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BARANETSKI] YA.O.1, KALENYUK P.I.1, Koryasa L.I.}, KoracH M.1.2

THE NONLOCAL PROBLEM FOR THE DIFFERENTIAL-OPERATOR EQUATION OF
THE EVEN ORDER WITH THE INVOLUTION

In this paper, the problem with boundary non-self-adjoint conditions for differential-operator
equations of the order 2n with involution is studied. Spectral properties of operator of the problem
is investigated.

By analogy of separation of variables the nonlocal problem for the differential-operator equation
of the even order is reduced to a sequence {L};> ; of operators of boundary value problems for
ordinary differential equations of even order. It is established that each element L of this sequence
is an isospectral perturbation of the self-adjoint operator Ly of the boundary value problem for
some linear differential equation of order 2.

We construct a commutative group of transformation operators whose elements reflect the sys-
tem V(Lgy) of the eigenfunctions of the operator L in the system V(L) of the eigenfunctions of
the operators L;. The eigenfunctions of the operator L of the boundary value problem for a differ-
ential equation with involution are obtained as the result of the action of some specially constructed
operator on eigenfunctions of the sequence of operators Ly .

The conditions under which the system of eigenfunctions of the operator L of the studied prob-
lem is a Riesz basis is established.

Key words and phrases: operator of involution, differential-operator equation, eigenfunctions,
Riesz basis.
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INTRODUCTION

The boundary value problems for linear differential-operator equations are used in the
simulation of boundary value problems for differential equations with partial derivatives,
in particular, in the study of nonlocal problems. Significant results concerning the theory
of boundary value problems for differential-operator equations were obtained in the papers
of Vishik M.I.,, Boehner M., Gorbachuk V.I., Gorbachuk M.L., Dezin O.O., Dubinsky Yu.V.,
Kochubei A.N., Lions J.L., Mamedov K.S., Romanko V.K., Shakhmurov Veli B., Triebel Kh.,
Yakubov S., Yurchuk N.Yu.

During recent years, the number of publications with the use of an involution operator
in various sections of the theory of ordinary differential equations (see [4, 10, 12, 15, 16, 19]),
of partial differential equations (see [3,7,9, 14, 16,17, 20, 21]), of linear operators, T-invariant
with respect to some group of homeomorphisms (see [8]), differential equations with operator
coefficients (see [5-7]), PT-symmetric operators (see [1,2]) increased significantly.
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1 STATEMENT OF PROBLEM

Let us make some notations. H is a separable Hilbert space; A : D(A) C H — H is the
closed unbounded linear operator with the discrete spectrum ¢(A) = {z = ak7,a,v > 0,k =
1,2,...} V(A) = {vy € H: k =1,2,...} is the system of the eigenfunctions which forms
the Riesz basis in the space H; H(A®) = {h € H: Ah € H};s > 0, Wy = L,((0,1),H);
Dy : W; — Wj is a strong derivative in the space Wy; W, = {u € Wy : D2"u € Wy, A%'u € Wy };
[H] is the algebra of the bounded linear operators B : H — H; I is the operator of the in-
volution in the space L»(0,1); Iy(x) = y(1 —x); p; = L(E + (—1)/I) are the orthoprojec-
tors of the space L(0,1); Lj(0,1) = {y € L2(0,1) : pjy = y};j = 0,1, W3"(0,1) =
{y €Ly (0,1):y™ eC[0,1],m=0,1,...,2n — 1,y € L, (0,1)}; W*(0,1) is the space of
continuous linear functionals over the space W3" (0, 1); W;‘(O, 1)={leW*(0,1):ly=0,y €
Lr1-j(0,1) N W2"(0,1)};j = 0,1.

We consider the following boundary problem

Lw = (—1)" D¥'w(x) + A¥w(x)

n . .
+Y a4 (D¥ Mw(x) - DY w(1 —x)) = f(x), xe (1), @
j=1
tw= Dyw©0)+ ()" Dyw(l) =¢;, j=12...,n @)
byyjw = Dxm”+fw(0) — (=1)"nti Dxm””w(l) + l]-lw = @uyjy J=12,...,m, 3)
kj
@wz@%%wxmm+mMMwm» (4)

By solution of the problem (1)—(4) we mean a function that satisfies equalities

|Lw— f;Wall =0, |lLw — gy H (AP) || =0,

1 1
Bj=2n—m;— 5 Pn+j = 2n — max(mpj, k) — 5
a]-,b]-,,,S ER, r= O,l,...,k]-, s=01,=12,...,n,

My < Mpy—1 < ...<mq, Myy < Mpy—1 < ... < Myy1.

2 AUXILIARY BOUNDARY VALUE PROBLEM

Consider the partial case of the problem (1)-(4), when aj =0, b]-,,,s =0,r=01,.. .,k]-,
s=01,;=12,...,n,

(—=1)" D?{"u(x) + AZ"u(x) =f(x), x€(0,1), (5)
loju= Dy'u(0)+ (—1)" Dy'u(1) =0, (6)
ot = Dy u(0) — (=)™ Dy"u(1) =0, j=1,2,...,n 7)

Remark 2.1. The boundary conditions (6), (7) are numbered so that the following conditions

are satisfied
lj e W5(0,1), ln+j e Wi (0,1), j=1,2,...,n. (8)
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Let Ly be the operator of the problem (5)~(7), Lou = (—1)" DZ?*u+ A?u, u € D(Ly),
D(Lo) ={u € W : [ju=0,j=1,2,...,2n}. Consider the spectral problem for the operator Lg

(—1)" D¥'u(x) + A*u(x) = Au(x), lu=0,A1eC,j=12,...,2n )

The solution of the spectral problem (9) is defined as the product u(x) = y(x)vg, vy €
V(A), k=1,2,....To determine the unknown function y € W22” (0,1), we obtain the spectral
problem

(= 1)"y®(x) + 2'y(x) = Ay(x), AeC, (10)
oy = y"(0) + (-1)"iy™)(1) =0, j=1,2,...,n, (11)
lousjy = y"Hly(0) — (1) ym)(1) =0, j=1,2,...,n. (12)

Let Loy be the operator of the problem (10)~(12), Loxy = (—1)" y®"(x) + z2'y(x); y €
D(Lox); D(Lox) = {y € W3"(0,1) : lojy = 0,j = 1,2,...,2n}.

Assumption B;. The conditions (11), (12) are self-adjoint.

Assumption B,. The boundary conditions (10), (11) are strongly regular according to Birk-
hoff (see [18]).

In what follows we assume that the assumptions B1-B; are satisfied. The roots p; of the
characteristic equation (—1)"p*" = A — z2", which corresponds to the differential equation

(= 1"y (x) + Z"y(x) = Ay(x), (13)

are determined by the relations pj = wjp, w1 =i, wj; = iexpin%;l), j=23,...,n

The fundamental system of the solutions of the differential equation (13) is defined by the
formulas

1
yj(x,p) = 5 (expwjpx +exp wjp(1 - x)), (14)

1 .
Ynij(x,0) = E(exp wipx —expw;p(l —x)), j=1,2,...,n. (15)

2n
Substituting the general solution of the differential equation (13) y(x,p) = Y. Csys(x,p)
s=
into the boundary conditions (11), (12) we obtain an equation for determining the eigenvalues
of the operator L
A(p) = det(Ly))2i_; = 0. (16)

From the conditions (8) and from the properties of the functions (14), (15), we obtain

ZO,Vy}’H—j = OI lO,I’l—H’yj = 0/ j/r = 1/ 2/ - n, (17)

therefore,
A(p) = Do(p)Ai(p) =0, (18)

where As(p) = det(lsn+rysn+]-)’;,j:1, s=0,1.
The operator Ly is self-adjoint, therefore the roots of the equation (18) lie on the semiaxis
Imz =0, Rez > 0. For any s € 0, 1, we number the roots ps ; of the equation in ascending order

pS,l <ps,2 < ....
Thus, the operator L has the eigenvalues

As ok = (Ps,q)Z” + z%", s€0,1, g=1,2,.... (19)
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LetBo = my+my+---+my, B1 = myr1+myio+-- -+ my,. We define the eigenfunctions
of the operator L, which are normalized in the space. Let B(s, x, p) be a square matrix of the
order 1, the first row of which is determined by the functions v, j(x, 0), and the r-th row is
determined by the numbers lsn+rysn+]-, r=23...,n,s=01,j7=1,2,...,n Let

Vsq(x, Lox) = (psq) 054 det B(s, x, p5,). (20)
Then ||vs4(x, Lok); L2(0,1)|| =1, s =0,1, g =1,2,....
Lemma 2.1. Suppose that the assumptions B;-B, hold. Then for each number k € IN the
operator L has the eigenvalues (19), and it also has the system of the eigenfunctions (20),
which forms the orthogonal basis in the space L,(0,1).
Therefore, the operator Ly has a system

V(Lo) = {vsgx(x, Lo) € Wi : 05 gx(x, Lo) = 0s4(x, Lox)vk, s =0,1, k,g=1,2,...}

of the eigenfunctions in the space Wj. The product of a system V(A) and an orthonormal
system V(L) is the Riesz basis in the space Wj. Thus, the following theorem is true.

Theorem 1. Let the assumptions B1—B, hold. The operator Ly has the discrete spectrum
7(Lo) = {Asgk = (psg)?" +28", s =01, kg =1,2,... }.
It also has the system of the eigenfunctions V(L) which forms the Riesz basis in the space Wj.

We choose an arbitrary eigenvalue Ag, € o(Lok), 9 € N. Let

yn+j(x, Po,q) = —(exp Wjpo,4X — exp wjpolq(l -x)),j=12,...,n,

N

By(x, 00,4) is square matrix of the order #, the p-th row of which is defined by the functions
Yn+i(X, 004), and the r-th row is defined by the numbers (w;)"++1(1 + (—1)"+r+1 exp wjpoq),
r#p, j,r=12,...,n,

You+p(X, 00,49) = det By(x, poq),
M (poq) = det((w;j)™r1(1 + (=1)" 41 exp wjpoq))y =1/ (21)

Yin+p (x, PO,q) = (M (Po,q))_lyO,nﬂﬂ (x, PO,q)-

Substituting the expression (21) into the boundary conditions (11), (12), we see that
ljy1,n+p(x,p0,q) =0, j#n+pj=12,...,2n, (22)

ln-i—pyl,nﬂﬂ(xr PO,q> = (PO,q>m”+p~ (23)
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3 NON SELF-ADJOINT BOUNDARY VALUE PROBLEM

For the differential-operator equation (5) we consider the following boundary value prob-
lem for arbitrary fixed p € {1,2,...,n},b € R,

Gju= Dy'u(0)+ (-1)" Dy'u(l) =0, j=1,2,...,n, (24)
Ot = Dy u(0) — (=)™ Dy u(1) =0, j=1,2,...,n, j#p, (25)
(it = D" Pu(0) — (1) Dy"u(1) + Bu = 0, (26)

2u = p(DY""u(0) + (~1)"™* DY"u(1)) (27)

=0.
Let L1 be the operator of the problem (5), (24)~(27), Liu = (—1)" D?"u(x) + A*'u(x),
u € D(Ly), D(Ly) = {u € Wo : ljju = 0, j = 1,2,...,2n}. The solution of the spectral
problem (9), (24)—(27) is defined as the product u(x) = y(x)vy, v € V(A), k =1,2,....To
determine the unknown function y € W3"(0, 1), we obtain the spectral problem

(= 1)"y*)(x) + 2"y(x) = \y(x), A€C, (28)
Gy = y"0)+ (-1)"y™)(1) =0, j=1,2,...,n, (29)
iy = y(m”+f)(0) — (—1)m"+fy(m”+f)(1) =0, j=L12,...,nj#p, (30)

El,n+p]/ = y(mn+p)(0) _ (_1>mn+p Y (1) 4 b(y(mn+p)(0) + (_1)mn+rf y(mn+p)(1)) =0. (31)

Let Ly ; be the operator of the problem (28)-(31), L1y = (—1)" v (x) + zi"y(x); y €
D(Lyx), D(Lix) = {y € W3"(0,1) : l1,;y = 0,j = 1,2,...,2n}.
Theorem 2. Suppose that the assumptions B1-By hold. Then, for the any arbitrary fixed num-
bersp € {1,2,...,n}, b €R,

1) the eigenvalues of the operators L\ and L,  coincide;

2) the system V' (Ly i) of the eigenfunctions of the operator L, y is the Riesz basis of the space
L,(0,1).

Proof. We show that the eigenvalues of the operators Ly and L, coincide. We substitute
the fundamental system (14), (15) of the solutions of the differential equation (28) into the
boundary conditions (29)—(31).

det(l1,yr(x, 0))j,—1 = det(l1,jyr(x, 0))f =1 det(lntjYn+r (X, 0))7—1-

If I, pyn+j(x,0) = 0, we obtain the same equations for determining the spectrum. Define
the elements of the system V/(L;). Direct substitution shows that the functions vy 4(x, Lo),
g = 1,2,..., satisfy the conditions (29)—(31). Therefore, the eigenfunction of the operator Ly
that corresponds to the eigenvalue Ay ; is defined by

Ul,q('xl Ll,k) = vl,q('xl LO,k)/ q= 1L2,..., (32)

00,0(%, L1c) = 00,4(%, Loje) — 15 (00,4 (%, Loje)) (lnspy1,m4p (X, 00)) ™ Yinrp(x,009), 4 =1,2,....

Taking into account the formulas (31), (21), and the inequalities

|15 (v0,4(x, Loj))| < Ki(pog)™ 7,
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we obtain the estimates

1500, (%, Lo ) (lnpY1,np (% 00,4)) | < Kab].
For the problem (29)—(31), there exists an adjoint problem whose system of the eigenfunc-
tions W(L; x) form the biorthogonal system to the V(L ;). The boundary conditions (29)-(31)

are strongly regular according to Birkhoff. Therefore, according to the Kesselman-Mikhailov’s
Theorem [18], the system V(L ) is the Riesz basis of the space L,(0,1). O

4 TRANSFORMATION OPERATORS

Forany fixedk € N, p € {1,2,...,n}, we consider the operator B, : L»(0,1) — L(0,1), the
eigenvalues of which coincide with the eigenvalues of the operator L, and the eigenfunctions
are defined by

Ul,q(xz Bp) = Ul,q(x/ LO,k)z UO,q(xz Bp) = UO,q(xz L(),k) + Cq(Bp)yl,n—i-p(xf PO,q)z (33)

cg(Bp) €R,g=1,2,....

The operator that maps the system V(L) into the system V(B;) of the eigenfunctions
of the operator B, is denoted by R(By) = E + S(By), S(Bp) : L2o(0,1) — Ly1(0,1), S(Bp) :
L2,1 (0, 1) — 0.

We consider the set G, (L) of the operators R(By) such that the eigenfunctions of the
operator B, are defined by the equalities (33).

Lemma 4.1. Suppose that, the assumptions Bi—B; hold, R(B,) € G,(Loy). Then the system of
the functions V(By,) is complete and minimal in the space L,(0,1).

Taking into account the uniqueness of the operator R(B,)~! = E — S(Bp,), we obtain the
statement of the lemma. Suppose that U is the set of systems of functions (), _; C L»(0,1),
that are complete and minimal in space L(0,1), Q(I) is a set of operators R = E + S, such that
S: LZ,O(Orl> — L2,1(0, 1), S: Lz/l(o,l) — 0, QC(I> = [Lz(o, 1)] N Q(l)

Taking into account equality S*(B,) = 0, R(Bp) € Gy(Lox) C Q(I) on the set Q(I), we can
define the operation of multiplication

RleE(E—I—Sl) (E+52)2E+51—|—52, Rl,RzeQ(l).

In particular, Q(I) = Q(Iy), (E+S)(E—S) = E—S*> = E,E+S = R € Q(I). Therefore, for
each operator R = E + S € Q(I) there exists a unique inverse operator R~! = E — S.
According to the definition of the operator B, and of the set G, (L x) we have the inclusions

Gp(Lox) € Q(I), Gep(Lox) C Qe (1), pe{L,2,...,n}.

Thus, the set Q(I) is an Abelian group which contains the Abelian subgroups Q. (I),
Gp (Lox), Gep (Lok), p € {1,2,...,n}. Therefore, for any operators Ri =E+S5; € Qo (I),
j=1,2...,d,d € N, the following equality is satisfied
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Lemma 4.2. Suppose that the assumptions B1-B; hold, R(B,) € G,(Ly). The system of the
functions V(B,) is the Riesz basis of the space L,(0,1) if and only if the sequence {c;(Bp)} is
bounded.

The proof of the lemma is carried out analogously in [13]. Therefore, the operator L; has
the system

V(L) = {Us,q,k(xr L1) € Wit 05 4x(x, L1) = 05 g(x, Lig)vg, s = 0,1, g,k =1,2,... }

of the eigenfunctions in the space W;. The product of the system V(A) and the system V(L k)
is a Riesz basis in the space Wj. Thus, the following theorem is true.

Theorem 3. Suppose that the assumptions B1—B, hold. Then for arbitrary fixed numbers p &
{1,2,...,n}, b € R, the system of the functions V(L) is the Riesz basis of the space Wj.

5 THE SPECTRAL PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION

For the differential-operator equation (5) for arbitrary fixed b,,s € R, p € {1,2,...,n},

r=20,1,... k], s=0,1,7=1,2,...,n, we consider problem, generated by nonlocal conditions

b w= Dy'w(0) + (~1)" Dy/w(1) =0, j=12,...,n, (34)
Ui = Dy"Tw(0) — (=1)™ Dy"w(1) =0,j £ p, j=12,...,n, (35)
loniyw = D} Mptp w(0) — (—1)"+ D;””“’w(l) 4 lllgw =0, j=12,...,n (36)
kj
lyw = Zo(bp,r,oD;w(O) + by, 1 Dyw(1)). (37)
r=

Assumption B3. b0 = (—1)"b,,1,7=0,1,.. Jki,p=12,...,n
Remark 5.1. Assumption B3 implies thatlll7 eWy,p=12,...,n

In what follows we assume that the assumptions B1—Bs are satisfied. Let L, be the operator
of the problem (5), (34)—(37),

Lou = (—=1)" D2"u(x) + A*™u(x), u € D(Ly),
D(L) ={ueW,:Lhju=0,j=1,2,...,2n}

The solution of the spectral problem (5), (34)-(37) is defined as the product u(x) = y(x)vy,
v € V(A), k=1,2,.... To determine the unknown function y € WZZ”(O, 1), we obtain the
spectral problem

(— ) 2 (x) + 22 y( ) =Ay(x), A€C, (38)
by = y"(0)+ (-1)"y"™)(1) =0, j=12,...,n (39)
PTE y<’”"+f><0>—(—1)’”"+fy<’""+f><1>=o, i=12...,n j#p (40)
bonrpy = Y (0) — (=1)™ ™ (1) + Ly =0, (41)

kj
0y =Y (by,roDyy(0) + by 1 Dyy(1)). (42)

r=0

Let L, x be the operator of the problem (38)-(42), Loyy = (—1)" ¥ (x) + Z%”y(x), y €
D(Lyx), D(Lyx) = {y € W3"(0,1) : h;y = 0,j = 1,2,...,2n}.
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Theorem 4. Suppose that the assumptions B1-B3 hold. Then for arbitrary fixed numbers
bprs €R,xs€(0,1),s=0,1,r=0,1,...,kp, p € {1,2,...,n},

1) the eigenvalues of the operators L\ and L,y coincide;

2) the system V(L) of the eigenfunctions of the operator Lj  is complete and minimal in
the space L,(0,1);

3) ifky, < m, then the system V(L) is the Riesz basis of the space L,(0,1).
Proof. The proof of part 1 of the theorem is carried out analogously in Theorem 2. Define the
elements of the system V(L,). Direct substitution shows that the functions v 4(x, Lox),q =
1,2,..., satisfy the conditions (34)—(37).

Therefore, the eigenfunction of the operator Ly, that corresponds to the eigenvalue A is
defined by

01,4(% Log) = v1,4(x, Lox), g=12,..., (43)
Y0,q (x, Lz,k) = 00,4 (x, LO,k) - l;la (UO,q (x, LO,k)) (12,n+py1,n+p (x, PO,q))_lyl,n+p(x/ PO,q)-

Consequently L, , € Q(I). Taking into account Lemma 4.1, we obtain the second statement
of the theorem. Taking into account the formulas (31), (21), and the inequalities |l;1700,q| <
Ki(po,q4)""*?, we obtain the estimates

‘l;la(UO,q(xr LO,k))(ZZ,n+py1,n+p(xr PO,q))_1’ < Ka|b|. (44)

Taking into account Lemma 4.2, we obtain the third statement of the theorem. O

6 THE SPECTRAL BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION
WITH INVOLUTION

Consider the spectral problem

n .
Lu=(—-1)" D,%”u( )+ AZ” Z < p¥ Yy Di]flu(l — x)) =Au(x), AE€C,
: (45)
liu= Dy'u(0)+ (~1)" Dy'u(1) =0, (46)
Cojit = Dy"u(0) — (—1)" D" u(1) + Hu=0, j=12...,n (47)
The solution of the spectral problem (45)—(47) is defined as the product u(x) = y(x)vy,
v € V(A), k =1,2,.... To determine the unknown function y € WZZ” (0,1) we obtain the
spectral problem
n .
(=" y2(0) + 2"y (x Z (V@ y(0) —yF V(- %)) = ay(x), reC, @9
by = y"(0) + (=1)"y™)(1) =0, (49)
by = y i) (0) — (_1)(mn+j) y i) (1) + l]-ly =0, j=1,2,...,n (50)

Let L3 be the operator of the problem (48)—(50);
Lagy = (=1)" y®y(x) + 22"y(x) + Z (V@) +y @A -x), e D(Lay);

D(Lsx) ={y € W, 2 "0,1):iy=0,j=1,2,...,2n};
V(L3 ) is the system of the eigenfunctions of the operator L .
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Theorem 5. Suppose that k, < m, and the assumptions Bi—B3 hold. Then the system of the
functions V(L x) is the Riesz basis of the space L,(0, 1).

Proof. Define the elements of the system V(L3 ). The functions vy 4(x, L) satisfy the condi-
tions (49)—(50), g = 1,2, ... . Therefore, the eigenfunction of the operator L3, that corresponds
to the eigenvalue Ay , x is defined by

Ul,q(xr L3,k> = Ul,q(xr LO,k)r q= 1,2,.... (51)

For convenience we consider the representation of an eigenfunction of the operator L
according to the formula

00,9 (x,Lox) = 60, Z A(l)'r(PO,q)yr(xl PO,q)f 9=12,.... (52)
r=1

Let

1 .
y;ﬂ-(x,polq) = (x— E)(exp Wjpo,4X + exp w]-polq(l -x)), j=12,...,n, g=1,2,..., (53)

x porq Zhi’ qyl’l—H’ X, PO,q) € Hll q - 1/2/- c (54)

be the linear combination of the functions (53) with the indeterminate coefficients hik /7, and

n
yl'z(x; PO,q) = Z h},’gyl,n—o—r(x/ P(),q) € Hl/ q = 1/ 2/ sy (55)

r=1
be the linear combination of the functions y1 ,4,(x, po,4) With the indeterminate coefficients
12
hyg.
The eigenfunction vg 4(x, L3 ) of the operator L3 is given by

v0,4(%, La ) = v0q(x, Lox) + ¥y (x, 004) + ¥ (x,004), 9=1,2,..., (56)
where
1 n . .
h},'; = —%90,,7 Z%aj(po,q)zf 21 (¢, )2 ZAé’r(po,q), g=12,..., (57)
]:
2 = —(pog) " (Bo(pog)) ' AY (o) lutry™ (X,00q), G=1,2,.... (58)

Let Aé’r = qll_{rolo A(l)" (pox)  k=1,2,...; Vi be the system, whose elements are the functions

vl,q (X) = vl,q (X, LO,k) ’ UO,q (X) = vO,q (X, LO,k) + A(l),ryl,n—i-l (.X', pO,q) ;4= 1,2,....

Using inequality \Aé’r\ < K3 < 00, and Lemma 4.2, we obtain the statement: V} is Riesz basis of
the space L; (0, 1) . Taking into account the quadratic proximity of the system V; and complete
the system V (L, ) in the space L, (0,1) and according to N.K.Bari’s Theorem [11], we prove
the Theorem. O



118

BARANETSKIJ YA.O., KALENYUK P.I., KOLYASA L.I., KOPACH M.I.

Therefore, the operator L has a system of the eigenfunctions

V(L) = {vsx(x, L) € Wy : 05 gx(x, L) = 054(x, L3 x)vg,s = 0,1,k,g=1,2,... },

Asgk = (ps,q)zn + zi” are the eigenvalues of the operator L,s = 0,1, =1,2,....

Taking into account the formulas (56)—(58), we obtain the following statement: the sequence

of the operators {R (L3 ),k = 1,2, ... } is uniformly bounded by the norm [L; (0, 1)] . Thus, the
following theorem is true.

Theorem 6. Suppose that k, < m, and the assumptions Bi—B3 hold. Then the system of the
functions V(L) is the Riesz basis of the space W1.
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Bapanenpkuii 51.0., Kaaentox IT.I., Koasica AL, Komau M.I. Hesokanora 3adaua 019 dugpeperyianoHo-
0nepamopHo20 pisHIHHSI NapHoeo nopaoky 3 insomoyielo // KapmaTceki MaTeM. myba. — 2017. — T.9,
N2, — C. 109-119.

Y poboTi AOCAIAXKYETCS 3apa4a 3 KPalfoBMMI HeCaMOCIIPSKEHVIMI YMOBaMM AidpepeHITiaAbHO-
orepaTOPHMX PiBHSIHb HOPSIAKY 271 3 iHBOAIOLi€r0. AOCAIAXEHO CIleKTpaAbHiI BAACTUBOCTI OrlepaTo-
pa 3apavi.

AHaAOTIUHO METOAY BiAOKpeMAEHHS 3MiHHMX, KpaifoBa 3apada AAS AMdpepeHIiaAbHO-OIepa-
TOPHOTO DPiBHSIHHS IapHOTO MOPSIAKY, 3BeA€Ha AO MOCAIAOBHOCTI omepaTopis {Lj}f , Kpamosmx
3aAaY AAS 3BUUAVHVIX AMdpepeHITiaAbHNX PiBHSHD TapPHOTO MOPSIAKY. BcTaHOBAEHO, IO KOXEH ene-
MeHT Ly 11iei mocAiAOBHOCTI € i30cmexTparbHMM 36ypeHHsIM onepaTopa L caMocIIpsikeHol Kpario-
BOI 3aAaui AAST A€SIKOTO AHIMHOTO 3BMYAlHOTO AMdpepeHIiaAbHOTO PiBHSHHS IIOPSIAKY 211.

[TobyA0BaHO KOMYTaTMBHY IPYILy OIIepaTOPiB IepeTBOPEHHSI, eAeMEHTH SIKOI BiA0OpaXKaloThb Ci-
cremy V(L ) BAacHUX pyHKIIiM oniepaTopa Ly x y cucteMy V(L) BAacHMX (OYHKIIIN omepaTopiB Ly.
Baachi dyskitii onepaTropa KpaiioBoi 3apaui AAsl AMdpepeHITiaAbHO - OIlepaTOPHOrO PiBHSIHHS 3 iH-
BOAIOIIIEIO OTPMMAHO, SIK Pe3yABTaT Ail AeSIKOro CIelliaAbHO IIO6YyAOBAHOTO OIepaTopa Ha BAACHI
dyHKii mocaiaoBHOCTI omepaTopis { L }72 ;.

BcraHOBAEHO AOCTaTHI yMOBM, IIPM SIKMX CMCTeMa BAACHMX (DYHKIIiN omlepaTopa 3aaadi € 6asu-
com Picca.

Kntouosi cnosa i ¢ppasu: omepaTop iHBOAIOLII, AMdpepeHIiaAbHO-OIIepaTOpHe PiBHSIHHS, BAACHI
dyukiii, 6asuc Picca.
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DMYTRYSHYN R.I.

ON THE CONVERGENCE CRITERION FOR BRANCHED CONTINUED FRACTIONS

WITH INDEPENDENT VARIABLES

In this paper, we consider the problem of convergence of an important type of multidimensional
generalization of continued fractions, the branched continued fractions with independent variables.
These fractions are an efficient apparatus for the approximation of multivariable functions, which
are represented by multiple power series. We have established the effective criterion of absolute con-
vergence of branched continued fractions of the special form in the case when the partial numerators
are complex numbers and partial denominators are equal to one. This result is a multidimensional
analog of the Worpitzky’s criterion for continued fractions. We have investigated the polycircular
domain of uniform convergence for multidimensional C-fractions with independent variables in the

case of nonnegative coefficients of this fraction.

