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BARANETSKI] YA.O.1, IvasIiUK 1.YA.Z, KALENYUK P.I.1, SOLOMKO A.V.2

THE NONLOCAL BOUNDARY PROBLEM WITH PERTURBATIONS OF
ANTIPERIODICITY CONDITIONS FOR THE ELIPTIC EQUATION WITH
CONSTANT COEFFICIENTS

In this article, we investigate a problem with nonlocal boundary conditions which are perturba-
tions of antiperiodical conditions in bounded m-dimensional parallelepiped using Fourier method.
We describe properties of a transformation operator R : Ly(G) — Lp(G), which gives us a connec-
tion between selfadjoint operator Ly of the problem with antiperiodical conditions and operator L
of perturbation of the nonlocal problem RLy = LR.

Also we construct a commutative group of transformation operators I'(Ly). We show that some
abstract nonlocal problem corresponds to any transformation operator R € T'(Lg) : Lo(G) — La(G)
and vice versa. We construct a system V(L) of root functions of operator L, which consists of infinite
number of adjoint functions. Also we define conditions under which the system V(L) is total and
minimal in the space L,(G), and conditions under which it is a Riesz basis in the space L,(G).

In case if V(L) is a Riesz basis in the space L, (G), we obtain sufficient conditions under which
the nonlocal problem has a unique solution in the form of Fourier series by system V(L).
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1 INTRODUCTION

Investigation of ordinary differential equations with nonlocal integral conditions begins in
works of H. Birkoff, A. Zommerfeld, J. Stone, Ya.D. Tamarkin, W. Feller. Fundamental role in
development of nonlocal problems and shift operator theory play works of T. Carleman. The
general theory of eliptic boundary problems was formed due to investigations of Y.G. Beid
and R.S. Friman, R. Bills, F. Brauder, L. Ehrenpreis, L. Hermander, G. Grub, J.W. Kalkin,
Ya.B. Lopatynskiy, M. Malgrange, 1.V. Skrypnyk, M. Shekhter, M.I. Vishyk. Nonlocal bound-
ary problems for linear differential equations with partial derivatives in different aspects were
investigated by Yu.M. Berezanskiy, A.V. Bitsadze, V.M. Borok, M.L. Gorbachuk, O.O. Dezin,
Yu.M. Dybinskiy, M.I. Ionkin, V.S. Ilkiv, PI. Kalenuyk, A.H. Mamyan, V.A. Mykhailets,
B.Yo. Ptashnyk, V.K. Romanko, O.A. Samarskiy, O.L. Skubatchevkiy, S.Ya. Yakubov. Non-
local elliptic problems were studied in works of A.V. Bitsadze, O.O. Dezin, A.I. Kamynin,
S.A. Paneyakha, Ya.A. Roytberg and Z.G. Sheftel, A.A. Samarskiy, L.A. Skybatchevkiy and
their followers.
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This paper is denoted to research of nonlocal problems for equations with constant coef-
ficients. The classes of uniqueness and existence of the solution of boundary value problems
in unbounded domains (half-space, unbounded strip) for equations with constant coefficients
were studied in [7,8,11,12,17,22-26].

Boundary value problems in bounded domains for certain classes of differential equations
with constant coefficients have been studied in [1,9, 10, 13-16, 18, 20, 21, 27,28]. The work is a
continuation of the studies begun in [2-6].

Letusdenote Zy:={k:k >0, ke Z}, B= (B1,B2,---,Bm) €EZJ, |Bl =B1+ ...+ Bm,

Gi={x=(xy,x2...,0m) ER":0<x; < X;<00,j=1,2,...,m},
Gri={x"=(x1,..., %1, X41,---,Xm) € R"1:0< X< Xj<oo,jFET,j= 1,2,...,m}.

Let D; be the operator of differentiation by variable x;. Denote D% .= D%ﬁ ! D%’s 2. ....Dam,
W3"(G) = {y € L2(G) : Dy € Lo(G), || = n},

m

m
(v, W5"(G)) ==} (D}"y, D}"z; La(G)), [y W3"(G)? := }_(D;"y, D}"y; La(G)).

j=1 j=1

Also we will use the following notations. Let E; be the identical transformation in the space
L»(0, X;); E be the identical transformation in the space L>(G); I; be an operator of involution
in the space L»(0, X;), liz(x) := z(X; — x),z(x) € L2(0,X;); pj be an orthoprojector in the
space L»(0, X;); pjz(x) := T(z(x) + (=1)/z(X; — x)),z(x) € La(0,X;); L2 (0,Xj) := {z(xj) €
L(0,X;) : z(xj) == prz(x)}, r = 0,1; W3, (0, X;) be the space of linear continuous functionals
on W3(0,X;); Wy, (0, X;) := {I € Wy, (0,X;) : I(e"* — (—=1)%e"%7D) =0, h € R, x; €
(O,X]-)}, s =0,1,Qu:=1{Q = (q1,92,---,qm) € Z",q9, € {0,1}, r = 1,2,...,m}; p; :=
m

[T pg, be an orthoprojector in the space L, (G) ; Ly,o(G) := {y € La(G) : y := poy}-
r=1
Let us consider boundary problem

LDy := Y (-1)PlagD*y=f, x€gG, (1)
|Bl<n
lsjy = DP* 2ylymo+ DF Pylyox, =0, j=1,2,...,m, )
En_i_s,]‘y = D?Sily‘x]‘:O + D]2571y’x]4:xj + 151,]y = Or ] = 1/ 2! ce.,m, (3)
where
1 L q
gs,jy = Zé) Zobq,r,s,jD]‘ Yxj=rX;s 4)
r=0g=

bq,r,s,j €R, ¢g=01,...,mg;, r=0,15=12,...,n, j=12,...,m.
Let us denote by L : Ly(G) — Ly(G) the operator of problem (1)-(4), Ly := L(D)y,
y€D(L),D(L) :=={y e W3"(G) : £,y =0,5=1,2,...,2n, j=1,2,...,m}.

Definition 1. We will denote by function y € D(L) a solution of the problem (1)<4) that
satisfies |Ly — f; L(G)|| = 0.
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2 GENERAL RESULTS

Let us consider the following assumptions

Py:bgas = (=1)Tbg0.s,j

b msj < 2s—1, s=1,2,...,n;

Py: Al > Cilk[*" >0, 0 < Cp < o0, k € N,
Py:p;Xi+ppXo+ ... = puXm #0, pieZ, j=12,...,m

Theorem 1. Let Py holds. Then for arbitrary numbers ag € R, |B| < n, the operator L has
eigenvalues

M=), ﬂ/ﬁHPk] (5)

Bl<n =1

Pkj = (Zk]- — 1)7‘(X]._1,j =1,2,...,mk=(ky, ky, ..., km) € N™, and a complete and minimal
system V(L) of root functions exists in the space L(G).

Theorem 2. Let P;—P, hold. Then the operator L has a system V (L) of root functions, which is
a Riesz basis for the space Ly(G).

Theorem 3. Let the assumptions P;-P; take place. Then for any function f € L,(G) there exists
a unique solution of the problem (1)—(4).

3 SELF-ADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS OF EVEN ORDER

Let us denote by A ; the operator generated in L; (0, X;j) by the next boundary problem
—2(2)(x]-) = g(x]-), xj € (0,X;),z(0) +z(X;) =0, z(0) + z(l)(X]-) =0,j=12...,m

Aojy(xj) = —y@ (%)), y € D(4o;) and D(4Ag,) := {y € W3(0,X)) : y0) +y\(X;) =
0,r=0,1}, le (xj) == \/Z_chospk,]-xj, ki=12,..., Tolk],(x]-) = \/T_stinpk,]-x]-, ki=12,...,
T = {Tr,kj(x]) € L»(0,Xj),r = 0,1,k = 1,2,...} is an orthonormal basis of the space

Lz(O,Xj), j: 1,2,...,m.

Lemma 1. The operator Ay has the point spectrum

O'(AO,]‘> = {]/lk,j eER: Hij = p%,j, k=1,2,.. }
and a system of eigenfunctions T;. Sets Ly 5(0, Xj) are invariant for the operator AO,]-, s=0,1.

Proof. By substitution we obtain that 7, (x;) € D(Ao;) and Ag;Tx(xj) = pTri; (%)), 1 =
0,1,k=1,2,....

Therefore operator Ay has a system of eigenfunctions T;, which corresponds to the set of
eigenvalues ¢ (A) .

Let us notice that subset of eigenfunctions Tj, := {Tr,kj(x]-) € 12(0,X;), k=1,2,...}, Ay is
an orthonormal basis in the space L, (0, X]-), r=0,1. O

Let us consider for equation (1) the following problem with boundary conditions

losjy = DF 2 yly o+ DF 2 ylyx, =0, s =12, j=12,...,m, 6)
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Conrsy = Djzs—l Yo+ Dfs—l Yemx, =0 5=212..,n,j=12,.,m (7)

Let Lo : W3"(G) — W2"(G) be the operator of problem (1), (6), (7). Also we denote by Loy :=
L(D)y,y € D(Lo); D(Lo) := {y € W3"(G) : Losjy = 0,5 = 1,2,...,2n,j = 1,2,...,m};

m
V(Lo) := {vo,x(x) € La(G) : vy, p(x) := lerj,k].(x]-), rp€{0,1}, j=1,2,...,m k € N"}
]:

the orthonormal basis of the space L(G); Ly o the restriction of the operator Ly to the space
L, o(G) and

m
VQ = {Uolqlk(x) € Lz(G) : Uolk(x) = Hrq].,]-(x]-), k] = 2k] —jr, ke Nm}, Q € Qm~
j=1

Lemma 2. The operator L has eigenvalues (5) and a system of eigenfunctions V(Ly).

Proof. By a substitution it is easy to check that vy, x(x) € D(Lo), Lovg,k(x) = Agvo,r(x),
k€ IN™.

Therefore, the operator Ly has a system of eigenfunctions V(L) which corresponds to the
set of eigenvalues o (Ly) := {A € R, k € N"}. O

4 NONSELFADJOINT PROBLEM OF ORDINARY DIFFERENTIAL EQUATION OF THE SECOND
ORDER

Let us consider the following spectral boundary problem
— 2(2)(xj) = pz(xj), xj € {0, X]-}, nec, (8)
2(0) +z(X;) = 0, z1(0) + 2V (X;) + b(z(1)(0) — z(1)(X;)) = 0. 9)

Let B; = B, be the operator of problem (8), (9). Solutions +p of the characteristic equation
—p? = A are such that Rey < 0.
We define the fundamental system of solutions of the equation (8) by equations
zr(xj,0) := expox; + (—1)" exp1p(X; — x;) € L2,(0,X;), r=0,1.

The general solution of equation (8) can be represented as the sum

z (xj,p) := cozo (xj,0) + c121 (¥}, p0) -

If we substitute this solution into boundary conditions (9), we obtain an equation which roots
define eigenvalues of the operator B;

Ap) = Bo(p)Ai(p) =0, (10)

where Ag(p) = (1+ exp1pX;), A1(p) = 1p(1 + exp1pX;).
Equation (10) has two-fold roots 0k 0k, = (2k — 1)7'L'Xj_1, k = 1,2,.... Therefore the
operator B; has two-fold eigenvalues py ; = ((2k; — 1)7TX].’1)2, ki=1,2,....Since Ty _1,(x) €

D(B)) and Bjtox—1,j(Xj) = pok—1,Tk-1,(xj), kj = 1,2,..., we define eigenfunction of the
operator B; by the formula

2
o1k (xj, Bj) = TX] cos ppixj, k=1,2,....
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We define an adjoint function of the operator B; by the following relation
vok(xj, Bj) = (1+¢j(2x; — X]))\/%Tj sin py.xj, ¢j € C.

If we substitute this expression to boundary condition (9) we define ¢; = b.
So the operator B; has an adjoint function

2 .
vok(xj, Bj) = (14 b(2x; — X]»\/TT] sin Py ;. (11)

Root functions of the operator B; are defined by equations
Bjvok(xj, Bj) = px, 0ok (xj, Bj) + Cx,jv1k(xj, Bj), Ckj = 4bpxj, ki =1,2,. (12)
Bjupk—1(xj, AB;j) = px juor—1(xj, Bj), k=1,2,. (13)

Since the boundary conditions (9) are regular by Birkhoff, from Shkalikov’s theorem [29] we
obtain: the system V(B;) is total and minimal in the space L, (0, X;) forallb € R,j = 1,2,.

Let us prove that V (B;) is a Bessel system. Summands in the formula (11) are orthogonal
in the space L,(0, X;). Therefore for any function i € L>(0, X;) we have

| (1, 00, (%7, By); L2 (0, Xj) > < (1+ 2[b[* X)) || (B, Tk (%7); L2(0, X;) %,
|(h, 01 (x;, Bj; L2(0, X])fz = [ (B, Ta—1(x7); L2(0, X)) >,

If we consider the sum for k = 1,2,..., we have inequality

Z Z |(h, 0,1 (xj, Bj); L2(0, X)) |* < Col; L2 (0, X;) 2, Co = 1+ 2[b]?X;.
r=0k=
Therefore V(B;) is the Bessel system [19] in the space L, (0, X;).
Analogously we can prove that the biorthogonal system Wthh consists of root functions of
adjoint problem

—2®) (%)) = 7iz(xj), z1(0) + 2V (X;) = 0, 2(0) + 2(X;) + b(2(0) — z(X;)) = 0

is Bessel system in the space L,(0, X;). Therefore if we apply Bari’s theorem [19] we obtain the
following lemma.

Lemma 3. For any fixed b; € R spectra of operators B;j, Ag; coincide and system of functions
V(B;) forms a Riesz basis in the space L»(0,X;), j = 1,2,...,m

5 TRANSFORMATION OPERATORS OF ORDINARY DIFFERENTIAL EQUATION OF SECOND
ORDER

Let us consider any sequence of real numbers {Bkj},i‘;zl and consider in the space L, (0, X;)
operator Ay ;. An eigenvalues of this operator coinside with eigenvalues of the operator A,
and root functions can be defined by equations

vl,k,]-(x]-, Al,j) = COs Pk]X X (14)

2
V2%,

Vo k,(%j, A1j) = (1+ 6, (2x; — 1)) sinpk,]-X]-’lxj, ki=12,.... (15)

2
V2%
Let R (A1) = Ej+ S (Aj;) be the operator which acts by rule V(Ag;) — V(A1;). From
definition of the operator R(A; ;) we obtain: S*(A; ;) = 0. Therefore R™1(A ;) = E; — S(Ay))
exists.
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Lemma 4. For any sequence {Bkj},‘:;’:l C R the system of functions V (Al,j) are total and min-
imal in the space L, (0, X;).
Proof. Let us suppose that function & = hg + hy, hy € L3,(0, X;) exists and is orthogonal to all
elements of the system V(A ). Since functions (14) are elements of orthnormal basis of the
space Ly1(0, X;), we obtain iy = 0 So h = hy € Lo(0, X;).

Since function / is orthogonal to elements of the system V(A ), we have:

(h, ’(JO,k(x]', Al,]'); Lz(o, X])) = (ho, TO,k,j(xj); LZ(O, X])) = 0, k= 1, 2,. e

The system Tjo = {Tox,(x;) € L2(0,X;), k = 1,2,...} is an orthonormal basis in the space
L20(0, X;). So we obtain that hi; = 0.
Therefore h = 0. O

Lemma 5. The system of functions V(A ) is a Riesz basis in the space L, (0, X;) if and only if
the sequence {6y}, is bounded.

Proof. Necessity. If the system of functions V (Al,]-) is a Riesz basis in the space L>(0, X;), then
it is almost normalized.
If we take into consideration (14), (15), we have inequality

0 <1< [loog(xj, A1j); L2(0, X)) |I> = 1+ |64 < C3 < 00, C3:= 1+ max6;.
Sufficiency. If we take into consideration formulas (12), (13) then for any functions 1 € L»(0, X;)

we have inequality

co 1

Y Y I(RCAT B, ok (x7); L2(0, X1
k}.:l s=0

co 1
Z Z | (B, 03k, (%), Avj); La(0, X)) < G|l La (0, X)) ||

Therefore the operator R(Ai]-) is adjoint to R(A1;) and bounded in the space L,(0, X;) —
L>(0, X;). So operators R(A1j), R™!(A; ;) = 2E — R(A;,j) are also bounded.

If we take into consideration Lemma 4 and Bari’s theorem [19] we get: the system of func-
tion V(A1) is a Riesz basis in the space L»(0, X;). O

6 NONSELFADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATION OF EVEN ORDER

Let us consider forany j € {1,2,...,m}, p€ {1,2,...,n},b € R, the problem

L(D)y:= ), aﬁDzﬁy =Ay, AL eC, (16)
|Bl<n

C1sqY = D§5_2y|xq:0 + D§5_2y|xqzxq =0,q#js=1...,n,g=1,...,m, (17)

El,n+5,qy = ngly‘xq:() + ngly‘xqzxq =0,s#pq#jq=1....ms=1,...,n  (18)

Onis iy = DP 2Ylym0 + DF 2Ylyox; =0, s £ ps = 1,201, (19)

Onssy = D Mylx=o + DF 'yly=x, = 0, (20)

2p—1 2p—1 2p—1 2p—1
El,n+p,j]/ = D]'p ]/|xj:0 + Djp y|x]-:Xj + b(Djp ]/|xj:0 - Djp y|x]-:Xj) =0. (21)
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Let L1, ; be an operator of the problem (16) — (21), V (Ly,,;) be the system of root functions
of operator Ly, ;. This operator acts in a following manner Ly , iy := L(D)y, y € D(Ly,,),
D(Lyj) := {y e WZ(G) : bl jy=0,r=1,2,...,2n, j=1,2,...,m}.

Let us consider by fixing k(j) := (ki,ko,..., ki1, kjit1,... k) € IN"~1 solutions of the
problem (16) — (21) in a form of product

m
y(x ) TT tr(xe) ke=1,2,...,j#rr=12,...,m (22)
r:lr#]

For determination of an unknown function z(x;) we have the following problem

Y as(-1F ] (~)p 20 (x)) = Az(x)), A €€, (23)
|Bl<n r=1 77&]
Oz =25 o+ 23 x =0,5=1,2,...,n, (24)
O pys 2 = z(zsfl)]xj:o + Z(Zsfl)]xj:xj =0,s#ps=12,...,n, (25)
Unypjz = z2~1) |xj=0 + 2(2p=1) |xj=x; + b(z?P~D |xj=0 — z2r—1) |xj=x;) = 0. (26)

Let Ly ;) be the operator of the broblem (23) — (26). The operator LO,(kj) is partial case of
operator Ly x(;), ifb = 0.
So

m
L1 k() = Y ag(=1)F [T (pks)*:z%(x)), z € D(Lyx(j)),
|B|<n s=1,5#j

D(Ly ) :={y € W3"(0, X)) : 1,5z =0,5s =1,2,...,2n}.

Lemma 6. Foranyag € R, |B| < n, k(j) € Z§" ', p € {1,2,...,n}, b € R, the operator
Ly x(j) has eigenvalues (5) and a system of root functions V(L K(j )), which is a Riesz basis in
the space L, (0, X;).

Proof. The root w,(k(j), ) of the equation

m

Y ap T (ps)Pre?i =2, 27)

Blsn  s=ls#j

which is characteristic for the equation (23), we will chose from the condition Re wy (k(j), A) <
Rew,_1(k(j),A) < ... <Rewi(k(j),A) <O0.
Let us consider functions

20,1 (X]', )L) = (ZX] - X]) sinwl (k(j),A)X]-_lx]-,

204(xj,A) = 1(1 — e@ak(DAXj) =1 g (k(G)ANY o pwg(K(DMXG=%)) e [, (0, X;), =21,

2 . _
Z0,n+1 (X]', A) = (2X] - X])) \/ﬁ COos wq (k(]),)\)X] 1xj/
]

Z0n4(xj, A) 1= %(1 + ek A)X) =1 (p0q (k) A)Xj _ p0q(k(DAXj=2) ) Lr1(0,X;), g =2,n.
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If we substitute this expressions in boundary conditions (24) — (26), we will get eigenvalues (5)
and eigenfunctions of the operator Ly y(;)

Cospk,]-X]-’lxj, ki=12,.... (28)

2
2X;

01k (%), L1 k(i) =

Let wy(k;j, )\k) are roots of the equation (27), A = Ay obtained from the equation wy(kj, Ax) =
1 (2k; — 1) land Re wn(kj, Ax) < Rewy,1(kj, Ax) < ... <Rews(kj, Ap) <0.
Let us con31der system of functions
201 (33 K Ay) = (235 — X,

2

wq,ijka)_l ( (ewak

sinpy; X %y, ki =1,2,..., (29)

20,4(xj, kj, Ak) = %(He 1A% _ gty MIGT9Ny e 10 (30)

and a square matrix of the order n, which elements we can define as follows: p-th row defined
by functions (29), (30) and elements of other rows defined by numbers

Narki = (pk,j)l_zrgl,n+r,jzl q( jr k]/)‘k) (w (k M) X )Zr !

Mk = (=1)"4 [2X;, ki=1,2,...,q=2,...,n, r#p,r=12,...,n
Determinant of obtained matrix we will denote by Yipk (x]-, Ak), ki=12,...
Remark 1. For any fixed k(j) € N"~1, ifk; — oo, we get

81k (Ar) = wi(kj, Ag) 27tk X1 ™ =1,
Sgx; (M) = wa(kj, M) 27k X ™H = g X;(1+O(k; 1)),

]

where ¢, are roots of the equation (=1)"(e)* =1, Ime; <0, g=2,3,...,n
If we substitute function Y1pk; (x]-, Ag) in boundary conditions (23) — (26), we will get equal-
ities

el,s,jyl,p,kj = 0, ] # n-+ p, k] = 1, 2, ey (31)
n

Cp,kj = gl,n+p,jy1,p,kj = 2X; pk Wk ()Lk) H 5q,kj(Ak)/ k] = 1, 2, ey (32)
q=1

where Wi (Ax) is a Wandermond determinant of the order n, which is constructed by numbers

~1,0,,(A)? 9=2,3,...,mn

Remark 2. For any fixed k(j) € N"~! number sequence Wi;n(Ax) converges to Wandermond

determinant W(e%, .82, if kj — oo, which is constructed using numbers e%, el

Under this conditions sequence 5q,k,~ (Ax) convergestoe;, q=1,2,...,n.

Then there exist positive numbers Cy, Cs such that following inequality takes place:
0< Cy < lepyl 0y, " < Cs < oo kj=12,.... (33)

Let us choose function y, , k; (xj, Ax) so that the equality

1
Cnrpyo,p(xj, ki, Ax) = (\/ZX) Pip ! (34)



THE NONLOCAL BOUNDARY PROBLEM FOR THE ELIPTIC EQUATION 223

takes place. An adjoint function Vo k; (xj, Ll,(k].) of the operator Ll,(kj) we define by sum

2 1
v(),kj (X]', Ll,(kj)) = ﬁ Sll’l(2k]' — 1)7'CX] X]' + Wl,p,j,kyZ,p,kj (X]', Ak)/ k] = 1, 2, e (35)
To define unknown parameters 7, jx We substitute expression (35) in boundary conditions
(25), (26). If we consider formula (34), we obtain

Mpjk = (=1Pb, kj=1,2,.... (36)

Remark 3. Functions 1, (xj, At) and ya,p k;(xj, Ax) connected with notions

Yo,piei (%, Ak) = Xp,jk¥1,p.k; (Xjs k), (37)
where Cg < ])(p,]-,k\ <Czp=12...,nj=12,...,mkeNN"

Therefore operator Ll,(kj) has a system V(Lll(k],)) of root functions (29), (35), (36) in sense of
equations

Ly, k)00, (%), L, k)) = Arvo; (X, L i) + Spi 01k, (X5 L ;)
—2n  OA
— q=2n k. , — - m
ép,kj = det(nq’r’kj)rzl,_n,r;épap].,kXp’]’knlfp']'kcp’kj’ p=12,...,nj=12,...,mkeIN".

For problem (21) — (26) there exists an adjoint problem which has a system of root functions
that is biorthogonal to V(Ll,(kj)>~ Therefore the system V(Ll,(kj)) is total and minimal in the
space L, (0, X;).

Let Hp,(k].) be a root subspace of the operator V(Ll,(kj)) which corresponds to two-fold
eigenvalue A;. According to the Shkalikov theorem [29] the system of subspaces { H p.(K;) },‘3‘]?:1
is a Riesz basis of subspaces.

Let y3,pk; (xj, A) 1= vo;(;, Ll,(kj) — (00, 01,k L2(0, Xj) )01 1, (x5, L1,k ). Let us notice that
functions y3 p, . (x, Ak) and vk, (xj, Ll,(k].)) are orthogonal in the space L, (0, X;). Let

Yap ki (% Ak) = @p 3,k (Xjs Ak), (38)

where ¢, . satisfy condition Hy4,p,kj(xj,)\k) ;L2(0, X;)|| = 1. Therefore functions Ya,p i (X M)
and vllk].(x]-, Ll,(k]-)> form an orthonormal basis in the space Hp,(k]-)~ Since (17) takes place we
obtain following: system of functions {vy,(x;, Ll,(kj))yzi,p,kj(sz Ak)},‘:‘;zl is a Riesz basis in the
space L, (0, X;).

Therefore such positive numbers Cg, Cy exist that for any function ¢ € L5(0, X;) inequality

o]

Csll; L2 (0, X)) < ) (9,015 L2(0, X)) + (@, Yap i L2(0, X;))? < Collg; Lo (0, X)) |12
k=1

takes place. If we consider equation (38) and inequality 1 < ¢, < oo for any function ¢ €
L»(0, Xj), we obtain the following estimation

Ciollg; L2(0, X)) [* < ) (@, 01 L2(0, X)))? + (9, Y3 . L2(0, X;))? < Cuallg; La(0, X))
k=1
(39)
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Let us prove that the system of functions V(Lll(k],)) is Bessel in the space L, (0, X;), so there
exists a positive number Cy; such that following inequality

o]

Y (@, 00k L2(0, X;))% + (9, 0155 L2(0, X;))? < Cuall; L2(0, X;) |1? (40)
k=1

takes place. From the Cauchy inequality and the definition of y3,, we have the following
estimation

(9,904 L2(0, X)) < 2((9, y3,p 5 L2(0, X)) + (9, 015 L2(0, X}))?) (001, 1,155 L2(0, X))

The system of functions V(Ll,(kj)) is orthonormal in the space (0, X;). Then inequality
|(vo,kj,01,k].;L2(O, X]-))|2 < Cy3 < oo takes place. If we consider the last inequality and (38)
we will get (40) if C1p = 3C9 + 2C13.

Let R(Lyx(j)) := Ej + S(Li(j)) : L2(0,X;) — L2(0, X;) be an operator that acts V(Aq;) —
V(L x(j))- If we consider operator S(Ly(j)) : L2,0(0, Xj) = L21(0,X;) for Ly1(0, X;) — 0, we
will obtain S(Lllk(]-))z = 0. Therefore R_l(Ll,k(j)) = Ej — S(Lq(j)) exists.

Operator R(Ly x(j)) := Ej + S(Ly1k(j)) : L2(0, Xj) — L2(0, X;) is bounded since the system is
Bessel. Therefore the operator R_l(Lllk(]-)) 1 L»(0, Xj) — L2(0, X;) is also bounded. Therefore
the system of functions V(Lll(k],)) is a Riesz basis in the space L, (0, X;). O

7 TRANSFORMATION OPERATORS FOR DIFFERENTIAL EQUATIONS OF EVEN ORDER
. © . .
Let us consider a sequence {Qkf}k C R and consider an operator A, ; such that its

eigenvalues coincide with eigenvalues of operator A ; and root functions are defined by equa-
tions

2

oLk (%), Az pj) = ﬁCOSPk,jxp (41)
2 .

U(),kj (x]‘, AZ,P,j) = ﬁ SINn P i Xj + ijyl,P,kj (x]-, Ak) ’ k] =1,2,.... (42)

Let R(A3,,;) = E+ S(Ay,,;) be an operator in the space L,(0, X;) defined by V(Ag;) —
V(Ay,,j)- From the definition of the operator R(A, ;) we obtain S*(Ay , ;) = 0. Therefore, the
operator R™1(A,,,;) = E — 5(Ay, ;) exists.

Lemma 7. For any ag € R, 1Bl < n,je€{1,2,...,m}, k(j) € N"! and for any sequence
{Bkj},i‘;zl C R a system of functions V(Ay ;) is total and minimal in the space L,(0, X;). The

system of functions V(Ay,, ;) is a Riesz basis in the space L, (0, X;) if and only if the sequence
{Bkj},‘z;’:l is bounded.

Proof. First part can be proved analogously to Lemma 4. O

We will denote by Qp(LO,(kj)) a set of all operators Aj , ; defined by (41), (42). Also we de-
note by rp(LO,(kj)) a set of all operators R(A; ), which are generated by operators A, ,; €
q)(LO,(kj))- From formula (35) we obtain R(L;(j)) := Ej + S(L1x(j)) € FP(LO,(kj))- Let us

consider two sequences {9,1},},‘;7:1, {9%},‘3‘;’21 and define two transformation operators R; =
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Ei+5; € rp(Lo,(kj))/ g = 1,2. Let us consider equality S% =0, g = 1,2, we can define
Ip(Loy k]-)> an operation of multiplication on the space

R1R2 = E]' + 51 + 52. (43)

From R, ! = E;j — S, it follows that the set I',(Ag;) is a group. Since the equality RiRy =
E; + 51+ S2 = RaR; takes place we obtain that the set rp(Lo,(kjﬂ is a commutative group.

Lemma 8. For any fixed ag € R, 1Bl <mn, j=1,2,...,mk(j) € N1 the system of functions
V(Ay,y,j) is a Riesz basis in the space L, (0, X;) if and only if the sequence {6}, },‘2‘;:1 is bounded.

This lemma can be proved analogously to Lemma 7.

Let us choose an arbitrary n sequences of real numbers {Hp,k],},‘:;’:l, p=12...,m and
consider an operator Az ;. This operator eigenvalues coincides with eigenvalues of Ag; and
roots of the function are defined by equations

2

U1 ; (xj, A3,]-) = —\/TX] COS Pg,jXj, (44)
2 i !

v(),kj (X]', A3,]') = ﬁ smpk,]-x]- + p;l Hp,kjyllp,kj (X]', )Lk), k] = 1, 2, e (45)

Let R(A3j) = E + S(Aj3;) be the operator defined in the space L»(0, Xj) by V(Ag;) —
V(As,). From the definition of R(Aj3 ;) we obtain 5?(Aj ;) = 0. Therefore operator R~ (A3 ;) =
E — S(Aj3,) exists.

Lemma 9. Forany ag € R, |B| < n and sequences {Qp,kj};?;:l CR, p=1,2,...,masystem of
functions V(A3 ;) is total and minimal in the space L,(0, X;). The system of functions V(A3 ;)
is a Riesz basis in the space L, (0, X;) if and only if any sequence {Qp,kj},‘:;’:l, p=12,...,mis
bounded.

We can prove this lemma analogously to Lemma 7.
Let us define root functions of the operator L, , ; by equalities

m
ok (%, L,p,j) = vk;(xj, L1 k() IT ©wx(x), ke N™
r=1,r#j

By the system V(L ;, ;) of root functions of the operator Ly , ; we define operator R(Ly ;) :=
E + S(Ly,p,j), which acts in the space L, (G) . This operator transfer system of functions V(L)
to the system V(L1 ;). So we obtain R(Ly p,jvk(x, (Lo)) := vk(x, L1,;), k € N™. The operator
R(Ly,p,;) is defined by equality

R(Lypj) =E1®@ - ®Ej_1 ®R(Lyx(jy) ®Ejs1--.Em (46)

where E; is the identical transformation in the space L, (0, Xs),s =1,2,...,m

Let us denote by I',; (Lo) a set of the operators which is defined by formula E; ® - - ®
Ei 1 ®R(Azpj) ®Ejy1--- ® Epy, where R(Ay ;) € T(k(j)). A set of the operators R(Lg) =
Ri ® Ry - - ® Ry, we will denote by I'y(Lg).
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Remark 4. We define multiplication on the setT',(Lg) according to formula (43) such that this
set will be abelian group.

Theorem 4. Let assumption Py takes place. Then for any fixed ag € R, |B| < n an operator
Ly,p,; has eigenvalues (5) and system of root functions V(Ly ,, ;), which is total and minimal in
the space L(G).

If assumptions P, Pj take place then the system of functions V(L1 ;) is a Riesz basis in
the space Ly(G).

Proof. According to Lemma 6 for any k(j) € IN"~! there exists a system of functions
W(Ly k() = {wk].(xj, Lix()), kj =1,2,...}, which is biorthogonal to the system V(Ly ;).

Therefore we can define elements of the system W(Ly,;), which is biorthogonal in the
space L»(G) to the system by V(L1 ;)

m
Wi (%, Lapj) = wi (x5, L) [T wor (x0), k€ N™.
r=1,r#j

So the system V(L) is total and minimal in the space L, (G). If assumptions P, P; take
place then root functions (44) of the operator L; , ; are normalized for any k(j) € N"~!and a
system V(Ly,, ;) is a Riesz basis of the space L>(G). O

8 PERTURBATED BOUNDARY PROBLEM WITH ACCENTED VARIABLE

Let us consider for any fixed j = 1,2,...,m, p =1,2,...,n equation (16) and problem with
boundary conditions

bspy i=DF 2yl _g+ D2 y!xr:Xr =0, r#j,s=12...,nr=12,...,m, (47)

Conysy :=DF Myl o+ DF Myl _x =0, j#rs=12,..,nr=12,...,m (48
2p-1 2p— iy

by =Dyl o+ Dyl x + 2 Y by D y‘ —0. (49)
r=04=0

Let Ly, ; be the operator of the problem (16), (47) - (49), Ly v := L(D)y,y € D (Lyy),
D (Lp) := {y € W22” (G) : gZ,s,jy =0,s=12,...,2n,j=1,2,.. .,m} .Let V(L,) be the system
of root functions of L,.

Consider for any fixed k(j) € IN"~! solutions of the spectral problem for operator L in a
form of product (22). To define unknown function z(x;) we obtain the following problem

m
Y. (=DPiag T] yf“ (26)) (xj)) =2Az(xj), AeC, (50)
|Bl<n s=1s#]
ﬁzlsl]-z = Z(ZS_Z) |xj:O +Z(25_2) |xj:X]-: 0,s=12,...,n (51)
Uy s z = z(-1) + z(&-1) =0,s#ps=12,...,n, (52)
xj=0 xj=X;
2p-1) 2p-1) (Y ()

/ 7 1= z(2P— P- b q =0. 53
2,n+p,]z z £=0 +z X=X, + rgqu%) q,1,p.j Z Xj=rX; ( )
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Let Ly ;) be an operator of the problem (50) - (53). Therefore,

Lzlk(]')z = Z 'B]aﬁ H 2/3] ), z€D <L2,k(])) ,

|Bl<n s=1,5#j
D <L2,k(j)> = {y eWd" (0,X)) i froz =0, 5= 1,2,...,2n}.

Lemma 10. Let assumption Py holds true. Then for any ag € R, by, € R, [B| < n,q =
0,1,...,myj k(j) € N"! operator L, k(j) has eigenvalues (5) and a system of root functions

%4 <L2,k(]-)> , which is total and minimal in the space L, (0, X;).

If assumtion P, holds true then the system of functions V (L, j)) is a Riesz basis in the
space L>(0, X;).

Proof. The isospectrality of operators Lg k) and Lj;(j) can be proved by the same way as in
Theorem 9.
If assumtion Py holds true, then eigenfunctions of the operator L, ;(;) are following

__2 -1 —
vl,kj (x]-, L2,k(j)> = \/TYJ COSpk].X]- x]-, k] =12,.... (54)

Root functions v, (x;, Lz,(k].)) of the operator L, ) are defined by

2. _
Uo,k]-(xj, Lz,(k]-)) = \/ijsmpijj 1x]- + 12, kY1,pk; (x]-,)\k) ,ki=1,2,.... (55)

To define 7, ; x we can substitute expression (55) into boundary conditions (51)-(53). If we
consider formulas (32), (33) we obtain

Mopik = (Cp,kj)71€§,J-Tzkj—1,j(xj)f ki=1,2,.... (56)

Therefore, operator L,y (;) has a system of eigenfunction (54) — (56). If we consider formulas
(31), (32) we obtain that the operator L, k) is a partial case of the operator A, ;. Therefore,

from Lemma 7 it follows that the system V(L2 k(j)) is total and minimal in the space L, (0, X;).

Let assumption P; holds. Since equations (33), (49) take place, we get }172 v, k} pkp 2 _1

C1a < 00. So from Theorem 9 it follows that the system V <L2,k(j)> is a Riesz basis in the space
L2(0, X;). O

Let us define root functions of the operator L, , ; by equalities

m
Uk (x, LZ,PJ) < ir L2k ) 111# T kr , ke IN™. (57)
r=1,r#j

Using the system V (L, ;) of root functions (57) of the operator L, , ; we can define an operator
R(Lyp,) := E+ S(Lp,), which acts from system of functions V(Lo) to the system V(L ;).

The operator R(L,,,;) can be defined by equation (46). If assumption P; holds true, then for
any k(j) € N~ ! there exists a system of functions W(Lox(jy) = {wr;(xj, Logjy), ki =1,2,...},
which is biorthogonal to the system W (L, x(;))-
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Therefore, we can define elements of the biorthogonal system W (LZ,p,j) in the space L, (G)
to the system V(L ;) by equality

Wi (x, LZ,p,j) = wk], < jr LZk ) H Trk xr k S IN™.
r=1,r#j

So the system of functions V(L, ;) is total and minimal in the space L(G).

If assumptions Py-P; take place then system of functions V(L) is Bessel in the space
L, (G), since the transformation operator R(L;, ;) is continuous with action L(G) — La(G).
A converse operator is also bounded. Therefore the system of functions V(L ;) is a Riesz
basis of the space L,(G). So we prove following theorem.

Theorem 5. Let assumptions P1—P, take place. Then for any fixed ag € R, byp,; € R, |B| <
n operator Ly, ; has eigenvalues (5) a system of root functions V (L, ), which is total and
minimal in the space L,(G).

2. If assumptions P1-P3 take place, then system of functions V(L,,, ;) is Riesz basis in the
space L, (G).

Consider boundary problem

L(D)y:=)_ aﬁDzﬁy = Ay, (58)
|Bl<n
. 1252 252 _ _ _
lasy =D "yly o+ Dy “yly—x, =0,s=12,...,n,r=12,...,m, (59)
Canissl i= Dzs—1 Yo+ DF Myl _x =0,s=12,...nr#jr=12..,m (60)
2p—-1
Caopip,y i= D} o+ Dyl x By =0, p=1,2,...,n, (61)
Mp,j
by = Z Z bg,rpj Dj
r=04=0 X;

Let L3 ; be the operator of the problem (58) - (61), V (Lg/j) be a system of root functions of
the operator L ;. Let L3y := L(D)y, y € D(L3), D(Ls;) := {y € W3"(G) : b5y =0,
s=1,2,...,2n,j = 1,2,...,m}. Let us consider for fixed k (j) € IN"~! solutions of spectral
problem for operator L3 in a form of product (22).

To define an unknown function z(x;) we have the following problem

m 28,
Z ag H <ks7'ch_1> g z(2)) (x]-) = Az (x]-) , A€C, (62)
|BI<n  s=1,5%#j
4y — ~(25—1) (2s—1) _ _
63,&]]/. z 10 z =X 0,s=1,2,...,n, (63)
Uiz =237 D] 421 +022=0,p=12,...,n (64)

xj=0 xj=X;

Let L3 ;) be the operator of the problem (62) — (64) and

Lakz:== ) ap TT (oxe)® 208 (), z € D(Ls (7)),
|B|<n  s= 15#]

D (L)) = {y € W' (0,X)) 1 £y = ;s = 1,2,...,2n} .
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Lemma 11. Let assumption P, holds true. Then for any fixed ag € R, byo,; € R, |B| < n,
k(j) € N™1 operator L3 ;) has eigenvalues (5) and the system of root functions V(L3,k(]-)),
which is total and minimal in the space L5(0, X;).

2. If assumption P, holds true then system of functions V(L3 (;)) is a Riesz basis in the
space L, (0, X;).

Proof. The Isospectrality of operators Lo, (k) and L (j) can be proved in the same way as in
Lemma 4.
If assumption P holds true we obtain following eigenfunctions of Lz y(;)

cospk,jijfl, ki=12,.... (65)

U1k <xj/ L3lk(7)) - \/%

—

Root functions v (xj, L k() ) of the operator L3 ;) we defined by

2 n
vO,kj <xj/ L3,(k]-)) = ﬁ sinpk,]-X]-’lx]- + ;;1 N2,p,j kY1,p.k; (x]‘, Ak) , k]' =12,..., (66)
where numbers 1, ;  defined by equation (56). Therefore, operator Ls ;) has a system of
root functions (65), (66). If we consider formulas (31), (32), it is easy to see that operator
Ly x(;) is a partial case of operator A, ;. Therefore from Lemma 7 it follows that the system
V(Lg(j) is total and minimal in the space L (0, X;) and the biorthogonal system W(Lg;)) :=
{wkj (X]', L3,(kj)) € Lz(o, X]), k] =1,2,... } exists.

n
Let assumption P, takes place. From (49) we can get ). ‘cllp,j,k‘z < (Ci5 < oo. Then the
p=1

system V(L3 ;) is normalized and from Lemma 9 it follows that the system V(Lz;(;)) is a
Riesz basis in the space L»(0, X;). O

Let us define root functions of the operator L3 ; by equations

m

vk (x, Lg,,j) = U, <x]-, Lg,k(j)) I;I#‘Tr,kr (x), ke N™. (67)
r=1,r#j

n
Using the system V(L3 ;) of root functions (67) we can define an operator R(L3 ;) := [T R(L2p,)
p=1

n
€ Ti(Lo), S(Ls;) := S(Ly,p,;), which acts from system of functions V (Lg) to the system
p=1
V (L)

Theorem 6. Let assumption Py holds. Then for any fixed ag € R, byo,; € R, |B| < n the
operator L3 ; has eigenvalues (6) and the system of eigenfunctions V(L3 ), which is total and
minimal in the space L(G).

2. If assumptions P1—P3 hold, then the system of functions V(L3 ;) is a Riesz basis in the
space L, (G).

Proof. Let assumption P; holds. Then according to Lemma 11 for any k(j) € IN"~! there
exists a system of functions W(Lzx(j)) = {wk],(x]-, L3 k(). kj =1,2,..., } which is biorthogonal
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to the system W(Lz(j)). Therefore we can define elements of the system W (L), which is
biorthogonal in the space L;(G) to the system V(L3), by the following way

m

wk(x, L3,j) = wk],(x]-, L3,k(j)) H Ty k, (xr) , ke N™.
r=1r#j

So the system of functions V (L3 ;) is total and minimal in the space Ly(G). Last part of the
proof can be made analogously to Theorem 5. O

9 PROOFS OF THE MAIN THEOREMS

Let us consider spectral problem forp =1,2,...,n,j=1,2,...,m

L(D)y:= ) agD*y= Ay, (68)
|Bl<n
2p—2 2p—2 .
Cyiy = D].P y|xj:0+ D].P y|x]‘:Xj:0’ p=12...,nj=12...,m, (69)
2p-1 2p-1 1
£n+p,jy = D]‘p ]/|x]:0 + Djp y|x]:Xj + Z Z bq,r,p,jD?mxj:er =0. (70)
r=04g=0

Proof. Proof of Theorem 1.

Let
m m
R(L):=J]R;j(Ls), R(L):=E+)_Sj(Ls) € (Lo). (71)
j=1 j=1
Root functions of the operator L of problem (68) — (70) we can define in the form
m
Ok (x, L) = Hvk], (JCj, L3,k(j)) , ke Nm,
j=1
. (72)
vk (%, L) = v (x, Lo) + ) _ S(Ls,j)ox (x, Lo) -
j=1

SoV (L) :={vk(x,L) € Ly (G) : vy (x,L) = R(L) vy (x,Lp), k € N™} is a system of root func-
m

tions. Since biorthogonal system of functions wy (x,L) = [] Wy, (x]-, L3,k(j)) Lk € IN™, exists,
j=1

then we have the proof of the theorem. O

If assumptions of Theorem 2 hold true, Theorem 6 takes place too. So R(L3;) € [L2(G)],
j=1,2,...,m. If we consider equation (71), we will obtain R(L), R"*(L) € [L»(G)]. Therefore
V(L) is a Riesz basis of the space [L2(G)] by definition.

Remark 5. There exist positive numbers C1(L), Co(L) such that for any function
f(x)= ) fivk(x,L) € Lo(G), fi = (f,wp; L2 (G)) .k € N™,
Ik|=0

holds the following inequality

(e 9]

Cioll i L2 (G) I Y 1fcl? < Curllfs Lo (G) | (73)
IK[=0



THE NONLOCAL BOUNDARY PROBLEM FOR THE ELIPTIC EQUATION 231

Let us consider boundary problem

L(D)y:= Y azD%y =, (74)
|Bl<n
logy = D¥ 72y oo +DF 2y | ox,=0,j = 1,2,. (75)
1
ES—O-n,j]/ = D]2571]/ ’x +D25 1y ‘x =X; + Z Z bquJD y ’X —x], 0, (76)
r=04g=0
= Z Z frxvrk(x, L), frx = (u,wpi(x,L; Lo(G)), r € Qu, k € N™. (77)
|k|=07€Qm

We will search a solution of the problem in the form of series

(9]

u(x> = Z Z ur,kvr,k(xr L)- (78)
lk|=07€Qm
We will use the following notations: f, s = H}”:l frj+s]-,k]-r Crik = H}”:l er,kj/ (;"r].,kj =

Dy, ; Lig|<nt /3piﬁ . If we substitute series (77), (78) into formula (74), we can get

m
11—

Uy = Z Z )\k |s‘fr+s,k€r+s,k1 ke IN", r € Qu,

j=1 rj+sj§1 (79)

e o]

ulx)=3Y Y i Y. )\;:1_‘5|fr+s,k§r+s,kvk(x/L)-

K[=07€Qu j=1rj+s;<1

If we apply Cauchy inequality to (78) we will obtain the inequality |u, x|? < Cig Y 4eQm ]uq,k\z.
Therefore, using inequality (73) we can get

14;L2(G) 1> < Cag (L) [If; L2, (G) I, Cr9 = CisCirCyy- (80)

Let us suppose that coefficient of derivative D" equals 1 and give a proof for variable x,,. Let
us show that D2"u (x) € Ly (G). For any fixed k(m) € IN"~! we consider boundary problem

> (=1)Frag H Moy PP (xm) = f (xm), (81)
|Bl<n
Coomy =y 2 | _o4+yZ V|, _x,=0,5s=1,2,...,n, (82)
Onsmly = y(zs_l) » + y(zs_l) = 0,s#ps=12...,n, (83)

- = X
Ompmy =y |y 46,2 =0, (84)
Mp,m
my_zzbqrp]]/q e (85)
r= 0 q m—Am,r

Let us consider functions y(xy,), f (%) in a form of series which is constructed using system
of root functions of operator Ly x(y),p := Lo x(m):

y= Z Zysk Vs k(X Loje(m),p)y f = Z Zfskm Vs ko (X, Lo (), p)-

km=1s=0 km=1s=
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If we substitute this expressions into equation (81) we can obtain ygx,,, = A, 1 fok,r Yik, =
—Ap 2Co,kmf Lkmp T M ! f1,k,,p- Therefore,

(9]

v =Y A fokmp@0kn (X Lajimyp) + (=A% 2C0 ki Lbmp T A Ykmp) 0L (X0 Lo je(mys P))-
km=1
Let us consider sequence of numbers 7,k 1= 0y kA, U kmw = 1,2,.... The sequence Y, k =

m
oAt =1-A1 ¥ ag I1 (oms)*Ps = 1, kyy — o0 is convergent.
|Bl<npm<n = s=1
Therefore 0 < Cy1 < ¥y < Cyp < 00.

Consider the system of functions

Vm,k,p = {vr,km,p(x) € Lz(O, Xm) : Ur,km,p(x) = ')’m,kvr,km(x/ LZ,k(m),p)f km=1,2,... }

If assumption of Lemma 10 holds, from the last inequality it follows that the system V,, ; , isa
Riesz basis in the space L(0, X,).

Let Vl,m,k,p = {vl,r,km,p(x) € La(0, Xm) : vl,r,km,p(x) = )‘k_ngnnvr,kn,(xr LZ,k(m),p)/ r =
0,1, ky =1,2,... }.

Since operator D2 commutate with the involution I, then analogously to Lemma 4 we
can prove that the system V; , , is total and minimal in the space L2 (0, X ).

Let vp, k., 0(X) = 011k p(X) = D0k, p(X), =101k =1,2,.... From formulas (28) - (30)

<

m

, -1

it follows v30k,,p(¥) = ﬁl,km,ppmkpZO,q( Xj, ki, Ak) + 22 Os ko p20q (Xj Kjs Ak), where [0, p
s=

Cpy < 0. Therefore, Z Z (vzrkm,p( x); L2(0, Xi))* < oo.
km=1r=0

So the system V), , is a Riesz basis in the space L, (0, Xy) and the system Vi, mk,p 18 total
and minimal in the space L, (0, X, ). Therefore, from Bari’s theorem [6] we obtain: the system
Vi,mk,p is a Riesz basis in L (0, X;s) and therefore, the operator R(Vy ) : V(Lox, — Vimx is
bounded. The product of this operators is also continuous in the space L, (0, Xy ).

So for any fixed k(m) € N"~! inequality

2 Z (D2"u,v, i (x,L); Lo(G))? < Ca3 Z 2 f,ok(x,L); La(G))?
km—l r= km—l r=

takes place. If we summarize by k(m) € IN"~1, we will get
D3 |u; Ly (G)|* < Cos|f; Lo (G) >

The assumption made in the inequality proof is insignificant since if assumption P3 holds co-
efficients of the hiest degree derivatives is nonequal to zero and has the same sign.

Analogously we can prove that Df”u(x) € L,(G), j =1,2,...,m —1 for any other vari-
ables. So using the definition of norm in the space L,(G), we obtain the proof of the Theo-
rem 3.
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bapanensknii 51.0., IBactok I.51., Karentok IT.1., Coromko A.B. HenokanoHa kpatiosa 3adaua 3i 30yperns-
MU Y MO8 AHIMUNEPioduUHOCHT 015 eNNMUMHO20 PIBHIHHS 3 nocmitinumu Koepiyicnmamuy // Kapmarcebki
MaTeM. my6A. — 2018. — T.10, Ne2. — C. 215-234.

Y poboTi B 0bMexxeHOMY m-BUMipHOMY THapaaeAerineai Meroaom Dyp’e AocAiAXYeTbCS 3apa-
Ya 3 HEAOKAABHVIMM KPalOBMMM yMOBaMM, sIKi € 36ypeHHSIMM YMOB aHTMIIEPiOAMYHOCTI. BuBueno
BAACTMBOCTI orepaTopa meperBopeHHS R : Ly(G) — Ly(G), sSIkmii BCTAaHOBAIOE 3B'SI30K MiX ca-
MOCHPSDKEHMM OIlepaTopoM L 3apadi 3 yMOBaMM aHTMIIEPiOAMYHOCTI Ta omepaTopoMm L 36ypenoi
HeAOKaAbHOI 3apaui RLy = LR.

Taxox mo6yA0BaHO KOMyTaTUBHY IPYILy omepaTopis meperBopenssi I'(Lj). BcraHOBA€HO, 110
KOXHOMY omepaToposi IepeTrsopeHHst R € I'(Ly) : Lo(G) — Ly(G) BiamoBiaae aesika abcTpakTHa
HeAOKaAbHa 3aaava i Hasmaku. [To6yaoBano cuctemy V(L) xopeHeBux dpyHKIIiit omeparopa L, sika
MICTUTD HeCKIHUEHHe UMCAO IpUEAHAHMX pyHKIIiit. BusHaueno ymoBy, ipu sikux cucreMa V(L) mos-
Ha Ta MiHiMaAbHa B ripoctopi Ly (G), Ta yMOBY, IIpy sikmx BOHa € 6a3oto Pica y mpoctopi Ly (G).

Y Bumaaxy, sikiio crcrema V(L) e 6asoro Pica B mpoctopi Ly (G), BCTAaHOBAEHO AOCTaTHI YMOBH,
IIpY SIKMX HEAOKAABHA 3aAaUa Ma€ EAVIHVIL pO3B’sI30K Y BUTAsIAL psiay Dyp’e 3a cucremoro V(L).

Kntouosi cnosa i ¢ppasu: avdpepeHIiaAbHO-OIIepaTOpHe PiBHSHHS, BAacHI dyHKII, 6asa Pica.
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THE INVERSE AND DERIVATIVE CONNECTING PROBLEMS FOR SOME
HYPERGEOMETRIC POLYNOMIALS

Given two polynomial sets { P, (x)},,>0 and {Qn(x) },>0 such that deg(P,(x)) = deg(Qu(x)) =
n. The so-called connection problem between them asks to find coefficients &, ; in the expression

n
Qu(x) =} &, Pc(x). The connection problem for different types of polynomials has a long history,
k=0

and it is still of interest. The connection coefficients play an important role in many problems in
pure and applied mathematics, especially in combinatorics, mathematical physics and quantum
chemical applications. For the particular case Q,(x) = x" the connection problem is called the
inversion problem associated to {Py(x)},>0. The particular case Q,(x) = P, ;(x) is called the
derivative connecting problem for polynomial family {P,(x)},>¢. In this paper, we give a closed-

form expression of the inversion and the derivative coefficients for hypergeometric polynomials of
the form
—n,a —-nm,n+a —n,a
F , oF , 2F ,
“{ Z} “{ Z} “{ n+bz}

b b
is the Gauss hypergeometric function and (x), denotes the

(Ck F

1, =0,
Pochhammer symbol defined by (x), = "
x(x+1)(x+2)---(x+n-1), n>0.

All polynomials are considered over the field of real numbers.

