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BARANETSKIJ YA.O.1 , IVASIUK I.YA.2 , KALENYUK P.I.1 , SOLOMKO A.V.2

THE NONLOCAL BOUNDARY PROBLEM WITH PERTURBATIONS OF

ANTIPERIODICITY CONDITIONS FOR THE ELIPTIC EQUATION WITH

CONSTANT COEFFICIENTS

In this article, we investigate a problem with nonlocal boundary conditions which are perturba-

tions of antiperiodical conditions in bounded m-dimensional parallelepiped using Fourier method.

We describe properties of a transformation operator R : L2(G) → L2(G), which gives us a connec-

tion between selfadjoint operator L0 of the problem with antiperiodical conditions and operator L

of perturbation of the nonlocal problem RL0 = LR.

Also we construct a commutative group of transformation operators Γ(L0). We show that some

abstract nonlocal problem corresponds to any transformation operator R ∈ Γ(L0) : L2(G) → L2(G)

and vice versa. We construct a system V(L) of root functions of operator L, which consists of infinite

number of adjoint functions. Also we define conditions under which the system V(L) is total and

minimal in the space L2(G), and conditions under which it is a Riesz basis in the space L2(G).

In case if V(L) is a Riesz basis in the space L2(G), we obtain sufficient conditions under which

the nonlocal problem has a unique solution in the form of Fourier series by system V(L).

Key words and phrases: differential-operator equation, eigenfunctions, Riesz basis.
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1 INTRODUCTION

Investigation of ordinary differential equations with nonlocal integral conditions begins in

works of H. Birkoff, A. Zommerfeld, J. Stone, Ya.D. Tamarkin, W. Feller. Fundamental role in

development of nonlocal problems and shift operator theory play works of T. Carleman. The

general theory of eliptic boundary problems was formed due to investigations of Y.G. Beid

and R.S. Friman, R. Bills, F. Brauder, L. Ehrenpreis, L. Hermander, G. Grub, J.W. Kalkin,

Ya.B. Lopatynskiy, M. Malgrange, I.V. Skrypnyk, M. Shekhter, M.I. Vishyk. Nonlocal bound-

ary problems for linear differential equations with partial derivatives in different aspects were

investigated by Yu.M. Berezanskiy, A.V. Bitsadze, V.M. Borok, M.L. Gorbachuk, O.O. Dezin,

Yu.M. Dybinskiy, M.I. Ionkin, V.S. Ilkiv, P.I. Kalenuyk, A.H. Mamyan, V.A. Mykhailets,

B.Yo. Ptashnyk, V.K. Romanko, O.A. Samarskiy, O.L. Skubatchevkiy, S.Ya. Yakubov. Non-

local elliptic problems were studied in works of A.V. Bitsadze, O.O. Dezin, A.I. Kamynin,

S.A. Paneyakha, Ya.A. Roytberg and Z.G. Sheftel, A.A. Samarskiy, L.A. Skybatchevkiy and

their followers.

УДК 517.927.5, 517.984.5
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This paper is denoted to research of nonlocal problems for equations with constant coef-

ficients. The classes of uniqueness and existence of the solution of boundary value problems

in unbounded domains (half-space, unbounded strip) for equations with constant coefficients

were studied in [7, 8, 11, 12, 17, 22–26].

Boundary value problems in bounded domains for certain classes of differential equations

with constant coefficients have been studied in [1, 9, 10, 13–16, 18, 20, 21, 27, 28]. The work is a

continuation of the studies begun in [2–6].

Let us denote Z0 := {k : k ≥ 0, k ∈ Z}, β = (β1, β2, . . . , βm) ∈ Z
m
0 , |β| = β1 + . . . + βm,

G := {x = (x1, x2, . . . , xm) ∈ R
m : 0 < xj < Xj < ∞ , j = 1, 2, . . . , m},

Gr := {xr = (x1, . . . , xr−1, xr+1, . . . , xm) ∈ R
m−1 : 0 < xj < Xj < ∞, j 6= r, j = 1, 2, . . . , m}.

Let Dj be the operator of differentiation by variable xj. Denote D2β := D
2β1
1 D

2β2
2 · . . . · D

2βm
m ,

W2n
2 (G) := {y ∈ L2(G) : D2βy ∈ L2(G), |β| = n},

(y, z; W2n
2 (G)) :=

m

∑
j=1

(D2n
j y, D2n

j z; L2(G)), |y; W2n
2 (G)|2 :=

m

∑
j=1

(D2n
j y, D2n

j y; L2(G)).

Also we will use the following notations. Let Ej be the identical transformation in the space

L2(0, Xj); E be the identical transformation in the space L2(G); Ij be an operator of involution

in the space L2(0, Xj), Ijz(x) := z(Xj − x), z(x) ∈ L2(0, Xj); pj be an orthoprojector in the

space L2(0, Xj); pjz(x) := 1
2(z(x) + (−1)jz(Xj − x)), z(x) ∈ L2(0, Xj); L2,r(0, Xj) :=

{

z(xj) ∈
L2(0, Xj) : z(xj) := prz(x)

}

, r = 0, 1; W∗
2n

(

0, Xj

)

be the space of linear continuous functionals

on W2n
2 (0, Xj); W∗

2n,s(0, Xj) :=
{

l ∈ W∗
2n(0, Xj) : l(eihx − (−1)seih(Xj−t)) = 0, h ∈ R, xj ∈

(0, Xj)
}

, s = 0, 1; Qm := {Q := (q1, q2, . . . , qm) ∈ Zm, qr ∈ {0, 1}, r = 1, 2, . . . , m}; pq :=
m

∏
r=1

pqr be an orthoprojector in the space L2 (G) ; L2,Q(G) := {y ∈ L2(G) : y := pQy}.

Let us consider boundary problem

L(D)y := ∑
|β|≤n

(−1)|β|aβD2βy = f , x ∈ G, (1)

ℓs,jy := D2s−2
j y|xj=0 + D2s−2

j y|xj=Xj
= 0, j = 1, 2, . . . , m, (2)

ℓn+s,jy := D2s−1
j y|xj=0 + D2s−1

j y|xj=Xj
+ l1

s,jy = 0, j = 1, 2, . . . , m, (3)

where

ℓ
1
s,jy :=

1

∑
r=0

ms,j

∑
q=0

bq,r,s,jD
q
j yxj=rXj

, (4)

bq,r,s,j ∈ R, q = 0, 1, . . . , ms,j, r = 0, 1, s = 1, 2, . . . , n, j = 1, 2, . . . , m.

Let us denote by L : L2(G) → L2(G) the operator of problem (1)–(4), Ly := L(D)y,

y ∈ D(L), D(L) := {y ∈ W2n
2 (G) : ℓs,jy = 0, s = 1, 2, . . . , 2n, j = 1, 2, . . . , m}.

Definition 1. We will denote by function y ∈ D(L) a solution of the problem (1)–(4) that

satisfies ‖Ly − f ; L2(G)‖ = 0.
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2 GENERAL RESULTS

Let us consider the following assumptions

P1 : bq,1,s,j = (−1)qbq,0,s,j;

P2 : ms,j ≤ 2s − 1, s = 1, 2, . . . , n;

P3 : |λk| ≥ C1|k|2n
> 0, 0 < C1 < ∞, k ∈ N

m;

P4 : p1X1 + p2X2 + . . . = pmXm 6= 0, pj ∈ Z, j = 1, 2, . . . , m.

Theorem 1. Let P1 holds. Then for arbitrary numbers aβ ∈ R, |β| ≤ n, the operator L has

eigenvalues

λk := ∑
|β|≤n

aβ

m

∏
j=1

ρ
2βj

k,j , (5)

ρk,j := (2kj − 1)πX−1
j , j = 1, 2, . . . , m, k = (k1, k2, . . . , km) ∈ Nm, and a complete and minimal

system V(L) of root functions exists in the space L2(G).

Theorem 2. Let P1–P2 hold. Then the operator L has a system V (L) of root functions, which is

a Riesz basis for the space L2(G).

Theorem 3. Let the assumptions P1–P2 take place. Then for any function f ∈ L2(G) there exists

a unique solution of the problem (1)–(4).

3 SELF-ADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS OF EVEN ORDER

Let us denote by A0,j the operator generated in L2

(

0, Xj

)

by the next boundary problem

−z(2)(xj) = g(xj), xj ∈ (0, Xj),z(0) + z(Xj) = 0, z(1)(0) + z(1)(Xj) = 0, j = 1, 2, . . . , m,

A0,jy(xj) := −y(2)(xj), y ∈ D(A0,j) and D(A0,j) :=
{

y ∈ W2
2 (0, Xj) : y(r)(0) + y(r)(Xj) =

0, r = 0, 1
}

, τ1,k j
(xj) := 2√

2Xj
cos ρk,jxj, kj = 1, 2, . . . , τ0,k j

(xj) := 2√
2Xj

sin ρk,jxj, kj = 1, 2, . . . ,

τj := {τr,k j
(xj) ∈ L2(0, Xj), r = 0, 1, k = 1, 2, . . . } is an orthonormal basis of the space

L2(0, Xj), j = 1, 2, . . . , m.

Lemma 1. The operator A0,j has the point spectrum

σ(A0,j) := {µk,j ∈ R : µk,j = ρ2
k,j, k = 1, 2, . . . }

and a system of eigenfunctions Tj. Sets L2,s(0, Xj) are invariant for the operator A0,j, s = 0, 1.

Proof. By substitution we obtain that τr,k j
(xj) ∈ D(A0,j) and A0,jτr,k j

(xj) = µk,jτr,k j
(xj), r =

0, 1, k = 1, 2, . . . .

Therefore operator A0,j has a system of eigenfunctions Tj, which corresponds to the set of

eigenvalues σ
(

A0,j

)

.

Let us notice that subset of eigenfunctions Tj,r := {τr,k j
(xj) ∈ L2(0, Xj), k = 1, 2, . . .}, A0,j is

an orthonormal basis in the space L2,r(0, Xj), r = 0, 1.

Let us consider for equation (1) the following problem with boundary conditions

ℓ0,s,jy := D2s−2
j y|xj=0 + D2s−2

j y|xj=Xj
= 0, s = 1, 2, . . . , n, j = 1, 2, . . . , m, (6)



218 BARANETSKIJ YA.O., IVASIUK I.YA., KALENYUK P.I., SOLOMKO A.V.

ℓ0,n+s,jy := D2s−1
j y|xj=0 + D2s−1

j y|xj=Xj
= 0, s = 1, 2, . . . , n, j = 1, 2, .., m. (7)

Let L0 : W2n
2 (G) → W2n

2 (G) be the operator of problem (1), (6), (7). Also we denote by L0y :=

L(D)y, y ∈ D (L0) ; D(L0) := {y ∈ W2n
2 (G) : ℓ0,s,jy = 0, s = 1, 2, . . . , 2n, j = 1, 2, . . . , m};

V(L0) := {v0,r,k(x) ∈ L2(G) : v0,r,k(x) :=
m

∏
j=1

τrj,k j
(xj), rj ∈ {0, 1}, j = 1, 2, . . . , m, k ∈ Nm}

the orthonormal basis of the space L2(G); L0,Q the restriction of the operator L0 to the space

L2,Q(G) and

VQ := {v0,q,k(x) ∈ L2(G) : v0,k(x) :=
m

∏
j=1

τqj,j(xj), kj = 2kj − jr, k ∈ N
m}, Q ∈ Qm.

Lemma 2. The operator L0 has eigenvalues (5) and a system of eigenfunctions V(L0).

Proof. By a substitution it is easy to check that v0,r,k(x) ∈ D(L0), L0v0,r,k(x) = λkv0,r,k(x),

k ∈ N
m.

Therefore, the operator L0 has a system of eigenfunctions V(L0) which corresponds to the

set of eigenvalues σ(L0) := {λk ∈ R, k ∈ Nm}.

4 NONSELFADJOINT PROBLEM OF ORDINARY DIFFERENTIAL EQUATION OF THE SECOND

ORDER

Let us consider the following spectral boundary problem

− z(2)(xj) = µz(xj), xj ∈ {0, Xj}, µ ∈ C, (8)

z(0) + z(Xj) = 0, z(1)(0) + z(1)(Xj) + b(z(1)(0)− z(1)(Xj)) = 0. (9)

Let Bj = Bj,b be the operator of problem (8), (9). Solutions ±ρ of the characteristic equation

−ρ2 = λ are such that Reµ ≤ 0.

We define the fundamental system of solutions of the equation (8) by equations

zr(xj, ρ) := exp ıρxj + (−1)r exp ıρ(Xj − xj) ∈ L2,r(0, Xj), r = 0, 1.

The general solution of equation (8) can be represented as the sum

z
(

xj, ρ
)

:= c0z0

(

xj, ρ
)

+ c1z1

(

xj, ρ
)

.

If we substitute this solution into boundary conditions (9), we obtain an equation which roots

define eigenvalues of the operator Bj

∆(ρ) := ∆0(ρ)∆1(ρ) = 0, (10)

where ∆0(ρ) = (1 + exp ıρXj), ∆1(ρ) = ıρ(1 + exp ıρXj).

Equation (10) has two-fold roots ±ρk j
, ρk j

:= (2k − 1)πX−1
j , k = 1, 2, . . . . Therefore the

operator Bj has two-fold eigenvalues µk,j = ((2kj − 1)πX−1
j )2, kj = 1, 2, . . . . Since τ2k−1,j(xj) ∈

D(Bj) and Bjτ2k−1,j(xj) = µ2k−1,jτ2k−1,j(xj), kj = 1, 2, . . . , we define eigenfunction of the

operator Bj by the formula

v1,k

(

xj, Bj

)

=
2

√

2Xj
cos ρk,jxj, k = 1, 2, . . . .
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We define an adjoint function of the operator Bj by the following relation

v0,k(xj, Bj) = (1 + cj(2xj − Xj))
2√
2Xj

sin ρk j
xj, cj ∈ C.

If we substitute this expression to boundary condition (9) we define cj = b.

So the operator Bj has an adjoint function

v0,k(xj, Bj) = (1 + b(2xj − Xj))
2√
2Xj

sin ρk j
xj. (11)

Root functions of the operator Bj are defined by equations

Bjv0,k(xj, Bj) = µk,jv0,k(xj, Bj) + ξk,jv1,k(xj, Bj), ξk,j = 4bρk,j, kj = 1, 2, . . . , (12)

Bjv2k−1(xj, ABj) = µk,jv2k−1(xj, Bj), k = 1, 2, . . . . (13)

Since the boundary conditions (9) are regular by Birkhoff, from Shkalikov’s theorem [29] we

obtain: the system V(Bj) is total and minimal in the space L2(0, Xj) for all b ∈ R, j = 1, 2, . . . , m.

Let us prove that V
(

Bj

)

is a Bessel system. Summands in the formula (11) are orthogonal

in the space L2(0, Xj). Therefore for any function h ∈ L2(0, Xj) we have

|(h, v0,k(xj, Bj); L2(0, Xj)|2 ≤ (1 + 2|b|2Xj)||(h, τ2k(xj); L2(0, Xj)|2,

|(h, v1,k(xj, Bj; L2(0, Xj)|2 = |(h, τ2k−1(xj); L2(0, Xj)|2.

If we consider the sum for k = 1, 2, . . . , we have inequality

1

∑
r=0

∞

∑
k=1

|(h, vr,k(xj, Bj); L2(0, Xj)|2 ≤ C2|h; L2(0, Xj)|2, C2 = 1 + 2|b|2Xj.

Therefore V(Bj) is the Bessel system [19] in the space L2(0, Xj).

Analogously we can prove that the biorthogonal system which consists of root functions of

adjoint problem

−z(2)(xj) = µz(xj), z(1)(0) + z(1)(Xj) = 0, z(0) + z(Xj) + b(z(0)− z(Xj)) = 0

is Bessel system in the space L2(0, Xj). Therefore if we apply Bari’s theorem [19] we obtain the

following lemma.

Lemma 3. For any fixed bj ∈ R spectra of operators Bj, A0,j coincide and system of functions

V(Bj) forms a Riesz basis in the space L2(0, Xj), j = 1, 2, . . . , m.

5 TRANSFORMATION OPERATORS OF ORDINARY DIFFERENTIAL EQUATION OF SECOND

ORDER

Let us consider any sequence of real numbers {θk j
}∞

k j=1 and consider in the space L2(0, Xj)

operator A1,j. An eigenvalues of this operator coinside with eigenvalues of the operator A0,j

and root functions can be defined by equations

v1,k,j(xj, A1,j) =
2

√

2Xj
cos ρk,jX

−1
j xj, (14)

v0,k,j(xj, A1,j) = (1 + θk j
(2xj − 1))

2
√

2Xj
sin ρk,jX

−1
j xj, kj = 1, 2, . . . . (15)

Let R
(

A1,j

)

= Ej + S
(

A1,j

)

be the operator which acts by rule V(A0,j) → V(A1,j). From

definition of the operator R(A1,j) we obtain: S2(A1,j) = 0. Therefore R−1(A1,j) = Ej − S(A1,j)

exists.
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Lemma 4. For any sequence {θk j
}∞

k j=1 ⊂ R the system of functions V
(

A1,j

)

are total and min-

imal in the space L2(0, Xj).

Proof. Let us suppose that function h = h0 + h1, hr ∈ L2,r(0, Xj) exists and is orthogonal to all

elements of the system V(A1,j). Since functions (14) are elements of orthnormal basis of the

space L2,1(0, Xj), we obtain h1 = 0 So h = h0 ∈ L2,0(0, Xj).

Since function h is orthogonal to elements of the system V(A1,j), we have:

(h, v0,k(xj, A1,j); L2(0, Xj)) = (h0, τ0,k,j(xj); L2(0, Xj)) = 0, k = 1, 2, . . . .

The system Tj,0 = {τ0,k,j(xj) ∈ L2(0, Xj), k = 1, 2, . . .} is an orthonormal basis in the space

L2,0(0, Xj). So we obtain that h1 = 0.

Therefore h ≡ 0.

Lemma 5. The system of functions V(A1,j) is a Riesz basis in the space L2(0, Xj) if and only if

the sequence {θk}∞
k=1 is bounded.

Proof. Necessity. If the system of functions V
(

A1,j

)

is a Riesz basis in the space L2(0, Xj), then

it is almost normalized.

If we take into consideration (14), (15), we have inequality

0 < 1 ≤ ‖v0,q(xj, A1,j); L2(0, Xj)‖2 = 1 + |θq|2 ≤ C3 < ∞, C3 := 1 + max θ2
q .

Sufficiency. If we take into consideration formulas (12), (13) then for any functions h ∈ L2(0, Xj)

we have inequality

∞

∑
k

j
=1

1

∑
s=0

‖(R(A∗
1,j)h, τs,k j

(xj); L2(0, Xj‖2

=
∞

∑
k j=1

1

∑
s=0

|(h, vs,k j
(xj, A1,j); L2(0, Xj))|2 ≤ C3‖h; L2(0, Xj)‖2.

Therefore the operator R(A∗
1,j) is adjoint to R(A1,j) and bounded in the space L2(0, Xj) →

L2(0, Xj). So operators R(A1,j), R−1(A1,j) = 2E − R(A1,j) are also bounded.

If we take into consideration Lemma 4 and Bari’s theorem [19] we get: the system of func-

tion V(A1,j) is a Riesz basis in the space L2(0, Xj).

6 NONSELFADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATION OF EVEN ORDER

Let us consider for any j ∈ {1, 2, . . . , m} , p ∈ {1, 2, . . . , n} , b ∈ R, the problem

L(D)y := ∑
|β|≤n

aβD2βy = λy, λ ∈ C, (16)

ℓ1,s,qy := D2s−2
q y|xq=0 + D2s−2

q y|xq=Xq = 0, q 6= j, s = 1, . . . , n, q = 1, . . . , m, (17)

ℓ1,n+s,qy := D2s−1
q y|xq=0 + D2s−1

q y|xq=Xq = 0, s 6= p, q 6= j, q = 1, . . . , m, s = 1, . . . , n, (18)

ℓ1,n+s,jy := D2s−2
j y|xj=0 + D2s−2

j y|xj=Xj
= 0, s 6= p, s = 1, 2, . . . , n, (19)

ℓ1,n+s,jy := D2s−1
j y|xj=0 + D2s−1

j y|xj=Xj
= 0, (20)

ℓ1,n+p,jy := D
2p−1
j y|xj=0 + D

2p−1
j y|xj=Xj

+ b(D
2p−1
j y|xj=0 − D

2p−1
j y|xj=Xj

) = 0. (21)
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Let L1,p,j be an operator of the problem (16) – (21), V
(

L1,p,j

)

be the system of root functions

of operator L1,p,j. This operator acts in a following manner L1,p,jy := L(D)y, y ∈ D(L1,p,j),

D(L1,p,j) := {y ∈ W2n
2 (G) : ℓ1,r,jy = 0, r = 1, 2, . . . , 2n, j = 1, 2, . . . , m}.

Let us consider by fixing k(j) := (k1, k2, . . . , kj−1, kj+1, . . . , km) ∈ N
m−1 solutions of the

problem (16) – (21) in a form of product

y(x) := z(xj)
m

∏
r=1,r 6=j

τqr,kr
(xr), kr = 1, 2, . . . , j 6= r, r = 1, 2, . . . , m. (22)

For determination of an unknown function z(xj) we have the following problem

∑
|β|≤n

aβ(−1)βr

m

∏
r=1,r 6=j

(−1)βr ρ
2βr

k,r z(2βj)(xj) = λz(xj), λ ∈ C, (23)

ℓ1,s,jz := z(2s−2)|xj=0 + z(2s−2)|xj=Xj
= 0, s = 1, 2, . . . , n, (24)

ℓ1,n+s,jz := z(2s−1)|xj=0 + z(2s−1)|xj=Xj
= 0, s 6= p, s = 1, 2, . . . , n, (25)

ℓ1,n+p,jz := z(2p−1)|xj=0 + z(2p−1)|xj=Xj
+ b(z(2p−1)|xj=0 − z(2p−1)|xj=Xj

) = 0. (26)

Let L1,k(j) be the operator of the broblem (23) – (26). The operator L0,(k j)
is partial case of

operator L1,k(j), if b = 0.

So

L1,k(j)z(xj) := ∑
|β|≤n

aβ(−1)βs

m

∏
s=1,s 6=j

(ρk,s)
2βs z(2βj)(xj), z ∈ D(L1,k(j)),

D(L1,k(j)) := {y ∈ W2n
2 (0, Xj) : ℓ1,s,jz = 0, s = 1, 2, . . . , 2n}.

Lemma 6. For any aβ ∈ R, |β| ≤ n, k(j) ∈ Z
m−1
0 , p ∈ {1, 2, . . . , n}, b ∈ R, the operator

L1,k(j) has eigenvalues (5) and a system of root functions V(L1,k(j)), which is a Riesz basis in

the space L2(0, Xj).

Proof. The root ωr(k(j), λ) of the equation

∑
|β|≤n

aβ

m

∏
s=1,s 6=j

(ρk,s)
2βs ω2βj = λ, (27)

which is characteristic for the equation (23), we will chose from the condition Re ωn(k(j), λ) ≤
Re ωn−1(k(j), λ) ≤ . . . ≤ Re ω1(k(j), λ) ≤ 0.

Let us consider functions

z0,1(xj, λ) = (2xj − Xj)
2

√

2Xj
sin ω1(k(j), λ)X−1

j xj,

z0,q(xj, λ) :=
1

2
(1 − eωq(k(j),λ)Xj)−1(eωq(k(j),λ)xj + eωq(k(j),λ)(Xj−xj)) ∈ L2,0(0, Xj), q = 2, n,

z0,n+1(xj, λ) = (2xj − Xj))
2

√

2Xj
cos ω1(k(j), λ)X−1

j xj,

z0,n+q(xj, λ) :=
1

2
(1 + eωq(k(j),λ)Xj)−1(eωq(j,k(j),λ)xj − eωq(k(j),λ)(Xj−xj)) ∈ L2,1(0, Xj), q = 2, n.
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If we substitute this expressions in boundary conditions (24) – (26), we will get eigenvalues (5)

and eigenfunctions of the operator L1,k(j)

v1,k j
(xj, L1,k(j)) =

2
√

2Xj
cos ρk,jX

−1
j xj, kj = 1, 2, . . . . (28)

Let ωr(kj , λk) are roots of the equation (27), λ = λk obtained from the equation ω1(kj , λk) =

ıπ(2kj − 1)X−1
j and Re ωn(kj, λk) ≤ Re ωn−1(kj , λk) ≤ . . . ≤ Re ω1(kj, λk) ≤ 0.

Let us consider system of functions

z0,1(xj, kj, λk) = (2xj − Xj))
2

√

2Xj
sin ρk,jX

−1
j xj, kj = 1, 2, . . . , (29)

z0,q(xj, kj, λk) :=
1

2
(1 + e

ωq,kj
λkXj)−1((e

ωq,kj
(λk)xj − e

ωq,kj
(λk)(Xj−xj))), kj = 1, 2, . . . , (30)

and a square matrix of the order n, which elements we can define as follows: p-th row defined

by functions (29), (30) and elements of other rows defined by numbers

ηq,r,k j
= (ρk,j)

1−2r
ℓ1,n+r,jz1,q(xj, kj, λk) = (ωj(kj, λk)Xj)

2r−1,

η1,r,k j
= (−1)r

√

2Xj , kj = 1, 2, . . . , q = 2, . . . , n, r 6= p, r = 1, 2, . . . , n.

Determinant of obtained matrix we will denote by y1,p,k j
(xj, λk), kj = 1, 2, . . ..

Remark 1. For any fixed k(j) ∈ Nm−1, if kj → ∞, we get

δ1,k j
(λk) = ω1(kj , λk)(2πkjX

−1
j )−1 = ı,

δq,k j
(λk) = ωq(kj, λk)(2πkjX

−1
j )−1 = εqXj(1 + O(k−1

j )),

where εq are roots of the equation (−1)n(ε)2n = 1, Im εq < 0, q = 2, 3, . . . , n.

If we substitute function y1,p,k j
(xj, λk) in boundary conditions (23) – (26), we will get equal-

ities

ℓ1,s,jy1,p,k j
= 0, j 6= n + p, kj = 1, 2, . . . , (31)

cp,k j
:= ℓ1,n+p,jy1,p,k j

=
√

2Xjρ
2p−1
k j

Wk j
(λk)

n

∏
q=1

δq,k j
(λk), kj = 1, 2, . . . , (32)

where Wk j
(λk) is a Wandermond determinant of the order n, which is constructed by numbers

−1, δq,k j
(λk)

2, q = 2, 3, . . . , n.

Remark 2. For any fixed k(j) ∈ Nm−1 number sequence Wk j,n(λk) converges to Wandermond

determinant W(ε2
2, . . . , ε2

n), if kj → ∞, which is constructed using numbers ε2
2, . . . , ε2

n.

Under this conditions sequence δq,k j
(λk) converges to εq, q = 1, 2, . . . , n.