Key words and phrases: convergence, absolute convergence, uniform convergence, branched con-
tinued fraction with independent variables, multidimensional C-fraction with independent vari-

ables.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: dmytryshynr@hotmail.com

INTRODUCTION

The problem of convergence of continued fractions whether their multidimensional gen-
eralizations, branched continued fractions, in particular, branched continued fractions with
independent variables, is that on the basis of information about coefficients fraction to con-
clude its convergence or divergence. This class fractions was proposed by D.I. Bodnar [6], in
the study of the convergence of branched continued fractions with positive elements for es-
tablishing a analog of the Seidel convergence criteria for continued fractions. In the thesis by
Kh.Yo. Kuchminska [7] established the estimate of approximation of function by such fractions
under the conditions of the type of Sleszynski-Pringsheim in the case of the two branches of
branching. Further study of the convergence of branched continued fractions with indepen-

dent variables, in particular, branched continued fraction of the special form

where N is fixed natural number, Ci(k)s i(k) € Iy, k > 1, are complex numbers,
Ik = {l(k) . l(k) = (il,iz,...,ik>, 1 S ip S ipfl, 1 S p S k, io = N}

YAK 517.524
2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15.
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denotes set of multiindices, k > 1, and branched continued fraction of the special form which
is reciprocal to it

1 Yoan & & )
- Z Z Z (2)
I+ 1+=3 1+ 1+

received a continuation in the papers by O.E. Baran [3], where proved that (1) converges abso-
lutely, if there exists the real numbers 0 < g;4) < 1or 0 < g;4) < 1,i(k) € Zy, k > 1, such
that

i | < i 18i0 (1= Sige—)), 8io) = 0, i(k) € T, k> 1, ©)

and by O.E. Baran [2], where investigated a convergence of (2) for
lcigl < ilip(1—p), 0<p<27!, (k) €Ty, k>1. (4)

The next stage of the study of convergence of branched continued fractions with independent
variables associated with the paper by TM. Antonova and D.I. Bodnar [1], where proved that
(1) converges absolutely for

ik Z‘k
lcin | < ti (1 - ) ti(k+1)>/ L >0, Y, tiprny <1, i(k) €Ty, k>1. (5)

iky1=1 ikr1=1

In addition, we note the paper by Kh.Yo. Kuchminska [8], where was proved a convergence of
(2) with the elements that satisfy (4) in a slightly more general form than it was done in [2],
and the paper by D.I. Bodnar and M.M. Bubnyak [5], where was investigated a convergence of
one-periodic branched continued fractions of a special form with the elements that lie in disks
whose radius form a geometric sequences with common ratio 4~ 1.

We remark that the convergence criteria of branched continued fractions of the special form
(1) and (2) established in the above mentioned works are multidimensional analogs of the
Worpitzky’s criterion for continued fractions [9].

Our research continues to establish the convergence criteria for the branched continued
fractions with independent variables.

1 BRANCHED CONTINUED FRACTIONS OF THE SPECIAL FORM

Let

Noci) Wk Ci) W ci)
D Ve i B R
i1=1 i =1
be the nth approximant of (1), n > 1.
We shall prove the following result.

Theorem 1. Let for the elements c;(), i(k) € Iy, k > 1, of branched continued fraction of the
special form (1) hold the following conditions

i1 .

lci)| < q;’ék)q?ék_n(l —Gi(k—1)), (k) €Ly, k=1, (6)

where q;(oy and q;(), i(k) € Iy, k > 1, are constants which satisfy one or the other of the
conditions

0<q0 <1 0<gp<1 (k)€ k=1, (7)
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or
0< qi(()) <1, 0< qi(k) <1, l(k) c Ik/ k > 1. (8)
Then
(A) the branched continued fraction of special form (1) converges absolutely;

(B) the values of branched continued fraction of the special form (1) and of its approximants
are in the disk

|z =1 < 1—qjp); 9)

(C) the disk (9) is the "best" set of values of branched continued fraction of the special form
(1) and of its approximants for g,y = 271, i(k) € I, k > 1.

Proof. We show that branched continued fraction of the special form

Nogihgie) (T =dio) & aiydin (U= ai) & 0ia a0 (1 4i2)
1_21()1()1 1(0)_21()1()1 1(1)_21()1()1 1(2)___‘ (10)
h=1 =1 i3=1
is a majorant of (1).
For the tails of (1) we introduce the following notation:
Qih =1 i) eT, s>1,
ik C: k+l C is_1 C:
(s) _ i(k+1) (k+2) i(s) . _
Qi(k)_1+127—1 +.Z,71 N +‘Z o i) €T, 1<k<s-1,5>2.
irr1=1 =1 is=1
It is clear that the following recurrence relations hold
ik ey, 1<k<s—1,s>2. (11)

i1=1 Q k+1)

Let s be arbitrary integer number, moreover s > 0. Using relations (11), by induction on k
for arbitrary of multiindex i(k) € Z; we show that the following inequalities are valid

\Q =Q () i(k) €Ty, 1<k <s, (12)

Z

where Q ( ) € Ik, 1 < k < s, denote the tails of (10), and

Q) > qky, i) €T, 1<k <5, (13)
if the conditions (7) hold,
Q) > qky, i) €T, 1<k <5, (14)

if the conditions (8) hold.
It is clear that for k = s, i(s) € Z, relations (12)—(14) hold. By induction hypothesis that
(12)~(14) hold fork = p+1,p+1 <s,i(p + 1) € Z,,1, we prove (12)~(14) for k = p, i(p) € Z,.
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Indeed, use of relations (11) for arbitrary of multiindex i(p) € Z, lead to

, o ipr1—1
2 i)l g i A=)
(s) _ i(p+1) _ i(p+1)7i(p) P’ A(s)
Qipl 21— X —5—21- 1 ) = Citp
fp+1=1 ’Qz‘(p+1)‘ fp+1=1 Qi(p+1)
From (13) and (14) it follows that Q 7é 0. Therefore, replacing q by Q mequali-

ties (13) and (14) are obtained for k = p, i(p) € L.
Now, from (12)—(14) it follows that QE(SIE) # 0 and Qf(slz) # 0 for all indices. Applying the
method suggested in [4, p. 28] and recurrence relations (11), for m > n > 1 we obtain

n+1

i H‘C
fn|< Z Z Z n+1 n
h1=1ip=1 Ip41= 1H’Q ’H’Q

, U H Ty —q0e-n)
”“Z%Z Zl wH()n ” = —(fu—fu),
i i iy ~(m ~(n
1 2 +1 Ij[ Qz‘(k) Qi 9

where fi, k > 1, denote the approximants of (10).
Hence,

|fm_fﬂ|§fn_]?m/ m>n>1,

and

k k N
;|fr+1 —frl < Z(f fri1) = X_: 11 1 = qi(0)) — free1, k>1 (15)

r=1

From this it follows that the sequence {f;} is a monotonically decreases. Furthermore, from
(13) and (14) for arbitrary k > 1 we have

11 11 1( )
fo=1~- Z o > 4ilo)
1= 1 ( )

i.e. the sequence {f;} is bounded below. Therefore, the limit
f=lim f
k—o00

exists and is a finite. Now, from (15) for k — oo it follows that (1) converges absolutely. This
proves part (A).
Next we prove part (B) and (C). Using (6), (13) and (14) for arbitrary k > 1 we have
i i—1
foo1] < Z lcin)] < % 9i(1)7i0) (1 = 4i(0))

- <1-q5
i=1Q; écl) | =1 Ql(écl))

i(0)"
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Therefore, the disk (9) includes the set of value of (1). We show that it coincides with (9) for
qi(k) = 271, Z(k) S Ik, k>1.
Let ¢ be an arbitrary complex number such that |c| < 1 — ‘711'\([0)' Then for the approximant

f1 of (1), where the ¢;3) = ¢(1 - qf\(lo))’lq?(o_)l(l —gi0)), 1 < iy < N, and the ¢y, i(k) € 4,

k > 2, are arbitrary complex numbers that satisfy (6), we obtain f; = 1+c. If [c| = 1 — qf\(fo)

then (1), where the ¢;) = 27Me(1 — q%o))_1q§%&1(1 —4gi(0)), 1 <11 < N, and the ¢;) = —47,
i(k) € Iy, k > 2, satisfy (6) for Tik) = 271,i(k) € Iy, k > 1, get value 1 + c. We show it.

Indeed, in the above mentioned values of elements of (1) by equivalent transformation
Pi(k) = 21 i(k) € T, k > 1, [4, pp. 29-33] we can write it in the form

_ 1 i1—1 . L. . L
N 2 1C(1 — qzl\(]())) 1[];1(0) (1 — ‘71(0)) 11 211—12—2 2 212—13—2
1 + Z 21'171 — 21‘271 - = 21‘371 —

i1=1 =1 13=

(16)

To prove that the value of (16) is equal to 1 + c it is sufficient to prove the following relations

k ok—ip—2 D nip—iz—2 i3 nig—ig—2
ok—1z 2 Dix—i3 3 Diz—i4
k) _ ok—1 _y-1
f =2 - L 2ip—1 _‘Z yiz—1 _‘Z 2ig—1 _ =27, 1<k=N. (17)

i2:1 13:1 1=

By induction on k we show that the relations (17) are valid.
It is easy to shown that for k = 1 relation (17) holds. By induction hypothesis that (17) hold
fork =n—1,n > 2, we prove (17) for k = n. We have
21173 21174 1 271 272
£ o fn=2)  f(n-1) B flm)

Sincef(k) =211<k<n-—1,n>2 and

(18)

n—1_ An—2 _ ~n-3 0 n1 anp27—1
2 -2 -2 - .. =2"=2 -2 — =1,

2711

than from (18) we obtain f (") = 2=1 From this it follows that the value of (16) is equalto1l+c.
Finally, it follows from concept of equivalent transformation [4, pp. 29-33] that the value of (1)
isalso equal to 1 + c. O

It is now a simple matter to prove the following theorem.

Theorem 2. Let for the elements c;(, i(k) € Zy, k > 1, of branched continued fraction of the
special form (2) hold the conditions (6), where g,y and q;), i(k) € Iy, k > 1, are constants
which satisfy one or the other of the conditions

0< gi(0) <1, 0Z qi(k) <1, Z(k) €Ty, k>1, (19)

or



CONVERGENCE OF BRANCHED CONTINUED FRACTIONS 125

Then
(A) the branched continued fraction of special form (2) converges absolutely;

(B) the values of the branched continued fraction of the special form (2) and of its approxi-
mants are in the disk
1- qz(O

)
< ; 1)
9102 — (o)) ‘ 9302 — Ti(0))

(C) the disk (21) is the "best" set of values of branched continued fraction of the special form
(2) and of its approximants for q; ) = 271, i(k) € I, k > 1.

Proof. By analogous considerations as in the proof of Theorem 1, it is easy to shown that a
majorant of (2) is the following branched continued fraction of the special form
e (L=aio) i @iy aiy (A=) &2, 4545y (1= qi2)

N 9i1)%i0
_Z ()()1 _Z - Z : ___‘_(22)

=1 ip=1 T i=1

From the fact that the approximants of (22) form the sequence, which is a monotonically in-
creasing and bounded above, it follows that (2) converges absolutely.
We write the kth approximant of (2) in the form

1
1
111Q 14w’

Using relations (19), (20) and conditions (6), we have

11 i1 1(1_ )
qz(O))
ol < ). : <145

o< 3
kl
i1= 1’Q ’ =1

i

Therefore,

from where we obtain (21).

Since 0 < g;(9) < 1 then (21) contains the point 1. In view of proof part (C) of Theorem 1,
to show that (21) is the "best" set, it suffices to note that values of the particular branched
continued fraction of special form

— 1 : _ . .
1N 27— qly) iy, o 1 =di0)) {1, 2ii—i=2 2 pir—iz=2 1
T 1+ Z 21 e e AT B T
: 1221 1321
fill the disk (21) as ¢ ranges over the set [c| < 1 — qzl.\(io). O

2  MULTIDIMENSIONAL C-FRACTIONS WITH INDEPENDENT VARIABLES

In this section we have two convergence criteria for the multidimensional C-fractions with
independent variables. Their proof is a simple application of Theorems 1 and 2 respectively.
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Corollary 2.1. Let ai(k), i(k) € Iy, k > 1, be nonnegative numbers such that

(k) < ‘71( )qifk 11)(1 — qi(k-1)), i(k) €Ly, k> 1, (23)

where q;(y and g;), i(k) € Iy, k > 1, are constants which satisty one or the other of the
conditions (7) or (8). Then the multidimensional C-fraction with independent variables

N Zzl i1 le i Zz3
1+) = Z Z
i=1
converges uniformly in the domain
G={z=(z1,22,...,2ny) €CN: |z| <1, 1<k <N}. (24)

Corollary 2.2. Leta;), i(k) € Zy, k > 1, be nonnegative numbers such that satisfy the inequal-
ities (23), where q;(o) and q; ), i(k) € Zy, k > 1, are constants which satisfy one or the other of
the conditions (19) or (20). Then the multidimensional C-fraction with independent variables

1 Y Zzl 080z, &2 a53)2
1+ X_: l; 1 +.Zl 1+
= = 3=
converges uniformly in the domain (24).
CONCLUSION

The convergence criteria (6), as well as (3) and (5), is an effective criterion for investigating
the convergence of branched continued fractions with independent variables.
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Avurpymmvs P.IL Tpo kpumepiti 30iscHocmi 2innacmux 1aHy0208ux 0pobie 3 HepisHOSHAUHUMU 3MIHHU-
mu // KapnaTtceki MaTeM. my6a. — 2017. — T.9, Ne2. — C. 120-127.

AOCAIAXY€ETbCST IMTaHHS 361KHOCTI 6araTOBMMipHIX y3araAbHEeHb HellepepBHMX APObGiB — TiA-
ASICTVIX AGQHIIIOTOBUX APOOiB 3 HepiBHO3HaUHMMY 3MiHHMMIL. 1]i Apobu € edpeKTMBHMM amtapaToM Ipu
HabAVDKeHH] (PYHKIIIN, 3aAaHMX KPaTHUMM CTEIIeHeBMMI PSIAAMIL. BcTaHOBAEHO edpeKTHBHI yMOBI
abCOAIOTHOI 361KHOCTI TIAASICTMX AQHIIIOTOBUX APODiB 3 HepiBHO3HAYHMMI 3MIHHMMM Y BUITAAKY KO-
AM YaCTMHHI UMCeAbHVKM KOMIIAEKCHi UlCAQ, 8 YaCTVHHI 3HAMEeHHMKM AOPiBHIOIOTH oAuHMIL. OTpn-
MaHWIT pe3yAbTaT € 6araTOBMMIpHIM aHAAOTOM KpuTepito BOpmiTchbKOTo AAsI HellepepBHIX APOOiB.
AocAiAXeHO TIOAIKPYTOBY 0bAacTb piBHOMIpHOIL 361KHOCTi AAsT baraToBuMipHNX C-ApobiB 3 Hepis-
HO3HAYHMMM 3MIiHHUMM Y BUTIAAKY HeBiaA eMHMX KoedpillieHTiB Apoby.

Kntouosi cnosa i ¢ppasu: 361XHiCTh, abCOAOTHA 361KHICTb, piBHOMipHa 361HICTb, TIAASCTII AQH-
LIIOTOBMI Api6 3 HepiBHO3SHAUHMMM 3MiHHMMY, baraToBuMipHmit C-Api6 3 HepiBHOSHAUHMMY 3MiHHN-
MIL.
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SOME CLASSES OF DISPERSIBLE DCSL-GRAPHS

A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment
f: V(G) — 2%, X being a non empty ground set, such that the corresponding induced function
fO 1 E(G) — 2%\ {9} given by f®(uv) = f(u) ® f(v) satisfies | (uv)| = k{ulv)d(;(u,z;) for every
pair of distinct vertices u,v € V(G), where dg(u,v) denotes the path distance between u and v
and k{u/v) is a constant, not necessarily an integer, depending on the pair of vertices u,v chosen.
G is distance compatible set labeled (dcsl) graph if it admits a desl. A dcsl f of a (p,g)-graph G
is dispersive if the constants of proportionality kj([u,v) with respect to f,u # v,u,v € V(G) are all
distinct and G is dispersible if it admits a dispersive dcsl. In this paper, we prove that all paths and
graphs with diameter less than or equal to 2 are dispersible.

Key words and phrases: set labeling of graphs, dcsl-graph, dispersible dcsl-graph.
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shainipv@gmail.com (Shaini P.)

INTRODUCTION

Acharya B.D. [1] introduced the notion of vertex set valuation as a set analogue of number
valuation. For a graph G = (V, E) and a non empty set X, Acharya B.D. defined a set valuation
of G as an injective set valued function f : V(G) — 2%, and he defined a set-indexer as a set
valuation such that the function f® : E(G) — 2%\ {¢} given by f®(uv) = f(u) @ f(v) for
every uv € E(G) is also injective, where 2% is the set of all the subsets of X and @ is the binary
operation of taking the symmetric difference of subsets of X.

Acharya B.D. and Germina K.A., who has been studying topological set valuation, intro-
duced the particular kind of set valuation for which a metric, especially the cardinality of the
symmetric difference, is associated with each pair of vertices in proportion to the distance
between them [2]. In otherwords, the question is whether one can determine those graphs
G = (V,E) that admit an injective function f : V — 2%, X being a non empty ground set such
that the cardinality of the symmetric difference f®(uv) is proportional to the usual path dis-
tance dg(u, v) between u and v in G, for each pair of distinct vertices # and v in G. They called
f adistance compatible set labeling (dcsl) of G, and the ordered pair (G, f), a distance compatible
set labeled (dcsl) graph.
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Definition 1 ([2]). Let G = (V, E) be any connected graph. A distance compatible set labeling
(dcsl) of a graph G is an injective set assignment f : V(G) — 2%, X being a non empty
ground set, such that the corresponding induced function f® : E(G) — 2%\ {¢} given by
fO(uv) = f(u) & f(v) satisfies |f¥(uv)| = k{u,y)dG(”'v) for every pair of distinct vertices
u,v € V(G), where dg(u,v) denotes the path distance between u and v and k{u,v) is a constant,
not necessarily an integer, depending on the pair of vertices u, v chosen.

The following universal theorem has been established in [2].
Theorem 1 ([2]). Every graph admits a dcsl.

Definition 2 ([3]). A dcsl f of a (p, q)-graph G is dispersive if the constants of proportionality
k{u,v) with respect to f, u # v, u,v € V(G) are all distinct and G is dispersible if it admits a
dispersive dcsl. A dispersive dcsl f of G is (k, r)-arithmetic, if the constants of proportionality
with respect to f can be arranged in the arithmetic progression, k, k +r,k+2r,...,k+ (g—1)r
and if G admits such a dcsl then G is a (k, r)-arithmetic dcsl-graph.

Theorem 2 ([3]). K, is dispersible for alln > 1.

1 DISPERSIVE DCSL-GRAPH WITH DIAM(G) < 2

Theorem 3. The star graph K , is dispersible for any n > 1.

Proof. Let V(Ky,) = {vo,v1,02,...,0n} with vy is the central vertex. Let X = {1,2,...,22"+1},
Define f : V(Ky,) — 2X by f(vo) = ¢ and f(v;) = {1,2,3,...,2%*1},1 < i < n. Clearly
f(vi) C f(v;) and [f(v;) © f(v;)] = 22+1 2241 | f(g) @ f(v;)] = 2%+ fori < jand 1 <
i,j < n. Now, we prove that the constant of proportionality k{u 0 are all distinct, for distinct
u,v e V(Ky,).
Case 1. For i # j, if possible
Voo o ) efE)] _ 1f(2) @ f(o)]
(vo0i) — " (0,0)) d(vo, v;) d(vo, v;)
22i+1 -0 22j+1 —0
11

= 2%+l — 22/+1 4 contradiction.

Case 2. For i,j,k and j > k, if possible

k — =
(vo,07) (v,01) d(vg, v;) d(vj, vx)
22i+1 -0 22j+1 _ 22k+1
= 221 — 92K (22K _ 1) = 22172k — 9272k _ 1(if 2j 41 > 2k).

Py L e sl _ If@) e f)

= 22i+1 — 22] _ 22k

Here the left hand side is even and right hand side is odd, a contradiction. Also 2i 41 = 2k is
not possible and for 2i + 1 < 2k, a similar contradiction can be derived.
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Case 3. Let v;, v}, U, 01,1 < i,j,k,1 < n are four vertices of K; , with all the four vertices are
distinct. We also assume with out loss of generality thati < j,/ < kandi < I.

o f) @ f()|  |f(uox) ® f(vr))

(‘0,‘,‘0]‘) = (o) d(”(]i, 'U]) d('()k, 'Ul)

22j+1 _ 22i+1 22k+1 _ 221+1
2 - 2
:> 221'(22]‘721' _ 1) — 221 (22](721 _ 1) :> (22]‘721' _ 1) — 221721‘(22](721 _ 1),

92 _ 92 _ 92k _ 52

a contradiction that left hand side is odd and right hand side is even. Now if k{v‘ 0) = Koo
1 ] 7

and any two vertices are same then it is easy to see that the other two vertices are also same.

Hence, k{u ») are all distinct for all distinct u,v € V(Kj,), so that Kj, is dispersible dcsl-
graph. O

Remark 1. For Kj ,, max{d(u,v) : u,v € V(Ky,)} = 2. The diameter of a connected graph G is
defined as max{d(u,v) : u,v € V(G)} and is denoted by diam(G). It can be shown for a graph
G with diam(G) < 2 that it is dispersible dcsl-graph. The result is proved in the following
statement.

Theorem 4. Any graph G for which diam(G) < 2, is dispersible dcsl-graph.

Proof. Let G be a graph with diam(G) < 2 and |V(G)| = n. Choose any 1-1 function g :
V(G) — {1,3,5,7...}. Consider the function f : V(G) — 2N, where N = {1,2,3,...}
given by f(v) = {1,2,3,4...,28(®)}. We prove that f is a dispersive dcsl of G. Rename

the vertices of G as v € V(G) changes to v4(,). We need to prove k{vi,v;) # kj(rvk,vz) for all

8
0,0}, 0,01 € V(G). Assume the contrary that,

f(@) @ f@)] _ |f(wr) @ f(or)]

d(v;, v}) d(vx, ;)

Case 1. d(v;,vj) = d(vr, v1) = 1.
Subcase a. If v; = vy,

J—2=2 =2 =2 2= =10 =0

Similarly for v; = v; = v; = y;.
Subcase b. If v; = v; and for j > i >k,

2l —pi = ol ok — of 4 ok —oi 4 ol — o] 4 ok — pitl
=22 1) =2 5 1 = 2K,

Left hand side is odd and right hand side is even, a contradiction.
Subcase c. If v = v and for I > j > i,

V-2 =2 sk =2 2 5t =2 o o I =0 g

Here left hand side is even and right hand side is odd, a contradiction.
Case 1 implies that if any two vertices are same, either the other two must be same or we arrive
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Figure 1: Dispersive dcsl of Peterson graph [diam(P) = 2].

at a contradiction.
Case 2. d(v;,v;) = d(vg, vy) = 2.
Similar arguments of Case 1 implies that if any two vertices are same, either the other two
must be same or we arrive at a contradiction.
Case 3. d(v;,v;) =2 and d(vg,v;) = 1.
Subcase a. If v; = v;, then v; # v and forj > i >k,

27t —2l =l of = o7l 9l = of — oF o QR (/ -1k pim k) = ok (iR ),

Left hand side is even and right hand side is odd, a contradiction. A similar contradiction can
be obtained when k > 1.
Subcase b. if v; = vy and for [ > j > i,

2j—1 _ 2i—1 — 21 _ 2k = 2j—1—(i—1) -1 = 21—(i—1) . 2j—(i—1).

A contradiction(left hand side is odd and right hand side is even).
Subcase c. If v; = vy and forj > 1 >k,

2j—1 _ 2i—1 — 2l _ 2k = 2j—1 _ 2i—1 — 2i _ 2k = 2k(2j—1—k . 2i—1—k) — 2k(2i—k _ 1)

A contradiction(left hand side is even and right hand side is odd). Case 3 implies that if any
two vertices are same, then we arrive at a contradiction.
Case 4. All the four vertices are distinct. if for any i, j, k, | distinct odd natural numbers,

2] . 2i 7é 21 . 2k,2j—1 . 2i—1 7é 21—1 . 2k—1

and 2771 — 2171 £ 2l _ 2k So in every case all the four vertices should be distinct, implies k(u 2)

is distinct for every pair of vertices (u,v) of a connected graph G with diam(G) < 2. O
Corollary 1. A graph G with a full degree vertex is dispersive dcsl-graph.
Proof. Since G has a full degree vertex, Kj ,, is a spanning subgraph of G. So diam(G) <2. O

Corollary 2. Kj;, Ky;;,1, C4, Cs and Peterson graph are dispersive dcsl-graphs.

Corollary 3. Join of two graphs is always dispersive dcsl-graphs.
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Proof. Since diam(Gy V Gp) < 2 for any two graphs G; and G, by theorem 5 join of two graph
is always dispersible. O

Corollary 4. The Wheel graph (K; V C,) is dispersive dcsl-graph.
Corollary 5. A graph G with §(G) > 5 is dispersible.

Proof. Let u,v € V(G). Since degree of each vertex in G is greater than or equal to 5, both u
and v should have a common neighbor. Which in turn implies that d(u, v) < 2. This is true for
any pair of vertices implies the diam(G) < 2. O

Remark 2. It is proved in Theorem 4 that all the graphs with diameter less than or equal to
two are dispersible. It does not imply that graphs with higher diameter are not dispersible. In
fact for every n, we get a dispersible graph with diam(G) = n as shown in the next Theorem 5.

Theorem 5. Paths are dispersible dcsl-graphs.

Proof. Let P,+1 = vov10;...v,_10, be a path of length n with n 4 1 vertices. Label the vertices
with sets which are mutually disjoint and of size in the following way.

f(w0)] =0,
f(or)] = nt,
(0] = illf(oia)] + |f(@i2)l] +nl, for2 <i<n+1.

f

Here the constant k (v0,01) is greater than all other constants upto v;_;. Also

f f f
k(volvi) < k(?’hvz‘) S S k(?’zel/?/i)
for all 2 < i < n 4 1. Since all the constants of proportionality are distinct, this dcsl is a
dispersive dcsl. O
{0} Vi {(1.2)....(3%4!2} V3 {(1.4),....(65%41,4)}

Vo {(1,1),....,(41,1)} V2 {(1.3)...., (13*4!,3)}V4

Figure 2: Dispersive dcsl of Ps.

2 CONCLUSION

Much work has been done when the constant of proportionality k;, , is a constant for every
pair (1,v) € V(G) x V(G) of a dcsl-graph G [2,4,5]. Here we proved that some classes of
graphs are dispersible. But we did not get any graph which is not dispersible. Also dispersive
dcsl is not unique for a dispersible graph. So some problems arise automatically.

1. What is the minimum cardinality of ground set X of dispersible graph G, denoted by
v(G)?

2. Trees are dispersible?

3. Every graph admits a dispersive dcsl?

4. Any graph G with diam(G) < 2is (k, r)-arithmetic?
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CymicHa 3 BiacTaHSIMU MHOXMHa MiTok (dcsl) 3B’s13aHOTO Tpadpa G € iH'eKTMBHMM Bia0OpaXkeH-
Ham muOXMH f @ V(G) — 2%, ae X — HemoposxHs 6a30Ba MHOXWHA TaKa, IO BiATIOBiAHA iHAY-
xosana dynkuis f& @ E(G) — 2%\ {¢} sanana sk f®(uv) = f(u) ® f(v) 3aa0BOABHSIE yMOBY

[f®(uv)| = k{u v)dc(u, U) AASI KOXHOI mapu pisamx BepumH #,v € V(G), ae dg(u, v) mosHauae A0B-

KUHY IIASIXY MiX u 10, Ta k{u ») HE 060B’s13K0BO 1IiAa KOHCTaHTa, IO 3aA€XWUTD BiA Mapy o6paHmx
BepumH #,v. G € TpadpoM 3 CyMiCHOIO 3 BiACTaHSIMIM MHOXMHOIO MiTOK (dcsl-rpadpom), sximto BiH

ao3Boasie desl. CymicHa 3 BiacTaHSIMM MHOXMHA MITOK f Aesikoro (p,q)-rpadpa G e AMCIiepCHOIO,

SIKIIIO CTaAl IIPONOPLIHOCTI k{u o) BiaHOCHO f,u # v,u,v € V(G) € pisErMu i G € AMCTIepCHMM,
SIKIIIO BiH AOcCTIycKae AmcriepcHy desl. V 1ili cTaTTi AOBeAeHO, IO Bei mIAsXM i Tpacpy 3 AlaMeTpom
He GIiABIIIM 2 € AVICTIEPCHVMIL.

Kntouosi ciosa i ppasu: MHOXMHM MiTOK Tpadpis, desl-rpadp, ancriepcamit desl-rpadp.
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KALADEVI V.1, MURUGESAN R.2, PATTABIRAMAN K.3

FIRST REFORMULATED ZAGREB INDICES OF SOME CLASSES OF GRAPHS

A topological index of a graph is a parameter related to the graph; it does not depend on labeling
or pictorial representation of the graph. Graph operations plays a vital role to analyze the structure
and properties of a large graph which is derived from the smaller graphs. The Zagreb indices are
the important topological indices found to have the applications in Quantitative Structure Property
Relationship (QSPR) and Quantitative Structure Activity Relationship (QSAR) studies as well. There
are various studies of different versions of Zagreb indices. One of the most important Zagreb indices
is the reformulated Zagreb index which is used in QSPR study.

In this paper, we obtain the first reformulated Zagreb indices of some derived graphs such as
double graph, extended double graph, thorn graph, subdivision vertex corona graph, subdivision
graph and triangle parallel graph. In addition, we compute the first reformulated Zagreb indices of
two important transformation graphs such as the generalized transformation graph and generalized
Mycielskian graph.

Key words and phrases: Zagreb index, reformulated Zagreb index, derived graphs.
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INTRODUCTION

All the graphs considered in this paper are connected and simple. For vertex u € V(G),
the degree of the vertex u in G, denoted by dg(u), is the number of edges incident to u in G. A
topological index of a graph is a parameter related to the graph; it does not depend on labeling
or pictorial representation of the graph. In theoretical chemistry, molecular structure descrip-
tors (also called topological indices) are used for modeling physicochemical, pharmacologic,
toxicologic, biological and other properties of chemical compounds. Several types of such in-
dices exist, especially those based on vertex and edge distances. One of the most intensively
studied topological indices is the Wiener index. Two of these topological indices are known
under various names, the most commonly used one are the first and second Zagreb indices.