Key words and phrases: connection problem, inversion problem, derivative connecting problem,
connecting coefficients, hypergeometric functions, hypergeometric polynomials.

where 2F1{a’cb'z} _ Ig) (a)kgb)k zk

Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine
E-mail: leonid.uk@gmail.com

INTRODUCTION

Given two polynomial sets { P,(x) },>0 and {Q,(x)},>0 such that

deg(Py(x)) = deg(Qu(x)) = n.

The connection problem between them consists in finding the coefficients «,, ; in the expansion

Qu(x) = ) g Pi(x).
k=0

For the particular case Q,(x) = x" the connection problem is called the inversion prob-
lem associated to {P,(x)},>0. The particular case Q,(x) = P;_ ;(x) is called the derivative
connecting problem for polynomial family {P,(x)},>0.
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The study of such a problem has attracted lot of interest in the last few years. The in-
verse problem for classical orthogonal polynomials are considered in [6], for more general
case see [7]. The connection coefficients have been computed explicitly for classical orthogonal
polynomials in [6] and [8].

The derivation connection problem ( with respect to parameter derivatives) for hyperge-

ometric polynomials »F; [ na z| was solved in [9]. In [10, 11] the first author solved the

b
derivation connection problem for the Fibonacci, Lucas and Kravchuk polynomials and use

the solutions to produce new combinatorial identities for these polynomials.
Our aim in this paper is to compute the inversion and derivative connection coefficients for
hypergeometric polynomials of the forms

—na —nn-+a —na
ZFl{ b Z], 25{ b Z], 2F1{in+b Z],
where
a b ] (a)(b) 2
R "3 = B

is the Gauss hypergeometric function.
The main results of this paper are gathered together in the following two theorems.

Theorem 1. The following identities hold:

(b)n E —ii+4a
@+ 2" b

(b+i)y— —ia
(b+2n_1>leFl[i+b

(iv) z":i(—l)ic)(b—l)%zﬂ[ i z].

. d [—n a
(i) Ezpl_ b

. d [—nn+a e ~(n\ (a+2i)(n+a)i
o gon = B (e () G e
—n+i+1 b+i a+i+n+1
b+i+1 a+2i+1

|

z: - niz(—l)”ﬂ"’” b=y 1{ —ia
Z:| .

Z] bt+n—1 [—(n—l)a

(iii) 2= 2R it (b —n),
na+n—1) —(n—1)a
—ZFl[—(n —1)+0b

il —i+b
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1 BASIC DEFINITIONS AND IDENTITIES

The generalized hypergeometric series is defined by

E [611 ay ... ap z] _ & (@)@ (ap)i 2*

PH1by by ... by = (b1)i(D2)k - - - (b kY
where a;,b; are complex parameters and (x), denotes the Pochhammer symbol (or shifted
factorial) defined by

&)_{L n=0,
" x(x+1)(x+2)---(x+n—-1), n>0.

It is assumed that b; are not negative integers or zero.

b
The partial case 2 F [ac z] is called the Gauss hypergeometric function. The series con-

verges when |z| < 1 and also when z = 1 provided that Re(c —a — b) > 0. In this case the
Gauss summation identity holds:

oA "1 = ey W

where I'(z) is the Gamma function defined by the equality I'(z + 1) = zI'(z).
When a = —n or b = —n is a negative integer the series terminates and reduces to a
polynomial of degree 1, called a hypergeometric polynomial:

- () e

2F {
b i=0

For the hypergeometric polynomial the summation identity becomes

[ 1<t

and this is equivalent to Vandermonde’s theorem. If the hypergeometric function is differenti-

ated of z, it gives

d ab ab a+1b+1

Ezﬁ{ Z}—?z 1{ c+1 ‘Z} ©)
We also need the following properties of the Pochhammer symbol
~ T(x+n)
(X)n = T (4)
_(x +n-—1 _ oy (X

(X)n n.( ; (=x)p = (—1)"n! . (5)
(=x)n = (1) (x =1+ 1)y, 6)
() n+m = (X)m(x +m)y, @)

(see [1,2] for more details). We will also often use the summation interchange formula

Z al‘b]‘ = Z ( ai> b], (8)
/ j=1 \i=j

i
i=1j=1 =

(see [3]).
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2 INVERSE PROBLEM

n
A solution of the inverse problem for the family Py(z) = Y. p, 2", namely
k=0

2" =) aiPi(z) =) (Z pi,kzk) =) (Z “iPi,k) Z,
k=0 i=0 i=k

k=0 k=0

defines the orthogonal relation

n
Y wipix = buks
i—k

©)

where J,, i is the Kronecker delta. Similar orthogonal relations are frequently encountered in
combinatorial problems and have been extensively studied by Riordan [4]. Thus, to solve the
inverse problems we will check whether the numbers «; and the coefficients of the correspond-

ing hypergeometric polynomials are orthogonal.
Let us prove Theorem 1. For the item (i) we just check an orthogonality. We have

g (- R E
()

i=0 k=0

as required. Here we have used (8) and the well known (see [4]) orthogonal relation

() -

(ii) We have

lf (J%zﬁ{ o = @t & O K
-3 (2() (1) a2 D L0l (;)?k) Zk

- (i<—1>f*k<’f) (+ <a+fif>i_kﬂ)zk

- B i (Eorern ()G )

} Z <->(a+2i)(b)n Lo(—i)k(ita)i 2

:kio(b) UETES (Z)( l+k“+2l)<n f)(itﬁi)l)ﬂ{
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Let us prove the orthogonal relation
Z ; =K\ fa+n+i\ "
—1) a4+ 20y (" = G
1;(( )" at Z)<n—i n—k+1 nk
Rewrite the relation in an equivalent form by shifting the index of summation from i to i 4 k:
n—k
—k\(a+n+i+k
1 2(i+k = Oy k-
v vaaaem(" ) () ) =dn

Now we again perform the shifts n — k — n and a + n + 2k — a and will get the relation in
such a simplified form

For n = 0 the both sides are equal to 1. Let us prove that the sum equals O for n > 0. Indeed,
we have

i( 1)’ (a+21)<1><a+n+l> 1:i( i(a+2i)n'(n +1)(a+i—1)!

= n+1 = in—i)l(a+n+i)!
(a=-Dn! & (a+2i)(—n)i(a);
~ (a+n)! D illa+n+1); °

Now to calculate the last sum we divide it into two sums and then express them by hypergeo-
metric functions

2 (a+2i)( )(a)i_a
y ! =

ﬂa+n+1

(a+n+1); io'(a+n—|—1)i

i=0 i=o b
—na (—n)i(a)i
= 1
a21[n+a+1' ]+ (i—1)l(a+n+1)
—n,a —-n+1,a+1
= 1 1
“2 1[n+a+1' ]+ a+n+1 2 1[ n+a+2 ' ]
_a<1"(a+n+1 F2n+1) T@+n+1)I(2n+1)
B (

T2n4+a+1)I(n+1) TRu+a+1)T(n+1)

(iii) Since

—na
2F1 {

o (ka2 i\ (a)
n+b Z] =) (i +kb)kkﬁ - (_1)k<k> (i+£)k'

k=0

we have to prove the following orthogonal relation:

Y (—1)ik (:‘) <;<) b+20 1) ?ag)n”‘l (b(i)’l‘,)k = b (10)

i=k

After simplification we obtain

n
b+21’l—1 Z H_k( I;) (b+i+k)n_1_k :5n,k-
i=k
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By index shifting like as in (ii) we get the identity

_12": <>b+l)n1—5n0

=0

For n = 0 taking into account

we have that the identity is true.
For n > 0 taking into account

[ 2]

we get

i=0 =0 ! i=0
" (=n)i(b+n—1),
= (b),_ .
( ) 1;) (b)il’
=@ ] = @ o

This complete the proof of the item (iif).

(iv) Since

A A E R ()

we have to prove the following orthogonal relation:

0= () () 0= R =

i=k
The proof techniques are similar to the one of the identity (10) and we omit it.
3 THE DERIVATIVE CONNECTING PROBLEM
Let us prove Theorem 2.

Proof. (i) We first prove the auxiliary combinatorial identity:

B n—2 1 B 1
S0k = L TRt 0 (@) e — 1) (= ()

(11)
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Simplify
n—2 1 n—2 1
Suk ZZI:( (i—Kk)!a+i); = (z—k)!(n—z)'<a+n_1>
n—i
1 §f (n—k)! <a+n—1>1
(n—k)! = (i—k)mn—i)!\ n—i
1 ”X:2<n—k><a+n—1>_1_ 1 ”k2<n—k><a—|—n—1>_l
(n—k)! = \i—k n—i (n—k! = i n—i—k
Put

n—=k
. n—k—2 i
— (1 — IS, — S N A
Lk (n—k)!S, i;) PR
n—i—=k

We prove by double induction on n and then on k that

g _ (n—k)! _(n=k)(n—-k-1) (12)
kT (a4k) (a+n — 1) (n—(k4+2))! — (a+k) (atn—1)
Firstly we fix k and use the induction on n. The base case n = k + 2 is obviously true. Assume
that the identity

n—k—3 (ni:fzi 1) (n—k—1)(n—k—2)
-1k = Z (u +n— 1) ~ (atk)(atn—2) "

i=0 ]
n—i—=k

holds. Then by standard combinatorial technique we have

g () (2l e (10

”'k:i:() a+n—1 a+n—1 = a+n—1
n—i—=k 2 n—i—k

. (n=km—-k-1) n—k g
_(“+Tl—1)(a+n—2) a4+n—1 nLk
(n—k)(n—k—1) n—k (n—k—1)(n—k-2)

- (a+n—1)(a—{—n—2)+a+n—1 (a+k) (a+n —2)

(n—k)(n—k—1) n—k—2\ (m—-k)(n—k-1)
(a+n—-1)(a+n-2) <1+ a+k >_ (a+k) (a+n—1) °
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Thus, for a fixed k and all n the following relation

1 (m—k(n—-k-1) 1

Sk = (n—k)! (a+k) (a+n—1)  (a+k) (a+n—1) (n—(k+2))!

holds.
Now let us fix n. The induction on k is true due to obvious identity S , . ; = S, _; . This
completes the proof of (12).
Let us show that for the coefficients «;
[X‘_n_! a—>b . __nb—l—n—l

T+, YT Tan—1

the following identity holds:
Yo Emea(b+k)
igk Déi(—l)k - a+k . (13)
Indeed, by (11) we obtain
ai(—i)y=(@—-b)n! ) ————=(a—b)n!(— , ,
= (== ) =oila+i), ( Jni( =ik a+i)u—i
C a=bm(=DF (k=nt1) (a=b) (—n)eny
(a+k) (a+n—1) (n—(k+2))! (a+k) (a+n—-1)

Taking into account the identity

(k=n+4+1)(a=b) b4+n—-1 b+k

(a+k)(a+n—-1) a+n—-1 a+k
we get

n—1 ' n—2 ' b+n—1
;{ ai(—i) = ;{ oi(—1)x + (—”)m(—(”—l))k
et @b (my  ban1 (bt h
(a+k)(a+n—-1) a+n—1 krl a+k ’

This establishes the identity (13).
Now we can prove Theorem 2, item (7). Taking into account

n' a-> . B nb+n—1
tati); "' Ta+n—-1

K =

let us expand the sum

n—2 n' a—>=> —i,a b+n—1 (n—l),a n—1 —ia
— 7= 2F z| —n F = a;oF >
B 2 eonl el ] - B[
_nfl n—1 (_Z)k(b)k Z__nfl nfla . @Z_
_ (;k - )k!—k;@( ( >k> Oz

= (=i (b +K) (b2 —ﬂb"il (= + Db+ 1) 2"
a+k (a)i k! a = (a4 1) k!

—nb {—n—i—l,b%—l'} d {—n,a ]
= z EE

= EZFl
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(ii). Let us find the differential connecting coefficients for the family of polynomials
nn+a

2k { b

z] by using the solution of the corresponding inverse problem (Theoren 1, (if)):

- (e o[

i=0

Taking into account

(a+1) a+k (b b (=1)kt1 n
(ﬂ)k . o a ! (b—i—li)k o b—i—kl k!k+1 N (_1>k+1 (k) (ﬂ—k),

we have

d —n,n+al_|  —n(n+a) —(n—1),n+a+1

EZH{ b Z]—ib 2F1{ b+ 1 ‘Z]
_ —n(n4a) S (—n+ 1) (n+a+1)kz_k
B b = (b+1) k!
 —n(n4a) S (—n+ 1) (n+a+1k k (0t 2 (b)x —ijita|_
S M e M U [ e B
 —n(n4a) i (i ik (—n+1)k(n—|—a—|—1)k (a+2i)(b)g —i,i+a ,
“T & (E( V() T R i >2F1{ al
(5 ik (K (1 0 oy @t 20) (1 + )i —hital
‘EO(E-( v () (7)o <b+k><a+i>k+l)25[ y

B () (B (o) o e on

i=0 k=i

In the internal sum we perform the shift of the index of summation as k — k +i:

ikl (1 " (a+2i)(n + a)g
LuT (n—k>( O T 0@+ D

_nflfi_ k+1 n—i - ; (a+2i)(n+a)ii14i
o L e P L e o e irrem

By using the relations

(@a+2)(n+a)1yi _ (@+20)(nt+a)iq (a+n+i+ 1
(@4 D)ks14i (@+1)is1 (a+2i4+1)
11 (btix
(b+k+i) (b+i) (b+i+1)
R, g ) i) = (e SR

we rewrite the sum in the form

(nt+a)in  "NNT(ntit )b+ i)(atn i1

4

(—n+i) (a +2i)

(b+l) (a+i)1-+1 k=0 k!(b+i+1)k(ﬂl+2i+1)k
B . N (n+a)ig —n+i+1Lb+i,a+i+n+1
= (=nti) (@ +20) B+ (@t > b+i+1,a+2i+1 1
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Finally, we get

d —n,n+a n_l L (n\ (a+2i)(n+a)i
2 F = — , , .
im0 = g (e () GG
o« oF —n+i+1,b+i,,a+i+n+1 1 r —i,i+a ,
372 b+it+la+2,i+1 21 b ’

as reguired.

(iii) We have to prove that

d —n,a n=2 apint! (b—1) —i,a
dz? 1[—n+b Z] B 1;)(_1) F(b—n)n_izpl{—intb Z]
_n(a+n-1) F —(n—1),a ,
b—n) ' -n-1+b|"|
We find the differential connecting coefficients for the family of polynomials »F; [ —_nn+ab z]
by using the solution of the corresponding inverse problem (Theoren 1, item (iii))
- (b — 1)k —ia
O e AT
We have
d —ma | 1 —na o fontlatd] Z n+1 Je(a+ 1) 2*
dzZ Y —n+b|7] T SnH b —n+1+0 —n+b (—n+b+1) K
_ —n +1 (a+1) k 1 —i,a
—n+b+1) () 2F[—i+b Z]

_—n+

2|

i
(g (e 31“>za{:fb

k=i

Put
e e (4 1@+ 1) i(k (0= e
o= ¥ e Lont +kb+1)kk(_1) <i>(b_1)Tkkl

=i

( ) _1)(ﬂ+kk)(—n+1)k(b—i)k_1

:—n+b2 (—n+b+1)
Fori =n — 1 we have
. —n . (a+n—-1)(—n+1),1(b—n—-1))p—2  n(a+n-1)
L i} [ | AP ()

Fori < n — 1 we have
(b—1)

L (_q\nHilt
i = O T
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thus

- (a+k)(=n+1)(b—i)k_1 gt (b—1)
Z () (b-1) k!(—n+b:—1)k kl_(_1>+ﬁ(b—n)n,i

or

" (a+ k) (—n)gea (b — i)y nt (b—n)
L (;) 1

— n_
= \i kKl(—n+b+1) = )i! (b—mn)p_;

Divide the sum into the two sums

£ ()it - L () Gt
£ ()i

and calculate them separately. Taking into account

(b —i)k71 = (b _i)i(b)kflfi = (b - i)i(k_ 1- i)!< k—1 ;i

—n+b+1>’ By = (b+k—2)!

(—n+b+1)k:k!< k (b—l)! ’

for the first sum we have
nil K\ (=1)p1(b— 1)1 i et n\ (n—k)(b—i)1
\i) kl(—n+b+1) = k) (—n+b+1)

k=i
-() o T

k=i
“(e-rEer(Te-vtn

Now we shift the summation indexes k — k+iandn— n+1i:

"il(_l)kﬂ (”:;{) (n—k)(O)k—1-i _ "fl(_1)k+i+1 (” ]: i) (n—k—1i)(b)k1

S ki (n=k)(b)r—y
N k;o( e <k> (—n—i+b+1)kyi

(14)
_ (1) N n\ (n—k) ()i
=Ty g{)(_l)k(k> (—n+b +kk)1!
_ i (b =i n (b+k—2)!
= (—1)"*! b—1)! k;)(—l)k <k> (n— k)—(_n AT

Let [z"]f(z) denote the operation of extracting the coefficient of z" in a formal power series
f(z). Itis clear that [z"] is a linear operation and the following well known properties holds:

) (14 2)7 = (Z) P f(2) = [)f(2),
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[5]. By using these properties let us prove that the sum (14) is equal to 0. We have

() -2 e (2

k=0

= (—=1)"n(n—2)! Xn:(_l)kG:D <b+1;:l;—2>
. Culinny
= (=1)""n(n-2)! = <n—1> <b_—r;:#11>
B n—1 <

1’1—1) [Zb—k—H] (1+Z)—n+1

=

= (1) n(n=2)!2" ] (14+2) " Z (nk1>z

(=" n(n=2)[" ") (142)” "+1<1+z>"*1
(_1>n+1n(n . 2)![Zb+1]1 _ O,

and the claim follows.

The second identity

— (b—i)k—1 an(b—n)
; (z) I;—l#bﬂ)k =D it (b—n)y

can be proved using the same arguments used in (11), so we will omit it here. O

(1]
(2]
(3]

(4]
(5]

6]

(7]

(8]

[9]
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beapatiok A.IL, Beapatiox I'.I. Obeprena 3adaua ma 3adaua dugpeperyitiosHoi 36’ a3Hocmi 019 0esKux
einepeeomempuunux muoeounerie // Kapmarcoki mateM. myoa. — 2018. — T.10, Ne2. — C. 235-247.

PosrastHeMo mOCAiAOBHOCTI MHOrOUAeHIB { Py (x)} >0, {Qn (%) }n>0 Taxi, mo deg(Py(x)) = n,
deg(Qn(x)) = n. 3apaua 3B'S3HOCTI AASI HMX TIOASITA€ y 3HAXOAXKEHHI KOedpillieHTiB &,y y BUpasi

n
Qu(x) =} a,xPc(x). 3araua 38’s13HOCTI AASI Pi3HMX THITiB MHOTOUAEHIB Ma€ AOBrY icTopio i mpo-
k=0

AOBXY€ BUKAMKATH iHTepec B pi3HMX TaAy3sIX MaTeMaTHKM, 30KpeMa B KOMbiHaTopuIli, MaTeMaT-
uHil ¢pisnrt, KBaHTOBII XiMmii. AAst gacTKOBOrO Buraaky Q,(x) = x" 3apaua 3B’SI3HOCTI Ha3MBAETHCS
obepreHom0 3apagero AAST { Py (x) } 0. YacTkoswmit Bumaarok Qn(x) = Py, (x) Mae Ha3y andpepe-
LiaABHOI 3aAadi 3B SI3HOCTI AASI IOCAIAOBHOCTI MHOTOYAEHIB { Py (X) },>0. B mpomoHoBaHiit craTTi Mu
3HAXOAMMO y 3aMKHEHOMY BUTASIAL KoedpillieHTH obepHeHOI i AndpepeHITiaAbHOI 3aAaY 3B’ SI3HOCTI
AAS TiIEpreOMeTPUYHMX MHOTOYAEHIB BUTASIAY
—n,a —n,n+a
z|, 2k z|,
- rinepreomerpuuHa ¢pyHkuist ['ayca, a (x), MO3HAYae CUMBOA

25{ b

—n,a
Z}, 2Fl{in+b

b

k

| - 5 s

e F | Y
A2 = (o) Kk

1, n=0,

x(x+1)(x+2)---(x+n—-1), n>0.
Bci MHOrOUAEHV PO3TASIAQIOTHCSI HAh TIOAEM AIVICHUX UVICEA.

[Noxrammepa, SIKMIT BU3HAYAEThCSI POPMYAOIO (X), =

Kontouosi cnoea i ppasu: TimepreoMeTpuura yHIisI, KoedillieHTH 3B’I3HOCTI, 0ObepHeHa 3aAayva,
3apava AMdpepeHITiaAbHOI 3B’ I3HOCTI, TillepreoMeTpMYHIMII MHOTOUAEH.
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(L)

Biswas T.

(p,q)TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC
ENTIRE FUNCTIONS

Let K be a complete ultrametric algebraically closed field and let A (K) be the K-algebra of
entire functions on K. For any p-adic entire function f € A (K) and r > 0, we denote by |f] (r)
the number sup {|f (x) | : |x| = r}, where |-| () is a multiplicative norm on A (K). For any two

entire functions f € A(K) and g € A(K) the ratio I\j; ‘IE:Z as r — oo is called the comparative
growth of f with respect to g in terms of their multiplicative norms. Likewise to complex analysis,
in this paper we define the concept of (p,q)th order (respectively ( p, gq)th lower order) of growth

as pP9) (f) = 11m suplog mr( ) (respectively A(P4) (f) = lim ir1flog \f\(r)) where p and g are any

r——+oo log
two positive mtegers We study some growth properties of composite p-adic entire functions on the
basis of their (p, q)th order and (p, g)th lower order.

Key words and phrases: p-adic entire function, growth, (p, g)th order, (p, g)th lower order, com-
position.

Rajbari, Rabindrapalli, R. N. Tagore Road, P.O. Krishnagar, Dist-Nadia, 741101, West Bengal, India
E-mail: tanmaybiswas_math@rediffmail.com

INTRODUCTION AND DEFINITIONS

Let K be an algebraically closed field of characteristic 0, complete with respect to a p-adic
absolute value |-| (example C,). For any « € K and R € (0, +00), the closed disk {x € K :
|x —a| < R} and the open disk {x € K : |[x —a| < R} are denoted by d («,R) and d («, R™)
respectively. Also C(«,r) denotes the circle {x € K : |[x — a| = r}. Moreover A (K) represent
the K-algebra of analytic functions on KK, i.e. the set of power series with an infinite radius of
convergence. For the most comprehensive study of analytic functions inside a disk or in the
whole field K, we refer the reader to the books [9, 10, 15, 18]. During the last several years the
ideas of p-adic analysis have been studied from different aspects and many important results
were gained (see [1-6], [8, 11-14, 19]).

Let f € A(K) and r > 0, then we denote by |f| (r) the number sup {|f (x)|: x| =r}
where |-| (r) is a multiplicative norm on A (K). For any two entire functions f € A (K) and

g € A(K) the ratio E} Egg as ¥ — oo is called the growth of f with respect to g in terms of their
multiplicative norms.

For any x € [0,00) and k € IN, we define recursively log[k] x = log <log[k*” x) and
explx = exp <exp[k_” x) , where IN stands for the set of all positive integers. We also de-
note log[o] x = x and expl” x = x. Throughout the paper, log denotes the Neperian logarithm.

YAK 517.5
2010 Mathematics Subject Classification: 12]25,30D35,30G06,46S10.

@ Biswas T., 2018
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Taking this into account the order (resp. lower order) of an entire function f € A (K) is given
by (see [4])
o(f) _ iy sup log? If] (1)
A(f) rteo inf logr
The above definition of order (resp. lower order) does not seem to be feasible if an entire
function f € A(K) is of order zero. To overcome this situation and in order to study the
growth of an entire function f € A (K) precisely, one may introduce the concept of logarithmic
order (resp. logarithmic lower order) by increasing log™ once in the denominator following
the classical definition of logarithmic order (see, for example, [7]). Therefore the logarithmic
order pjog (f) and logarithmic lower order Ajyg (f) of an entire function f € A (K) are define
as
Alog (f) - r—+oo Inf 1Og[2} r
Further the concept of (p,q)th order (p and g are any two positive integers with p > g) is
not new and was first introduced by Juneja et al. [16,17]. In the line of Juneja et al. [16,17], now
we shall introduce the definitions of (p, g)th order and (p, g)th lower order respectively of an
entire function f € A (KK) where p,q € IN. In order to keep accordance with the definition of
logarithmic order we will give a minor modification to the original definition of (p, g)-order
introduced by Juneja et al. [16,17].

Definition 1. Let f € A (K) and p,q € IN. Then the (p, q)th order and (p, q)th lower order of
f are respectively defined as:

oD (f) _ . sup log” || (1)

prog (f) _ iy sup log? If] (1)

APD (F)  roteo inf  1oglil
These definitions extend the generalized order pl!! (f) and generalized lower order Al (f)
of f € A(K) for each integer | > 2 since these correspond to the particular case pl! (f) =
) (f) and AU (f) = AUD (£). Clearly p®Y) (f) = p(f) and AV (f) = A(f). The above
definition avoid the restriction p > g and give the idea of generalized logarithmic order.
However in this connection we just introduce the following definition which is analogous
to the definition of Juneja et al. [16,17].

Definition 2. An entire function f € A(K) is said to have index-pair (p,q), where p and
g €N, ifb < pP9 (f) < o and p(P~14-1) (f) is not a nonzero finite number, where b = 1 if
p = g and b = 0 otherwise. Moreover if 0 < p(P1) (f) < oo, then

pP=m1) (f) =0 for n < p,
pPA=1) (f) =0  for n<g,
olPtnatm) (£y =1 for n=1,2,....
Similarly for 0 < AP4) (f) < oo, one can easily verify that
AMpP=18) (fy =co  for n<p,
APa=m () =0  for n<g,
Aptnatn) (Fy =1 for n=1,2,....
The main aim of this paper is to establish some results related to the growth properties of

composite p-adic entire functions on the basis of (p, q)th order and (p, q)th lower order, where
p,q € IN.
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1 LEMMA

In this section we present the following lemma which can be found in [4] or [5] and will be
needed in the sequel.

Lemma 1. Let f, g € A(K). Then for all sufficiently large values of r the following equality
holds

fogl(r) = I£1 (gl ()

2 MAIN RESULTS

Theorem 1. Let f, ¢ € A(K) be such that p("™"(g) < APA(f) < pPA(f) < oo, where
p,q,m,n € N. Then

logl?! [f o g| (expl"~Tr)
(i) lim =0 ifg>m

=+ loglP 1| f|(expli=tlr)

and
logl+ =11 |f o g| (expl~17)
(i1) lim
rote oglt U fl(expli-tr)

=0 ifg<m.

Proof. We get from Lemma 1, for all sufficiently large positive numbers of r that

logl?! |f o g| (expl"=!r) =10g! [£] (I3] (expl~Vr))
ie., log!? |f o g| <exp[nfl] r) < <p(p,q)(f) + 5) logl? |g] (exp[nq] r) _ 1)

Now the following two cases may arise.
Case I. Let ¢ > m. Then we have from (1) for all sufficiently large positive numbers of r that

log”! | o gl (exp"Ir) < (o) (f) +¢) log" " Jg] (expl"~!)7) @

i.e.,
logl") |f o g] (exp[nfll r) < <p(w) (f) + 5> A (g)+e) 3)
Case II. Let g < m. Then for all sufficiently large positive numbers of r we get from (1) that
logl?! £ o g| (expl U r) < (o) (f) +¢) exp™~og!" |g] (expl"~!Ir). @)

Further for all sufficiently large positive numbers of 7, it follows that

log™! g] (exP[”‘” r) < log <rp<m’”>(g)+s>

i.e.,
expl™ =T 1og |g| (exp[” U r) < explm—1-1] <rf’(m'")(3)+£> . (5)

Now from (4) and (5) we have for all sufficiently large positive numbers of r that

logl” |f o gl <exp[n—1] r) < <p(w7) (f) +g> explm—1-1] <rp(’"'">(g)+€>
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ie.,
logP*U | fog] <exp[”_1] r) < explm =172 <rp(m'n>(g)+€> +0(1)
ie.,
_ A m,n O(l)
& |f g|< p ) p < ) exp[m—q—z] <rp(mr")(g)+e)
i.e.,

[p+m—q—1] [n—1] 0q(m,n)+e O(1>
log |fog] (exp r) < (1 + T ( p(m/”)(g)+g) : (6)
P ¥

Also from the definition of A(P7)(f), we get for all sufficiently large positive numbers of r
that

log[pfu ‘f’ (exp [qfl] r) > r()‘(p/w(f)*‘c')_ (7)

Now combining (3) of Case I and (7) we get for all sufficiently large positive numbers of r

that

log[p] |fog] <exp[”*1] r) (Pf (p,q) + g) r(P(""’”(g)JFS)

< 8
logl? U |f|(expli-tr) ~ rAPA(f)—e) ®)

Since p(m'”) () < APa) (f) we can choose ¢ (> 0) in such a way that
o™ (g) +e < APA(f) —e. 9)

Therefore in view of (9) it follows from (8) that

log”!|f o g| (expl~1I1)
im
r—-+oo 1Og[p—1] |f| (expla—117)
Hence the first part of the theorem follows.

Further combining (6) of Case II and (7) we obtain for all sufficiently large positive numbers
of r that

o) (g) o)
log[p+m7q71] ‘f o) g’ <exp[n_” r) r 1 T eXp[m*qu] (rP<m’n><g>+€>
<

log[pfl] ’f‘ (exp [9—1] r) o p(APD(f)—e)

Therefore in view of (9) we get from above that
log[erm*qil] |f o g| <exp[n_” 1’)

lim
r—-+oo log[”_” f|(expla=17)

Thus the theorem follows. O

Theorem 2. Let f, g € A(K) be such that A"")(g) < APA(f) < pPA(f) < oo, where
p,q,m,n € IN. Then

(10)

=0.

- logl|fog| (explTr) |
(i) lm ] = =0 ifg>m
r=too logl? ™ |f|(expli~lr)

and
loglPtm=4=1 |f o g <exp[”_1] r)
(i) lim -
rteo loglP ™! | f|(expli-17)

=0 ifg<m.
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The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem 1.

Theorem 3. Let f, ¢ € A(K) be such that 0 < AP (f) < pPD(f) < co and p"™")(g) < oo,
where p,q,m,n € IN. Then

log?t1 | £ o expl’—1 (m,n)
108 |f g’<p ><pm”(g)

NI < o>
(0) r—teo 1Og[;ﬁ |f|(expla=117) APA)(f) =1
and [ |
___log"" U fog| (expl"tr)
(i) Tim ( ) < P(R) ifg < m.

r=4o0 1Og[;ﬁ |f| (expla—117) ) (f)

Proof. In view of the definition A(P4)(f), we have for all sufficiently large positive numbers of
r that

log”! |f](expl™=1r) > <A(P/‘1)(f) _ g> log 7. (11)

Case L. If g > m, then from (3) and (11) we get for all sufficiently large positive numbers of
r that

logl"* ! [f o g| (expl~Ir)  (p(™(g) +¢)logr +1log (pP)(f) +e¢)
< .
log”! | fl(expli=tlr) (APA)(f) — &) logr
As ¢ (> 0) is arbitrary, it follows from above that

l—log[p+1] |f le) g| <exp[1’l*1] r) . p(m’n) (g)

im < .
r— oo 1Og[p] |f] (expla=117) APA)(f)

This proves the first part of the theorem.

Case II. If g < m then from (6) and (11) we obtain for all sufficiently large positive numbers
of r that

(m,n) O(l)
IOg[PﬂLm*‘ﬂ |f ogl (exp[n_” 1’) <P (8)+ 8) logr +log <1 + explm—1-2] (rP<m’”)(g)+£>>
< .
log!®! | f|(expla—Ur) (APA(f) —e) logr

As € (> 0) is arbitrary, it follows from above that

_loglt i fogl (explUr)  mm)
_ (expl" ) _po(g)
r—-+o0 1Og[P] |f] (expla—17) APA)(f)

Thus the second part of the theorem is established. O
Theorem 4. Let f, ¢ € A (K) be such that0 < APA)(f) < p(PD(f) < oo and A" (g) > 0,

where p,q,m,n € IN. Then for any positive integer I, we have

[Pl [n—1]
(1) limlog f ogllexp ) =oco ifg<mandq =1

F—y00 1Og[p+1] If] (exp[l] r)

iy tim 1087 1f ogl(expl" i)
Hoolog[p—q—lﬂ] If] (exp[l] r)

=00 ifg< m andq <lI;
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[p+m—g—1] [n—1]
(i) 1im %8 . foglexp™ 1) _ o ifg > mandq <1
r—co 1Og[P+ iy Fl (expllr)

and [pm—g1 1]
ptm—q— n—
(iv) lim log : f ogllexp ") =oo ifg>mandqg > 1.
r—reo logP U |£] (explll r)

Proof. Let us choose 0 < ¢ < min {A(P4)(f), AU"")(g)}. Now for all sufficiently large positive
numbers of ¥ we get from Lemma 1,

logl”! |f o g|(exp™ Ur) = (AP (£) =€) logl® |g| (exp["*ll r) : (12)

Further from the definition of (m, n)th lower order of ¢ we have for all sufficiently large
positive numbers of r that

log"![g] (expl"1r) > log """ (13)

Now the following two cases may arise.
Case I. Let ¢ < m. Then from (12) and (13) we obtain for all sufficiently large positive
numbers of r that

logm |f o g|(exp[n_” r) > (A(p'q)(f) —¢) exp[m_lﬂ log[m} 18] <exp[”_1] r) (14)

ie.,

logl?! |f o g|(expl™ U r) = (AP (f) —¢) explm—1 1Ogr(A(m’”>(g)*£)
Log”!|f o gl(expl" 1) > (APA)(f) — &) explr =01 1" ) =0), (15)

Case II. Let g > m. Then from (12) and (13) it follows for all sufficiently large positive
numbers of r that

log!?! £ o g|(exp™ 1 7) = (APD () — &) logl?~ ™ 1og r1""(&)=¢)

ie.,
logl? 71711 f o g (expl 1 ) > A" 9)-0), (16

Again from the definition of p(P%) ( f) we get for all sufficiently large positive numbers of
that

log?! |£] <expm r) < <p(M) (f) + 8) logl? expl!l 7. (17)

Now the following two cases may arise.
Case III. Let g > [. Then we have from (17) for all sufficiently large positive numbers of r
that

log! |f] (exp[l] r) < <p(w) (f) +€) logli~"1 7

i.e.,

loglP+1 | ] <exp[l] 1’) <logl~ "1y 4+ log <P(p'q)(f) + 5) : (18)

Case IV. Let g < I. Then we have from (17) for all sufficiently large positive numbers of r
that

log” [f] <exp[l] r) < <p(w) (f) + g> expl =7
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ie.,
logl? | f] <exp[l] r) < exp!™17Ur 4 log <P(p’q) (f) + 8)

i.e.,

log[P—Q"‘H‘l] |f] <expm r) <logr+ O(1). (19)

Now combining (15) of Case I and (18) of Case III it follows for all sufficiently large positive
numbers of r that

logl?! |f o g|(exp"~17) N (AP () — &) explm—a-1 T(M""”)(g)—s).
log" ™ If| (expllr)  —  1og"™ Uy +log (0P (f) +¢)

Since g < m, we get from the above that

. log |f ogl(exp )

This proves the first part of the theorem.
Again in view of (15) of Case I and (19) of Case IV we have for all sufficiently large positive
numbers of r that

log!?! £ o g|(expl"~1r) - (AP () — &) explm=a-11 y (A" (g) =)

20
10g[p*q+l+1] f] (expl7) logr+ O(1) 20)

When g < m and q < [ then we get from (20) that

log” |f o g|(expl*~11r) _
r—r+oo]oglP—a+HI] | ] (expll 7)

This establishes the second part of the theorem.
Now in view of (16) of Case II and (18) of Case III we get for all sufficiently large positive
numbers of r that
log[p+m—q—1} Ifo g|(exp[”*1] r) N P(A) (g) )
loglP 1| £] (explll r) loglt" 7 + log (p(PA)(f) +)

i.e.,
[p+m—q—1] [n—1]
i 108" ogllewl ) _
r—-toco logl" 1 [£| (explll )
from which the third part of the theorem follows.
Again from (16) of Case II and (19) of Case IV we have for all sufficiently large positive
numbers of r that

log" "1 | o g(expl M r) _ rM"8)-
loglP~1++1 | 7| (explr)  — logr+ O(1)

i.e.,

i o8P | Fogl(expl )
r—-+oo 1Og[p—q+l+1} 1f| (expllr) N

This proves the fourth part of the theorem. Thus the theorem follows. O
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Theorem 5. Let f, g, h, k € A (K) be such that 0 < p(*?)(h) < oo, APD(f) >0, A" (g) >0
and p(C'd) (k) < A(m'”)(g), wherea,b,c,d, p,q,m,n € N. Then

) tim 108 L osl(exp 1r)
r=teo ogll o k| (r)

=o0 ifb>candg <m,

[p] [n-1]
(i)  lim log ” |f o gl(exp r) =oco ifb<candq<m,

r—+oo log[HC_b_l] |h okl (r)

logP =171 £ o o] (exp" 1 r)

(iii)  lim =oco ifb>candg>m,
r—+oo log[a] |hok| ()
[p+m—gq—1] [n—1]
and (iv) lim log f ogllexp r) =oco ifb<candg > m.

oo logl™ == h o k| (r)
Proof. In view of Lemma 1 we obtain for all sufficiently large positive numbers of r that

logl") 110 k| (1) < (")) + ) 10g" [K| (). (21)

Now from the definition of (c,d)th order of k we get for arbitrary positive ¢ and for all
sufficiently large positive numbers of r that

log! |k| (r) < <p(c'd)(k) + 8) log!l r

i.e.,

log! K| (r) < (0! (k) +¢) log (22)

ie.,
logl U (k| (r) < r(P“0)Fe), (23)

Now the following cases may arise.
Case I. Let b > c. Then we have from (21) for all sufficiently large positive numbers of r
that
logl | o k| (r) < <p(“'b)(h) + e) log“ W |k| (r) . (24)

So from (23) and (24), it follows for all sufficiently large positive numbers of r that
logl |hok| (r) < <p(“’b) (h) + g) Pl (k) +e), (25)
CaseIl. Let b < c. Then we get from (21) for all sufficiently large positive numbers of r that
logl | o k| (r) < <p(“'b)(h) + 8) explogll k| (r). (26)
Now from (22) and (26) we obtain for all sufficiently large positive numbers of r that
log[”] lhok|(r) < (p(”'b)(h) + e) exp[cfb] log (PP (k) +e)

i.e.,
logl ™~ [l o k| (r) < r(P“®F) 4 O(1). 27)
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Since p(¢%) (k) < A1) (g) we can choose ¢ (> 0) in such a way that
pl (k) +e < Amm)(g) —e. (28)

Now combining (25) of Case I, (15) and in view of (28) it follows for all sufficiently large
positive numbers of r that

logl”) |f o g|(expl"~17) - (AP () — &) explm=1-1 (A" (g)—¢)
log okl (r) (0(@b) (1) + €) r(P ) +e)

ie.,
[p] [n—1]
L 108" If ogl(exp™™Tr) ,

r—r+oo log[“] |hok| ()

from which the first part of the theorem follows.
Again combining (27) of Case II, (15) and in view of (28) we obtain for all sufficiently large
positive numbers of r that

(AP (£) — g) explm—a-1] F(Am)(g)—e)
e D0+e) 1 o(1)

log”!|f o g|(exp" "I 1)
logl™ == ho k| (r)

v

ie.,

[r] [n—1]
o JogPl [Foglexpltr)

r—r+oo log[‘”c—b_l] |hok| ()

This establishes the second part of the theorem.
Further in view of (25) of Case I and (16) we get for all sufficiently large positive numbers
of r that o
[p+m—q-1] (n—1] (A (g)—e)
log [fogllexp™ 1) r —
logl |h o k| (r) (0@h) (k) + ¢) r(p V(01 4e)

(29)

So from (28) and (29) we obtain that

lim 108" |fogl(expl )

r—+oo logl® |h o k| (r)

from which the third part of the theorem follows.
Again combining (27) of Case Il and (16) it follows for all sufficiently large positive numbers
of r that
tog "1 U fogl(expl Nr) 90
log[a+c—b—1] |h ok| (1,) r(p(C,d)(k)—H;) 4 O(l)

(30)

Now in view of (28) we obtain from (30) that

[p+m—q—1] [n—1]
lim 08 fogl(exp™™Tr)
r—+00 log[‘”rc*b*l] |h o k| (7’)

This proves the fourth part of the theorem. Thus the theorem follows. O
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Theorem 6. Let f, g € A(K) be such that p(*?)(f o g) < oo and A("")(g) > 0, where
a,b,m,n € N. Then
2
, 10g" [f o gl(expl*~17)]
o] @ =
r=relog™ T gl (expllr) - log™ |g] (expl 1)

Proof. For any & > 0 we have logl? | f o g|(expl~17) < <p(“’b) (fog)+ e) log!® explt=17, ie.,
logl £ o g|(expl®~Ur) < <P(a’b) (fog)+ 3) logr. (31)
Again we obtain that log!"! |g|(exp"~1r) > ()\(m'”)(g) — s) log!" expl'=—17, ie.,
logl"!|g|(exp117) > (A1) (g) ) logr. (32)
Similarly we have log!™! |g|(exp[ r) > ()\(m'”)(g) — s) logl" expl" 7, i.e.,

log" ! Ig|(expl" r) > exp [ (A" (g) &) r] . (33)

From (31) and (32) we have for all sufficiently large positive numbers of r that

log[“] |f o gl(explt=17) < (P(H'b)(f 0g)+ 5) log 7
log™ gl(explT7)  (AI() ) logr

As e (> 0) is arbitrary we obtain from the above that

— logl! [p-1] (ah)
fim 108" If ogl(exp® Tr) _ p : (J;og) _ (34)

Again from (31) and (33) we get for all sufficiently large positive numbers of r that

log[“] |f o gl(explt=17) < <P(H'b)(f 0g)+ 5) log 7
log[m_” gl(explr) T exp [(Almm)(g) —e)r]

Since e (> 0) is arbitrary it follows from the above that

[a] (b—1]
o 08" [fogllexp® Ur) (35)
r=teo Jogl™ 1l |g|(expl™l 7)
Thus the theorem follows from (34) and (35). O
Theorem 7. Let f, ¢ € A (K) be such that0 < APA(f) < pPA(f) < coand 0 < A" (g) <

oM (g) < oo, where p,q,m,n € N. Then

APO(f) A (g) o dogPFogl (1) _ oy #PP() A (g) |
pPA)(f) SrL—Ho log! | £] (r) S "8), APA)(f) ’
may oy AP 0™ (g) | _ e logl [fog| (1) _ pPD(f) - p" ) (g)

max{)‘( (®), o) (f) }Srgrfoo log!! |£| (r) = APA)(f)

(i)

4

wheng =m =n,
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o AP A () o logll|fog| (r) gy PPO) A ()]

o = elogh 7] (expl 117 gmm{p R

A (o) APV "Gy = logl|fogl(r)  _ pP(f) - p"(g)
{A (8), (P (f) } = rL+mlog[P] |f| (expla—nl7) = APA)(f) ’

wheng =m > or < n,

AP ><f> i 108" |f o8] (1) \mm{ (f}

) pPa(f) r—>+oolog PL1£] (explm—n] A (f)
L AP } < T log” !fog\( ) (),
pT(f) | = = Fologhl |f] (expln—rlr) — ACA(f)
when g > m,
. A(m'”)(g) ) 1Og[P+m*‘ﬂ |fog|(r) ‘ A(mn) (g) p(m,n) (g)
W e S AR o) AR pea)

< o d A() o) | = Tog T [fogl (1) _ p™ M (g)
AP (F)" pP)(f) r—-+oco log[p] 1] (r) — A ()’

whenm > q =n,

(m,n) [p+m—q] Amn) (m,n)
A) o fim 108 Fo8l () ¢ in (8) p""(8)
P(p’q) (f) r—+owlog (¥l |f] (exp[q n] r)

(v) AP (F) " pPD)(f)

Al (g) p(mm) (g) log"*t" = |fog| (r) _ p™"(g)
= max{mm( ) ora)(f) } = VET“log W 1f] (expli—"lr) — AWAI(f)"

whenm > q > n, and

(m,n) log[p—i_m_(ﬂ |f0g| exp[”"ﬂr (m,n) (m,n)
Mg (exp ) [a(g) g

(vi) lim AP (F)" pPD)(f)

oPD(f) ~ 1 Se log[p] If] (exp[q—n] )
(m,n) (m,n) . log[’%m*‘” |f og] exp[”*‘ﬂ r
- max{?» (8) p™"(g) } < fm ( )

AP (F)” pPa(f) logP || (expl—nl7)

2 o (g)
= Alpa) (f) !

whenm > q < n.

Proof. From the definitions of (p, g)th order and (p, q)th lower order of f, we have for all suffi-
ciently large positive numbers of r that

log?|f| < (o")(f) +¢)logr, (36)

logl!lf| > (APD(f) —¢) logllr (37)
and also for a sequence of positive numbers of r tending to infinity we get that

logl’l f| > (o9 (f) —¢)logllr, (38)

logl!l £ < (AP(f)+¢)logr. (39)
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Now in view of Lemma 1, we have for all sufficiently large positive numbers of r that

logl”!|f 0| (r) < (pP(f) +¢) 10g Ig] (r) (40)

and also we get for a sequence of positive numbers of r tending to infinity that

log[ﬂ Ifogl(r) < <A(P,Q)(f) + g) 1og[fi] g] (7). (41)

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers of r that

logl”!|f og| (r) = (AP (f) — &) log!? |g] (1) ()

and also we obtain for a sequence of positive numbers of r tending to infinity that

log”! |f og| (r) = (0™ (f) —¢) log [g] (r). (43)

Now the following two cases may arise.
Case I. Let ¢ = m = n. Then we have from (40) for all sufficiently large positive numbers
of r that

logl? [f o g| (r) < <p(w7) (f) + g> <p(mr”)(g) +g> log"r, (44)
and for a sequence of positive numbers of r tending to infinity that
logl? [fog| (r) < <p(m)(f) + 8) (A(m/”)(g) + g) log!™ r. (45)

Also we obtain from (41) for a sequence of positive numbers of r tending to infinity that

log? [f o gl (r) < (APD(f) +¢) (") (g) +¢) log" (46)

Further it follows from (42) for all sufficiently large positive numbers of r that

logl? [fog| (r) > (A(M)(f) _ 8) (A(m/”)(g) — g) logl" 7, (47)

and for a sequence of positive numbers of r tending to infinity that

log" £ ogl(r) = (APD(f) —¢) (") (g) — &) log" (49)

Moreover, we obtain from (43) for a sequence of positive numbers of r tending to infinity
that

logl” |f o g| () > <p(p,q) (f) — 5> <A(m,n)(g) — 5) log™ . (49)

Therefore from (37) and (44), we have for all sufficiently large positive numbers of r that

log [f og| (r) _ (00 (f) +e) () () +¢) logl"l r
log"”! | £] (r) (AP (f) —€) logl r
(pPD () +¢) (0" (g) +¢) logl")r

(AP (f) — &) log
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ie.,

—— loglP|fogl(r) _ pPP(f)-plmn(g)
lim < .

