpaso
unreHOM, a 'y 2006 p. — aivicaumm uaeHoM Haykosoro toBapucrsa imeHi IlleBuenxa. Y 2002 p.
1oro obpaHo akaaeMikoM AkaaeMii Hayk BUIIOL KoAM YKpainy, y 2003 p. — ureHOM-Kopec-
nouaeHToM HAH VYkpainn.

BaraTo cua i acy BiasaBas B. WM. [Trammsmk HaykoBo-OpraHisamiiHii poboTi 3 KOOpAMHALIi
HayKOBMX AOCAiAXKeHb Ta I ATOTOBKM HayKOBMX KaApiB BMCOKOI KBaAidpikallii 3 MaTeMaTuKy B
3axiaHOMY perioHi Ykpaimn. [TounHatoun 3 1976 poxy, BiH OyB cexpeTapeM CeKIIil MexaHiku i
MaTeMaTHKM, TOAOBOIO cekIii MaTeMaTuky (1991-2000 pp.), 3aCTYIHMKOM TOAOBM CeKIii Ma-
TeMaTUKM i MaTeMaTMYHOro MoaeAroBaHHsS (2001-2006 pp.), a 3 2007 poKy — KepiBHMKOM
BiAAiNeHHS (Pi3MKO-TEXHIUHIMX i MaTeMaTUYHMX HayK Ta KePiBHMK CeKIIii MaTeMaTUKM i MaTe-
MaTMUYHOTO MOAEeAIOBaHHS 3axiaHoro Haykosoro neHTpy HAH Yxpainn ta MOH Yxpainn.

Voro >XUTTEBUI MIASIX — BUCOKMI MPUKAAA CAMOBIAAAHOTO CAY>KIiHHS PiAHili 3eMAi Ta
Haywi. Apy3i, Koreru Ta yuni Boraana Mocunosmda [TTarmHmka 3 TAM60KOR0 BASUHICTEO TTaM’ 51
TaTVMMYTh JIOrO sICKpaBy IIOCTaTh, BIIAMB SIKOI Ha PO3BUTOK YKPaiHChKOI HAyKM HEMOXXAMBO
nepeouinnTy. Ilam’siTh mpo Buenoro, Bunteas, Ileaarora, YkpaiHiis Ha3aBXAW 3aAUIINTBCS Y
CepLsIX yCiX TMX, XTO JIOTO 3HaB.

I1.b. Bacuammms, O.A. Baacii, T.I1. T'oit, A.B. 3aropoanrox, P.A. 3aTopcbxmni, A.l Kas-
mepuyk, M.I. Komau, B.B. Masypenxo, O.B. Maxzet, I'.Tl. Maamibka, O.P. Hukudopuns,
MM. Ocumruyx, B.M. ITnanmis, 1.51. Caska, M.M. CumoTiox, I1.B. @iresny, C.B. [llapus.