The Zagreb indices have been introduced more than thirty years ago by Gutman I. and
Trinajsti¢ N. [6]. They are defined as

Mi(G) = Y, de(u),  My(G)= Y dc(u)dc(v).
ueV(G) uveE(G)

Note that the first Zagreb index may also be written as

Mi(G) = Y. (dg(u)+dg(v)).

uveE(G)

YAK 519.1
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The Zagreb indices are found to have appilications in QSPR and QSAR studies as well. For the
survey on theory and application of Zagreb indices see [7]. Feng L. et al. [5] have given the
sharp bounds for the Zagreb indices of graphs with a given matching number. Khalifeh M.H.
et al. [12] have obtained the Zagreb indices of the Cartesian product, composition, join, dis-
junction and symmetric difference of graphs. The extremal values of Zagreb coindices over
some special class of graphs determined by Ashrafi A.R. et al. [1].

Mili¢evi¢ A. et al. [15] in 2004 reformulated the Zagreb indices in terms of edge-degrees
instead of vertex-degrees EM{(G) = Y. d(e)?, where d(e) denotes the degree of the edge

ecE(G

e in G, which is defined by d(e) = d(u) —{(— c)l (v) — 2 with e = uv. The use of these descriptors
in QSPR study was also discussed in their report [15]. Reformulated Zagreb index, particu-
larly its upper/lower bounds has attracted recently theat tention of many mathematicians and
computer scientists, see [3, 4, 10, 11, 15, 17, 20]. The aim of this paper is to obtain, the first
reformulated Zagreb indices of some derived graphs such as double, extended double, thorn
graph, subdivision vertex corona of graphs, subdivision graph and triangle parallel graph. In
addition, we compute the first reformulated Zagreb indices of two important transformation
graphs such as the generalized transformations graphs and generalized Mycielskian graphs.

1 MAIN RESULTS

The hyper Zagreb index and its coindex are defined as

HM(G) = ), (dg(u) +dg(v))> and  HM(G) = Y (dc(u)+dc(v))*
uveE(G) uvgE(G)

The F-index of a graph Gisdefinedas F = F(G) = ¥ di(u)= Y (d&(u)+d%(v)).

1.1 Double graph and extended double cover

Let us denote the double graph of a graph G by G*, which is constructed from two copies
of G in the following manner [9, 2]. Let the vertex set of G be V(G) = {v1,v,...,v,}, and the
vertices of G* are given by the two sets X = {x1,x2,...,x,} and Y = {y1,v2,...,yn}. Thus for
each vertex v; € V(G), there are two vertices x; and y; in V(G*). The double graph G* includes
the initial edge set of each copies of G, and for any edge v;v; € E(G), two more edges x;y;
and x;y; are added, see Figure 1. Now we compute the first reformulated Zagreb index of the

double of a given graph.
X1 X2 X3 X4
r—r—6—9
Py j i i i i i
n Y2 y3 Ya
P*

4

Figure 1: The double graph of P;.

Theorem 1. Let G be a connected graph with m edges. If G* is a double graph of G, then
EM;(G*) = 16HM(G) — 32M;(G) + 16m.
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Proof. From the definition of a double graph itis clear that dg- (x;) = dg+(y;) = 2dg(v;), where
v; € V(G) and x;, y; € V(G*) are corresponding clone vertices of v;. By the definition of EM,

EM(G*) = Y (do-(u) +dg-(v) —2)°

uveE(G*)

= Y (e(xi)+de(x) =2+ Y. (dg-(yi) +dg-(yj) —2)
xlvx]EE(G*) yl'ijE(G*)

+ Y (o (xi) +de(y) =2+ Y. (dg(x)) +dg-(yi) — 2)?
xl'ijE(G*) ijiEE(G*)

=4 Y (2dg(v) +2dc(vj)) —2)* =16 Y (dg(v;) +dg(vj) — 1)

U,‘U]‘EE(G) U,‘U]‘EE(G)
=16 Y |(do(0) +do(0))? —2(dg (0y) +dc (v)) +1]
ZJiZJ]‘GE(G)

= 16HM(G) — 32M; (G) + 16m.
0

Let G be a simple connected graph with V(G) = {v1, vy, ..., v, }. The extended double cover of
G, denoted by G** is the bipartite graph with bipartition (X, Y) where X = {x1,x,...,x, } and
Y = {y1,Y2,--.,yn} in which x; and y; are adjacent if and only if either v; and v; are adjacent
in G or i = j, see Figure 2. This construction of the extended double cover was introduced by
Alon N. [2] in 1986. Here we obtain the first reformulated Zagreb index of extended double
cover of a given graph.

Figure 2: Extended double cover of Py.
Theorem 2. Let G be a graph and G** its extended double cover. Then EM1(G**) = 2HM(G).

Proof. Let G be a graph with n vertices and m edges. The definition of the extended dou-
ble cover implies that G** consists of 2n vertices and n + 2m edges. Moreover, dg«(x;) =
dge(y;) = dg(v;) +1, fori = {1,2,...,n}. Here, v; € V(G) and x;,y; € V(G**) are corre-
sponding clone vertices of v;. Hence

EMi(G*)= Y (dgw(u)+dg(v) —2)?

uveE(G**)
= )Y (dge(xi)Fdo(y) =22+ Y (doe(x)) +dg(yi) —2)°
xl'ijE(G**) X]‘inE(G**)
n
+ ) (e (xi) +dge(yi)) —2)* =2 Y (dg(vi) + 1+dg(vj) +1—2)?
i=1 Z)l'v]'EE(G)
=2 Y (do(v) +dg(vj))* = 2HM(G).
U,‘U]‘EE(G)
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1.2 Thorn Graph

An edge e = uv of a graph G is called a thorn if either dg(u) = 1 or dg(v) = 1. The concept
of thorn graph was introduced by Gutman I. [8] by joining a number of thorn to each vertex of
any given graph G. Some of the topological indices of thorn graphs are studied in [13, 18, 19].

Let V(G) and V(GT) be the vertex sets of G and its thorn graph G respectively. Let V(G) =
{v1,02,...,04} and VI(G) = V(G) UV, UV, U...UV,, where V; are the set of degree one
vertices attached to the vertices v; in GT and Vi U Vi = @, i # j. Let the vertices of the set V; are

n
denoted by v;; forj = 1,2,...,p;and i = 1,2,...,n. Thus }V(GT)‘ = n+zwhere, z = Y p;.
i=1
Then the degree of the vertices v; in GT are given by dr(v;) = dg(v;) + p;, fori = 1,2,...,n.
Now we compute the first reformulated Zagreb index of thorn of a given graph.

Theorem 3. Let G be a graph. Then

EM{(GT)=HM(G)+ Y. (pi+pi—27+2 Y (dg(v;)+dc(v)))(pi+p;—2)
U,‘U]‘EE(G) U,‘U]‘EE(G)

[0+ (- 17+ 2 )

Proof. From the definition of reformulated first Zagreb index,

EMl(GT) = Z (dGT (Ui) + dGT (U]') — 2)2

’Ui‘UjEE(GT)
n pi
= )Y (dgr(vi) +dgr(vj) — 2)%+ Y Y (dgr(vi) +dgr(v;) — 2)?
ZJiZJ]‘GE(GT) 121]:1
n Ppi
= Y (dg(v)+pi+dc(o)+pj—2+Y. Y (dg(v;) + pi +1—2)
UinEE(G) i=1j=1
= ¥ [(@o(o) +do(0))* + (pi+ p; —2)?
ZJiZJ]‘GE(G)

206 () + da (o)) (pi + p; — D] + 1. pilde (o) + pi— 1)
i=1

=HM(G)+ Y, (pi+pj—27+2 Y, (de(vi)+dc(v))(pi+pj—2)
U,‘U]‘EE(G) U,‘U]‘EE(G)

[0+ (- 17+ 2t - )

1.3 Subdivision Vertex Corona of Graphs

Let G; and G; be any two simple connected graphs with 71 and 1, number of vertices and
my and my number of edges respectively. The subdivision vertex corona of G; and G; is denoted
by G; o Gy and was introduced by Lu P. and Miao Y. [14]. The graph G; o G, is obtained
from the subdivision graph S(G;) and n; copies of G, by joining the i-th vertex of V(G;) to
every vertex in the i-th copy of Gy. Let V(G1) = {v1,v2,...,0n, }, [(G1) = {vf,05,..., 05, }



138 KALADEVI V., MURUGESAN R., PATTABIRAMAN K.

and V(Gp) = {uq,uy, .. unz} so that V(S(G)) = V(G) UI(G). Let u}, u}, ..., ul,, denote the
vertices of the i-th copy Of Gpi,1=1,2,...,n1,s0 that

V(GioGy) =V(G)U I(Gl) [V(Gz/l) U V(GZ,Z) Uu...U V(GZ,nl)]-
Here we compute the first reformulated Zagreb index of Subdivision vertex corona of graphs.

Theorem 4. Let Gy and G, be two graphs with ny, ny and my, my edges, respectively. Then

EMl(Gl o Gz) = anM(Gz) + F(Gl) + 31’12M1(G1) + VllMl(Gz) + 1y [21111112 + nq (1’12 — 1)2]

+ 8mymy + 4[1111(1/12 —1) +my(ng — 1)] :

Proof. The degree of the vertices of Gy o G, is given by dg,.c,(vi) = dg,(v;) +np for i =
1,2,...,m,dgc,(e;)) =2fori=1,2,...,my, dgoc,(u ]) =dg,(u;) +1fori =1,2,...,n1 and
j=1,2,...,n. Let the vertex set of Gy o Gz can be partitioned into three subsets E1 = {xy €
E(GioGy)lx,y € V(Gyj),i=1,2,...,m}, Ex = {xy € E(G1 0 Gy)|x € V(G1),y € I(G1)}, and

={xy € E(G10oGy)|x € V(G1),y € V(Gyp,), i =1,2,...,n1}. The contribution of the edges
in E; to the first reformulated Zagreb index of G; ©® G is given by

EM1(G1®Gy) = Y (dgoc,(x) +dcec(y) —2)°
xycky

:i Y (dcz(ui)+1+dc2(uj)+1—2)2

i=1 MI'L[]'EE(GZ)

= /ni Y (de,(ui) +dg,(u)))* = mHM(Gy).

i=1uu;€E(Gy)
Similarly, the contribution of the edges in E; to the first reformulated Zagreb index of G; © G;
is given by

n
EMl(Gl © Gz) = Z (dG1®G2( )+dG1®G2 Z dcl ’01 +ny+2— 2)2(1@1( )
xy€Ey =1
n

=) [d%}l(vi) + 13 + 2dg, (Uz‘)ﬂz] dg, (vi)
i=1
= F(Gl) + 2112M1 (Gl) + 27’71111%.
The contribution of the edges in Ej3 to the first reformulated Zagreb index of G; ® G, is given
by
ny mnp
EMl(Gl O G) = Z Z(dcl (Ui) +ny + dcz(u]‘) +1— 2)2
i=1j=1

ny Ny

= Y. Y (dg, (03) +dey (uy) + (n2 — 1))
i=1j=1

- Z; )y [dcl v;) +dg, (uj) + (n2 — 1)* + 2dg, (v;)d, (uj)
i=1j=

+ 2dG2( )(Vlz — 1) =+ 2dG1 (’01)(1’[2 — 1)} = nle(Gl) + VllMl(Gz)
+ nyny(ny — 1)% 4 8mymy + 4my(ny — 1) + 4my(ny — 1).

The desired expression for the first reformulated Zagreb index of G; ©® G; is obtained by sum-
ming the above three expressions. O
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1.4 Some derived graphs

The subdivision graphS(G) is the graph obtained from G by replacing each edge of G by a
path of length two. The triangle parallel graph of a graph G is denoted by R(G) and is obtained
from G by replacing each edge of G by a triangle. Now we compute the first reformulated
Zagreb index of S(G) and R(G) for a given graph G.

Theorem 5. Let G be a graph. Then EM;(S(G)) = F(G).

Proof. Observe that V(S(G)) = <V(S(G)) N V(G)) U <V(S(G)) \ V(G)), thatis |V(S(G))| =
p+q and |E(S(G))| = 2q. Note that for x € V(5(G)) N V(G), dgc)(x) = dg(x) and for
x € V(S(G)) \ V(G), dg(g)(x) = 2. The first reformulated Zagreb index is given by

EMi(S(G))= Y. (dsiq)(u) +dsigy(v) =2 = Y (dgg)(u) +2—2)
weE(S(G)) uev(s(G))
= de(u)(dg(u))* = F(G).
ueV(G)
U
Theorem 6. Let G be a graph on m edges. Then
EM;(R(G)) =4HM(G) — 8M1(G) +4F(G) + 4m.
Proof. From the definition of R(G), we have
RMi(R(G)) = Y (dg(g)(u) +dg(c)(v) —2)?
uveE(R(G))
= )3 (dr(c) (1) +dr(c) (v) —2)
u,veV(G), uveE(R(G))
+ Y (dr(c)(x) + dr(c) (y) — 2)?
xeV(G), yeV(R(G))/V(G), xyeE(R(G))
= ). (2do(u) +2dc(v) =2)* + ) (2dc(p) +2—-2)%dc(p)
uveE(G) peV(G)
= Y [(2dc(u) +2dc(v))* +4 —4(2dc (u) +2dc(v)] + Y. 4d5(p)
uveE(G) peV(G)
=4HM(G) — 8M1(G) +4F(G) + 4m.
O

1.5 Generalized transformation graphs

Sampathkumar E. and Chikkodimath S.B. [16] defined the semitotal-point graph of given
graph. Based on this definition, Gutman introduced some new graphical transformations.
These generalize the concept of a semitotal-point graph.

Let G = (V,E) be a graph, and let «, B be two elements of V(G) U E(G). We say that the
associativity of @ and f is + if they are adjacent or incident in G, otherwise is —. Let ab be a
2—permutation of the set {4, —}. We say that « and 8 correspond to the first term a of ab if
both a and B are in V(G), whereas « and 3 correspond to the second term b of ab if one of «
and B is in V(G) and the other is in E(G). The generalized transformation graph G*’ of G is
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defined on the vertex set V(G) U E(G). Two vertices « and f of G* are joined by an edge if and
only if their associativity in G is consistent with the corresponding term of ab.

In view of above, one can obtain four graphical transformations of graphs, since there are
four distinct 2—permutations of {+—}. Note that G* is just the semitotal-point graph T,(G)
of G, whereas the other generalized transformation graphs are G*~,G~" and G~ . In other
words, the generalized transformation graph G* is a graph whose vertex set is V(G) U E(G),
and &, 8 € V(G"). x and B are adjacent in G if and only if either (i) and (ii) holds:

(i) for any a, B € V(G),«,p are adjacent in G if 2 = + and; «, B are not adjacent in G if
a=—;

(ii) forany « € V(G) and B € E(G), , B are incident in G if b = + and; a, B are not incident
inGifb = —.

The vertex v; of G’ corresponding to a vertex v; of G is referred to as a point vertex. The
vertex ¢; of G* corresponding to an edge ¢; of G is referred to as a line vertex.

Theorem 7. Let G be a connected graph on n vertices and m edges. Then EM;(G™") =
4HM(G) — 8M;(G) + 4F(G) + 4m.

Proof. One can observe that the number of vertices and edges of G™" are n + m and 2m, re-
spectively. dg++(v;) = 2dg(v;) and dg++(e;) = 2.
EMi(GTF) =} (dgr+(u) +dge+(v) —2)°
uveE(GT)

= Z (dG++ (u) +dg++ (U) — 2)2
uveE(GT+T)NE(G)

+ Y (dg++ (1) +dge+ (v) —2)°
wo€E(GH)—E(G)

= Y (2dg(u) +2dg(v) —2)* + Y (2 +2dg(v) —2)?
uveE(G) uveE(Gt+)—E(G)
=4HM(G) —8M;(G) +4 Y di(v)+4m
veV(G)
= 4HM(G) — 8M1(G) +4F(G) + 4m.

Theorem 8. Let G be a connected graph on n vertices and m edges. Then
EM;(GT7) = 4m(m —1)® + (nm — 2m) (n + m — 4)°.
Proof. Note that |[V(GT7)| = n+mand |[E(GT7)| = m(n — 1). Moreover, dg++(v;) = m and
dg++(e;)) =n —2.
EMi(G™)= ) (dg+(u)+dge(v) —2)°
uveE(G*)

= Y (dg+-(u) + dg+(0) —2)?
uveE(GT~)NE(G)

+ Z (dGJr* (u) + dG+— ('U) — 2)2
uveE(GT)—E(G)

= Y (em-27+ Y (m+(n—2) —2)?
uveE(G) uveE(Gt—)—E(G)

=m(2m —2)* 4+ (m(n—1) —m)(n +m — 4)2.
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Theorem 9. Let G be a connected graph on n vertices and m edges. Then
EM;(G™") = 2n*(n(n — 1) — 2m) 4 2m(n — 1)2.
Proof. Note that |V(G™ ") =n+mand |[E(G™T)| =m+ @ Moreover, dg-+(v;) =n—1
and dg++(e;) = 2.
EMl(G7+) = Z (dG—+(M) + dG—+ (U) — 2)2
uveE(G~T)

= )3 (dg-+(u) +dg-+(v) - 2)?
uv€E(G~1)NE(G)

+ Z (dG7+(u) + dG’+ (U) — 2)2
uv€E(G—+)—E(G)
nn—1)

[0 MU (et Rl )
_ 4n2(”(”2_ D )+ 2m(n —1)2.
[
Theorem 10. Let G be a connected graph on n vertices and m edges. Then
EM; (G ) =4HM(G) — 8(n+m —2)M;(G) +2(n +m — 2)*(n* — n — m)
+ (20 +m—5)m(n —2) +4 y <dé(v) —(2n—|—m—5)dc(0)).
woeE(G——)—E(C)

Proof. Note that |V(G™ )| =p+gand |[E(G )| = @ +q(p — 3). Moreover, dg--(v;) =
p+q—1—2ds(v;) and dg-—-(e;) = p — 2.
EMi(G )= ), (dg—(u)+dg—(v)-2)*= )3 (dg—(u) +dg-—(v) —2)?

uveE(G~) uv€E(G~~)NE(G)
+ Y (o (u) +dg-(v) —2)°
uv€E(G—)—E(G)
= Y ((n+m—1)—2dc(u)+ (n+m—1) —2dg(v) — 2)

uveE(G)

+ Y (n—24n+m—1-2dg(v) —2)°
uveE(G~—)—E(G)

= Y @O+m—1)=2dc(u) +dg(v)) —2)2
uv€E(G)

+ Z (2n +m —5—2dc(v))?
uv€E(G~~)—E(G)

= Y (@4 m—1)—2)2+4(dg (1) +dg(v))?

uveE(G)
—42(n+m—1) = 2)(dg(u) +dg(v)))
+ Y ((2n +m —5)* +4d%(v) — 4(2n +m — 5)dg(v))

uv€E(G~~)—E(G)
= 4HM(G) — 8(n +m —2)My(G) +2(n+m —2)*(n* —n —m)

+ (20 +m —5)%m(n —2) +4 y (#(0) - (2n+m - 5)dG(v)).
uv€E(G~)—E(G)
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1.6 Generalized Mycielskian graphs

Let G be a simple connected graph with n vertices and m edges, V(G) = {v1,v2,...,04}.
For a graph G = (V, E), the Mycielskian of G is the graph u(G) with the vertex set consisting
of the disjoint union V U V' U {u}, where V/ = {x'|x € V} and edge set EU {x'y, xy/|xy €
E} U {x'ulx’ € V'}.

For a graph G = (V,E), the genemlized Mycielskian, denoted by px(G), of G is the graph
whose vertex set is the disjoint union V' U ( U Vi) U {u}, where V! = {x|x € V} is an indepen-

i
dentset, 1 <i <k, and edge set E(y(G)) = EU{ U {yi—1xf; ¥yl |xy € E}} U{xFu|xk € VF},
i=1
where 2’ = xand y° = .

The proof of the following lemma easily follows from the definition of the generalized

Myrcielskian of G.

Lemma 1. Let G be a connected graph. Then
@ [V(u(G))| = (k+1)n+1;
(i) |EGu(G))] = (2k+1)m+n;
@iii) Ifu° € E(G), then u%°, u'v' ™!, u* v’ € E(u(G)) for0 <i <k —1;
(iv) dyc)(v') =2dc(v),0 <i<k-1;
(v) dyk(G)(vk) =dg(v)+1forallv e V(G);
(vi) dyk(c)(u) =n.
Here we obtain the first reformulated Zagreb index of i (G).
Theorem 11. Let G be a connected graph with n vertices and m edges. Then
EM;(ux(G)) = 2(4k —1)HM(G) + 6F(G) — (16k —1)M;(G) + 4M>(G)
+n(n —1)* 4 2m(4k + 2n — 3).
Proof. By the definition of EM;, we have ,
EMi((G) = % (o)) +dy 0 —2)

uoeE(pux(G))
By Lemma 1, we get

EMy(1(G) = Y <2dg(u)+2dc(v)—2)2+2(k—1) y (ch(u)+2dc(v)—2>2
uveE(G) uveE(G)

+ ) <2dc(u)+(dc(v)+ 1) — 2) + ) <2dc(v)+(dc(u)+1)—2>2

uveE(G) uveE(G)
2
e
—(@2k-1) ¥ <2dG(u) + 246 (v) —2)2
uveE(G)
+ ¥ <2dG(u)+dG(v)—1>2+ ) (zdc(v)+dc(u>—1)2
uveE(G) uveE(G)
+ ) < +n—1)2
veV(G

:51+52+S3+54,
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where
2
S = (2k—=1) ¥ (ch(u)+2d(;(v)—2)
uveE(G)
= 42k-1) ¥ ((do(w) +dc(0))* — 2(dg () + dg(v)) + 1)
uveE(G)
= (2k—1) <4HM(G) — 8M;(G) + 4m),
2
S, = 2d d 1
2 e (G< c(u) +dg(v) — )
= ¥ ( ) +dg (0)) + (dg (u)* +2(dc () +dg (0))dc (u)
uveE(G
—2<dc<u> +dg(v)) - 2dg(u) +1)
= HM(G)+3 Y dg(v)(dg(v))* +2Ms(G) —2M;(G) =2 Y. (dg(v))* +m
veV(G) veV(G)
= HM(G) + 3F(G) + 2M,(G) — 4M;(G) + m.
Similarly,

5= ¥ (246(0) +do(u) ~1) = HM(G) + 3F(G) +2Ma(G) — 4M (G) + m,

uveE(G)
Sa= ), (dc(v)—l-n_l)z: y ((dc(v))2+2(n1)dc(v)+(n_1)2>2
veV(G) veV(G)

= M;(G)+n(n—1)*4+4(n—-1)m

The desired expression for the first reformulated Zagreb index of y(G) is obtained by sum-
ming Sp to 5. ]
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Tomoaoriusmit iHAeKC rpadpa — Ile TapaMeTp, II0B s13aHMI 3 TpaddOM; BiH He 3aAeXMNTD Bia Map-
KyBaHHsI ab0 HaOUHOTO 306paxKeHHs rpadpa. Omepaii 3 rpadpamut BiairparTh BaXAUBY POAD AAS
aHaAi3y CTPYKTypHu i BAACTMBOCTel BEAMKOTO Tpadpa, 110 MOPOAXEHMI Bia MeHIIX rpadpis. IHae-
Key 3arpeba € BaXAMBYMM TOIIOAOTiUHVMM MOKa3HMKaMM, SIKi 3HAJIIIAM 3aCTOCYBAaHHs B BMBUYEHHI
KiABKiCHOI CTPYKTYypH BiaAHOCHH BAacHOCTi (QSPR) Ta KiABKiCHOI CTPYKTYypM BiAHOCMH aKTMBHOCTI
(QSAR). € pisHi AocAiAXeHHST OKpeMMX BUAIB iHAekciB 3arpeba. OAMH 3 HallBaXXAMBIIIIMX iHAe-
KciB 3arpeba — 1e mepecpopMyAbOBaHMII iHAeKC 3arpeba, KV BUKOPUCTOBYETBCS B AOCAIAXKEHHI
QSPR.

Y cTaTTi MU OTPUMYEMO 3HaUeHHS IIepIIMX IepecbOpMyAbOBaHNX iHAeKciB 3arpeba AesKyx Imo-
XiAHMX TpadpiB, TaKMX SIK MOABiVHIIA Ipadp, OAOBXEHIII ITOABiVHIE rpadp, IIMIIOBMIA Tpadp, HalliB-
TIOAIAEHIIT BepIIVHIII KOPOHHMIA Tpadp, HaliBIIOAIAeHMIE Tpadp Ta apaAeAbHMI TPUKYTHII rpadp.
Kpim Toro obumcaeno mepuri nmepecpopMyaboBaHi iHAeKcH 3arpeba AAST ABOX BaKAMBIX IIE€PETBO-
peHb rpadiB TakMx SIK Tpadd y3araAbHEHOTO IIepeTBOPEHHSI Ta y3araAbHeHWit rpad MilleabckistHa.

Kntouosi cnosa i ¢ppasu: iHaexc 3arpeba, mepeBusHaueHMI1 iHAekc 3arpeba, moxiAHi rpadou.
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PARABOLIC BY SHILOV SYSTEMS WITH VARIABLE COEFFICIENTS

Because of the parabolic instability of the Shilov systems to change their coefficients, the def-
inition parabolicity of Shilov for systems with time-dependent ¢ coefficients, unlike the definition
parabolicity of Petrovsky, is formulated by imposing conditions on the matricant of corresponding
dual by Fourier system. For parabolic systems by Petrovsky with time-dependent coefficients, these
conditions are the property of a matricant, which follows directly from the definition of parabolicity.
In connection with this, the question of the wealth of the class Shilov systems with time-dependent
coefficients is important.

A new class of linear parabolic systems with partial derivatives to the first order by the time ¢
with time-dependent coefficients is considered in this work. It covers the class by Petrovsky sys-
tems with time-dependent younger coefficients. A main part of differential expression of each such
system is parabolic (by Shilov) expression with constant coefficients. The fundamental solution of
the Cauchy problem for systems of this class is constructed by the Fourier transform method. Also
proved their parabolicity by Shilov. Only the structure of the system and the conditions on the
eigenvalues of the matrix symbol were used. First of all, this class characterizes the wealth by Shilov
class of systems with time-dependents coefficients.

Also it is given a general method for investigating a fundamental solution of the Cauchy prob-
lem for Shilov parabolic systems with positive genus, which is the development of the well-known
method of Y.I. Zhitomirskii.

Key words and phrases: parabolic by Shilov system, fundamental solution, Cauchy problem.

Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
E-mail: v.litovchenko@chnu.edu.ua

INTRODUCTION

In [1] G.E. Shilov formulated a new definition of parabolicity of systems of partial differen-
tial equations which generalizes the notion of parabolicity by I.G. Petrovsky [2] and leads to a
significant expansion of the Petrovsky class of systems appearance

dru(t; x) = P(t;i0x)u(t;x), (t;x) € g := (T T] xR, T € [0;T). (1)

Here i is imaginary unit, u is unknown vector function of m dimension, P(t;idy) is matrix
differential expression of p € IN order with ¢ time-dependent coefficients.

If coefficients of system (1) are constants and P(t;idx) = P(idy), parabolicity by Shilov is
defined like parabolicity by Petrovsky: by imposing conditions on the real part of the charac-
teristic numbers A;(-) of matrix symbol P(c), o € C", of differential expression of system (1):
exists h > 0, exists §g > 0 and exists §; > 0 for all ¢ € R” such that

max ReA; (&) < —do||&[|" + 61 2)
jeEN

m
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146 LITOVCHENKO V. A.

Here 1 is index of parabolicity of system (1), 0 < h < p; Ny, := {1,2;...;m}, || - || := (-, /2,
(+,-) is scalar product in R".

If the coefficients of system (1) depend on ¢ (continuously), it has, unlike parabolicity by
Petrovsky, parabolicity by Shilov for this system with the index of parabolicity # means per-
formance for the matricant @.(-), 0 < t < t < T, of corresponding dual by Fourier system
following estimate [3]:

©L(&)] < c(1+[|g]M)e DRI, (58) € My 3)

(here y := (p — h)(m — 1)). Let’s note that for parabolic by Petrovsky systems (1) condition (3)
is characteristic property which is a direct consequence of the relevant condition of parabolicity
of type (2). For parabolic systems (1) with dependent on ¢ coefficients in the case of p # h it
is not possible to confirm this fact by means of classical theory of parabolic systems, generally
speaking, due to the parabolic instability of such systems to changing of their coefficients [4].
So the information about the richness of Shilov class of systems with coefficients dependent
on ¢, in particular about the examples of such systems which are not parabolic by Petrovsky is
important.

In this paper a new class of systems of partial differential equations whose coefficients
depend on t is defined; it is substantiated their parabolicity by Shilov and examples are given.
This class of systems characterizes the richness of Shilov class of systems with depend on ¢
coefficients. In addition, estimates of the derivatives of the fundamental solution of the Cauchy
problem (FSCP) are established for parabolic by Shilov systems with coefficients dependent on
t the genus of which is positive.

The study FSCP for Shilov-type parabolic systems with coefficients independent of t was
carried out in the papers [3,5-7] and scalar parabolic equations by Shilov, whose coefficients
can depend on t was carried out in the papers [8-11].