Similarly from (38) and (44), for a sequence of positive numbers of r tending to infinity it
follows that

(50)

log? |fogl(r) _ (600 +e) (pm(g) +¢) log"
log” [f| (r) (0P (f) —€) log 7
(pPP(f) +¢) (0 (g) +¢) logl"
- (0P (f) — ¢) logl r ’
m log[p] |fog| (7’) < p(m,n)(g)‘ (51)

i
=0 log ! |f] (1)
Also from (37) and (45), we obtain for a sequence of positive numbers of r tending to infinity
that

log?” |f ogl (r) _ p!P(f) - A" (g)
r—+eo logl [£] (r) AP (f) ’

Further from (37) and (46), for a sequence of positive numbers of r tending to infinity we
have that

(52)

log" |f ol (r) _ (AP(5) +¢) (p"(g) + ¢) Tog" 7
log”! [£] (r) ( P)(f) — )1og Al
_ < ) <P —I—e) logmr
( A(f) - )10g[”7 '
ool? £ o ol (r
m 1 gp |f g|( ) <p(m,n)(g)‘ (53)

e logl|f] (1)
Thus from (51), (52) and (53) it follows that

1og” [fogl(r) _ . | oy PPD(F) - A0 (g)
e logl|f] (1) \mm{p S T 4

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log? [ ogl (1) (A7) —¢) (A"(g) —¢) tog"r
log" £l (r) (PP (f) +¢) logh 7

7
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ie.,

[p] (pa)( £y . A(mn)
i 087 [fogl (1) ACO(f) A0 (g) -
Similarly, from (39) and (47) we obtain that

- (1]
Tim log ’fog‘ (T) > A(m,n)(g) (56)
e togIf] (1)

Also from (36) and (48), for a sequence of positive numbers of  tending to infinity we obtain
that

log[p] |fogl|(r) S <)‘(p'q)(f) - 5) <P(m’n) () — 8) log["] r

log” |£](r) (0P (f) + ¢) logltl 7
ie.,
i 108" f o8l (r) o APD(F) -p ) (g) &)
=+ logl! | £ () pP4)(f)

and from (36) and (49), for a sequence of positive numbers of r tending to infinity we have that

log |fogl () (") —e) (A7) (g) — ) Togl" »
log” |f](r) (0P)(f) + ) logll 7

i.e.,
_ [p]
lim log ’f °© g‘ (T) > A(m,n)(g) (58)
e logh|f] (1)
Thus from (56), (57) and (58) it follows that

— logl [fog] () () oy AP - (g)
1 AV , . 59
T T (T >

Therefore the first part of the theorem follows from (50), (54), (55) and (59).
Case II. Let g = mand m > n or n < m. Now from (37) and (44), for all sufficiently large
positive numbers of r we have that

log[p] |fogl|(r) < <P(p'q)(f) + 8) (P(m'”)(g) + 8) logw r
logl?! | f] (expla="lr) (AP (f) —¢) log!" r

ie.,
. [Pl (Pa)(F) . plmm)
m _og” Ifogl(r)  p"Pf) - p™"(g) 60)
H+oo10g[;7] f| (expla—nl7) APA)(f)

Similarly, from (38) and (44) for a sequence of positive numbers of r tending to infinity it
follows that

log[p] fogl (7) 3 <p(ﬁﬂ)(f) 4 g) <p(m,n)(g> + g) 1Og[n} r
log!"! [£] (expl1—17) (0P (f) —€) log" r
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ie.,

(¥l
lim log ’f Og‘ (1’) < (m,n)(g) (61)
r—>+oolog[p] |f] (exp[q_”] r)
Also from (37) and (45), for a sequence of positive numbers of r tending to infinity we obtain
that

togl" £ ogl (1) (P70 +e) (A"(g) + ¢) log"r
log!?! [£] (expla=lr) (AP (f) —¢) log™ r

i.e.,

[Pl (Pa)(£) . A(mm)
lim l[og fosl(n) ¢ (J;) AT(E) 62)
r=+oolog!” |f] (expli=l) APD(f)

and from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

log fogl(r) _ (APD(f) +e) () (g) +¢) ogl" r
logl!|£] (expli—l7) (AP (f) —e) log" 7

i.e.,

[p]
lim 198 fogl(n) () (g). (63)
r=toologl! |f] (expli—nlr)

Thus from (61), (62) and (63) it follows that

m log[rﬂ] Ifogl(r) < min 4 p1) (g) pPA () . Almm) (g) . (64)
H—+oo10g[p] |f] (expla—r) ’ APA)(f)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

o [fogl(n) . (MP0() —e) (A"(g) —e) togr

logl!|f] (expli—lr) (0PN (f) +¢) log" 1
ie., .
p (Pa)(£) . \(mmn)
i Bl F 08I () L AP A g) )
r—>+oologm |f| (exp[qfn] r) pPA)(f)

Similarly, from (39) and (47) for a sequence of positive numbers of r tending to infinity it
follows that

log! £ o g| (r) S <A(p,q) (f) - 5) <)\(m’”)(g) - 8) logl"
logl”![£] (expla=rlr) (AP (f) + ¢) log 7

i.e.,
. [p]
lim log ’f © g‘ (1’) > A(m,n) (g) (66)
~Tologh ] (expli—1T7)
Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain
that

log[p] fogl(7) . <;\(m)(f) — g) <p(m,n)(g) — g) 1Og[n} r
log!”!|f] (expl1=lr) (PP (f) +¢) log " r
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ie.,

- [p] (P (£) . plmm)
m 1[0;5 fogl(n) A (J(‘) L &) )
~eloghl 1] (explilr) = p0()
Similarly from (36) and (49), we get that

_ [l
lim log ’f °© g‘ (1’) > A(m,n) (g> (68)

Thus from (66), (67) and (68) it follows that
- [p] () (£) . plmn)
lim 10g ‘f °© g’ (1’) > max )\(m,n) (g), A (f) P (g) ) (69)
= logl?![f] (expli=7l ) p(P)(f)

Thus the second part of the theorem follows from (60), (64), (65) and (69).
Case III. Let g > m. Then from (40) for all sufficiently large positive numbers of r we have

log? £ o8l (r) < (pP(f) +¢) 1og " " [ (") (g) +¢) log!" r|

ie.,

logl"! M (r,f o g) < <p(p’q)(f) + e) logl="*"y + 0O(1) (70)
and for a sequence of positive numbers of r tending to infinity that
logl?! £ 0 gl (r) < (pP)(f) +¢) 1og" " " r + O(1). 71)

Also for the same reasoning, from (41) for a sequence of positive numbers of r tending to
infinity we obtain that

log?!|f o g] (r) < (AP (f) +¢) logh ™7 +-O(1). 72
Further from (42), for all sufficiently large positive numbers of r it follows that
logl [fog|(r) > ( AP (f) — 8) logl=m+1 1 1 0(1), (73)
and for a sequence of positive numbers of r tending to infinity that
logl?! |fog| (r) > (A(W)(f) - s) logl="™*+ r + 0(1). (74)

Moreover from (43) for a sequence of positive numbers of r tending to infinity we obtain
that

logl?! £ og| (r) = (P9 (f) —¢) log ™" r - O(1). (75)

Now from (37) and (70), for all sufficiently large positive numbers of r we have that

l0g” [fogl () _ (p"() +e) logh "I+ 01
log?! |£] (explm=lr) (AlPA)(f) — ) logl1="m+1l

ie.,

i log”fosl(n  _ p"(f) 76
r=+ologltl £ (explm=nlr) ~ APA(f)
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Similarly, from (38) and (70) for a sequence of positive numbers of r tending to infinity it
follows that : ]
v PP (f) +¢)log" " r 4+ 0(1)
logh Ifogl () _ )log

logl! |f] (explm=lr) ~  (pP4)(f) — &) loght—" "]

ie.,
. [p]
m I[O}g .f o8l (r) <1 77
rﬁ+oolog p |f| (exp[m—n} 1’)

Also from (37) and (71) for a sequence of positive numbers of r tending to infinity we obtain

log" [fogl(r) _ (P(f) +€)og" "+ O
log[p] £ (exp[m*”] r) ()\(W) (f) —e) log[q*"””] r

ie.,

im log[p] M (T’,f ° g) < p(p/q) (f) (78)
r—+eologl?l M (explm=nly, f) ~ APA(f)’

and from (37) and (72) for a sequence of positive numbers of r tending to infinity also we have

log”! |f o g| (r) _ (A(W)(f) + s) logli ="+ r 4+ 0(1)
logl! |f] (explm=17) h (APA) (f) — ) logla ="+l

i.e.,

[r]
lim log”" M (r,fog)
r—+eologl?! M (expl—7lr, f)

Thus from (77), (78) and (79) it follows that

logh |[fogl(r) o[y p"0(A) | (80)
r—+eologl?! £ (explm—nlr) " Alpa)(f)

<1 (79)

Further from (36) and (73), for all sufficiently large positive numbers of  we have that

logl? £ o g () y <A(Pfq) (f) — g) loglt="+7 r + O(1)
1Og[n] If] (exp[mfn] r) = (p(p,q) (f) +e) 1Og[qu+n] r

ie.,
[p] (pa)
i Lo8" Ifogl () AP -
Hmlogm |£| (explm=17) o) (f)
Similarly, from (39) and (73) for a sequence of positive numbers of r tending to infinity it
follows that

logl”!|fog| (r) N <)»(V"7) (f) — e) logli ="+ 1 0O(1)
logP! || (explm=mlr) — (AP (f) + &) loglt =+l ¢

ie.,

= _logW|fogl() 62)
rﬁ+oolog[l’] ’f‘ (exp[m—n] 1’) -
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Also from (36) and (74), for a sequence of positive numbers of r tending to infinity we obtain

log|fogl(r) (A(p”’) (f) - 8) logl™=" "y 4 O(1)
log?! |£] (explm=rlr) — (0P (f) +e) logl1=m+1l ¢

ie.,
i log?|fogl(n) _ API()
7—>+0010g[p} ’f‘ (exp[m*n] r) - p(p'q) (f)

and from (36) and (75) for a sequence of positive numbers of r tending to infinity also we have

, (83)

logl! |f o g| (r) S <P(p'q)(f) - 5) loglt=™ "y +0(1)
log?! [£] (explm=mlr) — (p(PA)(f) +e) logli=m+n1
ie.,

- [P]
i og fegl) o (84)

Thus from (82), (83) and (84) it follows that

r—>+oolog[p] f| (explm=rlr) ~ " P (f)

Hence the third part of the theorem follows from (76), (80), (65) and (85).
Case IV. Let m > q = n. Then from (40) for all sufficiently large positive numbers of r we
have

logl "~ f o g| (r) < (p!"") () +¢) log" r +O(1), (86)
and for a sequence of positive numbers of r tending to infinity that
logl" "1l |f o g| () < (A")(g) +¢) logl" r + O(1). (87)
Also from (41) for a sequence of positive numbers of r tending to infinity we obtain that
logl” "= |f o g (r) < (") (g) +¢) logl" r + O(1). (88)
Further, from (42) for all sufficiently large positive numbers of r it follows that
logl"* "1l |f o g| (1) > (A" (g) —¢) logl" r + O(1), (89)
and for a sequence of positive numbers of r tending to infinity that
logl”* "~ |f o g| (r) > (") () — &) log" r + O(1). (90)

Moreover, from (43) for a sequence of positive numbers of r tending to infinity we obtain
that

log" "1l |f o g| (r) > (A" () — &) logll r + O(1). (1)
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Therefore from (37) and (86), for all sufficiently large positive numbers of r we have that

log " fog](r) _ (0" (8) +) log" r+0(1)  (p"")(g) +¢) logr+ 0(1)

g [fl(r)  (APA(f) —e) loglTr (AP (f) — ) log!?r
i.e.,

— loglPtm—dl (mn)
i log fogl(r) ( p™(8) (92)
r—4o0 log[p] |f| (r) Alpa) (f)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it
follows that

1Og[;7+m—q} If ogl (r) _ (p(’”'") () + e) 1Og[n} r+ O(1) B (p(’”f") () + e) logm r+0(1)
log? [fl(r) (pWA(f) —e)logl!r (0P (f) — €) logl? r

ie.,

[p+m—q] (m,n)
lim 198 fogl(r) o p™(3) 93)
Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

loglP*tm=1l | f o g| (r) _ (A(m,n) (g) + 8) log" r +0(1) (A(m'”) () + e) logl! r +0(1)

g |f(r)  ~ (APN(f) ) logllr (APD(f) — ) log!" r

i.e.,

[p+m—q] (mn)
lim 198 fosl(r) o A™M(s) (94)
roteo logl! |f] (r) APA)(f)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log 7o g](r) _ (P (8) +)log" r+0(1)  (p"")(g) +¢) loglr+ O(1)

gh|fl(r)  ~  (APD(f) —e)logr (AP (f) — ) logl" r

i.e.,

im 108" "M fogl(r) _ p"(g) ©5)
roteo logl?! [f] () APA)(f)
Thus from (93), (94) and (95) it follows that

g fog(r) _ [ (g) A(g) pm(g)
B TG A ) S ) Aw () AE () [ (%)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

logl" 1 |f o | (r) _ (A0 (g) ¢ ) logl r+0(1) (A1) (g) — &) loglr 4 O(1)

log? f[(r)  —  (pPI(f) +¢)logr (PP (f) +¢) log r

i.e.,

[p+m—q] (m,n)
lim 108 fogl(r) o ATM(g) @7)
r—+o0  logl?! £ (r) (P (f)
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Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

log" ™"~ |fog| (1) <)\(’”'”)(g) —e) logl" r +0(1) ) (Mm/n)(g) —e) logl r + O(1)
log”! | f] (r) B (AP (f) +¢) logl®l r (AlPA)(f) +e) logl®l r

ie.,

- [p+m—q]
e logl | og] (1)  Ag (m,m)
r— oo 10g[17] If| (r) APA)(f)

Also from(36) and (90) for a sequence of positive numbers of r tending to infinity we obtain

(98)

log"* "~ |f o g (r) <P(’”'”)(g) —e) log!" r + O(1) <p(m'”)(g) —e) loglt r +0(1)

log?” [fI(r)  —  (oPD(f) +¢) log!r (0P (f) +€) log r
ie., [ }
. p+m—q (mn)
— log fogl(r) 5 p(8) (99)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

logl" 1 |f o | (r) _ (Am(g) —¢) log" r+0(1)  (A)(g) — &) logltr + O(1)

logl"! |1 (r) (0P(f) +e)logllr (o) + ) log r
i.e., [ |
. p+m—q (mmn)
T 108 fogl(r) S AT(8) (100)
r=teo Jogll |£] () pPAD(f)
Thus from (98), (99) and (100) it follows that
__ loglPtm—dl (m,n) (m,n) (m,n)
— log Fo81(1) o pax d A8 pM(g) A(S) | (101)
r=+eo ogl!l|£] () AP (F)" o) (£)" p(PA)(f)

Therefore the fourth part of the theorem follows from (92), (96), (98) and (101).
Case V. Let m > q > n. Currently from (37) and (86), we have for all sufficiently large
positive numbers of r that

1Og[P+m—q] Ifogl(r) < <P(m’n)(8) + 8) log[”] r+0(1)
logl”! | f| (explr—l 7) (AP () —¢) logl" r

ie.,
. [p+m—q] (m,n)
m 108 fogl(r) . p™(Q) (102)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it
follows that

log?*" 4|7 o g|(r) _ (0 (8) +¢) 10g" 7+ 0(1)
log"! [£] (expli—17) (0P (f) —€) log" r
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ie.,

[p+m—q] (mn)
lim 198 fogl(r) ™" (8) (103)
r_>+0010g[m If] (expla—7l7) oPAD(f)
Also from (37) and (87), for a sequence of positive numbers of r tending to infinity we obtain
that

log" "~ |[fog| (r) _ (A" (g) +¢) log")r + O(1)
log”! || (expla—lr) h (AP (f) — &) log"

ie.,

[p+m—q] (m,n)
i 1087 ol () _ A g)
r—>+oolog[p] |f] (exp[q—”] 1’) A(pa) (f)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

(104)

log " fog| (1) _ (p"(3) +¢) log™" r+0(1)
logl”! | £| (explr—l 7) (AP () —¢) logl" r

ie.,
[p+m—q) (m,m)
i log[ fosl(r) P( 8) (105)
r—+eologl?! | f]| (expli=mlr) ~ A PA)(f)

Thus from (103), (104) and (105) it follows that

im 108" fogl(n) o [e(R) A(g) p(g) | (106)
r—+oologl?! | f] (expli—nl ) P (F) " AP (F)" APa)(f)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

1087 | og] (1)  (A""(&) ~¢) log" r +O(1)
logl! |f] (expla=nlr) — (0 (f) +¢) log!" 7

i.e.,

[p+m—q] (m,n)
lim log[ fogl(r) o A( &)
r=rteologl | f] (explt—rlr) — pA(f)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

(107)

log" " |fog| (r) (A" (g) — ¢) log" r + 0(1)
loglP | (expli=nlr) — (AP (f) +€) log"

ie.,

= g |fog| (r) _ A™(g)
H+oo10g[m If] (expla—nlr) — ApA) (f)

Also from (36) and (90), for a sequence of positive numbers of  tending to infinity we obtain

(108)

g [fogl () (¢")(5) —¢) log?r+ O(1)
logl! |f| (expla=nlr) — (0 (f) +¢) log!"
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i.e.,
= log"" W |fog| (1) L p"(g) (109)
r%+0010g[p} ’f‘ (exp[q_n] 1") P(p’q) (f)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log"* " |fog| (r) _ (A1) (g) — &) 10g!" 7+ O(1)
log!?! [£] (expli—l7) ~ (0P (f) +¢) logl r
ie.,
- [p+m—q] (m,n)
108 fogl(r) o A™(g)
r—>+oolog[17] £ (exp[q—n] r) pPA ()
Thus from (98), (99), and (100) it follows that

_ [p+m—q] (mn) (m,n) (mn)
T 108 Fo81() o ax d A08) p™(8) AT(R) (1)
r—>+oolog[m £ (exp[qfn] ) AP (F)" o) (F)" p(PA)(f)

Thus the fifth part of the theorem follows from (102), (106), (107) and (111).
Case VI. Let m > g < n. At this instant case from (37) and (86) for all sufficiently large
positive numbers of ¥ we have that

(110)

log[p'i'm_‘ﬂ |f o g| <exp["7’ﬂ r) . <p(m/n) (g) —+ 8) log[q] v+ O(l)
log!?! | f] (r) = (AP (f) —e) logl r

i.e.,

L log[’ﬁm*q] |f ogl <exp[”_‘7] r) (m,n)( )

lim < P 3 .
r—-+oo log! | £] (r) APA)(f)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

(112)

log[ijm*’ﬂ ‘f o g’ <exp[”_‘ﬂ r) _ (p(m/n) (g) + 8) log[q] v+ O(l)
log[p] If] (r) = (p(M) (f) —e) log[q] T

ie.,
logl" "=l |f o g| (expl"=4)+ (m,n)
lim < ) <P 8)
5100 1Og[ﬁ} 1] (r) p(w) (f)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

(113)

loglPm=4l |f o g (exp[n—q] r) <A(mrn) () + g) logl” r +0(1)
<
log!”! |£] (r) (AP (f) — &) logl r

ie.,
log”*" 1 |f o g| (expl"=1r (m,n)
lim < ) < A (8)

< g 114
s too 1Og[p] 1] (7) Apa)(F)” (114)
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and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[ijm*’ﬂ ‘f o g’ <exp[n_‘ﬂ r) (p(m/n) (g) + 8) log[q] r+ O(l)
<

log”" |f] (r) T (APA(f) —e) loglr
i.e.,
log"* "1 fog| (exp"=r)  mn)
lim ( ) <P 8) (115)
ro oo log!”! | f] (r) APA)(f)
Thus from (113), (114) and (115) it follows that
log? "~ |f o g| (expl*=1 7 () () A(mm) () plmm)
. ; ( )gmm{p( g A7) o )(g)}_ e
rs oo log!! [£] (1) P PA(f) " AP (f) " AP (f)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

loglP+m=1 | o g <exp[nfq] r) <A(m/n) (g) — e) logllr +0(1)
>

logl”! £ (r) T (A (f) +¢) logll 7
ie.,
log" ™"~ |f o g| (expl"=r)  y(mm
. ( ). ) -
r—reo log”) | £] () pP(f)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

loglr 1=l | o ¢ <exp[n—q} r)
log! [£] (r)

(Mmm (g) — s) logl r + O(1)

>

i.e.,
_ loglPtmmal| £ o gf (expln—ily (m,n)
- (1) Ao

r—+oo 1Ogm 1] (r) — APD(f)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

(118)

loglPm=4l £ o g (exp[n—q] r) N <p(mfn) (g) — g) logl!l r + O(1)
log[P] If] (r) - (p(w) (f) +¢) log[‘ﬂ r

i.e.,
logl? ™™= | f o g| (expl®= ¢ (m,n)
m ( ) S pm(g)

r——+oo log[l’] ’f‘ (1’) - p(P/Q)(f) !

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

(119)

loglP =4 | o g (exp[nﬂﬂ r) <;\(m/n) (g) — g) logl r +0(1)
>
log” || (r) (pP(f) +¢) log T r
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ie.,
_ logl" il fog] (exptlr) joum)
Tim ( ) > AM(S) (120)
r—-+oo logl?! [£] (r) pPAD(f)
Thus from (98), (99) and (100) it follows that
_logl" ™| fog] (expl ) AU (g) o) () AL (g)
lim o > max ) T N . (121)
e log”! If] () ATA(F) " pPA(f) " pPAI(f
Hence the sixth part of the theorem follows from (112), (116), (118) and (121). 0
Theorem 8. Let f, ¢ € A(K) be such that 0 < APA(f) < p(P0)(f) < coand 0 < A" (g) <

oM (g) < oo, where p,q,m,n € N. Then

(i) AP (F) - Amm) (o) < lim 1og[p] |fogl(r) y min{p(p’q)(f), AP () ,p(m,n)(g)};

pmM(g) T Ste logl g (r) Alm)(g)
(Pa)(£) . \(mn) . (7] () ( F) . A(m,n)
max 4 A (), 20U AP | g log P fogl () pPS) - (g)
p(m,n)(g) F—+oo log[m] 5| (r) A(m,n)(g)

wheng = m,

4

(pa) log"![f o g| (expli—)r (pa) () (p.4)
@ A, []( ) i o) P A
P M(g) T roteo log™ |g| (7) plmm)(g)” Almm) (g)” Almm)(g)

(p) (p4) (p) ~ loglP|fogl (expli—mly
mm{p () Ae9(p) A U)}<1m1 ( )
pmm(g)" pmm ()" Al (g)

ke log gl (1)
when g > m, and

" (f)
Almm) (g)”

IN

(m,n) [p+m—q] _ [p+m—q] (m,n)
m,n g

o (g) = e log™ |g] (r) Tt logh g (r)
whenm > q.

We omit the proof of Theorem 8 as it can easily be deduced in the line of Theorem 7.

REFERENCES
[1] Bezivin]. P, Boussaf K., Escassut A. Zeros of the derivative of a p-adic meromorphic function. Bull. Sci. Math. 2012,
136 (8), 839-847.

[2] Bezivin J.P.,, Boussaf K., Escassut A. Some new and old results on zeros of the derivative of a p-adic meromorphic
function. Contemp. Math. Amer. Math. Soc. 2013, 596, 23-30.

[3] Boussaf K., Escassut A., Ojeda J. Primitives of p-adic meromorphic functions. Contemp. Math. 2011, 551, 51-56.

[4] Boussaf K., Boutabaa A., Escassut A. Growth of p-adic entire functions and applications. Houston ]. Math. 2014,
40 (3), 715-736.

[5] Boussaf K., Boutabaa A., Escassut A. Order, type and cotype of growth for p-adic entire functions: a survey with
additional properties. p-Adic Numbers Ultrametric Anal. Appl. 2016, 8 (4), 280-297.

[6] Boutabaa A. Theorie de Nevanlinna p-adique. Manuscripta Math. 1990, 67, 251-269.



272 Biswas T.

[7]1 Chern T.Y.P. On the maximum modulus and the zeros of an transcendental entire function of finite logarithmic order.
Bull. Hong Kong Math. Soc. 1999, 2, 271-278.

[8] Escassut A., Boussaf K., Boutabaa A. Order, type and cotype of growth for p-adic entire functions. Sarajevo ]. Math.
2016, 12 (25) (2), suppl., 429-446.

[9] Escassut A. Analytic Elements in p-adic Analysis. World Scientic Publ. Pte. Ltd., Singapore, 1995.

[10] Escassut A. p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic
Analysis. Math. Monogr., Beijing, 2008, 11, 42-138.

[11] Escassut A. Value Distribution in p-adic Analysis. World Scientic Publ. Pte. Ltd., Singapore, 2015.

[12] Escassut A., Ojeda J. Exceptional values of p-adic analytic functions and derivative. Complex Var. Elliptic Equ.
2011, 56 (1-4), 263-269.

[13] Escassut A., Ojeda J. Branched values and quasi-exceptional values for p-adic mermorphic functions. Houston J.
Math. 2013, 39 (3), 781-795.

[14] Escassut A., Ojeda J. The p-adic Hayman conjecture when n=2. Complex Var. Elliptic Equ. 2014, 59 (10), 1452—
1455.

[15] HuP.C,, Yang C.C. Meromorphic Functions over non-Archimedean Fields. Kluwer Academic Publ., 2000.

[16] Juneja O. P., Kapoor G. P., Bajpai S. K. On the (p, q)-order and lower (p, q)-order of an entire function. J. Reine
Angew. Math. 1976, 282, 53-67.

[17] Juneja O.P., Kapoor G.P., Bajpai S.K. On the (p, q)-type and lower (p, q)-type of an entire function. J. Reine Angew.
Math. 1977, 290, 180-190.

[18] Robert A. A Course in p-Adic Analysis, Graduate texts. Springer, 2000.
[19] Ojeda]. On Hayman's Conjecture over a p-adic field, Taiwanese J. Math. 2008, 12 (9), 2295-2313.

Received 24.05.2018

Bicac T. Oyirnka opicHmoeanoeo pocmy cKaadeHux p-a0unHux yisux QyHxyiil, wo aiexcums 6io (p, q)-eo
nopadxy // Kapmarceki marem. my6a. — 2018. — T.10, Ne2. — C. 248-272.

Hexait K — moBHe yAbTpaMeTpuuHe aArebpaiuso samxHyTe moae, A (K) — K-aarebpa miamx
dyuxuin Ha K. Arst aoBiabHOI p-aanusoi minoi dpyskuii f € A(K) ir > 0 mosmaunmo |f] (r)
ancao sup {|f (x) | : |x| =}, ae || () € myapTunaikaTusHO© HOpMOIO Ha A (K). AAsT AOBIABHMX

Lf1(r)
: : o : 81(r) :
PIBHSIABPHMM POCTOM f BIAHOCHO ¢ B CEHCl1 1XHIX MYABTUIIAIKATMBHIMX HOPM. AHanOTiUYHO A0 TOroO,

SIK Ile pOOASITh B KOMIIAEKCHOMY aHaAi3i, B 1Iilf CTaTTi MM BUM3HAYAaEMO IOHSTTS (P, q)-TO HOpSIAKy

log!”! |](r) If | ()
log

ABox miamx ¢pyukuint f € A(K) ta ¢ € A (K) criBBiaHOLIIEHHS IIpM r — ©O Ha3MBAIOTh IIO-

(BiATIOBIAHO (P, §)-TO HVXXHBOTO TIOPSAKY) pocTy HacTymEmMM uieoM p(P4) (f) = hm sup

i ATION (P4) (F) = log"|£|(r) ‘f |(r)
(BiamoiazO A (f) = 11m Jg\of og

AesIKi BAACTMBOCTI pOCTy CKAQACHIMX P-aAMYHVX LIAVMX (PYHKIIN Ha OCHOBI IXHBOTO (p, )-TO IOPSIA-
Ky i (p, §)-TO HVDKHBOTO HIOPSIAKY.

) Ae p i g ABa AOBlAle HaTypaAle uricra. Mu AOCAIA)KYGMO

Koouosi cosa i ppasu: p-apydHa niaa dpyHKuist, pict, (p, 4)-1 DOpSIAOK, (p, q)-ii HVDKHI TOpsI-
AOK, KOMIIO3MIIisI.
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APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY TO
THE STUDY OF ORNSTEIN-UHLENBECK PROCESSES

The theoretical bases of this paper are the theory of spectral analysis and the theory of sin-
gular and regular perturbations. We obtain an approximate price of Ornstein-Uhlenbeck double
barrier options with multidimensional stochastic diffusion as expansion in eigenfunctions using
infinitesimal generators of a (I 4+ r + 1)-dimensional diffusion in Hilbert spaces. The theorem of
accuracy estimation of options prices approximation is established. We also obtain explicit formu-
las for derivatives price based on the expansion in eigenfunctions and eigenvalues of self-adjoint
operators using boundary value problems for singular and regular perturbations.

Key words and phrases: spectral theory, singular perturbation theory, regular perturbation theory,
Sturm-Liouville theory, infinitesimal generator, multidimensional diffusion.
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INTRODUCTION

In 1956 McKean H.P. constructed a spectral presentation for general one-dimensional dif-
fusion [1]. Since then, spectral theory has become an important instrument for the analysis
of financial diffusion models, as investigation of expansion in eigenfunctions of linear opera-
tors. Many problems concerning derivatives estimation are solved using methods of spectral
theory; as a result it is widely used in financial mathematics.

Spectral theory has been extensively applied by many scientists, namely, to forecast call op-
tion price [2], to find interest rates on securities [3] and model volatility of financial assets. Both
spectral theory and stochastic volatility models have become an indispensable tool in mathe-
matics of finance [4], due to the fact that prices of double barrier options are subjected to the
Brownian motion and are correlated with volatility [5]. Therefore, it is employed in an investi-
gation of stochastic volatility, in particular the asset volatility, which is the basis of controlled
and nonlocal diffusion [6]. Applying methods of spectral theory, theories of singular and reg-
ular perturbations, we can obtain approximate price of Ornstein-Uhlenbeck double barrier
options with multidimensional volatility, as expansion in eigenfunctions using infinitesimal
generators of a (I + m + 1)-dimensional diffusion, ! > 1,7 > 1,1 € N, r € N, i.e. the diffusion
depends on one local variable, /-dimensional fast variable and n-dimensional slow variable.
This paper develops the following researches [7-9], in [9] it is considered the case | = 1 and
m = 1.

The purpose of the article is to elaborate algorithms for evaluating approximate price of
double barrier options and to find explicit formulas for derivatives estimation as expansion in
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eigenfunctions and eigenvalues of self-adjoint operators using boundary problems for singular
and regular perturbations. The theorem of accuracy estimation of options prices approxima-
tion is established.

1 RESULTS

Let (Q,F,P) be the probability space that supports a correlated Brownian motion
(WX, Wh, .., WY, W= . W?#) and an exponential random variable ¢ ~ exp(1), which is in-
dependent of (W*, W¥i, ... WY W= ... W?). We will assume that the economy with
(I +r+ 1) factors is described by the homogeneous time and continuous Markov process
X=(XY1,...,Y1,Z4,...,Z,), which is defined in some state space E = I X R! x R", where
(Yy,..., YZ)GRZ, (Zy1,...,Zy) €R’, I is the interval at R with points e; and e, such that —oo <
e1 < ep < 0. We assume that X has the beginning at E and instantly disappears once X goes
beyond I. In particular, the dynamics of X with physical measure PP is as follows:

X, — (thylt;- . .,Ylt,th,...,Zrt), T > t,
P =
A, T <t

T =1inf{t >0: X; ¢ I}, where (X, Y1,...,Y},Z4,...,Z;) are set

(dX; =0 (Xe)dt+a(Xe) f Ve, Yie, Zugs - -, Zot) AWE,
dYye = La; (Ye) dt + = (i) AW, =11,
dZi; = 8ic; (Ziy) dt + \/6;g:i (Zi) AW/, i=1,r,
d(W*, WYi), = Pxydt, i=1,1,
d(W*, W?), = px.,dt, i=1,r,
d(wyj,WZi)t — py]‘zidt’ j=1Li=1r,
d(WYi, W¥r), = py].ysdt, i=11Ls=1,1,
d(W?, W), = p,...dt, i=1nk=1,r,
(X, Y1,....Y,Z4,...,2y) = (%, y1,---, Y1,21,---,2¢) €E,

\

where pyy. = 0,j # 1, pzz, = 0,1 # k, pxy;, Pxz;, Py,z meet the conditions ||pxy].| <1, lpxz| <1,
|P}/jzi| < 1, and correlation matrices of the form

1 px]/j pxzi
Pij 1 pyjzf
Pzx Pz, 1

semipositively defined, that is 1 + 20xy,0xz,0y,2 — pxy].2 — Oxz — Pijiz >0,j=1,1i=1,r.
Process X may represent many economic phenomena and processes.

For example, the reserve size, the index price and reliable short-term interest rates, etc.
Even more broadly, X is an external factor that characterizes the value of any of the above-
mentioned processes. Physical measure IP of process X is understood as the process X, which
has an instant drift v (X;) and stochastic volatility a (X;) f (Yit, ..., Y, Z1t, - - -, Znt) > 0, which
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contains both components: local a (X;) and nonlocal f (Yi,..., Yy, Zit, ..., Znt). Note that
infinitesimal generators for Y; and Z; have the form
g _ 1 (1,5 2 5 L 2 2
Sy = g 5:3]' (vj) Oy, + i (yj) Oy, |, L7, =i 28i (2i) Oz, +ci(2:) 0 |, Vi,
and are characterized by the measures 81—] and J;, respectively. Thus, Y7,...,Y;and Zy,...,Z,

have an internal time scale ¢; > 0 and % > 0. We consider ¢; << 1 and J; << 1, so that the
internal time scale Y;is small, and the internal time scale Z; is large. Consequently, Y, j= 1,1,

are fast variables, and Z;, i = 1,1, are slow variables. Note that S% and S‘;"i have the form

£ =142 (x) 9%, + b (x)9x —k(x), x € (e1,€2), ¢k (x) =0,
for all x € I, are always self-adjoint in the Hilbert space H = LZ(I,m), where I € R is the
interval with the points e; and e, and m is the diffusion density rate. Note,

Dom (£) = {f € L>(I,m) : f,0xf € ACioc (I), &f € L*(I,m), BCsone; and e},
where ACj, (I) is the space of functions which are absolutely continuous on each compact
subinterval I (see [9]). The boundary conditions for e; and e; are applied on the output, input,
and regular bounds.

We will evaluate the derivatives with payoff at time t > 0, which may depend on the tra-
jectory of X. In particular, we will consider the forms of payoff: Payoff = H (X)L (), where
T is a random moment of time during which there is a failure to make a payment of pre-
mium. Since we are interested in the derivatives estimation, we must determine the dynamics
(X,Y1,...,Y1,Z4,...,Z;) under the evaluation of the degree of neutral risk, which we denote
as IP. We have the following dynamics

dXt = (b (Xt) —a (Xt) f (Yltr .. '/Yltr th, ce rZ}’i’) Q (Ylt/ ce rYltr th, .. .,Zyt)) dt
“+a (Xt) f (Ylt/ ooy Ylt/ th, ey Zrt) thx’

dY; = <£ljoc]- (Yir) = =B (%), (Ylt,...,Ylt,th,...,Zrt)) dt -+ J=p; (Vi) W/,

dZiy = (6ici (Zit) = V6i&i (Zit) T Vats - - Yit, Zag, -, Zyt) ) At + \/6i8i (Zi) AW,

A(W, W, = pry dt, =1

d<Wx, Wzi>t — szlvdt/ i= 1,7’,

d (WY, W) = 0y,zdt, j i=1r,

d (WY, W¥s) = Oy, dt, i=11, s=1,1,

d (W%, W), = p,z,dt, i=1n, k=1,n,

(X(), Yl,...,Yl,Zl,...,Zro) = (x,yl,...yl,zl,...,zr) € E,

where Oyiys = 0,j #5,0z2 =0,i #k and

U(Xt) —b(Xt) 4
(Xt> f (Ylt/ .. -lYlt/ th/ . . -/Znt>

thx = thx + (ﬂ (@) (Yltr~ . ~/Ylt/ th,. . .,Zrt)) dt,

dVVty’ = thy] + A] (Ylt/ .. -/Ylt/ th, .o -;Zrt) dt,
AWi = dWE 4+ T; (Yig, -, Yo, Zag, -, Zye) dit.

We establish such conditions so that the system (1) has the only strong solution.
Random time T is the time of the derivative asset. In our case, default can occur in one of
two ways:
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1) when X fall outside the interval I,
2) at random time T, which is managed by the risk level h(X;) > 0.

This can be expressed as follows

T=T ATy
T =inft>0: thél
T, =inft>0: fo s)ds >e(X,Y1,...,Y1,24,...,Zy) , € ~exp(1).

Note that the random variable ¢ is independent of (X, Y1,...,Y}, Z1,...,Zy).

To track 1, we use the process indicator Dy = I;>q, where D = ©;, t > 0, is a filter
generated by D and F = §;, t > 0 is filter generator (W*, WY1, ... WY W=, .., W*). We
use the filtering G = &;,t > 0, where &; = §;\/ ©;. Note that (X,Y3,...,Y],Z4,...,Z,) are
applied to G and 7 is a stopping time (7t < t € &; forall t > 0).

We will evaluate the derivative asset of some payoff (payment) using the neutral pricing
risk and Markovian chain X, the price u&d' (t,x,y1,-..Y1,21,-..,2+) of some derivative assets at
the initial moment of time has the form

_ - t
usl(s (tr X, ylr .. 'yllzlr oo /ZT’) — ]Ex,y1,...yl,zl,...,zr |:exp <_ /O r (XS) ds) H(Xt]If>T):| ’

where € = (eq,...,¢),8 = (61,...,6;),and (x,y1,...Yy;,21,...,2,) € E is a starting point of
the_ process (X,Y1,...,Y;,Z1,...,Z). Using the Feynmann-Kac formulas, we can show that
U’ (t,x,y1,---Y1,21,- - ., 2r) satisfies the following Cauchy problem (see [9])

(—0; +£E'y)ug' =0, (y1,---y1,z21,.--,2r) €EE, t e RT, (2)

u'/(O,x,yl,...yl,zl,...,zr) = H(x), (3)
where the operator £%%" has the form

) /

SE,W:
7; = 1VE

1
- 21]+£2]+Z mt31]+z\fimh+25 My;,
i ]

Sy = 2B (1) B, 0y (1), =T,
£y = ﬁj(yj)(pxyja (x) f (1, ---y1,21,- -, %) Ox — Aj(Y1, - - - Y1, 21, - - .,z,))ay],,
L= %az () F2 (Y1, Y121, -, 20) 0oy
+0(x)—a(x)Q 1, yvz1,--,20) f1,-- - Y1,21,- ., 2r)) Ox —k (X)),
Msij = oxz,B; (V) 8i (2i) 0y .

1i = i (zi) (oxz0 () f(y1,---y,20,- -, 2) O — i (W1, - Y1, 20, - -+, 2¢)) Oz,

1
My = 5812 (2i) 02, +¢i (2:) 0z k(x) =7 (x)+h(x), Lo= 53%/,»



APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY ... 277

We assume that the diffusion with the infinitesimal generator S%(j has an invariant distribu-
tion IT with density

. 2 Yj 20(1‘(9) .
) = g,

Besides the initial condition (3), the function u&° ' (t,x,y1,---Y1,21,--.,2) must meet bound-
ary conditions at the points e; and e; of the interval I. The boundary conditions at points ¢;
and e, belong to the domain £5%" and will depend on the nature of process X on the points
of I and are classified as natural, output, input or regular [10]. The Cauchy problem (2)-(3)
for (f,a1,...,a1,B1,---, Brs M1, -, Ac1, oo, 081, -+, 8 11, - .., ) has no analytical solution.
However, for fixed ¢, the conditions containing € and are arbitrarily deviated in the g-axis,
which causes singular perturbations. For a fixed ¢; condition containing J; are small for some
small ¢’-axis, which causes regular perturbations. Thus, the €-axis and ¢’-axis yields the com-
bined singular-regular perturbation of O(1) of the operator £,.To find the asymptotic solution
of the Cauchy problem (2)—(3), we develop u%" in orders V/Ej and Vo; [11]:

ug,y = Z Z Z Z \/Efl..ve_/’ \/E” e \/grlrujl,...,jn,il,...,il
120 420720 20
where

Y oYY Y e \/‘Tlil---\/griruh,...,jr,il,...,il

050 207,20  j,=0
m>0 my 20 myy,

—hmz YY) Z\/_“ mjlmil~~~\/5/riruj1,...,j,,z‘1,...,ilr V1my, — oo.

i1>0 120 120 jn=>0

The approximate price is calculated
—_ l r
~ Uy + Z; Ve + Z; \/Eual—;.
j= i=

The choice of development in half-integer orders ¢; and ¢; are natural for vl

By conducting an analysis of singular perturbations at the corresponding levels, we obtain
that 15, U, Uy 1 do not depend on yjy, ..., y;. The basic findings of the asymptotic analysis
are given using the following formulas

o1): Y. £0ju§]ﬁ + (=0t +(£2)) ugy =0, gy (0,x,21,...,2,) = H(x), 4)
j=1

@ <\/a) : Sojugj@ + 21]‘145],,@ + (=0t + (£2)) ul NG + Z £1ku1 0 + 2211 =A; jUg0

k# i#]
U (0,%,21,...,2,) =0, 1= 0,...10,1,0,...0 | . (5)
k ]

According to the analysis of regular perturbations we have

(’)(ﬁ) (=0t + (£2))u 1,—5’8211400,, 6,1—;(0,x,21,...,zr):O, i=1,r. (6)
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Operators (£,), Aj, B; and 9, are defined by the formulas
1 2 —
(L) = E(T a* (x) 02, <b (x) —an(x)) ox —k(x), x€(e1,e2),
Aj = —vzja (x) 0xa* (x) 92y — vzjaz (x) 93y — Upja (x) 0xa (x) 0y — Uija (x) Oy,

Bi = —vjia (x) 0y —vpi, 0z, = 8z1535+m/3m, v = Qipxz; (f), vo=gi{li), Vi=1n,

and norm function is defined by

/X W1,y 5 (yy) dyy, Vi=11,

()12 = / X 1,y (1) 72 (2) dndy
)1 11—/RIX yi,---y) (i) - (yn) dya - dy,

(X)) 1= (X)), (fQ) = fO, <f2> =07
We find solutions of the equations (4)—(6) on the basis of eigenfunctions, eigenvalues of the
operator (£,), each of which meets the corresponding Poisson equation

Lorpr = f* <f2>1’ Lo2g2 = <f2>1 a <f2>1,2,---,5301901 B <f2>l—2,l—1 a <f2>1—1,l’
Lorm = fQ=(fQ)y,..., Lojj= (fQ)j 21— D) j_1jp- - Lot = (fQ) 201 — f )4,

Theorem 1. Assume that we can solve the following equation to find an eigenvalue

—(£2) Yu = Antpn, P € dom ((£2)), )
and also that He ‘H. Then the solution usy has the form

(e 9]

Uy = Z CntpnTh, Cp = (IPn,H) , T, = o tAn
n=1
Proof. Since Usy satisfies the differential equation (4), suppose that occurs (7), the boundary
conditions are fulfilled Ugor 0,%,21,...,24) = H(z1,...,24), T (0,21,...,24) =1, ¢ (A) =1d,
this means

1df - il(wn,f) o VfEH,

this is equivalent to having its eigenfunctions 1, dense self-adjoint operators in H form the
Schauder basis. In fact, the basis can be chosen orthonormal (¢, ¥1,) = 6nm. Also note that
¢ (A) = R, gives the actual representation of the resolvent of the operator

R, f = ig‘:”’f))\lpn, VFEH, Acp(L),

to payoff function H :

(e 9]

WH= Y () o = 3 cutn

n=1 n=1
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Theorem 2. Letc,, Py, T, be described using Theorem 1. We define

. . Tk - Tn
]kn = (Ebk/ ]an) 7 uk,n . )\k — A

Then the solution ug 7 of equation (5) has the form
]/

MT]/W - Z Z C”A]k,ﬂlpkuk,n - chAjn,anntTn.
n

n k=#£n

Note that Ui is linear in the parameter group (93, %), aj, 1)

Proof. Let us show that u; g satisfies the differential equation and boundary conditions (5). It
]I
is clear that the boundary conditions for ug (0,x,z1,...,2,) = 0 are executed. To show that
]/
ug i satisfies the differential equation (6), we note that
]/

Aty = ;Cn (Ajpn) Tn = ;;CnAjk,anan/
according to the proof of Theorem 1. Now, using (7) and the following equality
(=0 — M) Uy = Tu, (=0t — Ap) tTy = =Ty,
it is easy to see that
(=01 + (L)) ug iy = Ajug iy = ;cn (Ajpn) T, = ;[kjanjk,nlkan.

0

Theorem 3. Letcy,, ¢, and T,, be defined with Theorem 1, and Uy ,, with Theorem 2. We have
Tk - Tn tTn
5+ .
()\k — An) )\k — An

Bitn = (r, Bidz.¥n) , Bikw .= ($r, Bihn), Vign :=

Then the solution u-— has the form

0, 1’
7= Z Z cnB zk ank ikn — Zcﬂgiﬂ,nlpntT”
i n k#n n

+) ) (9z.,) Bkt Uik — Y (92,¢,)) Binnp,,t T

n k;én n

+ZZC” anl/]k aZA zkn ch znnlpn az/\)

n k#n

Proof. We need to show that U 17 satisfies the differential equation and boundary conditions

(5). We see that the boundary Cond1t10n u==(0,x,21,...,2,) = 0 is executed. To show that

01! (
7 satisfies the differential equation, we note that

6'1‘
Bio- ”00/—ch Bi0z,pu) T +Z (0zcn) (Bitpn) T
+ch B’,bn az,Tn chngzknwan

+ZZ aZzC” Zk?llpk T _chn zknlpk (azl)\ ) 1

I
—_
~
S
~
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where we used
o

IdH = Z (Y, f) Y = ch’l)nr
n=1

n=1

in the second equality using — (£;) ¥, = A, P, and equality
(=0t = A ) Uy = Ty, (=01 — Ap) tTy = =T,

1
(=0t — M) Vi = —tThy, (—at—Ak)EtzTn:—tTn,

one can see that
( at+ <82>) _/ = Bazz ()()/ - ZC” B 82711‘/]”)

Z (azncn Bn¢n Z Bnlpn azn Tn chnlgzk n Pk T
+ Zzazl ¢, zk anan ZZCHBik,nlpk (az,')\n) tTy, i=1,n.
n k

Note that U1 is linear in (vy,0, vi; fQ2, voiT, voi f2).
We have obtained the approximate solution u*®" ~ Ugy + Z}:l \/S_J'”Tjﬁ + Y \/(Tiuﬁ,l_; for
the derivative asset pricing. O
For a more exact result we assume that the Payoff function H(x) and its derivative are

smooth and limited functions. Thus, we restrict our derivative analysis to a smooth and limited
payoff; in this case, the closeness estimates is based on the following theorem.

Theorem 4. For the fixed (t,x,y1, ...,Y1,21,--.,2r) there exists an invariable C such that for
anye; <1, 6; <1 we have

™ — (”00'+ ). \/7”1 I +Z \F”m')

l r
S C (ZSJ‘—FZ(Z‘) .
j=1 i=1

Proof. Before setting the main result of accuracy we formulate such a lemma.

Lemmal. LetJ(y1,...,Y1, 21, -.,2n) grows polynomially. Then for every (y1,...,Y1,21,---,2n),
s < t, there is a positive start C < oo such that for any ¢; < 1, §; < 1, the following inequality
holds

Ey,, vz T Nisr - Yis, Zas, - Zns)|] < C.

Proof. It is enough to consider | (y1, ..., Y1, 21,---,2n) = y;‘ and J (y1, -, Y1,21,---,2n) = zi-‘,
k € IN. For the second one we have the following. Physically IP we understand as

E [‘ZiS‘k] =E [
(1)

Now we define exponential martingales M, ", which connect the dynamics Z; at neutral risk
of measurement IP in its dynamics according to physical measure IP. We have

otk
id;s

k
Z(l)‘ ] <suplE {

108
6;<1

:| < Ci (S,k) < Ci(t,k>, i= 1,1’[.

, t 1 gt dP
MF = exp <—/0D(Y15,...,Y15,Z15,...,Zns)dWle—E/OFf(Yls,...,YZS,le,...,Zns)ds> =

Fi
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| Zs|* can be found as follows
E|[|Zu/] = E ||z m"]

LI Ay 172
=F {\Zis!kexp <§/0 r? (Yluf'--lewzluz---,Zm,)du> <M§2Fl)) ]

s 1/2
< (]E [|Zis|2kexp (/0 2 (Ylu,...,Ylu,Zl,,,,...,Znu)du”)

(by Cauchy-Schwartz)

s 1/2
- (]E {|Zis|2kexp (/0 Fiz (Ylu/- . -rYlu/ Zlur~ . ~/Znu) du)])

(M@5) —is P—martingale)

(o

Consider now the case J (y1, ..., Y1, 21,---,2n) = y}‘. We have

E [t = ||,

Using the above considerations is easy to show that

B [[vil'] =[x u| < (E |v0),

The Lemma 1 is proved. 0

/N
[zs
—
S
N
iy
=
N—
Nl—

(1)
Zi(SiS

i exp(suriuio»f <c

k k
] <sup]E U /e, ] <Cj(k).

i exp@HAjH;)))% <,

Let us return to the proof of the Theorem 4. We start with the definition of the remainder
term R%'

l n l l
oy + Z; VErTy + Z; Vit + Z; g (”z]ﬁ + Z; \/87‘”3]-,@>
j= i= j= j=

1
EOVCNC IS A S » )

k#j j=li=

+ZZfoﬁu1 TR

k#jj=1i=
Functions 1y, U Ug are the only solutions of equations (4)—(6), respectively. Function
uz—]ﬂ, wz—j@ is a solution of the Poisson equation 0 = 20;‘”@@ =1, 1, 1. To characterize u1 1,, 2].1—;

continue the singular analysis of perturbations.

/
0= Sojug'—jl*; + £1ju2—jﬂ + g £1ku17j,1*; + (=0t + £2) ul—jl—;(’) + S)ﬁgi]'uz—j@ + imliul—j@. (8)
)
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Equation (8) is a Poisson equation. In order to determine the solution for (8) 15, in the
17

space L?(IR, ), the centering condition must meet 0 = Loju+ X, j = 1,1. In (8) the condition
of centering is

0= <£1ju2—jl—;> + (=0t + (£2)) u171—; + <9ﬁ31~ju2—j,@> + (My;) uTj,@, )

let us express ”27?'
1

= (_at -+ <£2>) 1 <m11 1/[0 o Z »2()] 2 1/ + ( at + 22) 7
=
!
+Mjttgy + Y 93?31‘]“1].@ + 31]'”1717,

j=1
Let us put down similar terms

l
0=y Sojitzy + (L2 = (£2)) gy + Mty — (M) g = Z Sojltzy

j=1
Lo(=_ p 92 lo 7o) _
+ _5‘1 <‘7 _f ) xx+a(f f ) 6,1;
+ [8i (0xz,af0x — I7) 0z, — &i (0xz,a (f) 0x — (I})) 0z] Upy
! 1 2 2
:Zgoj”z_ijL(( Pk < —PFRFOLTF T 9 1))8
j=1
+a(fQ - fQFfO, FfOpF - F mz-z,z-DaX) Uo7
+ |81 (=l = O F (1 F P F o F gy,
ST )% (00 F (D)% (D), ) -
Consider such systems of Poisson equations
Loipr = f2 =01, Loppa=01— 01y ..., Loj@j = ‘_7]272,]'71 - E]{l,jr e

a1 =01 91 1= 0115 Lot = fQ— Q... Lam = fQ_,, 1 — fQ,
Lod1=f— (v Loné= (1~ Hw - Ladi= (o1
Loli=T (), Coli = () 51— ().

Functions ¢;(y1, ---,Y1,21,-+-,2Zu), j(Y1, ---,Y1,21, - - -, Zn) are solutions of the correspond-
ing Poisson equations, the formula holds

Z Lojuzy + Z Loj (“‘1 9% + “Wjax> o + [8i (0xzi08j9x — &) 0z gy = 0.
=

Therefore, the formula holds

1, . .
iy < a gz)]az my]-ax> Uy — & (pxziagjax — g]-) Ozugy +Dj, Vi=11, i=1n. (10)
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D]-(x, z1,...,2n) is a constant that does not depend on y. Substituting (10) in (9) we find ”1 7
knowing u5 5, U1 7/ Uy Uygisa solution (9) with boundary conditions u (0, x, z, Zn) = O
’ i’ it
TakeuWEO, Vk#j k=11
Let us calculate

AN AL | L

0= (—d; + £ o + £&0 “Fy+ F:+ Y F

(- Ju ( 7) R ;eo]]“ruzzf
1 1

Z —I—ZZ\/>R2]~I—25R

F()]' = Sojuﬁlw, F 20]

where

Tv T ko

szl

Z£01”2 ot Z£1]”1 o + (=0t + £2) ug g,
j=

Faji = Lojttg 1,
Fyji = Lojury + Lajiig yy + Maijitg g7,

!
Z Fsji =
j=1

2}301 21""];21] 11'+9ﬁ3l] 10/+9ﬁ11 00/+( 9t + £2) 0,1
j=1 j

e

Ryj = (=0r+ L) uy i + Sijug i + /5] (=0t + L2) uz 5,
e,

RZJZ‘]‘ = (=0 + £2) ”1717 + Sljuz—jﬂ + ?mll-ul—]ﬁ + m?aij”f@

+\F< —0r + £2) ISy +§m11”2 o T Majuy 0/) & im1]”3 g

R31] Myjuig g7 + Myjtig g + Majtiy 37

+\F <m1]u1717 + mzjufj,@ + mgjuT]T;> + € (f)ﬁl] 1 + mzjuz 0,)
Itis easy to see, F()] = Fl] = F31']' = F41']' = F5ij =0.
So we have

( ¢ +££‘S)R£5+Z€]R1]+ZZ< €0 R211+5R3l]>

j=1li=
£,0 ! e
RE’ (lelylr ”.,yl’21,...lzn) - Z€]G1; (x’yll ~~~/ylr21/---rzn)
j=1
—1—22 €jb Gzl] X, Y1, o Y121, 02n), (11)
j=1li=
where
e
G1§‘(x/y1/---,]/l,21,...,Zn) =

— Uy 0,%,y1,---,Y1,21, -+, Zn)
_ \/87]'”37-,@ 0,%,y1,---,Y1,21,---,2n),
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e
Gzi-]- (Y1, Y1, 21, 2Zn) 1= — Uy (0,%,Y1,---,Y1,21, -+, 2Zn)
1
jliay (0,%,y1,- -, Y1,21,--+,2n) -
1

Using the formulas of Feynman-Kats, let us express Rgfﬁ(t, X, Y1, - Y121,
equation (11) with boundary conditions as a mathematical expectation

.,Zn) solving

_/y
R¥(t,x,y1, -+, Y1, 21, -+, 2Zn)

l

t €
Z x]/l ]/l z1,. |: fO k(XS)dSGlljl (thylf/'"lYlt’Z].t/"',Znt>:|
=1

—{- /O e fos k(Xll)duRi§ (S, Xs; YlS/ ey YZS/ le, ey Zns) dS + \/glﬁx,yl, Y1212
— [ k(Xs)ds e
|:€ 0 GZ (Xt/ Ylt/ ceey Ylt! thl ceey Zi’lt)
t A
-+ /O e .[0 k(Xu)duR;]z] (S, XS! Ylsr ey Yls, le, ooy Zns) d5:|
+51Ex,y1, ce Y1212 [ Jok(Xu) duR (S Xs, Yis, -1 Yis, Z1s, -+ -, Zns) ds] .

2ij7 ~*3ij’
increase by (y1, ..., Y1, 21,--.,2n) [4]. Thus, according to Lemma 1 we have

+ZZ\/>C2U+Z(SC3Z < (};87'—1-;51') Cy

]_l

We can conclude that the functions <R R}, R} G, ] GZ ].) limited by x and polynomially

’RS(S

and hence

< ‘Rﬁ

_ l n
-
u” = (g + Zl U+ ;5i”6,ﬂ)
j= =

i, ot 2513/2”3 O’+ZZ\/€] 11'+ZZ\F5”_

j=1li=1 j=1li=1

< (;ej—l—;&-) C4+Z iz + /s
+ZZ\/;

j=1li=1

1 n
11’+Z€] 27| S <Zi€j+2%5i>c
j= i=

The accuracy of the result is proved. O

Theorem 4 gives us information on how the approximate price behaves when ¢; — 0 and
0; — 0.

Let X be securities without payment on assets dividends (for example, share, index and
so on). X is very often modelled as a geometric Brownian motion with constant volatility (for
example, Black-Scholes option pricing model). Let us consider X as a geometric Brownian
motion model with multidimensional stochastic volatility. Thus, P-dynamics in X are set

AXy = rXedt+ f (Y1,..., Y1, Za, .., Zn) Xed W}, (X;) = 0.
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We calculate the approximate price of the double barrier option defined on X.
We write operator (£;) and the density associated with ¢ and rate m(x)

1 2 2r
(L) = EU 2292, +1x0y — 1, m(x) = 2xzexp <?lnx> : (12)
For a double barrier option with barrier value L and R, the payoff has the form

H(Xp) st = (Xf —K) T¢sy, I = (L,R),0< L <K<R.

To calculate the value of this parameter, we must first find the eigenvalues of operator (£;)
presented in (12) with boundary conditions

lim ¢, (x) =0, lim ¢, (x) =0.

x—L x—R

Note that we have introduced regular keeling (interrupt process) boundary conditions at
the ends of L and R. The equation — (£) ¥, = Ay, Pn € dom ((£,)), with boundary condi-
tions mentioned above can be found in [11]

Py (x) = Lﬁexp <:—2rlnx> sin <%> , n=1273,...,
In (§) g In (1)

2
"2 (k) 2 ' T2

We write the expressions for operators .A; and B;
A = —193]x8 X axx - 192] axx, Bi = —ﬂlixax - 1901'. (13)

On the basis of (5) we calculate Aj ,, Bix,, and Bik,n- For k # n we obtain

(=14 (1)) kn(4n2 20" + (—12r2 + 4%+ ) In?(}))
A]kn 193]

2(k2 — n2)e*n3(R

( 1+ ( k+" knr
05 | e

2111
2( k—Hl)k
(k — k+n In (%)’

—1+4 (—1)k+”) knrln (§)
(k2 — n2)> 25 ’

Bix, = 01

_ 8 (
Bign = =010 (Yiu) — 8io0"
gnkr (In (L) = (=1)*""In (R) )
Gl = (k2 —n2)@In (K)

2 (<14 (<08 ko () (-t ) 2 2 (<20 4 02) 1 ()

(k2 — n2)2n2(751n (%)

4



286 BURTNYAK I.V., MALYTSKA H.P.

and for k = n we obtain

1 [ 3n?7%v 1 n2m? 1
Apn=—03 [ = (LY 3} -2 (2= 27 ) —9, (=
= (53 (mz (%) ) 52( (%)) P\@
2r — 2
Binn = 91 (F) —Bp,

rv <ln2 (R) — In? (L)) N
T @ (E) e

Y
VRS
<

N
—_
.'3N 3'\)
—
~= :]N
SN—
~__—

+
Qi<
~__—
~_—

—y
Bin,n = —0y0

SR

The calculation of ¢, can be found in [12-14]

Cp= (1/;” (x), (C—Kﬁ) - (Ldy (v +7) — Kby (v)),

log (1)

Dy () : (exp (RY) (wncos(wpR) — sin (wpR) —exp (Lhy) (=1)"wy),

C wi+ 22

nm 1 K 1 R

The approximate option price can be calculating applying Theorems 1-3.
Note that figures are constructed component-wise in each corresponding time scale, simi-
larly to both components in works [9] and [13].

2 CONCLUSIONS

This paper expands methodology of approximate pricing for a wide range of derivative
assets. Derivatives payoffs can be way dependent, and the process underlying it may have a
jump. Jump intensity depends on multidimensionality of volatility. We have developed a gen-
eral theory of pricing derivative options which are generated by diffusion processes, where
diffusion depends on two groups of variables. An algorithm for approximate price calcula-
tion is given. The price accuracy is determined. A developed theory is applied to Ornstein-
Uhlenbeck diffusion operator, which is expanded in eigenfunctions and eigenvalues.

The main advantage of our pricing methodology is that by combining methods of spectral
theory, regular perturbation theory, and singular perturbation theory, we reduce everything
to the solution of the equations to find eigenfunctions and eigenvalues.
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byprasik 1.B., Maameka I'. T1. 3acmocysants chexmpanoroi meopii ma meopii 36yperv 0o 0ociddceHHs
npoyecie OpHuimetina-Y nenbexa // KapraTcbki MmaTeM. myba. — 2018. — T.10, Ne2. — C. 273-287.