Then there exist positive numbers C4, C5 such that following inequality takes place:

0 < C4 ≤ |cp,k j
|−1ρ

1−2p
k j

≤ C5 < ∞, kj = 1, 2, . . . . (33)

Let us choose function y2,p,k j
(xj, λk) so that the equality

ℓ1,n+p,jy2,p(xj, kj, λk) =
(√

2Xj

)−1
ρ

2p−1
k j

(34)
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takes place. An adjoint function v0,k j
(xj, L1,(k j

) of the operator L1,(k j)
we define by sum

v0,k j
(xj, L1,(k j)

) :=
2

√

2Xj
sin(2kj − 1)πX−1

j xj + η1,p,j,ky2,p,k j
(xj, λk), kj = 1, 2, . . . . (35)

To define unknown parameters η1,p,j,k we substitute expression (35) in boundary conditions

(25), (26). If we consider formula (34), we obtain

η1,p,j,k = (−1)pb, kj = 1, 2, . . . . (36)

Remark 3. Functions y1,p,k j
(xj, λk) and y2,p,k j

(xj, λk) connected with notions

y2,p,k j
(xj, λk) = χp,j,ky1,p,k j

(xj, λk), (37)

where C6 ≤ |χp,j,k| ≤ C7, p = 1, 2, . . . , n, j = 1, 2, . . . , m, k ∈ Nm.

Therefore operator L1,(k j)
has a system V(L1,(k j)

) of root functions (29), (35), (36) in sense of

equations

L1,(k j)
v0,k j

(xj, L1,(k j)
) = λkv0,k j

(xj, L1,(k j)
) + ξp,k j

v1,k j
(xj, L1,(k j)

),

ξp,k j
:= det(ηq,r,k j

)
q=2,n

r=1,n,r 6=p

∂λk

∂ρj,k
χp,j,kη1,p,j,kcp,k j

, p = 1, 2, . . . , n, j = 1, 2, . . . , m, k ∈ N
m.

For problem (21) – (26) there exists an adjoint problem which has a system of root functions

that is biorthogonal to V(L1,(k j)
). Therefore the system V(L1,(k j)

) is total and minimal in the

space L2(0, Xj).

Let Hp,(k j)
be a root subspace of the operator V(L1,(k j)

) which corresponds to two-fold

eigenvalue λk. According to the Shkalikov theorem [29] the system of subspaces {Hp,(k j)
}∞

k j=1

is a Riesz basis of subspaces.

Let y3,p,k j
(xj, λk) := v0,k j

(xj, L1,(k j
)− (v0,k j

, v1,k j
; L2(0, Xj))v1,k j

(xj, L1,(k j)
). Let us notice that

functions y3,p,k j
(xj, λk) and v1,k j

(xj, L1,(k j)
) are orthogonal in the space L2(0, Xj). Let

y4,p,k j
(xj, λk) := ϕp,k j

y3,p,k j
(xj, λk), (38)

where ϕp,k j
satisfy condition ‖y4,p,k j

(xj, λk); L2(0, Xj)‖ = 1. Therefore functions y4,p,k j
(xj, λk)

and v1,k j
(xj, L1,(k j)

) form an orthonormal basis in the space Hp,(k j)
. Since (17) takes place we

obtain following: system of functions {v1,k j
(xj, L1,(k j)

)y4,p,k j(xj
, λk)}∞

k j=1 is a Riesz basis in the

space L2(0, Xj).

Therefore such positive numbers C8, C9 exist that for any function ϕ ∈ L2(0, Xj) inequality

C8‖ϕ; L2(0, Xj)‖2 ≤
∞

∑
k j=1

((ϕ, v1,k j
; L2(0, Xj))

2 + (ϕ, y4,p,k j
; L2(0, Xj))

2 ≤ C9‖ϕ; L2(0, Xj)‖2

takes place. If we consider equation (38) and inequality 1 < ϕp,k j
< ∞ for any function ϕ ∈

L2(0, Xj), we obtain the following estimation

C10‖ϕ; L2(0, Xj)‖2 ≤
∞

∑
k j=1

((ϕ, v1,k j
; L2(0, Xj))

2 + (ϕ, y3,p,k j
; L2(0, Xj))

2 ≤ C11‖ϕ; L2(0, Xj)‖2.

(39)
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Let us prove that the system of functions V(L1,(k j)
) is Bessel in the space L2(0, Xj), so there

exists a positive number C12 such that following inequality

∞

∑
k j=1

((ϕ, v0,k j
; L2(0, Xj))

2 + (ϕ, v1,k j
; L2(0, Xj))

2 ≤ C12‖ϕ; L2(0, Xj)‖2 (40)

takes place. From the Cauchy inequality and the definition of y3,p,k j
we have the following

estimation

(ϕ, v0,k j
; L2(0, Xj))

2 ≤ 2((ϕ, y3,p,k j
; L2(0, Xj))

2 + (ϕ, v1,k j
; L2(0, Xj))

2)(v0,k j
, v1,k j

; L2(0, Xj))
2.

The system of functions V(L1,(k j)
) is orthonormal in the space L2(0, Xj). Then inequality

|(v0,k j
, v1,k j

; L2(0, Xj))|2 ≤ C13 < ∞ takes place. If we consider the last inequality and (38)

we will get (40) if C12 = 3C9 + 2C13.

Let R(L1,k(j)) := Ej + S(L1,k(j)) : L2(0, Xj) → L2(0, Xj) be an operator that acts V(A0,j) →
V(L1,k(j)). If we consider operator S(L1,k(j)) : L2,0(0, Xj) → L2,1(0, Xj) for L2,1(0, Xj) → 0, we

will obtain S(L1,k(j))
2 = 0. Therefore R−1(L1,k(j)) = Ej − S(L1,k(j)) exists.

Operator R(L1,k(j)) := Ej + S(L1,k(j)) : L2(0, Xj) → L2(0, Xj) is bounded since the system is

Bessel. Therefore the operator R−1(L1,k(j)) : L2(0, Xj) → L2(0, Xj) is also bounded. Therefore

the system of functions V(L1,(k j)
) is a Riesz basis in the space L2(0, Xj).

7 TRANSFORMATION OPERATORS FOR DIFFERENTIAL EQUATIONS OF EVEN ORDER

Let us consider a sequence
{

θk j

}∞

k j=1
⊂ R and consider an operator A2,p,j such that its

eigenvalues coincide with eigenvalues of operator A0,j and root functions are defined by equa-

tions

v1,k j

(

xj, A2,p,j

)

=
2

√

2Xj
cos ρk,jxj, (41)

v0,k j

(

xj, A2,p,j

)

=
2

√

2Xj
sin ρk,jxj + θk j

y1,p,k j

(

xj, λk

)

, kj = 1, 2, . . . . (42)

Let R(A2,p,j) = E + S(A2,p,j) be an operator in the space L2(0, Xj) defined by V(A0,j) →
V(A2,p,j). From the definition of the operator R(A2,p,j) we obtain S2(A2,p,j) = 0. Therefore, the

operator R−1(A2,p,j) = E − S(A2,p,j) exists.

Lemma 7. For any aβ ∈ R, |β| ≤ n, j ∈ {1, 2, . . . , m}, k(j) ∈ N
m−1 and for any sequence

{θk j
}∞

k j=1 ⊂ R a system of functions V(A2,p,j) is total and minimal in the space L2(0, Xj). The

system of functions V(A2,p,j) is a Riesz basis in the space L2(0, Xj) if and only if the sequence

{θk j
}∞

k j=1 is bounded.

Proof. First part can be proved analogously to Lemma 4.

We will denote by Φp(L0,(k j)
) a set of all operators A2,p,j defined by (41), (42). Also we de-

note by Γp(L0,(k j)
) a set of all operators R(A2,p,j), which are generated by operators A2,p,j ∈

Φ(L0,(k j)
). From formula (35) we obtain R(L1,k(j)) := Ej + S(L1,k(j)) ∈ Γp(L0,(k j)

). Let us

consider two sequences {θ1
k j
}∞

k j=1, {θ2
k j
}∞

k j=1 and define two transformation operators Rq =
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Ej + Sq ∈ Γp(L0,(k j)
), q = 1, 2. Let us consider equality S2

q = 0, q = 1, 2, we can define

Γp(L0,(k j)
) an operation of multiplication on the space

R1R2 = Ej + S1 + S2. (43)

From R−1
q = Ej − Sq it follows that the set Γp(A0,j) is a group. Since the equality R1R2 =

Ej + S1 + S2 = R2R1 takes place we obtain that the set Γp(L0,(k j)
) is a commutative group.

Lemma 8. For any fixed aβ ∈ R, |β| ≤ n, j = 1, 2, . . . , m, k(j) ∈ Nm−1 the system of functions

V(A2,p,j) is a Riesz basis in the space L2(0, Xj) if and only if the sequence {θk j
}∞

k j=1 is bounded.

This lemma can be proved analogously to Lemma 7.

Let us choose an arbitrary n sequences of real numbers {θp,k j
}∞

k j=1, p = 1, 2, . . . , m, and

consider an operator A3,j. This operator eigenvalues coincides with eigenvalues of A0,j and

roots of the function are defined by equations

v1,k j
(xj, A3,j) =

2
√

2Xj
cos ρk,jxj, (44)

v0,k j
(xj, A3,j) =

2
√

2Xj
sin ρk,jxj +

n

∑
p=1

θp,k j
y1,p,k j

(xj, λk), kj = 1, 2, . . . . (45)

Let R(A3,j) = E + S(A3,j) be the operator defined in the space L2(0, Xj) by V(A0,j) →
V(A3,j). From the definition of R(A3,j) we obtain S2(A3,j) = 0. Therefore operator R−1(A3,j) =

E − S(A3,j) exists.

Lemma 9. For any aβ ∈ R, |β| ≤ n and sequences {θp,k j
}∞

k j=1 ⊂ R, p = 1, 2, . . . , m a system of

functions V(A3,j) is total and minimal in the space L2(0, Xj). The system of functions V(A3,j)

is a Riesz basis in the space L2(0, Xj) if and only if any sequence {θp,k j
}∞

k j=1, p = 1, 2, . . . , m is

bounded.

We can prove this lemma analogously to Lemma 7.

Let us define root functions of the operator L1,p,j by equalities

vk(x, L1,p,j) = vk j
(xj, L1,k(j))

m

∏
r=1,r 6=j

τr,kr
(xr), k ∈ N

m.

By the system V(L1,p,j) of root functions of the operator L1,p,j we define operator R(L1,p,j) :=

E + S(L1,p,j), which acts in the space L2 (G) . This operator transfer system of functions V(L0)

to the system V(L1,p,j). So we obtain R(L1,p,jvk(x, (L0)) := vk(x, L1,p,j), k ∈ Nm. The operator

R(L1,p,j) is defined by equality

R(L1,p,j) = E1 ⊗ · · · ⊗ Ej−1 ⊗ R(L1,k(j))⊗ Ej+1 . . . Em, (46)

where Es is the identical transformation in the space L2 (0, Xs) , s = 1, 2, . . . , m.

Let us denote by Γp,j (L0) a set of the operators which is defined by formula E1 ⊗ · · · ⊗
Ej−1 ⊗ R

(

A2,p,j

)

⊗ Ej+1 · · · ⊗ Em, where R(A2,p,j) ∈ Γ(k(j)). A set of the operators R(L0) =

R1 ⊗ R2 · · · ⊗ Rm we will denote by Γp(L0).



226 BARANETSKIJ YA.O., IVASIUK I.YA., KALENYUK P.I., SOLOMKO A.V.

Remark 4. We define multiplication on the set Γp(L0) according to formula (43) such that this

set will be abelian group.

Theorem 4. Let assumption P1 takes place. Then for any fixed aβ ∈ R, |β| ≤ n an operator

L1,p,j has eigenvalues (5) and system of root functions V(L1,p,j), which is total and minimal in

the space L2(G).

If assumptions P2, P3 take place then the system of functions V(L1,p,j) is a Riesz basis in

the space L2(G).

Proof. According to Lemma 6 for any k(j) ∈ Nm−1 there exists a system of functions

W(L1,k(j)) = {wk j
(xj, L1,k(j)), kj = 1, 2, . . . }, which is biorthogonal to the system V(L1,k(j)).

Therefore we can define elements of the system W(L1,p,j), which is biorthogonal in the

space L2(G) to the system by V(L1,p,j)

wk(x, L1,p,j) = wk j
(xj, L1,k(j))

m

∏
r=1,r 6=j

τr,kr
(xr) , k ∈ N

m.

So the system V(L1,p,j) is total and minimal in the space L2 (G). If assumptions P2, P3 take

place then root functions (44) of the operator L1,p,j are normalized for any k(j) ∈ N
m−1 and a

system V(L1,p,j) is a Riesz basis of the space L2(G).

8 PERTURBATED BOUNDARY PROBLEM WITH ACCENTED VARIABLE

Let us consider for any fixed j = 1, 2, . . . , m, p = 1, 2, . . . , n equation (16) and problem with

boundary conditions

ℓ2,s,ry := D2s−2
r y|xr=0 + D2s−2

r y|xr=Xr
= 0, r 6= j, s = 1, 2, . . . , n, r = 1, 2, . . . , m, (47)

ℓ2,n+s,ry := D2s−1
r y|xr=0 + D2s−1

r y|xr=Xr
= 0, j 6= r, s = 1, 2, . . . , n, r = 1, 2, . . . , m, (48)

ℓ2,n+p,jy := D
2p−1
j y|xj=0 + D

2p−1
j y|xj=Xj

+
1

∑
r=0

mp,j

∑
q=0

bq,r,p,j D
q
j y
∣

∣

∣

xj=rXj

= 0. (49)

Let L2,p,j be the operator of the problem (16), (47) – (49), L2,p,jy := L (D) y, y ∈ D
(

L2,p,j

)

,

D (L2) :=
{

y ∈ W2n
2 (G) : ℓ2,s,jy = 0, s = 1, 2, . . . , 2n, j = 1, 2, . . . , m

}

. Let V(L2) be the system

of root functions of L2.

Consider for any fixed k(j) ∈ N
m−1 solutions of the spectral problem for operator L2 in a

form of product (22). To define unknown function z(xj) we obtain the following problem

∑
|β|≤n

(−1)βj aβ

m

∏
s=1,s 6=j

µ
βs

k,sz
(2βj)

(

xj

)

= λz
(

xj

)

, λ ∈ C, (50)

ℓ2,s,jz := z(2s−2) |xj=0 +z(2s−2) |xj=Xj
= 0, s = 1, 2, . . . , n, (51)

ℓ2,n+s,rz := z(2s−1)
∣

∣

∣

xj=0
+ z(2s−1)

∣

∣

∣

xj= Xj

= 0, s 6= p, s = 1, 2, . . . , n, (52)

ℓ2,n+p,jz := z(2p−1)
∣

∣

∣

xj=0
+ z(2p−1)

∣

∣

∣

xj=Xj

+
1

∑
r=0

mp,j

∑
q=0

bq,r,p,j z(q)
∣

∣

∣

xj=rXj

= 0. (53)
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Let L2,k(j) be an operator of the problem (50) – (53). Therefore,

L2,k(j)z := ∑
|β|≤n

(−1)βj aβ

m

∏
s=1,s 6=j

µ
βs

k,sz
(2βj)

(

xj

)

, z ∈ D
(

L2,k(j)

)

,

D
(

L2,k(j)

)

:=
{

y ∈ W2n
2

(

0, Xj

)

: ℓ2,s,jz = 0, s = 1, 2, . . . , 2n
}

.

Lemma 10. Let assumption P1 holds true. Then for any aβ ∈ R, bq,0,p,j ∈ R, |β| ≤ n, q =

0, 1, . . . , mp,j, k (j) ∈ Nm−1 operator L2,k(j) has eigenvalues (5) and a system of root functions

V
(

L2,k(j)

)

, which is total and minimal in the space L2(0, Xj).

If assumtion P2 holds true then the system of functions V(L2,k(j)) is a Riesz basis in the

space L2(0, Xj).

Proof. The isospectrality of operators L0,(k j)
and L2,k(j) can be proved by the same way as in

Theorem 9.

If assumtion P1 holds true, then eigenfunctions of the operator L2,k(j) are following

v1,k j

(

xj, L2,k(j)

)

= 2√
2Xj

cos ρk j
X−1

j xj, kj = 1, 2, . . . . (54)

Root functions v0,k j
(xj, L2,(k j)

) of the operator L2,(k j)
are defined by

v0,k j
(xj, L2,(k j)

) =
2

√

2Xj
sin ρk j

X−1
j xj + η2,p,j,ky1,p,k j

(

xj, λk

)

, kj = 1, 2, . . . . (55)

To define η2,p,j,k we can substitute expression (55) into boundary conditions (51)–(53). If we

consider formulas (32), (33) we obtain

η2,p,j,k = (cp,k j
)−1

ℓ
2
p,jτ2k j−1,j(xj), kj = 1, 2, . . . . (56)

Therefore, operator L2,k(j) has a system of eigenfunction (54) – (56). If we consider formulas

(31), (32) we obtain that the operator L2,(k j)
is a partial case of the operator A2,p,j. Therefore,

from Lemma 7 it follows that the system V(L2,k(j)) is total and minimal in the space L2(0, Xj).

Let assumption P1 holds. Since equations (33), (49) take place, we get
∣

∣η2,p,j,k

∣

∣ ρ
2p−mp,j−1

k,j ≤
C14 < ∞. So from Theorem 9 it follows that the system V

(

L2,k(j)

)

is a Riesz basis in the space

L2(0, Xj).

Let us define root functions of the operator L2,p,j by equalities

vk

(

x, L2,p,j

)

= vk j

(

xj, L2,k(j)

) m

∏
r=1,r 6=j

τr,kr
(xr) , k ∈ N

m. (57)

Using the system V
(

L2,p,j

)

of root functions (57) of the operator L2,p,j we can define an operator

R(L2,p,j) := E + S(L2,p,j), which acts from system of functions V(L0) to the system V(L2,p,j).

The operator R(L2,p,j) can be defined by equation (46). If assumption P1 holds true, then for

any k(j) ∈ N
m−1 there exists a system of functions W(L2,k(j)) = {wk j

(xj, L2,k(j)), kj = 1, 2, . . .},

which is biorthogonal to the system W(L2,k(j)).
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Therefore, we can define elements of the biorthogonal system W
(

L2,p,j

)

in the space L2(G)

to the system V(L2,p,j) by equality

wk

(

x, L2,p,j

)

= wk j

(

xj, L2,k(j)

) m

∏
r=1,r 6=j

τr,kr
(xr) , k ∈ N

m.

So the system of functions V(L2,p,j) is total and minimal in the space L2(G).

If assumptions P1–P3 take place then system of functions V(L2,p,j) is Bessel in the space

L2 (G) , since the transformation operator R(L2,p,j) is continuous with action L2(G) → L2(G).

A converse operator is also bounded. Therefore the system of functions V(L2,p,j) is a Riesz

basis of the space L2(G). So we prove following theorem.

Theorem 5. Let assumptions P1–P2 take place. Then for any fixed aβ ∈ R, bq,0,p,j ∈ R, |β| ≤
n operator L2,p,j has eigenvalues (5) a system of root functions V(L2,p,j), which is total and

minimal in the space L2(G).

2. If assumptions P1–P3 take place, then system of functions V(L2,p,j) is Riesz basis in the

space L2(G).

Consider boundary problem

L (D) y := ∑
|β|≤n

aβD2βy = λy, (58)

ℓ3,s,ry := D2s−2
r y|xr=0 + D2s−2

r y|xr=Xr
= 0, s = 1, 2, . . . , n, r = 1, 2, . . . , m, (59)

ℓ3,n+s,ry := D2s−1
r y|xr=0 + D2s−1

r y|xr=Xr
= 0, s = 1, 2, . . . , n, r 6= j, r = 1, 2, . . . , m, (60)

ℓ3,n+p,jy := D
2p−1
j y|xj=0 + D

2p−1
j y|xj=Xj

+ l2
p,jy = 0, p = 1, 2, . . . , n, (61)

ℓ
1
p,jy :=

1

∑
r=0

mp,j

∑
q=0

bq,r,p,j D
q
j y
∣

∣

∣

xj=rXj

.

Let L3,j be the operator of the problem (58) – (61), V
(

L3,j

)

be a system of root functions of

the operator L3,j. Let L3y := L (D) y, y ∈ D (L3) , D(L3,j) := {y ∈ W2n
2 (G) : ℓ3,s,jy = 0,

s = 1, 2, . . . , 2n, j = 1, 2, . . . , m}. Let us consider for fixed k (j) ∈ Nm−1 solutions of spectral

problem for operator L3 in a form of product (22).

To define an unknown function z(xj) we have the following problem

∑
|β|≤n

aβ

m

∏
s=1,s 6=j

(

ksπX−1
s

)2βs
z(2βj)

(

xj

)

= λz
(

xj

)

, λ ∈ C, (62)

ℓ3,s,jy := z(2s−1)
∣

∣

∣

xj=0
− z(2s−1)

∣

∣

∣

xj=Xj

= 0, s = 1, 2, . . . , n, (63)

ℓ3,n+p,jz := z(2p−1)
∣

∣

∣

xj=0
+ z(2p−1)

∣

∣

∣

xj=Xj

+ ℓ
2
p,jz = 0, p = 1, 2, . . . , n. (64)

Let L3,k(j) be the operator of the problem (62) – (64) and

L3,k(j)z := ∑
|β|≤n

aβ

m

∏
s=1,s 6=j

(ρk,s)
2βs z(2βj)

(

xj

)

, z ∈ D(L3,k(j)),

D
(

L3,k(j)

)

:=
{

y ∈ W2n
2

(

0, Xj

)

: ℓ3,s,jz = 0; s = 1, 2, . . . , 2n
}

.



THE NONLOCAL BOUNDARY PROBLEM FOR THE ELIPTIC EQUATION 229

Lemma 11. Let assumption P1 holds true. Then for any fixed aβ ∈ R, bq,0,p,j ∈ R, |β| ≤ n,

k (j) ∈ Nm−1 operator L3,k(j) has eigenvalues (5) and the system of root functions V(L3,k(j)),

which is total and minimal in the space L2(0, Xj).

2. If assumption P2 holds true then system of functions V(L3,k(j)) is a Riesz basis in the

space L2(0, Xj).

Proof. The Isospectrality of operators L0,(k j)
and L3,k(j) can be proved in the same way as in

Lemma 4.

If assumption P1 holds true we obtain following eigenfunctions of L3,k(j)

v1,k j

(

xj, L3,k(j)

)

=
2

√

2Xj
cos ρk,jxjX

−1
j , kj = 1, 2, . . . . (65)

Root functions v0,k j
(xj, L3,k(j)) of the operator L3,k(j) we defined by

v0,k j

(

xj, L3,(k j)

)

=
2

√

2Xj
sin ρk,jX

−1
j xj +

n

∑
p=1

η2,p,j,ky1,p,k j

(

xj, λk

)

, kj = 1, 2, . . . , (66)

where numbers η2,p,j,k defined by equation (56). Therefore, operator L3,k(j) has a system of

root functions (65), (66). If we consider formulas (31), (32), it is easy to see that operator

L3,k(j) is a partial case of operator A2,p,j. Therefore from Lemma 7 it follows that the system

V(L3,k(j)) is total and minimal in the space L2(0, Xj) and the biorthogonal system W(L3,k(j)) :=

{wk j
(xj, L3,(k j)

) ∈ L2(0, Xj), kj = 1, 2, . . . } exists.

Let assumption P2 takes place. From (49) we can get
n

∑
p=1

∣

∣c1,p,j,k

∣

∣

2 ≤ C15 < ∞. Then the

system V(L3,k(j)) is normalized and from Lemma 9 it follows that the system V(L3,k(j)) is a

Riesz basis in the space L2(0, Xj).

Let us define root functions of the operator L3,j by equations

vk

(

x, L3,j

)

= vk j

(

xj, L3,k(j)

) m

∏
r=1,r 6=j

τr,kr
(xr) , k ∈ N

m. (67)

Using the system V(L3,j) of root functions (67) we can define an operator R(L3,j) :=
n

∏
p=1

R(L2,p,j)

∈ Γj(L0), S(L3,j) :=
n

∑
p=1

S(L2,p,j), which acts from system of functions V (L0) to the system

V
(

L3,j

)

.

Theorem 6. Let assumption P1 holds. Then for any fixed aβ ∈ R, bq,0,p,j ∈ R, |β| ≤ n the

operator L3,j has eigenvalues (6) and the system of eigenfunctions V(L3,j), which is total and

minimal in the space L2(G).

2. If assumptions P1–P3 hold, then the system of functions V(L3,j) is a Riesz basis in the

space L2(G).

Proof. Let assumption P1 holds. Then according to Lemma 11 for any k(j) ∈ Nm−1 there

exists a system of functions W(L3,k(j)) = {wk j
(xj, L3,k(j)), kj = 1, 2, . . . , } which is biorthogonal
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to the system W(L3,k(j)). Therefore we can define elements of the system W (L3) , which is

biorthogonal in the space L2(G) to the system V(L3), by the following way

wk(x, L3,j) = wk j
(xj, L3,k(j))

m

∏
r=1,r 6=j

τr,kr
(xr) , k ∈ N

m.

So the system of functions V
(

L3,j

)

is total and minimal in the space L2(G). Last part of the

proof can be made analogously to Theorem 5.

9 PROOFS OF THE MAIN THEOREMS

Let us consider spectral problem for p = 1, 2, . . . , n, j = 1, 2, . . . , m

L (D) y := ∑
|β|≤n

aβD2βy = λy, (68)

ℓp,jy := D
2p−2
j y|xj=0 + D

2p−2
j y|xj=Xj

= 0, p = 1, 2, . . . , n, j = 1, 2, . . . , m, (69)

ℓn+p,jy := D
2p−1
j y|xj=0 + D

2p−1
j y|xj=Xj

+
1

∑
r=0

mp,j

∑
q=0

bq,r,p,jD
q
j y|xj=rXj

= 0. (70)

Proof. Proof of Theorem 1.

Let

R (L) :=
m

∏
j=1

Rj (L3) , R (L) := E +
m

∑
j=1

Sj(L3) ∈ Γ (L0) . (71)

Root functions of the operator L of problem (68) – (70) we can define in the form

vk (x, L) =
m

∏
j=1

vk j

(

xj, L3,k(j)

)

, k ∈ N
m,

vk (x, L) = vk (x, L0) +
m

∑
j=1

S(L3,j)vk (x, L0) .

(72)

So V (L) := {vk (x, L) ∈ L2 (G) : vk (x, L) = R (L) vk (x, L0) , k ∈ Nm} is a system of root func-

tions. Since biorthogonal system of functions wk (x, L) =
m

∏
j=1

wk j

(

xj, L3,k(j)

)

, k ∈ N
m, exists,

then we have the proof of the theorem.

If assumptions of Theorem 2 hold true, Theorem 6 takes place too. So R(L3,j) ∈ [L2(G)],

j = 1, 2, . . . , m. If we consider equation (71), we will obtain R(L), R−1(L) ∈ [L2(G)]. Therefore

V(L) is a Riesz basis of the space [L2(G)] by definition.