1 PRELIMINARIES

Let R" and C" are respectively real and complex space of n dimension, R := R, 7' is
the set of all n -dimensional multi indices; |x + iy| := (x> + )2, {x,y} C R, |(al]-)}7j].:1| =
Iy ! ho.— h h O N n
max |aj|; 2} =z}, zi |z =z | |z 2| =z, iz = (25 2) € CF,
{l]}c]Nn,‘ l]’ 1 n ‘ ’+ ‘ 1‘ ’ n‘ ‘ ’+ ’ ‘+ ( 1 n)
l:i=(l;...;ln) €Z and h > 0.
We shall consider the system (1) with matrix differential expression

m
P(t;i0y) < Z a kl+a’<>
lkl+<p 1j=1

of p order coefficients a;(](-) of which are continuous complex-valued functions on [0; T]. We
shall suppose that this system is parabolic by Shilov on the set I, with the index of parabol-
icity h, 0 < h < p, consolidated order py and genus y [3].

Let’s remind now that matricant @ (-) of appropriate dual by Fourier to (1) system has the

structure
o t t trq

@Q(g):E+r_Zl//.../ (gp(t]-;g))dtr...dtzdtl. @)
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Here E is the identity matrix of m order. Hence, it abides bound
|IP(t;0)| <c(1+|c|?), 0<t<T,oceC"

we obtain that
0L (0)] < coet=DlW o<t <T,0ceC” (5)

(here cg and Jy are positive constants which are not dependent on 7, t and 0).

The exact order of exponential increase of matricant @ (-) in complex space C" is called
the consolidated order p of the system (1). Always p > po > 1 for parabolic systems [3].

The genus of parabolic by Shilov system we shall call the maximum rate y such that in the
domain

Ky ={¢ +in € C*+ [y < K1+ [[¢]))"}
with some K > 0 for matricant the following estimate holds
©L(& +in)| < c(1+ [g|Me DI o< T <t < T, ©)

In [3] it is established that 1 — (pg — h) < u < 1.

2 ONE CLASS OF PARABOLIC SYSTEMS

Let’s consider the system of equations
opu(t; x) = {Po(idx) + P1(t;i0x) fu(t;x), (x) € i, TE[0T), (7)
with p € IN order in which u := col(uy, ..., um),
Py(idy) := < Y aﬁgilhaﬁ;) , Pi(tidy) == ( Y aﬁj(t)ikhag;)
lkl+<p Lj=1 kl+<p1 Lj=1
We shall assume that corresponding system
du(t; x) = Po(idx)u(t;x), (£ x) € M), (8)

on the set I'(,,7] is parabolic by Shilov with constant coefficients and index of parabolicity h
and coefficients of differential expression P;(t;idy) are continuous complex-valued functions
defined on [0;T] with the values p, p; and & satisfying condition

0<pi+(p—h)(m—-1)<h. (A)

Examples of system (7) with condition (A).

I. Each parabolic by Petrovsky system (1) of p = 2b order, b € IN, with constant coefficients
of group of senior members and dependent continuously on ¢ coefficients of group of younger
members is a system of kind (7) with condition (A). Because in this case p = h = 2b, p; =
2b — 1 and respectively

O<pr+(p—h)(m—1)=2b—1<2b=h,
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ILLetn =1,m =2, a>0icj(-), j € Ns, are some continuous on [0;T] complex-valued
functions. Then the system

{ Oy = {—ad} +c1(£)02 uy + {93 — 93 + co(+)dx buy,
gz = {(cs(t) —1)a3}ur — {ady — ca(t)d3 — c5(t) buz,

is the system of kind (7) with condition (A). Indeed, putting

. —ao% 90 —-93
Py(idx) = < _a3x x_aa4x >,
X X

. Cl(t)az Cz(t)ax )
Pi(t;i0y) = X
16530 = (0% 9t o
and solving the appropriate equation
det(Py(0c) —AE) =0, o e,

we obtain that A 5(0) = —ac* +iv o8 + 06, p =5, p; = 3ih = 4. For these values p, p; and h,
obviously the condition (A) holds.

Theorem 1. Let (7) is system with continuous coefficients for which the condition (A) holds.
Then for matricant @ (-) of appropriate dual by Fourier system on the set Hm, 7€ [0;T),
the estimate (3) holds.

Proof. Let’s write down appropriate dual by Fourier system to (7):
orv(t;8) = {Po(8) + Pi(t;0) }o(t:E),  (5E) € T )

With the continuity of the coefficients matricant @ (+) is the only solution of the Cauchy prob-
lem for system (9) with the initial condition

Z)(t; ) |t:T: E. (10)

Then the following equality holds

010 (8) = Py(8)0%(¢) + Q(T, £ 8). (11)

Here Q(7,t;&) := Py(t;&)®L(Z). Solving the Cauchy problem (11), (10), we obtain such repre-
sentation:

Ok (g) = el 1 / Qv B )dp, (158) € i), T € [0:T).

Hence, it abides performance of estimate (3) for eI=DP() because el =T () is matricant dual
by Fourier system to (8) and inequality

QT )] < co(L+IEIM)O(@)], (£¢) € igr), TE[0;T)
(here positive constant ¢y does not depend on 7, t i ¢), we get the estimate

t
O] < e(1+ (1§t -0 (14 J2]7) (1 + 1€]17) / e o-PIEI R g) dp,
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from which we come to correlation

Ot (&)[edt-DlEl"
(1+[I817)

LB s(B—1)&|"
< c+c1(1+H€||”)(1+|I§H‘”)/ |®Tg)f|\€|l”)

Using now Lemma of Gronwall [12] we obtain

h_
©L(8)] < c(1+ [|g][)e D @RIl IIMATIEI) (¢ ay e 110, T e [0;T).

From here considering the condition (A) we come to existence of positive constants ¢ and ¢
with which for all (;¢) € I, T € [0;T), bound (3) holds. Theorem is proved. O

Corollary 1. System (7) with condition (A) is parabolic by Shilov system with coefficients
dependent on t and index of parabolicity h.

3 PROPERTIES OF FSCP

Let (1) is parabolic by Shilov system with continuous on [0; T| coefficients. Solving this
system by Fourier transform we obtain a representation of the fundamental solution of its
Cauchy problem:

G(t,t;-) = FHOL®)(t,t;-), 0<Tt<t<T

(here F~1[-] is inverse Fourier transform and @L (+) is appropriate matricant (4)).
The following statement holds.

Theorem 2. Let the system (1) is parabolic by Shilov with dependent continuously on t co-
efficients and positive genus yu. Then its FSCP on the set R" for spatial variable is infinitely
differentiable function such that exists {c, B,0} C (0;+o0) forallk € Z" , Tt € [0;T), t € (7; T|,
x € R" such that

1
n -+ (sl \T=
95G(T, 5 1)| < et — 1)~ ikl o= () T

herewa := u/py.

Proof. Let’s consider the matrix function

Ykl 4

(p';t(x) = (t—1) *el(x), keZ', xeR", 0<T<t<T,

which obviously continues in a complex space C" to an entire analytic function at each fixed
k,tand T.
Directly to the condition (3) we obtain that

)X h
oy (3)] < c(t =) (14 [|x||)e 0Dl

= C<((t — Ol (¢ =) F + (=)l )””'*)emrw

|
< T} (sup {(;" e 25} +sup {(;" T 5}) ~2(=0)lxl" \where Ty = max{1, T}.
¢=0
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Hence, taking the equality

B
sup{cPe %%} = <ﬁ> , B>0, 6>0, (12)

£>0 ed

into account we come to existence of positive constants cj, By and é; such that for all x €
R", ke Z", 1€ [0;T) and t € (1; T| inequality

19k (x)] < e BIF Kk e (=) "

holds. Similarly way due to the definition of genus y of parabolic system (1) we come to such
an bound of matrix function q)’;,t(-) in the relevant domain K, C C" :

9% (x +iy)| < B ke 20" ke zn o<T<t<T (13)

(here positive constants c;, B, and J, do not depend on k, x, y, T and t). In addition, using the
estimate (5) and the equality (12) we obtain inequality

|9k 4(2)] < csBYl kRSO ke zn, s, 0<T<t<T, (14)

with an estimated constant not dependent on k, z, T and t.

Note that when p > 0 estimate (14) can be specified. Indeed, letz = x + iy € C" \ K, then
inequality |ly||/K > ||x||* holds. From here, the estimates ||z|["* < ¢(||x[|P° + ||y||*?), z € C"
and (14) taking into account that u < 1forallz € C" \ K, T € [0;T) and t € (7; T| we obtain

1 h 5, h
9% ,(2)] < C3ng|+kkge—5z(t—T)I\XH (t=T) (B3 1z[[Po+32|x[|")
.
< ¢yt et=7) (Bl ¥ —zlx]")

(here estimated constants also do not depend on k, z, T and t). If we now consider estimate (13)
then we come to this statement: exists {c, B,d1,8,} C (0;+c0) forallz =x+iy € C", k € Z",
T € [0;T) t € (7; T] such that

P
9% 1(2)] < cBIM ikl e(t=D) (aulll * ~ealll?) (15)

Further, according to Cauchy integral formula we have

noqi! k. (o)do;
azqo’;,mx)zni/%, kgt CZlL,xeR,0<T<t<T,  (16)

=1 27 (0 = %)

i
here I'g; is circle of radius R; with center in the point x;.
LetI'g :=I'g, x ... x I'g,. Let us denote c* = {* + in* is the point from I'g such that

k k
|97,+(07)| = max gz (o).
cel'g
Since the coordinates (7]?" of the point c* arein T’ R; then the equality

(& —x)* + 1> =R}, j €Ny,
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holds and implies such correlations:
& = x| <Ry, |j| < Rj, j € Ny 17)
Taking into consideration all above mentioned, estimations (15), inequality
n ) < |x|F < ?x|, r>0,x € R
+ = —= +7 7 7

and (16) for 1 > 0 we obtain for all R]- > 0,7 €Ny

po/ K -
019k (x)] < Bkl ik H]Z]/ (=) (BiRFO =b5\ | (18)
j=1
(here 67 =: 5171%)‘ and &, := 6,/n).

Let us take radiuses R]- such that the ratio e
put

t—7)8,RFO/H j ..
(t=T)o1R; / R?] reaches a minimum. Then we

. #/po
R]' = <q]7yA> p ] € IN,,.
(t —T)o1p0
Then bound (18) is reduced to
\a?c¢]§,t(x)\ < cB‘k|+((t _ r)epoc?l/y)”m'*/pokk%qq( —%)ef(tfr)ﬁzw*‘li. (19)

(K| xx|h
Next, let’s estimate the exponent e (t=)ealEj | ,] € Ny.
I£2|¢7] > |xj| then we have

e (DR o~ (t-D)ba(|x;1/2)",

If |x;| > 2]@;“ | then according to (17) the following inequalities hold:

h *h s11h h s 1h Hx]‘_’C]*Hh
R > [xj = ¢i|" = [|xj| = &7 1[" = (Ix]" = [¢7 ] )W
] j
> (" — &M= lg 1/l > (1" = (e 72",

and
" =g " < (2R))".
Then — (&7 |" = —|x;|" + (|x;" — |&7]") < —|xj[" + (2R;)" and

(L axlh (=) 2| S (+— n e e
PG e G D LT Gt S N V)

From here and the astimate (19), abides by that

. h/ ‘ h/
(t— T)R! = (t — 7)1/ Po <?J_V>V P ri=mh/rm < 9 )” Po
! 51170 N 51]70

_ h/ .
:cq}l P < cqj, j €Ny
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If u > 0 we get the next statement: exists {c, A, B,6} C (0; +o0) forall {k,q} C Z",7t € [0;T),
t € (1; T], x € R" such that

0995 ,(x)| < c((t — T)* A)lal Bkl gk ga(1-0)p = (=)ol (20)
Directly from the estimate (20) and the definition of matrix function q)’;t(-) and with the
equality

(131256 (1, ) = (=) () (e — 1) [ gk, (@)e T De,
]Rﬂ

we obtain that

RAG(r, )] < colt =) H B ([ Tint (= oAyl 0} )

j=1 qj

1
+y+]k| _ x| T«
< c(t — 1) gkl (o)

4

forallk € Z",x € R"and 0 < T < t < T, while estimated constants c, B and § do not depend
on t, T,k and x. Theorem is proved. ]

4 CONCLUSIONS

Parabolic systems of Shilov type are parabolically unstable systems to a change in their co-
efficients, in contrast to Petrovsky’s parabolic systems. In this respect, information is important
about parabolic systems with variable coefficients that significantly extend the Petrovsky class
in the Shilov class and allow us to use the means of the classical theory of the Cauchy problem
for their investigation. The class of systems defined in this article is such. The presence of this
class, in particular, convinces that the class of Shilov vector equations with variable coefficients
is not exhausted by the class of Petrine systems with time-dependent coefficients, but is much
wider.

The obtained here estimates of the fundamental solution of the Cauchy problem for Shilov
parabolic systems with coefficients that depend on ¢ important to establish the correct solv-
ability of the Cauchy problem in various functional spaces and, in the study of properties of
solutions to this problem.
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Aitosuerko B.A. [lapaboniuni 3a unosum cucmemu i3 3sminHumu xoepiyiecnmamu // Kapnarcoki ma-
TeM. my6A. — 2017. — T.9, Ne2. — C. 145-153.

UYepes mapaboaiuHy HecTilikicTs cucTeM IlnaoBa A0 3MiHM CBOIX KOedillieHTiB, O3HaAUeHHSI TTa-
paboaiunocti 3a [IAoBUM AAST cCTeM i3 3aAeXXHMMM Bia dacy f koedpillieHTaMy, Ha BiAMiHY Bia
napaboaiurocTi 3a [TeTpoBChbKIM, POPMYAIOETHCS IIIASIXOM HaKAaAAHHS YMOB Ha MaTPUMIIAHT BiA-
mIoBiAHOI ABoicTOI 3a Dyp’e cmcTemn. Aast mapaboaiurmx 3a [TeTpOBCHKMM CHCTEM i3 3aAeXHIMNI
Bia "acy KoedpillieHTaMM I1i YMOBM € XapaKTePHOIO BAACTUBICTIO MaTPUIIAHTA, SIKi BUILAMBAIOTH 6e3-
TIocepeAHbO i3 O3HaUeHHS mapaboAiuHoCTi. VY 3B'53Ky 3 IMM, HabyBa€e aKTyaAbHOCTi IIMTaHHS PO
bararcTso xaacy Ilmnaosa cucrem i3 3miEEMMY KoedpiltieHTaMIL.

Y aaHiit pob0Ti HaBeAeHO HOBMIT KAAC AiHIHIX TapaboAiUHMX CMCTeM piBHSHD i3 YaCTVHHIMM
TIOXiAHMMM TIEPIIIOTO TIOPSIAKY 3a f i3 3aAeXXHMMM Bia Uacy KoedpillieHTaMM, SIKMII OXOIIAIOE KAAC
IleTpoBCHKOTO CMCTEM i3 MOAOAIIIMMY KoedpillieHTaMM, 3aAeXXHMMM Bi t. ToAoBHA yacTuHa Andpe-
PeHIIiaABHOTO BMpa3y KOXHOI Takoi cyucTemy € mapaboaiurmm 3a [lInaoBuM Bupas3oM i3 cTaAmmm
koedpirienTaMn. MeToaoM nepeTBopeHHS Dyp’e Mo6yA0BaHO PYyHAAMEHTAABHIMI PO3B’SI30K 3aAadi
Kori AAST cycTeM IIBOTO KAACY Ta O6rpyHTOBaHO iX mapaboaiunicTs 3a lInaosum. ITpu nboMy BuKo-
PVCTaHO AMILIe CTPYKTYPY CUCTeMM Ta YMOBM Ha BAACHI UMCAA il TOAOBHOTO MaTPMYHOTO CUMBOAY.
Llet1 kAac, mepea yciM, xapakTepusye bararcrso kaacy IlInnaosa cucteM i3 sMiHHMMY KoedpillieHTaMu
Ta HeBUYEPIHICTB Jioro cuctemamu Ilerposebkoro.

TaxkoXx HaBeAeHO 3araAbHMI METOA AOCAIAXKeHHS (pyHAaMEeHTaAbHOTO po3B’si3Ky 3asaui Komri
AAsI Tapaboaiunmx 3a IIMAOBMM cHcTeM, SIKMIT € PO3BUMHEHHSIM BiaoMoro MetoAy S1.I. JKurommp-
CBKOTO.

Kontouosi cnoea i ¢ppasu: mapaboaiuna 3a Illmaosum crcteMa, PyHAAMEHTAABHMIA PO3B’SI30K, 3a-
Aava Kormi.
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MuLYAVA O.!, TRUKHAN YU.2

ON MEROMORPHICALLY STARLIKE FUNCTIONS OF ORDER « AND TYPE B,
WHICH SATISFY SHAH’S DIFFERENTIAL EQUATION

According to M.L. Mogra, T.R. Reddy and O.P. Juneja an analyticin Dy = {z : 0 < |z| < 1}
function f(z) = 1 + Y% ;| f,z" is said to be meromorphically starlike of order « € [0, 1) and type
B € (0,1]if |zf'(z) + f(z)] < Blzf'(z) + (2a — 1)f(z)], z € Dy. Here we investigate conditions
on complex parameters o, 81, Yo, Y1, v2, under which the differential equation of S. Shah 22w’ +
(Boz% + B1z)w' + (70z* + 71z + 72)w = 0 has meromorphically starlike solutions of order a € [0, 1)
and type B € (0, 1]. Beside the main case n + 5 # 0, n > 1, cases v, = —1 and 7y, = —2 are consid-
ered. Also the possibility of the existence of the solutions of the form f(z) = % +Y 0 fuZ,m>2,
is studied. In addition we call an analytic in Dy function f(z) = 1 + Y7 ; f,z" meromorphically
convex of order a« € [0,1) and type B € (0,1] if |zf"(z) + 2f'(z)| < Blzf"(z) +2af'(z)|, z € Dy
and investigate sufficient conditions on parameters By, 81, o, Y1, 72 under which the differential
equation of S. Shah has meromorphically convex solutions of order « € [0, 1) and type B € (0, 1].
The same cases as for the meromorphically starlike solutions are considered.

Key words and phrases: meromorphically starlike function of order « and type 8, meromorphically
convex function of order « and type B, Shah'’s differential equation.
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INTRODUCTION AND PRELIMINARY LEMMAS

An analytic univalentinID = {z : |z| < 1} function

f(z) = iofnzn (1)

is said to be convex if f(ID) is a convex domain. It is well known [2, p. 203] that the condition
Re{1+zf"(z)/f (z)} > 0 (z € D) is necessary and sufficient for the convexity of f. By W.
Kaplan [4] a function f is said to be close-to-convex in ID (see also [2, p. 583]) if there exists a
convex in ID function @ such that Re (f'(z)/®’(z)) > 0(z € D). A close-to-convex function f
has the characteristic property that the complement G to the domain f(ID) can be filled with
rays L which go from 0G and lie in G. Every close-to-convex in ID function f is univalent in ID
and, therefore, f'(0) # 0. Hence it follows that a function f is close-to-convex in D if and only
if the function

§(z) =z+ ) gnz" (2)
n=2

YAK 517.925.44
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is close-to-convex in ID, where g, = f,/ f1. We remark also, that a function defined by (2) is
said to be starlike in ID, if g(ID) is a starlike domain with respect to the origin. It is clear that
every starlike function is close-to-convex.
S.M. Shah [8] indicated conditions on real parameters By, B1, Yo, v1, 72 of the differential
equation
20" + (BoZ* + pr12)w’ + (702° + M1z + 12)w =0, ©)
under which there exists an entire transcendental solution given by (1) such that f and all its
derivatives are close-to-convex in ID. In particular he obtained the following result: if 1 + v, =
0,-1 < B0 <0,B1 >0 =0and —B1/2 < 71 < 0, then equation (3) has an entire
solution (2) such that all g(”) (n > 0) are close-to-convex in ID and In Mg(r) = (1 + o(1))|Bolr
asr — 400, where M¢(r) = max{|g(z)| : |z| = r}.
The investigations are continued in papers [9-14]. In particular in the case of complex
parameters Bo, B1, Yo, v1, 72 in [13] it is proved thatif yg = 0, 1 + 72 =0, Bo # 0, |B1] < 2
ng 2UB [+ M)
2 — B

are starlike and, thus, close-to-convex in ID and In Mg(r) = (1+0(1))|Bo|r as ¥ — +co0. An
analog of this assertion for convex functions is obtained in [14], where it is proved that if vy =

2 + In2
0,B1+72 =0,B0 #0,|B1] < 2and 1]+ I7al)

< then equation (3) has an entire
2 - [B1] 2

solution (2) such that all g(”) (n > 0) are convex in ID.

Let X be the class of functions defined by

f&) =1+ LA @

analyticinIDy = {z: 0 < |z| < 1}. A function f € X is said ( [3,5]) to be meromorphically star-
like of order & € [0, 1) if Re {—zf"(z)/f(z)} > a (z € Dy), and is said to be meromorphically
convex of order « € [0, 1) if Re{—(1 +zf"(2))/f'(z)} > a (z € Dy).

Conditions on complex parameters By, B1, Yo, Y1, 72 under which Shah’s differential equa-
tion has meromorphically starlike and meromorphically convex solutions of order a € [0, 1)
are investigated in [1] . It is known ( [1,7]) that if

|2f'(2) + f(2)] < [2f'(2) + (22 = 1)f(2)]| (5)
for all z € Dy then the function f is meromorphically starlike of order « € [0, 1).
By B. Uralegaddi [15] a function f € X is meromorphically starlike of order g € (0, 1] if

2f'(z) + f(z)] <Blzf'(2) — f(2)], z €Dy (6)
Finally, combining (5) and (6), M.L. Mogra, T.R. Reddy and O.P. Juneja [6] called a function
f € ¥ meromorphically starlike of order « € [0, 1) and type € (0, 1] if

2f'(2) + f(2)| < Blzf'(z) + (22 = 1)f(z)|, z €Dy,

and proved the following lemma.

< In 2 then equation (3) has an entire solution (2) such that all g(”) (n>0)

Lemma 1. If

(9]

Y ((M+B)n+p2u—1)+1)|ful <2B(1—a), 7)

n=1
then the function defined by (4) is meromorphically starlike of order « € [0, 1) and type €
(0, 1].
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Here we investigate conditions on complex parameters 8o, B1, Yo, 71, 72 such that equation
(3) has meromorphically starlike solutions of order a € [0, 1) and type B € (0, 1].

We need also the following lemma [1].

Lemma 2. A function defined by (4) is a solution of equation (3) if and only if

2-B1+72=0, —Bo+711=0,7%+201+72)1=0, 32+72)f2+271/1=0 (8

and forn > 3

(n+1)(n+72)fu +1y1fu-1+ Yo fu—2 = 0. ©)

1 MEROMORPHICALLY STARLIKE SOLUTIONS

We assume that

n+v#0, n>1 (10)

Then equalities (8) and (9) yields that if 79 = 0 then all f, = 0, that is, the condition (7) is
equivalent to the condition 0 < (1 — a). Therefore, the following statement is true ( [1]).

Proposition 1. If B1 = 2+ 72, Bo = 71, Y0 = 0 and condition (10) holds then differential
equation (3) has the solution f(z) = 1/z, which is meromorphically starlike of order &« and
type B for eacha € [0, 1) and g € (0, 1] .

27
Now we assume that 79 # 0. Then f; —3 ( 1 —l—’)/ K fr = m f1 and
fn=— " foo1— 70 fn—2. Using these equalities and Lemma 1 we

(n+1)(n +72)
prove the following theorem.

(n+1)(n+ 72)

Theorem 1. Leta € [0, 1) and B € (0, 1]. If By = 2+ 72, |12] < 1, Bo = 71 then differential
equation (3) has a solution given by (4), which by the condition

(1+ Ba)l7ol (G atmpn| @41+l
I =20 )<1 30+ ap) 2 7al) 4<1+a5><3—mr>) 1

is meromorphically starlike of order « and type .
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Proof. Since |y2| < 1 then (10) holds and from the indicated above equalities for f; we obtain

; (1+B)n+p2a —1) + 1)|ful =2(1+ pa)|fi + (3 + (1 +2a)) | f2]

- niy1 Y0
+n; (1+B)n+pa—1)+1) (Hl)(nﬂz)fnfw(Hl)(nﬂ)fnz

<21+ pa)|fil + (B + B(1 +20)) | f2|

B

=201+ Il + G-+ B+ 201

YN EY CEUEA

5 (2P0 D rp— )y

= 201+ pa)lfl + (3-+ (1 + 20) |y - L2 g

e T iy e
whence

L (1~ G g T F 2y 5 e 3 =D

(n+3+pB(n+1+2a))|yo
_(n+3)(n+1+fs(n_1+2a))(n+02_|72|)>((“ﬁ)”*ﬁ(z"‘_l)“)'f”'
. 2B+ B +2a)) |1l 208+ B(1+2a))|71]
(A +pa)[ 70|
1=y

(12)

=21+ pa)lfr] <

, (n+2+ (n+2a)p) n+1 ,
) Since the sequences <n FTHBn—1 +2(x)> ((n e ’72’)> are decreasing
t
" (1 Dnt2+ WPl G+A+wBml gy
(n+14p(n —1420))(n +2)(n+1—=[12]) =~ 3(1+aB)(2 = |r2])’
and by analogy
(n+3+ Bl +1+20))\7o| . 2+B1+) "

(n+3)(n+1+p(n—1+42a))(n+2—[72) ~ 4(1+ap))(3 = |72])
Condition (11) implies the inequality
B+ A+20)p)ml (2+B(1+a))nl

31+ap)2—|r2l)  4(1+ap))B—[12l)
Therefore, from (12) in view of (13) and (14) we have

B2 CHBO+D0l ) 2 gt plon
(1 S 47 o) 300+ a6 o) By A+l 415

<1

< (L4 Ba) |70
- 1|y
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whence in view of (11) we obtain inequality (7). By Lemma 1 function (4) is meromorphically
starlike of order « and type B. O

Now we consider the cases where the condition (10) does not hold. At first, we assume that
14 792 = 0. Then in view of (8) 79 = 0 and we can choose f; # 0, because if f; = 0 then in
view of (8) f, = 0, and in view of (9) all f, = 0 and we come to the case f(z) = 1/z, which we
considered above.

We assume that f; = a®> # 0 and 7 = 0. Since 2 + 9, # 0, we have f, = 0 and in view of
the equality 7o = 0, all f, = 0 for n > 2. Thus, the solution has the form f(z) = 1/z + a?z =
a(1/(az) + az) = 2aJ(az), where ] is the function of Joukowsky. Therefore, using Lemma 1,
we get the following statement.

Proposition 2. If 1 = 1, 7o = —1 and Byp = Y1 = Yo = 0 then differential equation (3) has
the solution f(z) = ] (az), which by the condition (1 + Ba)|al> < B(1 — &) is meromorphically
starlike of order «x and type .

If 1 # 0 then in view of the equality 7y, = —1 from (8) we have f, = —2v;f1/3 and since
n

Yo = 0, we obtain f, = — fn 1 for n > 3. Using the recurrent formula we prove the

following theorem.

Theorem 2. If 1 =1, 2 = —1, 70 = 0, Bo = 71 # 0 then there exists a solution given by (4)
of differential equation (3), which by the condition

3+ B+ 24p
3(1+ap)

is meromorphically starlike of order « and type f.

Iml <1 (15)

Proof. Since, as above,

o]

Z((l +B)n+B2a —1) +1)|ful = 2(1+ )| f1]

n=1

i (1+B8)(n+1)+BR2a—1)+1) (n+1)|7]
=  (A4+pfn+pRa-1)+1 ((n+1)2-1)

<201+ pa)lfi] + Z 3*&*@2";“@” ((1+ By +2a —1) +1)[f],

(L+ B+ p2a —1) +1)|ful

then by the condition (15) we have

<1 %! 1!> 2 (1 pn o+ pRa = 1) + 1Ifl <201+ pa)fa

Therefore, if
3+ B+ 2uap
< _ T F =P
20+ plfil <280 -0 (1- 5L ), (1)
then by Lemma 1 the function given by (4) is meromorphically starlike of order « and type . In
view of the arbitrariness of f; and the condition (15) we can choose f; such that the condition
(16) holds. O



ON MEROMORPHICALLY STARLIKE FUNCTIONS OF ORDER @ AND TYPE 3 159

Now, let 2n~|— 72 = 0. Then 1 = 0 and from (8) and (9) we obtain f; = y¢/2, y1/1 = 0 and
fon=— n 70 fu—2 for n > 3. Hence it follows that either f; = 0

HE)m—2" T mr D=2
or y1 = 0, and f, may be arbitrary number.
At first we suppose that f; = 0. Then 79 = 0 and forn > 3

__ nn 7l ™ "2
|fﬂ| - (ﬂ—i—l)(j’l—Z) |fn—1| < n_12|fn—1| < (n—Z)l(n—S) |fﬂ*2| <. < (nl_z)!|f2|'

Hence it follows that

o0

Y (T4 B)n+pa—1)+1)|fu] < (34 B+2ap)|f2|

n=1
M|

# 1 ((0+pne+ pn =1+ )P = Koo DI

where K(a, B, |y1]) = const > 0. Since f, may be arbitrary the following proposition holds.

Proposition 3. If v, = =2, 81 = 79 = 0, Bo = 71 # 0 then for eacha € [0,1) and B €
(0, 1] there exists a solution given by (4) of differential equation (3), which is meromorphically
starlike of order « and type B.

Now, we assume that y; = 0. Then f; = 70/2, f, may be arbitrary and

_ |70l
| ful _m|fn—2| for n>3.

Using these relations, we prove the following theorem.

Theorem 3. Leta € [0,1) and B € (0, 1). If yo = —2,B1 = Bo = 71 = 0 then there exists a
solution given by (4) of differential equation (3), which by the condition

(1-+ pll < 2p(1 - (1 - EELEEI0D) )

is meromorphically starlike of order « and type f.