B crarTi BUKOpMCTAHO METOAM CIIeKTPaAbHOI Teopil Ta Teopiil CMHIYASIpHMX i peryaspHUX 36y-
PeHb, 3HalIAeHO HabAVDKeHY LiHy ABobapepHyx ommioHis OpHinTeliHa-YAeHbeKa 3 baraTodpakTop-
HOIO BOAATUABHICTIO, SIK PO3BMHEHHS 32 BAACHMMM (DYHKIIiIMM BUKOPUCTOBYIOUM iHiHiTe3MmMaAbHi
redeparopu (I + n + 1) BumipHoi Andpysii. BcraHOBAEHO TeOpeMy OLIHKM TOUHOCTI HaGAVDKEHHSI LiH
OMIIiOHiB. 3HAMAEHO SIBHI (POPMYAM AASI 3HAXOAKEHHS BApTOCTi AepUBaTHBiB Ha OCHOBi PO3BMHEHHS
3a BAACHMMM (PYHKILISIMM Ta BAACHMMIU 3HAUEHHSIMM CAMOCIIPSDKEHMX ONepaTOpiB 3 BUKOPYUCTaHHIM
KpalfoBMX 3aAa4 AAS CMHTYASIPHUX i peryAsSpHMX 36y peHb.

Kntouosi cnoea i ppasu: crieKTpaabHa TeOPisl, CMHTYASIPHA XBMABOBA TeOpisl, peryAsipHa XBUABOBA
Teopist, Teopist IlITypma-AiyBinas, iHdiHiTe3MMaAbHIIT reHepaTOp, baraTrodpakTopHa AUGY3isL.
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ON CENTRAL AUTOMORPHISMS OF CROSSED MODULES

A crossed module (T, G,d) consist of a group homomorphism d : T — G together with an ac-
tion (g,t) — 8t of G on T satisfying 9(8t) = ga(t)g~ ' and °®)t = sts~1, forallg € Gand s, t € T.
The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial ho-
motopy theory. Crossed modules and its applications play very important roles in category theory,
homotopy theory, homology and cohomology of groups, algebra, K-theory etc. In this paper, we
define Adeny-Yen crossed module map and central automorphisms of crossed modules. If C* is the
set of all central automorphisms of crossed module (T, G, 9) fixing Z(T, G, d) element-wise, then
we give a necessary and sufficient condition such that C* = I,,(T, G,0). In this case, we prove
Autc(T,G,0) = Hom((T,G,9),Z(T,G,d)). Moreover, when Autc(T,G,9) = Z(1,,(T,G,09))), we
obtain some results in this respect.

Key words and phrases: crossed module, central automorphism.
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1 INTRODUCTION

The term crossed module was introduced by J. H. C. Whitehead in his work on combina-
torial homotopy theory [9]. So many mathematicians and many areas of mathematics have
used crossed modules such as homotopy theory, homology and cohomology of groups, alge-
bra, K-theory etc. Actor crossed module of algebroid was defined by Alp in [3]. Actions and
automorphisms of crossed modules were studied by K. Norrie [2,8]. Tensor product modulo
q of two crossed modules defined by Conduché and Rodriguez-Fernandez [4]. Concepts of
g-commutator and of g-center of a crossed module, g4 being a nonnegative integer, were de-
fined by J.L. Doncel Juurez and A.R. Crondjeanl.-Valcarcel [6]. Adney and Yen in [1] obtained
several sufficient conditions for a non-abelian p-group and introduced a special map. By using
Adney-Yen map, in this paper, we introduce the concept of Adney-Yen crossed module map
and central automorphisms of a crossed module and obtain some results in this respect.

2 CENTRAL AUTOMORPHISMS OF A CROSSED MODULE

We recall some basic definitions and properties of the category of crossed modules. A
crossed module (T, G, d) consists of a group homomorphism d : T — G called the boundary
map, together with an action (g,#) — &t of G on T satisfying (1) 9($t) = ¢d(t)g~! and (2)
)t = sts~ ! for allg € Gands, t € T.

YAK 512.5
2010 Mathematics Subject Classification: 18D35, 20L05, 55U35.

@ Dehghani M.A., Davvaz B., 2018
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The group automorphism AutN of a group N comes equipped with the canonical homo-
morphism T : N — Aut(N) which has image InnN, the group of inner automorphism of
N. The inner automorphism 7 is one of the standard examples of a crossed module. Other
standard examples of crossed modules are: the inclusion of a normal subgroup N — G; a
G-module M with the zero homomorphism M — G; any epimorphism E — G with cen-
tral kernel. We note at once certain consequences of the definition of a crossed module:
(1) the kernel kerd lies in Z(T), the center of T; (2) the image d(T) is a normal subgroup of G;
(3) the action of G on T induces a natural (G/9d(T))-module structure on Z(T); and kerd is a
submodule of Z(T).

We say that (S, H,d') is a sub-crossed module of the crossed module (T, G, 9) if

- Sisasubgroup of T, and H is a subgroup of G;

- 9 is the restriction of 9 to S;

- the action of H on S is included by the action of G on T.
A sub-crossed module (S, H,0) of (T, G, d) is normal if

- H is a normal subgroup of G;

-8 ecSforallge G,s€S;

- M=l e Sforallh e H,t € T.

In this case we consider the triple (T/S,G/H, d), where d : T/S — G/H is induced by 9, and
the new action is given by 87 (tS) = (&t)S. This is the quotient crossed module of (T, G,d)
by (S,H,d). A crossed module morphism («, ¢) : (T,G,0) — (T’,G,d’) is a commutative
diagram of homomorphisms of groups

T— % 7

y P
/

G 7 G

such that for all x € G and t € T; we have a(*t) =?() a(t). We say that (&, ¢) is an isomor-
phism if « and ¢ are both isomorphisms. We denote the group of automorphisms of (T, G, 9)
by Aut(T,G,9d). The kernel of the crossed module morphism (&, ¢) is the normal sub-crossed
module (kera, kerg,d) of (T, G,0), denoted by ker(x, ¢). The image im(ff,”) of («, ¢) is the
sub-crossed module (imff,im’,d") of (T/,G’,d"). For a crossed module (T, G,d), denote by
Der(G, T) the set of all derivations from G to T, i.e., all maps x : G — T such that for all
x,y € G, x(xy) = x(x)*x(y). Each such derivation x defines endomorphisms ¢ = (0y) and
6(= 6y) of G, T respectively, given by o(x)) = dx(x)x and 0(t) = x9(t)t, where cd(t) = 90(t),
Ox(x) = xo(x) and 6(*t) = “(¥g(t). We define a multiplication in Der(G, T) by the for-
mula x1 0 xo = x, where x(x) = x102(x)x2(x) (= 01 x2(x)x1(x)). This turns Der(G, T) into
a semigroup with identity element the derivation which maps each element of G into iden-
tity element of T. Moreover, if x = x1 © X2, then ¢ = 070,. The whitehead group D(G,T) is
defined to be the group of units of Der(G, T), and the elements of D(G, T') are called regular
derivations.
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Proposition 1. The following statements are equivalent: (1) x € D(G,T); (2) ¢ € Aut(G),;
(3) 0 € Aut(T).

The map A : D(G,T) — Aut(T, G,0) defined by A(X) = (c,6) is a homomorphisms of
groups and there is an action of Aut(T, G,d) on D(G, T) given by (*?x = ax¢~! which makes
(D(G,T),Aut(T,G,0),A) a crossed module. This crossed module is called the actor crossed
module A(T, G, d) of the crossed module (T, G, 0d). There is a morphism of crossed modules
(n,v) : (T,G,0) — A(T,G,0) defined as follows. If t € T, then 1; : G — T defined by
nt(x) = t*t~1is a derivation and the map t — #; defines a homomorphism 5 : T — D(G, T)
of groups. Let v : G — A(T, G, 9) be the homomorphism y — («y, ¢y), where &, (t) = ¥t and
@y(x) =yxy lfort € Tandy,x € G.

Definition 1. Let (T, G,d) be a crossed module. The center of (T, G,9d) is the crossed mod-
ule kernel Z(T,G,9) of (,7). Thus, Z(T,G,9) is the crossed module (T®, Stg(T) N Z(G),d),
where T® denotes the fixed point subgroup of T, thatis, T® = {t € T| *t =t forall x € G}.
Stg(T) is the stabilizer in G of T, that is, Stg(T) = {x € G| *t =t forallt € T} and Z(T) is
the center of G. Note that TC is central in T.

Definition 2. Let (T, G, 0) be a crossed module. n-center of (T, G,9), Z"(T,G) for n a nonneg-
ative integer is the crossed module <(TG)”, Z"(G) N Stg(T), a), where

(TSY' = {t € T|t" =1 and 8t =t forall g € G},

ZMG) ={g€Z(G) |g" =1},
Stg(T) ={g€G|8t=t forall t € T}.

The n-center of (T,G,0) is a normal crossed submodule and is called the n-central crossed
submodule of (T, G,0).

Let (T, G,0) be a crossed module, (T’,G’,9) be a normal sub-crossed module of it, and
(v, ¢) € Aut(T,G,9). Then (a, ¢) induces a (&, ¢) in Aut (T/T',G/G’,0) such thatd : T/T" —
G/G,o(tT") =a(t)T'.

Definition 3. Let (T,G,0) be a crossed module, Z(T,G) be the center of it and (a,¢) €
Aut(T,G,9). If (&, ¢), induced by («, ) in Aut (T/TC,G/Stc(T) N Z(G),d), is identity, then
(a, @) is called central automorphism of crossed module (T, G, 9).

Theorem 1. If (T, G, d) has trivial n-center, then its actor A(T, G,d) also has trivial n-center.

Proof. Let us assume that Z"(T,G,d) = 1 so that (T¢)" = 1 and Z"(G) N Stg(T) = 1. Now
the n-center of A(T, G, 9) is the crossed module

A(T,G,3) = (D(G, T), Aut(T, G,3),A), Z"(A(T, G,3))
= ((n(, T)Aut(T'Gﬁ))" 2" (At(T, G,8)) O Stau(r,c.0)(D(G, T), A)

Aut(T,G,9)\" (@) _
So, assume that x € (D(G,T) . Then, for all (&, ¢) € Aut(T,G,9), x = x and

X" = 1. In particular, this is true for all (xy, ¢,), where y € G. But (, ¢,), = Hy(y)-1 © X- SO

—1x

(4 @y) = x implies that My = lforally € G. Then, we have x(y) " “x(y) = 1, for all
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x,y € G. Now, since (TC)" = 1, x is the trivial derivation, it follows that (D(G, T) <"‘y"Py>> )
Now, suppose that («,0) € Z"(Aut(T,G,9)) N Stauyt,c,0)(D(G, T)). Then (we)x = x for all
xD(G,T). In particular, <""9">17t = 1, for all t € T, that is Hat)y = 1, which implies that
t~la(t) € (TC)* = 1, forallt € T. Thus a = 17, the identity automorphism of T. Now
we have (a, ¢) € Z"(Aut(T,G,0)). Hence, for all y € G, («, ¢)(ay, ¢y) = (ay, ¢y)(a, ¢) and
(x, )" = 1 implying that 9@, = @, ¢ forally € G. So we obtain ¢(xyx~!) = ye(x)y~! for all
x,y € G. Since ¢ is an automorphism of G, it follows that y~'¢(y) € Z(G), forally € G. Now,
since (&, @) is a crossed module morphism, it follows that a(¥t) = ?Wa(t). But a” = 17 so
that ¥t = @(y)tforally € Gandt € T. Thus, y 'o(y) € Z"(G) N Stg(T) = 1so that ¢" = 1.
Therefore (a", ¢") = (17, 1¢), and this completes the proof. O

A non-abelian group that has no non-trivial abelian direct factor is said to be purely non-
abelian [1].
By using Adney-Yen map [1], we introduce the following definition.

Definition 4. An Adney-Yen crossed module map is an onto map
(91, ¢2) from Autc(T,G,0) to Hom((T, G,9),Z(T,G,9))

such that (@1, 92) (&, 0) = (@1, $2) (a,0) and (@1, $2) (a,9) 1S the crossed module homomorphism
of (T,G,9d) into Z(T,G,d) = (TC,Stc(T ) Z(G),9). Furthermore, such that (@1, ¢2) (40, =
(91 (w0) P2(0,0)), Where @150 = T = TC, @10 (t) = t'a(t) and @349y 1 G — Ste(T) N
2(G), @20,0)(8) = 810(8)-

Theorem 2. For purely non-abelian groups T and G an Adeny-Yen crossed module map is
one-to-one correspondence of Autc(T, G,0) onto Hom((T, G,9),Z(T,G,9)).

Proof. The crossed module map (&, 60) — (@1, ¢1)(4,9) is @ one-to-one crossed module map of
Autc(T, G, 9) into the Hom((T, G,9), Z(T, G, 9)).

Conversely, if (f1, f2) € Hom((T,G,9),Z(T,G,0)), then (p1, ¢2)y, 5,y (t) = tfi(t), for all
t € T and (@1, 92)(f,,5,)(8) = gf2(g), for all g € G, defines an endomorphism of (T, G, d).
The endomorphism (@1, 92) ¢, r,) is an automorphism if and only if f1(t) # t~land f,(g) #
g lforevery g € G, g # landt € T, t # 1. Butif T and G are direct product with an
abelian factor, then there exists (f1, f2) € Hom((T,G,9),Z(T,G,9)) such that (f1, 2)(t,g) =
(t,g)~1, forsome ¢ € G, g # landt € T, t # 1. So, suppose that there exists (f;, f») €
Hom((T,G,9),Z(T,G,d)) such that fi(t) = t ! forsomet € T, t # 1 and f,(g) = ¢! for
some ¢ € G, g # 1. Clearly, t € Z(T), g € Z(G). We assume that the order of t,0(tf) = p; and
0(g) = p2 such that py, p, are primes. If

T/T' =Ty /T xT, /T and G/G' = G,,/G' x G,,,/ G,
where T, /T is the p;-primary component of T/T" and G, /G’ is the P,-primary component
of G/G', then tT' € T,, /T, tT' # T' and gG' € G,,/G', gG' # G’ for is contained in the
kernel (k)f f1 and T’ is contained in the kernel of f,. But if the height of T’ i:1 Ty, /T be p’{l and
t = x;P1 u, where x1 € Ty, and u € T, gG" in G,,/G’ be pok2 and ¢ = xpP2 v, where x, € Gp,
andv € G'. Then, t~1 = £i(t) = fi(xi""'u) = fi(x))P" and g7! = fo(g) = fa(x2F??0) =
o o k
fz(xz)p2k2. Setyy = fi(x1) L y2 = falx) L. Sot =y P, yp € Z(T) N Ty, {y1} NT' = 1and
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g = yngz, y2 € Z(G) NGy, {y2} NG' = 1. By [7], y1 T’ generates a direct factor of T,, /T and
y2G' of Gp,/G' too, say

TPl/T/ = {le/} X Hm/T/ and GPZ/G/ = {y2G/} X HPZ/G/'

Since {y1} NT' =1, T = {y1} x (Hp, Ty ) is a direct decomposition of T, it follows that T has

an abelian direct factor and G too, if the mapping (f1, f2) is not onto. O
Let C* be the set of all central automorphisms of (T, G, 0) fixing Z(T, G, d) element wise.

Theorem 3. If T is a finite p1-group and G is a finite py-group, then C* = I,,,(T, G, 9) if and
only if T, G are abelian or T and G are nilpotent of class 2 and Z(T), Z(G) are cyclic.

Proof. We have
Caute(1,69)(Z(T,G,9)) = Hom (T, G,9)/ Z(T, G,9), Z(T, G,9)) .

Since every element of (f1, f») € C* fixes each element of Z(T,G,9), for (f1, o) € C*, the
map (01 f1,02f2) of (T,G,9)/Z(T,G,9) to Z(T,G,9) defined by 015, : T/T® — TC such that
15, (tTC) = 71 f1(t) and 0o, (8(Stc(T) N Z(G))) = g~ ' f2(g) are well defined. It is obvious to
see that oy : fi = 015, and 02 @ fo — 03y, are injective homo morphisms. Now for each

(h1,hy) € Hom ((T,G,9)/Z(T,G,9),Z(T,G,9)),

the crossed module map (fi, fo) defined by fi(t) = thi(tTC) for all t € T and fo(g) =
ghy(g(Stc(T)NZ(G))) for all g € G is a central automorphism fixing Z(T, G,d) element-wise
and (01,02) (4, f,) = (M1, ha). It follows (01, 02) is a crossed module isomorphism and

C* = Hom ((T, G,3)/Z(T, G,d), Z(T, G,d)) .

Now, suppose first that C* = I,,,((T, G,9)) and T,G are non-abelian. If t € T and g € G, then
the inner automorphism (61, 02) (1 o) induced by t,g is a central automorphism and so [x, ] =
x101(x) € TC forall x € T and [y, g] =y~ '62(y) € Stg(T) NZ(G) forall y € G. This shows
that T and G are nilpotent of class 2. Since T is nilpotent of class 2, exp(T/T¢) = exp(T’) = p5!
for some natural number ¢y, and exp(G/Stc(T) N Z(G)) = exp(G') = p5*. Let T/TC and T
have ranks 1 and s, respectively, and G/Stg(T) N Z(G) and Stg(T) N Z(G) have ranks r and
s, but T and G are nilpotent of class 2, it follows from [5] that T¢ and St (T) N Z(G) are cyclic.
Conversely, if T and G are abelian, then itis clear that C* = I,,,((T, G,9)) = (1,1). Assume that
T and G are nilpotent of class 2 and Z(T) and Z(G) are cyclic. Since T/T¢ and G/Z(G) are
abelian p; and pa-groups of exponent | T’ | and | G’ |, T" and G’ are cyclic, C* = I,,((T, G, 9)),
since T and G are nilpotent of class 2, I,,,((T, G,0)) < C*. Hence, C* = I,,,((T, G, 9)). O

Theorem 4. For any non-abelian groups T and G the restriction of the Adeny-Yen crossed
module map (@1, ¢2) : C* — Hom ((T, G, 9), (Z(T,G,9)) is a crossed module homomorphism.

Proof. Suppose that (x1,6;) and (wp,6,) € C*. On the other hand, we have the following

diagrams

&1 L)

TG
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Then, forany t € T, g € G we have ¢y, o) (ar,0,) () = t (a1 0 a2) () = ¢~ (a1 (a2(t)) and

Priay0) © Pllann) () = Pria0n (F a2 (t)) = (¢t aa () Moy (7 an (1))
= () tag (Fag (a2 () = ap (1) oy (an(t)) = ¢ oy (an(8))

Moreover, @1 (4, 0, (ay0,) (8) = & (@10 a2)(g) = ¢ (a1 (a2(g)) and

Priay0)) © Pllantn) (8) = Priagop (8 22(8)) = (8 aa(g)) 'ar (g aa(g))
= (g 1)gm (g (a2(g)) = gaa (g Mg (87 M (w2(g))

=g (g i (a2(g)) = g 'r(a2(g))-

So we have (@1, 92) (u; 0,) (a2,02) = (P, P2) (ay,01) © (P1/ P2) (,6,)- O

Theorem 5. If T and G are purely non-abelian group and Autc(T,G,0) = C*, then
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,09)) .

Proof. Since T and G are purely non-abelian, so by Theorem 2 the Adeny-Yen crossed module
map from Autc(T,G,d) to Hom ((T,G,9d),Z(T,G,0)) is a bijection. But also Autc(T,G,9) =
C*, and thus by Theorem 4, (@1, ¢2) is a crossed module homomorphism. Therefore,
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,9)). O

Theorem 6. Let T and G be purely non-abelian groups such that
Autc(T,G,0) = Z(Iiu(T, G, 9)).

Then
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,0)) .

Proof. Z(1,,(T,G,0)) is a sub-crossed module of I,,,(T,G,0), which fixes Z(T,G,d) point-
wise, so Autc(T, G,9d) = C*. Thus, by Theorem 5 we have the desired conclusion. O

Theorem 7. Let T and G be non-abelian group such that Autc(T, G,0) = Z(Iun(T, G, 9)). Then
either T and G are purely non-abelian or T and G have purely non-abelian subgroups T; and
Gy, with |Z(Ty)| and |Z(Gy)| odd such that T = C, x T}, G = Cp x Gy.

Proof. Suppose that on the contrary T = A x T; and G = B x Gy, where T and G; are purely
non-abelian, A, B are non-trivial abelian and either A # C,or A = C,or B # Cor B =
and |Z(Ty)| and |Z(Gy)| are even. In these case, we claim (T, G, 0) has a central automorphism
that is not inner, on the other hand Autc(T,G,0) # Z(1n(T,G,0)). If A # C, and B # C;
and (@1, ¢2) € Aut(A,B,9) = Autc(A, B, d) is non-trivial, then for any (a,t;) € A x Ty and
(b,g1) € B x Gy maps (a,t1) = (¢1(a),t1) and (b,g1) — (¢2(b), g1) give an automorphism
of (T, G,0) that is central but not inner. If A = C; and B = C; and |Z(A)| and |Z(B)| are
even, take z; € Z(A) and zp € Z(B) with z; and z, or order 2, so maps (1,t1) — (1,£1),
(1,g1) = (1,81), (a,t1) = (a,z1t1) and (b, 1) — (b, z282) define an automorphism of (T, G, 9)
that is central but not inner, since (a,1) — (a,z1) and (b,1) — (b, z2). O
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Corollary 1. Let p1, p2 be primes and T and G be non-abelian p;-group and p,-group respec-
tively such that Autc(T,G,9) = Z(Iun(T,G,9)). Then T and G are purely non-abelian.

Theorem 8. Let py, p2 be primes, and T and G are non-abelian p;-group and p,-group respec-
tively such that Autc(T,G,9) = Z(Iun(T, G, 9)). Then

Autc(T,G,0) = Hom((T,G,9),Z(T,G,0)).
Proof. By Theorem 1, T and G are purely non-abelian and since
Autc(T,G,0) = Z(1iu(T, G,0)))

is subcrossed module of I,,(T, G, d), which fixes Z(T, G,9) point-wise, Autc(T,G,0) = C*.
Now, by Theorem 5 we have Autc(T,G,d) = Hom ((T,G,9),Z(T,G,9)) . O

Corollary 2. Let p;, p2 be primes, and T and G be finite p;-group and py-group respectively
such that Autc(T,G,d) = C*. Then, T and G are purely non-abelian.

Theorem 9. Let py, p2 be primes, and T and G be finite p;-group and p,-group respectively
such that Autc(T,G,d) = C*. Then

Autc(T, G,d) = Hom (T, G,d), Z(T, G,9)) .

Proof. By Corollary 2, T and G are purely non-abelian. Since Autc(T,G,0) = C¥, then by
Theorem 5 we have Autc(T,G,0) = Hom ((T,G,9),Z(T,G,9)) . O
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Aexrani M.A., AasBa3 B. Ilpo yenmpanoui amomopismu nepexpectux mooy.ie // KapmaTchki MaTeM.
my6a. — 2018. — T.10, Ne2. — C. 288-295.

Iepexpecumi moayab (T, G,d) ckaapaeTsest 3 rpymoBoro romoMopdismy d @ T — G 3 ajetro
(g,t) — $t3GHa T, sika 3anoBoabHste d(8t) = ga(t)g i %)t = sts™! ansiBcix g € Gis, t € T.
Tepmir nepexpecHoro moayAas BBeaeHO Ax. X. K. YaitrxeaoM y 110ro poboTi 3 KoMbiHATOpMKM Te-
opii romoTomiit. IlepexpecHi MOAYAI i iX 3aCTOCYBaHHsI BiAIrpaloOTh Ay>Ke BaXKAMBY POAb B Teopil
KaTeropiit, Teopii TOMOTOIII4, TOMOAOTII i KoromMoaorui rpym, aare6pi, K-teopii Tormo. ¥ aaHiit po-
6oTi Bu3HaueHO Bia0OpaxkeHHsT AAeHi-€Ha IIepexXpecHNX MOAYAIB i IIeHTpaAbHI aBTOMOPi3MH Tie-
pexpecHMX MOAYAIB. SIkio C* — MHOXMHA BCiX IIeHTpaAbHMX aBTOMOP(i3MiB IIepexpecHMX MOAY-
aiB (T, G, 9), sxi moroukoso dikcyors Z(T, G,d), To OTpUMaHO HEOOXiAHY 1 AOCTATHIO YMOBM 1106
C* = Iin(T,G,9). Y upomMy Bumaaky aoseaeno Autc(T,G,0) = Hom((T,G,9),Z(T,G,0)). Kpim
toro, sikino Autc(T,G,0) = Z(1,,(T,G,0))), To OTpMMaHi TaKOX IIeBHI pe3yAbTaTH B LIbOMY Ha-
IIPSIMKY.

Kntouosi cnosa i ppasu: mepexpecHMit MOAYAD, IeHTpaAbHII aBTOMOPi3M.
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UNCONVENTIONAL ANALOGS OF SINGLE-PARAMETRIC METHOD OF
ITERATIONAL AGGREGATION

When we solve practical problems that arise, for example, in mathematical economics, in the
theory of Markov processes, it is often necessary to use the decomposition of operator equations
using methods of iterative aggregation. In the studies of these methods for the linear equation
x = Ax + b the most frequent are the conditions of positiveness of the operator A, constant b and
the aggregation functions, and also the implementation of the inequality p(A) < 1 for the spectral
radius p(A) of the operator A.

In this article for an approximate solution of a system composed of the equation x = Ax +b
represented in the form x = Ajx + Ayx + b, where b € E, E is a Banach space, Aj, A; are linear
continuous operators that act from E to E and the auxiliary equation y = Ay — (¢, A2x) — (¢, b)
with a real variable y, where (¢, x) is the value of the linear functional ¢ € E* on the elements
x € E, E* is conjugation with space E, an iterative process is constructed and investigated

¥ Alx()
21D — Ax() 4 p 4 L(y(ﬂ) —y ) (< ),

(@,xM) ¥ A
i=0

YO = A0 — (g, A5x®) — (g,0).

The conditions are established under which the sequences x("), y("), constructed with the help of
these formulas, converge to x*, y* as a component of solving the system constructed from equations
x = A1x + Apx + b and the equation y = Ay — (¢, Axx) — (¢, b) not slower than the rate of conver-
gence of the geometric progression with the denominator less than 1. In this case, it is required that
the operator A be a compressive and constant by sign, and that the space E is semi-ordered. The
application of the proposed algorithm to systems of linear algebraic equations is also shown.

Key words and phrases: aggregating functional, decomposition, iterative aggregation.
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INTRODUCTION

Actuality of the investigation of iterative aggregation methods connected with necessity of
solving big dimensional problems with the aid of multiprocessor computable technical devices
using decompositional algorithms for corresponding mathematical models. Multiparametric
iterative aggregation has appeared to be an effective in mathematical economy, in investigation
of Markov processes etc. (see [1-3,6,7,13]) due to ability to make an acceptable results even
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in circumstances when convergence conditions of algorithms is unknown (see [5, p. 158]). The
simplest single parametric method of iterative aggregation for equation

x=Ax+b (1)

in [5, p. 155-158] was described by formula

(nt1) _ (¢,b) (n)
* (@, x(M) — Ax(m) AT+, @)

where (¢, x) are values of linear functional ¢ on elements x of Banach space E, A : E — E.
Instead of (2) we can consider

(n+1)
n+l) (q)’x )Ax(n) +b. (3)
(@, ()

In [4,8-12] it is launched method of algorithm (3) convergency investigation and its multi-
parametric generalization under conditions of not semi ordered space E and inequality p(A) <
1 of spectral radius p(A) of operator A does not demand.

x!

1 MAIN SUGGESTIONS

Let us suppose that equation (1) can be considered in the form
x=A1x+ Ayx+b, 4)

where b € E, E is a Banach space, Aj, A are linear continuous operators that act from E to E.
Let us denote by (¢, x) values of linear functional ¢ € E* on elements x € E, E* is the adjoint
space to E, Aj is the adjoint operator to A, E’ is a set of real numbers. Let us consider the
system formed by equation (4) and additional equation

y = Ay — (¢, Aox) — (¢,b) (5)

with the real unknown y. Let us define a norm of {x,y} (x € E,y € E’) by formula

[yl = /P + [yl

where ||x|| is a norm of element x € E, |y| is an absolute value of number y € E’. We denote
by € a set of pairs {x,y} (x € E,y € E’) that satisfy the equation

(¢, x) +y=0. (6)

Theorem 1. Let the following conditions hold
1) pair (x*,y*) is the solution of system (4), (5) in E=ExE;
2) the following equality takes place

Ajp=Ap, AeE, A#1. (7)

Then (x*,y*) € e.
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Proof. From the condition 2) and the equalities (4), (5) for x = x*, y = y* it follows that

(@, x%) +y" = (@, A1x") + (¢, A2x") + (@, b) + Ay" — (¢, A2x") — (@, b)
= (A1, x") + Ay* = A(9,x") +y'].

Since A # 1, then we obtain that (x*, y*) satisfies (6). O

Theorem 2. Let us consider operator a(x)w which is continuous by x € E and linear and
continuous by w € E'. Let us suppose that equality

(p,a(x))=A, A€eE,A#1 (8)

takes place and condition 2) of Theorem 1 holds. If {x,y} € ¢, x € E, y € E/, then for pair
{u, v}, which is the solution of system

u=A1x+Ax+b+a(x)(y —o), )
v=Av— (¢, Axx) — (¢,b), (10)
we can state that {u, v} € .

Proof. Let us prove that (1, v) satisfies (6). Really,

(p,u) +v= (¢, A1x) + (¢, A2x) + (¢, b) + (¢, a(x))y — (¢, a(x))v
+ Av — (¢, A2x) — (¢,b) = A[(@, x) +y].

Therefore (u,v) € e. O

Theorem 3. If the condition 2) of Theorem 1 takes place, then the operator
ax) = — = (m < o) (a1

satisfies equality (8).

Proof. Using (7) we obtain from (11) following;:
Y (¢, Ajx) (Ajg, A7 'x)
(poalx)) = = e =
(¢, x) ,EO Al (¢, x) _EO Al

1= 1=

I
I

m . m—1
AY (9, A7) A Y Alg,x)
_ i=1 _ 1=0 — A

m—1 m—1
(¢, x) ';0 Al (¢, x) ';0 Ai

The theorem is proved. O
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2 ITERATIVE FORMULAS AND SUFFICIENT CONDITIONS OF CONVERGENCY

Let us construct sequence {x("}, {y("} with starting approximation (x(0),y()) € ¢ by
formulas

g Aﬁx(”)
L) Ap() Lha i=1 _ (y(n) o y(nJrl)) (m < 0), (12)
(q),x(”)) Y. Al
i=0
) = Ay (g, Apx ™) — (g, b), (13)

where x € E,y € E/, A € E/, A # 1. From (5) and (13) we get

(1) _ = 1 (n) _ yx
y y' =y (e A = X))

From the Theorems 1 and 2 we obtain equality

y" =yt = (g2 —x).
From (12), (13) and (11) we get

() — x))
1-A

x(n+1) - A(x(n) _ x*) _ a(x("))(q),x(") _ x*) —I—a(x(”)) ((P/AZ

= AW —x) = T (g1 — )0 - x)),
or
g Aax(n)
2D e A(x(n) _ x*) N i=1 (q)’ (I _ A)(x(?l) — x*)), (14)

where [ is the identity operator.

Theorem 4. Let the conditions of Theorems 1-3 take place. If for (x,y) € ¢, w = x — x* and
operator H(x)w defined by the formula

the inequality
I (0[] < ¢ (15)

holds for g; < 1, then every sequence of {x("}, {y(™}, constructed by formulas (12), (13),
converges respectively to x*, y*, as a components of solution of system (4), (5), not slowly then
geometry progression with multiplier q;.

Proof. 1t is sufficient to use formulas (14), inequality (15) and condition ¢q; < 1. O
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3 APPLICATION TO A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Let us consider case when A1, A, are the squared matrices of order N, N < co. For (x,y) €
e, w € E’ let us define operator Hy(x)w by the formula

' (1= A)w,

(1-A)gTx ¥ A,
=0

where notation goTx used instead of (¢, x), q)T is a line vector, x is a row vector, T is the trans-
position symbol, A € E/, A # 1.

Theorem 5. If for matrices A1, Ay conditions of theorems 1 — 3 take place and inequalities
||[H2(x)|| < g2 < 1 hold, then sequences {x™}, {y("}, constructed by formulas (12), (13)
converge to x* and y* respectively as a components of solution of system (4), (5) not slowly
then geometry progression with multiplier q;.

Proof. The theorem is a partial case of Theorem 4. O

4 EXPANSION ON CASE m = oo

Let us change formula (12) as follows

Ag(I = Ap)~Tx(
(¢, x(m)

where A € E/,A # 1,x € E, and consider iterative process, which describes pair of formu-
las (16) and (13) with starting approximation {x(o),y(o)} € ¢. Let us restrict ourselves to the
situation, when A < 1.

For {x,y} € ¢, w = x — x* let us define operator H3(x)w by the formula

xH) = Ax() 4 p 4

(1—=A7), (16)

Al(l — A1>_1x

Hi(x)w = Aw — (1 — A) (o 0)

(¢, (I = A)w). (17)

Theorem 6. Let the conditions of Theorems 1-3 take place and for operator H3(x)w, defined
by the formula (17), following inequality holds

[IH3(x)[] < g5 < 1. (18)

Then sequences {x("}, {y("}, constructed with the help of formulas (13), (16), converge to x*
and y* respectively as a components of solution of system (4), (5) not slowly then geometry
progression with multiplier q3.

Proof. The proof of the theorem can be obtained by notions (17), (18). O
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Theorem 6 is an analogue of Theorem 4. Using similar way we can obtain analogue of

Theorem 5 for systems of linear algebraic equations.

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]
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Aemxis LI, Komau M1, O6iura A.®., lysap b.A. Hempaduyiiini ananoeu 00HonapamempuuHozo me-
mody imepamueHoeo aepeeysants // Kapmarcexi Mmarem. my6ba. — 2018. — T.10, Ne2. — C. 296-302.

ITpu po3p’s3aHHI MpaKTUYHMX 3aBAAHB, 110 BUHMKAIOTh, HAMPMKAAA, B MaTeMaTUUHill eKOHOMi-
1Ii, B Tepil MapKiBChKMX MPOLIECiB, YaCTO AOBOAUTHCSI BUKOPUCTOBYBATI ACKOMIIO3MIIIIO OIepaTop-
HMX PiBHSIHD 3a AOIIOMOTOIO METOAIB iTepaTMBHOIO arperyBaHHs1. B AOCAIAKeHHSIX VX METOAIB AAST
AiHiViHOTO piBHSHHS X = AX + b HalfyacTilMMM € BUMOTM AOAATHOCTI ollepaTopa A, BIABHOTO uAe-
Ha b Ta arperyiounx (oyHKIIIOHaAIB, @ TAKOX BUKOHaHHS HepiBHOCTI p(A) < 1 AASI CIIEKTPaABHOTO
paaiyca p(A) onepatopa A.

B cTaTTi AASI HAGAVKEHOTO pO3B’SI3aHHS CUCTEMY, CKAAAHOI 3 piBHSHHS X = Ax + b, ipeacTaB-
A€HOTO y BUTASIAL X = A1x + Apx + b, ae b € E, E — banaxis npocrip, A1, Ap — AiHilHI HenlepepBHi
omeparopy, 1o AifoTs 3 E B E, i Aonomixsoro piBaHsHHS i = Ay — (¢, A2x) — (¢, b) 3 alitcHuM He-
BiaoMuM Y, Ae (¢, Xx) — 3HauUeHHS AiHIHOTO dyHkuionary ¢ € E* Ha eremeHTax x € E, E* —
crpstxeHmit 3 E mpocTip, mo6yA0BaHO i AOCAIAXKEHO iTepaTHMBHIMIA IIpoliec

3 Alx(n
x(n+l) = Ax(n) + b + Zzlim(y(n) — y(”"’_l)) (m < oo),

(@, xM) ¥ Af
i=0

Y = Ay — (g, Apx™)) — (,b).

BcraroBAGHO YMOBM, IpM BUKOHAHHI SIKMX IIOCAIAOBHOCTI x(”),y(”>, obyAOBaHi 3 AOIIOMOTOIO
X POPMYA, 36iraloThest BIATIOBIAHO A0 X*, Y™ SIK KOMIIOHEHT PO3B’SI3Ky CHCTEeMM, CKAAAEHOI 3 PiB-
HSHHSI X = A1x + Apx + b Ta pisastHESL ¥ = Ay — (¢, Apx) — (¢, b), He IOBiABHIIIIE BiA IIBUAKO-
CTi 361XHOCTi reoMeTpUUHOI TIporpecii 31 3HAMEHHMKOM, MEHIIMM Bia oAmevli. ITpyu npomy BuMa-
raeThest, 06 onepaTop A 6yB CTHCKYIOUMM Ta 3HAKOCTAAMM, a IPOCTip E HamiByIOpsIAKOBaHVIM.
IToxa3aHO TaKOX 3aCTOCYBaHHS 3allPOIIOHOBAHOTO aATOPUTMY AO CHCTeM AiHIVHMX aArebpaldHmx
PiBHSIHD.

Kontouosi cnosa i ¢ppasu: AeKOMIIO3MIIisI, iTepaTVBHe arpeTyBaHHsI, arperyodi (pyHKITIOHAANL.
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HILBERT POLYNOMIALS OF THE ALGEBRAS OF SL;-INVARIANTS

We consider one of the fundamental problems of classical invariant theory, the research of
Hilbert polynomials for an algebra of invariants of Lie group SL,. Form of the Hilbert polynomials
gives us important information about the structure of the algebra. Besides, the coefficients and the
degree of the Hilbert polynomial play an important role in algebraic geometry. It is well known
that the Hilbert function of the algebra SL,-invariants is quasi-polynomial. The Cayley-Sylvester
formula for calculation of values of the Hilbert function for algebra of covariants of binary d-form
C; =C[V; @ C2]5L2 (here V; is the d + 1-dimensional space of binary forms of degree d) was ob-
tained by Sylvester. Then it was generalized to the algebra of joint invariants for n binary forms. But
the Cayley-Sylvester formula is not expressed in terms of polynomials.

In our article we consider the problem of computing the Hilbert polynomials for the algebras
of joint invariants and joint covariants of n linear forms and n quadratic forms. We express the

Hilbert polynomials ’H(Il("), i) = dim(Cl(n))i, ’H(Cl(n), i) = dim(C}"))i, ’H(Iz("), i) = dim(Ié"))i,
H(CZ("), i) = dim(Cz(”>)i of those algebras in terms of quasi-polynomials. We also present them in
the form of Narayana numbers and generalized hypergeometric series.

Key words and phrases: classical invariant theory, invariants, Hilbert function, Hilbert polynomi-
als, Poincaré series, combinatorics.

Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine
E-mail: nadyailash@gmail.com

INTRODUCTION

Let K be a field of characteristic zero. Let V; be the d 4 1-dimensional module of binary
forms of degree d. Let Vg = V;, ® Vy, © ... @V, d := (dq,dy, ...dy). Denote by K[V4]% the
algebra of polynomial SL,-invariant functions on Vj. It is well known that Zy := K[V4]°L2 is
finitely generated and graded:

Zg:=(Za)o® (Za)1®...®(Za)i® ...,

here (Zq); is a vector K-space of invariants of degree i. The dimension of the vector space (Zq);
is called the Hilbert function of the algebra Z4. It is defined as a function of the variable i :

H(Id, l) == dlm(Id)z

It is well known that the Hilbert function of an arbitrary finitely generated graded K-
algebra is a quasi-polynomial (starting from some i), see [7,13,15]. Since the algebra of in-
variants Z4 is finitely generated, we have

H(Zq,i) = ho(i)i" +hy()i" 1+ ...,

YAK 512.647
2010 Mathematics Subject Classification: 13N15, 13A50, 05A19, 05E40.

© Hash N.B., 2018
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where (i) is some periodic function with values in Q. The quasi-polynomial 7 (Zg, i) is called
the Hilbert polynomial of algebra of invariants Zg.

For the case of one binary form (n = 1) there exists classical Cayley-Sylvester formula for
calculation of values of Hilbert function of Z; :

H(Id, l) = wd(i, O) — wd(i, 2),

where wy (i, k) is the number of non-negative integer solutions of the system:

di — k
014200 +...+day = 12 ,
0+ ap+ .. +ag =1
Also (see [8,14]) we have

)] (et (=) (1 gt
”H(Idrl)—["]< Q=g (1=g%)...(1—q") >

where [qﬂ denotes the coefficient of q%. Generalizations of these formulas to the algebra 7y
was obtained in [1-4].

However, all these results are combinatorial formulas. They are not expressed in terms of
Hilbert polynomials in i. Note that, it is hard to calculate for those formulas even for small
values of dj and i.

Although, Maple-procedure for computing of the Hilbert polynomials of the algebras of
SLy-invariants for small values of d was being offered in [5].

A partial characterization of Hilbert polynomials for non-standard graded algebras was
obtained in [6].

Consider a direct sum of # linear forms nV; = V; @ V; @ ... @ V. In the language of clas-

n times
sical invariant theory the algebras Il(n) := C[nV1]°"2 and Cl(n) := C[nV; @ C?]° are called
the algebra of joint invariants and the algebra of joint covariants for the n linear forms respectively.
Let V, be the complex vector space of quadratic binary forms endowed with the natural action
of the special linear group SL;. Consider the corresponding action of the group SL; on the
algebras of polynomial functions C[nV,] and C[nV, @ C?], where nVs := Vo, @V, @ -+ @ V3.

n times
Denote by Iz(n) = C[nV,]°"2 and by Cz(n) = C[nV, @ C?]5!2 the corresponding algebras of in-
variant polynomial functions. In the language of classical invariant theory the algebras Iz(n)

and Cz(n) are called the algebra of joint invariants and the algebra of joint covariants for the n quadratic
forms respectively.

The algebras Cl("),Il(”), Cé”) and Iz(”) are graded:
¢/ = ("o + (") it 1
Cz(n) = (Cz(n))o + (Cz(n))1 4+ Z(n))i + -, Iz(n)

14+ ( (1'1(”))0+(Il(”))1+...+(Il(”))i+...’
4 T+ (T )+ (@i,

where each of the subspaces (Cl("))i, (Il(”) )is (Cz("))i and (Iz(") )i is finite dimensional. The func-
tions

C
C
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are called the Hilbert polynomials of the algebra of joint covariants for the # linear forms, the
Hilbert polynomial of the algebra of joint invariants for the # linear forms, the Hilbert polyno-
mial of the algebra of joint covariants for the n quadratic forms and the Hilbert polynomial of
the algebra of joint invariants for the n quadratic forms, respectively. The formal power series

"z =Y He iz, pa@,z) =Y wa, iz,
i=0 i=0

") z) = Z’H(Cz(n),i) Z, P(Iz(n),z) = ZH(IZ(n),i) Zt
i=0 ]

are called the Poincaré series of the algebras Cl(n), Il(n), Cz(n) and Iz(n) respectively.

In the present paper we obtain explicit formulas for computation of the Hilbert polynomial
of those algebras. We present some results in terms of generalized hypergeometric functions. A
generalized hypergeometric function is given by a hypergeometric series, i.e., a series for which
the ratio of successive terms can be written as follows

qu[bl,...,bq

where (a)y =a(a+1)...(a+ k— 1) is the Pochhammer symbol or rising factorial.

If any a; is a non-positive integer (0, —1, —2,...), then the series has only a finite number of
terms and in fact is a polynomial of degree 4;. If any by is a non-positive integer (excepting the
previous case with by < a;), then the denominators become 0 and the series is undefined.

In the present paper we compute the Hilbert polynomials of the algebras of joint covariants
and invariants for the 7 linear and quadratic forms:

(”) ) = Nn+k 1, k+1, ifi =2k,
ifi:2k+1,
n+k—1 fi— ok

Tan+k k+-1s ifi =2k + 1,

ntk—1\2 /n+i—2k—2\3k —i+1 g
k n—2 k+1 7 !

N~

[4]

0

n+k—1 n+i—2k—1
k n—1 !

where N, = 1(#)(,”,), (1 < k < n) is the Narayana number.

g

—_
~

ifi =1,

2]

NI ~.

2 /

||M
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306
We also express the Hilbert polynomials H(Iz(n), i), H(Cz(n), i) in terms of generalized hy-

pergeometric function:
N 1 Tl+l_2 E n/n/_%/_i_Tl/_%“{'%

i)=1-n) i 41 _nti=2 _ nti=3 iyl

’ 2 2 /373

i1

(n) N Tl+l—1 n/nr_%r_zr %
H(Cz ,z)-( i )41:3[1 _n+i—1 _ nti-2

H(IT,

i
2 70 T2

1 HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n
LINEAR FORMS

Poincaré series for the algebras of joint invariants and covariants of n linear forms was
derived by L. Bedratyuk in [2]. Using them, author found the following explicit formula for

Poincaré series those algebras in [11]:
)\ Nua(z?) ) Wy_1(z%) + nzN,_1(z%)
P(1y7)2) = (1 _nZZ)Zn—B and P(C,",z) = — 1- ZZ)annl

4

where
n 1<n—1>< n )Zk_l and W, (z) Z”: <Z>sz

Ny(z) = Z Z
= k\k—=1/\k—-1 =
are the Narayana polynomials. Let us use these formulas to obtain the Hilbert polynomials of

the algebras Il(”) and Cl(").
To prove Theorem 1, we need the following lemma.

Lemma 1 ([9,11,16]). Let m, k, s be non-negative integers. Then the generalized Le Jen Shoo

identity holds:

mindkmt i\ 428\ [k — i+ 2m -+ 2s _ (mAk+s\ (m+k+2s
i )Uiss 2m + 25 ~\ m+s m+s )

Theorem 1. The following formulas hold

Nk per, ifi =2k,
0, ifi =2k +1,
k—1\2 o
iy we, n=1""% N, ifi=2k,
! ANk ko1, Ifi=2k+1,

1
where N,, = - (Z) <k i 1) are the Narayana numbers.

Proof. (i) Let us expand function
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into the Taylor series about z = 0:

::i;?<n;3><n— > 2(211—3?—1—1’—1)221-

oo min{k,n—3} ) 2n+k—l— 1
:kg ) < >< < >i+1z

i=0

_i 42k mm{kn 3} n—1 2n+k_1_
=Y 1' t+1 k=i |

Using Lemmal (m =n—3and s = 1), we have:

> 1 (m+k—-2\(n+k—-1
P(Ifn)’z)zkzon—l< n—2 >< n—2 )ZZk'

Statement (i) follows immediately from the definitions of Poincaré series, Hilbert polynomials
and Narayana numbers.

Note that the identity P(Il("),z) = (ﬁ”;fz)(;i% holds for n > 3. Then statement (i) holds
for n > 3. Consider the case n = 2.We obtain that (x1,y1) are coordinates for the first V; and
(x2,y2) are coordinates for the second one, both with respect to the canonical representation

of SL,. There is a single quadratic invariant y;x, — x1y2. Hence

1
PIY2) = s =1+ 2+ 420+
We have , .
(2) N 2 7T1 . ‘ 2 17T
H(Z,”,i) = cos 5 = N2+[%]—1, 21€08" .

This proves that statement (7) holds for n > 2.
(ii) As above we use Poincaré series of the algebra C (n > 1):

nlip—1 =2 n—2 n

Z ZZk Z Z2k—0—1

E()7 B0

_ ”i <n ; 1>222k i ((Zn — 13 +i— 1)22i
R A G A &

_ i min{g_l} <n — 1) <2n +k—i— 2>sz
k=0 =0 ¢ k—i

1) in{kn—2 .
N me{Zﬂ ) (n f2) < n ) (k—z+2n —z>22k+1_
Py i i+1 2n—2
Using Lemma 1, we get:

© 4k —1\2 . n+k—1\ /n+k
pefh = £ (") () (1)

k=0

P, z) =
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This proves (ii) for n > 1. Using a Maple-procedure for computing the Hilbert polynomials
of the algebra Cl(l), see [5], we get H(Cl(l),i) = 1. By formulas (ii) we have H(Cl(l),i) = 1, too.
Hence, (ii) holds for n > 1. O

S

{ ] { ] "2 0082 I +(i+ 1)m71(i — 1)].71 sin? I

Corollary 1.

O M) = oy

2 2

(ii) H(Cl(n)'l 1’1—1 ;2 Z Z

m=1j=1

4

2m+j72

where [} ] are the unsigned Stirling numbers of the first kind.

Proof. (i) Let us express the Narayana numbers in terms of the unsigned Stirling numbers of

the first kind: |
Mg ("5 () - e e
=1, m-n=1p, _ -1
o o | w3 ]Zl[ J ()

2 i

In Theorem 1(i), we proved that ’H(Il("), i)=N cos? Z asn > 1. Since cos?> Z = 0

n+[4]-1,n-1
as i is odd, it follows that
n—1n-1 : j=1 . .qm-1 .
(n) ~ 1 n—1|[n—-1 i i 2 ITC
w5 )| ) () B e

1 — n—17[n-11"1G+2)y-t i .
_(n—l)!(n—Z)!mX::l];{ " }[ ; ]Wcos 7,1fn>1.

(ii) The proof of (ii) is completely analogous to that of (i). O

2  HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n
QUADRATIC FORMS

The Poincaré series of the algebras of joint invariants and covariants of n quadratic forms
are needed for the sequel. They were derived by L.Bedratyuk in [2]. Using them, the author
obtained the following formulas in [12]:

Wn—l(zz) Wn—l(zz) — nZNn—l(Zz)
(1_2)11(1_22)211—1 (1 — Z)”(l — ZZ)Zn—l
Theorem 2. Hilbert polynomials of the algebras of joint invariants and covariants of n quad-
ratic forms are calculated by the following formula:

. (n). [%] n+k n+i—2k—1

(Z) 2 /l = n—1 ’
k:O

i]: n—i—k 1 n+i—2k—=2\3k —i+1
(i) H(T,i k:O n—2
1, iti =1,

P(Cz(n),z) = and P(Iz(n),z) =

k+1 7 ifi>1, where n > 1.
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Proof. This theorem can be proved basically in the same way as Theorem 1.

(n)

(i) Let us expand the Poincaré series of the algebra C,
We have:

into the Taylor series about z = 0.

:i <n+lg_1>222ki<n+:—1)zi
i=0

k=0
o [3]
=)

<n—|—k—1> <n~|—i—2k—1>zi
i=0k=0 i—2k
(ii) Using Theorem 1 (i), we get

- (B (= B (AR EC )

—

k=0 k=0 =
oo [i/2] [i/2]

B n+k—1\" (n+i—2k-1\ ; n+k—1 +k\ (n+i—-2k—-1\ ;4
LTV R )
_i “/2 +k 1 ni—2k—1 _“Zi/z] nrk—1\ (n4k) (ni—2k—=2\\
_: n—1 = k n—1 n—1 z

By the flmtlons of Poincaré series and Hilbert polynomials,
(T, = WZZ] nrk—1\2 (n+i—2k—1\ “Z‘i)/z] nk=1\ (n+k) (nti-2k-2\
= k n—1 = k n—1 n—1
Note that ("*1~22) = 0, as k > [%] We have

[i/2) 2 . [i/2) .
(n) ~ n+k—1 n+i—2k—1 B n+k—1\ /n+k\ (n+i—2k—2
AL )= ), < k ) ( n—1 D k n—1 n—1

k=0 k=0
[g n+k 1\? (n+i—2k—2\ 3k —i+1
B n—2 k+1
We used the Poincaré series 7, ") and C, ™ for n > 1 Using Maple-procedure for computing
the Hilbert polynomials of the algebras Cz( ) and I (see [5]), we get

1) ;-1 L
H(Z, ,z)—2cos(m)+2—cos<2>,

I i
H(C, ,l)—2+4cos(m)+4 = {2] +1.

This completes the proof of Theorem 2. O

(n)

Let us express H(Z, ’,i) in terms of a polynomial.

17:11 <n+k 1) < ]—1> {nml] (k)i

( > <n:ﬁl> {nﬂ (i—2k)" 1 (3k—i+1).

Corollary 2.

Nl~.

I'n

i) M=

0
|

-
=
X
2
:~,
-
irf ﬁm

NI~

»
Il

0
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Proof. (i) By Theorem 2(i) we have:

. n+k—1\%/n+i—2k—1
H(Cz()”):Z( k )( i~ 2k )

Let us express (”+f:§],§_1) in terms of the unsigned Stirling numbers of the first kind:

<n+i—2k—1> T a1 =26

i—2k (n—1)!
—1m-1 n— 1] < 1)
( 2k)m j— 1
(n— 1 mZ:l ]Z(:J { i
(ii) The proof of (ii) is completely analogous to that of (i). O

Let us express the Hilbert polynomial of the algebras of joint covariants and invariants for
n quadratic forms in terms of generalized hypergeometric function:

Corollary 3.
, . n+i—1 nn,—L —=1 _n .
(i) %(Cz(n),l) = < ; )41:3[1 _n+§1 2n+2l 32' 1], ifn > 2,
.. . | —2 nn_l _;1’_1_}_% ‘
(ii) H(Ié”),z):(l—n)<n+l, >5F4 e 22 nii_3 3 ; 3 1 1], ifn>3andi > 1.
! L="" """ 5+3

Proof. (i) By the above

w o Bk N\ o2kt
HG" ) ;( k i— 2k '

Let us remark that ("ﬂ?:gllj 1y = 0 as 2k > i. It means that:

Do & mrk—1\*/n+i-2k—1
2 kgo k i—2k
~1\2 n+i—2k—1

Let us express } ;- (””,; D7("H~%71) in terms of a generalized hypergeometric function in a
way analogous to that used in [10]. Let us denote

L (k-1 2(m+i—-2k—1

ke k i— 2k '
n+i—1

()

A1 _ (k+n)?(k — %)(k— Tl)
ar (k4 1)2(k — =L (k- 2H=2)

We have
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It now follows that

) . 1
(n) N 7’l+1—1 nln/_%/_lT
H(Cz ’l) - ( i 4k 1 _n+é?1 _n+£?2

(ii) The proof of (ii) is completely analogous to that of (i). O
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Inamr H.B. Muozounenu I'invbepma anzebp SLy-ineapianmie // Kapmarcbki MaTem. my6a. — 2018. —
T.10, Ne2. — C. 303-312.