Remark 5. There exist positive numbers C1(L), C2(L) such that for any function

f (x) =
∞

∑
|k|=0

fkvk (x, L) ∈ L2(G), fk = ( f , wk; L2 (G)) , k ∈ N
m,

holds the following inequality

C16|| f ; L2 (G) ||2
∞

∑
|k|=0

| fk |2 ≤ C17|| f ; L2 (G) ||2. (73)
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Let us consider boundary problem

L (D) y := ∑
|β|≤n

aβD2βy = f , (74)

ℓs,jy := D2s−2
j y |xj=0 +D2s−2

j y |xj=Xj
= 0, j = 1, 2, . . . , m, (75)

ℓs+n,jy := D2s−1
j y |xj=0 +D2s−1

j y |xj=Xj
+

1

∑
r=0

ms

∑
q=0

bq,r,s,jD
q
j y |xj=xj,r

= 0, (76)

f (x) =
∞

∑
|k|=0

∑
r∈Qm

fr,kvr,k(x, L), fr,k = (u, wr,k(x, L; L2(G)), r ∈ Qm, k ∈ N
m. (77)

We will search a solution of the problem in the form of series

u (x) =
∞

∑
|k|=0

∑
r∈Qm

ur,kvr,k(x, L). (78)

We will use the following notations: fr+s,k := ∏
m
j=1 frj+sj,k j

, ξr,k := ∏
m
j=1 ξrj,k j

, ξrj,k j
:=

Dρk,j ∑|β|≤n aβρ
2β
k . If we substitute series (77), (78) into formula (74), we can get

ur,k =
m

∑
j=1

∑
rj+sj≤1

λ
−1−|s|
k fr+s,kξr+s,k, k ∈ N

m, r ∈ Qm,

u (x) =
∞

∑
|k|=0

∑
r∈Qm

m

∑
j=1

∑
rj+sj≤1

λ
−1−|s|
k fr+s,kξr+s,kvk(x, L).

(79)

If we apply Cauchy inequality to (78) we will obtain the inequality |ur,k|2 ≤ C18 ∑q∈Qm
|uq,k|2.

Therefore, using inequality (73) we can get

||u; L2 (G) ||2 ≤ C19 (L) || f ; L2, (G) ||2, C19 = C18C17C−1
16 . (80)

Let us suppose that coefficient of derivative D2n
xm

equals 1 and give a proof for variable xm. Let

us show that D2n
m u (x) ∈ L2 (G). For any fixed k(m) ∈ Nm−1 we consider boundary problem

∑
|β|≤n

(−1)βm aβ

m−1

∏
s=1

µ
βs

k,sy
(2βm) (xm) = f (xm) , (81)

ℓ2,s,my := y(2s−2) |xm=0 +y(2s−2) |xm=Xm= 0, s = 1, 2, . . . , n, (82)

ℓ2,n+s,my := y(2s−1)
∣

∣

∣

xm=0
+ y(2s−1)

∣

∣

∣

xj= Xm

= 0, s 6= p, s = 1, 2, . . . , n, (83)

ℓ2,n+p,my := y(2p−1)
∣

∣

∣

xm=0
+ y(2p−1)

∣

∣

∣

xm=Xm

+ ℓ
1
p,mz = 0, (84)

ℓ
2
p,my :=

1

∑
r=0

mp,m

∑
q=0

bq,r,p,j y(q)
∣

∣

∣

xm=xm,r

. (85)

Let us consider functions y(xm), f (xm) in a form of series which is constructed using system

of root functions of operator L2,k(m),p := L2,k(m):

y =
∞

∑
km=1

1

∑
s=0

ys,km,pvs,km
(x, L2,k(m),p), f =

∞

∑
km=1

1

∑
s=0

fs,km,pvs,km
(x, L2,k(m),p).
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If we substitute this expressions into equation (81) we can obtain y0,km,p = λ−1
k f0,km

, y1,km
=

−λ−2
k ξ0,km

f1,km,p + λ−1
k f1,km,p. Therefore,

y =
∞

∑
km=1

(λ−1
k f0,km,pv0,km

(x, L2,k(m),p) + (−λ−2
k ξ0,km

f1,km ,p + λ−1
k y1,km,p)v1,km

(x, L2,k(m), p)).

Let us consider sequence of numbers γm,k := ρm,kλ−1
k , km = 1, 2, . . . . The sequence γm,k =

ρm,kλ−1
k = 1 − λ−1

k ∑
|β|≤n,βm<n

aβ

m

∏
s=1

(ρm,s)
2βs → 1, km → ∞ is convergent.

Therefore 0 < C21 ≤ γm,k ≤ C20 < ∞.

Consider the system of functions

Vm,k,p := {vr,km,p(x) ∈ L2(0, Xm) : vr,km,p(x) := γm,kvr,km
(x, L2,k(m),p), km = 1, 2, . . . }.

If assumption of Lemma 10 holds, from the last inequality it follows that the system Vm,k,p is a

Riesz basis in the space L2(0, Xm).

Let V1,m,k,p := {v1,r,km,p(x) ∈ L2(0, Xm) : v1,r,km,p(x) := λ−1
k D2n

m vr,km
(x, L2,k(m),p), r =

0, 1, km = 1, 2, . . . }.

Since operator D2n
m commutate with the involution Im, then analogously to Lemma 4 we

can prove that the system V1,m,k,p is total and minimal in the space L2(0, Xm).

Let v2,r,km,p(x) := v1,r,km,p(x)− v0,r,km,p(x), r = 0, 1, km = 1, 2, . . . . From formulas (28) – (30)

it follows v2,0,km,p(x) = ϑ1,km,pρ−1
m,k,pz0,q(xj, kj, λk) +

m

∑
s=2

ϑs,km,pz0,q(xj, kj, λk), where |ϑs,km,p| ≤

C22 < ∞. Therefore,
∞

∑
km=1

1

∑
r=0

(v2,r,km,p(x); L2(0, Xm))2 < ∞.

So the system Vm,k,p is a Riesz basis in the space L2(0, Xm) and the system V1,m,k,p is total

and minimal in the space L2(0, Xm). Therefore, from Bari’s theorem [6] we obtain: the system

V1,m,k,p is a Riesz basis in L2(0, Xm) and therefore, the operator R(V1,m,k,p) : V(L0,km
→ V1,m,k is

bounded. The product of this operators is also continuous in the space L2(0, Xm).

So for any fixed k(m) ∈ N
m−1 inequality

∞

∑
km=1

1

∑
r=0

(D2n
m u, vr,k(x, L); L2(G))2 ≤ C23

∞

∑
km=1

1

∑
r=0

( f , vr,k(x, L); L2(G))2

takes place. If we summarize by k(m) ∈ Nm−1, we will get

D2n
xm
|u; L2(G)|2 ≤ C23| f ; L2(G)|2.

The assumption made in the inequality proof is insignificant since if assumption P3 holds co-

efficients of the hiest degree derivatives is nonequal to zero and has the same sign.

Analogously we can prove that D2n
j u(x) ∈ L2(G), j = 1, 2, . . . , m − 1 for any other vari-

ables. So using the definition of norm in the space L2(G), we obtain the proof of the Theo-

rem 3.
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Баранецький Я.О., Iвасюк I.Я., Каленюк П.I., Соломко А.В. Нелокальна крайова задача зi збурення-

ми умов антиперiодичностi для елiптичного рiвняння з постiйними коефiцiєнтами // Карпатськi

матем. публ. — 2018. — Т.10, №2. — C. 215–234.

У роботi в обмеженому m-вимiрному паралелепiпедi методом Фур’є дослiджується зада-

ча з нелокальними крайовими умовами, якi є збуреннями умов антиперiодичностi. Вивчено

властивостi оператора перетворення R : L2(G) → L2(G), який встановлює зв’язок мiж са-

моспряженим оператором L0 задачi з умовами антиперiодичностi та оператором L збуреної

нелокальної задачi RL0 = LR.

Також побудовано комутативну групу операторiв перетворення Γ(L0). Встановлено, що

кожному операторовi перетворення R ∈ Γ(L0) : L2(G) → L2(G) вiдповiдає деяка абстрактна

нелокальна задача i навпаки. Побудовано систему V(L) кореневих функцiй оператора L, яка

мiстить нескiнченне число приєднаних функцiй. Визначено умови, при яких система V(L) пов-

на та мiнiмальна в просторi L2(G), та умови, при яких вона є базою Рiса у просторi L2(G).

У випадку, якщо система V(L) є базою Рiса в просторi L2(G), встановлено достатнi умови,

при яких нелокальна задача має єдиний розв’язок у виглядi ряду Фур’є за системою V(L).

Ключовi слова i фрази: диференцiально-операторне рiвняння, власнi функцiї, база Рiса.
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BEDRATYUK L., BEDRATYUK A.

THE INVERSE AND DERIVATIVE CONNECTING PROBLEMS FOR SOME

HYPERGEOMETRIC POLYNOMIALS

Given two polynomial sets {Pn(x)}n≥0 and {Qn(x)}n≥0 such that deg(Pn(x)) = deg(Qn(x)) =

n. The so-called connection problem between them asks to find coefficients αn,k in the expression

Qn(x) =
n

∑
k=0

αn,kPk(x). The connection problem for different types of polynomials has a long history,

and it is still of interest. The connection coefficients play an important role in many problems in

pure and applied mathematics, especially in combinatorics, mathematical physics and quantum

chemical applications. For the particular case Qn(x) = xn the connection problem is called the

inversion problem associated to {Pn(x)}n≥0. The particular case Qn(x) = P′
n+1(x) is called the

derivative connecting problem for polynomial family {Pn(x)}n≥0. In this paper, we give a closed-

form expression of the inversion and the derivative coefficients for hypergeometric polynomials of

the form

2F1

[

−n, a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n, n + a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n, a

±n + b

∣

∣

∣

∣

z

]

,

where 2F1

[

a, b

c

∣

∣

∣

∣

z

]

=
∞

∑
k=0

(a)k(b)k

(c)k

zk

k!
is the Gauss hypergeometric function and (x)n denotes the

Pochhammer symbol defined by (x)n =

{

1, n = 0,

x(x + 1)(x + 2) · · · (x + n − 1), n > 0.

All polynomials are considered over the field of real numbers.

Key words and phrases: connection problem, inversion problem, derivative connecting problem,
connecting coefficients, hypergeometric functions, hypergeometric polynomials.

Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine

E-mail: leonid.uk@gmail.com

INTRODUCTION

Given two polynomial sets {Pn(x)}n≥0 and {Qn(x)}n≥0 such that

deg(Pn(x)) = deg(Qn(x)) = n.

The connection problem between them consists in finding the coefficients αn,k in the expansion

Qn(x) =
n

∑
k=0

αn,kPk(x).

For the particular case Qn(x) = xn the connection problem is called the inversion prob-

lem associated to {Pn(x)}n≥0. The particular case Qn(x) = P′
n+1(x) is called the derivative

connecting problem for polynomial family {Pn(x)}n≥0.

УДК 519.1
2010 Mathematics Subject Classification: 33C05, 05A19.

c© Bedratyuk L., Bedratyuk A., 2018



236 BEDRATYUK L., BEDRATYUK A.

The study of such a problem has attracted lot of interest in the last few years. The in-

verse problem for classical orthogonal polynomials are considered in [6], for more general

case see [7]. The connection coefficients have been computed explicitly for classical orthogonal

polynomials in [6] and [8].

The derivation connection problem ( with respect to parameter derivatives) for hyperge-

ometric polynomials 2F1

[

−n a

b

∣

∣

∣

∣

z

]

was solved in [9]. In [10, 11] the first author solved the

derivation connection problem for the Fibonacci, Lucas and Kravchuk polynomials and use

the solutions to produce new combinatorial identities for these polynomials.

Our aim in this paper is to compute the inversion and derivative connection coefficients for

hypergeometric polynomials of the forms

2F1

[

−n a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n n + a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n a

±n + b

∣

∣

∣

∣

z

]

,

where

2F1

[

a b

c

∣

∣

∣

∣

z

]

=
∞

∑
k=0

(a)k(b)k

(c)k

zk

k!

is the Gauss hypergeometric function.

The main results of this paper are gathered together in the following two theorems.

Theorem 1. The following identities hold:

(i) zn =
(b)n

(a)n

n

∑
i=0

(−1)i

(

n

i

)

2F1

[

−i a

b

∣

∣

∣

∣

z

]

,

(ii) zn =
n

∑
i=0

(−1)i

(

n

i

)

(a + 2i)
(b)n

(a + i)n+1
2F1

[

−i i + a

b

∣

∣

∣

∣

z

]

,

(iii) zn =
n

∑
i=0

(−1)i

(

n

i

)

(b + 2n − 1)
(b + i)n−1

(a)n
2F1

[

−i a

i + b

∣

∣

∣

∣

z

]

,

(iv) zn =
n

∑
i=0

(−1)i

(

n

i

)

(b − 1)
(b − i)n−1

(a)n
2F1

[

−i a

−i + b

∣

∣

∣

∣

z

]

.

Theorem 2. The following identities hold:

(i)
d

dz
2F1

[

−n a

b

∣

∣

∣

∣

z

]

=
n−2

∑
i=0

n!

i!

a − b

(a + i)n−i
2F1

[

−i a

b

∣

∣

∣

∣

z

]

− n
b+n−1

a+n−1
2F1

[

−(n−1) a

b

∣

∣

∣

∣

z

]

,

(ii)
d

dz
2F1

[

−n n + a

b

∣

∣

∣

∣

z

]

=
n−1

∑
i=0

(

(−n+i)

(

n

i

)

(a + 2i)(n + a)i+1

(b + i) (a + i)i+1

× 3F2

[

−n+i+1 b+i a+i+n+1

b+i+1 a+2i+1

∣

∣

∣

∣

1

])

2F1

[

−i i + a

b

∣

∣

∣

∣

z

]

,

(iii)
d

dz
2F1

[

−n a

−n + b

∣

∣

∣

∣

z

]

=
n−2

∑
i=0

(−1)n+i n!

i!

(b − 1)

(b − n)n−i
2F1

[

−i a

−i + b

∣

∣

∣

∣

z

]

+
n(a + n − 1)

(n − b) 2F1

[

−(n − 1) a

−(n − 1) + b

∣

∣

∣

∣

z

]

.
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1 BASIC DEFINITIONS AND IDENTITIES

The generalized hypergeometric series is defined by

pFq

[

a1 a2 . . . ap

b1 b2 . . . bq

∣

∣

∣

∣

z

]

=
∞

∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

where ai, bi are complex parameters and (x)n denotes the Pochhammer symbol (or shifted

factorial) defined by

(x)n =

{

1, n = 0,

x(x + 1)(x + 2) · · · (x + n − 1), n > 0.

It is assumed that bi are not negative integers or zero.

The partial case 2F1

[

a b

c

∣

∣

∣

∣

z

]

is called the Gauss hypergeometric function. The series con-

verges when |z| < 1 and also when z = 1 provided that Re(c − a − b) > 0. In this case the

Gauss summation identity holds:

2F1

[

a b

c

∣

∣

∣

∣

1

]

=
Γ(c − a − b)Γ(c)

Γ(c − a)Γ(c − b)
, (1)

where Γ(z) is the Gamma function defined by the equality Γ(z + 1) = zΓ(z).

When a = −n or b = −n is a negative integer the series terminates and reduces to a

polynomial of degree n, called a hypergeometric polynomial:

2F1

[

−n a

b

∣

∣

∣

∣

z

]

=
n

∑
i=0

(−1)i

(

n

i

)

(a)i

(b)i
zi.

For the hypergeometric polynomial the summation identity becomes

2F1

[

−n a

b

∣

∣

∣

∣

1

]

=
(b − a)n

(b)n
, (2)

and this is equivalent to Vandermonde’s theorem. If the hypergeometric function is differenti-

ated of z, it gives
d

dz
2F1

[

a b

c

∣

∣

∣

∣

z

]

=
ab

c
2F1

[

a + 1 b + 1

c + 1

∣

∣

∣

∣

z

]

. (3)

We also need the following properties of the Pochhammer symbol

(x)n =
Γ(x + n)

Γ(n)
, (4)

(x)n = n!

(

x + n − 1

n

)

(−x)n = (−1)nn!

(

x

n

)

, (5)

(−x)n = (−1)n(x − n + 1)n, (6)

(x)n+m = (x)m(x + m)n, (7)

(see [1, 2] for more details). We will also often use the summation interchange formula

n

∑
i=1

i

∑
j=1

aibj =
n

∑
j=1

(

n

∑
i=j

ai

)

bj, (8)

(see [3]).
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2 INVERSE PROBLEM

A solution of the inverse problem for the family Pn(z) =
n

∑
k=0

pn,kzk, namely

zn =
n

∑
k=0

αiPi(z) =
n

∑
i=0

αi

(

i

∑
k=0

pi,kzk

)

=
n

∑
k=0

(

n

∑
i=k

αi pi,k

)

zk, (9)

defines the orthogonal relation
n

∑
i=k

αipi,k = δn,k,

where δn,k is the Kronecker delta. Similar orthogonal relations are frequently encountered in

combinatorial problems and have been extensively studied by Riordan [4]. Thus, to solve the

inverse problems we will check whether the numbers αi and the coefficients of the correspond-

ing hypergeometric polynomials are orthogonal.

Let us prove Theorem 1. For the item (i) we just check an orthogonality. We have

(b)n

(a)n

n

∑
i=0

(−1)i

(

n

i

)

2F1

[

−i, a

b

∣

∣

∣

∣

z

]

=
(b)n

(a)n

n

∑
i=0

(−1)i

(

n

i

) i

∑
k=0

(−i)k(a)k

(b)k

zk

k!

=
(b)n

(a)n

n

∑
k=0

(

n

∑
i=k

(−1)i

(

n

i

)

(−i)k

k!

(a)k

(b)k

)

zk

=
(b)n

(a)n

n

∑
k=0

(a)k

(b)k

(

n

∑
i=k

(−1)i

(

n

i

)

(−i)k

k!

)

zk

=
(b)n

(a)n

n

∑
k=0

(a)k

(b)k

(

n

∑
i=k

(−1)i+k

(

n

i

)(

i

k

)

)

zk

=
(b)n

(a)n

n

∑
k=0

(a)k

(b)k
δn,kzk = zn,

as required. Here we have used (8) and the well known (see [4]) orthogonal relation

n

∑
i=k

(−1)i+k

(

n

i

)(

i

k

)

= δn,k.

(ii) We have

n

∑
i=0

(−1)i

(

n

i

)

(a+2i)(b)n

(a+i)n+1
2F1

[

−i, i+a

b

∣

∣

∣

∣

z

]

=
n

∑
i=0

(−1)i

(

n

i

)

(a+2i)(b)n

(a+i)n+1

i

∑
k=0

(−i)k(i + a)k

(b)k

zk

k!

=
n

∑
k=0

(

n

∑
i=k

(−1)i

(

n

i

)

(a + 2i)
(b)n

(a + i)n+1

(−i)k

k!

(i + a)k

(b)k

)

zk

=
n

∑
k=0

(b)n

(b)k

(

n

∑
i=k

(−1)i+k

(

n

i

)(

i

k

)

a + 2i

(a + i + k)n−k+1

)

zk

=
n

∑
k=0

(b)n

(b)k(n − k + 1)!

(

n

∑
i=k

(−1)i+k(a + 2i)

(

n

i

)(

i

k

)(

a + n + i

n − k + 1

)−1
)

zk

=
n

∑
k=0

(b)n

(b)k(n − k + 1)!

(

n

k

)

(

n

∑
i=k

(−1)i+k(a + 2i)

(

n − k

n − i

)(

a + n + i

n − k + 1

)−1
)

zk.
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Let us prove the orthogonal relation

n

∑
i=k

(−1)i+k(a + 2i)

(

n − k

n − i

)(

a + n + i

n − k + 1

)−1

= δn,k.

Rewrite the relation in an equivalent form by shifting the index of summation from i to i + k:

n−k

∑
i=0

(−1)i(a + 2(i + k))

(

n − k

i

)(

a + n + i + k

n − k + 1

)−1

= δn,k.

Now we again perform the shifts n − k 7→ n and a + n + 2k → a and will get the relation in

such a simplified form

n

∑
i=0

(−1)i(a + 2i)

(

n

i

)(

a + n + i

n + 1

)−1

= δn,0.

For n = 0 the both sides are equal to 1. Let us prove that the sum equals 0 for n > 0. Indeed,

we have

n

∑
i=0

(−1)i(a + 2i)

(

n

i

)(

a + n + i

n + 1

)−1

=
n

∑
i=0

(−1)i(a + 2i)n!(n + 1)!(a + i − 1)!

i!(n − i)!(a + n + i)!

=
(a − 1)!n!

(a + n)!

n

∑
i=0

(a + 2i)(−n)i(a)i

i!(a + n + 1)i
.

Now to calculate the last sum we divide it into two sums and then express them by hypergeo-

metric functions

n

∑
i=0

(a + 2i)(−n)i(a)i

i!(a + n + 1)i
= a

n

∑
i=0

(−n)i(a)i

i!(a + n + 1)i
+ 2

n

∑
i=0

i(−n)i(a)i

i!(a + n + 1)i

= a 2F1

[

−n, a

n + a + 1

∣

∣

∣

∣

1

]

+ 2
n

∑
i=1

(−n)i(a)i

(i − 1)!(a + n + 1)i

= a 2F1

[

−n, a

n + a + 1

∣

∣

∣

∣

1

]

+
2a (−n)

(a + n + 1) 2F1

[

−n + 1, a + 1

n + a + 2

∣

∣

∣

∣

1

]

= a

(

Γ(a + n + 1)Γ(2n + 1)

Γ(2n + a + 1)Γ(n + 1)
−

Γ(a + n + 1)Γ(2n + 1)

Γ(2n + a + 1)Γ(n + 1)

)

= 0.

(iii) Since

2F1

[

−n a

n + b

∣

∣

∣

∣

z

]

=
n

∑
k=0

(−i)k(a)k

(i + b)k

zk

k!
= (−1)k

(

i

k

)

(a)k

(i + b)k
,

we have to prove the following orthogonal relation:

n

∑
i=k

(−1)i+k

(

n

i

)(

i

k

)

(b + 2n − 1)
(b + i)n−1

(a)n

(a)k

(b + i)k
= δn,k. (10)

After simplification we obtain

(b + 2n − 1)
n

∑
i=k

(−1)i+k

(

n − k

n − i

)

(b + i + k)n−1−k = δn,k.
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By index shifting like as in (ii) we get the identity

(b − 1)
n

∑
i=0

(−1)i

(

n

i

)

(b + i)n−1 = δn,0.

For n = 0 taking into account

(b)−1 =
Γ(b − 1)

Γ(b)
=

(b − 2)!

(b − 1)!
=

1

b − 1
,

we have that the identity is true.

For n > 0 taking into account

2F1

[

−n b

c

∣

∣

∣

∣

1

]

=
(c − b)n

cn
,

we get

n

∑
i=0

(−1)i

(

n

i

)

(b + i)n−1 =
n

∑
i=0

(−1)i n!

i!(n − i)!
(b + i)n−1 =

n

∑
i=0

(−n)i

i!
(b + i)n−1

= (b)n−1

n

∑
i=0

(−n)i(b + n − 1)i

(b)ii!

= (b)n−12F1

[

−n, b + n − 1

b

∣

∣

∣

∣

1

]

= (b)n−1
(−n + 1)n

(b)n
= 0.

This complete the proof of the item (iii).

(iv) Since

2F1

[

−n a

−n + b

∣

∣

∣

∣

z

]

=
n

∑
k=0

(−i)k(a)k

(−i + b)k

zk

k!
= (−1)k

(

i

k

)

(a)k

(−i + b)k
,

we have to prove the following orthogonal relation:

(b − 1)
n

∑
i=k

(−1)k+i

(

n

i

)(

i

k

)

(b − i + k)n−1−k = δn,k.

The proof techniques are similar to the one of the identity (10) and we omit it.

3 THE DERIVATIVE CONNECTING PROBLEM

Let us prove Theorem 2.

Proof. (i) We first prove the auxiliary combinatorial identity:

Sn,k =
n−2

∑
i=k

1

(i − k)!(a + i)n−i
=

1

(a+k) (a+n − 1) (n−(k+2))!
. (11)
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Simplify

Sn,k =
n−2

∑
i=k

1

(i − k)!(a + i)n−i
=

n−2

∑
i=k

1

(i − k)!(n − i)!

(

a + n − 1

n − i

)

=
1

(n − k)!

n−2

∑
i=k

(n − k)!

(i − k)!(n − i)!

(

a + n − 1

n − i

)−1

=
1

(n − k)!

n−2

∑
i=k

(

n − k

i − k

)(

a + n − 1

n − i

)−1

=
1

(n − k)!

n−k−2

∑
i=0

(

n − k

i

)(

a + n − 1

n − i − k

)−1

.

Put

S′
n,k = (n − k)!Sn =

n−k−2

∑
i=0

(

n − k

i

)

(

a + n − 1

n − i − k

) .

We prove by double induction on n and then on k that

S′
n,k =

(n − k)!

(a+k) (a+n − 1) (n−(k+2))!
=

(n − k)(n − k − 1)

(a+k) (a+n − 1)
. (12)

Firstly we fix k and use the induction on n. The base case n = k + 2 is obviously true. Assume

that the identity

S′
n−1,k =

n−k−3

∑
i=0

(

n − k − 1

n − i − k − 1

)

(

a + n − 1

n − i − k

) =
(n − k − 1)(n − k − 2)

(a+k) (a+n − 2)
,

holds. Then by standard combinatorial technique we have

S′
n,k =

n−k−2

∑
i=0

(

n − k

i

)

(

a + n − 1

n − i − k

) =

(

n − k

n − k − 2

)

(

a + n − 1

2

) +
n−k−3

∑
i=0

(

n − k

n − i − k

)

(

a + n − 1

n − i − k

)

=

(

n − k

2

)

(

a + n − 1

2

) +
n−k−3

∑
i=0

n − k

n − i − k

(

n − k − 1

n − i − k − 1

)

a + n − 2

n − i − k

(

a + n − 2

n − i − k − 1

)

=

(

n − k

2

)

(

a + n − 1

2

) +
n − k

a + n − 1

n−k−3

∑
i=0

(

n − k − 1

n − i − k − 1

)

(

a + n − 1

n − i − k

)

=
(n − k)(n − k − 1)

(a + n − 1)(a + n − 2)
+

n − k

a + n − 1
S′

n−1,k

=
(n − k)(n − k − 1)

(a + n − 1)(a + n − 2)
+

n − k

a + n − 1

(n − k − 1)(n − k − 2)

(a+k) (a+n − 2)

=
(n − k)(n − k − 1)

(a + n − 1)(a + n − 2)

(

1 +
n − k − 2

a+k

)

=
(n − k)(n − k − 1)

(a+k) (a+n − 1)
.



242 BEDRATYUK L., BEDRATYUK A.

Thus, for a fixed k and all n the following relation

Sn,k =
1

(n − k)!

(n − k)(n − k − 1)

(a+k) (a+n − 1)
=

1

(a+k) (a+n − 1) (n−(k+2))!

holds.

Now let us fix n. The induction on k is true due to obvious identity S′
n,k+1 = S′

n−1,k. This

completes the proof of (12).

Let us show that for the coefficients αi

αi =
n!

i!

a − b

(a + i)n−i
, αn−1 = −n

b + n − 1

a + n − 1
,

the following identity holds:

n−1

∑
i=k

αi(−i)k =
(−n)k+1(b + k)

a + k
. (13)

Indeed, by (11) we obtain

n−2

∑
i=k

αi(−i)k = (a − b)n!
n−2

∑
i=k

(−i)k

i!(a + i)n−i
= (a − b)n!(−1)k

n−2

∑
i=k

1

(i − k)!(a + i)n−i

=
(a − b)n!(−1)k

(a+k) (a+n − 1) (n−(k+2))!
=

(k−n + 1) (a−b)(−n)k+1

(a+k) (a + n − 1)
.