Proof. Since f, may be arbitrary, we set f, = 0. Then

a (A+B)n+p2a—1)+1)[yol
HX:: 1+:B n+ﬁ( “_1>+1>’fn’ _2(1+“ﬁ ’f1’+ X_: (n+1)( 2) 0 ’fn—Z‘

=201+ ap)lp |+ 3 (LR DR D Dl g,

and, thus,

= (1 (A+B)(n+2) +B(2a —1) + 1) 70 ) -
Z<1 ((1+ﬁ)”+5(20‘—1)+1)n(n+3)>((1+ﬁ) +p20 = 1) + 1) ful

<2(1+ap)|fil-

n=1

Bu
t (1+B)(n+2)+Ba—1) + Dol _ 2+B(L+) 70l
(1+pn+pRa—1)+1)n(n+3) — 4(1+ ap)
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Therefore,
(1- LR 5 (1t gyt p2a— 1)+ DIf | < (1 + B,

n=1
whence in view of (17) we obtain (7), and by Lemma 1 function (4) is meromorphically starlike

of order a and type . O

Finally, we consider the case, where equation (3) has a solution of the form
1 m
f(z) = - + Y fuz', m=>2, (18)
n=1

where f,; # 0. Equality (9) yields that
(m+2)(m +1+72)fms1 +my1fm +v0fw—1=0 and

(m+3)(m + 2+ 72) fns2 + (M + )71 fms1 + v0fm = 0.

Since fi+2 = fm+1 = 0 and f,; # 0, the second equality implies the equality o = 0 and
consequently the first equality implies the equality y; = 0. Therefore, in view of (8) and (9)
(n+1)(n+2)fs =0foralln > 1. Since f;;, # 0,som+ vy, =0. Thusn+yp # Oforalln # m
and, therefore, f, = 0, except f;;, which may be arbitrary. Hence it follows that the solution
given by (18) is possible only if m 4 > = 0 and is of the form

f(z) = %—l—fmzm, (19)

where f,, is an arbitrary number. (It is easy to verify directly that the function (19) is a solution
of equation (3)ifand onlyif Bo = yo =711 =2—B1+ 12 =m+ 72 =0.)

Foreach « € [0,1) and B € (0, 1] we choose f; such that ((1+ p)m + B(2a — 1) +1)|fi] <
2B(1 — a). Then the function (19) is meromorphically starlike of order « and type f.

2 MEROMORPHICALLY CONVEX SOLUTIONS

We call a function f € £ meromorphically convex of order « € [0,1) and type 8 € (0,1] if
|2f"(z) +2f'(2)| < Blzf"(2) +2af'(2)], z €Dy
Clearly, f is meromorphically convex of order a and type B if and only if ¢(z) = —zf'(z) is
meromorphically starlike of order a and type B. Since ¢(z) = 1 — il nfyz", by Lemma 1 the
n—

condition
(o)

Y (A +B)n+p2a —1) + 1)n|fu| <2B(1—a), (20)

n=1
is sufficient in order that f is meromorphically convex of order « € [0,1) and type B € (0,1].
Therefore, using Lemma 2 we can prove analogues of Theorems 1 - 3.

Theorem 4. Leta € [0, 1) and B € (0, 1]. If By = 2+ 72, |12] < 1, Bo = 71 then differential
equation (3) has a solution given by (4), which by the condition

(1+ pa)lno (2644208 32+B0 + )i
T =20 ><1 301 ap)@ - 2l) 4<1+aﬁ>><3—m|>) @

is meromorphically convex of order « and type B.
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Proof. As in the proof of Theorem 1 we have

(o]

Y (L4 pB)n+B2a—1) + Dn|fu] =2(1+ pa)| fil + (3+ (1 +20))2| f2|

n=1

= " n?y1(n —1)fu nyo(n —2)fu—2
T L (A =)+ 1) | e ) (410 T =2 D +72)
<20+ )] + 26+ B+ 20)
© (0 D2((14 B)(n+1) 1 p2a—1) + Diyi]
; w0+ 2)(n 1= 7] lfal
 (n+2)(1+B)(n+2)+pR2a—1)+1)|v0

+,§1 w0+ 3)(n 2~ 2] lful

—2(1 4 fa) fo] + 263+ B(1+20))|fo 4(“?“_*‘;"“;)'“' il

i (n+1)%(n +2+ (n+20)B) || |fn|+i (n+2)(n+3+pln +1+2))vol, o\

nn+2)(n+1-|7) n(n+3)(n+2—|7)
whence as above

26+ (L 20B)ml 3@ +BAT Dl (1 4 gt poe - 1) 4 10
(13 e e 01T ) L0 B+ laa =1+ Ul

< (L4 )0l

1— 72

and in view of (21) we obtain (20). Therefore, the function defined by (4) is meromorphically
convex of order « and type . O

The following theorems can be proved by analogy.

Theorem 5. If B1 =1, v = —1, 79 = 0, Bo = 1 # O then there exists a solution given by (4)
of differential equation (3), which by the condition

23+ B +2ap)
3(1+ap)

is meromorphically convex of order « and type B.

71 <1

Theorem 6. Leta € [0, 1) and B € (0, 1]. If y, = —2 and B1 = Bo = 71 = 0 then there exists a
solution given by (4) of differential equation (3), which by the condition

(1+ ) 70| < 28(1 — a) (1 - 3(2251(123)'%')

is meromorphically convex of order « and type B.
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Myasia O., Tpyxau IO. IIpo mepomopgpro 3iprosi ¢pymxyii nopadky « i muny B, w0 3a0060.16HIIONb
Oucpepenyitine pisnanns Illaxa // KapmnaTcbki MaTeM. my6a. — 2017. — T.9, Ne2. — C. 154-162.

3riaHo 3 M.A. Morpa, T.P. Peaai ta O.IT. Xionest anaaitmuna 8 Dg = {z: 0 < |z| < 1} dyskuisa
f(z) = 1+ ¥ | fuz" HasuBaeThcst MepoMopdHO 3ipKoBoto mopsiaky & € [0, 1) i Tumy B € (0, 1],
axwo |zf'(z) + f(z)| < Blzf'(z) + (2a — 1) f(z)|, z € Dy. TyT AOCAIAXKEHO yMOBM Ha KOMITAEKCHI
napameTpu Bo, B1, Yo, Y1, Y2, 32 sikux Audpepenmiitte pisasaus C. Maxa 22w + (Boz? + Brz)w’ +
(702% + 112z + 72)w = 0 Mae MepoMopdpHO 3ipKoBi po3s’s3ku mopsiaxky « € [0, 1) i tumy B € (0, 1].
OxpiM OCHOBHOTO BUIIAAKY 11 + yp 7 0, 1 > 1, pO3TASIAQIOTBCS BUITAAKM Yy = —11 9y = —2. Takox
BIBUEHO MOKAMBICTb iCHyBaHHSI po3B’siskiB Burasiay f(z) = 1+ Y | f,z", m > 2. Kpim Toro,
MM HasuBaeMo aHaAiTiuHy B Dy pyrxuito f(z) = 1 + Y% ; 42" MepoMOPHO OMYKAOK MOPSIAKY
a €10,1) ity B € (0,1], sixmo |zf" (z) + 2f'(2)| < Blzf"(z) +2af'(z)|, z € Dy, i Aocaiaxyemo
AOCTaTHI yMOBM Ha HapameTpu PBo, B1, Yo, Y1, Y2, 3a skux aucpepenuiiine pisasaHs C. Illaxa Mae
MepOMOP(HO OIyKAL po3B’si3ky MOpsIAKY & € [0, 1) i Tvmy B € (0, 1]. PO3rAsIAQIOTBCST Ti 5K BUTIAAKY,
110 i AASI MEPOMOPJPHO 3ipKOBIMX PO3B’SI3KiB.

Kontouosi cnosa i ¢ppasu: mepoMopdpHO 3ipkoBa (pyHKIIiSI IOPSIAKY & Ta TvILy 3, MepoMOpdHO
orykAa (PyHKIIsI HOPSIAKY & Ta Tvmy fB, andpepentiriHe pisasaHs [laxa.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2017, 9 (2), 163-170 KapmaTcbki MmaTem. my6a. 2017, T.9, N2, C.163-170
doi:10.15330/cmp.9.2.163-170

(L)

PRAJISHA E., SHAINI P.
FG-COUPLED FIXED POINT THEOREMS IN CONE METRIC SPACES

The concept of FG-coupled fixed point introduced recently is a generalization of coupled fixed
point introduced by Guo and Lakshmikantham. A point (x,y) € X x X is said to be a coupled fixed
point of the mapping F : X x X — X if F(x,y) = x and F(y, x) = y, where X is a non empty set. In
this paper, we introduce FG-coupled fixed point in cone metric spaces for the mappings F : X x Y —
Xand G : Y x X — Y and establish some FG-coupled fixed point theorems for various mappings
such as contraction type mappings, Kannan type mappings and Chatterjea type mappings. All the
theorems assure the uniqueness of FG-coupled fixed point. Our results generalize several results in
literature, mainly the coupled fixed point theorems established by Sabetghadam et al. for various
contraction type mappings. An example is provided to substantiate the main theorem.

Key words and phrases: FG-coupled fixed point, cone metric space, contraction type mappings.

Department of Mathematics, Central University of Kerala, Kasaragod, Kerala 671314, India
E-mail: prajishal991@gmail.com (PrajishaE.), shainipv@gmail.com (ShainiP)

1 INTRODUCTION

The classical Banach contraction theorem is proved to be one of the most fruitful and
durable results in metric fixed point theory. Due to its enormous applications, several au-
thors have studied and made very many generalizations of Banach contraction principle. In
2004 A.C.M. Ran and M.C.B. Reurings [1] proved an analogue of Banach contraction principle
in partially ordered metric spaces and used the theorem to solve matrix equations. Following
this, J.J. Nieto and R.R. Lopez [5, 6] established several fixed point theorems in partially or-
dered metric spaces and obtained applications to periodic boundary value problems. As an
extension of fixed point, a new concept called coupled fixed point is introduced by D. Guo
and V. Lakshmikantham [2]. They investigated some coupled fixed point theorems of mixed
monotone operator, and applied their results to solve initial value problem of ordinary differ-
ential equations with discontinuous right hand sides. Using the notion of coupled fixed points
they explored the existence and uniqueness of fixed point of non-monotone operator. Later
T.G. Bhaskar and V. Lakshmikantham [13] established existence and uniqueness theorems
of coupled fixed point for mixed monotone mappings defined on partially ordered complete
metric spaces satisfying contraction type condition and applied their result to solve periodic
boundary value problems. After the work of Gnana Bhaskar and Lakshmikantham, in 2009 V.
Lakshmikantham and L. Ciric [14] introduced a new mapping called mixed g-monotone map-
ping. Using this, they proved coupled coincidence and coupled common fixed point theorems
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which generalize the results of Gnana Bhaskar and Lakshmikantham. In 2007 L.G. Huang
and X. Zhang [8] introduced a metric called cone metric by replacing the real line by a real
Banach space equipped with a partial ordering with respect to the cone. They proved some
fixed point theorems for contraction mappings defined on cone metric spaces. Following them
several authors have proved various fixed point theorems in cone metric spaces [10-12]. Later
in 2009 F. Sabetghadam et al. [4] introduced the concept of coupled fixed point in cone metric
spaces, and proved several coupled fixed point theorems for different contraction type map-
pings. In 2011 M.O. Olatinwo [9] proved coupled fixed point theorems by considering two
different cone metrics on the same ambient space. Recently E. Prajisha and P. Shaini [3] in-
troduced a concept called FG-coupled fixed point in partially ordered metric spaces which is
a generalization of coupled fixed point. They established some FG-coupled fixed point theo-
rems, in which F and G satisfy different contraction type conditions. Subsequently, K. Deepa
and P. Shaini [7] proved several FG-coupled fixed point theorems for various contractive and
generalized quasi-contractive mappings.

In this paper we define FG-coupled fixed point in cone metric spaces and prove FG-coupled
tixed point theorems for different contraction type mappings on complete cone metric spaces.
Let us give some useful definitions.

Definition 1. A cone P is a subset of real Banach space E such that:
(i) P is closed, nonempty and P # {0},
(ii) ifa, b are non-negative real numbers and x,y € P, then ax + by € P;
(iii) PN (—P) = {0}.

For a given cone P C E, the partial ordering < with respect to P is defined by x < y if and
only if y — x € P. The notation x < y stands for y — x € intP where intP denotes the interior
of P. Also we will use x < y to indicate that x < y and x # y. The cone P is called normal if
there is a number M > 0 such that forall x,y € E,0 < x < y implies that || x || < M || y ||
The least positive number satisfying the above is called the normal constant of P. The cone P
is called regular if every increasing (decreasing) sequence which is bounded above (below) is
convergent. It is known that every regular cone is normal.

Definition 2 ([8]). Let X be a non empty set and let E be a real Banach space equipped with the
partial ordering < with respect to the cone P C E. Suppose that the mappingd : X x X — E
satisties the following conditions:

(i) 0 <d(x,y) forallx,y € X andd(x,y) = 0 ifand only if x = y;
(ii) d(x,y) = d(y, x) forall x,y € X;
(iii) d(x,y) <d(x,z) +d(z,y) forallx,y,z € X.
Then d is called a cone metric on X and the pair (X, d) is called a cone metric space.
Definition 3 ([8]). Let (X, d) be a cone metric space, x € X and {x,} a sequence in X. Then

(i) {xn} converges to x whenever for every ¢ € E with 0 < c there is a natural number N
such thatd(x,, x) < c for alln > N. We denote this by lim, e X = X OF X — X;
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(ii) {x,} is a Cauchy sequence whenever for every ¢ € E with 0 < c there is a natural
number N such that d(x,, x,,) < ¢ foralln,m > N.

A cone metric space (X, d) is said to be complete if every Cauchy sequence is convergent.

Definition 4 ([4]). Let (X,d) be a cone metric space and F : X x X — X be a mapping. An
element (x,y) € X x X is said to be coupled fixed point of F if F(x,y) = x and F(y,x) = y.

Definition 5 ([3]). Let F : X xY — X and G : Y x X — Y be two mappings, then for
n>1,F'(x,y) = F(F"Y(x,y),G" (y,x)) and G"(y,x) = G(G" (y,x), F" '(x,y)) where
FO(x,y) = xand G’(y,x) =y forallx € X andy € Y.

In the next section we define FG-coupled fixed point on cone metric spaces and prove
existence and uniqueness theorems of FG-coupled fixed point for different contraction type
mappings. We consider dx : X x X =+ Eand dy : Y X Y — E, where E is a real Banach space
equipped with the partial ordering < with respect to the cone P C E with intP # .

2 MAIN RESULTS

Three main theorems on FG-coupled fixed point are investigated in this section. We define
FG-coupled fixed point in cone metric spaces as follows:

Definition 6. Let (X,dx) and (Y,dy) are cone metric spaces and F : X x Y — X and G :
Y x X — Y are two mappings. An element (x,y) € X x Y is said to be an FG-coupled fixed
pointif F(x,y) = x and G(y, x) = y.

Theorem 1. Let (X,dx) and (Y,dy) be two complete cone metric spaces. Suppose that the
mappings F : X xY — X and G : Y x X — Y satisfy the following conditions for all x,u €
X, yveY:
dx(F(x,y),F(u,v)) <kdx(x,u)+1dy(y,v), (1)
dy(G(y,x),G(v,u)) < kdy(y,v) +1dx(x,u), ()
where k,| are non negative constants with k +1 < 1. Then there exist a unique FG-coupled

fixed point.

Proof. Take xy € X and yo € Y. Construct sequences {x,} and {y,} by defining x,,;1 =
F(xn, yn) = F""1(x0,y0) and yn11 = G(yn, Xn) = G"(yo, x0) for n > 0.
We have,

dx(xp41,%n) = dx(F(xn, ¥n), F(Xp—1,Yn-1)) < kdx(xn, xy—1) +1dy(Yn, Yn-1),

and
Ay (Yn+1,Yn) = Ay(GWn, xn), G(Yn—1,Xn-1))
<k dY(yn; ]/n—l) +1 dX(xn/ xn—l)-

By adding the above inequalities we get d, < (k+1) d,,_1, where

dy = dx(Xn+1, %n) + Ay (Yn+1,Yn)-
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Continuing this process we get d, < 6 d,,_1 < 02d, o---<0"dy, where = k+1 < 1. If
do = 0 then (xg, o) is an FG-coupled fixed point. If dy # 0, then we have dy > 0.

We have for m > n, dx(xn, xm) < dx(xn, Xp1) + dx(Xn41, Xpt2) + - -+ +dx(Xm—1, xm) and
dy (Yn, Yym) < dy(Yn, Yn+1) + Ay Yn+1, Ynt2) + -+ dy(Ym—1,Ym)

ie, dX(xn; xm) + dY(yn;]/m) <d,+ dn+1 +---+ dm—l

n

S@ndo—{—@n—"—ldo—{—---—{—@m_ldog _edo
Now, for 0 < c¢ there exist r > 0 such that y < c for || y H< r. Choose a positive integer N,
91’[
such that for all n > N, H 3 do || < r, which implies T 0 dy < ¢, forn > N..

Thus dx (x,, Xm) —i—dy(yn,ym) < ¢, form > n > N Since dx(xp, xm) < dx(xn, xm) +

dy (Yn, Ym) and dy (Yn, ym) < dx(xn, Xm) +dy(Yn,Ym), {xn} and {y, are Cauchy sequences in
X and Y respectively. By the completeness of X and Y there exist (x,y) € X x Y such that

limy,—y00 X, = x and lim, 00 ¥, = y. ie, for all 0 < c there exist N’ such that dx (x,, x) < % for

all n > N’ and there exist N” such that dy (y,,y) < % foralln > N”. Take N = max{N’, N"'}.
We have

dx(F(x,y),x) <dx(F(x,y),xn41) +dx(xn41,%) = dx(F(x,y), F(xn,yn)) + dx(xn41, X)

< kdx(x,xn) +1dy(y,yn) +dx(xnsn,x) ks +15 45 < ¢

Thus F(x,y) = x. Similarly we get G(y, x) = .
Now we prove the uniqueness of FG-coupled fixed point. Let (x,y) # (x,y’) € X x Y such
that F(x/,y') = x’ and G(v/, ") = y'. Then we have,

dx(x,x") = dx(F(x,

)
dy(y,y') = dy(G(y, x)
ie, dx(x,x') +dy(y,y'

JE(X,y)) < kdx(x,x")+1dy(y,y') and
Gy, x')) < kdy(y,y') +1dx(x,x')
) < (k+1) [dx(x, ) +dy (y,y")] <dx(x,x") +dy(y,y").

This is not possible. So x = x” and y = y’. Hence the proof. O

Example 1. Let X = [0,00) and Y = (—00,0]. Let E = Ck with || x |=|| x ||lo + || ¥’ || and

P={x€E:x(t) >0,t € [0,1]}. Define cone metricd : X x X — E by d(x,y) = |x —y|¢

where ¢ : [0,1] — R such that ¢(t) = ¢': see [15] Consider the mappings F : X x Y — X and
—4 —4

G:Y x X — Y defined as F(x,y) = a Z Y and G(y,x) = % Clearly F and G satisty all

the conditions given in Theorem 1, and it is easy to see that (0,0) is a unique FG-coupled fixed
point.

Corollary 1 ([4, Theorem 2.2]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisfies the following contractive condition for all x,y,u,v € X:

A(F(x,y), F(u,0)) < kd(x,u) +1d(y,0), ©)

where k and | are non negative constants with k +1 < 1. Then F has a unique coupled fixed
point.
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Corollary 2 ([4, Corollary 2.3]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisfies the following contractive condition for all x,y,u,v € X:

A(F(x,y), Fu,0)) < & [d(xw) +d(y,0)], @

where k € [0,1). Then F has a unique coupled fixed point.

Theorem 2. Let (X,dx) and (Y,dy) be two complete cone metric spaces. Suppose that the
mappings F : X XY — X and G : Y x X — Y satisfy the following condition for all x,u €
X, yveY:

dx(F(x,y),F(u,v)) < kdx(F(x,y),x) +1dx(F(u,0),u), )

Ay (G(y,x), G(o,u)) < kdy(G(y,x),) + 1 dy(G(o,u),0), 6)

where k,| are non negative constants with k +1 < 1. Then there exist a unique FG-coupled
tixed point.

Proof. As in the proof of previous theorem construct sequences {x,} and {y,} defined by
Xni1 = F(xn,yn) = F"™ 1 (x0,90), Yni1 = G(yn, xn) = G"1(yo, x0) for n > 0. Then we have

dx (xps1, %) = dx (F(xn,yn), F(xn—1,Yyn-1)) < kdx(F(xn,yn), xn) +1dx(F(xp-1,Yn-1), Xn—1)
=k dX(xn—i—lr xn) +1 dX(xn; xn—l)-

Therefore dx (x,11,x) < ﬁ dx(xn, xy—1). Similarly dy(y,+1,yn) < 1% Ay (Yn, Yn—1)-
Repeating this process we get, dx (x,+1, x,) < 6" dx(x1,x0) and dy (Vu+1,yn) < 0" dy(y1,Y0),
where § = 11Tk

If x; = xp and y; = Yo, then the result follows. Otherwise for m > n consider,

Pl

dX(xn; xm) < dX(xn; xn—i—l) + dX(xn—HI xn+2) + -+ dX(xm—ll xm)
< 8" dx(x1,x0) + 0" dx(x1,x0) + -+ - + 6™ dx (%1, x0)
SN
<
—1-6

dx (x1, x0).

This implies that {x, } is a Cauchy sequence in X. Similarly we can prove that {y, } is a Cauchy
sequence in Y. Now by the completeness of the spaces X and Y, there exist (x,y) € X x Y
such that lim, e x;, = x and lim,_,« ¥y, = y. Hence for all 0 < ¢ there exist N’ such that

7(1 _3k> ¢ for all n > N’ and there exist N” such that dy (y,,y) < w for all

n> N".
Therefor we have

dx(F(x,y),x) < dx(F(x,y), xnr41) + dx (xnr 11, %) = dx(F(x,y), F(xn, ynr)) + dx (xnr41, %)
< kdx(F(x,y),x) +1dx(F(xn, yn), xnr) + dx (xnr 41, %)
< kdx(F(x,y),x) + 1 [dx(xnr11, %) +dx (x, xn0)] + dx (xnr41, %)

Thus

I+1 l I+1)c lc
1_kdX(xN’-i-l/x)‘i'mdx(xN/,x)<<( 3> _}_? < c.

dx(F(x,y),x) <
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Hence we have F(x,y) = x. Similarly, G(y, x) = y. If (x, y) is another FG-coupled fixed point,
then we have

dx(x,x') = dx(F(x,y), F(x',y')) < kdx(F(x,y),x) + 1 dx(F(x',y'), x')
=kdx(x,x)+1dx(x',x") = 0.

Thus x = x’. Similarly y = 1. Hence the proof. O

Corollary 3 ([4, Theorem 2.5]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisties the following contractive condition for all x,y,u,v € X:

d(F(x,y),F(u,v)) <kd(F(x,y),x)+1d(F(u,v),u), 7)

where k and | are non negative constants with k +1 < 1. Then F has a unique coupled fixed
point.

Corollary 4 ([4, Corollary 2.7]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisfies the following contractive condition for all x,y,u,v € X:

d(F(x,y), F(u,0)) < g [d(F(x, y), x) +d(F(u,v),u)], (8)

where k € [0,1). Then F has a unique coupled fixed point.

Theorem 3. Let (X,dx) and (Y,dy) be two complete cone metric spaces. Suppose that the
mappings F : X xY — X and G : Y x X — Y satisfy the following conditions for all x,u €
X, yveY:

dx(F(x,y),F(u,v)) <kdx(F(x,y),u)+1dx(F(u,v),x) )

dy(G(y,x),G(v,u)) <kdy(G(y,x),v) +1dy(G(v,u),y), (10)
wherek, | € [0,%). Then there exist a unique FG-coupled fixed point.

Proof. By defining x,,+1 = F(xy, yn) and y,+1 = G(Yn, X») as in the above theorems, we con-
struct sequences {x, } and {y, }. Now we have,

dx(xXp+1,%n) = dx(F(xn,yn), F(xu—1,Yn-1)) < kdx(F(xn,yn), xn—1) + 1 dx(F(Xpn—-1,Yn-1), Xn)
= kdx(Xp41, %n—1) +1dx(xn, xn) <k [dx(Xp41,X0) +dx (%0, X4-1)].

k - k
Thus dx (%41, Xn) < 1% dx(xn, xy—1). Similarly dy (y,411, yn) < % Ay (Yn, Yn—1)- Repeat-
ing this way we get

dx (X1, xn) < 0" dx(x1, x0)

and )
dY(ynHryn) <" dy(yl,yo), where § = %

In the similar lines of Theorem 2 see that the sequences {x,} and {y,} are Cauchy sequences
in X and Y respectively. Since (X,dx) and (Y,dy) are complete, there exist (x,y) € X x Y
such that lim,_c X, = x and lim,_,e ¥y = y. Hence for all 0 < ¢ there exist N’ such that

(1-K
2

1—k
dx(xn, x) < € forall n > N’ and there exist N” such that dy (y,,y) < % for all

n> N".
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Thus we have

dx(F(x,y),x)

IN

F(x,y), xnr41) +dx (xnr 41, %)

F(x,y), F(xn, ynr)) + dx (xnr41, %)

dx (F(x,y), xnr) + 1dx (F(xnr, ynr), x) + dx (xnr 41, %)
[dx (F(x,y),x) +dx(x, xn/)] + Ldx (xnr 41, %) + dx (N7 41, X)
k I+1 ke (I+1)c

1_kdX(xN/,x)+de(xN/+l,x) < 7‘{' )

x(
x(

d
d
k
k

IA A

IN

ie, dx(F(x,y), x) <c.

Hence we get F(x,y) = x. Similarly G(y,x) = y. If (x,y) # (x',y) is another FG-coupled
fixed point, then we have

dx(x,x") = dx(F(x,y), F(x',y')) < kdx(F(x,y),x') + 1 dx(F(x',y'), x)
=kdx(x,x") +1dx(x',x) = (k+1) dx(x',x) < dx(¥, x).

This is not possible. Thus x = x’. Similarly y = y. Hence the proof. O

Corollary 5 ([4, Theorem 2.6]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisties the following contractive condition for all x,y,u,v € X:

d(F(x,y),F(u,v)) <kd(F(x,y),u) +1d(F(u,v),x), (11)

where k and | are non negative constants with k +1 < 1. Then F has a unique coupled fixed
point.

Corollary 6 ([4, Corollary 2.8]). Let (X,d) be a complete cone metric space. Suppose that the
mapping F : X x X — X satisfies the following contractive condition for all x,y,u,v € X:

k
d(F(x,y), F(u,0)) < 5 [d(F(x,y), u) +d(F(u,0),x)], (12)
wherek € [0,1). Then F has a unique coupled fixed point.
Remark 1. If F = G and X = Y in Theorems 1, 2 and 3, then we get Corollaries 1, 3 and 5

respectively. In addition to this, if k and | are equal in Theorems 1, 2 and 3 then we get the
corollaries 2, 4 and 6 respectively.
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Konuermiss FG-cnapeHoi dpikcoBaHOI TOUKH, sIKa BBeA€HA HEAABHO, € y3araAbHEHHSIM CllapeHol
dixcoBaHOI TOUKH, 110 BBeAeHa ryo i AaxmmikanramoM. Touka (x,y) € X x X Ha3MBaeThbCsI CIia-
peHoo dpikcoBaHO TOUKOIO BiaobpaxkerHs F : X x X — X sixmo F(x,y) = xi F(y,x) = y, e
X HeTIOPOXXHSI MHOXMHA. Y 11iif craTTi My BBoAMMO FG-criapeHy (pikcoBaHY TOUKY Y KOHIUHMX Me-
TPUUHMX IIPOCTOpax AASI Biaobpaxenb F : X XY — XiG : Y x X — Y Ta BCTaHOBAIOEMO AesIKi
Teopemu Ipo FG-crapeHy ¢ikcoBaHy TOUKY AASI Pi3HMX BiAOOpa’keHb, SIK OT BiAOOpakeHHS CTU-
CKYIOUOTO THITy, BiroOpakeHHs Ty Kanana Ta YaTepxi. Yci 11i TeopeMm cTOCYIOTBCSI €AMHOCTI
FG-cnapenoi dpikcoBanoi Touky. Haiili pe3yAbTaTi y3araAbHIOTh KiAbKa Pe3yAbTaTiB, B OCHOBHOMY
pesyabratn CabeTxaprama Ta iH., TPO TeOpeMN IPO CHapeHy piKcoBaHY TOUKY AAS Pi3HMX THUIIB
CTMCKYIOUMX BiaoOpaxkeHb. TakoX HaBeA€HO IPUKAAA AASI TOTO, MIOH MPOIAIOCTPYBaTH OCHOBHY
TeopeMmy.

Kntouosi cnosa i ppasu: FG-cmapeHa dpikcoBaHa TOUKa, KOHIUYHMI MeTPUIHMIL IIPOCTip, Biao6pa-
JKeHHSI CTUCTKYIOUOTO THUITY.
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SOME FIXED POINT RESULTS IN COMPLETE GENERALIZED METRIC SPACES

The Banach contraction principle is the important result, that has many applications. Some
authors were interested in this principle in various metric spaces. Branciari A. initiated the notion
of the generalized metric space as a generalization of a metric space by replacing the triangle in-
equality by more general inequality, d(x,y) < d(x,u) +d(u,v) + d(v,y) for all pairwise distinct
points x,y,u,v of X. As such, any metric space is a generalized metric space but the converse is not
true. He proved the Banach fixed point theorem in such a space. Some authors proved different
types of fixed point theorems by extending the Banach’s result. Wardowski D. introduced a new
contraction which generalizes the Banach contraction. Using a mapping F : R™ — R he introduced
a new type of contraction called F-contraction and proved a new fixed point theorem concerning
F-contraction.