Mu posrasiaaemMo oAHY 3 PyHAAMEHTAABHMX IIPOOAEM KAACMYHOI Teopil iHBapiaHTiB — AOCAi-
AKeHHsT MHOTOUAeHiB 'iabbepTa arrebpm imBapianTis rpymm Ai SL,. @opma MHOTOUAEHIB 'iAbbep-
Ta Hece BaXXAMBY iHdpOopMaliio po cTpyKTypy Hiei arre6pu. Kpim Toro xoedpimieHT i cremiHb MHO-
rouneHiB ['iAbbepTa BiAIrpaloTh BaXKAMBY pOAb B aATeOpaiuHilt reoMeTpii. BiaoMo, 110 mounHaoum
3 aesikoro i pyHkist I'iabbepTa arrebpu SL,-iHBapiaHTiB € kBasiMHOrouAeHOM. Dopmyra Keani-
CiabBecTpa AAST OOUMCAeHHS 3HaueHb (pyHKIII [1AbbepTa aare6pm KoBapiaHTiB biHapHOI d-dpopmu
Cy = C[V; ® C?) L2 (TyT V; — xommrexcHMit d + 1-BUMipHMIT BeKTOpHMIA POCTip b6iHapHMX dpopm
crernens d) 6yaa 3ampornoHoBaHa Ile CiAbBECTPOM i Mi3Hillle y3araAbHeHa Ha aATeOpy CIIABHMX iH-
BapiaHTiB CKiH4YeHOI KiabkocTi 6iHapHMX doopMm. ITpoTe 11i dopMyan He BupaxaloTh PyHKIIL ['iab-
bepTa sIK MHOTOYAEH Bia, i.

B Hamiit cTaTTi MM PO3TASIAAEMO 3aAady OOUMCAeHHS B sIBHiMI dpopmi MHOrouaeHiB I'iabbepTa
aATebp CIiABHMX iHBapiaHTIB Ta CHIABHMX KOBapiaHTIiB 11 AiHIHIX POpM i 1 KBaapaTUIHMX pOpM.

Mu Bupasuan mHorouserm ['iabbepTa 1mx aarebp ’H(Il(n), i) = dim(C}"))i, ’H(C}"), i) = dim(Cl(n))i,
H(Iz(n), i) = dim(Ién)),-, H(Cén), i) = dim(Cé")),- y BUTSIAI KBa3iMHOTOUAEHIB Bia i, a TAKOX HOAA-
AM iX y TepMiHax BiAOMIX KOMGIHATOPHIUX CTPYKTYP, Takmx sik umcao HapasiHa Ta y3araabHeHII1
rinepreoMeTpUYHIIA PSIA.

Kntouosi croea i hpasu: xaacwaHa Teopist iEBapiaHTiB, iHBapianTN, dyHKIIs I'iAB6EpTa, MHOTO-
unenn 'iabbepTa, kBaziMHOrOouAery, psiau [lyankape, koMmbiHaTopuKa.
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KArRAMI A.!, SHAKERI R.}, SEDGHI S.1, ALTUN 1.2

COUPLED FIXED POINT RESULTS ON METRIC SPACES DEFINED BY BINARY
OPERATIONS

In parallel with the various generalizations of the Banach fixed point theorem in metric spaces,
this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy
metric spaces, uniform spaces, partial metric spaces, b-metric spaces etc. In this context, first we
define a binary normed operation on nonnegative real numbers and give some examples. Then we
recall the concept of T-metric space and some important and fundamental properties of it. A T-
metric space is a 3-tuple (X, T, ¢), where X is a nonempty set, ¢ is a binary normed operation and T
is a T-metric on X. Since the triangular inequality of T-metric depends on a binary operation, which
includes the sum as a special case, a T-metric space is a real generalization of ordinary metric space.
As main results, we present three coupled fixed point theorems for bivariate mappings satisfying
some certain contractive inequalities on a complete T-metric space. It is easily seen that not only
existence but also uniqueness of coupled fixed point guaranteed in these theorems. Also, we provide
some suitable examples that illustrate our results.

Key words and phrases: binary normed operation, T-metric space, coupled fixed point.
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1 INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in metrical
tixed point theory. After this classical result, many authors have extended, generalized and
improved this theorem using different contractive conditions (see [1, 3,4, 6]). On the other
hand, fixed and common fixed point results in different types of spaces including ultra metric
spaces, fuzzy metric space, uniform space, partial metric space, b-metric space etc, have been
developed (see [2,5,8,9,12]). An interesting generalization of metric space named as T-metric
space has been recently introduced by [11] (see also [10]). Briefly, the concept of T-metric space
is based on the fact that the triangle inequality in the metric definition depends on a binary
operation.

This study was organized as follows: first, we recall the definition of T-metric and some
properties of it. Finally, we prove some coupled fixed point theorems for single valued map-
pings in complete T-metric spaces satisfying different contractive type condition.

Here we will emphasize the concept of ultra metric because of it will be mentioned in the
next. Let (X, d) be a metric space. If the metric d satisfies strong triangle inequality:

d(x,y) < max{d(x,z),d(z,y)} Vx,y,z € X,

then d is called an ultra metric on X and the pair (X, d) is called an ultra metric space. An ultra
metric space (X, d) is said to be spherically complete if every shrinking collection of balls (that
is, every nested decreasing sequence of balls) in X has a nonempty intersection.

YAK 515.126.4
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2 A BINARY NORMED OPERATION AND T-METRIC SPACES

In this section, we define a binary normed operation and give some examples.
A binary normed operation is a mapping ¢ : [0,00) x [0,00) — [0,00) which satisfies the
following conditions:

(i) ¢ is associative and commutative,
(ii) ¢ is continuous,
(iii) a00 =aforalla € [0, c0),
(iv) aob < codwhenevera < cand b < d for each a,b,c,d € [0, ).

Some typical examples of ¢ are as follows: leta, b € [0, o)

(@) a1 b =max{a,b},
(b) aorb=a2+ 12,
(c) acsb=a+,

(d) acyb=ab+a+0,
(e) aosb = (va+vb)~

Straightforward calculations lead to the following relations among normed binary opera-
tions given above
aorb<aoyb<aozb<acogb

and
l}l<>3b§ﬂ<>5b.

The following lemma defines a normed binary operation exploiting some properties of a self
map on [0, o).

Lemma 1. Let f : [0,00) — [0,00) be any continuous, increasing and onto mapping. Let
©:]0,00) x [0,00) — [0,00) be defined by

aob=f71(f(a) + (b))
fora,b € [0,00). Then ¢ is a normed binary operation.
Proof. It follows immediately. O

Example 1. Let f : [0,00) — [0,00) defined by f(x) = e* — 1. Obviously f is a continuous
and increasing map. Therefore by Lemma 1, a o b = In(e® + ¢ — 1) defines a normed binary
operation.

We have the following simple observations about a normed binary operation.

Lemma 2. The following statements hold for any normed binary operation.
i)Ifr,r’ > 0,thenr <ror.
ii) For 6 € (0,r), there exists &' € (0,r) such thaté' ¢ < r.
iii) For all ¢ > 0, there exists 6 > 0 such that ¢ < e.
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Proof. i) Since ' > 0, using properties (iii) and (iv) of a normed binary operation ¢, we have
ror' >ro0=r.

. . . . 1

i) If we assume that every ¢’ > 0 gives 6’ ©J > r. In particular, if we set &' = s we get
s 6 > r which on taking the limit as n — oo implies that 0 © 6 > r which is a contradiction.

Hence by part (i) of this lemma we obtain &' < ¢’ ¢ < r.

1 1 1
iii) Assume the contrary, i.e., forall § > 0,606 > e. For 6 = — L we have — ¢ — > ¢ which on

n
taking the limit as n — oo gives 0 > ¢, which is a contradiction. Hence iii) follows O
Now, we recall the concept of T-metric.

Definition 1 ([10]). Let X be a nonempty set. A T-metric on X is a function T : X> — R that
satisfies the following conditions, for each x,y,z € X,

1. T(x,y) > 0and T(x,y) = 0ifand only ifx =y,
2. T(x,y) = T(y,x),

3. T(x,y) <T(x,z)oT(y,z).

The 3-tuple (X, T, ¢) is called a T-metric space.

Example 2 ([11]). i) Every ordinary metric d is a T-metric witha o b = a + b.
ii) Every ultra metric d is a T-metric witha o b = max{a, b}.

iii) Let X = R and T(x,y) = +/|x —y| forall x,y € R. If we take a ©b = +/a? + b2, then we
have

T(xy) = /lx—yl <\l —z +]z—y| = W\x—zmwz—w = T(x,2) 0 T(z,y).

Therefore, the function T is a T-metric on X.
iv) Let X = R and T(x,y) = (x —y)? for every x,y € R. If we takeaob = (\/a + v/b)?,
then we get

2
T(xy) = (x—yP =x—yP <(x—z|+ 2= y2=(/|x — 2P+l = y12) =T(x,2) e T(z,y).
Hence, the function T is a T-metric on X.
Remark 1 ((11]). Fora fixed 0 < a < g, if there exist B,y such that0 < a < B+ < g, then

tana < tan B + tany + tan S tan 7.

Example 3 ([11]). Let X = [0,1] and T(x,y) = tan(g|x —y|) for every x,y € X. If we take
aob = a+ b+ ab, then by Remark 1 we obtain

T(xy) = tan(Glx—yl)

= T(x,z)0T(z,y).

T T T T
tan(z\x —z|) —l—tan(z\z —y|) +tan(Z\x —z])tan(zlz —vy|)

So, the function T is a T-metric on X.
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Let (X, T, ¢) be a T-metric space. For r > 0 define
Br(x,r) ={y € X: T(x,y) <r}.
Definition 2 ((11]). Let (X, T, ¢) be a T-metric spacer > 0 and A C X.

1. The set Br(x,r) is called the open ball of a center x and a radius r.

2. If for all x € A there exists r > 0 such that Br(x,r) C A, then the subset A is called an
open subset of X.

3. The subset A of X is said to be T-bounded if there exists r > 0 such that T(x,y) < r for
allx,y € A.

4. A sequence {x,} in X converges to x if T(x,,x) — 0 asn — oo and we write lim x, = x.
n—oo

That is for each ¢ > 0 there exists ny € IN such that T(x,, x) < ¢ for alln > ny.

5. A sequence {x,} in X is called a Cauchy sequence if for each ¢ > 0, there exists np € N
such that T(x,, xy) < € for alln,m > ny.

6. The T-metric space (X, T,©) is said to be complete if every Cauchy sequence is conver-
gent.

Let T be the set of all open subsets of X, then 7 is a topology on X (induced by the T-metric
T). Note that if A and B are open subsets of X and x € A N B, then there exist €1, e, > 0 such
that Br(x,e1) C A and Br(x,e3) C B. Let e = min{eq, €2} > 0, then by Lemma 2 (iii), there
exists 6 > 0 such that 6 ¢ < ¢. In this case, we have Br(x,0 ¢d) C Br(x,e1) N Br(x,e2) C
AN B, hence AN Bis open.

Lemma 3 ([11]). Let (X, T, ) be a T-metric space. If r > 0, then the open ball Br(x,r) with a
center x € X and a radius r is an open set.

Lemma 4 (11]). Let (X, T, ©) be a T-metric space. If a sequence {x,} in X converges to x, then
X is unique.

Lemma 5 ([11]). Let (X, T, ¢) be a T-metric space. Then every convergent sequence {x,} in X
is a Cauchy sequence.

Definition 3 ((11]). Let (X, T, ¢) be a T-metric space. T is said to be continuous if
lim T(xu, yn) = T(x,y),

whenever
lim T(x,,x) = lim T(y,,y) = 0.

n—oo n—oo

Lemma 6. Let (X, T,¢) be a T-metric space. Then T is a continuous function.

Proof. Assume that lim,_,co T(Xp, X) = limy—e0 T(y4,y) = 0. By the triangular inequality we
have

T(xn, yn) < T(xn, x) 0 T(x,y) o T (Y, Yn)-

Hence we get
lim sup T(xn/yn) < T(x/y)

n—oo



COUPLED FIXED POINT RESULTS ON METRIC SPACES DEFINED BY BINARY OPERATIONS 317

Similarly, we obtain
T(x,y) < T(x,x1) © T(xn,yn) © T(Yn,y)

and so
T(x,y) < r}gn inf T(xy, Yn).
Therefore
lim T(xp,yn) = T(x,y).

n—oo

Henceforth, we assume that ¢ is a binary operation on [0, ) X [0, o) such that
i)a(aob) = aaoab for every a« € RT,
ii) there exists 1 > O such that 1010 ---01 < n'.
—_—
n

Example 4. Letaob = max{a,b},aob= a2 +b2,a0b=a+bandaob = (y/a+ VD)2 We
takeh > 0,h > %,h > 1and h > 2 respectively in (ii). Butifa b = a + b 4+ ab, then is not

necessary that ¢ satisfies the above conditions.

3 COUPLED FIXED POINT THEOREMS IN T-METRIC SPACES

Now, we remember the concept of a coupled fixed point on a T-metric space.

Definition 4 ([7]). Let X be a nonempty set and F : X x X — X be a function. An element
(x,y) € X x X is said to be a coupled fixed point of the map F if F(x,y) = x and F(y,x) = y.

Example 5. Let X = R. Define a map F on X x X by F(x,y) = xy?. It is easy to see that
(1,—1) € X x X is a coupled fixed point of the mapping F.

Theorem 1. Let (X, T, ©) be a complete T-metric space. Suppose that themap F : X x X — X
satisfies the following contractive condition for all x,y, u,v € X

T(F(x,y),F(u,v)) < kT(x,u)IT(y,v), (1)
where k, | are nonnegative constants with k ¢ < 1. Then F has a unique coupled fixed point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by xp11 = F(xu,yn) and yu41 = F(yn, Xn). By (1) we have

T(xn,xn+1) = T(F(xnflryn*1>/F(xnfyn))

< kT(xn-1,%0) O 1T (Yn—-1,Yn). 2)
Similarly
T(Yn ynt1) = T(FWn-1,%n-1), F(Yn, xn))
< kT(Yn—1,Yn) o IT(x4—1, Xn). 3)
Letting

dn — T(xn/ anrl) <& T(ynr yi’l+1>/ (4)
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we get
dy = T(xnr xn+1> © T(ynr ynJrl)
< KT(xp—1,%0) 1T (Yn—1,Yn) ©kT (Yy—1,yn) o 1T (X1, xn)
= (ko D)[T(xn-1,%n) © T(Yn-1,Yn)]
= (kol)dy—1. 5)
Consequently, if we set § = k ¢, then for each n € IN we obtain
dy < 8dy 1 < 8%y < --- < 5"dy. (6)

If dy = 0 then T(xp,x1) ¢ T(yo,y1) = 0. Hence, we get xo = x1 = F(xo,y0) and yp = 11 =
F(yo, x0), i-e., (x0, Yo) is a coupled fixed point of F. Now suppose that dy > 0. For each n > m
we have

T(xp, xm) < T(xp, Xp—1) 0 T(xp_1,Xp—2) 0 T(Xpa1, Xm)-

In the same manner, we get

T(Yn,Ym) < TWYn,Yn-1) © T(Yn-1,Yn-2) ¢+ © T(Yms1,Ym)-
Thus

T(xn, Xm) T(xn/xm) OT(yn/ym)
dy_10dy o0 ody
(6" 10" 20 06™)dy

Mdy(1o---01)
—_—

IAIA N INA

My (1o---01)
———

n

< 5md0nh — 0.

Hence for ¢ > 0 we can find ny € IN such that for all n > m > ng we get T(x,, xp) < e.
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y, } converge to u* and v* in X respectively. Thus

lim T(x,, u*) = lim T(y,,v*) = 0. (7)

n—o0 n—o0
Using the triangular inequality and (1) we get
T(F(u*,0%),u*) < T(F(u*,v"),xp41) 0 T(xps1,u")
= T(F(u*,v"),F(xn,yn)) ¢ T(xp41,u")
< KT(xp,u™) o IT(yy, 0*) © T(xy41, u™).
Letting n — oo, then from (7), we obtaln T(F(u*,v*),u*)) = 0 and so F(u*,v*) = u*. In the
same maner, we have F(v*,u*) = v*; i.e., (u*,v ) is a coupled fixed point of F. Now, if (u/,v")
is another coupled fixed point of F we get
T(u',u*) = T(F(u',v'), F(u*,0*)) <kT(u',u*) oIT(v,v*)
and
T(v',0*) = T(F(v',u), F(v*,u*)) < kT(v',0*) o IT (', u*).
Then
T, u*)o T, 0*) < (ko )[T(u',u*) o T(v,0%)].
As kol < 1, we have T(u',u*) o T(v',v*) = 0 and so u’ = u* and v' = v*. The proof of
Theorem 1 is completed. O
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Example 6. Let X = R and T(x,y) = +/|x —y| forall x,y € R. If we takeaob = va? + b2,
2y _ 1 for all x,y € X. For all

then the function T is a T-metric on X. Let F(x,y) =
x,y,u,v € X, we obtain

T(E (), Fu) = L5020 =2)
ﬁ<¢|x—u|+z|y—v|>

o %T(y,v).

IN

= LT(x,u)

V5

Hence for k = 1 andl = Q, we get k<1 < 1. It follows that all conditions of Theorem 1

V5 V5
5

hold, and (—5, —=) € X x X is the unique coupled fixed point of the mapping F.

5)
Example 7. Let X = R and T(x,y) = (x —y)? forall x,y € R. If we takeaob = (y/a+/b)?,
x—{;)2y —1 for all x,y € X. For all

then the function T is a T-metric on X. Let F(x,y) =
x,y,u,v € X, we obtain

T(F(x,y),F(u,v)) = <x;”+2ygv>2
X — U2 N2
< 2(%7) +a (YY)

2 8
= 2 lx =l + oy~ o)?
< (Fh—ul+ 2y o))
2 8
= gT(x,u)ogT(y,v).

Hence for k = % and | = 285, we getkol = 1 < 1. It follows that the all conditions of

Theorem 1 hold, and < - §> € X x X is the unique coupled fixed point of the mapping F.

2" 2
Theorem 2. Let (X, T, ¢) be a complete T-metric space. Suppose that the mapping F : X x X —
X satisfies the following contractive condition for all x,y,u,v € X

T(F(x,y),F(u,v)) <kT(F(x,y),x) oIT(F(u,v),u), (8)
where k, | are nonnegative constants with k ¢l < 1. Then F has a unique coupled fixed point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by x,41 = F(xn, yn) and y, 11 = F(Yn, Xn). By (8), we have

T( (xnflrynfl)rF(xn/yn»
kT( (xn 1/ Yn— 1) Xn— 1)<>ZT( (xnr]/n)rxn>
KT (xp, Xp—1) © 1T (Xy41, Xn)-

T(xn, Xnt1)

IN
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If T(xp11,%n) > T(xn, x,—1) then

kT (xp, xp—1) 1T (Xp41, Xn)
(ko )T (xy41, Xn)
T(x}’l+11 Xn>,

T(xn, Xp+1)

ANVANRVAN

which is a contradiction. Hence

T(xp, xp41) < (ko D)T(xy—1,xn) = 6T (X1, Xn).

Similarly
T(yn Yn+1) < (ko DTYn-1,Yn) = 6T (Yn-1,Yn).

So,ifm >n

T(xp, xm) < (xn,an) O T(xXps1, Xp42) 0 -0 T(Xp—1, Xm)
< 0"T(xg,x1) 08" T (xg, x1) 0+ -0 8™ 1T (x0, x1)
= 0"T(x0,x1)(10606%0---08m "1
< O"T(xp,x1)(1ol0l0---01)
m-—n
< 0"T(xp,x1)(lololo---01)
m

< 6T (xg, x1)m".
It is easy to see that for all m > n there exists s > 0 such that m < »n®. Thus
T(xp, Xm) < 6"T(xg, x1)n"™ — 0.

Hence for ¢ > 0 we can find ny € IN such that for all m > n > ng we get T(x,, xp) < e
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y, } converge to u* and v* in X respectively. Thus

lim T(x,,u*) = lim T(y,,v*) =0. 9)

n—oo n—oo

Applying the triangular inequality and (8) we get

T(F(u*,0"),u”) < T(F(u*,0"),xp41) 0 T(Xps1,u")
= T(Fu",v"), F(xn,yn) © T(xXp11,u")
< KT, 0%),0%) o IT(F (X, ), %) © T(ns1, 7).

Letting n — oo and from (9) we obtain T(F(u*,v*),u*)) < kT(F(u*,v*),u*)) which implies
that T(F(u*,v*),u*)) = 0and so F(u*, v*) = u*. In the similar manner, we have F(v*, u*) = v*,
i.e; (u*,v*) is a coupled fixed point of F. Now, if (u/,v") is another coupled fixed point of F,
then

T, u*) = T(F@',v),Fu*,v"))

F(u',9"),u") o IT(F(u*,v"),u*)
u',u') o IT(u*, u*) = 0.

A
~ o=
5 S

This implies that T(#/,u*) = 0 and so #’ = u*. Siimilarly v = v*. The proof of Theorem 2 is
completed. O
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Theorem 3. Let (X, T, ©) be a complete T-metric space. Suppose that the mapping F : X x X —
X satisfies the following contractive condition for all x,y,u,v € X

T(F(x,y),F(u,v)) <kT(F(x,y),u) oIT(F(u,v),x), (10)

where k, | are nonnegative constants with kol 1 < 1. Then F has a unique coupled fixed
point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by x,41 = F(xn, yn) and y,1+1 = F(yn, xn). By (10), we have

T(xn, xn+1) = T(F(xp—1,Yn-1), F(xn,yn))
KT(F(xy—1,Yn-1),%n) ©IT(F(Xn,Yn), Xn—1)
KT (xp, xn) 1T (Xp41, Xn—1)

T(Xpy1,%n-1)

IT(xp41,%n) © T (X0, Xp—1)-

IN

IN

If T(xp41,%xn) > T(xn, xy—1) then

IT(xp 41, Xn) O 1T (X411, Xn)
(1o D)T(xp41,%n)
(kolol)T(xp11,Xn)
T(xXp41,Xn)-

T(xn, Xp+1)

AN VAN VAN VAN

which is contradiction. Hence
T(xn, Xp41) < (Lo D)T(xp—1,xn) = 6T (Xp—1,Xn),

Similarly
(ynz]/n—i-l) (l Ol) (yn—lr]/n) = 5T(]/n—1z]/n);
whered =10l <kolol <1.So,if m > n,

T(xp, xm) < (xn,an) o T(xXps1,Xn42) 0 -0 T(Xp—1, Xm)
< O"T(xg,x1) 00" 1T (xg,x1) 0+ 0 8™ 1T (x0, x1)
= 0"T(x0,x1)(10608%0---05m 1)
< 0"T(xp,x1)(lololo---01)
mtn
< 0"T(xp,x1)(lololo---01)

m

< 6T (xg, x1)m".
It is easy to see that for all m > n there exists s > 0 such that m < »n®. Thus
T(xp, xm) < 8"T(xg, x1)n"™ — 0.

Hence for ¢ > 0 we can find ny € IN such that for all m > n > ng we get T(x,, xp) < €.
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y,} converge to u* and v* in X respectively. Thus

lim T(x,, u*) = lim T(y,,v*) = 0. (11)

n—oo n—o0
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Using the triangular inequality and (10) we get

( )rXnt1) © T(Xpi1,u")
(F(u*,0"), F(xn, yn) © T(xp41,u")
< KT(F(u*,v%),x4) IT(F(xn,yn), u*) o T(xp41, u™).

*

T(F(u*,0%),u*) <

T(F(u*,v
T(F

Letting n — oo, then from (11) we obtain T (F(u*,v*),u*)) < kT(F(u*,v*),u*)). This implies
that T(F(u*,v*),u*)) = 0and so F(u*, v*) = u*. In the similar manner, we have F(v*, u*) = v*;

i.e., (u*,v*) is a coupled fixed point of F. Now, if (u’,v’) is another coupled fixed point of F,
then

T, u*) = T(F(/,o"),F(u*,0%))
kKT(F(u',7"),u*) o IT(F(u*,0*),u’)
KT (u',u*) o IT(u*,u')
(ko )T (u',u*)

< (kolol)T(u',u*)

< T, u*).

IN

This implies that T(u/, u*) = 0 and so 1’ = u*. Similarly ' = v*. The proof of Theorem 3 is
completed. O

Ifwesetaob=a+Dband T(x,y) = d(x,y) in Theorem 1 we have

Corollary 1. Let (X, d) be a complete metric space. Suppose that the mapping F : X x X — X
satisfies the following contractive condition for all x,y,u,v € X

d(F(x,y),F(u,v)) < kd(x,u)+1d(y,v),
where k, | are nonnegative constants with k + 1 < 1. Then F has a unique coupled fixed point.
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Kapami A., IIlakepi P., Ceaxi C., AaTyn L. Pesyromamu npo napu HepyxoMux mo1oK Ha Mempu1Hux
npocmopax, susHauenux OiHapHumu onepayigmu // KapmaTtcpki MaTeM. my6a. — 2018. — T.10, Ne2.
— C. 313-323.

ITapareAbHO AO pi3HMX y3araAbHeHb Teopemu banaxa mpo Hepyxomy TOUKY B METPUYHMX ITPO-
CTOpax, Lk TeOpisl € 3aCTOCOBHOIO AO Pi3HMX TUITiB IIPOCTOPIB, 30KpeMa, TaKMX sIK yAbTPpaMeTPIJHi
IIPOCTOPH, HEUIiTKi MeTPpUUHi IIPOCTOpYM, piBHOMIPHI IPOCTOpHM, YaCTKOBO MeTpMYHI IpocTopH, b-
MeTpWUHi IPOCTOPM Ta iH. Y IbOMY KOHTEKCTi CHOUaTKy MM BM3Ha4aeMO HiHapHY HOpMOBaHY OIle-
pallifo Ha HeBiA'€MHIMX AIMICHMX UMCAaX 1 AA€MO Kinbka mpmkaaaiB. Toai Mu srapyeMo moHSTTS 1-
METPUYHOTO IIPOCTOPY Ta J0ro BaXXKAMBI i pyHAAMEHTaAbHI BAACTMBOCTI. T-MeTPpUYHIIA IPOCTip —
e Habip (X, T, <), Ae X € HEIOPO>XHBOI MHOXIHOIO, ¢ — GiHapHOIO HOpMOBAHOIO omepauicio i T €
aesikoro T-merpuxoro Ha X. OCKiAbKM HEPiBHICTD TPUKYTHMKA AAST T-MeTPUKI 3aAeXWTh Bia 6iHap-
HOI orepatlii, AAsI IKOI YaCTKOBMM BUIIaAKOM € CyMa, T-MeTpUJHMIA IPOCTIp € CIpaBXXHiM y3araAb-
HEHHSM 3BMUYAlfHOTO METPUYHOIO MpOCTOPY. [ OAOBHMMM pe3yAbTaTaMy, SIKi MM IIPEACTABASIEMO, €
TPV TEOPEMM AASI TTap HEPYXOMMX TOYOK AASI ABOXBUMIPHMX BiAOOpakeHb, IO 3aA0BOABHSIIOTD Ae-
sIKi HepiBHOCTI CTVCKY B TOBHMX T-MeTPUIHMX IpOCTOpax. AeTko 6aumTy, 10 He TiIABKY iCHyBaHHS,
ane i eAMHICTD Tapy HEPYXOMMX TOUOK rapaHTy€eThCST LIMMM TeopeMaMu. Tako>X My IpeACTaBASIEMO
AesIKi MPMAATHI IIPMKAAAM, IO IAIOCTPYIOTh HAIlli pe3yAbTaTH.

Kntouosi cnoea i ppasu: 6iHapHa HOpMOBaHa omepallisi, T-MeTpUIHIII IPOCTip, apa HePyXOMIX
TOYOK.
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APPLICATION OF DUALITY THEORY TO SOLVE TWO-CRITERIA PROBLEM OF
LINEAR PROGRAMMING FOR ECOLOGICAL-ECONOMIC SYSTEM

In the paper, we investigate two-criterion optimization problem: maximization of one target
function and minimization of another target function. To solve the offered two-criterion problem,
the method of the main criterion is applied. We consider the problem of production activity of
the ecological-economic system with the maximization of the value of the final product as the first
target function and the minimization of emissions of polluters into the environment as the second
target function. We constructed of two production functions (economic and ecological). To construct
the economic production function, we select maximal producing of the final products in a costing
form as the most essential (main) criterion. Also, there is introduced the appropriate data of the
criterion level total volume of emissions of polluters into the environment. After this two-criteria
problem is reduced to one - criteria problem. For the construction of ecological production func-
tion, the main criterion in the problem of the minimal general volume of emissions of polluters into
the environment is defined. We use a parameter of the criterion level of the second criterion and
obtained one-criterion problem. Therefore, investigation of the appropriate dual problems explic-
itly provides economic and ecological production functions to the deduced one-criterion problems.
These functions in input two-criterion problem give way to optimal manage of ecological-economic
system.

Key words and phrases: Optimal management, two-criterion problem, dual problem, target func-
tion, main criterion method, ecological-economic equilibrium, production function.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: lessja2501@gmail.com, lesia.khrushch@pu.if.ua

INTRODUCTION

Public production envisages not only a creation of material welfares but also activity con-
nected with a decrease of environmental pollution and restoring of natural resources. High
level of competitiveness in West European industries as well as a new policy of sustainable
development causes a rethinking of management strategy of individual countries.

One of basic tasks, which a modern specialist-economist must be able to solve, is providing
of the state, when economic and ecological requirements are balanced. That means providing
equilibrium state of ecological economy. The ecological economy is a market economy that
studies interaction between ecosystems, social associations and economic systems and also
conditions that provide a steady, inexhausting state and progressive development of all three
systems. The main task of the ecological economy is forming of fundamentally new direc-
tions of transformation of economy based on permanent recreation of innovative processes of
reformation of production and consumption of products. The final goal of ecological econ-
omy is the sequential passing to ecologically more perfect production technologies, types of
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products, processes of consumption, economic relations, lifestyle [11]. At consideration of eco-
logical economy activity of production can be presented as an ecological-economic production
function in which, next to economic values ecological factors also have their market estimation.
There is a necessity to build such a production function that has two constituents: economic
and ecological.

ANALYSIS OF THE LAST RESEARCHES AND PUBLICATIONS

A modeling of the ecological-economic systems is the topic of many researches. The ecolo-
gical-economic models by a structure can be divided into balance, optimization and simulation
models. The balance models include the inter-branch Leontief-Ford model of the economy
structure impact on the environment [6], and also its generalizations such as the Ayres-Kneese
model [1] and the Willen model [23]. At the fact, the Willen model is a matrix balance in
the Ayres-Kneese model. Among the simulation models we should mention the Meadows
model [10] and the Forrester model [3]. ]J.W. Forrester attempted to analyze the interactions
of demographic, industrial and agrarian systems. In the optimization ecological-economic
models, the formation of the optimality criterion is fundamental. Particularly, I. Schimazu [21]
proposed optimality criterion, which corresponds to three stages of society development. H.
E. Dali [2] and T. H. Tietenberg [22] also considered ecological component in their models.
Other scientists [12,18-20] investigated regulation of the ecological consequences of economic
growth and improvements for environmental management.

Among the Ukrainian scientists we have to mark works of I.Lyashenko. Exactly his school
works actively on the problems of ecological-economic modeling. In spite of the large volume
of publications, plenty of questions and problems for today are not studied enough, and the
problem of the balanced economic, social and ecological development remains unsolved.

Now the problems of ecological-economic equilibrium are actively studied.

In [24, p. 446-455] the problem of manufactures ecologization is analyzed and the expan-
sion of the classical model of interbranch balance and its transformation into the optimization
model by inclusion of restrictions on emissions is carried out. This model is completed by
marginal variables and by corresponding to them coefficients.

In [14, p. 931-938] the research of optimal trajectories of development of the ecological-
economic system is carried out in case of equable division of labour resources between bran-
ches of material and nature protection productions.

In [15, p. 217-221], [16, p. 31] the technological structure of production in the ecological-
economic system with taking into account introduction of technological innovations was re-
searched. In particular, on the basis of distribution of production capacities according to tech-
nologies a corresponding equalization of dynamics, based on the set initial conditions and
limits on economic and ecological resources, was built. The modelling of ecological-economic
interaction in the process of realization of Kyoto protocol decisions which was made is very
important [13].

In [17, p. 331-333] the parametrization of mathematical models of the ecological - eco-
nomic systems is carried out in space of indexes of economic structure of society, prices and
environmental pollution.

In [5, p. 170] the conditions for optimal interaction between basic and auxiliary productions
in the ecological-economic systems have been investigated. The are the basis for prediction the
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of the investment level into auxiliary production, which provides its possible growth.

In [4, p. 184-185] the dynamic models of single sectorial economy taking into account the
utilization processes of the created pollution and socio-economic structurization were devel-
oped.

In [8, p. 149-150] a comparative analysis of the most famous models of ecological-eco-
nomic systems is presented. The approach to modelling of economic systems considering
environmental factors, based on a modified model of Leontief-Ford and the principle of input-
output is proposed.

The research of ecological-economic equilibrium is necessary nowadays, when the envi-
ronmental pollution gained the global character. Using of ecological-economic function is very
important in the researches as such function will reflect modelling of ecological-economic sys-
tem.

The aim of our researches is a construction of optimal functioning model for ecological-
economic system to find a solution of suitable two-criterion problem. The problem has solu-
tion as two ecological-production functions. We simultaneously consider the maximization of
value of the final product and the minimization of emissions of polluters. Since it is difficult to
create an effective production activity that takes into account not only economic benefits but
also an environmental impact, we want to propose an ecological-economic model combining
simultaneously these two factors. It is a necessary way of the problem solving.

THE MAIN RESULTS OF RESEARCHES

Let us consider at the ecological-economic system that includes a basic (material) produc-
tion and auxiliary production (sewage treatment plants). The volumes of productions are
limited to the present resources. The central core of the ecological-economic system is an
inter-branch model of V. Leontief and D. Ford [7, p. 21]. It represents cooperation of indus-
tries of producing of products and industries that destroy harmful wastes. The efficiency of
production activity is described by two criteria (economic and ecological). The first criterion
is maximal producing of the final products in a cost form. The second criterion is minimal
general volume of emissions of polluters into the environment.

We suggest to describe production activity of the ecological-economic system as following
two-criteria problem of linear programming;:

fi(x) = clyl — max, fo(x) = czyz — min,
= Apxt + Apx® +yl, % = Apal + Apx? — 2, (1)

Bix! + Box* <R, x! >0, ¥* >0, y* >0, y* >0,
where c! is a vector of products’ prices, c? is a vector of equivalence’s coefficients of polluters
(in relation to harm or in relation to the cost of destruction), x! is a vector of the gross produc-
ing of products, y! is a vector of producing of final products, x? is a vector of volumes of the
destroyed polluters, y? is a vector of volumes of emissions of polluters in the environment, A1;
and Ajp are technological matrices of direct issue of products, Ay; and Ay, are technological
matrices of the direct producing of pollutants (in a basic production and sewage treatment
plants accordingly), By and B, are matrices of costs of economic resources for the basic and the
auxiliary productions, R is a vector of present economic resources.
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The necessary and sufficient condition of non-negativity of solutions of the Leontief-Ford
A Ap
Ag1 Ay
0 is the condition x> = (E; — Az)f1 <A21 (Ex — Az)f1 y! —yz) > 0, where Ay, = Axp +
A (E1 — All)fl A1y, and Eq,E; are diagonal identity matrices [7, p. 27]. Besides from Leon-
tief-Ford inter-branch balance we can get the next x! = (I; — A11) ™!+ (Apx® +y!). It implies
that if x> > 0 and y! > 0 then x! > 0. So, the productivity of ecological-economic system
(x! > 0,x2 > 0) will be provided when (y' > 0,4> > 0). Then the two-criterion problem (1)
after the exclusion of variables x! and x? can be the following form:

model at the productivity of block matrix A = ( ) > 0 and at the y! > 0, y* >

fi(x) = c'y! = max, fr(x) = c*y* — min,
xt=Apxt + Apx® +y,

2= (Ey— Ay)~! <A21 (Ex— Ay) 'yt — y2> >0,
Diy' —Doy?* <R, y' >0, > >0,

()

where . . .
Dy =B1(E1— A1) +By(Ex—A2) An(E1—Ann) >0,

Dy =By (E1 — A1) " A (B — Ap) ' + By (Ex — Ay) ™' > 0.

For the investigation of two-criterion problem (2) we apply the method of main criterion [9,
p- 47]. Thus, we build two production functions (economic and ecological).

For the construction of economic production function we will distinguish fj (x) as the main
criterion and we will set admissible value Z > 0 for the criterion level f,(x), that is total
volume of emissions of polluters into the environment.

We obtain the following one-criterion problem:

cly! = max,

C2y2 <7z,

(Ex — A2) 1 Ag (BEa — A2) Myt — (B — Ay) 12 >0,
Diy' —Dyy* <R, y' >0, y¥* > 0.

3)

Let us write the problem (3) in the next way:

cly! = max,

C2y2 < Z,

— (Ey— A2) " Ayt (Ea — A2) 'yt + (B2 — A) 2 <0,
Diy' —Dyy* <R, y' >0, y¥* > 0.

(4)

The dual problem to problem (3) has the following form:

pZ + rR — min,

—q(Ey— Ap) t Ay (Ey — An) Yt 4Dy > €
pc? +q(Ey— Ap) ' —rDy >0,
p=>0,q>20,r=>0,

(5)
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where p > 0,4 > 0,7 > 0 are dual variables (the cost of emissions of polluters into the envi-
ronment, the cost of the destroyed polluters, the cost of economic resources).

For problem (5) we will find the basic feasible solution from the auxiliary system of linear
equations:

—q (Ez — Azz)_l A21 (El — All)_l ]/1 +1’D1 — A= Cl,

(6)
p? 4+ q(Ey— Ap) ' —rDy—w =0,

where A > 0, w > 0 are slack variables.
We find all basic feasible solutions of system (6), namely (pi,qi,77),(p5,95,75) -,
(ps,q3,v%) . Then we explicitly write down an economic production function

piZ+riR=f] (x(Z,R)),x € My,
F(Z,R) =y =min(p*Z+r"R)=< ... ... ...
piZ+1iR = fj (x(Z,R)) ,x € M;,

where |J;_; M; = M is the domain of definition of the problem (3).

A production function depends on the parameter Z and is presented in dependence of the
chosen set. At the different values of parameter Z we will obtain the different optimal solutions
for the two-criterion problem (1).

For the construction of ecological production function we will define f,(x) as the main
criterion in problem (2) and we will set admissible value Q > 0 of final producing products in
a cost form (the first criterion).

We will get the following one-criterion problem

c2y2 — min,

cy' > Q,

(E2—Ap) " An (B2 — A2) 'yt — (B2 — A) "2 >0,
Diy' —Dyy* <R, y' >0, y¥* > 0.

(7)

Let us write problem (7) in the next way:

— ®y? — max,

—cyt <-Q

—(E2— An) " Ay (E1 — An) 'yt + (B2 — An) 12 <0,
Diy' =Dy <R, y' >0, y* > 0.

(8)

The dual problem to problem (8) looks as following:

— uQ + wR — min,

—uc' —v(Ey — Ap) ' An (E1 — A1)t +wDy >0,
0(Ey — Ap) !t —wDy > —¢2,

u>0,0v>0w>0,

©)

where u > 0,0 > 0,w > 0 are dual variables (the cost of producing of final products, the cost
of the destroyed polluters, the cost of economic resources).
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For problem (9) we will find the basic feasible solutions from the auxiliary system of linear
equations:
—uc! — U(Ez — A22)71A21(E1 - A11>71 +wDy —pu =0,
’()(Ez — Azz)fl —wDy) —v = —C2,
where y > 0,v > 0 are slack variables.
We find all basic feasible solutions of system (10), namely (uj,v},wy), (u3,05,,W3),...,
(uf, vi, wy) . Then we explicitly write down an economic production function

F(Q,R) = ¢*y** = min(—u*Q + w*R) = max(u*Q — w*R) =
uiQ—wiR = f (x(Q,R)),x € My,

(10)

uiQ -~ wiR = f (x(Q R)), x € M,
where [J¥_, M; = M is the domain of definition of the problem (7).

A production function depends on the parameter Q and in dependence of the chosen set.
At the different values of the parameter Q we will get the different optimal solutions for the
two-criterion problem (1).

Thus, investigation of the proposed two-criterion production activity model of ecological-
economic system (1) is reduced to investigation of a pair of one-criterion problems (3) and
(7). Applying theory of duality we obtained a pair of production functions for the ecological-
economic system in an explicit form:

F(Z,R) = c'y"* = min(p*(Z,R) - Z +1*(Z,R) - R),
F(QR) = ¢y = max(u'(Q R) - Q- w’(Q,R) - R).
Example 1. To demonstrate the construction of a pair of production functions for the ecologi-
cal-economic system, we consider the following example. Let (1) be a given problem, where
A = (0,4), A1z = (0,2), Ay1 = (0,2), App = (0,1), By = (2), B, = (1), ¢! = (1), ¢? = (2),
R = (R). Then problem (2) looks as following
y! — max, yz — min,
b =0,4x +0,2¢% + 4/,
36 6
2 _ Eyl -2
4]/1 —2]/2 <R, yl >0, y2 > 0.
Setting admissible value Z = (Z) > 0 (that is a total volume of emissions of polluters into
the environment) we obtain one-criterion problem (4) in the following form:

X > >0,

yl — max, y2 <Z,
36
— 55V
4]/1 —2]/2 <R, yl >0, y2 > 0.
Let us write a dual problem to the problem:

6
1, %092
+5y <0,

pZ +rR — min,

6
I >
125q+4r >1,

p+gq_2r201
p>0,4>0r>0.
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Next, we construct an auxiliary system of linear equations and find the basic feasible solutions
of the problem

36
125q—|—4r—)\—1,
p+gq—2t—w:0.

To solve the system we examine it in these cases 1) p > 0,4 > 0;2)p > 0,r > 0;3)p > 0,A > 0;
HYp>0,w>0;5q>0,r>0,6)g>0,A>0,7)g>0,w>0;,8r>0,A>0,9r>0,w >0;
10) A > 0, w > 0. A feasible solution can be obtained in the cases 2 and 5. As consequence,
there is the following economic production function F(Z,R) = min{3} 52+ 1R, ‘;’giR}

We set Q = Q(R) > 0 as an admissible value of final producing products in a cost form.

Then problem (7) has form

y2—>min y1>Q,

36 1 6,

Y "5V =0

4]/1—2]/ SR,y ZO,]/ZZO.

It can be rewritten as following

—y2 — max, —yl <-Q,

36 1, 65
1253/ 5=

4y' —2 <R, y' >0, y* > 0.
Find a dual problem to it

—uQ 4+ wR — min,

36
— Yy — — >
u 1250+4w 0,

6
—v—2w > —1,
5U w =

u>00v>0 w>0.

To find non-trivial feasible solutions of the system

36
—u—ﬁv—l—élw—y—O,

5V~ 2w—v=-1
we investigate the cases 1) u > 0,v > 0;2)u >0, w > 0;3)u >0, u > 0;,4)u >0,v > 0;
5v>0w>060v>06u>0720v>0v>08w>0u>09w>0v>0;10)
u > 0,v > 0. It is possible to solve the problem only in cases 2 Ta 8. As a result, we obtain
an ecological production function F = min{—2Q + 1R; 1R}. Thus, there is a constructed pair
of productions functions for the ecological-economic system F(Z,R) = min{1Z + 1R;35R},
F(Q,R) = min{—2Q + 3R; 3R}.
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Conclusions. The proposed model of the ecological-economic system gives an opportunity

to treat the production activity as the problem of maximization of the final product value and
as the problem of minimization of polluters emissions into the environment. In both cases, the
ecological-economic production functions are constructed. The production functions describe
the optimal performance of the ecological-economic system. Our optimization model allows to
realize the largest volume of final product output, the best distribution of economic resources
and the least amount of polluters emissions into the environment. The proposed approach to
construct a pair of production functions best suits needs and is convenient for usage. Analysis
of this pair of production functions provides acceptance of better and more effective decisions
at the production management.
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Xpym A.3. 3acmocysanns meopii dsoicniocmi 00 po3s’g3ysants 0sokpumepiiiHol 3adaui ninitiHo2o0 npoepa-
MYBaHH 0119 exos020-ekoHoMiuHoi cucmemu // Kapmarcoki MateM. my6a. — 2018. — T.10, Ne2. — C.
324-332.

Y craTTi AOCAIAXEHO ONTUMIsalliifHy 3aAady 3 ABOMa KpPUTepPisMIL: MaKCUMi3allis OAHiEl IiAbO-
BOi pyHKIII Ta MiHiMi3amis iHIIOl MiABOBOI PYHKIIIT. AAST pO3B’SI3aHHST 3aITPOIIOHOBAHOI ABOKpUTe-
piltHOI 3aAadi 3aCTOCOBAHO METOA TOAOBHOTO KPUTEPifo, IPUUOMY PO3TASHYTO 3aAady BUpOOHIIO]
AISIABHOCTI €KOAOTO-€KOHOMIUHOI CCTeMM, B SIKill peanisyeThcsl MaKCMMi3allis BapTOCTI KiHIIeBO-
IO IPOAYKTY, SIK TlepIlia iAboBa (PYHKIIsI, i MiHiMi3aliss BUKMAIB 3a6pyAHIOBaUiB Y HaBKOAMIITHE
CepeAOBMINIE, SIK ApyTa LinboBa (pyHKIIS. BHaCAIAOK LIBOrO 3AiMCHIOETHCSI IOOYAOBAa ABOX BUpPO-
bEVaVX (PyHKIIM (€KOHOMIUHOI Ta €KOAOTiUHOI). AASI TOOYAOBY eKOHOMIUHOI BMpo6HMYOl pyHKITi
3a HaMbiABII CyTTEBMIT (TOAOBHIII) KPUTEPill BMAIAEHO MAaKCMMYM BUITYCKY KiHITEBOI MPOAYKIIl y
BapTicHiN dpopMi 11 BBEAEHO TTapaMeTp i3 3HaUeHHSIM eKCIIepTHO BCTaHOBAEHOTO “TIoporosoro” (3a-
AOBIABHOTO) piBHS iHIIOro Kpurepito. ITicAst IbOro ABOKpHUTepiaAbHY 3apady IPUBEAEHO AO OAHO-
KpUTepiaAbHOI 3aAaui. AHAAOTIUHO, AASI IIO6YAOBM €KOAOTIUHOI BUPOOHIUOI PYHKIIIT 32 HaOiABIIT
CYTTEBMIA (TOAOBHWIT) KPUTEPili BUAIA€HO MiHIMYM 3araAbHOTO OGCSITY BUKMAIB 3a0pyAHIOBAdiB y
HaBKOAMIITHE CepeAOBHIIle, BBeAeHO IapaMeTp “IOpOoroBoro” piBHsS APyTOro KpMUTepilo i oTpuma-
HO OAHOKpUTepiaabHY 3apady. ITIASIXOM AOCAIAKEHHS BIATTOBIAHMX ABOICTMX 3aAa4 AO OTPVIMAHMX
OAHOKPUTEPIilfHIX 3aAa4 Y SBHOMY BUTASIAL 3aIMICAaHO €KOHOMIUHY Ta €KOAOTiUHy BUpOOHMY pyH-
kuii. Taxi pyHKIII BiAHOCHO IIepBMHHOI ABOKPUTEPilfHOI 3apadi AAIOTh 3MOTY 3AIMICHIOBATHM OITH-
MaAbHe yPaBAIHHSI €KOAOT0-eKOHOMIUHOIO CHCTEMOIO.

Krwouosi cnosa i ppasu: OnTuMaAbHe yIIpaBAiHHSI, ABOKpUTepiliHa 3aAa4a, ABOICTa 3aAa4a, IiAbO-
Ba (pYHKIIisl, METOA TOAOBHOTO KPUTEPilo, eKOAOrO-eKOHOMIUHa piBHOBara, BUpOOHIIa (PyHKIIiS.
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ON FELLER SEMIGROUP GENERATED BY SOLUTION OF NONLOCAL PARABOLIC
CONJUGATION PROBLEM

The paper deals with the problem of construction of Feller semigroup for one-dimensional in-
homogeneous diffusion processes with membrane placed at a point whose position on the real line
is determined by a given function that depends on the time variable. It is assumed that in the inner
points of the half-lines separated by a membrane the desired process must coincide with the ordi-
nary diffusion processes given there, and its behavior on the common boundary of these regions is
determined by the nonlocal conjugation condition of Feller-Wentzell’s type. This problem is often
called a problem of pasting together two diffusion processes on a line.

In order to study the described problem we use analytical methods. Such an approach allows
us to determine the desired operator family using the solution of the corresponding problem of
conjugation for a linear parabolic equation of the second order (the Kolmogorov backward equation)
with discontinuous coefficients. This solution is constructed by the boundary integral equations
method under the assumption that the coefficients of the equation satisfy the Holder condition
with a nonzero exponent, the initial function is bounded and continuous on the whole real line, and
the parameters characterizing the Feller-Wentzell conjugation condition and the curve defining the
common boundary of the domains, where the equation is given, satisfies the Holder condition with
exponent greater than 3.

Key words and phrases: Feller semigroup, diffusion process, parabolic problem of conjugation.
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INTRODUCTION
Consider on a plane (s, x) the set
St={(5x): 0<s<t<T, —0<x<oo},

and denote by S; the closure of S;. Suppose that S; contains a continuous curve x = h(s), 0 <
s < T, which separates S; into two domains:

St(l):{(s,x): 0<s<t<T, —oco<ux<h(s)}

and
sz):{(s,x): 0<s<t<T, h(s) < x < oo}
Put D15 = (—o0,h(s)) and Dps = (h(s),c0).

YAK 519.21
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Consider in St two uniformly parabolic operators with bounded coefficients

0 @j_ o 1 ‘ 92 ‘ J .
$—1—LS _g—i-ibl(s,x)w—i-az(s,x)a,1—1,2. (1)

The problem is to find a solution u(s, x, t) of the equation

3_2 +1%u=0, (sx)es",i=1,2 @)

which satisfies the ’initial’ condition

li?tnt(s, x,t)=¢(x), x€R, (3)

two conjugation conditions
u(s,h(s) —0),t) = u(s,h(s) +0,t), 0<s<t<T, 4)
y(s)u(s, h(s), t) + / [u(s, h(s),t) —u(s,y,t)|u(s,dy) =0, 0<s<t<T, (5)

D15sUD>g
and two fitting conditions
¢(h(t) =0) = ¢(h(t) +0), 6)
r(B)(h(t)) + / [p(r(t)) — @(y)]p(t, dy) = 0. )
D1;UDy;

The initial function ¢(x) in (3) is assumed to be bounded and continuous on R (in this case
condition (6) holds automatically), the function 7(s) and the Borel measure y(s,-) in (5) are
nonnegative and such that y(s) + u(s, D15 U Dys) > 0 for all s € [0, T].

The problem (2)—(7) arises, in particular, in the theory of diffusion processes in the construc-
tion of a one-dimensional model of the diffusion phenomenon with a membrane, or, what is
the same, in solving using the analytical methods the so-called problem of pasting together
two diffusion processes on a line [3,4,8,9]. In the considered case, the membrane is supposed
to be moving, and it is placed at the point x = h(s), which is at the same time the point of past-
ing together two given diffusion processes. If we assume that the solution u(s, x, t) = Ty p(x)
of (2)—(7) is a two-parameter Feller semigroup associated with some inhomogeneous Markov
process on a line, then the validity for it of equation (2) implies that this process coincides in
D;; with the diffusion processes given there by the differential operators Lgl), i =1,2, and
initial condition (3) is in agreement with the equality Tss = I, where I is the identity opera-
tor. Next, conjugation condition (4) is the reflection of the Feller property of the process and
equality (5) is the Feller-Wentzell conjugation condition which has two terms. The local term
is responsible for disappearance of the diffusing particle and the nonlocal one for the jump-
like nature of the exit of process from the boundary of the region. Recall that in the general
case the Feller-Wentzell conjugation condition contains also the derivatives of the unknown
function in both variables, which correspond to the properties of the partial reflection at the
common boundary of the regions and the phenomenon of "viscosity” [1, 6, 11].

The classical solvability of problem (2)—(7) is proved under the assumption that the coeffi-
cients of equation (2) satisfy the Holder condition with a nonzero exponent, the initial function



ON FELLER SEMIGROUP GENERATED BY SOLUTION OF NONLOCAL PARABOLIC CONJUGATION PROBLEM 335

@ in (3) is bounded and continuous on the whole real line, and the parameters <y, u characteriz-
ing the Feller-Wentzell conjugation condition (5) and the curve x = h(s) defining the common
boundary of the domains St(l) and St(z) satisfy the Holder condition with exponent greater than
1. In the investigations we use the fundamental solutions of the parabolic equations and the
heat potentials generated by them [2,5,8]. As a result of their application, problem (2)—(7)
is reduced to a system of two singular Volterra integral equations of the second kind which
solution is obtained by the method of successive approximations.

Note that a similar problem was considered earlier in [9] for the case where the membrane
is placed at a fixed point of the line. We also mention works [7,10], which present the results
concerning the construction of diffusion processes with jumps at the points of the boundary
of the region by the methods of stochastic [7] and functional analysis [10].

Assume that the following conditions I-V are satisfied.

I. Equation (2) is a parabolic equation in the domain S, i.e., there exist positive constants
b and B such that

0<b<bi(s,x) <B<oo,i=1,2, (s,x) €Sr.

II. The coefficients b;(s, x) and a;(s,x), i = 1,2, are continuous in (s, x) and belong to the
Holder class H2 A (S7), 0 < & < 1 (to recall the definitions of Holder classes see [5]).

III. The initial function ¢(x) belongs to the space of bounded continuous functions, which
we will denote by C,(IR). The norm in this space is defined by the equality |¢| =

sup |@(x)].
x€R

IV. In condition (5) the measure y(s, -) is nonnegative, u(s, D1s U Dys) =1, s € [0, T] and for
all f € Cp(R) the integrals

') = [ fWntsdy), =12
Djq

belong to the Holder class H s ([0, T]).
V. The functions 7(s) and k(s) are continuous and belong to H = ([0, T]).