Taking into account the identity

(k−n + 1) (a−b)

(a+k) (a + n − 1)
+

b + n − 1

a + n − 1
=

b + k

a + k
,

we get

n−1

∑
i=k

αi(−i)k =
n−2

∑
i=k

αi(−i)k + (−n)
b + n − 1

a + n − 1
(−(n−1))k

=
(k−n + 1) (a−b)(−n)k+1

(a+k) (a + n − 1)
+

b + n − 1

a + n − 1
(−n)k+1 =

(−n)k+1(b + k)

a + k
.

This establishes the identity (13).

Now we can prove Theorem 2, item (i). Taking into account

αi =
n!

i!

a − b

(a + i)n−i
, αn−1 = −n

b + n − 1

a + n − 1
,

let us expand the sum

n−2

∑
i=0

n!

i!

a − b

(a + i)n−i
2F1

[

−i, a

b

∣

∣

∣

∣

z

]

− n
b+n−1

a+n−1
2F1

[

−(n−1), a

b

∣

∣

∣

∣

z

]

=
n−1

∑
i=0

αi 2F1

[

−i, a

b

∣

∣

∣

∣

z

]

=
n−1

∑
k=0

(

n−1

∑
i=k

αi
(−i)k(b)k

(a)k

)

zk

k!
=

n−1

∑
k=0

(

n−1

∑
i=k

αi(−i)k

)

(b)k

(a)k

zk

k!

=
n−1

∑
k=0

(−n)k+1(b + k)

a + k

(b)k

(a)k

zk

k!
=

−nb

a

n−1

∑
k=0

(−n + 1)k(b + 1)k

(a + 1)k

zk

k!

=
−nb

a
2F1

[

−n + 1, b + 1

a + 1

∣

∣

∣

∣

z

]

=
d

dz
2F1

[

−n, a

b

∣

∣

∣

∣

z

]

.
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(ii). Let us find the differential connecting coefficients for the family of polynomials

2F1

[

−n n + a

b

∣

∣

∣

∣

z

]

by using the solution of the corresponding inverse problem (Theoren 1,(ii)):

zk =
k

∑
i=0

(−1)i

(

k

i

)

(a + 2i)
(b)k

(a + i)k+1
2F1

[

−i i + a

b

∣

∣

∣

∣

z

]

.

Taking into account

(a + 1)k

(a)k
=

a + k

a
,

(b)k

(b + 1)k
=

b

b + k
,

(−n)k+1

k!
= (−1)k+1

(

n

k

)

(n − k),

we have

d

dz
2F1

[

−n, n + a

b

∣

∣

∣

∣

z

]

=
−n(n + a)

b
2F1

[

−(n − 1), n + a + 1

b + 1

∣

∣

∣

∣

z

]

=
−n(n + a)

b

n−1

∑
k=0

(−n + 1)k(n + a + 1)k

(b + 1)k

zk

k!

=
−n(n + a)

b

n−1

∑
k=0

(−n + 1)k(n + a + 1)k

k!(b + 1)k

k

∑
i=0

(−1)i

(

k

i

)

(a + 2i)
(b)k

(a + i)k+1
2F1

[

−i, i + a

b

∣

∣

∣

∣

z

]

=
−n(n + a)

b

n−1

∑
i=0

(

n−1

∑
k=i

(−1)i

(

k

i

)

(−n + 1)k(n + a + 1)k

k!(b + 1)k

(a + 2i)(b)k

(a + i)k+1

)

2F1

[

−i, i + a

b

∣

∣

∣

∣

z

]

=
n−1

∑
i=0

(

n−1

∑
k=i

(−1)i+k+1

(

k

i

)(

n

k

)

(n − k)
(a + 2i)(n + a)k+1

(b + k)(a + i)k+1

)

2F1

[

−i, i + a

b

∣

∣

∣

∣

z

]

=
n−1

∑
i=0

(

k

i

)

(

n−1

∑
k=i

(−1)i+k+1

(

n − i

n − k

)

(n − k)
(a + 2i)(n + a)k+1

(b + k)(a + i)k+1

)

2F1

[

−i, i + a

b

∣

∣

∣

∣

z

]

.

In the internal sum we perform the shift of the index of summation as k 7→ k + i:

n−1

∑
k=i

(−1)i+k+1

(

n − i

n − k

)

(n − k)
(a + 2i)(n + a)k+1

(b + k)(a + i)k+1

=
n−1−i

∑
k=0

(−1)k+1

(

n − i

n − (k + i)

)

(n − (k + i))
(a + 2i)(n + a)k+1+i

(b + k + i)(a + i)k+1+i
.

By using the relations

(a + 2i)(n + a)k+1+i

(a + i)k+1+i
=

(a + 2 i) (n + a)i+1

(a + i)i+1
·
(a + n + i + 1)k

(a + 2 i + 1)k
,

1

(b + k + i)
=

1

(b + i)
·

(b + i)k

(b + i + 1)k
,

(−1)k+1

(

n − i

n − (k + i)

)

(n − (k + i)) = (−n + i)
(−n + i + 1)k

k!
,

we rewrite the sum in the form

(−n + i) (a + 2 i)
(n + a)i+1

(b + i) (a + i)i+1

n−1−i

∑
k=0

(−n + i + 1)k(b + i)k(a + n + i + 1)k

k!(b + i + 1)k(a + 2 i + 1)k

= (−n + i) (a + 2 i)
(n + a)i+1

(b + i) (a + i)i+1
3F2

[

−n + i + 1, b + i, , a + i + n + 1

b + i + 1, a + 2 i + 1

∣

∣

∣

∣

1

]

.
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Finally, we get

d

dz
2F1

[

−n, n + a

b

∣

∣

∣

∣

z

]

=
n−1

∑
i=0

(

(−n + i)

(

n

i

)

(a + 2 i) (n + a)i+1

(b + i) (a + i)i+1

× 3F2

[

−n + i + 1, b + i, , a + i + n + 1

b + i + 1, a + 2 , i + 1

∣

∣

∣

∣

1

])

2F1

[

−i, i + a

b

∣

∣

∣

∣

z

]

,

as reguired.

(iii) We have to prove that

d

dz
2F1

[

−n, a

−n + b

∣

∣

∣

∣

z

]

=
n−2

∑
i=0

(−1)n+i n!

i!

(b − 1)

(b − n)n−i
2F1

[

−i, a

−i + b

∣

∣

∣

∣

z

]

−
n(a + n − 1)

(b − n) 2F1

[

−(n − 1), a

−(n − 1) + b

∣

∣

∣

∣

z

]

.

We find the differential connecting coefficients for the family of polynomials 2F1

[

−n a

−n + b

∣

∣

∣

∣

z

]

by using the solution of the corresponding inverse problem (Theoren 1, item (iii)):

zk =
k

∑
i=0

(−1)i

(

k

i

)

(b − 1)
(b − i)k−1

(a)k
2F1

[

−i a

−i + b

∣

∣

∣

∣

z

]

.

We have

d

dz
2F1

[

−n, a

−n + b

∣

∣

∣

∣

z

]

=
−na

−n + b
2F1

[

−n + 1, a + 1

−n + 1 + b

∣

∣

∣

∣

z

]

=
−na

−n + b

n−1

∑
k=0

(−n + 1)k(a + 1)k

(−n + b + 1)k

zk

k!

=
−na

−n + b

n−1

∑
k=0

(−n + 1)k(a + 1)k

k!(−n + b + 1)k

k

∑
i=0

(−1)i

(

k

i

)

(b − 1)
(b − i)k−1

(a)k
2F1

[

−i, a

−i + b

∣

∣

∣

∣

z

]

=
−na

−n + b

n−1

∑
i=0

(

n−1

∑
k=i

(−n + 1)k(a + 1)k

k!(−n + b + 1)k
(−1)i

(

k

i

)

(b − 1)
(b − i)k−1

(a)k

)

2F1

[

−i, a

−i + b

∣

∣

∣

∣

z

]

.

Put

αn,i =
n−1

∑
k=i

−na

−n + b

(−n + 1)k(a + 1)k

k!(−n + b + 1)k
(−1)i

(

k

i

)

(b − 1)
(b − i)k−1

(a)k

=
−n

−n + b

n−1

∑
k=i

(−1)i

(

k

i

)

(b − 1)
(a + k)(−n + 1)k(b − i)k−1

k!(−n + b + 1)k

For i = n − 1 we have

αn,n−1 =
−n

−n + b
(−1)n−1(b − 1)

(a + n − 1)(−n + 1)n−1(b − (n − 1))n−2

(n − 1)!(−n + b + 1)k−1
= −

n(a + n − 1)

(b − n)
.

For i < n − 1 we have

αn,i = (−1)n+i n!

i!

(b − 1)

(b − n)n−i
,
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thus

−n

−n + b

n−1

∑
k=i

(−1)i

(

k

i

)

(b − 1)
(a + k)(−n + 1)k(b − i)k−1

k!(−n + b + 1)k
= (−1)n+i n!

i!

(b − 1)

(b − n)n−i

or
n−1

∑
k=i

(

k

i

)

(a + k)(−n)k+1(b − i)k−1

k!(−n + b + 1)k
= (−1)n n!

i!

(b − n)

(b − n)n−i
.

Divide the sum into the two sums

n−1

∑
k=i

(

k

i

)

(a + k)(−n)k(b − i)k−1

k!(−n + b + 1)k
= a

n−1

∑
k=i

(

k

i

)

(−n)k+1(b − i)k−1

k!(−n + b + 1)k

+
n−1

∑
k=i

(

k

i

)

k(−n)k+1(b − i)k−1

k!(−n + b + 1)k

and calculate them separately. Taking into account

(b − i)k−1 = (b − i)i(b)k−1−i = (b − i)i(k − 1 − i)!

(

b + k − i − 2

k − 1 − i

)

,

(−n + b + 1)k = k!

(

−n + b + 1

k

)

, (b)k−1 =
(b + k − 2)!

(b − 1)!
,

for the first sum we have

n−1

∑
k=i

(

k

i

)

(−n)k+1(b − i)k−1

k!(−n + b + 1)k
=

n−1

∑
k=i

(−1)k+1

(

k

i

)(

n

k

)

(n − k)(b − i)k−1

(−n + b + 1)k

=

(

n

i

) n−1

∑
k=i

(−1)k+1

(

n − i

n − k

)

(n − k)
(b − i)k−1

(−n + b + 1)k

=

(

n

i

)

(b − i)i

n−1

∑
k=i

(−1)k+1

(

n − i

n − k

)

(n − k)
(b)k−1−i

(−n + b + 1)k
.

Now we shift the summation indexes k 7→ k + i and n 7→ n + i :

n−1

∑
k=i

(−1)k+1

(

n − i

n − k

)

(n − k)(b)k−1−i

(−n + b + 1)k
=

n−i−1

∑
k=0

(−1)k+i+1

(

n − i

k

)

(n − k − i)(b)k−1

(−n + b + 1)k+i

=
n−1

∑
k=0

(−1)k+i+1

(

n

k

)

(n−k)(b)k−1

(−n−i+b+1)k+i

= (−1)i+1(−n+b−i)!
n−1

∑
k=0

(−1)k

(

n

k

)

(n−k)(b)k−1

(−n+b + k)!

= (−1)i+1 (−n + b − i)!

(b − 1)!

n−1

∑
k=0

(−1)k

(

n

k

)

(n − k)
(b + k − 2)!

(−n + b + k)!
.

(14)

Let [zn] f (z) denote the operation of extracting the coefficient of zn in a formal power series

f (z). It is clear that [zn] is a linear operation and the following well known properties holds:

[zp](1 + z)q =

(

q

p

)

, [zp−q] f (z) = [zp]zq f (z),
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see [5]. By using these properties let us prove that the sum (14) is equal to 0. We have

n−1

∑
k=0

(−1)k

(

n

k

)

(n − k)
(b + k − 2)!

(b + k − n)!
=

n

∑
k=0

(−1)n−k

(

n

k

)

k
(b + n − k − 2)!

(b − k)!

= (−1)nn(n−2)!
n

∑
k=1

(−1)k

(

n−1

k−1

)(

b+n−k−2

b−k

)

= (−1)n+1n(n−2)!
n−1

∑
k=0

(

n−1

k

)(

b+n−k−3

b−k−1

)

= (−1)n+1n(n−2)!
n−1

∑
k=0

(

n−1

k

)(

−n+1

b−k+1

)

= (−1)n+1n(n−2)!
n−1

∑
k=0

(

n−1

k

)

[zb−k+1](1+z)−n+1

= (−1)n+1n(n−2)![zb+1](1+z)−n+1
n−1

∑
k=0

(

n−1

k

)

zk

= (−1)n+1n(n−2)![zb+1](1+z)−n+1(1+z)n−1

= (−1)n+1n(n − 2)![zb+1]1= 0,

and the claim follows.

The second identity

n−1

∑
k=i

(

k

i

)

k(−n)k+1(b − i)k−1

k!(−n + b + 1)k
= (−1)n n!

i!

(b − n)

(b − n)n−i

can be proved using the same arguments used in (11), so we will omit it here.
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Бедратюк Л.П., Бедратюк Г.I. Обернена задача та задача диференцiйовної зв’язностi для деяких

гiпергеометричних многочленiв // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 235–247.

Розглянемо послiдовностi многочленiв {Pn(x)}n≥0, {Qn(x)}n≥0 такi, що deg(Pn(x)) = n,

deg(Qn(x)) = n. Задача зв’язностi для них полягає у знаходженнi коефiцiєнтiв αn,k у виразi

Qn(x) =
n

∑
k=0

αn,kPk(x). Задача зв’язностi для рiзних типiв многочленiв має довгу iсторiю i про-

довжує викликати iнтерес в рiзних галузях математики, зокрема в комбiнаторицi, математи-

чнiй фiзицi, квантовiй хiмiї. Для часткового випадку Qn(x) = xn задача зв’язностi називається

оберненою задачею для {Pn(x)}n≥0. Частковий випадок Qn(x) = P′
n+1(x) має назву диферен-

цiальної задачi зв’язностi для послiдовностi многочленiв {Pn(x)}n≥0. В пропонованiй статтi ми

знаходимо у замкненому виглядi коефiцiєнти оберненої i диференцiальної задач зв’язностi

для гiпергеометричних многочленiв вигляду

2F1

[

−n, a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n, n + a

b

∣

∣

∣

∣

z

]

, 2F1

[

−n, a

±n + b

∣

∣

∣

∣

z

]

,

де 2F1

[

a, b

c

∣

∣

∣

∣

z

]

=
∞

∑
k=0

(a)k(b)k

(c)k

zk

k!
– гiпергеометрична функцiя Гауса, а (x)n позначає символ

Похгаммера, який визначається формулою (x)n =

{

1, n = 0,

x(x + 1)(x + 2) · · · (x + n − 1), n > 0.
Всi многочлени розглядаються над полем дiйсних чисел.

Ключовi слова i фрази: гiпергеометрична фунцiя, коефiцiєнти зв’язностi, обернена задача,

задача диференцiальної зв’язностi, гiпергеометричний многочлен.
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BISWAS T.

(p, q)TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC

ENTIRE FUNCTIONS

Let K be a complete ultrametric algebraically closed field and let A (K) be the K-algebra of

entire functions on K. For any p-adic entire function f ∈ A (K) and r > 0, we denote by | f | (r)

the number sup {| f (x) | : |x| = r}, where |·| (r) is a multiplicative norm on A (K). For any two

entire functions f ∈ A (K) and g ∈ A (K) the ratio
| f |(r)
|g|(r)

as r → ∞ is called the comparative

growth of f with respect to g in terms of their multiplicative norms. Likewise to complex analysis,

in this paper we define the concept of (p, q)th order (respectively (p, q)th lower order) of growth

as ρ(p,q) ( f ) = lim sup
r→+∞

log[p] | f |(r)

log[q] r
(respectively λ(p,q) ( f ) = lim inf

r→+∞

log[p] | f |(r)

log[q] r
), where p and q are any

two positive integers. We study some growth properties of composite p-adic entire functions on the

basis of their (p, q)th order and (p, q)th lower order.

Key words and phrases: p-adic entire function, growth, (p, q)th order, (p, q)th lower order, com-
position.

Rajbari, Rabindrapalli, R. N. Tagore Road, P.O. Krishnagar, Dist-Nadia, 741101, West Bengal, India

E-mail: tanmaybiswas_math@rediffmail.com

INTRODUCTION AND DEFINITIONS

Let K be an algebraically closed field of characteristic 0, complete with respect to a p-adic

absolute value |·| (example Cp). For any α ∈ K and R ∈ (0,+∞), the closed disk {x ∈ K :

|x − α| ≤ R} and the open disk {x ∈ K : |x − α| < R} are denoted by d (α, R) and d (α, R−)

respectively. Also C(α, r) denotes the circle {x ∈ K : |x − α| = r}. Moreover A (K) represent

the K-algebra of analytic functions on K, i.e. the set of power series with an infinite radius of

convergence. For the most comprehensive study of analytic functions inside a disk or in the

whole field K, we refer the reader to the books [9, 10, 15, 18]. During the last several years the

ideas of p-adic analysis have been studied from different aspects and many important results

were gained (see [1–6], [8, 11–14, 19]).

Let f ∈ A (K) and r > 0, then we denote by | f | (r) the number sup {| f (x) | : |x| = r}

where |·| (r) is a multiplicative norm on A (K). For any two entire functions f ∈ A (K) and

g ∈ A (K) the ratio
| f |(r)
|g|(r)

as r → ∞ is called the growth of f with respect to g in terms of their

multiplicative norms.

For any x ∈ [0, ∞) and k ∈ N, we define recursively log[k] x = log
(

log[k−1] x
)

and

exp[k] x = exp
(

exp[k−1] x
)

, where N stands for the set of all positive integers. We also de-

note log[0] x = x and exp[0] x = x. Throughout the paper, log denotes the Neperian logarithm.

УДК 517.5
2010 Mathematics Subject Classification: 12J25,30D35,30G06,46S10.
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Taking this into account the order (resp. lower order) of an entire function f ∈ A (K) is given

by (see [4])

ρ ( f )

λ ( f )
= lim

r→+∞

sup

inf

log[2] | f | (r)

log r
.

The above definition of order (resp. lower order) does not seem to be feasible if an entire

function f ∈ A (K) is of order zero. To overcome this situation and in order to study the

growth of an entire function f ∈ A (K) precisely, one may introduce the concept of logarithmic

order (resp. logarithmic lower order) by increasing log+ once in the denominator following

the classical definition of logarithmic order (see, for example, [7]). Therefore the logarithmic

order ρlog ( f ) and logarithmic lower order λlog ( f ) of an entire function f ∈ A (K) are define

as
ρlog ( f )

λlog ( f )
= lim

r→+∞

sup

inf

log[2] | f | (r)

log[2] r
.

Further the concept of (p, q)th order (p and q are any two positive integers with p ≥ q) is

not new and was first introduced by Juneja et al. [16,17]. In the line of Juneja et al. [16,17], now

we shall introduce the definitions of (p, q)th order and (p, q)th lower order respectively of an

entire function f ∈ A (K) where p, q ∈ N. In order to keep accordance with the definition of

logarithmic order we will give a minor modification to the original definition of (p, q)-order

introduced by Juneja et al. [16, 17].

Definition 1. Let f ∈ A (K) and p, q ∈ N. Then the (p, q)th order and (p, q)th lower order of

f are respectively defined as:

ρ(p,q) ( f )

λ(p,q) ( f )
= lim

r→+∞

sup

inf

log[p] | f | (r)

log[q] r
.

These definitions extend the generalized order ρ[l] ( f ) and generalized lower order λ[l] ( f )

of f ∈ A (K) for each integer l ≥ 2 since these correspond to the particular case ρ[l] ( f ) =

ρ(l,1) ( f ) and λ[l] ( f ) = λ(l,1) ( f ) . Clearly ρ(2,1) ( f ) = ρ ( f ) and λ(2,1) ( f ) = λ ( f ) . The above

definition avoid the restriction p > q and give the idea of generalized logarithmic order.

However in this connection we just introduce the following definition which is analogous

to the definition of Juneja et al. [16, 17].

Definition 2. An entire function f ∈ A (K) is said to have index-pair (p, q), where p and

q ∈ N, if b < ρ(p,q) ( f ) < ∞ and ρ(p−1,q−1) ( f ) is not a nonzero finite number, where b = 1 if

p = q and b = 0 otherwise. Moreover if 0 < ρ(p,q) ( f ) < ∞, then










ρ(p−n,q) ( f ) = ∞ for n < p,

ρ(p,q−n) ( f ) = 0 for n < q,

ρ(p+n,q+n) ( f ) = 1 for n = 1, 2, . . . .

Similarly for 0 < λ(p,q) ( f ) < ∞, one can easily verify that










λ(p−n,q) ( f ) = ∞ for n < p,

λ(p,q−n) ( f ) = 0 for n < q,

λ(p+n,q+n) ( f ) = 1 for n = 1, 2, . . . .

The main aim of this paper is to establish some results related to the growth properties of

composite p-adic entire functions on the basis of (p, q)th order and (p, q)th lower order, where

p, q ∈ N.
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1 LEMMA

In this section we present the following lemma which can be found in [4] or [5] and will be

needed in the sequel.

Lemma 1. Let f , g ∈ A (K) . Then for all sufficiently large values of r the following equality

holds

| f ◦ g| (r) = | f | (|g| (r)) .

2 MAIN RESULTS

Theorem 1. Let f , g ∈ A (K) be such that ρ(m,n)(g) < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞, where

p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q < m.

Proof. We get from Lemma 1, for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

= log[p] | f |
(

|g|
(

exp[n−1] r
))

i.e.,

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

log[q] |g|
(

exp[n−1] r
)

. (1)

Now the following two cases may arise.

Case I. Let q > m. Then we have from (1) for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

log[m−1] |g|
(

exp[n−1] r
)

(2)

i.e.,

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

r(ρ(m,n)(g)+ε). (3)

Case II. Let q < m. Then for all sufficiently large positive numbers of r we get from (1) that

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

exp[m−q] log[m] |g|
(

exp[n−1] r
)

. (4)

Further for all sufficiently large positive numbers of r, it follows that

log[m] |g|
(

exp[n−1] r
)

6 log
(

rρ(m,n)(g)+ε
)

i.e.,

exp[m−q] log[m] |g|
(

exp[n−1] r
)

6 exp[m−q−1]
(

rρ(m,n)(g)+ε
)

. (5)

Now from (4) and (5) we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

≤
(

ρ(p,q)( f ) + ε
)

exp[m−q−1]
(

rρ(m,n)(g)+ε
)
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i.e.,

log[p+1] | f ◦ g|
(

exp[n−1] r
)

6 exp[m−q−2]
(

rρ(m,n)(g)+ε
)

+ O(1)

i.e.,

log[p+1] | f ◦ g|
(

exp[n−1] r
)

6 exp[m−q−2]
(

rρ(m,n)(g)+ε
)



1 +
O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)





i.e.,

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

6 rρg(m,n)+ε



1 +
O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)



 . (6)

Also from the definition of λ(p,q)( f ), we get for all sufficiently large positive numbers of r

that

log[p−1] | f |(exp[q−1] r) > r(λ
(p,q)( f )−ε). (7)

Now combining (3) of Case I and (7) we get for all sufficiently large positive numbers of r

that
log[p] | f ◦ g|

(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
≤

(

ρ f (p, q) + ε
)

r(ρ(m,n)(g)+ε)

r(λ
(p,q)( f )−ε)

. (8)

Since ρ(m,n)(g) < λ(p,q)( f ) we can choose ε (> 0) in such a way that

ρ(m,n)(g) + ε < λ(p,q)( f )− ε. (9)

Therefore in view of (9) it follows from (8) that

lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0.

Hence the first part of the theorem follows.

Further combining (6) of Case II and (7) we obtain for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
≤

rρ(m,n)(g)+ε

(

1 + O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)

)

r(λ
(p,q)( f )−ε)

. (10)

Therefore in view of (9) we get from above that

lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 .

Thus the theorem follows.

Theorem 2. Let f , g ∈ A (K) be such that λ(m,n)(g) < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞, where

p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q < m.



252 BISWAS T.

The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem 1.

Theorem 3. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and ρ(m,n)(g) < ∞,

where p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p+1] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
if q < m.

Proof. In view of the definition λ(p,q)( f ), we have for all sufficiently large positive numbers of

r that

log[p] | f |(exp[q−1] r) ≥
(

λ(p,q)( f )− ε
)

log r. (11)

Case I. If q > m, then from (3) and (11) we get for all sufficiently large positive numbers of

r that
log[p+1] | f ◦ g|

(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

(

ρ(m,n)(g) + ε
)

log r + log
(

ρ(p,q)( f ) + ε
)

(

λ(p,q)( f )− ε
)

log r
.

As ε (> 0) is arbitrary, it follows from above that

lim
r→+∞

log[p+1] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
.

This proves the first part of the theorem.

Case II. If q < m then from (6) and (11) we obtain for all sufficiently large positive numbers

of r that

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

(

ρ(m,n)(g) + ε
)

log r + log

(

1 + O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)

)

(

λ(p,q)( f ) − ε
)

log r
.

As ε (> 0) is arbitrary, it follows from above that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
.

Thus the second part of the theorem is established.

Theorem 4. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and λ(m,n)(g) > 0,

where p, q, m, n ∈ N. Then for any positive integer l, we have

(i) lim
r→∞

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q < m and q > l;

(ii) lim
r→∞

log[p] | f ◦ g|(exp[n−1] r)

log[p−q−l+1] | f |
(

exp[l] r
)
= ∞ if q < m and q < l;
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(iii) lim
r→∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q > m and q < l;

and

(iv) lim
r→∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q > m and q > l.

Proof. Let us choose 0 < ε < min
{

λ(p,q)( f ), λ(m,n)(g)
}

. Now for all sufficiently large positive

numbers of r we get from Lemma 1,

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f ) − ε) log[q] |g|
(

exp[n−1] r
)

. (12)

Further from the definition of (m, n)th lower order of g we have for all sufficiently large

positive numbers of r that

log[m] |g|
(

exp[n−1] r
)

> log r(λ
(m,n)(g)−ε) . (13)

Now the following two cases may arise.

Case I. Let q < m. Then from (12) and (13) we obtain for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) exp[m−q] log[m] |g|
(

exp[n−1] r
)

(14)

i.e.,

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f ) − ε) exp[m−q] log r(λ
(m,n)(g)−ε)

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) exp[m−q−1] r(λ
(m,n)(g)−ε). (15)

Case II. Let q > m. Then from (12) and (13) it follows for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) log[q−m] log r(λ
(m,n)(g)−ε)

i.e.,

log[p+m−q−1] | f ◦ g|(exp[n−1] r) > r(λ
(m,n)(g)−ε). (16)

Again from the definition of ρ(p,q)( f ) we get for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

log[q] exp[l] r. (17)

Now the following two cases may arise.