In this paper, we have dealt with F-contraction and F-weak contraction in complete generalized
metric spaces. We prove some results for F-contraction and F-weak contraction and we establish
the existence and uniqueness of fixed point for F-contraction and F-weak contraction in complete
generalized metric spaces. Some examples are supplied in order to support the usability of our
results. The obtained result is an extension and a generalization of many existing results in the
literature.

Key words and phrases: F-contraction, F-weak contraction, generalized metric space.
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INTRODUCTION AND PRELIMINARIES

The Banach contraction principle is the simplest result in fixed point theory [4]. This prin-
ciple has many applications and was extended by several authors (see [5-10, 12, 14-17, 19, 20]).
Some authors gave the fundamental linear contractive conditions and the fundamental non-
linear contractive conditions by using the notion of F-contraction, and proved fixed point the-
orems which generalize Banach contraction principle.

Due to the nature of mathematics science, there have been many attempts to generalize
the metric setting by modifying some of the axioms of metric spaces. Thus, several other
types of spaces have been introduced and a lot of metric results have been extended to new
settings. One of the interesting generalizations of the notion of metric space was introduced
by Branciari A. Later, most of the authors dealing with such spaces made some additional
requirements in order to deduce their results (see [1-3]).

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in
complete generalized metric spaces. We also present uniqueness of the fixed point.
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Definition 1 ([13]). Let X be a nonempty setand d : X x X — [0,00) a mapping such that for
all x,y € X and all distinct points u,v € X, each distinct from x and y:

(i) d(x,y) =0 x=y,

(i) d(x,y) = d(y, x),

(iii) d(x,y) < d(x,u)+d(u,v) +d(v,y) (quadrilateral inequality).
Then X is called a generalized metric space.

The concepts of convergence, Cauchy sequence, completeness, and continuity on a gener-
alized metric space are defined below.

Definition 2 ([1]). Let (X, d) be a generalized metric space.

(i) A sequence {x,} is called convergent to x € X if and only ifd(x,,x) — 0 asn — oo. In
this case, we use the notation x, — x.

(i) A sequence {x,} is called Cauchy if and only if for each € > 0, there exists a natural
number N (¢) such thatd(x,, x,,) < € foralln > m > N(e).

(iii) A generalized metric space (X, d) is called complete if every Cauchy sequence is con-
vergent in X.

(iv) A mapping T : (X,d) — (X,d) is continuous if for any sequence {x,} in X such that
d(x,,x) — 0 asn — oo, we have d(Tx,, Tx) — 0 asn — oo.
Lemma 1 ([11]). Let (X, d) be a generalized metric space and let {x,} be a Cauchy sequence

in X such that x,, # x, whenever m # n. Then the sequence {x,} can converge to at most one
point.

Lemma 2 ([11]). Let (X,d) be a generalized metric space and let {x,} be a sequence in X
which is both Cauchy and convergent. Then the limit x of {x,} is unique. Moreover, ifz € X
is arbitrary, then 1i_r>n d(xp,z) =d(x,z).

n—oo

Theorem 1 ([13]). Let (X, d) be a complete generalized metric space and suppose the mapping
f X — X satisfiesd(f(x), f(y)) < kd(x,y) forall x,y € X and fixed k € (0,1). Then f has a
unique fixed point x* and nlgr(}of”(x) = x* foreach x € X.

Definition 3 ([18]). Let F be the family of all functions F : (0, +00) — R such that:
(F1) F is strictly increasing, that is, for alla, § € (0,+00) ifa < B then F(x) < F(B);

(F2) for each sequence {a,} of positive numbers, the following holds: nh_r}n ay = 0 if and only

if lim F(a,) = —o0;
n— o0

(F3) there existsk € (0,1) such that lim «FF(a) = 0.

a—0t
Definition 4 ([18]). Let (X,d) be a metric space. Amap T : X — X is said to be an F-contrac-
tion on (X, d) if there exist F € F and T > 0 such that forall x,y € X

from d(Tx,Ty) > 0 follows that T+ F(d(Tx,Ty)) < F(d(x,y)). (1)
Theorem 2 ([18]). Let (X, d) be a complete metric space and let T : X — X be an F-contraction.
Then
(1) T has a unique fixed point x*;
(2) for all x € X the sequence {T"x} is convergent to x*.

Remark 1 ([18]). Let T be an F-contraction. Then d(Tx, Ty) < d(x,y) forall x,y € X such that
Tx # Ty. Also, T is a continuous map.
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1 THE MAIN RESULTS

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in
complete generalized metric spaces. We also present uniqueness of the fixed point.

Theorem 3. Let (X,d) be a complete generalized metric space and T : X — X be an F-
contraction. If F is continuous, then

(1) T has a unique fixed point x* € X;

(2) for all x € X, the sequence {T"x} is convergent to x*.

Proof. Let xy € X be an arbitrary point. By induction, we easily construct a sequence {x,}
such that
Xpp1 = Ty = T"lxg foralln € N. (2)

If there exists n € IN, x, = x,,41, the proof is complete. So, we assume that x,, # x,,11 for
all n € IN.
Step 1. We shall prove that

}}iirgod(xn, Xp+1) = 0.

Substituting x = x,_1 and y = x,, in (1), we obtain
T+ F(d(Tx,—1,Txy)) < F(d(xy-1,%n)),
ie, F(d(Tx,—1,Txy)) < F(d(x,—1,xn)) — T. Repeating this process, we get
F(d(Txp—1,Txy)) < F(d(xy—1,%xn)) — 7= F(d(Txp—2, Txy_1)) — T
< F(d(xp—2,x4-1)) — 27 = F(d(Txy_3, Txy—2)) — 2T (3)
< F(d(xp—3,x3—2)) — 37 < F(d(x0,x1)) — nt.

From (3), we obtain 1211 F(d(Txy—1,Txn)) = —oo, which together with (F2) and Definition 3
n—oo

gives lgn d(Tx,—1, Tx,) = 0, which implies that
n—oo

lim d(x,, x,41) = 0. 4)

n—oo

Step 2. We will prove that lgn d(xn, xp42) = 0. By (1), we have
n—oo

< F(d(xp—1,%p41)) — T =F(d(Txp—2,Txy)) — T
< F(d(xp—2,x4)) — 2T = F(d(Txy—3,Tx,—1)) — 2T (5)
< F(d(xp—3,x,-1)) — 3T < F(d(x9,x2)) — nt.

From (5) we obtain 1131 F(d(Txy—1,Txy41)) = —oco, which together with (F2) and Definition 3
n—oo
gives lgn d(Tx,—1, Txy11) = 0, which implies that,
n—oo

lim d(x,, x,42) = 0. (6)

n—o0

Step 3. We will prove that x,, # x;, for all m # n. We argue by contradiction. Suppose that
Xn = Xy, for some m,n € N with m # n. Since d(xp, po) > 0, for each p € IN, without loss of
generality, we may assume that m > n + 1. Consider now
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F(d(xp,xp41)) = F(d(xn, Txy)) = F(d(xm, Txm)) = F(d(Txp—1, Txm))
< F(d(xp—1,%m)) — T < F(d(xy41,Xn)) — (m —n)T.
It is a contradiction.
Step 4. We will show that in this case {x, } is a Cauchy sequence. Suppose to the contrary.

Then, there is an € > 0 such that for an integer k, there exist natural numbers m(k) > n(k) > k
such that

A(X (k) Xm(k)) > € (7)
For every integer k let m (k) be the least positive integer exceeding n(k) satisfying (7), we get

A(Xp (k) Xm(ky—1) < €. (8)

Now, using (7), (8) and the quadrilateral inequality, we find that

& <Ay, Xn(k) < AXn(ky Xm(r)—2) + A Xy -2, Xy 1) + A Xk) 15 Xn(x))
< d(Xp(k)s Xm(k)—2) T A(Xm (k) =2/ Xm(k)-1) T &
Then, by (4) and (6), it follows that
lim d(xn(k),xm(k)) = E. (9)

k—o0

Applying (1) with x = x,,4)_1 and y = x,,()_1, we have

F(d (k) Xnk))) = F(A(T2p00 -1, TXp=1)) < F(A(Xp(k)—1, Xn(t)—1)) — T-

If k — oo in the above inequality and using (9) we obtainF(e) < F(e) — 7.

This contradiction shows that {x,} is a Cauchy sequence. (X,d) is complete, there exists
x* € X such that
lggod(xn, x*) =0. (10)

n

Since T is continuous, we obtain from (10) that

nlgrgod(an,Tx ) = nlglo\od(Txn,Tx ) =0.

That is lim x,, 11 = Tx*. Taking into account Lemma 2 we conclude that Tx* = x*. That is x*
n—o0

is a fixed point of T. Now, let us to show that T has at most one fixed point. Indeed if x,y € X
be two distinct fixed points of T, thatis, Tx = x # y = Ty. Therefore d(Tx, Ty) = d(x,y) > 0,
then we get

Fld(x,y)) = F(d(Tx, Ty)) < T+ F(d(Tx, Ty)) < F(d(x,y)),

which is a contradiction. Therefore, the fixed point is unique. O

Definition 5. Let (X, d) be a generalized metric space. A map T : X — X is said to be an
F-weak contraction on (X, d) if there exist F € F and T > 0 such that for all x,y € X

d(Tx,Ty) > 0= 1+ F(d(Tx,Ty)) < F(max{d(x,y),d(x, Tx),d(y, Ty)}). (11)

Remark 2. Every F-contraction is an F-weak contraction on (X, d). But the converse is not
true.
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Example 1. Let X = AU B, where A = {1,2,3,4}, B = [5, 6|. Define the generalized metric d
on X as follows:

d(x,y) =0, x=yandx,y € A,
d(1,2) =d(3,4) =2, d(1,3) = d(2,3) = 1, d(1,4) = d(2,4) =5,
d(x,y) =|x—y|, forx ¢ A,ye Borx € B,yc Aorx,y € B.

It is easy to show that (X, d) is a complete generalized metric space, but (X, d) is not a metric
space because d does not satisfy the triangle inequality for all x,y,z € X. Indeed,

5=4d(1,4) >d(1,3)+d(3,4) =1+2=3.

LetT : X — X be given by

[ 3 if x€A,
Tx_{1 if xeB.

Since T is not continuous, T is not F-contraction by Remark 1. For x € A and y € B, we have
d(Tx,Ty) =d(3,1) =1>0

and max{d(x,vy),d(x, Tx),d(y, Ty)} > 4. Therefore, by choosing Fa = Inwa, « € (0,4o0) and
T = In 3, we see that T is F -weak contraction.

Theorem 4. Let (X, d) be a complete generalized metric space and T : X — X be an F-weak
contraction. If T or F is continuous, then

(1) T has a unique fixed point x* € X;

(2) for all x € X, the sequence {T"x} is convergent to x*.

Proof. Let xp € X be an arbitrary point. By induction, we easily construct a sequence {x,}
such that
Xpi1 = Tx, = T"lxg foralln € N.

If there exists n € IN, x, = x,,41, the proof is complete. So, we assume that x,, # x,,11 for
all n € IN.
Step 1. We will prove that

Jiiglod(xn+1, xy) = 0.

Substituting x = x,,_; and y = x; in (11), we obtain

F(d(xp11,xn)) =
max{d(xn, X—1),d(xn, Txn),d(xp—1, Txp-1)}) — T
max{d(xn, x,-1),d(Xn, Xp41),d(Xp—1,%0)}) — T
), d

max{d(xy, x,_1),d(xn, Xy41)}) — T

(12)

If there exists n € IN such that max{d(x,, x,,_1),d(xn, Xy11)} = d(xn, x,41), from (12) becomes
F(d(ns1, %)) < F(d(x1,%0)) — T < F(d(x1,50)):
It is a contradiction. Therefore,

max{d(x,, x,_1),d(xn, Xp41)} = d(xn, Xy_1) (13)
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for all n € IN. That is from (F1), (12) and (13), we get

d(xn/ xn+1) < d(xn/ xn—l)- (14)
Thus, from (12), we have F(d(x;+1, %)) < F(d(xn,x,-1)) — T for all n € IN. It implies that
F(d(xui1, %)) < F(d(x1,X%0)) — nt (15)

for all n € IN. Taking the limit as n — oo in (15), we get r}gn F(d(xp41,xn)) = —oo that together
with (F2) gives

Tim d(x, 1, %) = 0. (16)
Step 2. We will prove that
nlgn d(xn, Xn42) = 0. 17)

By (11), we have

F(d(xn, xp42)) = F(d(Txy—1, Txp11))
< F(max{d(xnflr xn+1)r d(xnflr Txnfl)r d(xn+1/ Txn+1)}> -7 (18)
- F(max{d(xn_l, xn—i—l)/ d(xn—lz xn); d(xn+1/ anrZ)}) —T.

By (14) and from (F2), we have
max{d(xn_l, xn—i—l)/ d(xn—lz xn); d(xn+1/ anrZ)} = max{d(xn—ll xn+1)/ d(xl’l—ll xn)}
Take a, = d(xy, x,42) and b, = d(xy, x,,41). Thus, from (18)

F(an) = F(d(xu, Xn42)) = F(d(Txy—1, Txp41))
< F(max{d(x,—1, Xur1),d(xn-1, Txp—1),d(Xu11, Txny1)}) — T (19)
= F(max{a,_1,b,_1)}) — T.
Again, by (14) b, < b,_1 < max{a,_1,b,-1}. Therefore max{a,, b,} < max{a,—1,b,-1},
for all n € IN. Then the sequence {max{ay, b, } } is monotone nonincreasing, so it converges to
some t > 0. Assume that t > 0. Now, by (16)

r}gr;o supa, = nlglc}o sup max{a,, b, } = nlgrc}o max{a,, b,} =t.

Taking n — co in (19), since F is continuous,
F(t) = lim sup F(ay) < lim sup(F(max{a,1,by-1}) — 7)

< lim F(max{a,_1,b,_1}) —T=F(t) — 7,

n—oo

which is a contradiction, that is (17) is proved.
Step 3. We will prove that x,, # x;, for all m # n.
We argue by contradiction. Suppose that x, = x,, for some m,n € IN with m # n. Since
d (xp, xp+1) > 0, for each p € IN, without loss of generality, we may assume that m > n + 1.
Consider now
F(d(xp,xp41)) = F(d(xn, Txy)) = F(d(xm, Txm)) = F(d(Txp—1, Txp))
(max{d(xp_1, Xm), d(Xp—1, Txp_1),d(Xm, Txm)) — T
(max{d(xy_1,Xm), d(Xp—1,%Xm), d(Xm, Xms1)}) — T
( d

) (20)
max{d(xXy—1,Xm), d(Xm, Xm11)}) — T.



177

SOME FIXED POINT RESULTS IN COMPLETE GENERALIZED METRIC SPACES

If max{d(xp—1, Xm), d(Xm, Xms1)} = d(Xpm—1, Xm), then from (20), we get
F(d(xn/ xn+1)) < F(d(xmflrxm» —17< F(d(xn/ xn+1)) - (m - ”)T-

It is a contradiction. If max{d(x;;—1,%m),d(Xm, Xm+1)} = d(Xm, Xm+1), then from (20), we
(m —n+1)7. Itis a contradiction

get F(d(xy, %11)) < F(d(m 1)) — 7 < F(d(n, n11))
Step 4. We will prove that {x, } is a Cauchy sequence, that is
lim d(xn,xn+p) =0forall p € N.

n—co
From (F3), there exists k € (0,1) such that
Bim (041, %) FF(d (3011, 1)) = 0 @
(22)

By using (15) and from (21), we have
(d(xps1,%n))nT <0

(A, 2n)) (F(d(xns1, ) = F(d(x1,%))) <

for all n € IN. By using (16), (21) and taking the limit as n — oo in (22), we get
lim (n(d(xy41,x4))<) = 0. (23)
(24)

Then there exists n; € IN such that n(d(x,+1,x,))" < 1forall n > ny, that is

S
= —

d(xﬂ+1r xl’l) S

From (16) and (17) the cases p = 1 and p = 2 are proved. Now, take p > 3 arbitrary. It is

sufficient to examine two cases.
Case 1. Suppose that p = 2m + 1 where m > 1. Then, by using step 3 and the quadrilateral

inequality together with (24), we get
d(xl’lr xn+p) = d(xn/ Xnom41) < d(xnr Xp41) + d(xn+1/ xn+2) + e A d(xn+2m/ xn+2m+1)
n+2m io: 1 (25)
ik

< ), d(xig, ) <
i=n
is convergent, taking the limit as n — oo in the above inequality, we

Since the series Z
n= 1nk
obtain lgn d(xn, Xn1p) = 0.
n—oo
Case 2. Suppose that p = 2m where m > 2. Then, by using step 3 and the quadrilateral

inequality together with (24), we get
d(xn, xn+p) = d(xn, Xnyom) < d(Xn, Xpy1) + d(Xng1, Xng2) + -+ d(Xnr2m—1, Xnr2m)
(26)

»\~|

n+2m—1 1)
< Z d x1+1/ xl < Z

i=n
is convergent, taking the limit as n — oo in the above inequality, we

Since the series Z
n= 1nk

obtain Jgrgod(xn,xn+p) =0
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This proves that {x, } is Cauchy sequence in X. Since X is complete, there exists x*, that is
a fixed point of T by two following cases.
Case 3. T is continuous. We have d(x*, Tx*) = limd(x,, Tx,) = limd(x,, x,+1) = 0. This

n—oo n—oo
proves that x* is a fixed point of T.
Case 4. F is continuous. In this case, we consider two following subcases.
Subcase 1. For each n € IN, there exists i, € N such that x; , = Tx" and i, > i,,_1 where
ip = 1. Then we have

x* = limx; = limTx* = Tx".
n—oo n+ n—oo

This proves that x* is a fixed point of T.
Subcase 2. There exists ny € IN such that x,, 11 # Tx* foralln > ny. Thatis d(Tx,, Tx*) > 0
for all n > ny. It follows from (11) that

T+ F(d(xpsq, Tx")) = T+ F(d(Txy,, Tx*)) < F(max{d(x,,x*),d(x,, Tx,),d(x*, Tx*)}) )
= F(max{d(x,, x*),d(xn, xp41),d(x*, Tx*)}).

If d(x*, Tx*) > 0 then by the fact

Hmd(xn, x7) = Hmd(x", x041) =0,

there exists n; € IN such that for all n > nq, we have max{d(x,, x*),d(x,, x,11),d(x*, Tx*)} =
d(x*, Tx*). From (27), we get

T+ F(d(xy4q, Tx")) = F(d(x*, Tx")), (28)
for all n > max{ng, n1 }. Since F is continuous, taking the limit as n — oo in (28), we obtain
T+ F(d(x*, Tx")) = F(d(x*, Tx")).

It is contradiction. Therefore, d(x*, Tx*) = 0, that is, x* is a fixed point of T. By two above
cases, T has a fixed point x*. Now, we prove that the fixed point of T is unique. Let x], x; be
two fixed points of T. Suppose to the contrary that xj # x3. Then Tx] # Tx;. It follows from
(11) that

T+ F(d(x],x3)) = T+ F(d(Tx], Tx;)) < F(max{d(x],x5),d(x], Txy),d(x3, Tx3)})
= F(max{d(x1, x3),d(x1, x7),d(x3, x3) }) = F(d(x1,%3)).
It is a contradiction. Then d(x7, x3) = 0, that is x] = x3. This proves that the fixed point of T is

unique.

It follows from the proof of Theorem 4 that lgn T'x = lgn Xpe1 = X% O
n—00 n—o00

Example 2. Let F be given as in Example 1. Then T is an F-weak contraction. Therefore,
Theorem 4 can be applicable to T and the unique fixed point of T is 3.

Example 3. Let X = {%, %, ?I, %} Define the generalized metric d on X as follows:

d(x,y) =0, x=yand x,y € X,

33 a3 02 (b i) ~0s.a(3 ) ~a32) e
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It is easy to show that (X, d) is a complete generalized metric space, but (X,d) is not a
metric space because d does not satisfy the triangle inequality for all x,y,z € X. Indeed,

0,6 :dG,Z) > d(%%) +d(§,2) —0,240,3=0,5.

Let T : X — X be defined as follows:

= {

Let Fa = Ina, & € (0,+c0) and T = In 3. Then, for x € {},2,3} and y = £, we get
F = ((r(3)7(9) 103

< #(max{d(3:5).4(37(3)) 45 7(5))}) - FO.0)
F0.9 = #(a(1(3).7(2))) +

< #(max{d(5.5).4(5:7(3)) a5 7(5))}) = FO.0)
F9) = ((r(3)7(9) 103

< (max{a(3 G 1)) 1()))) - roe

Therefore, T is a F-weak contraction in generalized metric space. That is, Theorem 4 can be

S

WIN
W

’ %!I}!

X
X

Gl

4

QINHG

applicable to T and the unique fixed point of T is Z
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Canrypay C.M., Triopkoray A. Aesxi mepemu npo ¢pikcosany mouKy 8 HO6HUX Y3a2aNbHeHUX MEMPUMHUX
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[TpyHIAI cTHCKYIOUX BiAOOpakeHb € BaXKAMBMM Pe3YABTaTOM, IIIO Ma€ b6araTo 3acTOCYBaHb.
AesIKi aBTOpM I[IKaBUAMCH IIMM MPMHIMIIOM B Pi3HMX MeTpUUYHMX IIpocTopax. bpaxuiapi A. BBiB
IIOHSITTS y3araAbHEHOTO METPUYHOTO IIPOCTOPY, 3aMiHMBIII HEPiBHICTD TPMKYTHMKA GiABII 3aTaAb-
Hoto HepiBHicTiO d(x,y) < d(x,u)+ d(u,v) + d(v,y) AAs BciX OIApHO Pi3HMX TOUOK X, Y, U,V 3
X. Taxmm umHOM, OYAB-SKVIT METPUIHMIL IIPOCTIp € y3aTaAbHEHMM METPUYHMM IIPOCTOPOM, aAe
He Hapnaxyu. Bin A0oBiB Teopemy banaxa npo dpikcoBaHy TOUKY B TakmMx IIpocTopax. AesKi aBToOpu
AOBeAM pisHi TvIM TeopeM Ipo pikcoBaHy TOUKY, PO3LIMpPIOOUM pe3yAbTaT banaxa. Takx Bapaos-
CBhKMI A. TIpeACTaBMB HOBMI BUA CTUCKYIOUMX BiAOOpaXkeHb, SIKMI y3aTaAbHIOE TTOHSTTS CTUCKYIO-
4oro Biaobpaxensst banaxa. Bukopucrosyroun siaobpaxenss F : RT™ — IR, BiH BBiB HOBWIT THII
CTUCKYIOUMX BiaoOpakeHb, sIKi HasuBatoTbcst F-ctuckom. Takox BiH A0BiB TeopeMy Ipo ¢pikcoBaHy
TOUKY AAS F-cTrcky.

Y aaHiit poboTi My po3rasiHy AU F-cTrck Ta cAabkmit F-CTHCK y TOBHMX y3araAbHEHMX MeTPUYHMX
mpocTopax. AOBeA€HO AesiKi pe3yAbTaTy AAS F-cTuckiB i crabxmx F-cTHCKiB i BcTaHOBAEHO icHyBaH-
HSI Ta €EAMHICTD ¢piKCOBaHOI TOUKM AAST F-CTHCKYyIounx i caabkmx F-cTuckyroumx BiaobpaskeHb y IOB-
HIX y3araAbHMX METPUUYHMX pocTopax. HaBeAeHO AesIKi IpuKAaAM AAS iAIOCTpaLlil BUKOPMCTAHHS
OTPMMAaHNX Pe3yAbTaTiB. AaHi pe3yAbTaTy € pO3IMIMpPEHHSIM i y3araAbHEHHSIM 6araTboX OTPMMAaHIX
y AiTepaTypi pe3yAbTaTiB.

Kntouosi cnosa i ¢ppasu: F-cTmck, cAabkmit F-CTHCK, y3araAbHEHMI METPUIHIIA IIPOCTip.
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SHEREMETA M.M.
ON THE GROWTH OF A COMPOSITION OF ENTIRE FUNCTIONS

Let 1y be a positive continuous on [0, +c0) function increasing to +c0 and f and g be arbitrary
entire functions of positive lower order and finite order.
In order to

Inln M
i I My (7)
r—+o Inln Mf(exp{’y(r)})

= +oo, My(r) = max{|f(z)|: |z| =1},

it is necessary and sufficient (In y(r))/(In r) — 0 as r — +oco. This statement is an answer to the
question posed by A.P. Singh and M.S. Baloria in 1991.

Also in order to
Inln Mg(r)

VHTOO Inln Mf(eXP{')’(r)}) a

it is necessary and sufficient (In y(r))/(In r) — o0 as r — 0.
Key words and phrases: entire function, composition of functions, generalized order.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: m.m.sheremeta@gmail.com

INTRODUCTION

For an entire function f # const we put M (r) = max{|f(z)| : |z| = r}. The quantities

olf = Tim PINMA) g gy IR M)

r——+oo Inr r—+oo Inr

1)

are called [7, p. 61] the order and the lower order of f accordingly.
G.D. Song and C.C. Yang [6] have proved that if f and g are transcendental entire functions,
0 < Alf] < o[f] < +ooand F(z) = f(g(z)) then

lim Inln Mp(r) oo
r—+eo Inln Mg(r) ’
A.P. Singh and M.S. Baloria [3] posed a question: how to find R = R(r) such that

lim Inln Mg(r)

I A ?

They have proved the following theorems.

YAK 517.547.2
2010 Mathematics Subject Classification: 30D20.
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Theorem A. Let f and g be entire functions of positive lower order and of finite order, and

F(z) = f(g(z)). Then lim Inln M (r)

S+ Inln Mf(rA) = o0 for every positive constant A.

Theorem B. Let f and g be entire functions of finite order with ¢[g] < o[f] and F(z) = f(g(z)).

Then lim Intn Me(r) = 0.
r—+o Inln My (exp{rel/1})

The aim of proposed article is research of the above mentioned problem from [4].

1 MAIN RESULTS

Next theorem gives an answer to the question of A.P. Singh and M.S. Baloria.

Theorem 1. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[f] < ¢[f] < 400 and A[g] > 0. In order to

: Inln Mg(r) B B
A i M(explr ()~ o F@ = 8@), @)
it is necessary and sufficient
lim In 7(r) =0. (3)

ro+c Invr

Proof. G.Polya [2] has proved that if f and g are entire functions, |g(0)| = 0and F(z) = f(g(z))
then there exists a constant ¢ € (0, 1) independent of f and g such that forall 7 > 0

ME(r) > My <cMg (%)) and 4)
ME(r) < My(Mg(r)). (5)
J. Clunie [1] defines more precisely inequality (4). He proved that
1
Me(r) = My (Mg (5) = 1s0)). ©

We assume that the function -y satisfies (3), that is In y(r) = o(Inr) as r — 4o0. If the
lower orders A[f] and A[g] are positive then for A € (0, min{A[f], A[g]}) and all ¥ > ry(A) the
inequalities In In M¢(r) > Aln r and In In Mg(r) > Aln r are true. Therefore, in view of (6)

InIn Mg (r) > In In M; <%Mg (%) - |g(0)|> > Aln <%Mg (%) - Ig(0)|>
;

On the other hand, if ¢[f] < +oo then Inln M (exp{y(r)}) < oy(r) for ¢ > ¢[f] and all
r > ro(0). Therefore, in view of (7)

(7)

— A(140(1))In M, ( ) > (1+0(1)A27, 7 — +oo.

Inln Mg(r) o A r)‘
Intn My(expr@D =~ TG 70

because AlIn r —1In y(r) = (1+0(1))AIn r — 400 asr — +o0. The sufficiency of (3) is proved.

— +00, 1 — 400, (8)
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To prove the necessity of (3) we assume that (3) does not hold. Then Iny(r,) > d1In r, for
some 6 > 0 and an increasing to +oo sequence (r,,). We choose f(z) = e* and g(z) = E,(z)
with ¢ < 6, where E, is the Mittag-Leffler function. Then M(r) = ¢" and [7, p. 115]

Mg, (r) = Eq(r) = (1 +0(1))oe”, r— 4oo. 9)
Therefore,
InIn Mp(r) =In Mg(r) =r®+1Ing+o0(1), r— +oo. (10)
Thus,
, Inln Mg(r) , Inln Mg(ry)
Lim < lim
LI e M(exp{r(1)]) = wiee Inln M (exp {7 (ra)}) o
Q 4
= lim — < lim =0,

n—+oo Y rn) n——+oo 1y

that is, if (3) does not hold then there exist entire functions f and g with A[f] = o[f] = 1 and
Alg] = o0[g] = 0 € (0, +0), for which (2) is false. Theorem 1 is proved. O

The following theorem complements Theorem 1.

Theorem 2. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[g] < o[g] < +oc0 and A[f] > 0. In order to

lim Inln Mg(r) _
r=teo Inln Mg (exp{7(r)})

it is necessary and sufficient that (3) holds.

Proof. As in the proof of Theorem 1 we obtain (7) and for the function g we have
Inln Mg(exp{y(r)}) < oIn y(r) for every ¢ > o¢[g] and all » > r9(0). Therefore, estimate
(8) is true with ¢[g] instead o[f] and the sufficiency of (3) is proved.