In view of IV condition (5) can be rewritten as follows

(&) + Duls b)) = [ uls,y, (s, dy). ®
D13UD»s

Conditions I, II provide the existence of a fundamental solution for each of the equations
in (2) (see [5,8]), i.e., the existence of a function G;(s, x,t,y), i=1,2 (0<s < t<T; x,y € R),
which satisfies equation (2) for fixed t € (0,T], y € R as a function of (s,x) € [0,t) x R and
has the form

Gi(s,x,t,y) = Zio(s,x, t,y) + Za (s, x, t,y), i=1,2, )
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where
. — b. - —% _ (y — x)Z
ZZO(S/ X, t/y) [27T l(tly)(t S)] exp Zbi(t y)(t — S) s (10)
t
Zia(s,x, t,y) = [dt | Zi(s,x,T,2)Qi(T,2,t,y)dz, (11)
jol

and the function Q;(s, x, t,y) is a solution of some singular Volterra integral equation of the
second kind.

Note that
_— _ 142r4p (y — X)z
‘DsDxZiO(S/ X, f,y)} < C(t — S) 2 exp —C? ’ (12)
p _ 142r4p—a (y — x)2
‘DngZil (s, x, t,y)} < C(t—s) 7 exp T (13)

wherei =1,2, 0 <s <t <T, x,y € R, Cicare positive constants; in the sequel, various pos-
itive constants will be denoted by symbols C or ¢; r and p are nonnegative integers satisfying
2r + p < 2, D! is the partial derivative with respect to s of order r, DY is the partial derivative
with respect to x of order p.

Given a fundamental solution G;(s, x,t,y), i = 1,2, and a function h(s), we define the
integrals
uiO(S/ X, t) = /Gi(sr X, t, y)q)(y)dy, i=12, (14)
R
t
i (s, %, 1) = / Gi(s,x, T, h(T))Vi(T, dT, i=1,2. (15)
S

Here ¢ and V;, i = 1,2 are given functions, 0 < s <t < T, x € R. In the theory of parabolic
equations the function u;(s, x, ) is called the Poisson potential, and the function u;; (s, x, t) the
parabolic simple-layer potential.

We recall some properties of functions u;y(s, x,t) and u;1 (s, x,t), i = 1,2. Let ¢ € C,(R).
Then from the properties of the fundamental solution G;(s, x,t,y), i = 1,2, it follows that the
potential u;y exists and satisfies equation (2) and the initial” condition

ligluio(s, x,t)=¢(x), x€R,i=1,2, (16)
sTt

in the domain (s, x) € [0,¢) x R for a fixed t € (0, T| as a function of arguments (s, x).
In addition, for the function u;y(s, x, t), i = 1,2, the inequality

rmyP _rip
|DEDu(s, x,1)] < C(t — )~ |lgl], (17)

(where r and p are positive integers for which 2r 4+ p < 2) holds in each of the domains
0<s<t<T, xeR.
Consider integral (15). If we assume that the density V (7, t) is continuous for T € [s, ) and

has a weak singularity with exponent > —% when 7 = ¢, then the function u;(s, x,t), i = 1,2,
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is bounded and continuous in 0 < s <t < T, x € R, it satisfies equation (2) in the domain
(s,x) € [0,t) x (R \ k(s)) and the initial condition

li%n uip(s,x,t) =0, x€R,i=1,2. (18)
st

An important property of the function u;; is reflected in the so-called theorem on the jump
of the co-normal derivative of the parabolic simple-layer potential (see, for instance, [5, 8]). In
the present paper this assertion is not used, and therefore we do not provide it.

1 EXISTENCE AND UNIQUENESS

We find a solution of (2)—(7) in the form of sum of potentials u;y and u;; with unknown
densities Vj(s,t), i = 1,2:

u(s, x,t) = / Gi(s, x,t,y)p(y)dy

+/G s,x, T, h(T)Vi(t,t)dt, (s5,x) €S\, i=1,2. (19)

Using conjugation conditions (4), (5) and (8), we get the following system of Volterra inte-
gral equations of the first kind for V;(s, t):

(7(s +1/Gsh 5), 7, h(0))Vi(t, )dt

2 t
-y / Vi(t, t)dr / Gi(s,y, T, h(T))u(s, dy) = @;(s,1), i=1,2, (20)
j=1 Djq

where

(s, 1) Z / ujo(s,y, t)u(s, dy) — (v(s) + Duio(s, h(s), t), i=12.

]1D

Consider the function ®;(s, f) in (20). Let us prove that

lgrtlcb(s ) =0, i=1,2; (21)
(®@i(s, £) — @i(5,8)| < Clloll(t—s)" 3" (s —5)'2", §<s. (22)

Assertion (21) can be easily verified using property (16) of the Poisson potential u;y and
fitting condition (7):

lim (s, 1) z/qo u(t, dy) — ((5) + Dg(h(t))

sTt i= 1D

= / [p(y) — o(h(t))]u(t, dy) —y(t)@(h(t)) = 0.

D1:UD;
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To prove inequality (22), we write the difference ®;(s,t) — ®;(5,t) as a sum I; + I, + I3,
where

L= Z/ wjo(s,y,t) — ujo(5, v, £)]u(s, dy),

= 1D

L = (7(5) + Duio(s, h(s), t) — (7(s) + Dui(s, h(s), t),
2

=) </”j0(§,y/f)ﬂ(51dy) —/ujo(ﬁy,t)y(ﬁdy))
j=1 e

Js ]

and study separately each term of this sum.
Since for s <s

[ujo(s,y,t) —ujo(s,y,t)|
~ I+a - 1-a
= lujo(s,y,t) —ujo(S, 4, )7 |ujo(s,y,t) —ujo(5,y,t)| 2

al/l' §/ 7 1# ~ 1—a
<|MROD w0
§=5406(s—5)
<Cllgll [(t=5-0(s =) s =5)] * <Clloll[((t-s)

+(5—5)(1-0) (s —5)] T <Cloll(t—s)"F(s-5)F, 0<o<1,

inequality (22) holds for the term I;. Recalling that the functions -y and / are Holder continuous
(see assumption V) and using previous considerations, we arrive at inequality (22) for I,. For
I3 we have the estimate

1t+a
[I3] < Clloli(s —35),

which is an obvious consequence of assumption IV. Thus,
1t 1t

L+ L+ Ll <Clgf(t=s)"2(s=5) 2, 5<s,

what had to be proved.
In order to regularize system of Volterra integral equations of the first kind (20), we apply
to both sides of each of its equations the integro-differential operator £, which acts by the rule

stq)—\/? / —s) 2<I>(p, Jdp, 0<s<t<T,i=12. (23)

Consider first the action of the operator £ on the right hand side of the i-th equation of
system (20),1 = 1,2.

In view of (21) and (22), for the function ®;(s,t) = &(s,t)P; we easily get the following
formula:

3

(s, t) = m/ )2 (@i, ) — Dils, 1)]dp

_ \/%(t —8) T2 di(s,t), i=1,2. (24)
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Besides, for the function ®;(s, t) in each domain of the form 0 < s < ¢ < T the inequality

NI—=

|@;(s, t)| < Cllo||(t—s)" (25)
holds.

Now, we apply the operator £ to the left hand side of the i-th equation of system (20),
i = 1,2. As aresult, we obtain the expression, which after changing the order of integration
and using formulas (9), (10) can be represented in the form

t
Vi) 295 [ e o -
bi(s, h(s)) TV e ];S/NZJ(S’ Dy =12, (26)

where

T

Ni(s,7) = [ (0 =5)" 4| (Zanlo. (o), % (2)) = Zinlp,0,7,0)) +1(6)Gilp, h(p), T, ()

S

+ Zalp,h(e), T h(0) — [ Gilo,y wh(x) o dy) | dp, i= ],

Dy,

T

Ni(s,7) = = [(0=5)"dp [ Gilo,y, T h(x)ulp,dy), i #].

S Djy

To simplify the derivatives of integrals depending on parameters in expression (26), we
show that

lim NZ']'(S, T) =0. (27)

sTT
In proving this fact, a certain complexity is only a study of the function

T

Lils ) = [(o=)"Hdp | Zyo(o,y, 7 h(D)n(p,dy)

s Djy

which appears in the expression for Nji(s, T) immediately after we rewrite G; according to
formula (9). For all other terms in formula for Nj;(s, T) the relation (27) is easily established by
using the inequalities (12), (13) and condition V.

Write the function L;(s, T) as follows

L]'(S, T) = le(S, T) + sz(S, T), (28)
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where

e W/
D/ it 2bj<(r}{h<f>(;<)r)2— 0) }W' )
- / P { B 2bj((r]{h_(f)(;()r)2_ ) }u(s, dy)},

Djq

Lio(s,T) = / —s’%r 0)” 2dp
\/27h; (T, h(T

x(/exp{-—2%éghé§;2iwﬁ}u@wwy

Djs

X

. . —h 2
Since the functions f,(y) = exp {%} belong to Cp(R) forall0 <s < p <7 <
t < T and are bounded by 1 on this set, and since condition IV holds, we have

Li(s, )| < C(t—s)'7", j=1,2 (29)
Let us study the function Lj>(s, ). Write it in the form
h(z))?
ex
,W @ / p{ rh( (T —5)
(y —h(s))? ]
—ex Ri(s, T, s, d
p{ 26t h(0)) (x —5) i(s, T, y) (s, dy)
y h(S))
ex Ri(s, T, s,dy), (30)
where R]-(s, T,y) denotes the integral
f ; ] (y—h(1))>  p-s
Rj(S/T/]/) = /(P - S) Z(T _P) 2 exp {_Zb]'("(,h(’l'))(’l' — S) ) T _P} sz
which after the substitution z = g—:z reduces to
[ (v — h(r))?
(s, T, z72(1+z) lexp{ — -z 5 dz,
Y O/ P{ 26, (, (D)) (T —3)
and thus, satisfies the inequality
(31)

IRi(s, T,y)] < C.
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Denote by L](21 ) the first term in the right hand side of equality (30) and by L](Z2 ) the second
one.

If we express, using the Lagrange formula, the difference of exponents in the square brack-
ets of the expression for Lj(zl) through the value of its derivative at the intermediate point
x =y —h(s) +0(h(s) — h(7)), and then take this derivative, we get

05,7y = 1 3
biz (o7) 2nb]-(r,h(r))D{ bi(T h(D)(T =3)
2

X

X exp {_ij(T,h(T))(T —5) } (h(T) — h(S))R]-(s, Tz]/),‘l/l(S,dy),

From this equality and estimate (31) and condition V it follows that
ILii(s,7)| < C(T —5)2. (32)
Then (31) implies

52
|L]'2(S,T)| S C <IM <S,D;Ss> —i—exp {—m}> ’ (33)

where D;-SS ={y € Djs: |y —h(s)| <}, ¢ is any positive number, B is the constant from I.
Combining (28)—(30), (32), (33), we conclude that

limL;(s, 7) = 0.
SlTr? i(s,7)

This completes the proof of (27).

With relation (27) in mind, we put the derivative under the integral sign in expression (26)
and then equate this expression to (24). After elementary simplifications, we get the system of
Volterra integral equations of the second kind, which is equivalent to (20)

2 t
Vils,t) = Y [ Kyls, Vim0t + ¥ils, ), 1=1,2 (34)
jzls

where

TZ‘(S, t) =V bi(S,h(S))EI\)Z'(S, t)/
KZ']'(S, ’l’) = \/%\/bi(s,h(s)) . %Ni]-(s, T).

The function ¥; in (34) satisfies inequality (25), but kernels Kj;(s, T) do not have the inte-

grable singularity. For K;;(s, T) we can only get the estimate
Kl-]-(s,r) gC(T—s)_l, 0<s<t<t<T. (35)

Estimate (35) is caused by the integral

/ 9Zjo(s,y, T, h(T)) u(s, dy), (36)

D5, %
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which is in the expression for the derivative of L;

sebie:0) = [ 0=973] [ Zn(p.0 e ento )
= [ Zitowm he)uts )| do
D,
7tbi (T, h(T)) 9Zjo(s,y, T, h(T))
_ u(s, dy)
2 <D]</§> dy
+ / 8Z]0 5, er h( >>Pl(5/d]/)>
R\D!"

All other components of the expression for K;;(s, T) admit inequalities the right hand sides of
which have the form C(8)(t — s)~1*2, where C() is a positive constant depending on 4.

Despite the fact that the kernels Kj;(s, T) do not have an integrable singularity, a solution
of system of equations (34) exists and can be found by the ordinary method of successive
approximations:

2\/ (s,t), 0<s<t<T,i=1,2, (37)

where

V(s 1) = ¥(s, 1),
2 1
Vs =Y [ Kyl v mdn, n=12,...
j=1

The convergence of series (37) is the consequence of the following inequality, which is
proved by induction according to the scheme applied in [9] in the study of system of equa-
tions (34) for the case when h = 0:

n
V(0| < Cllgli(t—5)72 Y Cha" P (m(a)), n=0,1,..., (38)
k=0

where

m(d) = m[(e)\ x t(s, DJ, U DS,) < 1 (for sufficiently small §).
s€|0,T

From inequality (38) it also follows that the function V;(s, t), i = 1,2, admits the estimate

Vi(s,t)| < Cllll(t—s)"2, 0<s<t<T. (39)
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Thus, we have constructed the solution u(s, x, t) of problem (2)—(7) of form (19), (37), which,

in view of estimates (12), (13), (17), (39), belongs to the class C1'2(St(1) U St(z)) N C(S;) and satis-
ties the inequality

lu(s, x, £)| < Cllg||(t —s)~2. (40)

The assertion on the uniqueness of the constructed solution of problem (2)—(7) follows from
the maximum principle [5].
The obtained result allows us to state the following theorem:

Theorem 1. Let the conditions I-V hold. Then problem (2)—(7) has a unique solution belonging

to C1'2(St(1) U St(z)) N C(S¢). Besides, this solution admits representation (19), (37) and estimate
(40).

2 CONSTRUCTION OF FELLER SEMIGROUP

Denote by Co(RR) the subspace of Cy(IR), which consists of all functions ¢ € Cp(R) for
which the condition (7) holds. Since the subspace Cy(IR) is closed in Cp(RR), it is a Banach
space.

We introduce the two-parameter family of linear operators Ts; : Co(R) — Cp(R), 0 < s <
t < T, by the following rule:

Tug(x) = uls, x,t, ), (41)

where u(s, x, t, @) is a solution of (2)—(7) with the function ¢ in (3).
Note that the operators Ts; have the following properties in Co(IR):

a) if a sequence of functions ¢, € Cy(RR) is such that sup || @] < oo and nlgn on(x) = ¢(x)
n [ee)

forall x € R, then lgn Tstpn(x) = Topp(x) forall0 <s <t < T, x € R;
n oo

b) the operators Ty are positivity preserving (0 < s < t < T), i.e, Typ > 0 for every
¢ € Co(R) such that ¢ > 0;

c) the operators Ts; are contractive (0 < s < t < T), i.e., they do not increase the norm of
the element;

d) Tst = Ts:Trt, 0 <s < T <t < T (the semigroup propery).

The proof of property a) is based on well known assertions of calculus on passage of the
limit under the summation and integral signs (here this concerns series (37) and integrals on
the right hand side of equality (19)). This property allows us to prove the next properties of
the operator family T;;, without loss of generality, under the assumption that the function ¢
has a compact support.

Let us prove property b). Let ¢ € Co(IR) be a nonnegative function with a compact support.
Denote by m the minimum of Ts+¢(x) in (s, x) € S;. If we assume that m < 0, then from the
minimum principle [5] it follows that the value m is attained only when s € (0,¢) and x = h(s).
Fix sp € (0,t) for which Ts:¢(h(sg)) = m. Then

10 Tarp(hlso) + [ [Tarph(s0) = Tarp ()]0, dy) <0,
Di5,UDag,
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which contradicts (5). The contradiction we arrived at indicates that m > 0, what had to be
proved.

The proof of property c) is similar to the proof of b).

The semigroup property of operators T is a consequence of the assertion on the
uniqueness of the solution of problem (2)—(7). Indeed, to find u(s, x,t) = Ts:¢(x), provided
limgy u(s, x, t) = ¢(x), one can solve the problem first in the time interval [, t], and then solve
it in the time interval [s, 7] with that “initial” function u(t, x, t) = Tr¢(x), which was obtained;
in other words, Tst¢(x) = Tsr(Ter)(x), @ € Co(R), or Tt = Tsr Ty

Properties a)-d) of operators Ts; imply the following assertion.

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter tamily of operators

Tst, 0 <s <t < T, detined by (41), describes the inhomogeneous Feller process on the line R,
which coincides in D1; and Dy with given diffusion processes generated by operators Lgl) and

ng) respectively, and its behavior at point x = h(s) is determined by conjugation condition (5).
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Kommrko B.1., Illesuyk P.B. Ipo nanisepyny Dexrnepa, nopodsceny poss’13kom HeloKaIbHOT napabo.niuHol
3adaui cnpaocenns // Kapnarcoki MaTem. my6a. — 2018. — T.10, Ne2. — C. 333-345.

Y cTaTTi pPO3rASIAAETHCS 3aAava 06y A0BY HamiBrpymm Meanrepa AAST OAHOBMMIPHOTO HEOAHOPI-
AHOTO AVY3iifHOTO IpoLiecy 3 MEMOPaHOIO, PO3TAIlIOBAHOIO B TOYLI, TIOAOXKEHHS SIKOI Ha UMCAOBIN
IIpsIMili BU3HAUAETHCST 38 AOTIOMOTOIO 3aAaHOI (pyHKIIIi, IITO 3aAeXUTh Bia dacoBoi 3miHHOI. [Tpn 11h0-
My HIPMITy CKa€ThCSI, II0 Y BHYTPIIIHiX TOUKaX MBIPSIMIX, PO3AIAEHMX MiX cO60I0 MeMOpaHOIo, ITy-
KaHMIA ITpollec Mae 36iraTumcs i3 3apraHMMM TaM 3BUMYAHMMY AMY3iHMMM IpoliecaMi, a Joro Imo-
BeAiHKa Ha CIIABHIN MeXi IMX 06AacTell BU3HAYAETHCS 3aAaHOK HEAOKAABHOIO YMOBOIO CITPSIKEHHST
Ty Qearepa-BenTiieas. AaHy 3aaauy Ile Ha3MBaIOTh 3aAa4e€l0 IIPO CKACIOBAHHS ABOX AUy 3iiHIX
MpoIeciB Ha OpSIMilL.

3 MeTOr0 BUBYEHHS CPOPMYABOBaHOI IpobAeMM B pobOTi 3acTocoBaHO aHaAiTiaHi MeToam. Ta-
KM MiAXiA AO3BOASIE BU3HAUWNTH LIIyKaHy CiM IO OIIepaTopiB 3 AOTIOMOIOI0 PO3B’SI3Ky BiATIOBiAHOI 3a-
Aaui CIIpsIKeHHST AAST AiHITHOTO ITapaboAIYHOTO piBHSIHHSI APYTOTO IOPSIAKY (0bepHEHOTO PiBHSHHS
Koamoroposa) 3 pospusHuMu koedpirtiearamu. Lleit po3s’si30k mo6yA0BaHO METOAOM I'PaHNIHNX iH-
TerpaAbHMX PiBHSHD 3a MPUITYIIeHHs], IO KoedpillieHTV piBHSIHHS 3aA0BOABHSIIOTH YMOBY I'eAbaepa
3 HEHyABOBUM TTOKA3HMKOM, TI0UaTKOBa (PYHKIIisI € 06MeXeHOIO 1 HellepepBHOIO Ha BCill UMCAOBIN
MpsIMil, a TapaMeTpy, sIKi XapakKTepu3yIoTh YMOBY clpsikeHHs Deanepa-BeHTreas Ta Kpusa, 110
BU3HAYaE CHiABHY MeXy obAacTeli, Ae 3apaHe PiBHSHHS, 3aA0BOABHSIIOTH YMOBY I'eAbaepa 3 moka-

3HUKOM OIABIIIM, HiX %

Kntouosi croea i ¢ppasu: Hamisrpyma deanepa, AndysiltEmit mpollec, mapaboaiuHa 3apava CIpsi-
KeHHSI.
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ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE RANDOM
PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an a-
stable random process (with 1 < a < 2) and some processes related to it are investigated. We
consider an a-stable process is killed with some intensity on the hyperplane and a pseudo-process
that is formed from the a-stable process using its perturbation by a fractional derivative operator
with a multiplier like a delta-function on the hyperplane. In each of these cases, the limit distri-
bution of the crossing number of the hyperplane by some discret approximation of the process is
related to the distribution of its local time on this hyperplane. Integral equations for characteristic
functions of these distributions are constructed. Unique bounded solutions of these equations can
be constructed by the method of successive approximations.

Key words and phrases: «-stable process, local time, pseudo-process.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
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INTRODUCTION

Let (x(t), M;,Py) denote a standard Markov process on R? (4 > 1). Consider a fixed
hyperplane S = {x € R?: (x,v) = r}, in R? and two open sets

D ={xeR%:(x,v)<r}, D,={xeR%:(x,v)>r},

where v € R? is a given unit vector and 7 € R is a given constant.

Our goal is to describe a changes number of the sets D_ and D before a fixed time t > 0
by the trajectories of the process (x(t));>0 started at fixed point x € R%.

Consider for m, n € IN the random variable

=B (o (5) ()

where v(x,y) = Ip_(x)1p, (v) + Ip, (x)Ip_(y).

The variable ¢ [(:t)] equals to the number of crossings of the hyperplane S by the ordered set
of points in R%: x(0), x(1/n),...,x([nt]/n).

We are going to find out a sequence of normalizing multipliers {c,, : n > 1} such that the
limit distribution of the sequence {cng[(,’j}] : n > 1} exists and to describe it. It is obvious that
¢y, — 0,asn — oo,

The limit theorems of this type were initiated by I. I. Gikhman in connection with some
problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional
Markov chains approaching a diffusion process with smooth local characteristics (see [1,2]).

YAK 519.21
2010 Mathematics Subject Classification: 60G17, 60G52.
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1 SOME AUXILIARY RESULTS

We will use the following corollary of one A. V. Skorokhod’s theorem (see [3, Th. 1]).

Lemma 1. A [imit distribution of the sequence of random variables c;,¢ [(:t)} exists if and only if

(n)

a limit distribution exists for the variables Crtlg)s where

) _ ,év" (x <§)) . oa(x) = Exo (x(O),x G)) ,

and these limit distributions coincide, if only they exist.

(n)

So, we will consider the random variables Cnll ]
For any fixed t > 0, x € R?, n € N we consider the characteristic function
un(t,x,0) = Exexp {i(?cn;y[(:t)}} , 0€eER,
of the random variable Cnﬂ[(:t)}.
The next equation for the function uy(t, x, 6)

[nt]/ , -
un(t,x,e) - 1 +n/0n ndT /]Rd <1 — e_ZGCnUﬂ(y)) un(T’yle)g <M,x/y> dy (1)

follows from the identity exp {}_}" ;ax} = 1+ Y1, (1 —e %) exp {Z}”:k a]-} , that holds true
for each set of complex numbers a1, ay, ..., a, and each natural number m. Here the function
(8(t,%,Y))t>0,xere yere denotes the transition probability density of the process (x(t))>o-

If the transition probability density of the process (x(t));>0 is given by the equality

gt x,y) = (2m) /w exp{i(A,y — x) — ctA[*}dA, t>0, x € R yeRY,

for fixed parameters ¢ > 0 and a« € (1,2], then the process (x(t))¢>o is called rotationally
invariant a-stable random process. If & = 2, this process is the Brownian motion. In this case,
our problems have been addressed in many publications (see, for example, [4,5] and others).
Therefore, we will not consider this case. So, we will further assume that 1 < a < 2, although
most of our results remain correct also for a« = 2.

Consider the function f(t,x) = fot dt [4 (7, x,y) doy. It is a W-function for the process
(x(t))>0 satisfying the inequality f(t,x) < N-4:+171/% So, there exists a W-functional ()0
of the process (x(t))¢>o such that El; = f(t, x) (see [8, Th. 6.6]). This functional is called the
local time on S for the process (x(t))¢>o.

Using the following representation of the functional (I;);>0:

Iy = hli%Br dT / g(h, x(7),y) doy in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random
value Iy, that is v(t, x,0) = E, exp{ifl; }, satisfies the following equation

v(t, x,0) —1—{—16/ clr/g —7,x,y)0(t,y,0) do,. (2)
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2 THE MAIN RESULTS

The first statement concerns to the rotationally invariant a-stable random process.

Theorem 1. The limit distribution with respect to the measure IP, of the random variables

sequence n~1+1/ “g(:t)] for fixed t > 0 and x € R? has the characteristic function (u(t, x,0))gcr,
which is the unique bounded solution of the integral equation

u(t,x,0) —1+1%9/d1'/g —7,x,y)u(t,y,0)doy,

where » = ZC [t I'(1 —1/w). This distribution coincides with the distribution of the multiplied
by s local t1me on the hyperplane S of the process (x(t))>0.

Next, let a continuous bounded function (7(x)),cs with non-negative values be given. Con-
sider the function (G(¢, x, y))t>0,xe]Rd,y€1Rd which is a solution of to each one of the following
equations

G(t,x,y) =g(tx,y) / dr/g —1,%,2)G(7,2,y)r(z) do,
G(t,x,y) =g(t x,y) / dr/ G(t—1,x,2)8(7,2z,y)r(z) do.

The function G is the transition probability density of the process (x(f));>o killed on the hy-
perplane S at some stopping time { (see [6]). The function (r(x))yeg is the killing intensity of
the process (x(t));>o. It is clear that

P,({C > t}) = / (txy)dyzl—/dT/ery) r(y) doy.

Theorem 2. The limit distribution with respect to the measure IP, of the random variables

sequence n~1+1/ "‘@f:t)] for fixed t > 0 and x € R? has the characteristic function (u(t, x,0))gcR,
which is the unique bounded solution of the integral equation

t
u(t,x,0) =1 —I—i%H/ dT/ G(t—t,xy)u(t,y,0)doy,
0 S

where »x = ZCW I'(1 —1/wa). It is the distribution of the multiplied by s local time on the
hyperplane S for the process (x(t));>o killed at the stopping time (.

And the last, let a continuous bounded function (g(x))yes be given. Introduce an operator
B, determined by its symbol (i|G|*~*(§, 2¢v)) zca- Define the function (G(t, x, Y))i>0xeRY yeRd
by the following formula

G(t,x,y) =gt x,y) + /Ot dr/sg(t —7,%,2)Byg(7, -, y)(2)q(z) do.

This function is “a transition probability density” of some pseudo-process with a mem-
brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in the
following form: A + g(x)ds(x)B,, where A is the generator of the process (x(t));>o (that is a
pseudo-differential operator whose symbol is given by the function (—c|¢|*)zcRa)-
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Consider the function (u(t, x,0));>( yere gcr defined by the equality

u(t,x,0) = ;1152‘0 I, exp {ien—lﬂ/aq[(:t” def

[1t] 1
Jim /Rd /]RdHeXP 19” /e (xk)} G <Erxk1/xk> dxy,

n

where xy = x and 9, (x) = E,v <x(0),x <l>) L Jriv(x, )G (%,x,y) dy. This function is
“the characteristic function” of the the random variables sequence n~1+1/4¢ [(:t)] limit “distribu-

tion” for fixed ¢t > 0 and x € R¥.
Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary
random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t,x,6))gcRr for fixed t > 0 and x € R? is the unique bounded
solution of the integral equation

u(t,x,0) —1+1%9/ dT/g —7,%,9)u(t,y,0)(1 — g*(y)) doy,

where » = #F(l —1/a).

3 PROOF OF THE MAIN RESULTS

The proofs of these results are executed according to the same scheme. Consider the first
result (i.e. it is for the rotationally invariant a-stable random process).

First of all, one can prove two technical lemmas. The first one prompts us that we must
choose ¢, = n~1*1/% And the second one allows to pass from equation (1) to some simpler
one.

Lemma 2. Let the real-valued function (¢(x)),.ge be such that sup fs |@(x)|do < oo, where
p€ER

Sy, = {x € R?: (x,v) = p}, and there exist the nontangentional limits ¢(x—) and ¢(x+) from
the side of D_ and D in each pointx € S.

Then the following relation (with » = Ey|(x(1),v)| = 2"1/“ r(1—1/a))

limnl// n(x) dx—%/q) +(Py+>d(7

n—oo

holds true. In addition, the inequality [n'/% [, 04 (x)@(x) dx| < % sup fsp |@(x)| do is fulfilled.
peR

Let a measurable function (§(t,x));>0cgre be such that  sup  [i(t, x)| < oo for any
B t€[0,T],xeR?
T > 0. Consider its transformation ¥, for n € IN given by

tx—n /dr/ on(y )g(t — T, x,y)dy, t>0, x e R
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Lemma 3. For given numberse > 0, L > 0, T > 0, there exists a number 6 > 0 such that the

inequality ¥, (¢, x') — ¥, (t,x)| < eisheld forallt € [0,T],t € [0,T], x € R, ¥’ € R, n € N

and all measurable functions { with the property ~ sup  |(t, x)| < L if only the inequality
te[0,T],xeR4

|t —t'| + |x — x| < ¢ is fulfilled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the character-

istic function u,(t, x,0) of n —1+1/ ”‘17[( )] and solutions of the following equation

t
uy(t,x,0) =1+ ienl/”‘/o dat /N vn(y)uy, (T,y,0)8(t —T,x,y) dy

satisfy the relation lim, e sup sup sup |un(t,x,0)—u}(t,x,0)| =0forany T > 0,6, € R
x€RA 0<t<T 61 <0<6,
(k=1,2),0, < 6,.
As the corollary of Lemma 2 one can say that the characteristic function (u(t,x,0))gcRr (¢
and x are fixed) of the limit distribution with respect to the measure [P, for the sequence of the

random variables n~ 11/ "‘g’,‘ (and n= 11/ "‘17[(:2} also) satisfies the following equation
t
u(t,x,0) =1+ iG%/ dT/g(t —7,x,y)u(t,y,0)doy. (3)
0 S

A solution of equation (3) can be constructed by the method of successive approxima-
tions, that is we have u(t, x,0) = Y5  u®)(t, x,0)(i0)*, where ul®(t,x,0) = 1, u®)(t, x,0) =

fydrt [t — 7, x,y)u*V(z,y,6) do.

This follows from the estimation |u(¥)(t,x,0)| < Ck r((rl(fiis) tkf, getting by the induction,
where C > 0 is some constant, =1 —1/a.
The solution of equation (3) is unique in the class of bounded functions, because the differ-

ence between each two solutions of equation (3) satisfies the following equation

w(t,x,0) 19%/ dr/g —7,x,y)w(t,y,0)do,

(COT(B)* 1k
Wt p for each k € IN.

Comparing equations (3) and (2) we get that the distribution of sI/; and the limit distribu-

and we have inequalities |w(t, x,0)| <

tion of n—1+1/4¢g [(:t)] (with respect to the measure IPy) are equal.
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AOCAiAXKeHO UrcAa ITepeTHHIB IilepIIAOIIMHNA AVCKPeTHUMM HabAVKeHHSIMI TPaeKTOpilt a-CTilt-
KOro BUMaaxoBoro mpomnecy (1 < a < 2) Ta AesKMX IIOB'SI3aHMX 3 HMM NpoLeciB. Po3rasaaroThes
X-CTiVIKVIA BUIIAAKOBMIA IIpOLleC 3 YOMBAHHSIM 3 AQHOKO iHTEHCHBHICTIO Ha TilepILAOIIVHI Ta IICeB-
AOHPOIIeC, YTBOPEHMIA 3 A-CTiIKOTO BMITAAKOBOTO IIpOIIeCy 36ypeHHsIM J0ro oIepaTopoM ApoboBoi
TIOXiAHOI 3 MHOXKHIKOM TUITY AeAbTa-(pYHKIIII Ha rinepnaommyHi. B KoXXHOMY 3 IMX BUIIAAKiB rpaHu-
YHMIA PO3MOALA KiABKOCTI IIepeTHHIB riepIIAOIIMHN A€SIKOI AVICKPETHOIO aIllpOKCHMAIIi€lo poIecy
TIOB’SI3aHMI 3 PO3MOAIAOM JIOTO AOKAABHOTO Uacy Ha Iilf rimepriromyHi. [TobyaoBaHi iHTerpaabHi
PIBHSIHHSI AASI XapaKTePUCTUYHMX (PYHKIIII IIMX PO3MOAIAiB. EAVHI 06MeXXeHi po3B’sI3KY IMX PiB-
HSTHb MOXHa OAep KaTi METOAOM ITOCAIAOBHVIX HaOAVKEHb.

Kntouosi cnosa i hppasu: x-cTabirbHMIL IpOIIeC, AOKAABHIIA Yac, ICeBAO-IIPOIIeC.
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ON THE SIMILARITY OF MATRICES AB AND BA OVER A FIELD

Let A and B be n-by-n matrices over a field. The study of the relationship between the products of
matrices AB and BA has a long history. It is well-known that AB and BA have equal characteristic
polynomials (and, therefore, eigenvalues, traces, etc.). One beautiful result was obtained by H.
Flanders in 1951. He determined the relationship between the elementary divisors of AB and BA,
which can be treated as a criterion when two matrices C and D can be realized as C = AB and
D = BA. If one of the matrices (A or B) is invertible, then the matrices AB and BA are similar.
If both A and B are singular then matrices AB and BA are not always similar. We give conditions
under which matrices AB and BA are similar. The rank of matrices plays an important role in these
investigations.

Key words and phrases: matrix, similarity, rank.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: v.prokip@gmail.com

1 INTRODUCTION

Let F be a field and let M, ,(F) denote the set of m-by-n matrices with entries from F. In
what follows, GL(n,F) the group of nonsingular matrices in M, ,(F), I is the identity k x k
matrix, and 0y, ,, is the zero m x n matrix.

Let A, B € M,,,(F). It is well known that the characteristic polynomials of AB and BA are
the same (see, for example, [6,9, 10,14]). If one of the matrices (A or B) is invertible, then the
matrices AB and BA are similar. If both A and B are singular then matrices AB and BA are
not always similar (see [6, Sec. 1.3]). It is clear that matrices AB and BA are similar if and only
if the matrix polynomials [,A — AB and I;A — BA are equivalent. It is evident, if matrices A
and B commute then AB and BA are similar.

Let A € My n,(F) and B € M,,,(F). In paper [3], H. Flanders solved the problem of de-
termining the relationship between the elementary divisors of AB and those of BA. Another
proof of Flanders’ theorem, with some generalizations, has been given in [11] (see also [1]).
Robert C. Thompson [13] proposed a new proof of Flanders’ theorem. It is obvious that some
connection exists between the ranks of A and B and the intertwining of the elementary divi-
sors of AB and BA. A constructive proof of Flanders’ theorem was also given in [7]. Using the
Weyr characteristic the relationship between the Jordan forms of the matrix products AB and
BA for matrices A and B was given in [8]. Robert E. Hartwig [5] generalizes Flanders’ result for
matrices over a regular strongly-pi-regular ring. It will be observed that an extension of these
results to rings would be valuable and interesting. The rank conditions under which matrices
AB and BA are similar were proposed in [2,3,13].

Suppose that A and B are complex n x n matrices. The matrix AB is similar to BA if and
only if rank (AB)/ = rank (BA)/ for each j = 1,2,...,n (see [6, Sec. 3]). If A is positive
semidefinite matrix and B is normal matrix, in [4] it has been proved that AB and BA are

YAK 512.643
2010 Mathematics Subject Classification: 15A04, 15A21.
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similar. The smallest nonnegative integer k such that rank A**1 = rank A, is the index for A
and denoted by Ind(A). In [8] was proved that matrices AB and BA are similar if and only if
Ind(AB) = Ind(BA) = k and rank (AB)’ = rank (BA) foralli =1,2,...,k— 1.

In this note we investigate the following widely known question: Let A, B € M, ,(F). When
are matrices AB and BA similar? We give conditions in terms of rank matrices, under which
matrices AB and BA are similar. If matrices AB and BA are similar we give their canonical
form with respect to similarity.

2  MAIN RESULTS

Let A,B € M,,,(F) be singular matrices and let rank A = r. We introduce the following
notation for the matrices A and B. For A there exist matrices U, V € GL(n,F) such that

Ly Or,n—r }

On—r,r On—r,n—r

UAV = [

By1 By

Put V-1BU! =
{321 B2

} , where By; € M, ,(F). Itis easy to make sure that

UABU ' =C = [ Bu Bz ] (1)

On—r,r On—r,n—r

and

(2)

V1BAV =D = { B Ornr ] .

By Onfr,nfr

We will use these notations to give the characterization of similarity of matrices AB and
BA. Thus, AB and BA are similar if and only if the polynomial matrices I[,A — C and I,A — D
are equivalent, i.e. the Smith normal forms of these polynomial matrices are coincide.

In view of the above, we give the following description of similarity of the matrices AB and
BA.

Theorem 1. Let A, B € M, ,,(F) be singular matrices. If

(a) rank By; = rank [ Bu ] =rank [ By1 By |, or

By
(b) Bi1 =0,, and rank By} = rank By, or

Byq Bip

c) the matrix | !
() |: B2 On—r,n—r

] is symmetric,

then matrices AB and BA are similar.

Proof. (a) Since rank By = rank { gn } =rank [ By; By |, then the equations XBy; = By
21

and B11Y = By are solvable. Let matrices X; € My,—,,(F) and Y; € M, ,,—,(F) be the solutions
to these equations respectively.

I Orn—r
-X1 I

Tl [ Bll Or,n—r ] Tfl — { Bll Or,n—r

For matrix Ty = [ ] we have

By Onfr,nfr Onfr,r Onfr,nfr
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Ir _Yl

Similarly, for matrix T, = { ] we have

T‘l{ By1 Byo ]Tz—{ Bi1 Oru—r ]
5 = .

On—rr On—rn—r On—rr On—rn—r
Hence, matrices { Ofli,r OnBrl;r } and [ g; Ogr’::r ] are similar. Thus, AB and BA are
similar.
(b) Let By = 0y and rank By; = rank Bjp = s. For By; there exist matrices U; € GL(r, F)
and V; € GL(n — r,F) such that

Osmor—s 1
ulBlzvl — |: S,N—r—= S :| .

Orfs,nfrfs Orfs,s

Thus, for the matrix T7 = diag (Ul, Vlfl) we have

Tl [ Or,r BlZ ] Tl_l _ |: Os,nfs Is :| )

On—r,r On—r,n—r On—s,n—s On—s,s

Similarly, for matrix By there exist U, € GL(n — r,F) and V, € GL(r, F) such that

On—r—ss On—r—sr—
UB1pVp = [ n I’S 5,8 ”OS’:'S’ S]

and for the matrix T, = diag (Vz_l, Uz) we have

Or,r B12 } T{l — [ On—s,s On—s,n—s ] )

L [ I Ospes

On—rr On—rn—r

It is obvious that matrices Or,r Bz and Oy Ornr are similar. Thus, AB
Onfr,r Onfr,nfr By Onfr,nfr

and BA are similar.

(c) Matrix{ Bn Bz

Onfr,r Onfr,nfr

By B

T
are similar.
Onfr,r Onr,nr:|

} and its transpose {

Hence, we have

T
B11 B12 . Bfl Or,nfr . B11 Or,n—r
B{z On—r,n—r By On—r,n—r .

On—rr On—rn—r

Thus, matrices AB and BA are similar. The proof of Theorem 1 is complete. ]
From Theorem 1 we have the following statement.

Corollary 1. Let A, B € M, ,(F) be singular matrices. If det Bj; # 0 then matrices AB and BA
are similar.

Consider the following example.
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Example. Let F = Q be the field of rational numbers and let

7 =3 —-11 9 —-23 —18 -2 16
5 -2 -10 8 —55 —43 -5 38
A=l _12 5 21 —17| ™4 B=1 5 5 _4 48
12 -5 —-16 13 —80 —64 -5 59
be matrices over Q. For nonsingular matrices
0o 1 11 32 12
-1 0 11 75 25
U=1_41 1 01| @ V=100 9 4
-1 -1 -1 0 0 0 11 5
over Q we have
1000
101 00| | Iz 03
uAv = 0010 [03,1 0 }
0000
and
01 21| [Bu B 000
v iBU ! = = 2120 whereByy= | 0 1 2
01 3|1 B>y Bx» 01 3
0122

By
By
matrices AB and BA are similar to the matrix Bq7.

Lemma 1. Let A, B € M,,,(F) be singular matrices. If rank AB = rank BA = 1, then AB and
BA are similar.

Thus, rank By; = rank { = rank [ B11 Biz ] = 2. By statement (a) of Theorem 1

To prove the Lemma we need the following proposition (see also Chapter 2 in [6] and
Theorem 1 in [12]).

Proposition 1. Let C € M, ,(F) be a matrix of rank one and tr C = c¢. The matrix C is similar

to one of the matrices
Dy = diag(c,0,...,0) ifc#0

. 01 ,
Dz—dlag<[00],0, eee, 0)11‘0—0.
Proof. The proof of the Proposition is algorithmic. The matrix C we write in the form C =p -7,

where p € M,,1(F) and 7 € M; ,,(F). For the vector p there exists a matrix P € GL(n, F) such
thatP-p=[1 0 ... 0] T Then C is similar to a matrix of the form

PCP*l — Py - —Pfl =C = |: X11 ‘ X12 R X1p . 3
p-q ! Onfl,l ‘ Onfl,nfl ( )
It is clear that w17 = c is a trace of the matrix C.
1 |0p1
__ %12
Suppose, ¢ # 0. For the matrix T; = S € GL(n,F) we have

n—1

Xn

Cc
T, 'CiTy = diag(c, 0, ...,0) = Dy.
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Thus, if tr C = ¢ # 0, then matrices C and D; are similar.
Let tr C = 0. From equality (3) it follows

0 ‘ X12 cen X1n ]
C = .
! [ On_l,l ‘ On_l,n—l

For elements {ap, 13, ..., ay,} there exists a matrix Ty € GL(n — 1,F) such that
[ X1, ®13, ..., Qp } Ty = [ 10 ... 0 } . Thus, for the matrix

1 |0y
T, — ,
2 { 0u-11] To

] € GL(n,F)

we have
1 ) 01
T, “CiT; = diag 00| 0, ..., 0 ) =Ds.

Since tr C = 0, matrices C and D; are similar. This completes the proof of the Proposition.
O

Proof. Let A, B € M, ,,(F) be singular matrices and
rank AB = rank BA = 1.

Suppose rank B > rank A = r. Matrix AB is similar to the matrix

C:{ By Bip ],

On—rr On—rn—r

where Bj1 € M, ,(F) (see equalities (1) and (2)). Similarly BA is similar to the matrix

B Orn—r
D= ’ .
{ Bxn On—r,n—r }

Thus, tr AB = tr BA = tr By;. Put tr B;; = c.

Suppose ¢ # 0. By Proposition 1 matrices AB and BA are similar to the matrix
D, = diag(c, 0, ...,0).

If ¢ = 0 then by Proposition matrices AB and BA are similar to the matrix

D, = diag ( [ 8 (1) ] , 0 ..., 0 ) , which completes the proof of the Lemma. O

Corollary 2. Let A,B € M, (F) be singular matrices and rank A = 1. If AB # 0,, and
BA # 0, then AB and BA are similar.

Corollary 3. Let A,B € My, (F). If AB # 0,2 and BA # 0, then AB and BA are similar.
Theorem 2. Let A,B € M, ,(F) and let rank A = 2. If rank AB = rank BA then AB and BA

are similar.

Proof. 1If rank AB = rank BA = 1 then by Lemma 1 matrices AB and BA are similar. Sup-
Bu B12

pose rank AB = rank BA = 2. Matrix AB is similar to the matrix C = ,
On—22 Op—2n—2
where By € Mj(F) (see equalities (1) and (2)). Similarly, BA is similar to the matrix

Bi1n  O2n—2 ] { B11 ]
D= ’ . Thus, rank —rank | By; B = 2.
[ Bo1 0p—2n—2 By [ B Buo |
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If By; = 0 or det By; # 0 then by Theorem 1b or Corollary 1 respectively matrices AB and
BA are similar. Let rank By; = 1 and let tr By; # 0. For By; there exists a matrix Uy; € GL(2,F)
such that

_ « 0
Uy By Uy = [ 0 0 }

where a = tr By1. For the matrix T1; = [ U 022 ] we have
Opn—22 In-2
a 0 E
TCT;'=Cn=| 00 .

0n—21 | On—2n—1

where By = By u; ! Ttis evident that rank Cj; = 2. Itis easy to make sure that if n = 3 then
Bio=[cis ¢ ]T and co3 # 0. For By, the exists a matrix Uy, € GL(n — 2, F) such that

~ xp 0 ... ... 0
Blzulz:[ol 1 0 .. o]'

Thus, for the matrix Ty, = { 0 1222 O%J’" -2 ] we have
n—2, 12

o« 0 a9 O 0
T1_21C11T12 = C12 = 00 0 1 2n—4
On—24 On—2,n-4
[« 00 0
It is obvious that matrix Cy, is similar to the matrix Ci3 = 0 01 2n=3
0n—24 |On—2n-3

BL BL
ourselves that the matrix 1 21

is similar to the matrix C;3. Thus, in the case
Onfr,r Onfr,nfr

when tr By # 0, matrices C and D are similar.

It may be noted that matrices D and DT are similar. Reasoning similarly we convince

Let us now consider the case when rank B;; = 1 and tr By; = 0. For By; there exists a matrix
V11 € GL(2,F) such that

B 01
Vi BV = { ] .

00
For the matrix S;; = [ 0V1;2 012'”22 ] we have
n—2, n—
» 00| B ; "
SllCSH = C21 = 00 s where BlZ = Blzvll .
04—21 | Op—2n—1

Obviously that rank Co; = 2. We note, if n = 3 then By, = [c13 3 ]T and cp3 # 0
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For By, the exists a matrix Vi, € GL(n — 2, F) such that

= 0O ... ... 0
B2z = H}l 1 0 .. o]'
Thus, for the matrix S1, = [ L Ona ] we have
Op—22 V12
018 O 0
51_21C21512 =Cyp = 00 0 1 2n—4
024 | On—2u—sa
010 0
It is evident that matrix Cy; is similar to the matrix Co3 = 001 2n—3
0p—24 |0u—2n-3
BT BL,

Reasoning similarly, we can prove that matrix [ 1 ] is similar to the matrix

Onfr,r Onfr,nfr

Csy3. Thus in the case when tr By = 0 matrices C and D are similar.
So, we have that matrices AB and BA are similar and the proof of Theorem 2 is complete.
O

From Theorem 2 we have the following statement.

Corollary 4. Let A, B € M33(F). If rank AB = rank BA then matrices AB and BA are similar.
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Hexait A i B—n X n MaTpuii Haa oAeM. BuBueHHsI 3B’s13kiB Mix Aob6yTkamy MaTpurb AB i BA
Mae€ AaBHIO icTopilo. 3araAbHOBiAOMO, 110 MaTpuli AB Ta BA MaloThb OAHAKOBi XapaKTepUCTUUHI
MHOTOUA€HM (OTKe, BAACHI 3HaUeHHsI, CAiay Tomlo). OAMH BaroMmii pe3yAbTar 6yB oTpyManHii X.
®daanapepcom y 1951 pouwi. Bin BKas3as 3B'130K MiX eaeMeHTapHMMM AiabHMKaMu AB ta BA, sxuii
MO>Ha PO3TASAATH K KpuUTepiit, koan ABi Matpuii C i D MoXyTh 6yTi 306paxkeHi y BUTASIAL A0-
byrkiB C = ABi D = BA. fIxmo oaHa 3 maTpuiib (A abo B) € HeocobamBoIo, TO Marpuii AB i
BA moaibHi. SIkmo x A i B ocobamsi MaTpuri, To maTpurii AB i BA He 3aBXAM moAi6Hi. B crarTi
HaBeAeHO YMOBY, 3a sSIKmx MaTputli AB i BA moaibHi. [TIOHATTS paHTy Biairpae BaXXAMBY POAb Y IMX
AOCAIAKEHHSIX.

Kntouosi cnosa i ¢ppasu: MaTpuils, MOAiGHICTD, paHT.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2018, 10 (2), 360-375 KapmaTcbki MmaTem. my6a. 2018, T.10, Ne2, C.360-375
doi:10.15330/cmp.10.2.360-375

(L)

SIDOROV M. V.

GREEN-RVACHEV’S QUASI-FUNCTION METHOD FOR CONSTRUCTING
TWO-SIDED APPROXIMATIONS TO POSITIVE SOLUTION OF NONLINEAR
BOUNDARY VALUE PROBLEMS

A homogeneous Dirichlet problem for a semilinear elliptic equations with the Laplace operator
and Helmholtz operator is investigated. To construct the two-sided approximations to a positive
solution of this boundary value problem the transition to an equivalent nonlinear integral equation
(with the help of the Green-Rvachev’s quasi-function) with its subsequent analysis by methods of
the theory of semi-ordered spaces is used. The work and efficiency of the developed method are
demonstrated by a computational experiment for a test problem with exponential nonlinearity.

Key words and phrases: positive solution, semilinear elliptic boundary value problem, heterotone
operator, two-sided approach, Green-Rvachev’s quasi-function.

Kharkiv National University of Radio Electronics, 14 Nauki ave., 61166, Kharkiv, Ukraine
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INTRODUCTION

Let us consider the problem of finding a positive solution of a semilinear elliptic equation
with a homogeneous Dirichlet condition:

Lu = f(x,u), xe€Q, (1)

u(x) >0, xeQ, (2)

ulgn =0, (3)

where £u = —Au or £u = —Au + «%u, Q) is a bounded Jordan-measurable domain from R? or

R3 with piecewise smooth boundary 0() () =QuUaIN), Ais the Laplace operator, x = (x1, x2),
A= aa—%%—aa—%,ifﬂ C R?,and x = (x1,%2,x3), A = aa—%—i-%—i—%,ifﬁ C R5.

Let us assume that the function f(x, ) is continuous and positive for x € Q, u > 0.

The problem (1)-(3) is often encountered in the mathematical modeling of nonlinear sta-
tionary processes considered in thermophysics, electromagnetism, biology, chemical kinetics,
etc. [11]. In this case, the condition of positivity (2) naturally arises from the meaning of the
function u in a particular applied field. It is convenient to carry out the analysis of the problem
by the methods of the theory of nonlinear operators in semi-ordered spaces [1,5,9, 10], pass-
ing to the equivalent Hammerstein integral equation with the help of the Green’s functions
method. In this case, it is possible to construct a two-sided iteration process to the desired
solution [4, 14]. But, the practical application of this approach has certain limitations due to

YAK 517.988 : 519.632
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the fact that the analytic expression of the Green’s function must be known. It is possible to
get rid of this restriction, if the corresponding Green-Rvachev’s quasi-function [12, 14] will be
used instead of Green’s function.

The purpose of the paper is to develop the iterative methods for solving the boundary
value problem (1)—(3), which have a two-sided nature of convergence to the desired solution
and are not tied to the presence of a known Green'’s function. Two-sided approximate methods
for solving nonlinear operator equations based on the theory of nonlinear operators in semi-
ordered spaces were developed in [3, 6, 13, etc.]. This paper continues the research begun
in [4,14], and extends them to the areas of arbitrary geometry and elliptic equations with the
Helmbholtz operator.

1 CONSTRUCTION OF AN EQUIVALENT INTEGRAL EQUATION

To construct an integral equation that is equivalent to the problem (1)-(3), let us use the
Green-Rvachev’s quasi-function [12, 14].

Let the boundary 9} of the domain Q) consists of a finite number of pieces of lines 0;(x) = 0,
i = 1,2,...,r, where each 0;(x) is an elementary function. Then with the help of the R-
functions method [12] one can construct in the form of a single analytic expression an ele-
mentary function w(x), which describes the geometry of the domain (), that is:

a) w(x) > 0in
b) w(x) = 0ondQ);
¢) |Vw(x)| # 0 onoQ.

Also, the function w(x) can have certain properties of differentiation due to the use of
various sufficiently complete systems of R-functions [12].

Definition 1. Let g,,(r) be a fundamental solution of the equation £u = 0 in R™. The Green-
Rvachev’s quasi-function of the first boundary value problem for the operator £ in R™ is the
function

Qu(x,8) = gm(r) — gm(x,s), 4)
wherex = (x1,...,%m),8 = (51,.-.,5m), r = |x — 8| = f (x; —sz-)z,
i=1

Gn(x,8) = gm <\/r2 + 4w(x)w(s)> ,
w(x) is the function that describes the geometry of the domain Q).

Let us note [12] that for the case when £u = —Au, Q) is a ball of radius R in R™, and
w(x) = 5x(R?—x2 — - — x2)), the Green-Rvachev’s quasi-function (4) turns into the exact
Green’s function of the first boundary value problem for the Laplace operator considered in a
ball Q).

The fundamental solutions of the Laplace equation —Au = 0 in IR?> and R® have the form

1.1 1 1
;/

(r) = Eln;' g3(r) = i
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consequently, the Green-Rvachev’s quasi-function of the first boundary value problem for the
operator —A acquires the form

Qa(x,8) = iln\/uwinu@, (5)

27T r2

1 2 +4w(x)w(s) —r .
Qalos) = g \iwz +4(w)(x)(w)(s) in R ©

For the Helmholtz equation —Au + x?u = 0 in R? and IR? the fundamental solutions have

the form
1 —Kr

1
(r) = EKO(KV)/ g3(r) = Pl

where Ky(z) is modified Bessel function of the second kind, and the Green-Rvachev’s quasi-
function of the first boundary value problem for the operator —A + k2 acquires the form

Qa(x5) = 51 (Kalwn) = Ko (/2 + dw(io(s) ) ) in 2, %

2 —KT =K/ P24+ 4w(x)w(s)
Qs(x8) = 1 V12 + 4w (x)w(s)e re RS, ®)
4r /12 +4w(x)w(s)
From (5)—(8) and Definition 1 the following lemma on the properties of the Green-Rvachev’s
quasi-function follows.

Lemma 1. The Green-Rvachev’s quasi-function (4) has the following properties:
a) Qm(x,s) =0 onaQy,
b) is a symmetric function: Qu(x,s) = Qm(s, x);
¢) has the same feature for x = s as the usual Green’s function;
d) is positive in the domain Q: Q,,(x,s) > 0,x,s € (), x # s.