Case III. Let q > l. Then we have from (17) for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

log[q−l] r

i.e.,

log[p+1] | f |
(

exp[l] r
)

≤ log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

. (18)

Case IV. Let q < l. Then we have from (17) for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

exp[l−q] r
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i.e.,

log[p+1] | f |
(

exp[l] r
)

≤ exp[l−q−1] r + log
(

ρ(p,q)( f ) + ε
)

i.e.,

log[p−q+l+1] | f |
(

exp[l] r
)

≤ log r + O(1). (19)

Now combining (15) of Case I and (18) of Case III it follows for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

≥
(λ(p,q)( f ) − ε) exp[m−q−1] r(λ

(m,n)(g)−ε)

log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

.

Since q < m, we get from the above that

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞.

This proves the first part of the theorem.

Again in view of (15) of Case I and (19) of Case IV we have for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)
≥

(λ(p,q)( f )− ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

log r + O(1)
. (20)

When q < m and q < l then we get from (20) that

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)
= ∞.

This establishes the second part of the theorem.

Now in view of (16) of Case II and (18) of Case III we get for all sufficiently large positive

numbers of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

≥
r(λ

(m,n)(g)−ε)

log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

i.e.,

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞,

from which the third part of the theorem follows.

Again from (16) of Case II and (19) of Case IV we have for all sufficiently large positive

numbers of r that
log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)

≥
r(λ

(m,n)(g)−ε)

log r + O(1)

i.e.,

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)

= ∞.

This proves the fourth part of the theorem. Thus the theorem follows.
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Theorem 5. Let f , g, h, k ∈ A (K) be such that 0 < ρ(a,b)(h) < ∞, λ(p,q)( f ) > 0, λ(m,n)(g) > 0

and ρ(c,d)(k) < λ(m,n)(g), where a, b, c, d, p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞ if b > c and q < m,

(ii) lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞ if b < c and q < m,

(iii) lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞ if b > c and q > m,

and (iv) lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞ if b < c and q > m.

Proof. In view of Lemma 1 we obtain for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

log[b] |k| (r) . (21)

Now from the definition of (c, d)th order of k we get for arbitrary positive ε and for all

sufficiently large positive numbers of r that

log[c] |k| (r) 6
(

ρ(c,d)(k) + ε
)

log[d] r

i.e.,

log[c] |k| (r) 6
(

ρ(c,d)(k) + ε
)

log r (22)

i.e.,

log[c−1] |k| (r) 6 r(ρ(c,d)(k)+ε). (23)

Now the following cases may arise.

Case I. Let b > c. Then we have from (21) for all sufficiently large positive numbers of r

that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

log[c−1] |k| (r) . (24)

So from (23) and (24), it follows for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε). (25)

Case II. Let b < c. Then we get from (21) for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

exp[c−b] log[c] |k| (r) . (26)

Now from (22) and (26) we obtain for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

exp[c−b] log r(ρ(c,d)(k)+ε)

i.e.,

log[a+c−b−1] |h ◦ k| (r) 6 r(ρ(c,d)(k)+ε) + O(1). (27)
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Since ρ(c,d)(k) < λ(m,n)(g) we can choose ε (> 0) in such a way that

ρ(c,d)(k) + ε < λ(m,n)(g)− ε. (28)

Now combining (25) of Case I, (15) and in view of (28) it follows for all sufficiently large

positive numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
≥

(λ(p,q)( f ) − ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε)

i.e.,

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞,

from which the first part of the theorem follows.

Again combining (27) of Case II, (15) and in view of (28) we obtain for all sufficiently large

positive numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
≥

(λ(p,q)( f ) − ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

r(ρ(c,d)(k)+ε) + O(1)

i.e.,

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞.

This establishes the second part of the theorem.

Further in view of (25) of Case I and (16) we get for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
≥

r(λ
(m,n)(g)−ε)

(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε)
. (29)

So from (28) and (29) we obtain that

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞,

from which the third part of the theorem follows.

Again combining (27) of Case II and (16) it follows for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
≥

r(λ
(m,n)(g)−ε)

r(ρ(c,d)(k)+ε) + O(1)
. (30)

Now in view of (28) we obtain from (30) that

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞.

This proves the fourth part of the theorem. Thus the theorem follows.
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Theorem 6. Let f , g ∈ A (K) be such that ρ(a,b)( f ◦ g) < ∞ and λ(m,n)(g) > 0, where

a, b, m, n ∈ N. Then

lim
r→+∞

[

log[a] | f ◦ g|(exp[b−1] r)
]2

log[m−1] |g|(exp[n] r) · log[m] |g|(exp[n−1] r)
= 0.

Proof. For any ε > 0 we have log[a] | f ◦ g|(exp[b−1] r) ≤
(

ρ(a,b)( f ◦ g) + ε
)

log[b] exp[b−1] r, i.e.,

log[a] | f ◦ g|(exp[b−1] r) ≤
(

ρ(a,b)( f ◦ g) + ε
)

log r. (31)

Again we obtain that log[m] |g|(exp[n−1] r) ≥
(

λ(m,n)(g)− ε
)

log[n] exp[n−1] r, i.e.,

log[m] |g|(exp[n−1] r) ≥
(

λ(m,n)(g)− ε
)

log r. (32)

Similarly we have log[m] |g|(exp[n] r) ≥
(

λ(m,n)(g)− ε
)

log[n] exp[n] r, i.e.,

log[m−1] |g|(exp[n] r) ≥ exp
[(

λ(m,n)(g)− ε
)

r
]

. (33)

From (31) and (32) we have for all sufficiently large positive numbers of r that

log[a] | f ◦ g|(exp[b−1] r)

log[m] |g|(exp[n−1] r)
≤

(

ρ(a,b)( f ◦ g) + ε
)

log r
(

λ(m,n)(g)− ε
)

log r
.

As ε (> 0) is arbitrary we obtain from the above that

lim
r→+∞

log[a] | f ◦ g|(exp[b−1] r)

log[m] |g|(exp[n−1] r)
≤

ρ(a,b)( f ◦ g)

λ(m,n)(g)
. (34)

Again from (31) and (33) we get for all sufficiently large positive numbers of r that

log[a] | f ◦ g|(exp[b−1] r)

log[m−1] |g|(exp[n] r)
≤

(

ρ(a,b)( f ◦ g) + ε
)

log r

exp
[(

λ(m,n)(g)− ε
)

r
] .

Since ε (> 0) is arbitrary it follows from the above that

lim
r→+∞

log[a] | f ◦ g|(exp[b−1] r)

log[m−1] |g|(exp[n] r)
= 0. (35)

Thus the theorem follows from (34) and (35).

Theorem 7. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and 0 < λ(m,n)(g) ≤

ρ(m,n)(g) < ∞, where p, q, m, n ∈ N. Then

(i)
λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

;

max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
,

when q = m = n,
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(ii)
λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

;

max
{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
,

when q = m > or < n,

(iii)
λ(p,q)( f )

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 min

{

1,
ρ(p,q)( f )

λ(p,q)( f )

}

;

max

{

1,
λ(p,q)( f )

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≤

ρ(p,q)( f )

λ(p,q)( f )
,

when q > m,

(iv)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≤

ρ(m,n)(g)

λ(p,q)( f )
,

when m > q = n,

(v)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≤

ρ(m,n)(g)

λ(p,q)( f )
,

when m > q > n, and

(vi)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f |
(

exp[q−n] r
)

6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f |
(

exp[q−n] r
)

≤
ρ(m,n)(g)

λ(p,q)( f )
,

when m > q < n.

Proof. From the definitions of (p, q)th order and (p, q)th lower order of f , we have for all suffi-

ciently large positive numbers of r that

log[p] | f | ≤
(

ρ(p,q)( f ) + ε
)

log[q] r , (36)

log[p] | f | ≥
(

λ(p,q)( f )− ε
)

log[q] r (37)

and also for a sequence of positive numbers of r tending to infinity we get that

log[p] | f | ≥
(

ρ(p,q)( f )− ε
)

log[q] r , (38)

log[p] | f | ≤
(

λ(p,q)( f ) + ε
)

log[q] r . (39)



(p, q)TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC ENTIRE FUNCTIONS 259

Now in view of Lemma 1, we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q] |g| (r) (40)

and also we get for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
)

log[q] |g| (r) . (41)

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q] |g| (r) (42)

and also we obtain for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f )− ε
)

log[q] |g| (r) . (43)

Now the following two cases may arise.

Case I. Let q = m = n. Then we have from (40) for all sufficiently large positive numbers

of r that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r, (44)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r. (45)

Also we obtain from (41) for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r. (46)

Further it follows from (42) for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f )− ε
) (

λ(m,n)(g)− ε
)

log[n] r, (47)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f )− ε
) (

ρ(m,n)(g)− ε
)

log[n] r. (48)

Moreover, we obtain from (43) for a sequence of positive numbers of r tending to infinity

that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f )− ε
) (

λ(m,n)(g)− ε
)

log[n] r. (49)

Therefore from (37) and (44), we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
. (50)

Similarly from (38) and (44), for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

ρ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

ρ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 ρ(m,n)(g). (51)

Also from (37) and (45), we obtain for a sequence of positive numbers of r tending to infinity

that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )
, (52)

Further from (37) and (46), for a sequence of positive numbers of r tending to infinity we

have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 ρ(m,n)(g). (53)

Thus from (51), (52) and (53) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

. (54)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r
,
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
. (55)

Similarly, from (39) and (47) we obtain that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ λ(m,n)(g). (56)

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(p,q)( f ) − ε
) (

ρ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )
, (57)

and from (36) and (49), for a sequence of positive numbers of r tending to infinity we have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

ρ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ λ(m,n)(g). (58)

Thus from (56), (57) and (58) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

. (59)

Therefore the first part of the theorem follows from (50), (54), (55) and (59).

Case II. Let q = m and m > n or n < m. Now from (37) and (44), for all sufficiently large

positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
. (60)

Similarly, from (38) and (44) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

ρ(p,q)( f )− ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 ρ(m,n)(g). (61)

Also from (37) and (45), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )
, (62)

and from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 ρ(m,n)(g). (63)

Thus from (61), (62) and (63) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

. (64)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
. (65)

Similarly, from (39) and (47) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

λ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ λ(m,n)(g). (66)

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

ρ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )
. (67)

Similarly from (36) and (49), we get that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ λ(m,n)(g). (68)

Thus from (66), (67) and (68) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

. (69)

Thus the second part of the theorem follows from (60), (64), (65) and (69).

Case III. Let q > m. Then from (40) for all sufficiently large positive numbers of r we have

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q−m]
[(

ρ(m,n)(g) + ε
)

log[n] r
]

i.e.,

log[p] M (r, f ◦ g) 6
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1) (70)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1). (71)

Also for the same reasoning, from (41) for a sequence of positive numbers of r tending to

infinity we obtain that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
)

log[q−m+n] r + O(1). (72)

Further from (42), for all sufficiently large positive numbers of r it follows that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q−m+n] r + O(1), (73)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q−m+n] r + O(1). (74)

Moreover from (43) for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f ) − ε
)

log[q−m+n] r + O(1). (75)

Now from (37) and (70), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

ρ(p,q)( f )

λ(p,q)( f )
. (76)
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Similarly, from (38) and (70) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 1. (77)

Also from (37) and (71) for a sequence of positive numbers of r tending to infinity we obtain

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] M (r, f ◦ g)

log[p] M
(

exp[m−n] r, f
)
6

ρ(p,q)( f )

λ(p,q)( f )
, (78)

and from (37) and (72) for a sequence of positive numbers of r tending to infinity also we have

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

λ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] M (r, f ◦ g)

log[p] M
(

exp[m−n] r, f
)
6 1. (79)

Thus from (77), (78) and (79) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 min

{

1,
ρ(p,q)( f )

λ(p,q)( f )

}

. (80)

Further from (36) and (73), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

λ(p,q)( f )

ρ(p,q)( f )
. (81)

Similarly, from (39) and (73) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ 1. (82)
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Also from (36) and (74), for a sequence of positive numbers of r tending to infinity we obtain

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

λ(p,q)( f )

ρ(p,q)( f )
, (83)

and from (36) and (75) for a sequence of positive numbers of r tending to infinity also we have

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

ρ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ 1. (84)

Thus from (82), (83) and (84) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ max

{

1,
λ(p,q)( f )

ρ(p,q)( f )

}

. (85)

Hence the third part of the theorem follows from (76), (80), (65) and (85).

Case IV. Let m > q = n. Then from (40) for all sufficiently large positive numbers of r we

have

log[p+m−q] | f ◦ g| (r) 6
(

ρ(m,n)(g) + ε
)

log[n] r + O(1), (86)

and for a sequence of positive numbers of r tending to infinity that

log[p+m−q] | f ◦ g| (r) 6
(

λ(m,n)(g) + ε
)

log[n] r + O(1). (87)

Also from (41) for a sequence of positive numbers of r tending to infinity we obtain that

log[p+m−q] | f ◦ g| (r) 6
(

ρ(m,n)(g) + ε
)

log[n] r + O(1). (88)

Further, from (42) for all sufficiently large positive numbers of r it follows that

log[p+m−q] | f ◦ g| (r) ≥
(

λ(m,n)(g)− ε
)

log[n] r + O(1), (89)

and for a sequence of positive numbers of r tending to infinity that

log[p+m−q] | f ◦ g| (r) ≥
(

ρ(m,n)(g)− ε
)

log[n] r + O(1). (90)

Moreover, from (43) for a sequence of positive numbers of r tending to infinity we obtain

that

log[p+m−q] | f ◦ g| (r) ≥
(

λ(m,n)(g)− ε
)

log[n] r + O(1). (91)
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Therefore from (37) and (86), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (92)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

ρ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (93)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

λ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

λ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

λ(m,n)(g)

λ(p,q)( f )
, (94)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (95)

Thus from (93), (94) and (95) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (96)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (97)
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Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λg (m, n)

λ(p,q)( f )
. (98)

Also from(36) and (90) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

ρ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

ρ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (99)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (100)

Thus from (98), (99) and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (101)

Therefore the fourth part of the theorem follows from (92), (96), (98) and (101).

Case V. Let m > q > n. Currently from (37) and (86) , we have for all sufficiently large

positive numbers of r that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

λ(p,q)( f )
. (102)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

ρ(p,q)( f )− ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (103)

Also from (37) and (87), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

λ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

λ(m,n)(g)

λ(p,q)( f )
, (104)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

λ(p,q)( f )
. (105)

Thus from (103), (104) and (105) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (106)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (107)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

λ(p,q)( f )
. (108)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

ρ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (109)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (110)

Thus from (98), (99), and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (111)

Thus the fifth part of the theorem follows from (102), (106), (107) and (111).

Case VI. Let m > q < n. At this instant case from (37) and (86) for all sufficiently large

positive numbers of r we have that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (112)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (113)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

λ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

λ(m,n)(g)

λ(p,q)( f )
, (114)
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and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (115)

Thus from (113), (114) and (115) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (116)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (117)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

λ(p,q)( f )
. (118)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

ρ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (119)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (120)

Thus from (98), (99) and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (121)

Hence the sixth part of the theorem follows from (112), (116), (118) and (121).

Theorem 8. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and 0 < λ(m,n)(g) ≤

ρ(m,n)(g) < ∞, where p, q, m, n ∈ N. Then

(i)
λ(p,q)( f ) · λ(m,n)(g)

ρ(m,n)(g)
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[m] |g| (r)
≤ min

{

ρ(p,q)( f ),
λ(p,q)( f ) · ρ(m,n)(g)

λ(m,n)(g)

}

;

max

{

λ(p,q)( f ),
ρ(p,q)( f ) · λ(m,n)(g)

ρ(m,n)(g)

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[m] |g| (r)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(m,n)(g)
,

when q = m,

(ii)
λ(p,q)( f )

ρ(m,n)(g)
≤ lim

r→+∞

log[p] | f ◦ g|
(

exp[q−m] r
)

log[m] |g| (r)
6 min

{

ρ(p,q)( f )

ρ(m,n)(g)
,

ρ(p,q)( f )

λ(m,n)(g)
,

λ(p,q)( f )

λ(m,n)(g)

}

;

max

{

ρ(p,q)( f )

ρ(m,n)(g)
,

λ(p,q)( f )

ρ(m,n)(g)
,

λ(p,q)( f )

λ(m,n)(g)

}

≤ lim
r→+∞

log[p] | f ◦ g|
(

exp[q−m] r
)

log[m] |g| (r)
≤

ρ(p,q)( f )

λ(m,n)(g)
,

when q > m, and

(iii)
λ(m,n)(g)

ρ(m,n)(g)
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[m] |g| (r)
≤ 1 ≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[m] |g| (r)
≤

ρ(m,n)(g)

λ(m,n)(g)
,

when m > q.

We omit the proof of Theorem 8 as it can easily be deduced in the line of Theorem 7.
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Бiсвас Т. Оцiнка орiєнтованого росту складених p-адичних цiлих функцiй, що залежить вiд (p, q)-го

порядку // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 248–272.

Нехай K — повне ультраметричне алгебраїчно замкнуте поле, A (K) — K-алгебра цiлих

функцiй на K. Для довiльної p-адичної цiлої функцiї f ∈ A (K) i r > 0 позначимо | f | (r)

число sup {| f (x) | : |x| = r}, де |·| (r) є мультиплiкативною нормою на A (K). Для довiльних

двох цiлих функцiй f ∈ A (K) та g ∈ A (K) спiввiдношення
| f |(r)
|g|(r)

при r → ∞ називають по-

рiвняльним ростом f вiдносно g в сенсi їхнiх мультиплiкативних норм. Аналогiчно до того,

як це роблять в комплексному аналiзi, в цiй статтi ми визначаємо поняття (p, q)-го порядку

(вiдповiдно (p, q)-го нижнього порядку) росту наступним чином ρ(p,q) ( f ) = lim sup
r→+∞

log[p] | f |(r)

log[q] r

(вiдпоiдно λ(p,q) ( f ) = lim inf
r→+∞

log[p] | f |(r)

log[q] r
), де p i q два довiльнi натуральнi числа. Ми дослiджуємо

деякi властивостi росту складених p-адичних цiлих функцiй на основi їхнього (p, q)-го поряд-

ку i (p, q)-го нижнього порядку.

Ключовi слова i фрази: p-адична цiла функцiя, рiст, (p, q)-й порядок, (p, q)-й нижнiй поря-

док, композицiя.
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APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY TO

THE STUDY OF ORNSTEIN-UHLENBECK PROCESSES

The theoretical bases of this paper are the theory of spectral analysis and the theory of sin-

gular and regular perturbations. We obtain an approximate price of Ornstein-Uhlenbeck double

barrier options with multidimensional stochastic diffusion as expansion in eigenfunctions using

infinitesimal generators of a (l + r + 1)-dimensional diffusion in Hilbert spaces. The theorem of

accuracy estimation of options prices approximation is established. We also obtain explicit formu-

las for derivatives price based on the expansion in eigenfunctions and eigenvalues of self-adjoint

operators using boundary value problems for singular and regular perturbations.
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INTRODUCTION

In 1956 McKean H.P. constructed a spectral presentation for general one-dimensional dif-

fusion [1]. Since then, spectral theory has become an important instrument for the analysis

of financial diffusion models, as investigation of expansion in eigenfunctions of linear opera-

tors. Many problems concerning derivatives estimation are solved using methods of spectral

theory; as a result it is widely used in financial mathematics.

Spectral theory has been extensively applied by many scientists, namely, to forecast call op-

tion price [2], to find interest rates on securities [3] and model volatility of financial assets. Both

spectral theory and stochastic volatility models have become an indispensable tool in mathe-

matics of finance [4], due to the fact that prices of double barrier options are subjected to the

Brownian motion and are correlated with volatility [5]. Therefore, it is employed in an investi-

gation of stochastic volatility, in particular the asset volatility, which is the basis of controlled

and nonlocal diffusion [6]. Applying methods of spectral theory, theories of singular and reg-

ular perturbations, we can obtain approximate price of Ornstein-Uhlenbeck double barrier

options with multidimensional volatility, as expansion in eigenfunctions using infinitesimal

generators of a (l + m + 1)-dimensional diffusion, l ≥ 1, r ≥ 1, l ∈ N, r ∈ N, i.e. the diffusion

depends on one local variable, l-dimensional fast variable and n-dimensional slow variable.

This paper develops the following researches [7–9], in [9] it is considered the case l = 1 and

m = 1.

The purpose of the article is to elaborate algorithms for evaluating approximate price of

double barrier options and to find explicit formulas for derivatives estimation as expansion in

УДК 336.71
2010 Mathematics Subject Classification: 35K70.
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eigenfunctions and eigenvalues of self-adjoint operators using boundary problems for singular

and regular perturbations. The theorem of accuracy estimation of options prices approxima-

tion is established.

1 RESULTS

Let (Q, F, P) be the probability space that supports a correlated Brownian motion

(Wx, Wy1 , . . . , Wyl , Wz1, . . . , Wzr) and an exponential random variable ε ∼ exp(1), which is in-

dependent of (Wx, Wy1 , . . . , Wyl , Wz1, . . . , Wzr). We will assume that the economy with

(l + r + 1) factors is described by the homogeneous time and continuous Markov process

X = (X, Y1, . . . , Yl , Z1, . . . , Zn), which is defined in some state space E = I × Rl × Rr, where

(Y1, . . . , Yl)∈Rl , (Z1, . . . , Zr)∈Rr, I is the interval at R with points e1 and e2, such that −∞ <

e1 < e2 < ∞. We assume that X has the beginning at E and instantly disappears once X goes

beyond I. In particular, the dynamics of X with physical measure P is as follows:

Xt =

{
(Xt, Y1t, . . . , Ylt, Z1t, . . . , Zrt), τI > t,

∆, τI ≤ t,

τI = inf {t > 0 : Xt /∈ I}, where (X, Y1, . . . , Yl , Z1, . . . , Zr) are set





dXt = v (Xt) dt + a (Xt) f (Y1t, . . . , Ylt, Z1t, . . . , Zrt) dWx
t ,

dYjt =
1
ε j

αj

(
Yjt

)
dt + 1√

ε j
βj

(
Yjt

)
dW

yj

t , j = 1, l,

dZit = δici (Zit) dt +
√

δigi (Zit) dWzi
t , i = 1, r,

d(Wx , Wyj)t = ρxyj
dt, j = 1, l,

d(Wx , Wzi)t = ρxzi
dt, i = 1, r,

d(Wyj , Wzi)t = ρyjzi
dt, j = 1, l, i = 1, r,

d(Wyj , Wyr )t = ρyjys dt, j = 1, l, s = 1, l,

d(Wzi , Wzk)t = ρzizk
dt, i = 1, n, k = 1, r,

(X, Y1, . . . , Yl , Z1, . . . , Zr) = (x, y1, . . . , yl , z1, . . . , zr) ∈ E,

where ρyjys = 0, j 6= r, ρzizk
= 0, i 6= k, ρxyj

, ρxzi
, ρyjzi

meet the conditions ‖ρxyj
| ≤ 1, |ρxzi

| ≤ 1,

|ρyjzi
| ≤ 1, and correlation matrices of the form




1 ρxyj
ρxzi

ρyjx 1 ρyjzi

ρzix ρziyj
1




semipositively defined, that is 1 + 2ρxyj
ρxzi

ρyjzi
− ρxyj

2 − ρxzi
2 − ρyjzi

2 ≥ 0, j = 1, l, i = 1, r.

Process X may represent many economic phenomena and processes.

For example, the reserve size, the index price and reliable short-term interest rates, etc.

Even more broadly, X is an external factor that characterizes the value of any of the above-

mentioned processes. Physical measure P of process X is understood as the process X, which

has an instant drift v (Xt) and stochastic volatility a (Xt) f (Y1t, . . . , Ylt, Z1t, . . . , Znt) > 0, which
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contains both components: local a (Xt) and nonlocal f (Y1t, . . . , Ylt, Z1t, . . . , Znt). Note that

infinitesimal generators for Yj and Zi have the form

L
ε j

Yj
=

1

ε j

(
1

2
βj

2
(
yj

)
∂2

yjyj
+ αj

(
yj

)
∂yj

)
, L

δi
Zi
= δi

(
1

2
gi

2 (zi) ∂2
zizi

+ ci (zi) ∂zi

)
, ∀ i, j,

and are characterized by the measures 1
ε j

and δi, respectively. Thus, Y1, . . . , Yl and Z1, . . . , Zn

have an internal time scale ε j > 0 and 1
δi
> 0. We consider ε j << 1 and δi << 1, so that the

internal time scale Yj is small, and the internal time scale Zi is large. Consequently, Yj, j = 1, l,

are fast variables, and Zi, i = 1, n, are slow variables. Note that L
ε j

Yj
and L

δi
Zi

have the form

L = 1
2 a2 (x) ∂2

xx + b (x) ∂x − k(x), x ∈ (e1, e2), ç k (x) = 0,

for all x ∈ I, are always self-adjoint in the Hilbert space H = L2(I, m), where I ∈ R is the

interval with the points e1 and e2 and m is the diffusion density rate. Note,

Dom (L) =
{

f ∈ L2 (I, m) : f , ∂x f ∈ ACloc (I) , L f ∈ L2 (I, m) , BCs on e1 and e2

}
,

where ACloc (I) is the space of functions which are absolutely continuous on each compact

subinterval I (see [9]). The boundary conditions for e1 and e2 are applied on the output, input,

and regular bounds.

We will evaluate the derivatives with payoff at time t > 0, which may depend on the tra-

jectory of X. In particular, we will consider the forms of payoff: Payoff = H(Xt)I(τ>t), where

τ is a random moment of time during which there is a failure to make a payment of pre-

mium. Since we are interested in the derivatives estimation, we must determine the dynamics

(X, Y1, . . . , Yl , Z1, . . . , Zr) under the evaluation of the degree of neutral risk, which we denote

as P̃. We have the following dynamics





dXt = (b (Xt)− a (Xt) f (Y1t, . . . , Ylt, Z1t, . . . , Zrt)Ω (Y1t, . . . , Ylt, Z1t, . . . , Zrt)) dt

+a (Xt) f (Y1t, . . . , Ylt, Z1t, . . . , Zrt) dW̃x
t ,

dYjt =
(

1
ε j

αj

(
Yjt

)
− 1√

ε j
βj(Yjt)Λj (Y1t, . . . , Ylt, Z1t, . . . , Zrt)

)
dt + 1√

ε j
βj

(
Yjt

)
dW̃

yj

t ,

dZit =
(
δici (Zit)−

√
δigi (Zit) Γi (Y1t, . . . , Ylt, Z1t, . . . , Zrt)

)
dt +

√
δigi (Zit) dW̃zi

t ,

d
〈
W̃x, W̃yj

〉
t
= ρxyj

dt, j = 1, l,

d
〈
W̃x, W̃zi

〉
t
= ρxzi

dt, i = 1, r,

d
〈
W̃yj , W̃zi

〉
t
= ρyjzi

dt, j = 1, l, i = 1, r,

d
〈
W̃yj , W̃ys

〉
t
= ρyjys dt, j = 1, l, s = 1, l,

d
〈
W̃zi , W̃zk

〉
t = ρzizk

dt, i = 1, n, k = 1, n,

(X0, Y1, . . . , Yl , Z1, . . . , Zr0) = (x, y1, . . . yl , z1, . . . , zr) ∈ E,

(1)

where ρyjys = 0, j 6= s, ρzizk
= 0, i 6= k, and

dW̃x
t := dWx

t +

(
v (Xt)− b(Xt)

a (Xt) f (Y1t, . . . , Ylt, Z1t, . . . , Znt)
+ Ω (Y1t, . . . , Ylt, Z1t, . . . , Zrt)

)
dt,

dW̃
yj

t := dW
yj

t + Λj (Y1t, . . . , Ylt, Z1t, . . . , Zrt) dt,

dW̃zi
t := dWzi

t + Γi (Y1t, . . . , Ylt, Z1t, . . . , Zrt) dt.