If there exists a sequence (1) such that Iny(r,) > dIn r,, 6 > 0, then again we choose f
and g as in the proof of Theorem 1. Then (9) holds and

Intn My(exp{7(r)}) = Inln ((1+0(1))0e?")) = gv(r) +0(1), 7 +oo.

In view of (9) as above we have

Q Q
lim Inln Mg(r) < lim 'y < lim 7’_115 -0
r—+oo InIn Mg (exp{7(r)}) = n5500 @7(rn) ~ n=veo 01
Theorem 2 is proved. 0

For the functions f(z) = €*, g(z) = Eo(z) and F(z) = f(g(z)) chose the proof of Theorems
1 and 2 the following equalities are true

lim Inln Mg(r) ~ lim Inln Mg(r) _0
A nIn M (exp (1)) ot Intn My(exp{r (0]

The following question arises: what is condition on y providing existence of the limit

im Inln Mg(r) ( im Inln Mg(r) > _0
r=+oo Inln My (exp{y(r)}) \r=+eInln Mg(exp{y(r)}) ’

The following theorem gives an answer to this question.
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Theorem 3. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[f] < o[f] < 400 and ¢[g] < +co. In order to

, Inln Mg(r) B B
rgrfoo Inln Mg(exp{y(r)}) 0, F@) =flg@), (12)
it is necessary and sufficient that
lim 200) (13)

r—+oo Inr
Proof. We assume that the function <y satisfies (13), that is In» = o(In ¢(r)) as r — +oo. If
the orders ¢[f] and g[g] are finite then In In M¢(r) < ¢In r and In In M,(r) < ¢In r for ¢ >
max{ol[f], o[g]} and all ¥ > (o). Therefore, in view of (5)

InIn Mp(r) <Inln Mg(Mg(r)) < oln Mg(r) < or®, r>ro(0).
On the other hand, for A < A[f] and all ¥ > rp(A) In In Mf(eV(’)) > 1vy(r). Therefore,
Inln Mg(r) < or?
Inln My (exp{7(r)}) ~ Ay(r)
because olnr —In y(r) = (1 +o0(1))In y(r) — —o0 as r — +oo. The sufficiency of (13) is
proved.
Now we assume that (13) does not hold, that is for some § < 4-co and an increasing to +oo
sequence () the inequality Iny(r,) < d1n ry is true. We choose f(z) = ¢* and g(z) = E,(z)
with ¢ > 4. Then in view of (10)

—0, r— +oo,

m Inln Mg(r) > Tm Inln Mp(ry,)
r+eo Inln Mg(exp{y(r)}) = n—+eo Inln Ms(exp{y(rn)}) (14)
" T
= lim > lim — = +oo,
n—teo y(rn) ~ nSteo Iy
that is equality (12) does not hold. Theorem 3 is proved. O

The following theorem is proved similarly.
Theorem 4. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g

be arbitrary entire functions with 0 < A[g] < o[g] < +c0 and ¢[f] < +oo. In order to

, Inln Mg(r) B 2 — .
A nn Mg (exp{y(r)}) =0, Fz) =fgE)

it is necessary and sufficient that (13) holds.

Remark 1.1. From the proofs of Theorems 1 and 3 one can see that equality (3) is true provided,
7 is an arbitrary slowly increasing function, and (12) holds if 7y increase rapidly than power
functions.

Remark 1.2. If we choose f and g as in the proofs of Theorem 1 and 2 and «(r) = ar?, then

there exists the limit
lim Inln Mg(r) _ lim e 1
r—+eo Inln My(exp{a(r)}) —r—+eoa(r) a’

that is for each K € (0, +o0) there exist entire functions of a finite order and a positive lower
order and a positive continuous on [0, +c0) function 7y such that

. Inln Mg(r

fim £(r)

AT i M (ep(r ()
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2 OTHER RESULTS

In [5] the following analogue of Theorem A is proved.

Theorem C. Let f, g, h be entire functions of positive lower order and of finite order and
F(z) = f(3(2)), B(z) = f(h(z)). IFolh] < Alg] then for every A € (0, Alg]/o[h])

Inln Mg(r)

r%lrfoo Inln MH(T’A) = toe

We will complement this theorem by two next statements.

Proposition 2.1. Let vy be a positive continuous on [0, +o0) function increasing to +oc. Let f,
¢ and h be arbitrary entire functions with 0 < A[f] < ¢o[f] < +0c0, A[g] > 0 and ¢[h] < +o0. In
order to

Inln Mp(r) B _
A Mg~ T F@) =f(=), ) = fh(z), (15)
it is necessary and sufficient that
() _
rgrfoo Inr 0 (16)

Proof. In view of (5) for arbitrary ¢ > max{o[f], o[k]} and all r > ry(0) we have

Inln Mg (")) < oln M;,(e77)) < 0227,

A LA
Therefore, in view of (7) Intn Me(r) > (1+ 0(1))12_1’_ — 400, 1 — 400, because
Inln Mg (e7() o e0r(r)
l
by the condition (16) % =exp{AInr —oy(r)} — +ocoasr — +oo. The sufficiency of (16)
e

is proved.

Now we assume that (16) does not hold, that is for some § < 400 and an increasing to
+oco sequence () the inequality y(r,) > d1ln r, is true. We choose f(z) = h(z) = ¢* and
8(z) = Ey(z) with ¢ < 4. Then Inln Mg (r) = r and in view of (10)

Inln Mg(ry)

m
n—-+oo Inln Mé(exp{’)/(r?l)})

: rﬁ T
= lim ——— < lim — =0,
nto0 XP{Y(1)} = St 79,

lim Inln Mg(r)

A Ma(exp{r (D) =

(17)

that is there exist entire functions f, ¢ and h for which (13) is false. Proposition 1 is proved. [

Proposition 2.2. Let 7y be a positive continuous on [0, +o0) function increasing to +oo. Let f,
¢ and h be arbitrary entire functions with 0 < I[f] < o[f] < 400, 0[¢] < +co and A[h] > 0. In
order to

. Inln Mg(r) B B B
S e el = ) = f8(), @) = fiz) (18)
it is necessary and sufficient that
lim M = +4o0. (19)
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Proof. We assume that the function vy satisfies (19), that is In r = o(y(r)) as r — +oo. If the
orders o[f] and ¢[g] are finite then for ¢ > max{o|[f], ¢[g]} and all ¥ > ry(0) in view of (5) we
have In In Mp(r) < or?forr > ry(0). On the other hand, using (6) for 0 < A < min{A[f], A[f]}
and r > r9(A) we obtain

In In Mg (e?")) > In In My <1Mg ( ) 1g(0 )\) > (1+0(1))A274eM0), 1 — oo,

Inln Mg(r)

Inln Mg (exp{7(r)})
(19) is proved.

Now we assume that (19) does not hold, that is for some § < 400 and an increasing to
+oco sequence () the inequality y(r,) < d1ln r, is true. We choose f(z) = h(z) = €* and
8(z) = Ey(z) with ¢ > 4. Then in view of (10)

(1 + 0(1>>Aeg In r—Ay(r) 0
2* ’

Therefore, < r — +o0. The sufficiency of

m Inln Mg(r) > Tm Inln Mg(ry)
r—+co Inln Mg (exp{7y(r)}) ~ n=>+c Inln Mg (exp{y(ra)}) 20)
— o o
= lim —2—— > lim &2 = oo,
n=teo exp{Y(rn)} ~ noteo 1y
that is (18) does not hold. Proposition 2 is proved. O

Finally, we will prove a result on the growth of a composition of entire functions in the
terms of generalized orders. By L we denote a class of all positive continuous on (—oo, +0)
functions a such that a(x) = a(xg) for —oo < x < xp and a(x) T +coas xg < x — +o0.

Fora € Land B € L the generalized order g,5(f] and a lower generalized order A,g[f] of
an entire function f are defined [3] by the formulas

— a(ln M(r)) ~ lim a(ln My (r))
r%+00 B(nr) Lo plf] _YL—JFOO B(nr)

Oq, /BV]

Proposition2.3. Leta € L, € L, B(x +O(1)) = (1 +0(1)B(x) as x — +o0 and f, g be entire
functions with 0 < A g[f] < Qaplf] < +00and 0 < I, g[g] < 0apl8] < +oo. In order to

a(In Mg(r))

rgr—bl}oo 0((11’1 Mf(i’)) = oo F(Z> - f(g(Z)), (21)
it is necessary and sufficient that
. Bx) _
x1—1>r—ir-100 oc(x) = oo (22)

Proof. 1f (22) holds then from (6) and the definition of the lower generalized order it follows
that for each 0 < A < Ay < min{A,g[f], A plg]} and ¥ > 7(A)

r

a(In Mp(r)) > a (m My <1Mg< )~ 18(0 )1)) > Mg (In My 2) +0(1))

A1+ 0(1))B (In My <E)) = M(1+0(1))B (a” ( (1n Mg (%))))
> A (1+o0(1)B(a (A (1+0(1))B(In 1)) > AB(a™ ' (AB(In 1))).
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On the other hand, for ¢ > g, 4[f] and all ¥ > r¢(¢) we have a(In M¢(r)) < oB(In r). Therefore,
a(In ME(r)) AB(a”'(AB(Inr))) _ P2 (x)

lim > lim = — lim —< = +oo,
A a(n Mp(r) ~ AR oB(inr) ¢ M ()
that is (21) is true. If (22) does not hold, thatis lim B(x)/a(x) < +oo then in view of (5) for
X— 400
A < Agplf], @ > max{osg(f], 0uplf]} and all » enough large
-1
im A Me() op(In Mg(r)) Jim of(a " (a(ln Mg(r))))
G M) S AR AR Am AB(nr)
- oBa”M(ef(Inr))) _ @ . B(x)
< lim == lim Y% < +o0o,
T ot 1B(In r) I xSeo ()
that is (21) is false. Proposition 3 is proved. O
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lepemera M.M. I1po 3pocmanna xomnosuyiti yirux ¢yHxkyili // Kapmarceki marem. my6a. — 2017.
—T.9,N2. — C. 181-187.
Hexait y — AoaaTHa, HerepepsHa Ha [0, +00) i 3pocTaroua A0 +o00 PYHKIIS, a f 1 § — AOBiABHI
1inl pyHKIIT AOAATHOTO HVMXKHBOTO TIOPSIAKY i CKIHUEHHOTO IOPSIAKY.
Anst Toro, mob
lim Inln Mg (r)
r—+eo Inln Mg (exp{y(r)})

= oo, My(r) = max{|f(z)|: |z] = 1},

HeobxiaHO 1 pocuth, o6 (In y(r))/(Inr) — 0 mpur — +oo. Lle TBEpAXKEHHS € BIATIOBIAAIO Ha
mTaHHs1, nocTaBAeHe A. CikxoMm i M. Baaopia y 1991 p.
TaxoX AASI TOro, o6

) Inln ME(r) —
Am Mg(exp{y(r)}) "

HeobXiaHO 1 aocTaTHBO, 1106 (In (7)) /(In r) — co mpm r — +oo.

Kntouosi cosa i ppasu: 1ira pYHKIIIST, KOMIO3MIIisS (pyHKIIIN, y3araAbHEHMI IIOPSIAOK.
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SKEW SEMI-INVARIANT SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN
MANIFOLDS

In the present paper, we study a new class of submanifolds of a generalized Quasi-Sasakian
manifold, called skew semi-invariant submanifold. We obtain integrability conditions of the distri-
butions on a skew semi-invariant submanifold and also find the condition for a skew semi-invariant
submanifold of a generalized Quasi-Sasakian manifold to be mixed totally geodesic. Also it is
shown that a skew semi-invariant submanifold of a generalized Quasi-Sasakian manifold will be
anti-invariant if and only if Az = 0; and the submanifold will be skew semi-invariant submanifold
if Vw = 0. The equivalence relations for the skew semi-invariant submanifold of a generalized
Quasi-Sasakian manifold are given. Furthermore, we have proved that a skew semi-invariant &*-
submanifold of a normal almost contact metric manifold and a generalized Quasi-Sasakian manifold
with non-trivial invariant distribution is CR-manifold. An example of dimension 5 is given to show
that a skew semi-invariant ¢ submanifold is a CR-structure on the manifold.

Key words and phrases: skew semi-invariant submanifold, generalized quasi-Sasakian manifold,
integrability conditions of the distributions, CR-structure.
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INTRODUCTION

The theory of submanifolds in spaces endowed with additional structure is very interest-
ing topic in the field of differential geometry [5]. The theory of CR-submanifolds has been
introduced by A. Bejancu for almost contact geometry [1] and also for almost complex geom-
etry [2], after that several papers have been appeared in this field. M. Barros et al. [5], B. Y.
Chen [6,7], A. Bejancu and N. Papaghuic [3], V. Mangione [10] and N. Papaghiuc [11] have
studied semi-invariant submanifolds in Sasakian manifolds and the study was also extended
to other ambient spaces. Moreover, some related topics were studied by V. V. Goldberg and
R. Rosca [16-20]. In 2012, C. Calin et al. [8] have studied the semi-invariant &--submanifold
of a generalized quasi-Sasakian manifold. Later on, A. Bejancu defined and studied a semi-
invariant submanifold of a locally product manifold [4]. Recently, L. Ximin and F. M. Shao [12]
have discussed a new class of submanifolds of a locally product manifold, that is, known as
skew semi-invariant submanifolds. The purpose of the present work is to investigate some
interseting results on the skew semi-invariant submanifolds of a generalized Quasi-Sasakian
manifold.
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1 PRELIMINARIES

Let M be a real (2n + 1)-dimensional smooth manifold equipped with an almost contact
metric structure (¢, {, 77, g), where ¢ is (1, 1)-tensor field, ¢ is a vector field, 7 is a 1-form and g
is a Riemannian metric such that [1]

g =-1+71®E& 1@ =1, ¢ =0, nog=0, (1)

8(9X,Y) = —g(X, 9Y), 8(X, &) =n(X), g(&¢) =1 2)
for all X, Y on space M. The almost contact manifold M(¢, ¢, 7) is said to be normal, if

No(X,Y) +2dn(X,Y)E =0
forall X,Y € (TM), where
No(X,Y) = [¢X, pY] + ¢*[X, Y] — 9[9X, Y] — ¢[X, pY]

is the Nijenhuis tensor field corresponding to the tensor field ¢. The fundamental 2-form ® on
M is defined by
(X, Y) = g(X, 9Y). 3)

S. S. Eum [9], considered the hypersurface of an almost contact metric manifold M whose
structure tensor field satisfy the following relation:

where V is the Levi-Civita connection of metric tensor g. For the sake of simplicity we say that
a manifold M with an almost contact metric structure satisfying (4) is a generalized Quasi-
Sasakian manifold. We define a (1, 1)-tensor field F by

FX = —Vé.

Now, we assume that M is a generalized Quasi-Sasakian manifold and M is an m-dimen-
sional submanifold isometrically immersed in M. Denote by g the induced metric on M and
by V its Levi-Civita connection. For p € M and the tangent vector X, € T, M, we can write

FX, = PX, + QXp, (5)

where PX, € T,M and QX, € TLPM. For any two vectors X,,Y, € T,M, we have
g(FXp,Y,) = g(PX,,Y,), which implies that g(PX,,Y,) = g(X,, PY;). Therefore P and P>
are all symmetric operators on the tangent space T,M. If a(p) is the eigen value of P? at
p € M, since P? is a composition of an isometry and a projection, then a(p) € [0,1].
For each p € M, we set
Dy = Ker(P* — a(p)I),

where [ is an identity transformation on T,M and «(p) an eigenvalue of P> at p € M. Obvi-
ously, we have Dg = KerP and D; = KerQ, where D; is the maximal F-invariant subspace of
T,M and Dg is the maximal F-anti invariant subspace of T,M. If a1(p), ..., ax(p) are all eigen-
values of P? at p, then T, M can be decomposed as the direct sum of the mutually orthogonal
eigenspaces, i.e.,

T,M = D)'& - - @D}t
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Definition 1 ([12]). A submanifold M of a generalized quasi-Sasakian manifold M is said to
be skew semi-invariant submanifold, if there exists an integer k and the functions «ay, - - - , &y
defined on M with values in (0, 1) such that

(1) each a1 (x),- -, ax(x) are distinct eigenvalues of P? at each p € M with

T,M = D,®Dp®Dy @ - - - ®Dy;
(2) the dimensions of Dg, Dllj, Dy',--- ,Dy* are independent of p € M.

Remark 1. (i) From the second case of Definition 1, we can also define P-invariant mutually
orthogonal distributions

D*= |J D}, wae{0ay---, a1}
peEM

onM and TM = D'@D°®D* @ - - - @D% are differentiable (see [7]).

(ii) Ifk = 0 in Definition 1, then it follows that P is a structure of type f(3,—1) on M [13] and
dim(D;) = rank(Py), dim(Dg) are independent of p € M [14].

(iii) Ifk = 0, (1) implies (2), then M is called a semi-invariant &+ -submanifold.

(iv) Ifk = 0 and Dll7 = {0} (resp., Dg = {0}), then M is called an anti-invariant (resp., invari-
ant) & -submanifold.

(v) If Dll7 = {0} = Dg, = 1 and a3(x) is constant, then M may be said to be a 0-slant
submanifold with slant angle cos 0 = a;.

Example 1. We consider the Euclidean space R and denote its points by y = (y'). Let (¢;),j =
1,...,9 be the natural basis defined by ¢/ = 9/dy/. We define a vector field & and a 1-form 1 by
& =09/9y’ and 1 = dy’ respectively and ¢ is (1,1) tensor field defined by

per = ez, pex = €1, ez =eg, peg = €3,
pey = cost(y)es — sint(y)eq, pes = cost(y)eq + sint(y)ey,
peq = —sint(y)eq + cost(y)ey, pey = sint(y)es + cost(y)eg, peg = 0,

where t : R — (0,7t/2) is a smooth function. Then it is easy to verify that R® is an almost
contact metric manifold with almost contact structure (¢, , 1, g) with associated metric § given
by g(e;, e;) = d;;. The submanifold

M={",....¥") € Rl.y " =0}
of R? is a skew semi-invariant submanifold with
D! = Span{ey, er}, DO = Span{es}, D* = Span {e4,es5},

where for x € M one has «(y) = cost(y).
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Denote the induced connection in M by V, then the Gauss and Weingarten eqautions are
given respectively by

VxY =VxY +h(X,Y), VxN=-AyX+VxN, X, YeTMNecTM, (6)

where V, V and V< are the Riemannian, induced Riemannian and induced normal connec-
tions in M, M and the normal bundle T--M of M respectively and h is the second fundamental
form related to A by the equation

g(h(X,Y),N) = g(ANX,Y). )

Let M be a submanifold of a generalized Quasi-Sasakian manifold M for X,Y € TM, N €
T+ M. By using
pX = tX +wX, tX€TM, wX € T*M, (8)

9N =BN +CN, BN e€TM, CN cT+M, 9)
we have

(Vx@)Y = ((Vxt)Y — ApyX — BR(X,Y)) 4+ ((Vxw)Y + h(X,£Y) — Ch(X,Y)),  (10)

(quD)N = ((VxB)N — AgnX + BANX)) + ((VxB)N + h(X, BN) + ZUANX)),

where
(Vxt)Y = VxtY —tVxY, (Vxw)Y = VyxwY —wVyY,

(VxB)N = VxBN —tVxN, (VxC)N = V%CN — CVxN.

Comparing the tangential and normal components in (10), we obtain

tVxY = VxtY — Bi(X,Y) — AuyX, (11)
VxtY = h(X,tY) + VxwY — Ch(X,Y). (12)
From (11) and (12) we have
tHX,Y] = VxtY — VytY + AyxY — Apy X, (13)
w[X,Y] = h(X,tY) — h(tX,Y) + ViwX — VxwY. (14)

Thus from (11), (12), (13) and (14), we have the following lemmas.

Lemma 1 ([8]). Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian
manifold M. Then, we have

(Vxt)Y = ApyX +Bh(X,Y), (Vxw)Y =Ch(X,Y)—h(X,tY) + g(FX, pY)¢ (15)
forall X,Y € TM.

Proof. The Lemma follows from (10)—(11) by taking into the consideration decomposition of
TM*. O

Lemma 2 ([8]). Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian
manifold M. Then we have for any N € TM~
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1) BN € DY,
2) CN € D

Lemma 3 ([8]). Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian
manifold M, then the distribution D° is integrable if and only if

AwzW = AuwZ, forall X,Y € D°. (16)

The following results give necessary and sufficient conditions for the integrability of the
distributions D° and D".

Theorem 1. Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian man-
ifold M. Then the distribution DV is integrable.

Proof. Let Z,W € D°, then from (8), (15) and (16), we deduce that
tZ, W] = ApzW — ApwZ = 0.
Hence the conclusion. O

Theorem 2. Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian man-
ifold M, then the distribution D' is integrable if and only if

h(tX,Y) —h(X,tY) = (Lg)(X, ¢Y)¢ forall X,Y € D" (17)

Proof. The statement yields from (15)
w([tX,Y]) = h(X, tY) — h(tX,Y) + (Lzg)(X, ¢Y)& forall X, Y € D'. (18)
O

Proposition 1. If M is a skew semi-invariant submanifold of a generalized quasi-Sasakian man-
ifold M, then the following relations take place:

—AsX = X, (19)
V& = w?X, (20)
n(h(X,Y)) = g(X, #Y), (21)

1
n(H) = - trace(t?)
for any X,Y € TM, where H is the mean curvature vector.

Proof. Form equation (18), it follows that Vx& = ¢?X = —X + 5(X)¢.
Using (19), (8) and #(X) = 01in (6), we get

—AgX + Vx€ = 2X + w?X. (22)

Equating tangential and normal part of (22), we get (19) and (20), respectively. From (2), (7) and
(15) it follows that

n(h(X,Y)) = g(h(X,Y),8) = g(A:X,Y) = —g(£’X,Y),

which gives (21). If {eq,ez,...,en}, n = dimM is a local orthonormal frame field, then from
(17) we get

y(H) = o (éh(ei,e») -2 (ég(zﬂei,ei)) -

Therefore (16) holds. O
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From (16), we have the following.

Corollary 1. Let M be skew semi-invariant submanifold of a generalized quasi-Sasakian man-
ifold M. If trace(t?) # 0, then M can not be minimal.

In view of (16), we have the following theorem.

Theorem 3 ([8]). Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian
manifold M. Then M is anti-invariant if and only if Az = 0.

Let D! and D? be two distributions defined on a manifold M. We say that D! is parallel to
D?forall X € D? and Y € D!, we have

VxY € D'

If D! is parallel then for X € TM and Y € D!, we have VxY € D!. It is easy to verify that D!
is parallel if and only if the orthogonal complementary distribution of D! is also parallel.

Let M be a skew semi-invariant submanifold of M. A distribution D is said to be totally
geodesic, if 1(X,Y) = 0 for all X,Y € D. The distributions D! and D? are said to be D!-D?-
mixed totally geodesic, if 1(X,Y) = 0 forall X € D' and Y € D?.

Proposition 2. Let M be a skew semi-invariant submanifold of generalized quasi-Sasakian
manifold M. For any distribution D*, if

AntX = tAyX forall X € D*, N € T*M,
then M is D*-DP-mixed totally geodesic, where & # .
Proof. From the assumption, we have
ANX — aANX = 0.
This implies that Ay X € D*. Soforall Y € DB, N eT+M, « # B, we have
g(ANX,Y) =g(h(X,Y),N) =0.

Therefore i(X,Y) = 0. Hence M is D*-DF-mixed totally geodesic. O
Now from (5), (8) and (9), we find
CwX, = —wtX,, wBN =N -C°N (23)

forall X, € T,M, N € TPLM. Furthermore for X, € DZ", a € {ay,..., ar}, we have
Cszp = awXp.

Also, if X, € Dg, then it is clear that tszp = 0. Thus if X, is an eigenvector of #2 corre-
sponding to the eigenvalue a(p) # 1, then wX, is an eigenvector of C> with the same eigen-
value a(p). Thus, (23) implies that a(p) is an eigenvalue of B? if and only if v(p) = 1 — a(p)
is an eigenvalue of wt. Since wB and f? are symmetric operators on the normal bundle T+ M,
then their eigenspaces are orthogonal. The dimension of the eigenspace of wB corresponding
to the eigenvalue 1 — a(p) is equal to the dimension of Dy if a(p) # 1. Consequently, we have
the following lemma.

Lemma 4. A submanifold M is a skew semi-invariant submanifold of generalized quasi-
Sasakian manifold M if and only if the eigenvalues of wB are constant and the eigenspaces
of wB have constant dimension.
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2 SKEW SEMI-INVARIANT SUBMANIFOLD

Theorem 4. Let M be a submanifold of a generalized quasi-Sasakian manifold M. If Vt = 0,
then M is a skew semi-invariant submanifold. Furthermore each of the t-invariant distribu-
tions DY, D! and D%,1 < i < k are parallel.

Proof. Forafixp € Many Y, € D" and X € TM. Let Y be the parallel translation of Y, along
with the integral curve of X. Since (Vxt)Y = 0 and from (11) we have

Vx(t? —a(p)Y) = 2VxY —a(p)VxY = 0.

Since (#*Y — a(p)Y) = 0 at p, it is identical to 0 on M. Thus the eigenvalues of ¢ are constant.
Moreover, parallel translation of T, M along any curve is an isometry which preserves each D*.
Thus the dimension of D* is constant and M is a skew semi-invariant submanifold.

Now if Y is any vector field in D%, then we have 2Y = aY (a constant), i.e, ?VxY = aVxY
which implies that D* is parallel. ]

Now, we see the vanishing of Vw. For X,Y € TM if (Vxw)Y = 0, then (21) yields
Ch(X,Y) =h(X,tY) — g(FX, ¢Y)¢. (24)
In particular if Y € D¥, then (24) implies
C?h(X,Y) = ah(X,Y) — ag(FX, ¢Y)¢.
Consequently we have the following proposition.

Proposition 3. Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian
manifold M, if Vw = 0, then M is D*-DP -mixed totally geodesic for all « # B. Moreover, if
X € D* then either h(X, X) = 0 or h(X, X) is an eigenvector of C> with eigenvalue a.

Lemma 5. Let M be a submanifold of a generalized quasi-Sasakian manifold M, then Vw = 0
ifand only if VxBN = BV*N forall X € TM and N € T+ M.

Theorem 5. Let M be a submanifold of a generalized quasi-Sasakian manifold M. If Vw = (,
then M is a skew semi-invariant submanifold.

Proof. If TM = D!, then we are done. Otherwise, we may find a point p € M and a vector
Xy € Dy, o # 1. Set N, = wX,, then N, is an eigenvector of wB with eigenvalue u(p) =
1—a(p). Now, let Y € TM and N be the translation of N, in the normal bundle T+M along
with integral curve of Y, we have

Vy (wBN — u(p)N) = VywBN — pu(p)Vy N = w(VyBN) — u(p)Vy N.
In view of Lemma 5,
Vy (wBN — u(p)N) = V¥wBN — u(p)Vy N = 0.

Since wBN — u(p)N = 0 at p and tBN — u(p)N = 0 on M. It follows from Lemma 4 that M is
a skew semi-invariant submanifold. O
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Theorem 6. Let M be a skew semi-invariant submanifold of a generalized quasi-Sasakian man-
ifold M, then the following relations are equivalent.

1. (Vxw)Y — (Vyw)X =0forall X,Y € D*.

2. h(tX,Y) =h(X,tY) forall X,Y € D*.

3. w[X,Y] = VyxwY — VywX forall X,Y € D%

4. ANtY — tANY is perpendicular to D* forallY € D* and N € T+N.

Proof. The proof is trivial, hence we omit it. O

3 CR-STRUCTURE

Let M be a differentiable manifold and T°M be the complexified tangent bundle to M. A
CR-structure on M is complex subbundle H of T°M such that HN H = {0} and H is involutive
[15]. A manifold endowed with a CR-structure is called a CR-manifold. It is known that
a differentiable manifold M admits a CR-structure [1] if and only if there is a differentiable
distribution D and a (1, 1) tensor field P on M such that for all X,Y € D

P2X = —X,[P,P|(X,Y) = [PX, PY] — [X, Y] — P[PX,Y] — P[X, PY] = 0, [PX, PY] — [X, Y] € D.

Definition 2. A differentiable manifold M is said to admit a CR-structure if there is a differen-
tiable distribution D and a (1,1) tensor field P on M such that for all X,Y € D

P?X = X, [P, P](X,Y) = [PX, PY] + [X,Y] — P[PX, Y] — P[X, PY] = 0,[PX, PY] = [X,Y] € D.
A manifold equipped with a CR-structure is called a CR-manifold.

Lemma 6. An almost contact metric structure (¢, {, 17, g) is normal if the Nijenhuis tensor [¢, ¢]
of ¢ satisties [3]
l9, 9] +2dp ¢ = 0. (25)

Now, we prove the following theorem.

Theorem 7. If M is a skew semi-invariant & -submanifold of a normal almost contact metric
manifold M with non-trivial invariant distribution, then M possesses a CR-structure.

Proof. Since M is normal for X,Y € D+, we get P?2X = —X and in view of (25), we have
0=[P,P](X,Y) — Q([X, PY] + [PX, Y])
from which it follows that Q([PX, Y] + [X, PY]) = 0, that is, [PX, Y] + [X, PY] € D!. Thus
[PX, PY] + [X, Y] = P([PX,Y] + [X, PY]) € D!
and hence (D!, P) is a CR-structure on M. O

Theorem 8. A skew semi-invariant & -submanifold of a generalized quasi-Sasakian manifold
with non-trivial invariant distribution is a CR-manifold.
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Proof. Since every generalized quasi-Sasakian manifold is normal (see [8], Theorem 7), the
proof is obvious. O

From Theorem 7, it is obvious that normality of M is a sufficient condition for a skew semi-
invariant submanifold with nontrivial invariant distribution to carry a CR-structure. However,
this is not neccessary, and now we give an example of skew semi-invariant submanifold.