For the function u € C2(Q) (N C}(Q)) such that £u € Ly(Q), the following integral repre-
sentation [7,8] holds:

1u(x) :/

o0

ou(s)

ong

g(x,s)

ong

_ u(s)ag(x,s)} dso + /g(x,s)ilsu(s)ds, xe O, 9)
Q

and for the functions u, § € C2(Q)) the second Green'’s formula [7]

- - 04 (s _, . ou(s
0= —/[g(s)Ssu(s) —u(s)Ssg(s)]ds+/ u(s)8L8) _ 5y2u8) 14, (10)

ong ong

(@) Q)
holds.
In formulas (9), (10) ng is the outer to d() normal in the variables s, dsoc means that the
integration for s is along 0Q), £su = —Asu or Lsu = —Agu + K2u, Ag = 53_522 + g—;z, if QO c R?,
1 2

PP P 3
andAs_as§+as§+as§'lfQCR'
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Let u be a classical solution of the problem (1)—(3), and let us choose the function § in (10)
as in Definition 1. Adding the equalities (9) and (10), taking into account (4), we obtain

u(x) = /Ssg(x,s) -u(s)ds —|—/Qm(x,s) - Lsu(s)ds
0 0

+/ [Qm(x,s)agr(:) - u(s)ian(x,s)] dso.
a0

ong

Then, taking into account that Q,,(x,s) = 0 and u(x) = 0 on d(, and making allowance
for the equation (1), we finally obtain the integral equation for the function u in the form

u(x) = /Km(x,s)u(s)ds+/Qm(x,s)f(s,u(s))ds, (11)
0 0

where Ky, (x,5) = £53(x, 8).
The nonlinear integral equation (11) can be written in the form of Urysohn equation

u(x) = /P(x,s,u(s))ds,
Q

where P(x,s,u(s)) = Ku(x,s)u(s) + Qu(x,s)f(s, u(s)).

If the boundary value problem (1)—(3) has a classical solution, then it also satisfies the equa-
tion (11). If the classical solution of the problem does not exist, then the equation (11) can be
used to introduce the concept of a generalized solution of the boundary value problem (1)—(3).

The equation (11) will be considered in a Banach space C(Q)) of the functions continuous
in Q). The norm in C(Q)) is entered by the rule |ju|| = max |u(x)]. Let us select in C(Q)) the

Xe

cone Ky = {u € C(Q) : u(x) > 0,x € O} of non-negative functions. Note that the cone K
in C(Q) is normal (and even acute). With the help of the cone K in the space C(Q) let us
introduce a semiordering by the rule:

foru,ve C(Q) u<vo ifv—uecky,

that is,
u<o, ifu(x)<o(x)forallxe Q.

Definition 2. By a solution (generalized) of the boundary value problem (1)—3) will be meant
a function u* € K., which is a solution of the integral equation (11).

2 CONSTRUCTION OF A PROCESS OF TWO-SIDED APPROXIMATIONS

Let us construct a process of two-sided approximations for finding the solution of the inte-
gral equation (11) (and consequently, the solution of the boundary value problem (1)—(3) using
the methods of the theory of nonlinear operators in semi-ordered spaces [1,5,9,10].

Let us introduce a nonlinear operator T acting in C(Q)) by the rule

T(u)(x) = / P(x,s, u(s))ds. (12)
Q
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Let us denote
K (x,8) = max{0,Ku(x,s)}, K, (xs) = max{0, —K;(x,s)}.
Then K}, (x,s) > 0, K;,(x,8) > 0forx,s € Q (x # s),
Kn(x,8) = K (x,8) — K, (x,8), |Kn(x,s)| =K} (x,8)+ K, (x,s),

and operator T of the form (12) will be written in the form

= /K;;(x,s)u(s)ds —/K,;(x,s)u(s)ds—{—/Qm(x,s)f(s,u(s))ds. (13)
QO Q Q

Suppose that the function f(x, u) allows a diagonal representation f(x,u) = f(x,u,u), be-
sides, continuous on the sets of variables x, v, w non-negative function f (x, v, w) monotonically
increases with respect to v and monotonically decreases with respect to w for all x € (). Then
the operator T of the form (13) will be heterotone with the companion operator

= /K%(x,s)v(s)ds - /Ka(x, s)ds +/Qm )f(s,v(s),w(s))ds. (14)
Q Q

Operators T and T are completely continuous.

Note that for the case when the function f(x, u) increases monotonically with respect to u
for all x € Q) we can choose f(x,v,w) = f(x,v), and if it decreases monotonically with respect
to u for all x € Q) we can set f(x,0,w) = f(x, w).

In the cone K4 let us select a strongly invariant cone segment < v°,w® > by conditions
T(20,w) > o0, T(w®,v°) < w?, which for the operator T that is defined by (14) will have the
form:

/K;;(x,s ds—/K s)ds
o o ) (15)
+ [ Qulxs)f(s,20(s), ud(s)ds > Px) forallx € O,
/K;Z(x,s)wo(s)ds — /K,;(x,s)vo(s)ds
Q A QO (16)
+/Qm(x,s)f(s,w0(s),vo( ))ds < w”(x) forall x € Q)

0

Let us form an iterative process by the scheme vk*1) = T(v(K), w(k)), k+1) = T (k) p(K)),
k=0,1,2,.. (v =00, w0 = w0):

ok /K+ k)(s)ds_/K;(x,s)w(")(s)ds
Q

(17)
—l—/Qm X, S f s,v(k)(s),w(k)(s))ds, k=0,1,2,...,
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w1 (x) = / K (x,8)w® (s)ds — / K (x,8)0®) (s)ds
(@) @)

(18)
+/Qm(x,s)f(s,w(k)(s),v(k)(s))ds, k=0,1,2,...,
Q

0O(x) =0 (x), w(x) =u(x). (19)

Since the cone segment < v%,w? > is strongly invariant for the heterotone operator T for
which the operator T is a companion one, it follows that the sequence {v(X)(x)} does not de-
crease with respect to the cone K, and the sequence {w®) (x)} does not increase with respect
to the cone K. Besides, the cone K is normal and the operator T is completely continuous,

so the boundaries v*(x) and w*(x) of these sequences exist. Thus, the chain of inequalities
holds:

V=00 <o <. <ol << << <o <o < <@ = P,

There are two possible cases: v* < w* and v* = w*. In the second case, u* := v* = w* is
the unique on < v°,w’ > fixed point of the operator T, that is, it is the unique on < %, w® >
solution of the boundary value problem (1)-(3).

The functions v*(x) and w*(x) are a solution of the system of equations v = T(v,w),
w = T(w,v), which in the considered case has the form

v(x) = /K%(x,s)v(s)ds - /K,;(x,s)w(s)ds —l—/Qm(x,s)f(s,v(s),w(s))ds, (20)
0 0 0

w(x) = /K;;(x,s)w(s)ds — /K;(x,s)v(s)ds +/Qm(x,s)f(s,w(s),v(s))ds. (21)
Q Q Q

The equality v* = w* will hold if the system (20), (21) does not have on < %, w® > such
solutions that v # w [9,10].
Thus, such a theorem is true.

Theorem 1. Let < v°,w’ > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the system of equations
(20), (21) does not have on < ©v°,w° > solutions such that v # w. Then the iterative process
(17)~(19) converges in the norm of the space C(Q) to the unique on < v°,w° > continuous
positive solution u* of the boundary value problem (1)—3), and a chain of inequalities holds:

V=00 <o <. <o® gy - <o® < <o <@ =P, (22)

Note that the chain of inequalities (22) characterizes the iterative process (17)—(19) as a
method of two-sided approximations.

From the chain of inequalities (22) it follows that each of the cone segments < v(¥), w(*) >,
k =0,1,2,..., is strongly invariant for the heterotone operator T of the form (13) with the
companion operator T of the form (14).

Let us determine the conditions for the existence of a unique positive solution of the bound-
ary value problem (1)-(3) and two-sided convergence of the successive approximations
(17)-(19) to it, by clarifying the conditions under which the system of equations (20), (21) does
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not have on some of the strongly invariant cone segments < v(k), wk) > k=0,1,2,...,such
solutions that v # w.
First we use such a condition [9,10]: if

To+uw—u) % T(v,w)+u, (23)

where u > 0,v < w, v, w,v +u,w —u €< v, w’ >, then the system v = T(v,w), w = T(w,v)
does not have solutions on < v°,w° >, such that v # w.

Theorem 2. Let < v°,w® > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the following condition
holds: for any numbers v, w, u such, that0 < v < w,0 < u < w, and for all x € Q) the
following inequality is satistied:

. . u
fx,o+uw—u) < f(x,v,w)+ Y
where
M = max /Qm(x,s)ds, M; = max / (K} (x,8) + K, (x,s)]ds. (24)

xeQ) xeQ)
QO QO

Then, the iterative process (17)<(19) bilaterally converges in the norm of the space C(Q))
to the unique on < v%,w" > continuous positive solution u* of the boundary value problem

(1))

Proof. Let u and w — v be such functions from K \{6} (0 is a zero element of C((})), that
v,w,0+u,w—uc< ov’,w’ >. Then u(x) > 0in O and ulyq = 0. So, if the function u(x) gets
the maximum value at the point x¢, then xg € Q). Thus,

T(v+u, w—u)(xo)
—/K xo,8)[v(s) + u(s) ds—/K xo, 8)[w(s) — u(s)]ds

A

+ / Qu(xa,)f(x,0(s) +u(s),w(s) — u(s))ds
< /K,’z(xo,s)v(s)ds —/Kn;(xo,s)w(s)ds+/[K,‘Z(xo,s) + K, (xo,8)]u(s)ds
0 0

—l—/Qm(xo,s) [f(s,v(s),w(s)) + ﬁsl)\/h] ds
Q

< /K,ﬁ(xo,s)v(s)ds—/K,;(xo, ds+/Qm xo,8)f (s,0(s), w(s))ds
0

Q

1 _
+ M+erflea(;<u( x) L{ [K;;(xo,s)—{—Km(xo,s)]ds—l—/Qm(xo,s)ds]

< /K;;(xo,s)v(s)ds—/K;(xo, ds—l—/Qm x0,8)f (s, 9(s), w(s))ds + u(xo)
(@) (@)

= T(v,w)(xp) + u(xp),

that is, the condition (23) holds, consequently, the system of equations (20), (21) does not have
on < v°,w® > such solutions that v # w and the Theorem 1 is valid. d
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Another condition that ensures equality v* = w* is the existence of v € (0;1) such that
|IT(v,w) = T(w, )| < 7o —w]

forallv,w e< v°, w® > [2].
Let there exists a number L > 0, that the function f (x,v,w) for all numbers v, w such that

0 < v,w < My, where My = maxw’ (x), and for all x € Q) satisfies the inequality
xeQ)

f(x,w,v)—f(x,v,w)) <L|lw—-o9. (25)
Let us consider the difference T(v, w)(x) — T(w, v)(x):

T(w,0)(x) = T(v,w)(x) = / Ky (x,8) + Ky (%, 8)][w(s) — v(s)]ds
Q
+ [ Quixs)[f(s,w(s), 2(5)) — f(5,2(5), w(s)) s,
Q

Then, taking into account the inequality (25), we obtain an estimate
|T(w,0) — T(v,w)|| = max | T(w,v)(x) — T(v,w)(x)]|

< (M + LM) - max [w(x) —o(x)| = (M + LM) [lw — o],
Xe
where constants M and M; are defined by equalities (24).
Thus,
1T (w,v) = T(o,w)|| < 7lw-ol,

where v = M + LM.
Then the equality v* = w* will be held, if v = M; + LM < 1, and the following theorem
holds.

Theorem 3. Let < v°, w’ > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the condition (25) holds,
besides, v = Mj + LM < 1, where the constants M and M are defined by the equalities (24).
Then, the iterative process (17)—(19) bilaterally converges in the norm of the space C(Q)) to the
unique on < v°, w® > continuous positive solution u* of the boundary value problem (1)—3).

If the k-th iteration have been performed, then as an approximate solution of the boundary
value problem (1)-(3) the function

u®(x) = (26)

is accepted.
Then for an approximate solution (26) there will be convenient a posteriori estimate of the
error:

The presence of an estimation of the form (27) is an unconditional advantage of the con-
structed two-sided iterative process.

w =l < L max (0 (x) — o) (x)). 27)
xe)
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If the accuracy e > 0 is given, then the iterative process should be carried out until the
inequality
max (w® (x) — v (x)) < 2¢
xe)
will be satisfied and then with an accuracy ¢ it can be expected that 1*(x) ~ u®)(x).
If the conditions of Theorem 3 are satisfied, then an a priori estimate of the error will be:

Then from the inequality
lma_x (w’(x) —%(x)) < ¢
xe()
we obtained that to achieve the accuracy ¢ it is necessary to do
max (w(x)~°(x))

11’1 xeQ)

ko(e) = 5 +1 (28)
In My +LM

iterations, where the square brackets denote the integer part of the number.

3 NUMERICAL EXPERIMENTS

The construction of two-sided approximations to the solution of the boundary value prob-
lem (1)—(3) will be demonstrated on the problem with exponential nonlinearities:

Lu=e"+27" xeq, (29)
u(x) >0, xeqQ, (30)
Ulan =0, (31)

where Lu = —Auor Lu=—Au+u, Q= {x=(x1,x):0 < x1,x < 1}.
The function f(x,u) = e" + 2e~" is positive and continuous with respect to the set of vari-
ables, if u > 0, and it allows a diagonal representation with the help of function

f(x,0,w) = e® +2e7 7.

The problem (29)—(31) is replaced by an equivalent integral equation

u(x) = /Kz(x,s)u(s)ds + / Qa(x,8)[e"(8) + 207 4(%)]ds, (32)
0 0
where Q;(x,s) is determined by the formula (5), if £u = —Au, and is determined by the
formula (7), if Lu = —Au +u, Kx(x,s) = —%gz(x, s) — %gz(x, s),
1 2
$2(xs) = ! ! ,if Su = —Au,

2 " P a0l

1 .
(x,8) = EKO (K\/?’Z —{—4w(x)w(s)> ,if Lu=—Au+u,
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w(x) = [x1(1 - x)Aolxa(l — 22)] = 11(1 — x1) + 12(1 — x2) — /31— x1)> + x3(1 - x2)2.

With the equation (32) let us associate a heterotone operator

= /Kz(x,s ds+/Q2 X, S) u(s) 4 pp—uls )]ds, (33)

for which the companion operator has the form
= /K;(x,s)v(s)ds - /K{(x, s)ds —|—/Q2 o(s) 4 2~ (8)]gs,
Q Q

where
K;(x,s) =max{0,Kx(x,s)}, K;(x,5) =max{0, —K»(x,s)}.

For the operator T of the form (33) a strongly invariant cone segment will be sought in the
form < v¥, w® >, where v°(x) = aug(x), w¥(x) = Bug(x), 0 < a < B, and

X) = /Qz(x s)ds
0

For the chosen functions v°, w? the system of inequalities (15), (16) leads to the next system
of inequalities for determining the constants «, B: for all x € Q)

0

/K X, 8)up(s ds—ﬁ/K s)up(s ds—l—/Qz [e%0(8) 4 26~ F0(8)]ds > wug(x),

,B/K;r(x,s)uo(s)ds - oc/Kz_ (x,8)up(s)ds + / Qs (x,8)[eP0(8) 4 2e=410(8))ds < Bug(x).
Q QO Q

If 0 < v,w < My, where My = fmax ug(x), then
xe()

f(x,0,w) —f(x,w,v)’ = (" +27") — (U +2¢7 )| < (2+ M) v —w).

For the considering problem the iterative process (17)—(19) has the form

o+ /K+xs ds—/K x,s)w\"/ (s)ds
(34)
+/szs w+afw<n@
wk+( /K+ x,s)w®) (s)ds — /K;(x,s)v(k)(s)ds
(35)

g/QXS w(MQ—N%m&

k=0,12,...,
0O (x) = aug(x), w%(x) = Bug(x). (36)
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For the problem (29)—(31), if £u = —Au, it was found, that the system of inequalities for
determining the constants «, f is satisfied by the values « = 2.5, B = 5.8. Further we find

M = max /Qz(x,s)ds = 0.04093, M; = max / [KS (x,8) + K; (x,8)]ds = 0.70819,
xe) xe()
Q QO

Mo = Pmaxug(x) = 023740, L =2+¢M =326795, = M;+ LM = 0.842.

xe()
Thus, v < 1 and by Theorem 3, the successive approximations that are formed by the
scheme (34)—(36) bilaterally converge to the solution of the problem (29)—(31) for £u = —Au.
Let us choose ¢ = 10~ %. Then, in accordance with (28), to achieve this accuracy, it is nec-

(B—a)M

essary to make ko(e) = {m ¥—| +1 = 38 iterations. In fact, the accuracy ¢ = 10~* was
v

In
achieved at the eleventh iteration. As one can see, the theoretical error estimate turned out to
be greatly overestimated. As an approximate solution of the problem (29)—(31) for £u = —Au,

the function 1) (x) = w will be accepted.

Iteration
number k

g(k) 0.67-1071[0.39-1071 ] 0.22-1071 | 0.22-107" | 0.65-1072 | 0.35- 102
Iteration
number k

(k) 0.19-1072]0.10-10°2]057-10°]031-102 ] 0.17-1072 | 091 -10~*

0 1 2 3 4 5

6 7 8 9 10 11

Table 1. The values of the estimate (%) of the approximate solution error for £u = —Au

Table 1 gives the data how the estimate e(¥) = max 4 (w(¥) (x) — v%)(x)) of the norm of the
xeQ)

u* —u® H of the approximate solution 1) (x) varies depending on the iteration number

k k=0,1,...,11. It was found that Hu(“) H — 0.2130.

Figure 1 shows the graph of the cross-sections of the upper w®) (x) and the lower v(%)(x)
approximations at xp = 0.5 for k = 0,2, 6, 8. Figures 2, 3 show the surface of the approximate
solution u(M)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-
tionship %, k=0,1,...,11, according to the Table 1, it was received that % ~ 0.543, that
indicates the geometric rate of convergence of the iterative sequence with the corresponding
index. Let us note that the convergence exponent turned out to be less than the exponent -y
estimated in accordance with Theorem 3.

Let us now consider the problem (29)-(31) for £u = —Au + u. It was found that the system
of inequalities to determine the constants a, 8 is satisfied by the values « = 0.1, B = 5.3.
Further we find

error )

M = max /Qz(x,s)ds = 0.03760,
xe() A

M; = max / [KS (x,8) + K; (x,8)]ds = 0.60410,

xeQ)

My = Pmaxug(x) = 0.19929, L =2+¢M =322053, = M;+ LM = 0.725.

xe)
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Thus, v < 1 and by Theorem 3, the successive approximations that are formed by the
scheme (34)—(36) bilaterally converge to the solution of the problem (29)—(31) for £u = —Au 4+ u.

Let us choose ¢ = 10~*. Then, in accordance with (28), to achieve this accuracy, it is

—a)M
In B 2‘;)

necessary to make ko(e) = ] +1 = 22 iterations. In fact, the accuracy e = 104

Ini

Y
was achieved at the tenth iteration. As one can see, the theoretical error estimate turned
out to be greatly overestimated too. As an approximate solution of the problem (29)-(31) for

£u = —Au + u, the function 110 (x) = w will be accepted.

[teration 0 1 ’ 3 4 5
number k
(k) 098-10711049-1071 | 024-1071 | 012-107 | 0581072 | 0.28 - 102
Tteration
6 7 8 9 10
number k
(k) 0.14-1072]0.67-1073]033-102 | 0.16-1072 | 0.78 - 10~*

Table 2. The values of the estimate e(¥) of the approximate solution error for £u = —Au + u

Table 2 gives the data how the estimate ¢} = max %(w(k) (x) — 00 (x)) of the norm of the
xe()

error ’ u* —u) H of the approximate solution 1 ¥) (x) varies depending on the iteration number

k,k=0,1,...,10. It was found that Hu(w) H = 0.1742. We can see, the norm of the approximate
solution in the transition to the equation with £u = —Au + u has decreased.

Figure 4 shows the graph of the cross-sections of the upper w®) (x) and the lower v(*)(x)
approximations at xp = 0.5 for k = 0,2, 6, 8. Figures 5, 6 show the surface of the approximate
solution %19 (x) and its contour lines (with the step 0.02) respectively. Considering the rela-
tionship “3(:(—:)1), k=0,1,...,10, according to the Table 2, it was received that S(:(:;) ~ 0.488, that
indicates the geometric rate of convergence of the iterative sequence with the corresponding
index. Let us note that for case £u = —Au + u the convergence exponent turned out to be less

than the exponent <y estimated in accordance with Theorem 3.

4 CONCLUSIONS

In the paper a method of two-sided approximations of the solution of the homogeneous
Dirichlet problem for a semilinear elliptic equation with Laplace operator —A and Helmholtz
operator —A + x? is proposed on the basis of the Green-Rvachev’s quasi-function method. A
computational experiment carried out for two equations with heterotone exponential nonlin-
earity demonstrated the possibilities and effectiveness of the method. The proposed approach
to the numerical solution of semilinear elliptic equations can be used in solving various applied
problems, the mathematical model of which is the problem (1)—(3). The proposed method is
more universal than the existing methods, and it allows to solve the boundary problem in do-
mains of arbitrary geometry, provided that this domain can be described by the R-function
method.



372 SIDOROV M. V.

w(k)(xl 7075)7 U(k)(xl 7075)

Figure 1. Graph of the cross-sections of upper and lower approximations
w®) (x1,0.5), v (x1,0.5), k = 0,2,6,8, for Lu = —Au

Figure 2. Surface of the approximate solution u(1V)(x) for £u = —Au
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0.0 0.2 0.4 0.6 0.8 1.0
Figure 3. Contour lines of the approximate solution () (x) for £u = —Au

w®(2;,0,5), v (z,,0,5)

A

Iy

Figure 4. Graph of the cross-sections of upper and lower approximations
w<k)(x1,0.5), o) (x1,0.5),k=0,2,6,8, for Lu = —Au+u
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=
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Figure 6. Contour lines of the approximate solution 119 (x) for £u = —Au + u
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Cuaopos M.B. Memod keasigpyrxyiii I'pina-Peavuosa no6ydosu 08o6iurux HabauiceHsb 00 000amHoeo pos-
6’93Ky Heninilinux kpatiosux 3adau // Kapnarceki MmaTem. my6a. — 2018. — T.10, Ne2. — C. 360-375.

Po3srasiaaeTbest OAHOpiAHA 3apava Aipixae AASI HAMiBAIHIHMX eAIITMYHMX PiBHSIHD 3 OepaTo-
pom Aamnaca Ta orepaTtopoM I'eAbMroabst. AAst o6yA0BM ABOGIUHMX HabOAVDKEHb AO AOAATHOTO
PO3B’sI3KY IIi€i KpalioBoi 3apadi BMKOPMCTOBYEThCS TIepexip 3a Aomomororo kpasidpyHkii I'pina-
PBauoBa A0 €KBiBaA€HTHOIO HEAIHIIHOTO iHTErpaAbHOrO PiBHSHHSI 3 HOAAABIIMM JIOTO aHAAi30M
MeTOAaMM Teopil HalliBYIIOPSIAKOBaHMX IpocTopiB. PoboTa i edpexTHBHICTE po3pobAeHOTO MeToAa
IIPOAEMOHCTPOBaHa OOUMCAIOBAABHMM €KCIIEPMMEHTOM AAS TECTOBOI 3apadi 3 eKCIIOHEHITiaAbHOO
HEeAIHIVHICTIO.

Kntouosi cnoea i ppasu: AOMATHVIA PO3B’S30K, HAIIIBAIHIHA eAiTHYHA KpalioBa 3aAada, reTepo-
TOHHMIA oTlepaTOp, ABObiuHI HabAVDKeHHS, kBasidpyHkIIist ['piHa-PBadosa.
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SLIMANE A.

SPACES GENERATED BY THE CONE OF SUBLINEAR OPERATORS

This paper deals with a study on classes of non linear operators. Let SL(X,Y') be the set of all
sublinear operators between two Riesz spaces X and Y. It is a convex cone of the space H(X,Y) of
all positively homogeneous operators. In this paper we study some spaces generated by this cone,
therefore we study several properties, which are well known in the theory of Riesz spaces, like order
continuity, order boundedness etc. Finally, we try to generalise the concept of adjoint operator. First,
by using the analytic form of Hahn-Banach theorem, we adapt the notion of adjoint operator to the
category of positively homogeneous operators. Then we apply it to the class of operators generated
by the sublinear operators.

Key words and phrases: Riesz space, Banach lattice, homogeneous operator, sublinear operator,
order continuous operator.

Laboratory of functional analysis and geometry of spaces, University of M'sila, M’sila 28000, Algeria
E-mail: amr.slimane@gmail.com

INTRODUCTION

The theory of Riesz spaces plays an important role in several branches of mathematics,
in particular in the geometry of Banach spaces and the theory of linear operators where the
notion of Banach lattice play a central role. In this work we generalize some vector lattice
properties to the category of sublinear operators i.e., positively homogenous and subadditive.
The set obtained is not a Banach space but a positive convex cone. Hence, this paper deals
with the extension of this set and their properties. The paper is organized as follows.

In Section 1 we recall some basic definitions and properties of Riesz spaces, we also recall
the notion of sublinear operators between a vector space X and a Riesz space Y.

In Section 2 we introduce the spaces spanned by different cones of sublinear operators. In
other hand we present some principal notions concerning the theory of Riesz spaces like order
continuity, order ideal, and we apply these notions on these spaces.

In Section 3 we introduce the adjoint of positively homogeneous operator. We first establish
the following result.

Let u be in £(X,Y). Then the bounded adjoint operator u* of u can be extended to a
bounded linear operator u* belongs to L(H*(Y), H*(X)) such that #* = u* on Y* and ||u*|| =
|u*|| = ||u||, where H*(Y) is the space of all bounded positively homogeneous functionals on
Y, Y* is the topological dual space of Y and £(X,Y) is the Banach space of all bounded linear
operators from X into Y. Finally we adapt the existence theorem of bounded adjoint linear
operator to the category of positively homogeneous operators as follows.

YAK 517.983.2
2010 Mathematics Subject Classification: 46B42, 46B40, 47A05, 47B60, 47B65.

@ Slimane A., 2018
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Let X, Y be two Banach spaces and T € H(X,Y). Then, T; € L(H*(Y), H*(X)) such that
|T|| = || T;; ||, where T} denotes the adjoint of T and H (X, Y) is the Banach space of all bounded
positively homogeneous operators from X into Y.

1 PRELIMINARIES

In this section, we introduce some terminology concerning Riesz spaces and Banach lat-
tices. These spaces are well known. For more details, the interested reader can consult, for
example, the references [2,4-6]. But for our convenience, we include some recalls. We also
introduce the class of positively homogeneous operators.

Let X be a real vector space. Then X is called a Riesz space (or vector lattice) if it is an
ordered vector space with the additional property that the supremum of every nonempty finite
subset of X exists in X. We denote the supremum of the set {x,y} by sup{x,y} or x V y.
Similarly, inf{x, y} or x A y denote the infimum of the set {x, y}.

Let X be a Riesz space. The subset X = {x € E : x > 0} is called the positive cone of
X (which is salient, i.e. X N (—=X*) = {0}) and the elements of X are called the positive
elements of X.

Let X be a Riesz space, equipped with a norm. The norm in X is called a Riesz norm if

x| < lyl = lIxll < llyll,

where |x| = sup{x, —x}. Denote x* = sup{x,0}, x~ = sup{—x,0}. Then obviously we have
x = xt —x~ and |x| = x* + x~. Note that this implies that for any x € X, the elements x
and |x| have the same norm. A Riesz space X equipped with a Riesz norm, is called a normed
Riesz space. If the norm is complete, X is called a Banach lattice. The convex cone X+ is norm
closed. A complete Banach lattice is a Banach lattice such that every order bounded set in X
has a supremum.

By a Riesz subspace (or a vector sublattice) of a Riesz space X we mean a linear subspace E
of X so that sup{x, y} belongs to E whenever x,y € E. A vector subspace E of a Riesz space X
is said to be an order ideal or simply ideal whenever |x| < |y| and y € E imply x € E.

A non-empty subset D is said to be upwards directed (respectively downwards directed)
if for all x1,x, € D there is x3 € D such that x; V xp < x3 (respectively x1 A xp > x3), if
sup D = x exists and D upwards directed (respectively inf D = y exists and D downwards
directed) we shall write D 1 x (respectively D | y).

Definition. Let X be a vector space and Y be a Riesz space. An operator T : X — Y is
1- positively homogeneous if for all x in X and A in R we have

T(Ax) = AT(x),
2- subadditive if for all x,y in X we have
T(x+y) < T(x) +T(y).

The operator T is sublinear if it is positively homogeneous and subadditive. The operator
T is said to be superlinear if T is positively homogeneous and superadditive (i.e. T(x +y) >
T(x) + T(y) for all x,y in X). We have for all x in X

—T(—x) < T(x). (1)
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We denote by H(X,Y) (respectively SL(X,Y)) the real vector space of all positively homo-
geneous (the set of all sublinear) operators from X into Y, equipped with the natural order
inducted by Y, i.e.

T<S if T(x)<S(x), VxeX

The set SL(X,Y) is a pointed convex cone of H(X,Y) which is not salient.

Let T be in SL(X,Y). We will denote by VT the subdifferential of T, which is the set of all
linear operators 1 : X — Y such that u(x) < T(x) for all x in X. We know (see, for example,
[1]), that VT is not empty if Y is a complete Banach lattice and T(x) = sup{u(x) : u € VT},
moreover, the supremum is attained. If Y is simply a Banach lattice, then VT is empty in
general (see [3]).

If X is a Banach space and Y is a Banach lattice, then we will denote by SL(X,Y) the set
of all bounded (= continuous) sublinear operators from X into Y and by £(X,Y) the Banach
space of all bounded linear operators from X into Y. Let T be in SL(X,Y). We have (see [1]),
that T is bounded if and only if u is bounded for all u in VT. The set SL(X, Y) (respectively the
space L(X,Y)) is a subset (respectively a subspace) of the space H(X,Y) of all homogeneous
bounded operators from X into Y. The space (X, Y) is normed by the standard norm

ITI| = sup [[T(x)].

[l€l <1

2 SPACES SPANNED BY SUBLINEAR OPERATORS
Let X be a vector space and Y be a Riesz space. We denote by
ASL(X,Y) =SL(X,Y) —SL(X,Y)
the subspace of H(X,Y) spanned by SL(X,Y), i.e.
ASL(X,Y) ={T—-S5:T,5S € SL(X,Y)}.
We denote by ASL(X,Y) the subspace of all bounded operators in ASL(X,Y).

Proposition 1. Let X be a vector space and Y be a Riesz space. Then H(X,Y) is a Riesz space.
If in addition X is a Banach space and Y is a Banach lattice, then H(X,Y) is also a Banach
lattice.

Proof. Tt is sufficent to endow the vector space H(X,Y) with the partial order induced by Y.
It is clear that H(X,Y) is a Riesz space with respect to this order. Suppose now X be a Ba-
nach space and Y be a Banach lattice. Let (T,), C H(X,Y) be a Cauchy sequence, then
nl—iffoo | Tutp — Tl = 0 implies that nl_i)rJrrloo | Tutp(x) — Tu(x)|| = 0 forall x in X.

As Y is a Banach space there is T(x) € Y such that 1_1)1}: Tu(x) = T(x). Since Ty, (ax) =

n (o]
aT,(x) for all @ in R and all x in X we have T(ax) = LH’E Tu(ax) = LH’E aTy(x) = aT(x)
n (e n (e 9]

for all « in Ry and all x in X. Thus, T is positively homogeneous. The operator T is clearly
bounded and hence #(X,Y) is a Banach space. Let now T,S € H(X,Y) such that |T| < ||
then || T(x)|| < [|S(x)]|| forall x in X, so ||T|| < ||S|| and H(X,Y) is a Banach lattice. O



SPACES GENERATED BY THE CONE OF SUBLINEAR OPERATORS 379

Proposition 2. Let X be a vector space and Y be a Riesz space. Then
(a) the space ASL(X,Y) is a Riesz subspace of H(X,Y);

(b) if X is a normed space and Y be a normed Riesz space, then ASL(X,Y) is a normed
Riesz space.

Proof. (a) The space ASL(X,Y), which is included in H(X, Y), is partially ordered by the natu-
ral order inducted by Y. Consider T, S in ASL(X,Y). Then, there are Ty, Ty, S1, Sz in SL(X, Y)
such that

T=T, —T,S=S5 —S.

For all x in X we define T V S by
(TVvS)(x)=T(x)VS(x).
Using for x,y,z in X the identity x Vy +z = (x +z) V (y + z), we obtain

(TVS)(x) = (Th = T2)(x) V (S1 = S2)(x)
= (Ti+52)(x) V (S1 4+ T2)(x) — (T2 + S2)(x) = T(x) — 5(x)

with T, S € SL(X,Y), where

T:(T1+52)V(51+T2) and §:T2+52.

(b) It is clear that ASL(X,Y) is a normed Riesz space with the norm induced by the stan-
dard norm of H(X,Y) on ASL(X,Y), i.e. by thenorm || T||asz(x,y) = sup [[T(x)]. O

lx[[<1

Proposition 3. Let X be a vector space and Y be a Dedekind complete Riesz space. Then
H(X,Y) is also a Dedekind complete Riesz space.

Proof. Let M C H(X,Y) be a nonempty subset, which is upper bounded. Then there is
S € H(X,Y) such that forall T € M we have T < S, thatisforall T € M and all x € X
we have T(x) < S(x). This implies that for all x € X the set {T(x) : T € M} is upper bounded
by S(x) € Y. Since Y is a Dedekind complete Riesz space, the supremum of {T(x) : T € M}
exists in Y. We can put now R(x) = sup{T(x) : T € M}. Itis clear that R is a positively
homogeneous operator. O

Remark 1. For all T = P — Q in ASL(X,Y) there is o7 € SL(X,Y) and @ super linear
(i.e. —@y sublinear) such that o < T < @7 and ¢1(—x) = ¢_7(x) (respectively p;(—x) =
@_1(x)) for all x in X. It suffices to define g1, ¢ by

¢r(x) = P(x) + Q(—x), 9r(x) = —P(=x) - Q(x)
and use the inequality (1).

Definition 1. Let T € ASL(X,Y) be an operator between two Riesz spaces. The operator T
is said to be order bounded if T carries order bounded subsets of X to order bounded subsets
ofY.
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Definition 2. Let T € ASL(X,Y) be an order bounded operator. Then T is said to be

(1) order continuous if for any downwards directed set D in E having infimum the null
element (i.e. D | 0) we have inf(|T(x)|,x € D) =0inY;

(2) o-order continuous if for all x,, | 0 in X we have in Y

inf(|T(x,)|,n > 0) = 0.

We denote by

ASLy(X,Y) ={T € ASL(X,Y), T order bounded},
ASLy(X,Y) ={T € ASL(X,Y), T order continuous}.

It should be clear that all these collections are real vector spaces under the usual pointwise
algebraic operations.

Proposition 4. The set ASL,(X,Y) is a Riesz subspace of ASL(X,Y).
Proof. Consider Ty, T» in ASLy(X,Y), (¢, ) in R? and & < x < B. Then
|[(aTy + BT2) (x)| < [af|To(x)] + [Bl|T2(x)[ < |aler + [Blea = c.

This implies that aT; + BT, € ASL,(X,Y) and hence T; V T, € ASLy(X,Y) because
i1 VT, = 3(T1 + To + |T1 — T»|). Consequently, ASL,(X,Y) is a Riesz subspace of the Riesz
space ASL(X,Y). O

3 THE ADJOINT OF POSITIVELY HOMOGENEOUS OPERATORS

Definition 3. Let X, Y be two Riesz spaces. Put
ASLIX,Y)={T1—To: Ty, T € (SL(X,Y))*} C ASL(X,Y).
A sublinear operator T € SL(X,Y) is said to be regular if T € A,SL(X,Y).
We denote by
SLi(X,Y) ={T € SL(X,Y) : T increasing},
ASLI(X,Y) ={Th —To: T, T, €SL(X,Y)}
= SLZ(Xr Y) - SLZ(Xr Y)r
(X, Y) ={T € L(X,Y) : Tincreasing},

ALZ(X,Y) = {Tl —T: T, T, € LZ(X,Y)}
= Li(X/ Y) - Li(X/ Y)/

=~

and we put X; = AL;{(X,R), Xj = ASL{(X,R).

Proposition 5. The spaces /\,SL(X,Y), ASL;(X,Y) are Riesz subspaces of ASL(X,Y).
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Proof. The set A,SL(X,Y) is a subspace of ASL(X,Y). Further, if Ty, T, € A,SL(X,Y), then
there is P, Q1, P>, Q2 € (SL(X,Y))" such that T} = P; — Q1 and T, = P, — Q. We have
T'VT,=(Pi+Q2)V(P+ Q1) — (Q1 + Q2), which is in A,SL(X,Y) because

(Pr+Q2) V(P2 + Q1), (Q1 +Q2) € (SL(X,Y)) ™.
The same for ASL;(X,Y). O
Proposition 6. The spaces /\,SL(X,Y), ASL;(X,Y) are Riesz subspaces of ASL(X,Y).

Proof. The set A,SL(X,Y) is a subspace of ASL(X,Y). Further, if Ty, T, € A,SL(X,Y), then
there is P;,Q1, P>,Q2 € (SL(X,Y))" such that Ty = P — Qy and T, = P, — Q. We have
T'VT,=(Pi+Q2)V(P+ Q1) — (Q1 + Q2), which is in A,SL(X,Y) because

(Pr+Q2) V(P2 + Q1), (Q1 +Q2) € (SL(X,Y)) ™.
The same for ASL;(X,Y). O
Remark 2. 1) Any linear operator is a regular sublinear operator. Indeed, ifu € L(X,Y), then
u=ut—u" withut(x) = 0Vu(x), u (x) = 0V (—u(x)), which are positive sublinear
operators.

2) The existence of the regular sublinear operators (not linear) is assured by the fact that if
T € SL(X,Y) such that |T| € SL(X,Y), then T is regular

T=T"—T =2T" —|T| (2T*,|T| € (SL(X,Y))").

As example, consider a, € RT such thata > fand T : R — R defined by

ax, if x >0,
T(x) =
Bx, if x <O0.

Then T is sublinear (T(x) = (ax) V (Bx)) and |T| also because
ITI(x) = [T(x)| = (ax) V (=px).

Lemma 1 ([6, Lemma 21.3]). Let E be an ordered vector space, and let A, B be two subsets of E
such thatinf A = xg inf B = yy. Then

xo + yo = inf(A + B) = inf{a + b such thata € A,b € B}.
Proposition 7. Let X, Y be two Riesz spaces. Put

SLo(X,Y) = {T € SL/(X,Y) such that T order continuous},
ASLy(X,Y) = SLy(X,Y) — SLo(X, Y).

Then
(a) the set SL,(X,Y) is a convex cone;
(b) the space ASL,(X,Y) C ASLy(X,Y) is an order ideal.
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Proof. (a) Let D | 0, and p,q € SLo(X,Y), then (p + q)(D) is upwards directed such that
(p+9)(D) | 0. Indeed, if x1, x, € D, then there is x3 € D such that x3 < x; and x3 < x,. This
implies that (p +¢q)(x3) € (p+¢)(D). Thus

(P+q)(x3) < (p+q)(x1) and (p +q)(x3) < (p + ) (x2)-
Let 1 be the infimum of (p + q)(D), then for all x1, x, € D there is x3 € D such that

h<(p+q)(x3) < p(x1)+q(x) forall x1,x € D.

We have
h <inf{p(x1) +q(x2),x1,x, € D}
<inf{p(x1),x1 € D} +inf{g(xz),xp € D }
<inf{|p(x1)|,x1 € D} +inf{|g(x2)],x, € D} <0.
Consequently,

inf{|(p + )(x)], x € D} < inf{|p(x)| + [q(x)], * € D}
<inf{p(x) +q(x), x € D} <O0.

Itis clear that Ap € SL, (X,Y) forall A € R" and all p € SL,(X,Y). Furthermore

inf{|(p vV q)(x)|, x € D} =inf{(p vV q)(x), x € D}
<inf{(p+4)(x), x € D} <0.

(b) Let T € ASLy(X,Y). Then T = p — g with p,q € SL,(X,Y). Let D | 0. We have
lp—ql(x) < |p(x)[ +]q(x)] < p(x) +4g(x) forall x € D.
So,

inf{|(p — q)(x)|, x € D} <inf{(p +q)(x), x € D} <0.

Consequently, T € ASL, (X, Y).
Letnow D | 0. Assume that |T| < |S|, S € ASLy(X,Y), then

inf{|T|(x), x € D} <inf{|S|(x), x € D} <0.
This ends the proof. O

In the sequel, we extend the notion of adjoint operator on some spaces defined above. Let
X be a Banach space and Y be a Banach lattice. Put

X' = L(X,R),

X* = L(X,R),

X\ = ASL(X,R),

Xi = ASL(X,R),
H'(X) = H(X,R),
H*(X) = #(X,R).

We have X' C X), C H'(X) and X* C X} C H*(X).
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Theorem 1. Let X,Y be two Riesz spaces and u be in L(X,Y). Then there exists an i’ in
L(H'(Y),H'(X)) such thati’ = u' onY" and &' (¢) < |@p o u| forall p € H'(Y), where v’ is the
adjoint operator of u.

Proof. Let u bein L(X,Y), the adjoint operator of u is defined by
W'Y — X' ¢ H'(X)
such that
u'(p) =gouforalgeY.
Letnow P € SL(H'(Y), H (X)) be defined by

P(g) = |poul.
We have
u'(p) = gou < |pou| =P(p)forallp € Y.
By the Hahn-Banach theorem (the analytic form), there is ##’ € L(H'(Y), H'(X)) such that
i =u"onY and
#(p) < P(p) < lpou|

for all ¢ € H'(Y) and this completes the proof. O
Theorem 2. Let X,Y be two Banach spaces and u be in L(X,Y). Then there exists an i’ in
L(H*(Y),H*(X)) such that i’ = u* on Y* and ||#/'|| = ||[u*|| = ||u||. In this case i’ is denoted
by u*.

Proof. Let ube in L(X,Y). By Theorem 1 there is &’ in L(H'(Y), H'(X)) such that &’ = u* on
Y and it (¢) < |@oul forall ¢ € H'(Y). On the other hand, because &’ (¢) < |¢ o u| we obtain
|t (¢)| < |@ ou| and hence for all ¢ € H*(Y)

i (@)l < llgoull < [lulllloll

So, ' € L(H*(Y),H*(X)). It remains to show that ||| = ||u||. Since ||#'(¢)| < [Jullle|l,

we conclude that ||#7’|| < ||u||. For the converse inequality, we know that ||u*|| = ||u||, hence
Jull = llu*]l = sup [u*(e)]]
(PEBy*
= sup [|i'(¢)| (because i’ y. = u*)
< sup [@'(¢)| (because By C By (y))
(PEBH*(Y)
= [l
and then the theorem is proved. O

Now, we extend the notion of adjoint operator to positively homogeneous operators.
Definition 4. Let X, Y be two Riesz spaces and T € H(X,Y). We define the adjoint of T by
T, : H(Y) — H'(X)
¢r— Ty(p) = ¢oT
such that T; (¢)(x) = ¢ o T(x).
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Proposition 8. Let X,Y be two Banach spaces and T € H(X,Y). Then T} € L(H*(Y), H*(X))
such that || T|| = ||T}||. In this case T}, is denoted by T}'.

Proof. Consider T in H(X,Y). We have for all ¢ € H*(Y)

ITh (@)l = llgo Tl < ll@lHIT].

So, T, € L(H*(Y),H*(X)). To show that | T|| = ||T;||, we first consider the mapping
i:x € X+ i(x) € H*(X) such that

i(x) : H(X) — R,
@ — (i(x), ¢) = (@, x).

Then i is such that ||i(x)|| = ||x|| for all x € X. Indeed,
i) = sup [[(i(x), @)
qDEBH*(X)
= sup |[[{g, )]
qDEBH*(X)
< ||l

Conversely
[x[[ = sup [[&, )] < sup (¢, x)[| (because Bx: C By (x))
CEBx* (PEBH*(X)

< sup [|(i(x), @)l < [[i(x)]-
(PEBH*(X)

Finally, we have
ITyll = sup |Ti(@)ll= sup [lgoT]|
[PEBH*(Y) gDEBH*(Y)
= sup (sup [[(¢oT,x))

gDEBH*(Y) xeBX

— sup (sup [|{g, T(x))])

@EBy+(y) xE€Bx

:sup( sup H<(p,T(x)>H)

xEBy gDEBH*(Y)

=sup( sup [[(i(T(x)), )|

xE€By (PGBH*(Y)

= sup [li(T(x))]|

xE€Byx

= sup [|T(x)[| = [IT]-

XEBy

This completes the proof. O
Definition 5. Let X,Y be two Riesz spaces. Consider T € ASL(X,Y) withT = P — Q. We

define a linear operator on Y] denoted T; by
T .Y, — X},
T —Tp — T[(Tl—Tz) =TioP+To0Q— (T10Q+T20P).
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Note that this operator is well defined. Indeed, if S € YI’ ssuchthat S = 51 — S, = 53— Sy,
then

T{(S1—S2) =S10P+50Q—(S510Q+S,0P)
:(51—52>OP—(51—52>OQ
= (S3—S4) 0P —(S3—54) 0Q = T{(S3 — Sa).

Proposition 9. Let X,Y be two Riesz spaces, then there is T, in L(H'(Y), H'(X)) such that
T/ =T onY],.

Proof. We define a sublinear operator S : H' (Y) — H'(X) by
5(¢) = lpoP[+]|poQl

Forall ¢ = @1 — @2 € Y], we have

Ti(@) =T/(¢1— ¢2) = P10 P+ @20Q — (p10Q+ ¢20P) = (1 — ¢2) o P — (91 — ¢2) 0 Q
< (91— ¢2) o P[+ |[(¢1 — ¢2) o Q| = S(9).

The Hahn-Banach theorem implies that T/ can be extended to a linear operator

T! € L(H'(Y), H'(X)) such that T/(p) < S(¢) forall ¢ € H'(Y). O

Remark 3. If T € L(X,Y), then we have T' = T, on Y’, where T| denote the operator defined
in Definition 4. If T € ASL(X,Y), then we have T = T} on Y.

Proposition 10. Let X, Y be two Riesz spaces and T be in (SL(X,Y))". Then the following
properties are satisfied.

(1) We have |T|; < |T/|.
(2) The restriction of T! to SL;(Y,R) verifies |T/| = |T|;.

Proof. (1) Let T € (SL(X,Y))* and ¢ € Y], then there is @1, 92 € SL;i(X,Y) such that
@ =¢1— ¢rand

T/ [(¢) =T (¢)| = |p10T —@20T| > @r0T —¢p0T
> @10|T| —@20|T| > |T|i(g).

(2)LetT € (SL(X,Y))" and ¢ € SL;(Y,R) we have

Ti (@) = IT'(¢)| = [¢(T)| = ¢(T) (because ¢ T and T > 0)

= ¢(IT]) = |T[}(¢)

and this completes the proof. O
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Caimane A. ITpocmopu, nopodowceHi koHycom cybainiiinux onepamopie // Kapnarcbki MaTeM. myOA. —
2018. — T.10, Ne2. — C. 376-386.

Y witf cTaTTi AOCAIAXYIOTBCS AesIKi KAACK HeAiHivHNX oneparopis. Hexait SL(X, Y) — MHOXMEHa
BCiX cybaiHilHMX omepaTopiB Mix ABoMa mpoctopamn Pica X rta Y. Lle € omykamii KOHyC B IIpo-
cropi H (X, Y) BCiX ITO3UTMBHO OAHOPIAHMX OIlepaTopiB. Y IIilf CTaTTi AOCAIAXKEHO AesIKi IIPOCTOpPH,
IIOPOA’KEH] IIMM KOHYCOM, 30KpeMa MU AOCAIAXY€EMO AesIKi BAACTMBOCTI, siKi A06pe BiaoMi B Teopil
mpocropis Pica, Taki sk mopsiaAkoBa HellepepBHICTh, TOPsSIAKOBa 06MeXeHicTh Ta iH. Hacamxinerrs,
MU IIPOOYEMO y3araAbHITY KOHIIETIIIIO CITPsIXeHOoro oreparopa. CIiouaTKy, BUKOPMCTOBYIOUM aHa-
Altany dpopmy Teopemu I'ana-baHaxa, MV IPMCTOCOBYEMO TOHSITTSI CIIPSIKEHOTO OIlepaTopa AO
KaTeropii MO3UTMBHO OAHOPIAHMX ONepaTopiB, a MOTiM 3aCTOCOBYEMO JIOTO AO KAacy OIepaTopis,
TIOPOAKEHMX CyOAIHINHMMY OIlepaToOpaMI.

Kntouosi cnoea i ppasu: mpoctip Pica, 6aHaxoBa rpaTka, OAHOPiAHMIT oIlepaTop, CyOAiHIIHIMIA oTTe-
parTop, IOPsSIAKOBO HelepepBHUIA OIlepaTop.
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(L)

STOROZH O.G.

ON AN APPROACH TO THE CONSTRUCTION OF THE FRIEDRICHS AND
NEUMANN-KREIN EXTENSIONS OF NONNEGATIVE LINEAR RELATIONS

Let Ly be a closed linear nonnegative (probably, positively defined) relation ("multivalued op-
erator”) in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary
triples) and corresponding Weyl functions and Kochubei-Strauss characteristic ones, the Friedrichs
(hard) and Neumann-Krein (soft) extensions of L are constructed.

It should be noted that every nonnegative linear relation L in a Hilbert space H has two extremal
nonnegative selfadjoint extensions: the Friedrichs extension Lr and the Neumann-Krein extension
Lk, satisfying the following property:

(Ve > 0)(Lp+¢€1) ' < (L+e1)7! < (Lg+e1)7 !

in the set of all nonnegative selfadjoint subspace extensions L of Ly.

The boundary triple approach to the extension theory was initiated by F. S. Rofe-Beketov,
M. L. and V. I. Gorbachuk, A. N. Kochubei, V. A. Mikhailets, V. O. Dercach, M. N. Malamud,
Yu. M. Arlinskii and other mathematicians.

In addition, it is showed that the construction of the mentioned extensions may be realized in a
more simple way under the assumption that initial relation is a positively defined one.

Key words and phrases: Hilbert space, relation, operator, extension, boundary value space.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: storogQukr.net

INTRODUCTION

Beginning with the work by R. Arens [2], the efforts of many authors were directed at
the studying of linear relations (multivalued operators), in particular, at the investigations
concerning the extension theory of the linear relations in Hilbert space (see, e.g., [4,5,8,9]). A
number of problems arising in the mentioned theory have been solved in terms of the so called
boundary value spaces (boundary triples) and corresponding Weyl functions (see Definitions
1,2 and [3,6,7,10,11]).

Let © and © be the symbols of orthogonal sum and orthogonal complement, respectively.
Explain that under (closed) linear relation in H, where H is a fixed complex Hilbert space
equipped with the inner product (-|-) and norm ||-||, we understand a (closed) linear manifold

in H? d;fH @ H and that in the theory of linear relations every linear operator is identified
with its graph. Each such relation T has the inverse T~! Y {(,y) e H*|(y,y/) € T} and
the adjoint T* = H?>© JT (= J(H*©T)), where Vhy, h, € H ](hl,hz)@(—ihz,ihl). This
VAK 513.88
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circumstance (the inverse and adjoint existence) makes the theory of linear relations extremely
useful in the study of various problems.

Remind that a linear relation S in H is said to be nonnegative (in symbols S > 0) if for all
(v,y') € S (V'|y) > 0, positively defined (in symbols S > 0) if, in addition,

indeéfinf{(u']u) | (w,u') €8, ||ul| =1} >0,

and selfadjoint if S = S*.

In this paper the role of initial object is played by a closed linear nonnegative relation Ly in
H. It is known [5] that there exist selfadjoint extensions (probably, subspace ones) Lr and Lg
of L satisfying the following property:

selfadjoint extension Ly of Ly is nonnegative iff for any ¢ > 0

vyeH ((Le+eln) 'yly) < ((Li+eln) Myly) < ((Letelw) 'yly) . )

In the case when L is a densely defined operator, this fact was proved by M. Krein [14].

The extensions Ly and Lk are called the Friedrichs and Neumann-Krein extensions of Ly,
respectively. If L is a positively defined, the first of the inequalities (1) holds under ¢ = 0, too.

The aim of this article is to construct the mentioned extensions in the terms of boundary
value spaces and corresponding Weyl functions. We widely use the results exposed in [1, 3, 6,
7,16,19], but our approach is different from ones of these papers. In particular, we (as in our
previous articles [17] and [18]) deal with Cayley transforms U(A) of Weyl functions (Strauss-
Kochubei characteristic functions in the sence of [13] and [20]). But the papers are mentioned
above devoted to the investigation of U(A) under ImA # 0, while we are interested to consider
the behaviour of U(A) in the case when A € R, first of all in the situations as A — —0 and
A — —oo0.

1 NOTATIONS AND PRELIMINARY RESULTS

Through this paper we use the following notations:

D(T), R(T), kerT are, respectively, the domain, range, and kernel of a (linear) relation (in
partial, operator) T;

D(T)={y€H|(By' € H): (y,y) €T}; R(T)={y' € H{(y € H): (y,y') € T};

kerT = {y € H|(y,0) € T};

ifAeCthenT—A={(y,y¥ —Ay)|(y,y') € T}, and so

ker(T—A) ={y € H|(y,0) € T— A} (= {y € H| (y, Ay) € T});

ker(T—A) ={(y, Ay :y € ker(T —A)};

p(T) = {A € C|ker(T —A) = {0}, R(T —A) = H} (the resolvent set of T);

1x is the identity in X.

If X, Y are Hilbert spaces then (-|-)x is the symbol of scalar product in X, B(X,Y) is the set

of linear bounded operators A : X — Y such that D(A) = X; B(X) Y B(X,X).