We establish such conditions so that the system (1) has the only strong solution.

Random time τ is the time of the derivative asset. In our case, default can occur in one of

two ways:
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1) when X fall outside the interval I,

2) at random time τh, which is managed by the risk level h(Xt) ≥ 0.

This can be expressed as follows





τ = τI ∧ τh,

τI = in f t ≥ 0 : Xt /∈ I ,

τh = in f t ≥ 0 :
∫ t

0 h (Xs) ds ≥ ε (X, Y1, . . . , Yl , Z1, . . . , Zn) , ε ∼ exp(1).

Note that the random variable ε is independent of (X, Y1, . . . , Yl , Z1, . . . , Zn).

To track τh, we use the process indicator Dt = It≥τh
, where D = Dt, t ≥ 0, is a filter

generated by D and F = Ft, t ≥ 0 is filter generator (Wx , Wy1 , . . . Wyl , Wz1 , . . . , Wzn). We

use the filtering G = Gt, t ≥ 0, where Gt = Ft
∨
Dt. Note that (X, Y1, . . . , Yl , Z1, . . . , Zn) are

applied to G and τ is a stopping time (τ ≤ t ∈ Gt for all t ≥ 0).

We will evaluate the derivative asset of some payoff (payment) using the neutral pricing

risk and Markovian chain X, the price uε,δ′(t, x, y1, . . . yl , z1, . . . , zr) of some derivative assets at

the initial moment of time has the form

uε,δ′(t, x, y1, . . . yl , z1, . . . , zr) = Ẽx,y1,...yl ,z1,...,zr

[
exp

(
−
∫ t

0
r (Xs) ds

)
H(XtI t>τ )

]
,

where ε = (ε1, . . . , ε l), δ′ = (δ1, . . . , δr) , and (x, y1, . . . yl , z1, . . . , zr) ∈ E is a starting point of

the process (X, Y1, . . . , Yl , Z1, . . . , Zr). Using the Feynmann-Kac formulas, we can show that

uε,δ′(t, x, y1, . . . yl , z1, . . . , zr) satisfies the following Cauchy problem (see [9])

(−∂t + Lε,δ′)uε,δ′ = 0, (y1, . . . yl , z1, . . . , zr) ∈ E, t ∈ R
+, (2)

uε,δ′(0, x, y1, . . . yl , z1, . . . , zr) = H(x), (3)

where the operator Lε,δ′ has the form

Lε,δ′ =
l

∑
j=1

1

ε j
L0j +

l

∑
j=1

1
√

ε j
L1j + L2j + ∑

i,j

√
δi

ε j
M3ij + ∑

i

√
δiM1i +∑

i

δiM2i,

L0j =
1

2
β2

j

(
yj

)
∂2

yjyj
+ αj

(
yj

)
∂yj

, j = 1, l,

L1j = βj(yj)(ρxyj
a (x) f (y1, . . . yl , z1, . . . , zr) ∂x − Λj(y1, . . . yl , z1, . . . , zr))∂yj

,

L2j =
1

2
a2 (x) f 2 (y1, . . . yl , z1, . . . , zr) ∂2

xx

+ (b (x)− a (x)Ω (y1, . . . yl , z1, . . . , zr) f (y1 , . . . yl , z1, . . . , zr)) ∂x − k (x) ,

M3ij = ρxzi
βj

(
yj

)
gi (zi) ∂2

yjzi
,

M1i = gi (zi) (ρxzi
a (x) f (y1, . . . yl , z1, . . . , zr) ∂x − Γi (y1, . . . yl , z1, . . . , zr)) ∂zi

,

M2i =
1

2
g2

i (zi) ∂2
zizi

+ ci (zi) ∂zi
, k (x) = r (x) + h (x) , L0j = L1

Yj
.
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We assume that the diffusion with the infinitesimal generator L1
Yj

has an invariant distribu-

tion Π with density

πj

(
yj

)
=

2

β2
j (yj)

exp
∫ yj

yj0

2αj(θ)

β2
j (θ)

dθ , ∀j = 1, l.

Besides the initial condition (3), the function uε,δ′(t, x, y1, . . . yl , z1, . . . , zr) must meet bound-

ary conditions at the points e1 and e2 of the interval I. The boundary conditions at points e1

and e2 belong to the domain Lε,δ′ and will depend on the nature of process X on the points

of I and are classified as natural, output, input or regular [10]. The Cauchy problem (2)–(3)

for ( f , α1, . . . , αl , β1, . . . , βr, Λ1, . . . , Λl, c1, . . . , cr, g1, . . . , gr, Γ1, . . . , Γr) has no analytical solution.

However, for fixed δ′, the conditions containing ε and are arbitrarily deviated in the ε-axis,

which causes singular perturbations. For a fixed ε j condition containing δi are small for some

small δ′-axis, which causes regular perturbations. Thus, the ε-axis and δ′-axis yields the com-

bined singular-regular perturbation of O(1) of the operator L2.To find the asymptotic solution

of the Cauchy problem (2)–(3), we develop uε,δ′ in orders
√

ε j and
√

δi [11]:

uε,δ′ = ∑
i1≥0

· · · ∑
il≥0

∑
j1≥0

· · · ∑
jr≥0

√
ε1

j1 . . .
√

ε l
jl
√

δ1
i1

. . .
√

δr
ir

uj1,...,jn,i1,...,il

where

∑
i1≥0

. . . ∑
il≥0

∑
j1≥0

· · · ∑
jr≥0

√
ε1

j1 . . .
√

ε l
jl
√

δ1
i1

. . .
√

δr
ir

uj1,...,jr ,i1,...,il

= lim
m1

∑
i1≥0

· · ·
ml≥0

∑
il≥0

ml+1≥0

∑
j1≥0

· · ·
ml+r

∑
jn≥0

√
ε1

j1 . . .
√

ε l
jl
√

δ1
i1

. . .
√

δr
ir

uj1,...,jr ,i1,...,il
, ∀ mn → ∞.

The approximate price is calculated

uε,δ′ ≈ u0,0′ +
l

∑
j=1

√
ε ju1j,0′

+
r

∑
i=1

√
δiu0,1′i

.

The choice of development in half-integer orders ε j and δi are natural for Lε,δ′ .

By conducting an analysis of singular perturbations at the corresponding levels, we obtain

that u0,0′ , u1j,0′
, u

0,1′i
do not depend on y1, . . . , yl . The basic findings of the asymptotic analysis

are given using the following formulas

O (1) : ∑
j=1

L0ju2j,0′
+ (−∂t + 〈L2〉) u0,0′ = 0, u0,0′ (0, x, z1, . . . , zr) = H (x) , (4)

O
(√

ε j

)
: L0ju3j,0′

+ L1ju2j,0′
+ (−∂t + 〈L2〉) u1j,0′

+ ∑
k 6=j

L1ku1kj,0′
+ ∑

i 6=j

L1i = Aju0,0′ ,

u1j,0′
(0, x, z1, . . . , zn) = 0, 1kj =


 0, . . . 1︸ ︷︷ ︸

k

0, 1, 0, . . . .0︸ ︷︷ ︸
j


 . (5)

According to the analysis of regular perturbations we have

O
(√

δi

)
: (−∂t + 〈L2〉) u

0,1′i
= Bi∂zi

u0,0′ , u
0,1′i

(0, x, z1, . . . , zr) = 0, i = 1, r. (6)



278 BURTNYAK I.V., MALYTSKA H.P.

Operators 〈L2〉, Aj, Bi and ∂zi
are defined by the formulas

〈L2〉 =
1

2
σ2a2 (x) ∂2

xx +
(

b (x)− f Ωa(x)
)

∂x − k (x) , x ∈ (e1, e2) ,

Aj = −ν3ja (x) ∂xa2 (x) ∂2
xx − ν2ja

2 (x) ∂2
xx − U2ja (x) ∂xa (x) ∂x − U1ja (x) ∂x,

Bi = −ν1ia (x) ∂x − ν0i, ∂zi
= ∂zi

σ∂σ + f Ω
′
∂ f Ω, ν1i := giρxzi 〈 f 〉 , ν0 = gi 〈Γi〉 , ∀ i = 1, n,

and norm function is defined by

〈X 〉j :=
∫

X (y1, . . . yl)πj

(
yj

)
dyj, ∀ j = 1, l,

〈X 〉1,2 =
∫

R2
X (y1, . . . yl)π1 (y1) π2 (y2) dy1dy2, . . . ,

〈X 〉l−1,l =
∫

Rl
X (y1, . . . yl) π1 (y1) . . . πl (yl) dy1 . . . dyl ,

〈X 〉l−1,l = 〈X 〉 , 〈 f Ω〉 := f Ω,
〈

f 2
〉
= σ2.

We find solutions of the equations (4)–(6) on the basis of eigenfunctions, eigenvalues of the

operator 〈L2〉, each of which meets the corresponding Poisson equation

L01 ϕ1 = f 2 −
〈

f 2
〉

1
, L02 ϕ2 =

〈
f 2
〉

1
−
〈

f 2
〉

1,2
, . . . ,L0l ϕl =

〈
f 2
〉

l−2,l−1
−
〈

f 2
〉

l−1,l
,

L01η1= f Ω− 〈 f Ω〉1, . . . ,L0jηj = 〈 f Ω〉 j−2,j−1 − 〈 f Ω〉 j−1,j, . . . ,L0lηl = 〈 f Ω〉l−2,l−1 − 〈 f Ω〉l−1,l .

Theorem 1. Assume that we can solve the following equation to find an eigenvalue

− 〈L2〉ψn = λnψn, ψn ∈ dom (〈L2〉) , (7)

and also that H∈ H. Then the solution u0,0′ has the form

u0,0′ =
∞

∑
n=1

cnψnTn, cn = (ψn, H) , Tn = e−tλn .

Proof. Since u0,0′ satisfies the differential equation (4), suppose that occurs (7), the boundary

conditions are fulfilled u0,0′ (0, x, z1, . . . , zn) = H (z1, . . . , zn) , Tn (0, z1, . . . , zn) = 1, ϕ (λ) = Id,

this means

Id f =
∞

∑
n=1

(ψn, f ) ψn, ∀ f ∈ H,

this is equivalent to having its eigenfunctions ψn dense self-adjoint operators in H form the

Schauder basis. In fact, the basis can be chosen orthonormal (ψn, ψm) = δn,m. Also note that

ϕ (λ) = Rλ gives the actual representation of the resolvent of the operator

Rλ f =
∞

∑
n=1

(ψn, f )

λn − λ
ψn, ∀ f ∈ H, λ ∈ ρ (L) ,

to payoff function H :

Id H =
∞

∑
n=1

(ψn, f ) ψn =
∞

∑
n=1

cnψn.



APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY . . . 279

Theorem 2. Let cn, ψn, Tn be described using Theorem 1. We define

Ajk,n :=
(
ψk,Ajψn

)
, Uk,n :=

Tk − Tn

λk − λn
.

Then the solution u1j,0′
of equation (5) has the form

u1j,0′
= ∑

n
∑
k 6=n

cn Ajk,nψkUk,n −∑
n

cnAjn,nψ
n
tTn.

Note that u1j,0′
is linear in the parameter group (ϑ3j, ϑ2j, u2j, u1j).

Proof. Let us show that u1j,0′
satisfies the differential equation and boundary conditions (5). It

is clear that the boundary conditions for u1j,0′
(0, x, z1, . . . , zn) = 0 are executed. To show that

u1j,0′
satisfies the differential equation (6), we note that

Aju1j,0′
= ∑

n

cn

(
Ajψn

)
Tn = ∑

n
∑
k

cnAjk,nψkTn,

according to the proof of Theorem 1. Now, using (7) and the following equality

(−∂t − λk)Uk,n = Tn, (−∂t − λn) tTn = −Tn,

it is easy to see that

(−∂t + 〈L2〉) u1j,0′
= Aju1j,0′

= ∑
n

cn

(
Ajψn

)
Tn = ∑

n
∑

k

cnAjk,nψkTn.

Theorem 3. Let cn, ψn and Tn be defined with Theorem 1, and Uk,n with Theorem 2. We have

B̃ik,n :=
(
ψk, Bi∂Zi

ψn
)

,Bik,n := (ψk, Biψn) , Vik,n :=
Tk − Tn

(λk − λn)
2
+

tTn

λk − λn
.

Then the solution u
0,1′i

has the form

u
0,1′i

= ∑
n

∑
k 6=n

cnB̃ik,nψkUik,n − ∑
n

cnB̃in,nψntTn

+ ∑
n

∑
k 6=n

(∂Zi
cn)Bik,nψkUik,n − ∑

n

(∂Zi
cn)Bin,nψntTn

+ ∑
n

∑
k 6=n

cnBik,nψk(∂Zi
λn)Vik,n −∑

n

cnBin,nψn(∂Zi
λn)

1

2
t2Tn.

Proof. We need to show that u
0,1′i

satisfies the differential equation and boundary conditions

(5). We see that the boundary condition u
0,1′i

(0, x, z1, . . . , zn) = 0 is executed. To show that

u
0,1′i

satisfies the differential equation, we note that

Bi∂zi
u0,0′ = ∑

n

cn (Bi∂zi
ψn) Tn + ∑

n

(∂zi
cn)(Biψn)Tn

+∑
n

cn(Biψn)(∂zi
Tn) = ∑

n
∑
k

cnB̃ik,nψkTn

+∑
n

∑
k

(∂zi
cn)(Bik,nψk)Tn − ∑

n
∑
k

cnBik,nψk (∂zi
λn) tTn, i = 1, n,
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where we used

Id H =
∞

∑
n=1

(ψn, f ) ψn =
∞

∑
n=1

cnψn,

in the second equality using − 〈L2〉 ψn = λnψn and equality

(−∂t − λk)Uk,n = Tn, (−∂t − λn) tTn = −Tn,

(−∂t − λk)Vk,n = −tTn, (−∂t − λk)
1

2
t2Tn = −tTn,

one can see that

(−∂t + 〈L2〉) u
0,1′i

= Bi∂zi
u0,0′ = ∑

n

cn (Bn∂znψn) Tn

∑
n

(∂zn cn)(Bnψn)Tn + ∑
n

cn(Bnψn)(∂zn Tn) = ∑
n

∑
k

cnB̃ik,nψkTn

+∑
n

∑
k

∂zi
cn)Bik,nψkTn −∑

n
∑
k

cnBik,nψk (∂zi
λn) tTn, i = 1, n.

Note that u
0,1′i

is linear in (ν1iσ
′, ν1i f Ω′, ν0iσ

′, ν0i f Ω′).

We have obtained the approximate solution uε,δ′ ≈ u0,0′ + ∑
l
j=1

√
ε ju1j,0′

+ ∑
n
i=1

√
δiu0,1′i

for

the derivative asset pricing.

For a more exact result we assume that the Payoff function H(x) and its derivative are

smooth and limited functions. Thus, we restrict our derivative analysis to a smooth and limited

payoff; in this case, the closeness estimates is based on the following theorem.

Theorem 4. For the fixed (t, x, y1, . . . , yl, z1, . . . , zr) there exists an invariable C such that for

any ε j ≤ 1, δi ≤ 1 we have

∣∣∣∣∣u
ε,δ′ −

(
u0,0′ +

l

∑
j=1

√
ε ju1j,0′

+
n

∑
i=1

√
δiu0,1′i

)∣∣∣∣∣ ≤ C

(
l

∑
j=1

ε j +
r

∑
i=1

δi

)
.

Proof. Before setting the main result of accuracy we formulate such a lemma.

Lemma 1. Let J(y1, . . . , yl, z1, . . . , zn) grows polynomially. Then for every (y1, . . . , yl , z1, . . . , zn),

s < t, there is a positive start C < ∞ such that for any ε j ≤ 1, δi ≤ 1, the following inequality

holds

Ẽy1 , ...,yl ,z1,...,zn [|J(Y1s, . . . , Yls, Z1s, . . . , Zns)|] ≤ C.

Proof. It is enough to consider J (y1, . . . , yl , z1, . . . , zn) = yk
j and J (y1, . . . , yl , z1, . . . , zn) = zk

i ,

k ∈ N. For the second one we have the following. Physically P we understand as

E

[
|Zis|k

]
= E

[∣∣∣Z(1)
iδis

∣∣∣
k
]
≤ sup

δi≤1

E

[∣∣∣Z(1)
iδis

∣∣∣
k
]
≤ Ci (s, k) ≤ Ci (t, k) , i = 1, n.

Now we define exponential martingales M
(Γi)
t , which connect the dynamics Zi at neutral risk

of measurement P̃ in its dynamics according to physical measure P. We have

MΓi
t :=exp

(
−
∫ t

0
Γi(Y1s , . . . , Yls, Z1s, . . . , Zns)dWzi

s −1

2

∫ t

0
Γ2

i (Y1s, . . . , Yls, Z1s, . . . , Zns)ds

)
=

dP̃

dP

∣∣∣∣∣
Ft

.
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|Zs|k can be found as follows

Ẽ

[
|Zis|k

]
= E

[
|Zis|k M

(Γi)
s

]

= E

[
|Zis|kexp

(
1

2

∫ s

0
Γ2

i (Y1u, . . . , Ylu, Z1u, . . . , Znu) du

)(
M

(2Γi)
s

)1/2
]

≤
(

E

[
|Zis|2kexp

(∫ s

0
Γ2

i (Y1u, . . . , Ylu, Z1u, . . . , Znu) du

)])1/2

(
E

[
M

(2Γi)
s

]) 1
2

(by Cauchy-Schwartz)

=

(
E

[
|Zis|2kexp

(∫ s

0
Γ2

i (Y1u, . . . , Ylu, Z1u, . . . , Znu) du

)])1/2

(M(2Γi) − is P−martingale)

≤
(

E

[∣∣∣Z(1)
iδis

∣∣∣
2k
]

exp(s‖Γi‖2
∞))

) 1
2

≤ C.

Consider now the case J (y1, . . . , yl , z1, . . . , zn) = yk
j . We have

E

[∣∣Yjs

∣∣k
]
= E

[∣∣∣Y(1)
js/ε j

∣∣∣
k
]
≤ sup

ε j≤1

E

[∣∣∣Y(1)
js/ε j,

∣∣∣
k
]
≤ Cj (k) .

Using the above considerations is easy to show that

Ẽ

[∣∣Yjs

∣∣k
]
= E

[∣∣Yjs

∣∣k M
(Λj)
s

]
≤
(

E

[∣∣∣Y(1)
js/ε j,

∣∣∣
2k
]

exp(s
∥∥Λj

∥∥2

∞
))

) 1
2

≤ Cj.

The Lemma 1 is proved.

Let us return to the proof of the Theorem 4. We start with the definition of the remainder

term Rε,δ′

u0,0′ +
l

∑
j=1

√
ε ju1j ,0′

+
n

∑
i=1

√
δiu0,1′i

+
l

∑
j=1

ε j

(
u2j,0′

+
l

∑
j=1

√
ε ju3j,0′

)

uε,δ′ +
l

∑
k 6=j

√
εk
√

ε ju1kj,0
′ +

l

∑
j=1

n

∑
i=1

√
δi

(
√

ε ju1j1
′
i
+

l

∑
j=1

ε ju2j1
′
i

)

+
l

∑
k 6=j

l

∑
j=1

n

∑
i=1

√
δi
√

εk
√

ε ju1kj,1
′
i
+ Rε,δ′ .

Functions u0,0′ , u1j,0′
, u

0,1′i
are the only solutions of equations (4)–(6), respectively. Function

u2j,0′
, w2j ,0′

is a solution of the Poisson equation 0 = L0ju0,0′ , j = 1, l. To characterize u
1j1

′
i
, u

2j1
′
i

continue the singular analysis of perturbations.

0 = L0ju3j1
′
i
+ L1ju2j1

′
i
+

l

∑
k 6=j

L1ku
1kj,1

′
i
+ (−∂t + L2) u

1j1
′
i
O+M3iju2j,0′

+M1iu1j,0′
. (8)
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Equation (8) is a Poisson equation. In order to determine the solution for (8) u
3j1

′
i

in the

space L2(R, π), the centering condition must meet 0 = L0ju + X , j = 1, l. In (8) the condition

of centering is

0 =
〈
L1ju2j1

′
i

〉
+ (−∂t + 〈L2〉) u

1j1
′
i
+
〈
M3iju2j,0′

〉
+ 〈M1i〉 u1j ,0′

, (9)

let us express u
2j1

′
i
,

0 = (−∂t + 〈L2〉) u
0,1′i

+ 〈M1i〉 u0,0′ −
l

∑
j=1

L0ju2j1
′
i
+ (−∂t + L2) u

0,1′i

+M1iu0,0′ +
l

∑
j=1

M3iju1j,0′
+ L1ju1j1

′
i
,

Let us put down similar terms

0 =
l

∑
j=1

L0ju2j1
′
i
+ (L2 − 〈L2〉) u

0,1′i
+M1iu0,0′ − 〈M1i〉 u0,0′ =

l

∑
j=1

L0ju2j1
′
i

+

((
−1

2
a2
(

σ2 − f 2
))

∂2
xx + a( f Ω − f Ω)∂x

)
u

0,1′i

+ [gi (ρxzi
a f ∂x − Γi) ∂zi

− gi (ρxzi
a 〈 f 〉 ∂x − 〈Γi〉) ∂zi ] u0,0′

=
l

∑
j=1

L0ju2j1
′
i
+

((
−1

2
a2
(

σ2 − f 2 ∓ σ2
1 ∓ σ2

12 ∓ . . . ∓σ2
l−2,l−1

))
∂2

xx

+a( f Ω − f Ω ∓ f Ω1 ∓ f Ω12 ∓ · · · ∓ f Ωl−2,l−1)∂x

)
u

0,1′i

+
[

gi

(
ρxzi

a( f− 〈 f 〉 ∓ 〈 f 〉1 ∓ 〈 f 〉12 ∓ · · · ∓ 〈 f 〉l−2,l−1)∂x

−(Γ − 〈Γ〉 ∓ 〈Γ〉1 ∓ 〈Γ〉12 ∓ · · · ∓ 〈Γ〉l−2,l−1

)
∂

zi

)
u0,0′

]
.

Consider such systems of Poisson equations

L01 ϕ1 = f 2 − σ2
1, L02 ϕ2 = σ2

1 − σ2
12, . . . , L0j ϕj = σ2

j−2,j−1 − σ2
j−1,j, . . . ,

L0l ϕl = σ2
l−2,l−1 − σ2

l−1,l L01η1 = f Ω − f Ω1, . . . ,L0lηl = f Ωl−2,l−1 − f Ω,

L01ξ1 = f − 〈 f 〉1, L02ξ2 = 〈 f 〉1 − 〈 f 〉12, . . . ,L0lξl = 〈 f 〉l−2,l−1 − 〈 f 〉
L01ζ1 = Γ − 〈Γ〉1, . . . ,L0lζl = 〈Γ〉l−2,l−1 − 〈Γ〉 .

Functions ξ j(y1, . . . , yl , z1, . . . , zn), ηj(y1, . . . , yl , z1, . . . , zn) are solutions of the correspond-

ing Poisson equations, the formula holds

l

∑
j=1

L0ju2j1
′
i
+

l

∑
j=1

L0j

(
−1

2
a2 ϕj∂

2
xx + aηj∂x

)
u

0,1′i
+
[
gi

(
ρxzi

aξ j∂x − ζ j

)
∂zi

]
u0,0′ = 0.

Therefore, the formula holds

u
2j1

′
i
= −

(
1

2
a2 ϕj∂

2
xx − aηj∂x

)
u

0,1′i
− gj

(
ρxzi

aξ j∂x − ζ j

)
∂zi

u0,0′ + Dj, ∀ j = 1, l, i = 1, n. (10)
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Dj(x, z1, . . . , zn) is a constant that does not depend on y. Substituting (10) in (9) we find u
1j1

′
i

knowing u0,0′ , u1j,0′
, u

0,1′i
. u

1j1
′
i
is a solution (9) with boundary conditions u (0, x, z1, . . . , zn) = 0.

Take u1kj0′
≡ 0, ∀ k 6= j, k = 1, l.

Let us calculate

0 = (−∂t + Lε,δ′)uε,δ′
(
−∂t + Lε,δ′

)
Rε,δ′ +

l

∑
j=1

1

ε j
F0j +

l

∑
j=1

1
√

ε j
F1j +

l

∑
j=1

F2j

+
n

∑
i=1

l

∑
j=1

√
δi

(
1

ε j
F3ji +

1
√

ε j
F4ji + F5ji

)
+

l

∑
j=1

ε jR
ε j

1j +
n

∑
i=1

l

∑
j=1

√
ε jδiR

ε j

2j +
n

∑
i=1

δiR
ε j

3j,

where

F0j = L0ju0,0′ , F1j = L0ju1j,0′
+ L1ju0,0′ ,

l

∑
j=1

F2j =
l

∑
j=1

L0ju2j,0′
+

l

∑
j=1

L1ju1j,0′
+ (−∂t + L2) u0,0′ ,

F3ji = L0ju0,1′i
,

F4ji = L0ju1j1
′
i
+ L1ju0,1′i

+M3iju0,0′ ,

l

∑
j=1

F5ji =
l

∑
j=1

L0ju2j1
′
i
+ ∑

k 6=j

L1ju1j1
′
i
+M3iju1j,0′

+M1iu0,0′ + (−∂t + L2) u
0,1′i

,

R
ε j

1j = (−∂t + L2) u2j,0′
+ L1ju3j,0′

+
√

ε j (−∂t + L2) u3j,0′
,

R
ε j

2ij = (−∂t + L2) u
1j1

′
i
+ L1ju2j1

′
i
+M1iu1j,0′

+M3iju2j,0′

+
√

ε j

(
(−∂t + L2) u2j,1′

+M1iu2j,0′
+M3ju3ij,0′

)
+ ε jM1ju3j,0′

,

R
ε j

3ij = M1ju0,1′i
+M2ju0,0′ +M3ju1j1

′
i

+
√

ε j

(
M1ju1j1

′
i
+M2ju1j,0′

+M3ju1j1
′
i

)
+ ε j

(
M1ju2j1

′
i
+M2ju2j,0′

)
.

It is easy to see, F0j = F1j = F3ij = F4ij = F5ij = 0.

So we have

0 =
(
−∂t + Lε,δ′

)
Rε,δ′ +

l

∑
j=1

ε jR
ε j

1j +
l

∑
j=1

n

∑
i=1

(√
ε jδiR

ε j

2ij + δiR
ε j

3ij

)
,

Rε,δ′ (0, x, y1, . . . , yl , z1, . . . , zn) =
l

∑
j=1

ε jG
ε j

1j (x, y1, . . . , yl , z1, . . . , zn)

+
l

∑
j=1

n

∑
i=1

√
ε jδiG

ε j

2ij (x, y1, . . . , yl, z1, . . . , zn) , (11)

where

G
ε j

1j (x, y1, . . . , yl , z1, . . . , zn) :=− u2j,0′
(0, x, y1, . . . , yl , z1, . . . , zn)

−√ε ju3j,0′
(0, x, y1, . . . , yl , z1, . . . , zn) ,
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G
ε j

2ij (x, y1, . . . , yl , z1, . . . , zn) :=− u
1j1

′
i
(0, x, y1, . . . , yl , z1, . . . , zn)

−√ε ju2j1
′
i
(0, x, y1, . . . , yl , z1, . . . , zn) .