Example 2. We consider the Euclidean space R® and denote its points by x = (x'). Let (¢j),j =
1,...,5 be the natural basis defined by ¢/ = d/0x/. We define a vector field ¢ and a 1-form 1 by
& = 9/0x° and n = dx° respectively. For each x € R®, and g the canonical metric defined by
g(e;, e]-) =6j,i,j=1,...,5, the set E; defined by

Ei = e, Ey = cos(x')ey +sin(x')es, Ez = —sin(x')es + cos(x')es, Ey =es, E5 = es

forms an orthonormal basis. As the point x varies in R°, the above set of equations defines 5
vector fields also denoted by (E;) and ¢ is (1,1) tensor field defined by

¢(E1) = E, ¢(E2) = E1, @(E3) =Ey4, ¢(E4) =E3 ¢(Es) = 0.

Then (¢, ¢&,1,8) defines an almost contact metric structure on R°. Since

(¢, ¢](E1, E4) +2dn(E1, E4)¢ = E1 # 0,

then, the almost contact structure is not normal. The submanifold
M:{x€R5zx4,x5:0}

is a skew semi-invariant submanifold of R®> with D' = Span {E;,E;} and D° = Span {E3}
such that (D', ¢) is a CR-structure on M. Moreover, D! is not integrable because D° = Ej.
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Ciaaiki M.A,, Xaci6 A., Axmaa M. Aumunanisineapiaumui nidmHoeosuou ysaeanrvHeHux xeasi-Cacaxs-
Hosux mHoeosudis // KapmaTcbki MaTeM. myba. — 2017. — T.9, Ne2. — C. 188-197.

Y wiit poboTi MM BUBYaEMO HOBMIA KAAC IiAMHOTOBMAIB y3araAbHeHMX KBa3i-CacaksTHOBMX MHO-
TBUAIB, IIJO Ha3/BAIOThHCSI aHTMHAII BiHBapiaHTHMMM IIiAMHOroBuaamm. Hamu orpumano ymoBu iHTe-
TPOBHOCTI PO3MOAIAIB Ha aHTMHAMIBIHBapiaHTHOMY IIiAMHOTOBMAIL, a TaKOX 3HalfA€MO YMOBY TOTO,
110 aHTMHAIIBiHBapiaHTHII T AMHOTOBMA, Y3araAbHeHOro kBa3i-CacakssHOBOro MHOTOBMAY € 3Millla-
HVM IIAKOM TeoAe3nyHyM. TakoX ImoxasaHo, IO aHTMHAIliBiHBapiaHTHIIA i AMHOTOBMA, y3araAbHe-
HOTO KBa3i-CacaksiHOBOro MHOTOBUAY 6yAe aHTMiHBapiaHTHUM TOAL i TiAbKM TOA], sikimo A (§) = 0;
i mAMHOTOBMA OyAe aHTMHAIIBiHBapiaHTHMM IIAMHOTOBMAOM, Ko Vw = 0. OrpumaHO cmiB-
BiAHOIIIEHHSI €KBiBaA€HTHOCTI AASI aHTHMHAMiBiHBapiaHTHOTO IIIAMHOTIOBMAY y3araAbHEHOIO KBasi-
CacakstTHOBOro MHOTOBMAY. BiabIlle TOro, My AOBeAM, III0 aHTMHAIIIBiHBapiaHTHMIA L -miaMHOrOBNMA
HOPMAaABHOTO Malike KOHTAaKTHOTO METPUYHOTO MHOTOBMAY Ta y3araabHeHOro kBasi-CacaksHOBOTO
MHOTOBMAY 3 HETpMBiaABHMM iHBapiaHTHMM po3noairoMm € CR-mHorosuaoM. HaseaeHo mpumkaan
po3MipHOCTi 5 AAST TOTO, III06 IIOKA3aTH, 0 aHTMHATIiBiHBapiaHTHWIA éL-HiAMHOFOBI/IA ¢ CR-cTpyxk-
TYPOIO Ha MHOTOBMA.

Kontouosi cnosa i ¢ppasu: aHTVMHAIIBiHBapiaHTHMII MHOTOBMA, y3araAbHeHMI KBasi-CacaksHOBMI
MHOTOBMA, YMOBU iHTerpOBHOCTI po3noaiai, CR-cTpykTypa.
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VASYLYSHYN T.V.

METRIC ON THE SPECTRUM OF THE ALGEBRA OF ENTIRE SYMMETRIC
FUNCTIONS OF BOUNDED TYPE ON THE COMPLEX Lo,

It is known that every complex-valued homomorphism of the Fréchet algebra Hps(Loo) of all
entire symmetric functions of bounded type on the complex Banach space L, is a point-evaluation
functional Jy (defined by 6,(f) = f(x) for f € Hps(Loo)) at some point x € Loo. Therefore, the
spectrum (the set of all continuous complex-valued homomorphisms) M, of the algebra Hys(Loo)
is one-to-one with the quotient set L /~, where an equivalence relation “~" on L is defined by
x ~ 1y & 6y = 4. Consequently, M;; can be endowed with the quotient topology. On the other
hand, My, has a natural representation as a set of sequences which endowed with the coordinate-
wise addition and the quotient topology forms an Abelian topological group. We show that the
topology on My, is metrizable and it is induced by the metric d(, 1) = sup,.p; /|8n — #7u|, Where
¢ =A{Gn}uir = {mn}iis € Mys.

Key words and phrases: symmetric function, spectrum of the algebra.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Symmetric functions on Banach spaces were studied by a number of authors [1, 3-8, 10,
12,13] (see also a survey [2]). In particular, symmetric polynomials and symmetric analytic
functions on L« (see definition below) were studied in [6,12,13].

Let Lo be the complex Banach space of all Lebesgue measurable essentially bounded com-
plex-valued functions x on [0, 1] with norm [[x[[cc = esssup;¢ (o qjx(#)]-

Let E be the set of all measurable bijections of [0, 1] that preserve the measure. A function
f: Lo — Cis called symmetric if f(x o0) = f(x) for every x € Lo and for every o € E.

Let Hys(Lo) be the Fréchet algebra of all entire symmetric functions f : Lo, — C which are
bounded on bounded sets endowed with the topology of uniform convergence on bounded
sets. By [6, Theorem 4.3], polynomials R, : Lee — C, Ry(x) = f[o,l] (x(t))"dt for n € N form
an algebraic basis in the algebra of all symmetric continuous polynomials on Le. Since every
f € Hps(Lo) can be described by its Taylor series of continuous symmetric homogeneous
polynomials, it follows that f can be uniquely represented as

O =fO+Y Y o Rx) - RY ().

n=1ky+2ko+...+nk,=n

YAK 517.98
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Consequently, for every non-trivial continuous homomorphism ¢ : Hys(Le) — C, taking into
account ¢(1) = 1, we have

o(f) = f(0) + ) Y gy, o @(R1)¥1 - @Ry ).
n=1ki+2ky+...+nk,=n

Therefore, ¢ is completely determined by the sequence of its values on R, : (¢(R1), ¢(R2),...).
By the continuity of ¢, the sequence {{/|¢(R;)|}{>; is bounded. On the other hand, we have
the following

Theorem 1 ([6, Section 3]). For every sequence ¢ = {¢,}5>_; C C such that sup {/|¢,| < +oo,

n=1
nelN
there exists Xz € Lo such that Ry(xz) = &, for every n € N and ||xz]lo < & sup,cn /18],
where
= w1
- T2 ). 1
M HCOS<2n—|—1> (1)

Hence, for every sequence ¢ = {&,}%_; such that sup, p {/[¢:] < —+oo, there exists the
point-evaluation functional ¢ = dy, such that ¢(R,) = ¢, for every n € IN. Since every such a
functional is a continuous homomorphism, it follows that the spectrum (the set of all contin-
uous complex-valued homomorphisms) of the algebra Hy,(Lo ), which we denote by My, can
be identified with the set of all sequences & = {&,}°°; C C such that {{/]¢,]}*_, is bounded.

Let v : Lo — My, be defined by

v(x) = (Ri(x), Ra(x), ...

Let T be the topology on L, generated by || - ||«. Let us define an equivalence relation on Leo
by x ~ y < v(x) = v(y). Let T be the quotient topology on M :

T={v(V): V€ t}
Note that v is a continuous open mapping.
The operation of coordinate-wise addition + : Ml%s — My is defined by
a+b= (611 +by,ay+by,...)

fora = (ay,az,...),b = (by,by,...) € My, In [13] it is shown that (M, +, T) is an Abelian
topological group. In this work we show that (M, T) is a metrizable topological space. Also
we explicitly construct the metric which induces 7.

1 THE MAIN RESULT

Let us denote B(x,r) the open ball of radius r and center x in Le.

Proposition 1. The identity element 0 = (0,0, ...) of the topological group (Mys, +,T) has a
countable local basis of neighborhoods.

Proof. For n € N let U, = v(B(0,1)). Since v is an open mapping, it follows that U, € T.
Note that 0 € U,. Thus, U, is an open neighborhood of 0 for every n € IN. Let us show
that a family {U, : n € IN} form a local basis of neighborhoods of 0. Let W C M, be
an arbitrary open neighborhood of 0. Then v~!(W) is open in Le and v~!(W) contains 0.
Therefore, there exists r > 0 such that B(0,7) C v~!(W). Let n € N be such that 1 < 7. Then
B(0,2) ¢ B(0,r) C v~1(W). Therefore, v(B(0,2)) C W,i.e. U, C W. O
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We will use Birkhoff-Kakutani theorem.

Theorem 2 ([9, p.34]). Let G be a Hausdortf topological group whose open sets at the identity
element have a countable basis. Then G is metrizable and, moreover, there exists a metric
which is right-invariant.

Corollary 1. There exists an invariant metric d on M;; which induces topology T.

Proof. By [13, Corollary 1], (M, +, T) is an Abelian topological group. By [13, Theorem 2], T is
Hausdorff. By Proposition 1, the identity element of My, has a countable local basis. Therefore
by Theorem 2 there exists a right-invariant metric d on M;; which induces topology t. Since
(Mys, +, T) is Abelian, the metric d is also left-invariant. O

Fora = (ay,ay,...) and b = (b, by, ...) € My let

dr(a,b) = sup {/|an — byl

nelN

Note that analogical metric is defined on spaces of entire functions of one complex variable
(where a role of sequences a and b play sequences of coefficients of the Taylor series of func-
tions) and it is called Iyer metric (see e. g. [11]). Also note that a metric space (M, d) is
isometric to the space of entire functions f : C — C of the exponential type such that f(0) = 0
with Iyer metric.

Let V(a, r) be the open ball in M, of radius r and center a € M, with respect to the metric
d.

Lemmal. Letr > 0and 0 < p < M- where M is defined by (1). Then V(0,0) C v(B(0,7)).

Proof. Leta = (ay,a,...) € V(0,p). Let us show that a € v(B(0,7)). By Theorem 1, there
exists x; € Lo, such that v(x,) = a and ||xa|ec < 7 SUp,cpy /|- Since a € V(0, p), it follows
that d;(0,a) < p, i. e. sup,cn ¥/|an| < p. Thus, ||xa]|e < Zp. Since p < X, it follows that
|xalleo < 7,1. €. x, € B(O, ). Therefore v(x,) € v(B(0,7)),i.e.a € v(B(0,r)). O

Theorem 3. The metric d; induces the topology T.

Proof. Since both metrics d; and d (given by Corollary 1) are invariant with respect to transla-
tions (in the sense that d(a 4 ¢, b+ ¢) = d(a, b) for every a,b,c € M), it suffices to prove that
every open neighborhood of 0 with respect to T contains some open ball with center 0 with
respect to d; and vice versa.

Let W € 7 such that 0 € W. Then v—!(W) is the open neighborhood of 0 in Le. Therefore,
there exists r > 0 such that B(0,7) C v~1(W). By Lemma 1, for 0 < p < 2= we have V(0,p) C
v(B(0,r)). Since v(B(0,r)) C W, it follows that V(0,p) C W.

Let us show that for every open ball V(0,r) there exists W € 7 such that 0 € W and
W C V(0,r). Set W = v(B(0,r)). Let us show that W C V(0,r). It suffices to prove that
v(x) € V(0,r) for every x € B(0,r). For x € B(0,7) we have ||x||« < r and, consequently,

R (2)| < [x[l5 < ™.

dr(0,v(x)) = sup {/|Ru(x)| < 1.

nelN
Thus, v(x) € V(0,r). O

Therefore
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Bacuayums T.B. Mempuka Ha cnekmpi aneebpu yiaux cumempuvHux GyHKyiti 0oMexceHo20 muny Ha
KomriekcHoOMY npocmopi Le, // Kapmartcbki MaTem. my6a. — 2017. — T.9, Ne2. — C. 198-201.

BiaoMoO, 110 KOXX€eH KOMIIAeKCHO3HaYHMIE roMoMOpi3m aarebpu Dpettte Hyg(Loo) yCix iAMX cu-
MeTpUUHMX (PYHKIIi 06MeXXEeHOro THIIy Ha KOMIIAeKCHOMY b6aHaXOBOMY IpPOCTOPi L« € dpyHKIIio-
HaAOM OGUMCAEHHsI 3HAUEHHSI B TOULI Jy (BU3HaueHOTO SIK Oy (f) = f(x) Arst f € Hps(Loo)) y A€SIKiIA
Toulli X € Leo. TOMy crlexTp (MHOXMHa YCiX HellepepBHMX KOMIIAEKCHO3HAUHMX roMOMOpdi3MiB)
My anrebpu Hpys(Loo) € Y B3a€MHO OAHO3HAUHII BIAIIOBIAHOCTI 13 paKTOP-MHOXUHOIO Loo / ~, A€ Bia-
HOILIEHHsI €KBiBAAEHTHOCT] "'~" Ha TIPOCTOPi Lo, BU3HAYEHE HACTYIHUM UMHOM: X ~ I <> Oy = Jy. SIK
HacAipOK, Ha My, MOXKHa 3apaTi paKTOP-TOMOAOTII0. 3 iHIIOTo 60Ky, AAsT My, icHye mpupoaHe mo-
AQHHS Y BUTASIAL MHOXMHM IIOCAIAOBHOCTeTA, sIKa pa30oM i3 3apAaHMMM Ha Hilf ollepalliero IOKOOpAM-
HATHOTO AOAABAHHS i paKTOP-TOMOAOTIEI0 YTBOPIOE abeAeBY TOMOAOTIUHY I'PYITy. Y CTAaTTi AOBeAe-
HO, ITI0 TOMOAOTisI Ha M}, € METPU30BHOIO i IOPOAXKYEThCst MeTpuKOI0 d (&, 17) = sup, . 3/ |&n — al,
ae &= {Cutuie = {1n}ily € Mys.

Kntouosi cnosa i ¢ppasu: cvmeTpudaHa pyHKIIisI, CTIEKTP aAre6pi.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2017, 9 (2), 202-207 KapmaTcbki MmaTeM. mmy6a. 2017, T.9, Ne2, C.202-207
doi:10.15330/cmp.9.2.202-207

(L)

FEDOROVA M.

FAITHFUL GROUP ACTIONS AND SCHREIER GRAPHS

Each action of a finitely generated group on a set uniquely defines a labelled directed graph
called the Schreier graph of the action. Schreier graphs are used mainly as a tool to establish ge-
ometrical and dynamical properties of corresponding group actions. In particilar, they are widely
used in order to check amenability of different classed of groups. In the present paper Schreier
graphs are utilized to construct new examples of faithful actions of free products of groups. Using
Schreier graphs of group actions a sufficient condition for a group action to be faithful is presented.
This result is applied to finite automaton actions on spaces of words i.e. actions defined by finite
automata over finite alphabets. It is shown how to construct new faithful automaton presentations
of groups upon given such a presentation. As an example a new countable series of faithful finite
automaton presentations of free products of finite groups is constructed. The obtained results can
be regarded as another way to construct new faithful actions of groups as soon as at least one such
an action is provided.

Key words and phrases: group action, faithful action, Schreier graph, free product, automaton
permutation.

Taras Shevchenko National University, 64/13 Volodymyrska str., 01601, Kyiv, Ukraine
E-mail: mfed@unicyb.kiev.ua

INTRODUCTION

O. Shreier introduced in [8] graphs to represent cosets by finite index subgroups in free
groups. Such kind of graphs were later named after Schreier and they naturally arise in geo-
metric group theory. In particular they were used to produce exotic example of group actions
and to establish rare properties of graphs and groups [1,2,4].

In this paper we use Schreier graphs of group actions to give a sufficient condition for a
group action to be faithful. This approach gives an alternative way to construct faithful group
actions of free products compared to a well-known method based on ping-pong lemma (see
e.g. [5,7]). As an application we construct a new countable series of faithful finite automaton
presentations of free products of finite groups.

This result generalizes our previous construction from [3] and its proof explores the main
theorem from [6].

The paper is organized as follows. In the first section we recall the definition of Schreier
graphs and introduce Schreier embedding of group actions. Then we prove the main theorem,
which allows to built new faithful group actions upon given one.

In the second section we recall basic definitions about automaton permutations and define
a countable series of finite automaton actions of free products of finite groups. In the last
section we prove the result about Schreier embeddability of constructed actions and apply the
main theorem to obtain faithfulness of them.
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1 SCHREIER GRAPHS

Let G be a group with a finite generation set S, acting on a set M.

Definition 1. The Schreier graph T'(G,S, M) of the action of the group G on the set M is a
directed graph with the set of vertices M and the set of edges M x S, where for every m € M
and s € S there is an edge (m, s) from m to s(m) and this edge has a label s.

Definition 2. The Schreier graphs I'y and I'; of the group G with the generation set S acting
on the sets M and M, respectively are called isomorphic if they are isomorphic as oriented
edge-labeled graphs, i.e., there is a one-to-one function f : My — My such that for arbitrary
vertices v1,v; of the graph I'y there is an arrow from vy to v, with the label s € S if and only if
the graph I'; contains an arrow from f(v1) to f(v,) with the label s.

It immediately follows from the definition that for isomorphic Schreier graphs I'y and I’
there exists a path between two vertices v; and v, in I'y with the labels of the edges g1,...,gx
if and only if I'; contains a path between f(v1) and f(v;,) with the labels of the edges g1, . . ., gn-

It is possible to give a natural sufficient condition for the faithfulness of the group actioni
in terms of the Schreier graphs. Namely, let the group G act on the sets M; and M), that is, the
actions 11 and ¥, of the group G are given on these sets respectively.

Definition 3. The action  is Schreier-embedded into the action , if a group G has a genera-
tion set A such that each connected component of the Schreier graph of action y; of this group
with respect to the generation set A is isomorphic to some component of the Schreier graph of
the action 1 of this group with respect to the same generation set A.

We call actions 11, i Schreier-equivalent if ¢ is Schreier-embedded into ¢, and vice versa.
We have the following useful observation.

Theorem 1. Let; and y, be actions of a group G such that ; is Shreier-embedded into ;. If
the action 1, is faithful then the action , is faithful as well.

Proof. Let 11 and 4, be actions on sets M; and M, respectively. Denote by A a generating set
of G used to construct Schreier-embedding of the action ¢; in the action .

Assume that the action 1, is not faithful. Then there exists a non-identity element g of the
group G that fixes an arbitrary element of the set M. Then g = g1...g, forsome gy,...,9x €
A. So paths with the edges labeled g, . .., g» in the Schreier graph of the action 1, are cycles.

By the assumption of the theorem, the action ¢; of the group G is Schreier-embedded into
the action 1, of the same group. Therefore all paths with the labels g1, ..., g in the Schreier
graph of the action ¢; of the group G are cycles as well. This implies that the non-identity
element ¢ = g7 ...gy of the group G fixes arbitrary element from the set M;. This contradicts
with the faithfulness of the action ;. O

2 AUTOMATON ACTIONS OF FREE PRODUCTS

Let an alphabet be a finite set X, | X| > 1. A sequence x; ... x, of elements from the alphabet
is the word of length n. An empty word A has a length equal to zero. Denote by X" the set of
words of length n over the alphabet X. Consider X* and X“ — words of finite and infinite
length respectively. For arbitrary words u,v € X*[J X“ one can define the product of two
words v and u by concatenation uv € X* J X“.
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Definition 4. An initial automaton is a tuple A = (X, Q, ¢, ¥, qo),
- where X is a finite input and output alphabet, |X| = n,
- Q is a nonempty set, the set of inner states of the automaton A,
- ¢ and ¢ are transition and output functions, acting from Q x X into Q and X, respectively,
- go € Q is an initial state.

In particular, a finite automaton is an automaton with a finite set of states: |Q| < co. An
automaton is called permutational if for each state of the automaton the restriction of the output
function in this state determines some permutation on the alphabet.

The transformation of the set X* of all finite words over the alphabet X defined by the
finite initial permutational automata form a group FGA(X) with respect to a superposition.
Elements of this group are called finite automaton permutations over the alphabet X.

Consider the group G generated by a finite set S of finite automaton permutations over the
alphabet X. It acts on the set X* of all finite words over the alphabet X.

The sets X", n > 1, are invariant under the action of G. Thus the sequence I';, of finite
Schreier graphs of the action of G over X", n > 1, naturally arise. We call these graphs the
Schreier graphs of the action of G on the levels.

Let Gy,...,Gs be s (s > 2) finite groups of orders py, ..., ps respectively. Without loss of
generality suppose 1 < p; < ... < ps and denote n = p;. Let us remind the construction
from [6] of an embedding of the free product Gp * ... * G into the group FGA(X) of finite
automaton permutations over the alphabet X = {xy,...,x,}.

For every i, 1 < i < s fix a regular action of the group G; on the first p; symbols of X and
fix remain letters. Denote the letter x; by 0 and the word 0...0 € X® of all words of length s
by 0. Consider subsets M;, 1 <i < s, in X°:

M;={x...x0...0:x € X,x # 0}.

1

Foreachi,1 <i <s, we define the set D; = |J M].le , where
j#i

M]-Gi = {wg:weMj,gE Gi},l Si,jSS, D; = {x_1hg:h€ Gj,gE Gz,h#e],]#z}

Let ¢1; be functions, which assign to each element ¢ € G; a map ¢1;(g) on the set X* of all
infinite words over the alphabet X. An infinite word w € X* can be divided into syllables of
arbitrary length k € IN:

w = wlk, 1wlk,2] ...
Forall g € G;, u € X* we construct v; = (¢1;(g))(u) as follows. Let v1[s,1] = u[s, 1], and for
allj > 2

. uls, )8, ifuls,i— 1] € D;

s = [ oS ifuls,j—1) € D o
uls, j| otherwise.

Hence we have constructed everywhere defined transformations of the set of infinite words

over X.
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In [6] it is proved that for each element ¢ € G; the transformation ¢;(g) is a finite automa-
ton permutation over the alphabet X and the function ¢4; is a monomorphism from the group
G; into the group of finite automaton permutations FGA(X). Denoted by G1(Gy,...,Gs) a
subgroup of FGA(X) generated by the images of these monomorphisms.

Theorem 2 ([6]). The group G1(G;, ..., Gs) splits into the free product as follows:
G1(Gy,...,Gs) = Gy *... % Gs.

We proceed to the construction of a class of actions in each of which the action (1) is
Schreier-embedded. We define a series of sets of functions ¢;,t > 1 on G;,1 < i < s. The
function @y, t > 1 assigns to each element g € G; a finite automaton transformations ¢;;(g) of
the set X* of all infinite words over X. For arbitrary ¢ € G;, u € X*, we define vy = (¢4;(g))(u)
as follows. For arbitrary 1 < j < t+1 we put v;s,j] = u]s,j], and forall j > t +1

5, (u[s,j])8, ifuls,j—t] € D;
vtls, j] =
e uls, j otherwise.

()

It is directly verified that for eacht > 1and 7,1 < i < s the function ¢;; is a homomorphism
on the group G;. Hence, for each t > 1 we obtain an action of the free product G; * ... * G by
finite state automaton permutations.

Let G¢(G;,...,G;s) be a subgroup of the group of finite automaton permutations over X
generated by ¢41(G1), ..., ¢1s(Gs),t > 1. Note that for t = 1 we obtain the action given by
A. Oliynyk in [6], and for t = 2 — by the author in [3].

3 PROPERTIES OF ACTIONS

The Schreier-embeddability of the constructed actions of a free product of finite number of
finite groups is proved by the next theorem.

Lemma 1. The action given by equation (1) is Schreier-embedded into each action of the series
given by equation (2).

Proof. To prove the statement of the lemma we will express the first action in terms of the
second one. We fix t > 1.
We will use representation of an infinite word w as a product of subwords of length s:

w = wls, 1|wls,2]w[s,3|....
Then we construct t infinite words as follows

wy = wls, Nwls, t + 1wls, 2t + 1] ...
w; = wls, ijw(s, t +i|ws,2t +1] ...
w = wls, tlwls, 2t|wl]s, 3t] . ..

In other terms, the representation of infinite word w; as a product of subwords of length s
consists of those subwords of length s of w which numbers have the form tk +i, k > 0.
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Let ¢4i(g), & € G, defined by (2), acts on infinite words w. Denote by v; the word obtained
as the result of this action. Denote by v;,;, 0 < i < t infinite words that are the results of
the action ¢1;(g) on w; respectively. Comparing the words v and vy ;, we have the following
equations for arbitrary k > 1:

vels, tk — 1] = v11]s, k],

ve[s, th — 2] = v15]s, k], (3)

vels, th —t + 1] = v14_1][s, k|.

Thus, in order to express a second action in terms of the first one, it is sufficient to de-
compose the word w, on which the second mapping acts, on the words w;, apply the first
transformation to them, and create a new word using equalities (3).

Consider arbitrary connected component of the Schreier graph of the first action. Then
tix arbitrary vertex of this component. This vertex correspond to some infinite word w;. Let
us prove that in the Schreier graph of the second action there is an isomorphic connected
component to the selected one. For that purpose we consider the infinite word w1, that for
all k > 1 satisfies the equalities

woo,1 [S, tk — 1] =00,

woo,1 [S, tk — k + 1] = 00,

woo,l [S, tk] = W1 [S, k]

Since 00 ¢ D;,1 < i <'s, the wy 1 blocks whose numbers are not divisible by ¢ will not be
changed under the action of the second map. And the blocks which numbers are divisible by
t will be changed in the same way as w; under the action of the first map. Thus, the connected
component of the Schreier graph of the second action which contains the vertex corresponding
to the word wy; will be isomorphic to the connected component of the Schreier graph of the
first-action which contains the vertex corresponding to the word w.

Consequently, for arbitrary connected component of the Schreier graph of the first action
one can find an isomorphic connected component of the Schreier graph of the second action.
That is, the first action is Schreier-embedded into the second one. O

Note that we leave as open a question about Schreier equivalence of these actions.
The main result now can be formulated as follows.

Theorem 3. Each action of series (2) is faithful.

Proof. Theorem 2 implies that the action (1) is a faithful action of the free product

G1*x...*Gs.
Theorem 1 implies that the action (1) is Schreier-embedded into each action of the series given
by equation (2). Hence by theorem 1 action (2) for all + > 2 is faithful as well. O

Then we obtain as a corollary the following result.
Corollary 1. For eacht > 1 the group G¢(Gy, ..., Gs) splits into the free product
Gp*...%Gs.
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Koxwna aist cKiHueHHO NOPOAKEHOI IPYI Ha MHOXKIHI OAHO3HAYHO BM3HAUae MOMideHMIt OpieH-
TOBaHVIA rpadp, sIKmii HasmBaeThest rpadpom Illpaepa i€l ail. T'padou lpaepa mepeBaxHO BUKOPH-
CTOBYIOTBCSI SIK iHCTPYMEHT AASI BCTAHOBAEHHST FeOMETPUYHIX 1 AVHAMIUHMX BAACTMBOCTEN BiATIO-
BiAHVIX TPYTIOBUX Aill. 30KpeMa, IX BOHM IIIMPOKO BXMBaHi AAS TTepeBipKy aMeHab6eABHOCTI pi3HOMa-
HITHMX KAaciB Tpym. B aaHiit crarTi rpadpm lpaepa BXWUTO AAsI TOO6YAOBY HOBMX MIPMKAAAIB TOUHMX
AlVf BiABHMX AODOYTKIB rpym. Buxopucrosyroun rpacu [llpaepa aii rpym HaBeA€HO AOCTATHIO YMOBY
TOTO, KOAM Aisl TPYIIM € TOUHOIO. Lleii pe3yAbTaT 3acTOCOBAHO AO CKiHU@HHO aBTOMAaTHMX Aili Ha ITPO-
cTOpax CAiB, TOOTO AO Ailf, BM3HAUEHNX CKiHUEHHNMMM aBTOMaTaMM HaA CKiHUeHHMMM aAdpaBiTaMut.
ITokasHo, sk 6yAyBaTy HOBi TOUHI aBTOMATHI 300pa’keHHsI TPYII 3a YMOBM iCHYBaHHSI TaKOTO 306pa-
XeHHsI. SIK IpuKAaa, TO6yAOBaHO HOBY 3AiUeHHY cepilo TOUHMX CKiHUeHHO aBTOMATHMX 306pakeHb
BiABHIIX AOOYTKIB cKiHueHHMX IpyI. OTpyMaHi pe3yAbTaTi MOXHA PO3TASIAATH, SIK IIIe OAMH CIIOCiO

Kntouoei cnosa i ppasu: Aist rpymm, Tousa aist, rpad Illpaepa, BiabHMIT AOGYTOK, aBTOMATHa ITiA-
CTaHOBKa.