If A; : X — Y; (i = 1,2) are linear operators then the notation A = A; ® A, means that
Ax = < ili > for every x € X. Let s — lim denotes the strong limit.
2

d
Under Ly we understand the linear relation described in the Introduction, and L Lf L.
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Definition 1. Let H be a Hilbert space and I';, T, € B(L,H). The triple (H,I'1,T) is called
the boundary value space (BVS) for the linear relation Ly if

R(Mi@Ty) =HOH, ker(l1®&T) = Lo

and forany § = (y,y'), 2 = (z,7') € L we have

(v'|z) = (vl2') = (T1gIT22)y — (T2fIT12)

d
Through the paper we suppose that (the selfadjoint) relation L, ) kerI'; is nonnegative,
and so VA < inf L, the following operators are correctly defined:

TR s [ Lx 2\ 7. _ 2
Ly= (Lo—A) ‘e B(H), LA_<1H+ALA>G B <HH ),LA = (Ly, 1g+ALy) € B(H H)
. -3 . L)\]/ A / 2 7 A / /
ie. Yy € H Lyy = y+)\L,\y>' Vi = (y,y) € H* Lyg = Ly + (y +ALY)

N

(it is easy to see that R(L)) = Ly and L = L,). Put

N A Z
Zy= (L))", 2, = ( A%A )

Definition 2. A B(H)-valued function
M(A) =T1Z) (A <infLy)

is called the Weyl function of the relation Ly corresponding to its boundary value space
(Hr rlr FZ) .

Note that M(A) = M(A)*.

Remark 1. The notion of BVS had been introduced at first in [12] under the assumption that Ly
is a densely defined symmetric operator having equal defect numbers. In [16] this notion was
extended onto the case of nondensely defined Hermitian operators. The conception of Weyl
function corresponding to a given BVS was appeared in [6] and had found its development in
many papers (see, for example, [7, 10, 11] and references therein). It is easy to see that Defini-
tion 2 is equivalent to suitable defintions from the mentioned articles. It becomes clear after
analyzing the results of the monograph [15] (see also [17] and [18]).

Theorem 1. For arbitrary A,y € (—oo,inf Ly) M(A) — M(p) = (A — u)Z3Zy <: (A—n) Z;‘;ZA>,
in particular, p < A implies M(A) — M(p) > 0. Hence for any z < inf L, there exist

s— lim (M(A) — M(z)) " Ro (> 0),
A——0
s— lim (M(1) - M(z)) " YR (<0).
——00
Theorem 2. Let L4 = ker(A T + AyI), where A1, Ay € B(H) and

ALY AM(A) + Az (A < infLy).

IfA' € B(H) ,then A € p (L) and
(La—A) "' =(La—A)"' = ZyAT AL Z5 2)
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Theorem 3. The linear relation L, is a selfadjoint extension of L iff there exists a unitary
operator K € B(#H) such that L1 = ker [(K —1y4) 1 +i (K4 14) T].

Put .
LW =Loy+ker(L—A) (A <infLy). 3)

Theorem 4. LM = ker (T} — M(A)T).

Theorem 5. Suppose thatz < infLy, A < infL, andz # A. Then L) is a selfadjoint relation
and z € p(LW). Moreover,

—1 -1
B R (A) — —) t=s— 1 ) _
(L —2z) s Agrgoo <L z) , (Lx—2) s Ali>n_10 <L z) .

Remark 2. The results mentioned in Theorems 1-5 above are well known or are immediate
consequences of such ones (see, e. g.,[1,3,5,7,9, 16]).

2 MAIN RESULTS

Let A and z be as above. Before formulating the main results let us introduce the following
(defined on p(L,)) operator-functions by setting

R(A) = (M(A) = M(2))"", Qi(A) = (M(A) £i)R(M), @

It is easily to check by calculation that

U(A) = Q- (M), )

O+ (A) =1y + (M(z) £i) R(A), (6)

QTN = Ty — (M(2) %) (M(A) 1) . %

e LW = {9 € L| (U(A) = 13) T +i (U(A) + 13) Toff = 0}. (8)
Proof. 1Itis clear that (4) yields

(U(A) = 13) M(A) = =i (U(A) + 1) . ©)

Let us denote (temporarily) the relation from the right side of (8) by L[l Taking into ac-
count (9) we obtain the following;:

§eLlM =T - MM =0= (UA) —1y)T1g+i (UA) +15) Tof = 0 = y € LI,

Thus LY < LI But LW, LM are selfadjoint relations (see Theorem 3), therefore
L) — LI, 0O

Lemma 2. Let B and R be selfadjoint operators from B(H) and

d
Q. 1, + BRIR.

Then Q' € B(H).
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Proof. One can readily check by calculations that

B—i —-Q_\/0" i\ [0 O B—i —Q.\_ .
—(B+1i) Q, B+iB—i) \ B+iB—i —(B+i) Qp ) THW

in particular

Q0 =050, (10)

OF (B—i)— Q" (B+i) = —2ily, (11)

(B—1)Q, =Q_(B—i), (B+i)Ql =04 (B+1). (12)

It follows from (10) that ||Q_h|| = ||Qh| for each h € H. This yields that there exists an

isometry K : R(QQ—) — R(Q) such that Q1 = KQ_, consequently there exist K, K_ €
€ B(H), satisfying the equalities O* = Q% Ky, OF = Q* K_. Thus R (Q0*) = R (Q%) . Taking
into account (11) we see that R ((2* ) + R (Q)% ) = H, therefore

R(OQF)=R(OQ})=H. (13)
The equalities (13) imply

kerQ; =kerQ_ = {0}. (14)
In view of (12) and (14) we obtain ker * = ker % = {0} . To complete the proof it is sufficient
to apply (13). O

Proposition 1. There exist the unitary operators U_«, Uy € B(H) defined as follows:

U_w=15— Alirgm UA), Uy=s— )\ILHJO U(A). (15)

Moreover,
U—co = (I + (M(2) — )Rco)) (I3 + (M(2) + )Rc0)) ", (16)
Uy = (13 + (M(2) — )Ro)) (1 + (M(z) +1)Ro)) ™", (17)

where R_, and Ry are as in the Theorem 1.

Proof. It follows from Theorem 1, from (6) and from Lemma 2, applied to the operators
134 + BR + iR with B = M(z), R = R_, that s — Alir?w Q+(A) = 1y + (M(z) £i) Rwo
and the operators in the right side of the latter equality are invertible in B(7{). Further, in view
of (7) we obtain Hml(;\)H <1+ |M(z) +i]| - H(M(A) v i)*H.

On the other hand, using the elementary properties of the resolvent of a selfadjoint operator
we conclude that for each A < infLp H (M(X) + i)~! H < 1. Thus the family

{Q;l(;\)y Co <A< insz}

is uniformly bounded in B(#H ), therefore

—1
s—AE@magl(A) (:s— lim Q+(A)> = (1 + (M(z) +)R_o) 1.

A——o00
Whence using (5) we conclude that there exists the first limit in (15) and the equality (16)
holds. Similar arguments show that there exists the second limit in (15) and the equality (17)
holds.
Finally, taking into account (15) and the invertibility in B(#) of the operators in right sides
of (16)-(17), we conclude that the unitarity of U(A) under A < infL, yields the unitarity of
U_« and U,. O
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Theorem 6.
Lp={f€Ll|(U-ow—1y)T17+i (U-co + 13) 29 =0}, (18)

LK:{QEL\(Ug—ly)F19+i(U0+1H)F29:O}, (19)
where U_o, and Uy are defined according to (15).
Proof. Applying (2) under Ay = 13, A, = —M(A) and Theorem 4 we obtain
(A) -1 -1 ~1 s :

<L - z) = (L —2) ' = Z. (M(z) - M(A)) ' Z} (A,z <infLy, z # A)
(recall that L™V is defined by (3)). The latter equality together Theorem 1 and Theorem 5
implies

(Lp—2) "= (Ly—2) '+ Z.R Z!, (Lx—2z) '=(Lo—z) ' +Z.RoZ:!.  (20)

On the other hand, Theorem 3 shows that there exists an unitary operator K € B(#) such that
Ll :ker[(K—lq.[)rl+i(K+1H>r2].
Applying Theorem 2 under A; = (K —1y), Ay =i (K+ 14) we conclude that

(Lp—2) ' = (Ly—2) ' = Zo [(K = 13) M(2) +i (K+1%)] " (K — 1) Z. (21)
Comparing (20) and (21) we see that
[(K=13) M(z) + (K+130)] " (K= 13) + R0 =0,
i. e. (multiplying this identity from left by the expression contained in square brackets)
K1y + M(z)R_co + iR_co] = 13y + M(2)R_eo — iR_co.

Whence using (16) we obtain K = U_«. The relation (18) is proved. The proof of relation (19)
is analogous. O

The construction of Friedrichs and Neumann-Krein extensions of Ly may be realized in a
more simple way in the case when L, (and hence L) is a positively defined relation. Before
considering this case note that the Theorem 5 implies

-1
-1 _ . . ()L)
Ly>0=L;'=s AEI?M(L ) . 22)
Further, put
B s lim (M(4) — M(0)"". (23)
——00

It follows from the Theorem 1 that the limit in (23) exists. Moreover, B € B(?) and B < 0.
Theorem 7. Assume that L, > 0 and put
7119 = I'1§ — M(0)I27, (24)

72§ = T2§ — By = —BIj + (13 + BM(0)) I'27, (25)
where i) runs through L and B is defined according to (23). Then
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i) (H,1,72) is a BVS for Ly,
ii) Lp =kery, ={f € L[ 72§ =0}
iii) Ly =kery; = {9 € L| 119 =0}.

A

Proof. Since Lx = Lo+ kerL (see [5] and [3, Prop. 3.2.1]) the statement iii) is an immediate
consequence of (3) and Theorem 4 under A = 0. Further, thinking as in the proof of Theorem
6 we obtain

(Lw)l = L1+ Zo (M(A) — M(0)) ' Z5 (A <0),

L' = L7+ Zo [~ BM(0) + (13 + BM(0))] ' BZ; = Ly ' + ZoBZ3,

where L = ker 7,. So, item ii) follows from (22) and (23).
Furthermore, (24), (25) may be written in the following form:

()= e ) (1) (26)

It is clear that the matrix operator in the right side of (26) is invertible in B (H @& H) and

2 ,)/2 .

1 — M(0) 0 1y )\ [ 1y —B (0 1y
“B 13 +BM(©0) )\ -1 0 )\ —=M(©) 14+BM(©) )\ 14 0
implies that for any §, £ € L (I'19|T22)y, — (T20|T12)y, = (mP|722)9 — (7r29]71£)- Hence

(see [15] for the details) (#, 1, 72) is a boundary value space for L.
]
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Cropox O.I'. I1po 0dun nidxio do nobydosu posuiuperv @pidpixca ma Heiimana-Kpeiina Hegid'e mHo20 i-
HiiiHoeo 8i0HowenHq // KapnaTcbki MaTeM. my6a. — 2018. — T.10, Ne2. — C. 387-394.

Hexait Ly — 3aMKHeHe AiHiliHe HeBiA eMHe (MOXAMBO, AOAATHO BU3HAUeHe) BiaHOIIeHHs (“6a-
raTO3HaYHWII OllepaTop”) Y KOMIIAEKCHOMY TiAbbepToBOMY mpocTopi H. ¥V TepMiHax Tak 3BaHMX
IIPOCTOPiB IPaHMYHNX 3HaUeHb (TPpaHMYHMX TPilioK) i BimoBiaHMX pyHKIIiN Beliast Ta xapakTepucTu-
uaMX pyHK1i Kouybes-IlTpayca mobyaosano posmmperHs Opiapixca (KopcTke po3IIMpeHHs) Ta
Herimana-Kpeiina (M'sike po3lmpeHHs) BiAHOIIEHHs L.

3a3HauMMoO, IO KOXHe HeBiA'eMHe AiHiliHe BiaHOWIEHHS Lo y TrianbbeproBomy mpocropi H Mae
ABa eKCTpeMaAbHi HeBiA'eMHi caMOCIIpsDKeHi poslmpeHHs: posumperHst Opiapixca Ly Ta po3mm-
penrs Helimana-Kpeiina Lk, siki BOAOAIIOTh TaKOK BAACTUBICTIO:

(Ve > 0)(Lp+¢€1) ' < (L+e1)"! < (Lg +e1)7 !

Ha MHOMHI BCiX HeBiA €MHIX CAMOCIPSIKEHNX PO3IIMPeHb-BiAHOIIIEHb L BiAHOIIIEHHS L.
Po3BmBaeThes miAXia, 3aCHOBaHWMI Ha MOHSTTI TpaHMYHOL Tpivikm. Lleir miaxia 6yB 3amodarko-
Bammi @. C. Podpe-Bexerosum, M. A. Topbauyxom Ta B. I. Topbauyx, A. H. Kouybeem,
B. A. Muxaraeniem, B. O. Aepkauem, M. H. Maramyaom, I0. M. ApaiHcbkuM Ta iHIIMMM Mare-
MaTUKaMIL.
INoxa3aHo, 1m0 06y AOBa 3raAaHMX PO3IIMPEHDb MOXe 6yTH peaai30BaHO IMPOCTIIIMM IIASXOM
Y BUIIAAKY, KOAM BiAHOIIEHHSI Ly € AOAATHO BUM3HAUYCHVIM.

Kntouosi cnosa i ppasu: TiabbepTiB IPOCTip, BiAHOIIEHHSI, OTIEPaTOp, PO3IIMpPEHHS, TPOCTIip rpa-
HIYHMX 3HAYEHb.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2018, 10 (2), 395-401 KapmnaTcpki MaTem. my6a. 2018, T.10, Ne2, C.395-401
doi:10.15330/cmp.10.2.395-401

(L)

VASYLYSHYN T.V.

SYMMETRIC #-POLYNOMIALS ON C”

*-Polynomials are natural generalizations of usual polynomials between complex vector spaces.
A x-polynomial is a function between complex vector spaces X and Y, which is a sum of so-called
(p,q)-polynomials. In turn, for nonnegative integers p and ¢, a (p, q)-polynomial is a function be-
tween X and Y, which is the restriction to the diagonal of some mapping, acting from the Cartesian
power X? 11 to Y, which is linear with respect to every of its first p arguments, antilinear with respect
to every of its last 4 arguments and invariant with respect to permutations of its first p arguments
and last g arguments separately.

In this work we construct formulas for recovering of (p, 4)-polynomial components of *-polyno-
mials, acting between complex vector spaces X and Y, by the values of *-polynomials. We use these
formulas for investigations of *-polynomials, acting from the n-dimensional complex vector space
C" to C, which are symmetric, that is, invariant with respect to permutations of coordinates of its
argument. We show that every symmetric *-polynomial, acting from C" to C, can be represented as
an algebraic combination of some “elementary” symmetric *-polynomials.

Results of the paper can be used for investigations of algebras, generated by symmetric *-poly-
nomials, acting from C”" to C.

Key words and phrases: (p,q)-polynomial, *-polynomial, symmetric *-polynomial.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION AND PRELIMINARIES

x-Polynomials (see definition below), acting between complex vector spaces X and Y, were
studied in [4-6]. If X has a symmetric structure, like a symmetric basis, it is natural to consider
x-polynomials, which are invariant (symmetric) with respect to a group of operators, acting
on X, which preserve this structure.

Symmetric (invariant) analytic functions of several complex variables with respect to a
group of operators on the n-dimensional complex vector space C" were investigated by many
authors (see, e. g., [1-3]).

In this work we consider symmetric (see definition below) *-polynomials, acting from
C" to C. We investigate the structure of such *-polynomials and show that every symmetric
x-polynomial, acting from C” to C, can be represented as an algebraic combination of some
“elementary” symmetric *-polynomials. Also we establish the general result, which gives us
the method of recovering of components of a *-polynomial by the values of this *-polynomial.

Let IN be the set of all positive integers and Z be the set of all nonnegative integers.
Let X and Y be complex vector spaces. A mapping A : XP™ — Y, where p,q € Z are
such that p # 0 or g # 0, is called a (p, q)-linear mapping, if A is linear with respect to every

YAK 517.98
2010 Mathematics Subject Classification: 46]20, 46E15.

(© Vasylyshyn T.V., 2018
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of first p arguments and it is antilinear with respect to every of last g arguments. A (p,q)-
linear mapping, which is invariant with respect to permutations of its first p arguments and
last q arguments separately, is called (p,q)-symmetric. A mapping P : X — Y is called a
(p, q)-polynomial if there exists a (p, q)-symmetric (p, q)-linear mapping Ap : XP™7 — Y such
that P is the restriction to the diagonal of Ap, i.e.

P(x) = Ap(x,...

(x) = Ap(x,..., )
p+q

for every x € X. The mapping Ap is called the (p, g)-symmetric (p, q)-linear mapping, associ-
ated with P. Note that

p! q'
P(xi+...4+xm)= ), ) ' — '
e I Vs R V7773
P+t Um=P V1t tVm=p M1 Hm: V1 m
Wi Wm €Ly V1, VmEL

X AP(X1, ooy X1, ey Xy e ey Xty X1y ey X1y ey Xy e v o, X)), (1)

H1 Hm 1 Vm

for every x1,...,x, € X. Also note that
P(Ax) = APATP(x) (2)

forevery x € Xand A € C.
For convenience, we define (0, 0)-polynomials from X to Y as constant mappings.
A mapping P : X — Y is called a *-polynomial if it can be represented in the form

K k
P= Z Z Pj,k—j/ 3)
k=0j=0

where K € Z and P;;_;is a (j, k — j)-polynomial for every k € {0,...,K} and j € {0,...,k}.
Let deg P be the maximal number k € Z, for which there exists j € {0,...,k} such that
P],k_] % 0.

A x-polynomial P : C" — C, where n € N, is called symmetric if

P((Zl,. . .,Zn)) = P((za(l)/' . 'IZO'(n)))

for every (z1,...,z,) € C" and for every bijectiono : {1,...,n} — {1,...,n}.
For every v = (71,72) € Z2 let us define a (71, 2)-polynomial Hg") :C" — Cby

H(z) = Y 202, (4)
m=1

where z = (z1,...,2z,) € C". Note that H,(Yn) is symmetric.
A mapping f : S — C, where S is an arbitrary set, is called an algebraic combination of
mappings f1, ..., fy : S — C if there exists a polynomial Q : C* — C such that

f(x) =Q(Ax), -, fr(x))

for every x € S.
In this work we show that every symmetric *-polynomial, acting from C" to C, can be

represented as an algebraic combination of *-polynomials H. (”), defined by (4).
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1 THE MAIN RESULT

Let us prove formulas for recovering of (p, q)-polynomials by the values of a *-polynomial.
For complex numbers t4, ..., ty, let V;, ;. be the Vandermonde matrix:

2 -1
1t t% g 1
1ty 8 $h-
VH,otm -= :
1ty 3, ... th1

It is well-known that

det(Vi,.0,) = [ (ts—t)).

1<j<s<m

If all the numbers t1, ..., t, are distinct, then det(V},, +,) # 0.

Proposition 1. Let P : X — Y be a *-polynomial of the form (3), where X and Y are complex
vector spaces. Let A, ..., Ak be distinct real numbers. Then

k K
Z Pix_j(x) = Z Wis P(Asx)
j=0 5=0

for every k € {0,...,K} and x € X, where wy, are elements of the matrix W = (Wis), ._g
which is the inverse matrix of the Vandermonde matrix V) ).

Proof. Let x € X. Forevery s € {0,...,K}, by (3),

P(Asx) = ZZ [ k— ]}\Sx

By (2), taking into account that A is real,
—_ -
P j(Asx) = MAs ' Pyje_i(x) = MAs ' Pyjej(x) = ASP_j(x).
Therefore, for every s € {0,...,K},

P(Asx) = Z AE Z
Thus, we have the vector equality

(P(on), ey P(AKX))T = VAO/«««/)\K (PO,()(JC),Z}:O lel_j(x), e ,E]K:O P]-,K_]-(x))T.

Since Ay, . .., Ak are distinct, it follows that det(V),, ., ) # 0. Consequently, V)  ,, is invert-

ible. Let
W = (Wks )y s—g1 *= V)LO1 Ay
Then
(Poo(x), Eleg Piaj(x), ., EX g Pix—i(x)) " = W(P(Agx), ..., P(Akx)) .

Therefore,
k K
Z Pix_j(x) = Z Wis P(Asx)
j=0 s=0

for every k € {0, ...,K}. O
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Proposition 2. Letk € Z, and Pjx_; : X — Y be a (j,k — j)-polynomial for every j €
{0,...,k}, where X and Y are complex vector spaces. Let ¢, . .., € be complex numbers such
thate3, ..., e1 are distinctand |¢g| = ... = |¢x| = 1. Then

k P k
J,kJ Z IZ: €lx

foreveryj € {0,...,k} and x € X, where uj; are elements of the matrix U = (”jl)j,l:(TK/ which

is the inverse matrix of the Vandermonde matrix Ve(z) ey

Proof. Let x € X. For every j 1 €40,...,k}, by (2), Pix_i(e1x) = slsl ]P j(x). Since ¢/ =1,
it follows that é’l( —el * Therefore,P ik—i(e1x) = e?]_kP],k_j( ).
Consequently,

k k
o
et L Pie-jlerx) = L&' By (¥)
j=0 j=0
forevery I € {0,...,k}. Thus, we have the vector equality

T T
(€6 S0 Pii—j(e0%), - -, €f g Pie—j(exx)) = Va2 (Pok(x), PLi-1(x),..., Peo(x)) -

£

Since e%, e, e% are distinct, it follows that det(Vg,(z),._,E%) # 0. Consequently, Vs%,...,e% is invertible.
Let

Then

T T
(Pox(x), Pri—1(x), -, Pro(x)) " = U (ef Tig Pig—j(e0x), - -, &k Tf_o Ps—jlexx)) -

Therefore,

foreveryj € {0,...,k}. O
Let us consider *-polynomials on C".

Lemma 1. Every *-polynomial P : C" — C can be uniquely represented in the form

k

K
= Z Z Z Z “Vlf---/Vn,Vlz---rVnZill . V" _11/1 te Zfln’ (5)

k=0j=0 p1+...+pn=j vi+..+v,=k—j
yl,...,yn€Z+ Vi, Un €Z 4

wherez = (z1,...,2z4) € C",K = deg P and ay,,...u,,...v, € C.

Proof. Let P : C" — C be a *-polynomial of the form (3). If K = 0, then P = Py, where
Py € C. Thus, in this case, we have the representation of P in the form (5). Consider the case
K > 0.Every z = (z1,...,2z,) € C" can be represented as z = ), _; Zmen, where

em = (0,...,0,1,0,...,0)
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for every m € {1,...,n}. Therefore, by (1),

]' (k - ])' M1 Hn 17 =V
= Pyo + > E E E RTRETY z1 e Zy 2y 2y
k=0j=0 p1+...+pn=j vi+..+vy,=k—j n:
Wiplin €Ly V1, VnEZ L

X Ap],kfj(el,...,el,...,en,...,en,el,...,el,...,en,...,en),
[ N—_—— —— N —

&3 Hn 121 Vn

where Ap,, . is the (j, k — j)-symmetric (j, k — j)-linear mapping, associated with the (j, k — j)-
polynomial P ;. Let ao,. o = Py, and

i (k=)
!l vg! o vy!
X Apk ](el,...,el,...,en,...,en,el,...,el,...,en,...,en)

H1 Hn %1 Vn

aﬂlrnvﬂnﬂ/lpnﬂ/n

for i, ..., un,v1,..., vy € Zy suchthatl <y +... 4y, +v1+...+ v, <K Then

K Kk
=YY X Y w2

k=0j=0 p1+...+pn=j vi+..+v,=k—j
yl,...,yn€Z+ V1, Un €Z

O

Theorem 1. Every symmetric *-polynomial P : C" — C can be represented as an algebraic

(n)

combination of x-polynomials H,", where v = (7y1,72) € Z2% are such that v, + 7, < degP.

Proof. We proceed by induction on 7. In the case n = 1 for z = z; € C, by Lemma 1, we have

degP & ; degP &

Z Z“lk ]lel 2 Z"‘Jk j ]k (@)

Suppose the statement holds for n — 1 and prove it for n. Let P : C" — C be a symmetric
s-polynomial and z = (z1,...,z,) € C". Then P(z) can be represented in the form

ZZZ"Z" ‘]k i((z1, - Zn1)),

where K = deg P and rj_; : C"™ 1 — C are *-polynomials. Let us show that *-polynomials
rjx—j are symmetric. For flxed z1,...,2p-1 € C, the mapping R : z, — P((z1,...,2zn)) is
a x-polynomial, acting from C to C. Let Ao, ..., Ak be distinct real numbers. Then, by Proposi-
tion 1,
j K
Zznzn Tijk— ] er~~~rzn71>> = ZwksR()\szn> (6)
5=0
for every k € {0,.. .,K}. For k € {0,...,K}, let €,..., & be complex numbers such that

€3, ..., €2 are distinct and |eo| = ... = || = 1. Then, by Proposition 2,

(erzn) (&120) 1 (21, - Z01)) (7)
0

 f—i
ZnZn ]rj,kfj((zlr---rznfl» = Zuﬂez

k
=0 j=
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forevery j € {0,...,k}. By (6) and (7),

K

k
e
zz ]r]-,k,]-((zl,...,zn,l)) = Z uﬂs]l‘ Z WisR(As€1zn)
1=0 s=0

forevery k € {0,...,K}andj € {0,...,k}. Letz, = 1. Then

k K k K
tig—i((z1,- - 20-1)) = Z u]-le'f Z wisR(Ase) = Z u]-le'f Z wisP((z1,--.,20-1,As€1)). (8)
1=0 s=0 1=0 s=0

Leto:{1,...,n—1} — {1,...,n — 1} be a bijection. Then, by (8) and by the symmetry of P,

K
Tk i((Zoy -+ Zo(n=1))) = Y it} Y WksP((Zo(1), -+ Za(u—1) AsE1))
1=0 s=0
£ K
:;)ujlsz X%)wksp((zlr---rznflr)\sgl)) =rix—j((z1,-++,2Zn-1))-
= s=

Thus, 7; x_; is symmetric for every k € {0,...,K} and j € {0, ..., k}. By the induction hypothe-
sis, every #-polynomial 7; ; _; can be represented as an algebraic combination of *-polynomials
Ha(yn_l). Since

Y (1 zen) = B (2 2w) = 2020
for every v = (71,72) € Z2, it follows that P can be represented as an algebraic combination

of x-polynomials HSY”) and *-polynomials, defined by C" > (z1,...,z,) — z)'Zy* € C, where

v = (711,72) € Z2. Therefore,
K k . i
P(z) =Y ) 2z 'Qjx—i(2),
k=0j=0
where Q;;_; is an algebraic combination of *-polynomials Hﬂ(yn) for every k € {0,...,K} and

j € {0,...,k}. Since *-polynomials HSY") are symmetric, it follows that *-polynomials Q;x_;
are symmetric. Since #-polynomials P and Q; x; are symmetric, it follows that

K k
.
PR) = Y Y b Q)
k=0j=0

for every m € {1,...,n}. Therefore,

n n K k ; .
Pz)=Y Y Y 2hih Qi i(2),
m=1 m=1k=0j=0
that is,
K k n ki
nP(z) =Y Y Y zZhzy ' Qjx—i(2).
k=0 j=0m=1
Thus,
1 K k (n)
P(Z) = n Z Z H(]',k,]')(z)Qj,k—j(z)'
k=0 j=0

Hence, P is an algebraic combination of *-polynomials Hg"). This completes the proof. O
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IToHATTS *-MOAIHOMA € IPUPOAHMM y3araAbHEHHSIM IIOHSTTSI HOAITHOMA MiXX KOMITA€KCHVMU Be-
KTOPHMMM ITpocTOpaMit. *-IToAiHOM — Ie PYHKIIiST MiX KOMIIAEKCHVMY BeKTOPHIMI IIPOCTOPaMM
X Ta Y, sika € CyMOIO Tak 3BaHUX (p, ])-IIOAIHOMIB. B cBOIO Uepry, AAsI HEBiA'€MHIX LIIAVIX UMCEA p
ig, (p,q)-moainom — ne dpyHkuis Mix mpocropami X Ta Y, sIka € 3By>KEHHSIM Ha AlarOHAAb Ae-
SIKOTO BiAOOpakeHHsI, IO Ai€ 3 AeKapPTOBOTO CTETIeHS XPH1 B Y, sike € AiHITHMM BiAHOCHO KOKHOTO
31 CBOIX MEpIIMX p apTyMeHTiB, aHTUAIHIITHIM BiAHOCHO KOXKHOTO 3i CBOIX OCTaHHIX § apTyMeHTIB i
iHBapiaHTHMM BiAHOCHO IEPECTaHOBOK OKPeMO IepPIMX p apTyMeHTIB i OCTaHHiX § arpyMeHTiB.

B aaHilt po6oTi I06yA0BaHO (POPMYAU AASI 3HAXOAKEHHS (P, §)-TTOAIHOMIAABHMX KOMIIOHEHTIB
*-TIOAIHOMIB, SIKi AIFOTh MiXX KOMIIA@KCHMMM BeKTOpHMMM ITpocTopamu X Ta Y, 32 3HAUeHHSIMI LIIX
*-MoAIHOMiB. Lelt pe3yAbTaT BUKOPMCTAHO AASI AOCAIAJKEHHSI *-TIOATHOMIB, SIKi AIFOTb 3 11-BUMipHOTO
KOMIIAeKCHOTO BekTopHOro mpocropy C” B C, siki € cuMeTpuaHmMMM, TOO6TO, iHBApiaHTHMMM BiAHO-
CHO TIepecTaHOBOK KOOPAMHAT IXHbOro aprymenTa. ITokasaHo, 110 KOXKeH CMMeTPMYHMIA *-TIOAIHOM,
stz Aje 3 C" B C, MOXHA TIOAATH Y BUTASIAL aArebpaivHOi KOMbIHaLIl AesTkMX “eneMeHTapHUX”
CHMMETPUYHMX *-TIOAIHOMIB.

PesyabTaTii AaHOI POHOTI MOXKYTh 6YTHM BUKOPMCTAHI AASL AOCAIAKEHHS aArebp, IOpOAKEHIX
CYMEeTPUYHMMM *-TIoAiHOMamy, ski AitoTs 3 C* B C.

Kutouosi ciosa i ppasu: (p, q)-TIOAIHOM, *-TIOAIHOM, CUMETPIYHWIA *-TIOAIHOM.
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ZABAVSKY B.V., ROMANIV O.M.

COMMUTATIVE BEZOUT DOMAINS IN WHICH ANY NONZERO PRIME IDEAL IS
CONTAINED IN A FINITE SET OF MAXIMAL IDEALS

We investigate commutative Bezout domains in which any nonzero prime ideal is contained in
a finite set of maximal ideals. In particular, we have described the class of such rings, which are
elementary divisor rings. A ring R is called an elementary divisor ring if every matrix over R has a
canonical diagonal reduction (we say that a matrix A over R has a canonical diagonal reduction if
for the matrix A there exist invertible matrices P and Q of appropriate sizes and a diagonal matrix
D = diag(ey, €2, ...,€,0,...,0) such that PAQ = D and Re; C Re;yq forevery 1 <i <r—1). We
proved that a commutative Bezout domain R in which any nonzero prime ideal is contained in a
finite set of maximal ideals and for any nonzero element a € R the ideal aR a decomposed into a
productaR = Q1 ...Qy, where Q; (i = 1,...,n) are pairwise comaximal ideals and rad Q; € specR,
is an elementary divisor ring.

Key words and phrases: Bezout domain, elementary divisor ring, adequate ring, ring of stable
range, valuation ring, prime ideal, maximal ideal, comaximal ideal.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: zabavskii@gmail.com(Zabavsky B.V.), oromaniv@franko.lviv.ua (Romaniv O.M.)

INTRODUCTION

The classical notion of an elementary divisor ring was first introduced by I. Kaplansky
[5]. Among the well-known classes of rings, a special place is occupied by adequate rings
introduced by Helmer [3]. Henriksen proved that in an adequate ring any nonzero prime ideal
is contained in a unique maximal ideal, i.e. an adequate ring is a PM*-ring [4]. Larsen, Lewis
and Shores [6] raised the question: is it true that every commutative Bezout domain, in which
any non-zero prime ideal is contained in a unique maximal ideal, is an adequate ring? In [1],
an example is given for a commutative PM* Bezout domain that is not adequate, but when
is an elementary divisor ring. Gatalevych and Zabavsky proved that a commutative Bezout
domain, in which any nonzero prime ideal is contained in a unique maximal ideal (PM*-
ring), is an elementary divisor ring [9]. While investigating Bezout rings with the Noetherian
spectrum [2], the authors encountered examples of commutative Bezout domains, in which
any nonzero prime ideal is contained in a finite set of maximal ideals. An obvious example of
such a ring is an adequate ring. In this paper, the existence and properties of such rings are
established.

YAK 512.552.13
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We introduce the necessary definitions and facts.

All rings considered will be commutative with identity. A ring is a Bezout ring, if every its
finitely generated ideal is principal. Let GL,(R) be the group (the general linear group) of all
invertible (n x n)-matrices over the ring R. We say that matrices A and B over a ring R are
equivalent if there exist invertible matrices P and Q of appropriate sizes such that B = PAQ.
The fact that matrices A and B are equivalent is denoted by A ~ B. If for a matrix A there
exists a diagonal matrix D = diag(eq, €, ...,€,0,...,0) such that A ~ D and Re; C Re; 1 for
every i then we say that the matrix A has a canonical diagonal reduction. A ring R is called an
elementary divisor ring if every matrix over R has a canonical diagonal reduction.

Let I be an ideal of a ring R. The radical of an ideal I, denoted by rad I or /T, is defined as

radl ={ac€R|a" €Iforsomen € N }.

Obviously, radI = ()| P where specI denotes the set of all the prime ideals of the ring R
Pespec I

containing the ideal I (the spectrum of the ideal I). Note that rad I can be defined differently,

namely rad [ = P, where minspec is the set of minimal ideals of the ideal I, i.e.
Peminspec |

proper prime ideals of spec I, not containing prime ideals from spec I.
Two ideals I, | of a ring R are said to be comaximal if x +y =1 forsomex € I and y € .

1 SECTION WITH RESULTS

Let R be a commutative domain, mspec R be a set of all maximal ideals of the ring R, M be
any maximal ideal of the ring R (M € mspec R). Let us denote by Ry, the localization of the
ring R with respect to the multiplicatively closed set S = R\ M. Note that if R is a commutative
Bezout domain, then Ry, is a local Bezout domain for any maximal ideal M € mspecR. And
since a local Bezout domain is a valuation ring, i.e. a ring in which the set of ideals is linearly
ordered with respect to ideal inclusion, we obtain such a result.

Proposition 1. Let R be a commutative Bezout domain. For any maximal ideal M € mspec R,
the set of the prime ideals of R, contained in M, is linearly ordered with respect to inclusion.

The Proposition 1 shows that spec R is a tree [1].
Let us consider the case of the commutative Bezout domain R in which the set minspec R
is finite for any nonzero element a € R.

Theorem 1. Let R be a commutative Bezout domain, a be a nonzero element R such that
minspecaR is a finite and any prime ideal of specaR is contained in a unique maximal ideal.
Then the factor ring R/aR is the direct sum of valuation rings.

Proof. Let Py, P,,...,P, € minspecaR. We consider the factor ring R = R/aR. We denote
P; = P;/aR, where P; € minspecaR, i = 1,2,...,n. Note that P; € minspec R are all minimal
prime ideals of the ring R. Moreover, by Proposition 1, the ideals P; are comaximal in R.

—  on_
Obviously, rad R = () P;, and by the Chinese remainder theorem we have
i=1

R/radR=R/P1®R/P,®...®R/P,.
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Since any prime ideal of specaR is contained in a unique maximal ideal, R/P; are valuation
rings. Moreover, there exist pairwise orthogonal idempotents ey, ..., ey, wheree; € R/P; such
thate; + ...+ e, = 1. Then, by lifting the idempotent ¢; modulo rad R to pairwise orthogonal
idempotents ey,...,8, € R we find that 1 — (e; ...+ e,) is an idempotent and 1 — (e; + ... +
en) € rad R, which is possible only if it is zero. Therefore,

R=#R®&R® - - ®e,R
and each &R is a homomorphic image of R, i.e. a commutative Bezout ring. Since any prime
ideal of R is contained in a unique maximal ideal, R is a valuation ring. O

A minor modification of the proof of Theorem 1 gives us the following result.

Theorem 2. Let R be a commutative Bezout domain in which any nonzero prime ideal is
contained in a finite set of maximal ideals. Then for any nonzero element a € R such that the
set minspecaR is finite, the factor ring R = R/aR is a direct sum of semilocal rings.

Proof. According to the notations from Theorem 1 and its proof, we have

R

GiRD &R @ ... DeyR.

Since any prime ideal of the ring R is contained in a finite set of maximal ideals, ¢;R is a
semilocal ring. O

Obviously, if a commutative ring R is a direct sum of valuation rings R;, then R is a commu-
tative Bezout ring. Leta = (ay,...,a,), b = (by,...,b,) be any elements of R, where a;, b; € R;,
i=1,2,...,n. Since R; is a valuation ring, a; = r;s;, where 7;R + b;R = R and s/R; + b;R; # R;
for any non invertible divisor s/ of the element s;. If r = (r,...,74),5 = (s1,...,5,) then obvi-
ously a = rs, ¥R 4+ bR = R. For each i such that s/ is a non invertible divisor of s; € R;, we have
siR; + bjR; # R;. Hence s'R + bR # R, i.e. a is an adequate element.

Recall the definitions.

Definition 1. An element a of a commutative ring R is called adequate, it for every element
b € R one can find elementsr,s € R such that:

1) a=rs;
2) R+ bR = R;
3) 'R+ bR # R for any s’ € R such thatsR C s'R # R.

The most trivial examples of adequate elements are units, atoms in a ring, and also square-
free elements [8].

A ring R is said to be everywhere adequate if any element of R is adequate.

Note that, as shown above, in the case of a commutative ring, which is a direct sum of valu-
ation rings, any element of the ring (in particular zero) is adequate, i.e. this ring is everywhere
adequate. Moreover, by [10], this ring is clean, i.e. a ring in which any element is the sum of
an idempotent and an invertible element.
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Definition 2. A ring R is called a ring of stable range 1 if for every a,b € R such thataR + bR = R
there exists an element t € R such that (a + bt)R = R.

Definition 3. An nonzero element a of a ring R is called an element of almost stable range 1 if the
quotient-ring R/aR is a ring of stable range 1.

Any ring of stable range 1 is a ring of almost stable 1 (see [7]). But not every element of
stable range 1 is an element of almost stable range 1. For example, let e be a nonzero idempotent
of a commutative ring R and eR + aR = R. Then ex + ay = 1 for some elements x,y € R and
(I1—e)ex+ (1—e)ay = 1—e¢,s0oe+a(l —e)y = 1. And we have that ¢ is an element of
stable range 1 for any commutative ring. However if you consider the ring R = Z x Z and the
element e = (1,0) € R then, as shown above, ¢ is an element of stable range 1, by R/eR = Z,
and e is not element of almost stable range 1. Moreover, if R is a commutative principal ideal
domain (i.e. ring of integers), which is not of stable range 1, then every nonzero element of R
is an element of almost stable range 1.

Definition 4. A commutative ring in which every nonzero element is an element of almost
stable range 1 is called a ring of almost stable range 1.

The first example of a ring of almost stable range 1 is a ring of stable range 1. Also, every
commutative principal ideal ring which is not a ring of stable range 1 (for example, the ring of
integers) is a ring of almost stable range 1 which is not a ring of stable range 1.

We note that the semilocal ring is an example of a ring of stable range 1. Moreover, the
direct sum of rings of stable range 1 is a ring of stable range 1. As a result, we obtain the result
from the previous theorems.

Theorem 3. Let R be a commutative Bezout domain, a be a nonzero element R such that the
set minspecaR is finite and any prime ideal of specaR is contained in a unique maximal ideal.
Then the factor ring R/aR is everywhere adequate if and only if R/aR is a direct sum of a
valuation rings.

Proof. Since R be a commutative Bezout domain, a be a nonzero element R such that the set
minspecaR is finite and any prime ideal of specaR is contained in a unique maximal ideal,
factor ring R/aR is a semilocal ring. By [6] proof the semilocal ring R is everywhere adequate
if and only if R is a direct sum of a valuation rings. O

Theorem 4. Let R be a commutative Bezout domain and a be a nonzero element of R such that
the set minspecaR is finite, and any nonzero prime ideal spec aR is contained in a finite set of
maximal ideals. Then a is an element of almost stable range 1.

The proof of the Theorem 4 is similar to the proof of the Theorem 3.

Proposition 2 ([2]). Let R be a commutative Bezout domain in which any nonzero prime ideal
is contained in a finite set of maximal ideals. Then the following properties are equivalent:

1) for any nonzero element a € R there exists a representation aR = Q...Q,, where
Q1,...,Qy are pairwise commaximal ideals such that rad Q; is a prime ideal;

2) minspecaR is finite.
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As a result of Proposition 2 and Theorem 4 we obtain the following results.

Theorem 5. Let R be a commutative Bezout domain in which any nonzero prime ideal is
contained in a finite set of maximal ideals and for any nonzero element a € R there exists
a representation aR = Qy...Qy, where Qy, ..., Q, are pairwise comaximal ideals such that
rad Q; € spec R. Then R is a ring of almost stable range 1.

Proof. Since R be a commutative Bezout domain in which any nonzero prime ideal is contained
in a finite set of maximal ideals and for any nonzero element a € R there exists a representation
aR = Q1...Qu, where Qq, ..., Q, are pairwise comaximal ideals such that rad Q; € specR,
minspecaR is finite. By Theorem 4, a is an element of almost stable range 1. Then R is a ring
of almost stable range 1. O

Since a commutative Bezout ring of almost stable range 1 is an elementary divisor ring [7],
as a result, we obtain the following.

Theorem 6. Let R be a commutative Bezout domain in which any nonzero prime ideal is
contained in a finite set of maximal ideals and for any nonzero elementa € R let the ideal aR
is decomposed into a product aR = Q1 ...Qy, where Q; (i = 1,...,n) are pairwise comaximal
ideals and rad Q; € spec R. Then R is an elementary divisor ring.

Open Question. Is it true that every commutative Bezout domain in which any non-zero
prime ideal is contained in a finite set of maximal ideals is an elementary divisor ring?
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COMMUTATIVE BEZOUT DOMAINS

3abascokmit B.B., Pomanis O.M. Komymamuseri o6acmi besy, 8 axux 0oeinbHuil HeHy1woeuil npocmuii
i0ean micmumucs Y CKiHUeHHITl MHOJCUHT MakcumanoHux ideanis // Kapnarceki MmaTteM. my6a. — 2018.
— T.10, Ne2. — C. 402-407.

AOCAIAXKYIOTBCS KOMYTaTVBHI 06AacTi besy, sikmx AOBIABHMIT HEHYyABOBUMIL IIPOCTMIA iaean Mi-
CTUTBCSL B CKiHUEHHIl MHOXIHI MaKCMMaAbHMX iaeaniB. 30KpeMa OIMMCAaHO KAAc TaKMX Kirellb, siki
€ KIABIISIMM eAeMeHTapHMX AIABHMKIB. Kiablle R HasMBaeThcsI KiAblIeM eAeMeHTapHMX AIABHMKIB,
SIKIITO KOXKHa MaTpuIls Haa R BOAOAi€ KaHOHIUHOIO AlaTOHAABHOIO peAyKIlieo (MaTpuils A BOAOAiE
KAHOHIYHOIO  AIarOHAABHOIO  PEeAYKIIi€lo, sKIIO icHye Taxa AlarOHaAbHAa  MaTpuIIs
D = diag(sl,SZ, ., €r,0,...,0), mo matpuui A Ta D exsiBareHTHi i Re; C Rejy1 AASI KOXKHOTO
1 <i < r—1). 3oxkpeMa, MU AOBEAH, IIIO KOMyTaTUBHA 00AacTb be3y R, B sIKilt KOXXeH HEHYABOBUIA
MPOCTVIA iAeaA MiCTUTBCS B CKiHUeHHI MHOXKMHI MaKCMMaAbHMX iAeaAiB i AAST AOBIABHOIO eAeMeHTa
a € Rinean aR po3kraraeTbest B A06yTOK aR = Q... Qy, 2e Q; (i =1,..., 1) € mOAPHO KOMAaKCH-
MaabHUMM inearamu irad Q; € spec R, € KiAblieM eAeMeHTapHUX ALABHUKIB.

Kntouosi crosa i ppasu: xiablie besy, Kiablle exeMeHTapHMX AIABHMKIB, aAeKBaTHe KiAblle, Kiablle
CTabiABHOTO paHIy, KiAblle HOpMYBaHHsI, IPOCTIIT iAean, MaKCMMAABHIM iAean, KOMaKCUMaABHINI
iAeaA.
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SALO T.M.!, TARNOVECKA O.YU.2

THE CONVERGENCE CLASSES FOR ANALYTIC FUNCTIONS IN THE REINHARDT
DOMAINS

Let L? be the class of positive increasing on [1,+o0) functions ! such that I((1 + o(1))x) =
(1+0(1)I(x) (x — +oo) We assume that « is a concave function such that a(e¥) € L and function
B € L° such that fl x)/B(x)dx < 4co. In the article it is proved the following theorem: If
f(z) = ZHWH _onZn, Z € CV is analytic function in the bounded Reinhard domain G C C?, then the

condition j %Mﬁ < 400, MG(R, f) = sup{|F(Rz)|: z € G}, yields that

oo e
kZ(“(k) —a(k=1))p1 (k/In" |A¢]) < oo, Bi(x) = %, A = max{|ay|: [|n]| = k}.
—0 e

Key words and phrases: analytic function, Reinhardt domain, convergence class.

1 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
2 National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova str. 61002, Kharkiv, Ukraine
E-mail: tetyan.salo@gmail.com(Salo T.M.), savinskaolga@gmail.com (Tarnovecka O.Yu.)

1 INTRODUCTION

We denote by A?(G), p € N, the class of analytic functions f in G C CP, represented by
power series of the form

+00

f(z) = f(z1,...,2p) = Z a,z", z=(z1,...,2p), (1)
[[n]|=0

with the domam of convergence G, where 2" = z| ...ZZ”, n=(m,..n) €Z, |n| =
y? =117 j; EF == AP(CP) is the class of entire functions in several variables (i.e., analytic functions
in CV) From the one hand, it is well-known that every analytic function f in the complete
Reinhardt domain G with center at z = 0 can be represented in G by the series of form (1).
On the other hand, the domain of convergence of each series of form (1) is the logarithmically-
convex complete Reinhardt domain with center z = 0.

We say that a domain G C C7 is the complete Reinhardt domain if:

a) z = (z1,...,2p) € G = (VR = (Ry,...,Rp) € [0,1]P): Rz = (Ryz1,...,Rpzp) € G (a
complete domain);

b) (z1,...,zp) € G = (V(61,...,0,) € RP) : (z1",...,zpe'%) € G (a multiple-circular
domain).
YAK 517.5
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The Reinhardt domain G is called logarithmically-convex if the image of the set G* = {z €
G:zi-...-zp # 0} under the mapping Ln: z — Ln(z) = (In|z|,...,In|z,[) is a convex set in
the space R”.

In one complex variable (p = 1), a logarithmically-convex Reinhardt domain is a disc.

The following complete Reinhardt domains (p > 2) are considered most frequently:

Cy(R) :={z€CP: |z1] <Ry,...,|zp| <Ry}, R=(Ry,...,Rp) € (0,400)", (polydisk),
B,(r) := {z € CP: |z| := \/\zlyz Fo |z <} (ball),
I,(r) :={z € CP:|z1| +...+|zp| <71}, r>0.

Remark 1. C;(R) C G forevery w = (wy,...,wp) € Gand R = (|w],...,|wy|). In particular,
Cp(rw) C G, forevery w = (wy, ..., wp) € G.

The domains Cp(re1), e1 = (1,...,1) € R?, By(r), I1,(r) (r > 0) are the logarithmically-
convex complete Reinhardt domains. But, for example, the complete Reinhardt domain

G={z=1(z1,2p): |z1] <1, |z2| <2} U{z = (21,2p): |z1] < 2,|22] < 1}

is not logarithmically-convex.
For a domain G and any R € (0,1) we denote Gk = R-G := {Rz: z € G}, and for a
function f € AP(G) of the form (1) set

Mg(R, f) = max{|f(z)| : z € Gr}, uc(R, f) = max{|a,z"|: z € Gg, n € Z},
dg(n) = max{|z"|: z € G}.
Note, that dg(n) = 1in the case G = Cp(e1).
Let us denote by L the class of positive increasing on [0, +c0) functions, and by L the class
of functions & € L such that w((1+40(1))x) = (1 +o0(1))a(x) (x — 4o0).
Fora € L and B € L we consider the following convergence classes of integrals (in one
variable definition see in [1])

1
x(in* Mg (R, f))
| TR Ayt R < @

1

a(In" pG(R, f))

dR < +oco. 3
| o RpR - R o
0

By &£ 5 and £ Z we denote the classes of entire functions f € £F for which conditions (2) and

(3) are fulfilled, respectively.

We prove the following theorem.

Theorem 1. Leta be a concave function on [xg, +c0), a(e¥) € L?, and a function B € L? satisfies
the conditions xp'(x)/B(x) —2 > h > 0 on [x, +o0) and fxﬁoo %dx < +o00. In order that the
function f € EF(G) of form (1) belongs to the class £ 5((}), it is necessary that

+00
_dt )

pa k
Y- (0(k) ~ak—0)pr (= ) < oo o) = [ 50

k=0 In* | Ak | J

where Ay := max{|a,| : ||n|| = k}.
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2 THE PROOF OF THE MAIN RESULT

Proposition 1. For each function f € £P(G) and any functions «, § € L, we have the following

implication f € aﬁ(G) — F ¢ 5%

The statement of this propositions follows from Proposition 2.

Proposition 2. For every function f € EP(G) and for any r € (0,1)

1
— k.
ug(r,F) = max{Byr*: k > 0} < Mg(r, f) < c(1 — r)pHVG( 5

where ¢ = c(p) < +oo.
Lemma 1 ([2]). Letr € (0,1), T € CF,k >0,
By = max{laalde(n): [l =K}, Be(t) = X ant’, Fir) = Y Ma(L, B
In]|=k k=0
Then
By < Mg(1,P) < Bp(k+1)%, pp(r) = max{Mg(1, P)r* : k >0} < Mg(r, f) < Fi(r).
Proof of Proposition 2. By Lemma 1,
uG(r,F) =max{|a,z"|: z € G, n € Z"} = max{|ay| max{|z"|: z € G,, }: n € Z'}
:max{}an}dg(n)rk: nezbl,|n||=k>0}
= max { max { |a,|dg(n): n € 2%, ||n|| = k}r*: k > 0} = max{B*: k > 0}
<max{Mg (1, P)r* : k> 0} = ur, (r) < Mg(r, f).
On the other hand,
R PN —

Mc(r, f) <Y Y |an|max{|z ‘:zeGr}zlg<1+r) Y. lan| max{|z"|: z G%}

k=0 {|n|=k In]|=k

T4+r N/ 2r \k 1 1+r
< P < = .
<no(— ’F>k§)<1+r) (e+1) _C(l—r)i’”‘;( 7 F) e =elp) < oo
The proof of Theorem 1. Let
BE(R) =Y " BRY, F(R) =Y T ARY, Re(0,1).

From Remark 1 it follows
ArRF =max{|as|: ||n| = k}R* = max{|a,| max{|z|": z € Cp(e1)}: ||n]| = k}RF

= max{|a,| max{|z|": z € Cy(Re1)}: ||n|| = k} max{|a,| max{|z|": z € Gr}: ||n|| = k}

— max{|a,| max{|z|": z € G}: ||n|| = k}RF = max{|a,|ds(n): ||n| = k}RF = BxRE.

Therefore, jr,(R) < ur, (R) = ug(R,F), R € (0,1).
Hence, by Proposition 2

(In™
f e &l :>/1_ z[ﬁ} R) Ryt R < e

Thus, from Theorem 2 in [1] it follows that for the function F; condition (4) holds. O
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In the case a(x) = x, B(x) = e, p > 0, we obtain the following converse statement to
Theorem 1.

Theorem 2. Let f € £P(G) of form (1) with G = Cp(e1), Ay = max{|a,|: ||n]|} =k > 0. If
Ax/Axsq /lasky < k1 400 and

:Z_o: (1HJ;{Ak)2exp{ _ lnkak} < 400,

then

dR < +oo.

/1 In" M¢(R, F)
(1—R)*exp{p/(1—R)}

0

From Lemma 1 we obtain the following statement (see also proof of Proposition 2).

Lemma 2. ForR € (0,1)

e R) = 1 () = ey fR)psz(l ;R)

Then Ay = By. The statement of Theorem 2 follows from Theorem 6 in [1] in a similar way
as in the proof of Theorem 1 we use Theorem 2 from [1].
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Hexatt L0 — xaac aopaTHMX HecmaaHux Ha [1,+00) dymkuiit [ takmx, mo [((1+ o(1))x) =
(14 0(1))I(x) (x — +00). [TpumycTuMo, o & — BrHyTa pyHKLIs Taka, mwo «(e*) € L, a pyHkuis
B € L° Taxa, mo fl+°° a(x)/B(x)dx < +o0. Y cTaTTi AOBEACHO TEOPEMY: SIKIIO f(z) = ZM‘I’:O anZn,
z € C?, — aHaAiTMuHA B 06MexXeHil obaacTi Peitarapaa G C CP dyHKIis, TO 3 TOTO, IO BUKOHY€-

THCSI yMOBa } ( a(In* Mg(R,f))
Ro

lelz < +o0, MG(R,f) = Sup{|F(RZ)| YA G}, BUIIAMBaAE, 110

+oo e
kE(“(k) —a(k—1))p1 (k/In" |A¢]) < +oo, Bi(x) = %, Ay = max{|ay|: [|n]| = k}.
—0 X

Kntouosi cnosa i ¢ppasu: aHaAiTMUHA PYHKIIisI, 06AacTh PeltHrapaa, kAac 361KHOCTI.