Using the formulas of Feynman-Kats, let us express Rε,δ′(t, x, y1, . . . , yl , z1, . . . , zn) solving

equation (11) with boundary conditions as a mathematical expectation

Rε,δ′(t, x, y1, . . . , yl , z1, . . . , zn)

=
l

∑
j=1

ε jẼx,y1, ...,yl ,z1,...,zn

[
e−
∫ t

0 k(Xs)dsG
ε j

1j (Xt, Y1t, . . . , Ylt, Z1t, . . . , Znt)
]

+
∫ t

0
e−
∫ s

0 k(Xu)duR
ε j

1j (s, Xs, Y1s, . . . , Yls, Z1s, . . . , Zns) ds +
√

εδẼx,y1, ...,yl ,z1,...,zn

[
e−
∫ t

0 k(Xs)dsGε
2 (Xt, Y1t, . . . , Ylt, Z1t, . . . , Znt)

+
∫ t

0
e−
∫ s

0 k(Xu)duR
ε j

2ij (s, Xs, Y1s, . . . , Yls, Z1s, . . . , Zns) ds

]

+δẼx,y1, ...,yl ,z1,...,zn

[
e−
∫ s

0 k(Xu)duR
ε j

3ij (s, Xs, Y1s, . . . , Yls, Z1s, . . . , Zns) ds
]

.

We can conclude that the functions
(

R
ε j

1j, R
ε j

2ij, R
ε j

3ij, G
ε j

1j, G
ε j

2ij

)
limited by x and polynomially

increase by (y1, . . . , yl , z1, . . . , zn) [4]. Thus, according to Lemma 1 we have

∣∣∣Rε,δ′
∣∣∣ ≤

l

∑
j=1

ε jC1j +
l

∑
j=1

n

∑
i=1

√
ε jδiC2ij +

n

∑
i=1

δiC3i ≤
(

l

∑
j=1

ε j +
n

∑
i=1

δi

)
C4.

and hence ∣∣∣∣∣u
ε,δ′ − (u0,0′ +

l

∑
j=1

ε ju1j,0′
+

n

∑
i=1

δiu0,1′i
)

∣∣∣∣∣ ≤
∣∣∣Rε,δ′

∣∣∣

+

∣∣∣∣∣
l

∑
j=1

ε ju2j,0′
+

l

∑
j=1

ε j
3/2u3j,0′

+
l

∑
j=1

n

∑
i=1

√
ε jδiu1j1

′
i
+

l

∑
j=1

n

∑
i=1

√
δiε

j

u
2j1

′
i

∣∣∣∣∣∣

≤
(

l

∑
j=1

ε j +
n

∑
i=1

δi

)
C4 +

l

∑
j=1

ε j

∣∣∣u2j,0′
+
√

ε ju3j,0′

∣∣∣

+
l

∑
j=1

n

∑
i=1

√
ε jδi

∣∣∣∣∣u1j1
′
i
+

l

∑
j=1

ε ju2j1
′
i

∣∣∣∣∣ ≤
(

l

∑
j=1

ε j +
n

∑
i=1

δi

)
C.

The accuracy of the result is proved.

Theorem 4 gives us information on how the approximate price behaves when ε j → 0 and

δi → 0.

Let X be securities without payment on assets dividends (for example, share, index and

so on). X is very often modelled as a geometric Brownian motion with constant volatility (for

example, Black-Scholes option pricing model). Let us consider X as a geometric Brownian

motion model with multidimensional stochastic volatility. Thus, P̃-dynamics in X are set

dXt = rXtdt + f (Y1, . . . , Yl , Z1, . . . , Zn) Xtd̃W
x

t , h (Xt) = 0.
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We calculate the approximate price of the double barrier option defined on X.

We write operator 〈L2〉 and the density associated with t and rate m(x)

〈L2〉 =
1

2
σ2x2∂2

xx + rx∂x − r, m (x) =
2

σ2x2
exp

(
2r

σ2
lnx

)
. (12)

For a double barrier option with barrier value L and R, the payoff has the form

H (Xt) I τ>t = (Xt − K)+I τ>t , I = (L, R), 0 < L < K < R.

To calculate the value of this parameter, we must first find the eigenvalues of operator 〈L2〉
presented in (12) with boundary conditions

lim
x→L

ψn (x) = 0, lim
x→R

ψn (x) = 0.

Note that we have introduced regular keeling (interrupt process) boundary conditions at

the ends of L and R. The equation − 〈L2〉 ψn = λnψn, ψn ∈ dom (〈L2〉), with boundary condi-

tions mentioned above can be found in [11]

ψn (x) =
σ
√

x√
ln
(

R
L

) exp

(−r

σ2
lnx

)
sin

(
nπln

(
x
L

)

ln
(

R
L

)
)

, n = 1, 2, 3, . . . ,

λn =
1

2

(
nπσ

ln(R
L )

)2

+

(
ν2

2
+ r

)
, ν =

r

σ
− σ

2
.

We write the expressions for operators Aj and Bi

Aj = −ϑ3jx∂xx2∂2
xx − ϑ2jx

2∂2
xx, Bi = −ϑ1ix∂x − ϑ0i. (13)

On the basis of (5) we calculate Ajk,n, Bik,n and B̃ik,n. For k 6= n we obtain

Ajk,n = −ϑ3j



(−1 + (−1)k+n)kn(4n2π2σ4 +

(
−12r2 + 4rσ2 + σ4

)
ln2(R

L ))

2(k2 − n2)σ4ln3(R
L )




−ϑ2j




(
−1 + (−1)k+n

)
knr

(k2 − n2) σ2ln
(

R
L

)


 ,

Bik,n = ϑi1
2(−1 + (−1)k+n)kn

(k − n)(k + n)ln
(

R
L

) ,

B̃ik,n = −ϑ1iσ
′ (Υk,n)− ϑi0σ′




8
(
−1 + (−1)k+n

)
knrln

(
R
L

)

(k2 − n2)
2
π2σ3


 ,

vk,n :=
4nkr

(
ln (L) − (−1)k+nln (R)

)

(k2 − n2) σ3ln
(

R
L

)

−
2
(
−1 + (−1)k+n

)
kn
(
(k − n) (k + n)π2σ4 − 2r

(
−2r + σ2

)
ln2 (R

L

))

(k2 − n2)
2
π2σ

5
ln
(

R
L

) ,
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and for k = n we obtain

Ajn,n = −ϑ3j

(
1

σ3

(
3n2π2ν

ln2 (R
L

) − ν3

)
− 1

σ2

(
ν2 − n2π2

ln2 (R
L

)
)
− ϑj2

(
1

σ2

(
ν2 − n2π2

ln2 (R
L

)
)
+

ν

σ

))
,

Bin,n = ϑi1

(
2r − σ2

2σ2

)
−ϑi0,

B̃in,n = −ϑi1σ′


 1

σ
−

rν
(

ln2 (R)− ln2 (L)
)

σ4ln
(

R
L

)


− ϑi0σ′


 1

σ
−

r
(

ln2 (R)− ln2 (L)
)

σ3ln
(

R
L

)


 .

The calculation of cn can be found in [12–14]

cn=
(

ψn (x) , (C − K)+
)
=

L
ν
σ

log
(

R
L

) (LΦn (ν + σ)− KΦn (ν)) ,

Φn (γ) :=
2

ω2
n + z2

(
exp (Kγ) (ωncos(ωnK)− γsin (ωnK)− exp (Uγ) (−1)nωn

)
,

ωn :=
nπ

U
, K :=

1

σ
ln

(
K

L

)
, U :=

1

σ
ln

(
R

L

)
.

The approximate option price can be calculating applying Theorems 1–3.

Note that figures are constructed component-wise in each corresponding time scale, simi-

larly to both components in works [9] and [13].

2 CONCLUSIONS

This paper expands methodology of approximate pricing for a wide range of derivative

assets. Derivatives payoffs can be way dependent, and the process underlying it may have a

jump. Jump intensity depends on multidimensionality of volatility. We have developed a gen-

eral theory of pricing derivative options which are generated by diffusion processes, where

diffusion depends on two groups of variables. An algorithm for approximate price calcula-

tion is given. The price accuracy is determined. A developed theory is applied to Ornstein-

Uhlenbeck diffusion operator, which is expanded in eigenfunctions and eigenvalues.

The main advantage of our pricing methodology is that by combining methods of spectral

theory, regular perturbation theory, and singular perturbation theory, we reduce everything

to the solution of the equations to find eigenfunctions and eigenvalues.
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Буртняк I.В., Малицька Г. П. Застосування спектральної теорiї та теорiї збурень до дослiдження

процесiв Орнштейна-Уленбека // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 273–287.

В статтi використано методи спектральної теорiї та теорiї сингулярних i регулярних збу-

рень, знайдено наближену цiну двобарєрних опцiонiв Орнштейна-Уленбека з багатофактор-

ною волатильнiстю, як розвинення за власними функцiями використовуючи iнфiнiтезимальнi

генератори (l + n+ 1) вимiрної дифузiї. Встановлено теорему оцiнки точностi наближення цiн

опцiонiв. Знайдено явнi формули для знаходження вартостi деривативiв на основi розвинення

за власними функцiями та власними значеннями самоспряжених операторiв з використанням

крайових задач для сингулярних i регулярних збурень.

Ключовi слова i фрази: спектральна теорiя, сингулярна хвильова теорiя, регулярна хвильова

теорiя, теорiя Штурма-Лiувiлля, iнфiнiтезимальний генератор, багатофакторна дифузiя.
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ON CENTRAL AUTOMORPHISMS OF CROSSED MODULES

A crossed module (T, G, ∂) consist of a group homomorphism ∂ : T → G together with an ac-

tion (g, t) → gt of G on T satisfying ∂( gt) = g∂(t)g−1 and ∂(s)t = sts−1, for all g ∈ G and s, t ∈ T.

The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial ho-

motopy theory. Crossed modules and its applications play very important roles in category theory,

homotopy theory, homology and cohomology of groups, algebra, K-theory etc. In this paper, we

define Adeny-Yen crossed module map and central automorphisms of crossed modules. If C∗ is the

set of all central automorphisms of crossed module (T, G, ∂) fixing Z(T, G, ∂) element-wise, then

we give a necessary and sufficient condition such that C∗ = Inn(T, G, ∂). In this case, we prove

AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)). Moreover, when AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂))), we

obtain some results in this respect.

Key words and phrases: crossed module, central automorphism.
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1 INTRODUCTION

The term crossed module was introduced by J. H. C. Whitehead in his work on combina-

torial homotopy theory [9]. So many mathematicians and many areas of mathematics have

used crossed modules such as homotopy theory, homology and cohomology of groups, alge-

bra, K-theory etc. Actor crossed module of algebroid was defined by Alp in [3]. Actions and

automorphisms of crossed modules were studied by K. Norrie [2, 8]. Tensor product modulo

q of two crossed modules defined by Conduché and Rodriguez-Fernandez [4]. Concepts of

q-commutator and of q-center of a crossed module, q being a nonnegative integer, were de-

fined by J.L. Doncel Juurez and A.R. Crondjeanl.-Valcarcel [6]. Adney and Yen in [1] obtained

several sufficient conditions for a non-abelian p-group and introduced a special map. By using

Adney-Yen map, in this paper, we introduce the concept of Adney-Yen crossed module map

and central automorphisms of a crossed module and obtain some results in this respect.

2 CENTRAL AUTOMORPHISMS OF A CROSSED MODULE

We recall some basic definitions and properties of the category of crossed modules. A

crossed module (T, G, ∂) consists of a group homomorphism ∂ : T → G called the boundary

map, together with an action (g, t) → gt of G on T satisfying (1) ∂( gt) = g∂(t)g−1 and (2)
∂(s)t = sts−1, for all g ∈ G and s, t ∈ T.

УДК 512.5
2010 Mathematics Subject Classification: 18D35, 20L05, 55U35.
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The group automorphism AutN of a group N comes equipped with the canonical homo-

morphism τ : N → Aut(N) which has image InnN, the group of inner automorphism of

N. The inner automorphism τ is one of the standard examples of a crossed module. Other

standard examples of crossed modules are: the inclusion of a normal subgroup N → G; a

G-module M with the zero homomorphism M → G; any epimorphism E → G with cen-

tral kernel. We note at once certain consequences of the definition of a crossed module:

(1) the kernel ker∂ lies in Z(T), the center of T; (2) the image ∂(T) is a normal subgroup of G;

(3) the action of G on T induces a natural (G/∂(T))-module structure on Z(T); and ker∂ is a

submodule of Z(T).

We say that (S, H, ∂′) is a sub-crossed module of the crossed module (T, G, ∂) if

- S is a subgroup of T, and H is a subgroup of G;

- ∂′ is the restriction of ∂ to S;

- the action of H on S is included by the action of G on T.

A sub-crossed module (S, H, ∂) of (T, G, ∂) is normal if

- H is a normal subgroup of G;

- gs ∈ S for all g ∈ G, s ∈ S;

- htt−1 ∈ S for all h ∈ H, t ∈ T.

In this case we consider the triple (T/S, G/H, ∂̄), where ∂̄ : T/S → G/H is induced by ∂, and

the new action is given by gH(tS) = ( gt)S. This is the quotient crossed module of (T, G, ∂)

by (S, H, ∂). A crossed module morphism 〈α, ϕ〉 : (T, G, ∂) → (T′, G′, ∂′) is a commutative

diagram of homomorphisms of groups

T α
//

∂
��

T′

∂′
��

G ϕ
// G′

such that for all x ∈ G and t ∈ T; we have α( xt) = ϕ(x) α(t). We say that 〈α, ϕ〉 is an isomor-

phism if α and ϕ are both isomorphisms. We denote the group of automorphisms of (T, G, ∂)

by Aut(T, G, ∂). The kernel of the crossed module morphism 〈α, ϕ〉 is the normal sub-crossed

module (kerα, kerϕ, ∂) of (T, G, ∂), denoted by ker〈α, ϕ〉. The image im〈ff, ’〉 of 〈α, ϕ〉 is the

sub-crossed module (imff, im’, ∂′) of (T′, G′, ∂′). For a crossed module (T, G, ∂), denote by

Der(G, T) the set of all derivations from G to T, i.e., all maps χ : G → T such that for all

x, y ∈ G, χ(xy) = χ(x) xχ(y). Each such derivation χ defines endomorphisms σ = (σx) and

θ(= θx) of G, T respectively, given by σ(x)) = ∂χ(x)x and θ(t) = χ∂(t)t, where σ∂(t) = ∂θ(t),

θχ(x) = χ∂(x) and θ( xt) = σ(x)θ(t). We define a multiplication in Der(G, T) by the for-

mula χ1 ◦ χ2 = χ, where χ(x) = χ1σ2(x)χ2(x) (= θ1 χ2(x)χ1(x)). This turns Der(G, T) into

a semigroup with identity element the derivation which maps each element of G into iden-

tity element of T. Moreover, if χ = χ1 ◦ χ2, then σ = σ1σ2. The whitehead group D(G, T) is

defined to be the group of units of Der(G, T), and the elements of D(G, T) are called regular

derivations.
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Proposition 1. The following statements are equivalent: (1) χ ∈ D(G, T); (2) σ ∈ Aut(G);

(3) θ ∈ Aut(T).

The map ∆ : D(G, T) → Aut(T, G, ∂) defined by ∆(X) = 〈σ, θ〉 is a homomorphisms of

groups and there is an action of Aut(T, G, ∂) on D(G, T) given by 〈α,ϕ〉χ = αχϕ−1 which makes

(D(G, T), Aut(T, G, ∂), ∆) a crossed module. This crossed module is called the actor crossed

module A(T, G, ∂) of the crossed module (T, G, ∂). There is a morphism of crossed modules

〈η, γ〉 : (T, G, ∂) → A(T, G, ∂) defined as follows. If t ∈ T, then ηt : G → T defined by

ηt(x) = t xt−1 is a derivation and the map t → ηt defines a homomorphism η : T → D(G, T)

of groups. Let γ : G → A(T, G, ∂) be the homomorphism y → 〈αy, ϕy〉, where αy(t) = yt and

ϕy(x) = yxy−1 for t ∈ T and y, x ∈ G.

Definition 1. Let (T, G, ∂) be a crossed module. The center of (T, G, ∂) is the crossed mod-

ule kernel Z(T, G, ∂) of 〈η, γ〉. Thus, Z(T, G, ∂) is the crossed module (TG, StG(T) ∩ Z(G), ∂),

where TG denotes the fixed point subgroup of T, that is, TG = { t ∈ T | xt = t for all x ∈ G}.

StG(T) is the stabilizer in G of T, that is, StG(T) = { x ∈ G | xt = t for all t ∈ T} and Z(T) is

the center of G. Note that TG is central in T.

Definition 2. Let (T, G, ∂) be a crossed module. n-center of (T, G, ∂), Zn(T, G) for n a nonneg-

ative integer is the crossed module
(

(TG)n, Zn(G) ∩ StG(T), ∂
)

, where

(TG)n = {t ∈ T|tn = 1 and gt = t for all g ∈ G},

Zn(G) = { g ∈ Z(G) | gn = 1},

StG(T) = {g ∈ G | gt = t for all t ∈ T}.

The n-center of (T, G, ∂) is a normal crossed submodule and is called the n-central crossed

submodule of (T, G, ∂).

Let (T, G, ∂) be a crossed module, (T′, G′, ∂) be a normal sub-crossed module of it, and

〈α, ϕ〉 ∈ Aut(T, G, ∂). Then 〈α, ϕ〉 induces a 〈ᾱ, ϕ̄〉 in Aut
(

T/T′, G/G′, ∂̄
)

such that ∂̄ : T/T′ →

G/G′, ∂̄(tT′) = ∂(t)T′ .

Definition 3. Let (T, G, ∂) be a crossed module, Z(T, G) be the center of it and 〈α, ϕ〉 ∈

Aut(T, G, ∂). If 〈ᾱ, ϕ̄〉, induced by 〈α, ϕ〉 in Aut
(

T/TG , G/StG(T) ∩ Z(G), ∂̄
)

, is identity, then

〈α, ϕ〉 is called central automorphism of crossed module (T, G, ∂).

Theorem 1. If (T, G, ∂) has trivial n-center, then its actor A(T, G, ∂) also has trivial n-center.

Proof. Let us assume that Zn(T, G, ∂) = 1 so that (TG)n = 1 and Zn(G) ∩ StG(T) = 1. Now

the n-center of A(T, G, ∂) is the crossed module

A(T, G, ∂) = (D(G, T), Aut(T, G, ∂), ∆) , Zn(A(T, G, ∂))

=
((

D(G, T)Aut(T,G,∂)
)n

, Zn(Aut(T, G, ∂)) ∩ StAut(T,G,∂)(D(G, T), ∆

)

.

So, assume that χ ∈
(

D(G, T)Aut(T,G,∂)
)n

. Then, for all 〈α, ϕ〉 ∈ Aut(T, G, ∂), 〈α,ϕ〉χ = χ and

χn = 1. In particular, this is true for all 〈αy, ϕy〉, where y ∈ G. But 〈αy, ϕy〉χ = ηχ(y)−1 ◦ χ. So
〈αy,ϕy〉χ = χ implies that ηχ(y)−1 = 1 for all y ∈ G. Then, we have χ(y)−1 xχ(y) = 1, for all
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x, y ∈ G. Now, since (TG)n = 1, χ is the trivial derivation, it follows that
(

D(G, T)〈αy ,ϕy〉
)n

= 1.

Now, suppose that 〈α, ∂〉 ∈ Zn(Aut(T, G, ∂)) ∩ StAut(T,G,∂)(D(G, T)). Then 〈α,ϕ〉χ = χ for all

χD(G, T). In particular, 〈α,ϕ〉ηt = ηt, for all t ∈ T, that is ηα(t) = ηt, which implies that

t−1α(t) ∈ (TG)n = 1, for all t ∈ T. Thus α = 1T, the identity automorphism of T. Now

we have 〈α, ϕ〉 ∈ Zn(Aut(T, G, ∂)). Hence, for all y ∈ G, 〈α, ϕ〉〈αy, ϕy〉 = 〈αy, ϕy〉〈α, ϕ〉 and

〈α, ϕ〉n = 1 implying that ϕϕy = ϕy ϕ for all y ∈ G. So we obtain ϕ(xyx−1) = yϕ(x)y−1 for all

x, y ∈ G. Since ϕ is an automorphism of G, it follows that y−1 ϕ(y) ∈ Z(G), for all y ∈ G. Now,

since 〈α, ϕ〉 is a crossed module morphism, it follows that α( yt) = ϕ(y)α(t). But αn = 1T so

that yt = ϕ(y)t for all y ∈ G and t ∈ T. Thus, y−1ϕ(y) ∈ Zn(G) ∩ StG(T) = 1 so that ϕn = 1G.

Therefore 〈αn, ϕn〉 = 〈1T , 1G〉, and this completes the proof.

A non-abelian group that has no non-trivial abelian direct factor is said to be purely non-

abelian [1].

By using Adney-Yen map [1], we introduce the following definition.

Definition 4. An Adney-Yen crossed module map is an onto map

〈ϕ1, ϕ2〉 from AutC(T, G, ∂) to Hom((T, G, ∂), Z(T, G, ∂))

such that 〈ϕ1, ϕ2〉〈α, θ〉 = 〈ϕ1, ϕ2〉〈α,θ〉 and 〈ϕ1, ϕ2〉〈α,θ〉 is the crossed module homomorphism

of (T, G, ∂) into Z(T, G, ∂) = (TG, StG(T) ∩ Z(G), ∂). Furthermore, such that 〈ϕ1, ϕ2〉〈α,θ〉 =

〈ϕ1 〈α,θ〉, ϕ2 〈α,θ〉〉, where ϕ1 〈α,θ〉 : T → TG, ϕ1 〈α,θ〉(t) = t−1α(t) and ϕ2 〈α,θ〉 : G → StG(T) ∩

Z(G), ϕ2 〈α,θ〉(g) = g−1θ(g).

Theorem 2. For purely non-abelian groups T and G an Adeny-Yen crossed module map is

one-to-one correspondence of AutC(T, G, ∂) onto Hom((T, G, ∂), Z(T, G, ∂)).

Proof. The crossed module map 〈α, θ〉 → 〈ϕ1, ϕ1〉〈α,θ〉 is a one-to-one crossed module map of

AutC(T, G, ∂) into the Hom((T, G, ∂), Z(T, G, ∂)).

Conversely, if 〈 f1, f2〉 ∈ Hom((T, G, ∂), Z(T, G, ∂)), then 〈ϕ1, ϕ2〉〈 f1, f2〉(t) = t f1(t), for all

t ∈ T and 〈ϕ1, ϕ2〉〈 f1, f2〉(g) = g f2(g), for all g ∈ G, defines an endomorphism of (T, G, ∂).

The endomorphism 〈ϕ1, ϕ2〉〈 f1, f2〉 is an automorphism if and only if f1(t) 6= t−1 and f2(g) 6=

g−1 for every g ∈ G, g 6= 1 and t ∈ T, t 6= 1. But if T and G are direct product with an

abelian factor, then there exists 〈 f1, f2〉 ∈ Hom((T, G, ∂), Z(T, G, ∂)) such that 〈 f1, f2〉〈t, g〉 =

〈t, g〉−1, for some g ∈ G, g 6= 1 and t ∈ T, t 6= 1. So, suppose that there exists 〈 f1, f2〉 ∈

Hom((T, G, ∂), Z(T, G, ∂)) such that f1(t) = t−1 for some t ∈ T, t 6= 1 and f2(g) = g−1 for

some g ∈ G, g 6= 1. Clearly, t ∈ Z(T), g ∈ Z(G). We assume that the order of t,o(t) = p1 and

o(g) = p2 such that p1, p2 are primes. If

T/T′ = Tp1 /T′ × T′
p1

/T′ and G/G′ = Gp2 /G′ × G′
p2

/G′,

where Tp1 /T′ is the p1-primary component of T/T′ and Gp2 /G′ is the P2-primary component

of G/G′, then tT′ ∈ Tp1 /T′, tT′ 6= T′ and gG′ ∈ Gp2 /G′, gG′ 6= G′ for is contained in the

kernel of f1 and T′ is contained in the kernel of f2. But if the height of tT′ in Tp1 /T′ be pk1
1 and

t = x1
p

k1
1 u, where x1 ∈ Tp1 and u ∈ T′, gG′ in Gp2 /G′ be p2

k2 and g = x2
p

k2
2 v, where x2 ∈ Gp2

and v ∈ G′. Then, t−1 = f1(t) = f1(x1
p1

k1 u) = f1(x1)
p1

k1 and g−1 = f2(g) = f2(x2
p2

k2 v) =

f2(x2)
p2

k2 . Set y1 = f1(x1)
−1, y2 = f2(x2)

−1. So t = y1
p

k1
1 , y1 ∈ Z(T) ∩ Tp1 , {y1} ∩ T′ = 1 and
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g = y2
p

k2
2 , y2 ∈ Z(G) ∩ Gp2 ,{y2} ∩ G′ = 1. By [7], y1T′ generates a direct factor of Tp1 /T′ and

y2G′ of Gp2 /G′ too, say

Tp1 /T′ =
{

y1T′
}

× Hp1/T′ and Gp2 /G′ =
{

y2G′
}

× Hp2/G′.

Since {y1} ∩ T′ = 1, T = {y1} × (Hp1 Tp′1
) is a direct decomposition of T, it follows that T has

an abelian direct factor and G too, if the mapping 〈 f1, f2〉 is not onto.

Let C∗ be the set of all central automorphisms of (T, G, ∂) fixing Z(T, G, ∂) element wise.

Theorem 3. If T is a finite p1-group and G is a finite p2-group, then C∗ = Inn(T, G, ∂) if and

only if T, G are abelian or T and G are nilpotent of class 2 and Z(T), Z(G) are cyclic.

Proof. We have

CAutC(T,G,∂)(Z(T, G, ∂)) ∼= Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) .

Since every element of 〈 f1, f2〉 ∈ C∗ fixes each element of Z(T, G, ∂), for 〈 f1, f2〉 ∈ C∗, the

map 〈σ1 f1, σ2 f2〉 of (T, G, ∂)/Z(T, G, ∂) to Z(T, G, ∂) defined by σ1 f1
: T/TG → TG such that

σ1 f1
(tTG) = t−1 f1(t) and σ2 f2

(g(StG(T) ∩ Z(G))) = g−1 f2(g) are well defined. It is obvious to

see that σ1 : f1 → σ1 f1
and σ2 : f2 → σ2 f2

are injective homo morphisms. Now for each

〈h1, h2〉 ∈ Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) ,

the crossed module map 〈 f1, f2〉 defined by f1(t) = th1(tT
G) for all t ∈ T and f2(g) =

gh2(g(StG(T) ∩ Z(G))) for all g ∈ G is a central automorphism fixing Z(T, G, ∂) element-wise

and 〈σ1, σ2〉〈 f1, f2〉 = 〈h1, h2〉. It follows 〈σ1, σ2〉 is a crossed module isomorphism and

C∗ ∼= Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) .

Now, suppose first that C∗ ∼= Inn((T, G, ∂)) and T,G are non-abelian. If t ∈ T and g ∈ G, then

the inner automorphism 〈θ1, θ2〉〈t,g〉 induced by t,g is a central automorphism and so [x, t] =

x−1θ1t(x) ∈ TG for all x ∈ T and [y, g] = y−1θ2g(y) ∈ StG(T) ∩ Z(G) for all y ∈ G. This shows

that T and G are nilpotent of class 2. Since T is nilpotent of class 2, exp(T/TG) = exp(T′) = pc1
1

for some natural number c1, and exp(G/StG(T) ∩ Z(G)) = exp(G′) = pc2
2 . Let T/TG and TG

have ranks r1 and s1, respectively, and G/StG(T) ∩ Z(G) and StG(T) ∩ Z(G) have ranks r2 and

s2, but T and G are nilpotent of class 2, it follows from [5] that TG and StG(T) ∩ Z(G) are cyclic.

Conversely, if T and G are abelian, then it is clear that C∗ ∼= Inn((T, G, ∂)) = 〈1, 1〉. Assume that

T and G are nilpotent of class 2 and Z(T) and Z(G) are cyclic. Since T/TG and G/Z(G) are

abelian p1 and p2-groups of exponent | T′ | and | G′ |, T′ and G′ are cyclic, C∗ ∼= Inn((T, G, ∂)),

since T and G are nilpotent of class 2, Inn((T, G, ∂)) ≤ C∗. Hence, C∗ ∼= Inn((T, G, ∂)).

Theorem 4. For any non-abelian groups T and G the restriction of the Adeny-Yen crossed

module map 〈ϕ1, ϕ2〉 : C∗ → Hom ((T, G, ∂), (Z(T, G, ∂)) is a crossed module homomorphism.

Proof. Suppose that 〈α1, θ1〉 and 〈α2, θ2〉 ∈ C∗. On the other hand, we have the following

diagrams

T
α1

//

∂
��

TG

∂
��

G
θ1

// StG(T) ∩ Z(G)

T
α2

//

∂
��

TG

∂
��

G
θ2

// StG(T) ∩ Z(G)
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Then, for any t ∈ T, g ∈ G we have ϕ1〈α1,θ1〉〈α2,θ2〉(t) = t−1(α1 ◦ α2)(t) = t−1(α1(α2(t)) and

ϕ1〈α1,θ1〉
◦ ϕ1〈α2,θ2〉(t) = ϕ1〈α1,θ1〉

(t−1α2(t)) = (t−1α2(t))
−1α1(t

−1α2(t))

= α2(t
−1)tα1(t

−1)α1(α2(t)) = α2(t
−1)t−1α1(α2(t)) = t−1α1(α2(t))

Moreover, ϕ1〈α1,θ1〉〈α2,θ2〉(g) = g−1(α1 ◦ α2)(g) = g−1(α1(α2(g)) and

ϕ1〈α1,θ1〉
◦ ϕ1〈α2,θ2〉(g) = ϕ1〈α1,θ1〉

(g−1α2(g)) = (g−1α2(g))−1α1(g−1α2(g))

= α2(g−1)gα1(g−1)α1(α2(g)) = gα2(g−1)α1(g−1)α1(α2(g))

= g−1α1(g−1)α1(α2(g)) = g−1α1(α2(g)).

So we have 〈ϕ1, ϕ2〉〈α1,θ1〉〈α2,θ2〉 = 〈ϕ1, ϕ2〉〈α1,θ1〉
◦ 〈ϕ1, ϕ2〉〈α2,θ2〉.

Theorem 5. If T and G are purely non-abelian group and AutC(T, G, ∂) = C∗, then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. Since T and G are purely non-abelian, so by Theorem 2 the Adeny-Yen crossed module

map from AutC(T, G, ∂) to Hom ((T, G, ∂), Z(T, G, ∂)) is a bijection. But also AutC(T, G, ∂) =

C∗, and thus by Theorem 4, 〈ϕ1, ϕ2〉 is a crossed module homomorphism. Therefore,

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)).

Theorem 6. Let T and G be purely non-abelian groups such that

AutC(T, G, ∂) = Z(Inn(T, G, ∂)).

Then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. Z(Inn(T, G, ∂)) is a sub-crossed module of Inn(T, G, ∂), which fixes Z(T, G, ∂) point-

wise, so AutC(T, G, ∂) = C∗. Thus, by Theorem 5 we have the desired conclusion.

Theorem 7. Let T and G be non-abelian group such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then

either T and G are purely non-abelian or T and G have purely non-abelian subgroups T1 and

G1, with |Z(T1)| and |Z(G1)| odd such that T = C2 × T1, G = C2 × G1.

Proof. Suppose that on the contrary T = A × T1 and G = B × G1, where T1 and G1 are purely

non-abelian, A, B are non-trivial abelian and either A 6= C2 or A = C2 or B 6= C2 or B = C2

and |Z(T1)| and |Z(G1)| are even. In these case, we claim (T, G, ∂) has a central automorphism

that is not inner, on the other hand AutC(T, G, ∂) 6= Z(Inn(T, G, ∂)). If A 6= C2 and B 6= C2

and (ϕ1, ϕ2) ∈ Aut(A, B, ∂) = AutC(A, B, ∂) is non-trivial, then for any (a, t1) ∈ A × T1 and

(b, g1) ∈ B × G1 maps (a, t1) → (ϕ1(a), t1) and (b, g1) → (ϕ2(b), g1) give an automorphism

of (T, G, ∂) that is central but not inner. If A = C2 and B = C2 and |Z(A)| and |Z(B)| are

even, take z1 ∈ Z(A) and z2 ∈ Z(B) with z1 and z2 or order 2, so maps (1, t1) → (1, t1),

(1, g1) → (1, g1), (a, t1) → (a, z1t1) and (b, g1) → (b, z2g2) define an automorphism of (T, G, ∂)

that is central but not inner, since (a, 1) → (a, z1) and (b, 1) → (b, z2).
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Corollary 1. Let p1, p2 be primes and T and G be non-abelian p1-group and p2-group respec-

tively such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then T and G are purely non-abelian.

Theorem 8. Let p1, p2 be primes, and T and G are non-abelian p1-group and p2-group respec-

tively such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then

AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)).

Proof. By Theorem 1, T and G are purely non-abelian and since

AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂)))

is subcrossed module of Inn(T, G, ∂), which fixes Z(T, G, ∂) point-wise, AutC(T, G, ∂) = C∗.

Now, by Theorem 5 we have AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Corollary 2. Let p1, p2 be primes, and T and G be finite p1-group and p2-group respectively

such that AutC(T, G, ∂) = C∗. Then, T and G are purely non-abelian.

Theorem 9. Let p1, p2 be primes, and T and G be finite p1-group and p2-group respectively

such that AutC(T, G, ∂) = C∗. Then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. By Corollary 2, T and G are purely non-abelian. Since AutC(T, G, ∂) = C∗, then by

Theorem 5 we have AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .
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Дехганi М.А., Давваз Б. Про центральнi атоморфiзми перехресних модулiв // Карпатськi матем.

публ. — 2018. — Т.10, №2. — C. 288–295.

Перехресний модуль (T, G, ∂) складається з групового гомоморфiзму ∂ : T → G з дiєю

(g, t) → gt з G на T, яка задовольняє ∂( gt) = g∂(t)g−1 i ∂(s)t = sts−1 для всiх g ∈ G i s, t ∈ T.

Термiн перехресного модуля введено Дж. Х. К. Уайтхедом у його роботi з комбiнаторики те-

орiї гомотопiй. Перехреснi модулi i їх застосування вiдiграють дуже важливу роль в теорiї

категорiй, теорiї гомотопiй, гомологiї i когомологиї груп, алгебрi, K-теорiї тощо. У данiй ро-

ботi визначено вiдображення Aденi-Єна перехресних модулiв i центральнi автоморфiзми пе-

рехресних модулiв. Якщо C∗ — множина всiх центральних автоморфiзмiв перехресних моду-

лiв (T, G, ∂), якi поточково фiксують Z(T, G, ∂), то отримано необхiдну i достатню умови щоб

C∗ = Inn(T, G, ∂). У цьому випадку доведено AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)). Крiм

того, якщо AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂))), то отриманi також певнi результати в цьому на-

прямку.

Ключовi слова i фрази: перехресний модуль, центральний автоморфiзм.
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DEMKIV I.I.1 , KOPACH M.I.2 , OBSHTA A.F.1 , SHUVAR B.A.1

UNCONVENTIONAL ANALOGS OF SINGLE-PARAMETRIC METHOD OF

ITERATIONAL AGGREGATION

When we solve practical problems that arise, for example, in mathematical economics, in the

theory of Markov processes, it is often necessary to use the decomposition of operator equations

using methods of iterative aggregation. In the studies of these methods for the linear equation

x = Ax + b the most frequent are the conditions of positiveness of the operator A, constant b and

the aggregation functions, and also the implementation of the inequality ρ(A) < 1 for the spectral

radius ρ(A) of the operator A.

In this article for an approximate solution of a system composed of the equation x = Ax + b

represented in the form x = A1x + A2x + b, where b ∈ E, E is a Banach space, A1, A2 are linear

continuous operators that act from E to E and the auxiliary equation y = λy − (ϕ, A2x) − (ϕ, b)

with a real variable y, where (ϕ, x) is the value of the linear functional ϕ ∈ E∗ on the elements

x ∈ E, E∗ is conjugation with space E, an iterative process is constructed and investigated

x(n+1) = Ax(n) + b +

m

∑
i=1

Ai
1x(n)

(ϕ, x(n))
m

∑
i=0

λi
(y(n) − y(n+1)) (m < ∞),

y(n+1) = λy(n+1) − (ϕ, A2x(n))− (ϕ, b).

The conditions are established under which the sequences x(n), y(n), constructed with the help of

these formulas, converge to x∗, y∗ as a component of solving the system constructed from equations

x = A1x + A2x + b and the equation y = λy − (ϕ, A2x)− (ϕ, b) not slower than the rate of conver-

gence of the geometric progression with the denominator less than 1. In this case, it is required that

the operator A be a compressive and constant by sign, and that the space E is semi-ordered. The

application of the proposed algorithm to systems of linear algebraic equations is also shown.

Key words and phrases: aggregating functional, decomposition, iterative aggregation.
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INTRODUCTION

Actuality of the investigation of iterative aggregation methods connected with necessity of

solving big dimensional problems with the aid of multiprocessor computable technical devices

using decompositional algorithms for corresponding mathematical models. Multiparametric

iterative aggregation has appeared to be an effective in mathematical economy, in investigation

of Markov processes etc. (see [1–3, 6, 7, 13]) due to ability to make an acceptable results even
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in circumstances when convergence conditions of algorithms is unknown (see [5, p. 158]). The

simplest single parametric method of iterative aggregation for equation

x = Ax + b (1)

in [5, p. 155–158] was described by formula

x(n+1) =
(ϕ, b)

(ϕ, x(n) − Ax(n))
Ax(n) + b, (2)

where (ϕ, x) are values of linear functional ϕ on elements x of Banach space E, A : E → E.

Instead of (2) we can consider

x(n+1) =
(ϕ, x(n+1))

(ϕ, x(n))
Ax(n) + b. (3)

In [4, 8–12] it is launched method of algorithm (3) convergency investigation and its multi-

parametric generalization under conditions of not semi ordered space E and inequality ρ(A) <

1 of spectral radius ρ(A) of operator A does not demand.

1 MAIN SUGGESTIONS

Let us suppose that equation (1) can be considered in the form

x = A1x + A2x + b, (4)

where b ∈ E, E is a Banach space, A1, A2 are linear continuous operators that act from E to E.

Let us denote by (ϕ, x) values of linear functional ϕ ∈ E∗ on elements x ∈ E, E∗ is the adjoint

space to E, A∗
1 is the adjoint operator to A1, E′ is a set of real numbers. Let us consider the

system formed by equation (4) and additional equation

y = λy − (ϕ, A2x)− (ϕ, b) (5)

with the real unknown y. Let us define a norm of {x, y} (x ∈ E, y ∈ E′) by formula

||x, y|| =
√
||x||2 + |y|2,

where ||x|| is a norm of element x ∈ E, |y| is an absolute value of number y ∈ E′. We denote

by ε a set of pairs {x, y} (x ∈ E, y ∈ E′) that satisfy the equation

(ϕ, x) + y = 0. (6)

Theorem 1. Let the following conditions hold

1) pair (x∗, y∗) is the solution of system (4), (5) in Ẽ = E × E′;

2) the following equality takes place

A∗
1 ϕ = λϕ, λ ∈ E′, λ 6= 1. (7)

Then (x∗, y∗) ∈ ε.
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Proof. From the condition 2) and the equalities (4), (5) for x = x∗, y = y∗ it follows that

(ϕ, x∗) + y∗ = (ϕ, A1x∗) + (ϕ, A2x∗) + (ϕ, b) + λy∗ − (ϕ, A2x∗)− (ϕ, b)

= (A∗
1 ϕ, x∗) + λy∗ = λ[(ϕ, x∗) + y∗].

Since λ 6= 1, then we obtain that (x∗, y∗) satisfies (6).

Theorem 2. Let us consider operator a(x)w which is continuous by x ∈ E and linear and

continuous by w ∈ E′. Let us suppose that equality

(ϕ, a(x)) = λ, λ ∈ E′, λ 6= 1 (8)

takes place and condition 2) of Theorem 1 holds. If {x, y} ∈ ε, x ∈ E, y ∈ E′, then for pair

{u, v}, which is the solution of system

u = A1x + A2x + b + a(x)(y − v), (9)

v = λv − (ϕ, A2x)− (ϕ, b), (10)

we can state that {u, v} ∈ ε.

Proof. Let us prove that (u, v) satisfies (6). Really,

(ϕ, u) + v = (ϕ, A1x) + (ϕ, A2x) + (ϕ, b) + (ϕ, a(x))y − (ϕ, a(x))v

+ λv − (ϕ, A2x)− (ϕ, b) = λ[(ϕ, x) + y].

Therefore (u, v) ∈ ε.

Theorem 3. If the condition 2) of Theorem 1 takes place, then the operator

a(x) =

m

∑
i=1

Ai
1x

(ϕ, x)
m−1

∑
i=0

λi

(m < ∞) (11)

satisfies equality (8).

Proof. Using (7) we obtain from (11) following:

(ϕ, a(x)) =

m

∑
i=1

(ϕ, Ai
1x)

(ϕ, x)
m−1

∑
i=0

λi

=

m

∑
i=1

(A∗
1 ϕ, Ai−1

1 x)

(ϕ, x)
m−1

∑
i=0

λi

=

λ
m

∑
i=1

(ϕ, Ai−1
1 x)

(ϕ, x)
m−1

∑
i=0

λi

=

λ
m−1

∑
i=0

λi(ϕ, x)

(ϕ, x)
m−1

∑
i=0

λi

= λ.

The theorem is proved.
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2 ITERATIVE FORMULAS AND SUFFICIENT CONDITIONS OF CONVERGENCY

Let us construct sequence {x(n)}, {y(n)} with starting approximation (x(0), y(0)) ∈ ε by

formulas

x(n+1) = Ax(n) + b +

m

∑
i=1

Ai
1x(n)

(ϕ, x(n))
m

∑
i=0

λi

(y(n) − y(n+1)) (m < ∞), (12)

y(n+1) = λy(n+1) − (ϕ, A2x(n))− (ϕ, b), (13)

where x ∈ E, y ∈ E′, λ ∈ E′, λ 6= 1. From (5) and (13) we get

y(n+1) − y∗ = −
1

1 − λ
(ϕ, A2(x(n) − x∗)).

From the Theorems 1 and 2 we obtain equality

y(n) − y∗ = −(ϕ, x(n) − x∗).

From (12), (13) and (11) we get

x(n+1) − x∗ = A(x(n) − x∗)− a(x(n))(ϕ, x(n) − x∗) + a(x(n))
(ϕ, A2(x(n) − x∗))

1 − λ

= A(x(n) − x∗)−
a(x(n))

1 − λ
(ϕ(I − A)(x(n) − x∗)),

or

x(n+1) − x∗ = A(x(n) − x∗)−

m

∑
i=1

Ai
1x(n)

(1 − λ)(ϕ, x)
m−1

∑
i=0

λ

(ϕ, (I − A)(x(n) − x∗)), (14)

where I is the identity operator.

Theorem 4. Let the conditions of Theorems 1–3 take place. If for (x, y) ∈ ε, w = x − x∗ and

operator H1(x)w defined by the formula

H1(x)w = Aw =

m

∑
i=1

Ai
1x

(1 − λ)(ϕ, x)
m−1

∑
i=0

λi

(ϕ, (I − A)w),

the inequality

||H1(x)|| 6 q1 (15)

holds for q1 < 1, then every sequence of {x(n)}, {y(n)}, constructed by formulas (12), (13),

converges respectively to x∗, y∗, as a components of solution of system (4), (5), not slowly then

geometry progression with multiplier q1.

Proof. It is sufficient to use formulas (14), inequality (15) and condition q1 < 1.
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3 APPLICATION TO A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Let us consider case when A1, A2 are the squared matrices of order N, N < ∞. For (x, y) ∈

ε, w ∈ E′ let us define operator H2(x)w by the formula

H2(x)w = [A −

m

∑
i=1

Aix

(1 − λ)ϕT x
m−1

∑
i=0

λi

ϕT(I − A)]w,

where notation ϕTx used instead of (ϕ, x), ϕT is a line vector, x is a row vector, T is the trans-

position symbol, λ ∈ E′, λ 6= 1.

Theorem 5. If for matrices A1, A2 conditions of theorems 1 — 3 take place and inequalities

||H2(x)|| 6 q2 < 1 hold, then sequences {x(n)}, {y(n)}, constructed by formulas (12), (13)

converge to x∗ and y∗ respectively as a components of solution of system (4), (5) not slowly

then geometry progression with multiplier q2.

Proof. The theorem is a partial case of Theorem 4.

4 EXPANSION ON CASE m = ∞

Let us change formula (12) as follows

x(n+1) = Ax(n) + b +
A1(I − A1)

−1x(n)

(ϕ, x(n))
(1 − λ), (16)

where λ ∈ E′, λ 6= 1, x ∈ E, and consider iterative process, which describes pair of formu-

las (16) and (13) with starting approximation {x(0), y(0)} ∈ ε. Let us restrict ourselves to the

situation, when λ < 1.

For {x, y} ∈ ε, w = x − x∗ let us define operator H3(x)w by the formula

H3(x)w = Aw − (1 − λ)
A1(I − A1)

−1x

(ϕ, x)
(ϕ, (I − A)w). (17)

Theorem 6. Let the conditions of Theorems 1–3 take place and for operator H3(x)w, defined

by the formula (17), following inequality holds

||H3(x)|| 6 q3 < 1. (18)

Then sequences {x(n)}, {y(n)}, constructed with the help of formulas (13), (16), converge to x∗

and y∗ respectively as a components of solution of system (4), (5) not slowly then geometry

progression with multiplier q3.

Proof. The proof of the theorem can be obtained by notions (17), (18).
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Theorem 6 is an analogue of Theorem 4. Using similar way we can obtain analogue of

Theorem 5 for systems of linear algebraic equations.
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Демкiв I.I., Копач М.I., Обшта А.Ф., Шувар Б.А. Нетрадицiйнi аналоги однопараметричного ме-

тоду iтеративного агрегування // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 296–302.

При розв’язаннi практичних завдань, що виникають, наприклад, в математичнiй економi-

цi, в терiї маркiвських процесiв, часто доводиться використовувати декомпозицiю оператор-

них рiвнянь за допомогою методiв iтеративного агрегування. В дослiдженнях цих методiв для

лiнiйного рiвняння x = Ax + b найчастiшими є вимоги додатностi оператора A, вiльного чле-

на b та агрегуючих функцiоналiв, а також виконання нерiвностi ρ(A) < 1 для спектрального

радiуса ρ(A) оператора A.

В статтi для наближеного розв’язання системи, складеної з рiвняння x = Ax + b, представ-

леного у виглядi x = A1x + A2x + b, де b ∈ E, E — банахiв простiр, A1, A2 — лiнiйнi неперервнi

оператори, що дiють з E в E, i допомiжного рiвняння y = λy − (ϕ, A2x)− (ϕ, b) з дiйсним не-

вiдомим y, де (ϕ, x) — значення лiнiйного функцiоналу ϕ ∈ E∗ на елементах x ∈ E, E∗ —

спряжений з E простiр, побудовано i дослiджено iтеративний процес

x(n+1) = Ax(n) + b +

m

∑
i=1

Ai
1x(n)

(ϕ, x(n))
m

∑
i=0

λi
(y(n) − y(n+1)) (m < ∞),

y(n+1) = λy(n+1) − (ϕ, A2x(n))− (ϕ, b).

Встановлено умови, при виконаннi яких послiдовностi x(n), y(n), побудованi з допомогою

цих формул, збiгаються вiдповiдно до x∗, y∗ як компонент розв’язку системи, складеної з рiв-

няння x = A1x + A2x + b та рiвняння y = λy − (ϕ, A2x) − (ϕ, b), не повiльнiше вiд швидко-

стi збiжностi геометричної прогресiї зi знаменником, меншим вiд одиницi. При цьому вима-

гається, щоб оператор A був стискуючим та знакосталим, а простiр E напiвупорядкованим.

Показано також застосування запропонованого алгоритму до систем лiнiйних алгебраїчних

рiвнянь.

Ключовi слова i фрази: декомпозицiя, iтеративне агрегування, агрегуючi функцiонали.
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HILBERT POLYNOMIALS OF THE ALGEBRAS OF SL2-INVARIANTS

We consider one of the fundamental problems of classical invariant theory, the research of

Hilbert polynomials for an algebra of invariants of Lie group SL2. Form of the Hilbert polynomials

gives us important information about the structure of the algebra. Besides, the coefficients and the

degree of the Hilbert polynomial play an important role in algebraic geometry. It is well known

that the Hilbert function of the algebra SLn-invariants is quasi-polynomial. The Cayley-Sylvester

formula for calculation of values of the Hilbert function for algebra of covariants of binary d-form

Cd = C[Vd ⊕ C2]SL2
(here Vd is the d + 1-dimensional space of binary forms of degree d) was ob-

tained by Sylvester. Then it was generalized to the algebra of joint invariants for n binary forms. But

the Cayley-Sylvester formula is not expressed in terms of polynomials.

In our article we consider the problem of computing the Hilbert polynomials for the algebras

of joint invariants and joint covariants of n linear forms and n quadratic forms. We express the

Hilbert polynomials H(I
(n)
1 , i) = dim(C

(n)
1 )i, H(C

(n)
1 , i) = dim(C

(n)
1 )i, H(I

(n)
2 , i) = dim(I

(n)
2 )i,

H(C
(n)
2 , i) = dim(C

(n)
2 )i of those algebras in terms of quasi-polynomials. We also present them in

the form of Narayana numbers and generalized hypergeometric series.

Key words and phrases: classical invariant theory, invariants, Hilbert function, Hilbert polynomi-
als, Poincaré series, combinatorics.

Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine

E-mail: nadyailash@gmail.com

INTRODUCTION

Let K be a field of characteristic zero. Let Vd be the d + 1-dimensional module of binary

forms of degree d. Let Vd = Vd1
⊕ Vd2

⊕ . . . ⊕ Vdn
, d := (d1, d2, . . . dn). Denote by K[Vd]

SL2 the

algebra of polynomial SL2-invariant functions on Vd. It is well known that Id := K[Vd]
SL2 is

finitely generated and graded:

Id := (Id)0 ⊕ (Id)1 ⊕ . . . ⊕ (Id)i ⊕ . . . ,

here (Id)i is a vector K-space of invariants of degree i. The dimension of the vector space (Id)i

is called the Hilbert function of the algebra Id. It is defined as a function of the variable i :

H(Id, i) = dim(Id)i.

It is well known that the Hilbert function of an arbitrary finitely generated graded K-

algebra is a quasi-polynomial (starting from some i), see [7, 13, 15]. Since the algebra of in-

variants Id is finitely generated, we have

H(Id, i) = h0(i)i
r + h1(i)i

r−1 + . . . ,

УДК 512.647
2010 Mathematics Subject Classification: 13N15, 13A50, 05A19, 05E40.

c© Ilash N.B., 2018
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where hk(i) is some periodic function with values in Q. The quasi-polynomialH(Id, i) is called

the Hilbert polynomial of algebra of invariants Id.

For the case of one binary form (n = 1) there exists classical Cayley-Sylvester formula for

calculation of values of Hilbert function of Id :

H(Id, i) = ωd(i, 0)− ωd(i, 2),

where ωd(i, k) is the number of non-negative integer solutions of the system:






α1 + 2α2 + . . . + dαd =
di − k

2
,

α1 + α2 + . . . + αd = i.

Also (see [8, 14]) we have

H(Id, i) =
[

q
id
2

]
((

1 − qd+1
) (

1 − qd+2
)

. . .
(
1 − qd+i

)

(1 − q2) (1 − q3) . . . (1 − qi)

)

,

where
[

q
id
2

]

denotes the coefficient of q
id
2 . Generalizations of these formulas to the algebra Id

was obtained in [1–4].

However, all these results are combinatorial formulas. They are not expressed in terms of

Hilbert polynomials in i. Note that, it is hard to calculate for those formulas even for small

values of dk and i.

Although, Maple-procedure for computing of the Hilbert polynomials of the algebras of

SL2-invariants for small values of d was being offered in [5].

A partial characterization of Hilbert polynomials for non-standard graded algebras was

obtained in [6].

Consider a direct sum of n linear forms nV1 = V1 ⊕ V1 ⊕ . . . ⊕ V1
︸ ︷︷ ︸

n times

. In the language of clas-

sical invariant theory the algebras I
(n)
1 := C[nV1]

SL2 and C
(n)
1 := C[nV1 ⊕ C2]SL2 are called

the algebra of joint invariants and the algebra of joint covariants for the n linear forms respectively.

Let V2 be the complex vector space of quadratic binary forms endowed with the natural action

of the special linear group SL2. Consider the corresponding action of the group SL2 on the

algebras of polynomial functions C[nV2] and C[nV2 ⊕ C2], where nV2 := V2 ⊕ V2 ⊕ · · · ⊕ V2
︸ ︷︷ ︸

n times

.

Denote by I
(n)
2 = C[nV2]

SL2 and by C
(n)
2 = C[nV2 ⊕ C2] SL2 the corresponding algebras of in-

variant polynomial functions. In the language of classical invariant theory the algebras I
(n)
2

and C
(n)
2 are called the algebra of joint invariants and the algebra of joint covariants for the n quadratic

forms respectively.

The algebras C
(n)
1 , I

(n)
1 , C

(n)
2 and I

(n)
2 are graded:

C
(n)
1 = (C

(n)
1 )0 + (C

(n)
1 )1 + · · ·+ (C

(n)
1 )i + · · · , I

(n)
1 = (I

(n)
1 )0 + (I

(n)
1 )1 + · · ·+ (I

(n)
1 )i + · · · ,

C
(n)
2 = (C

(n)
2 )0 + (C

(n)
2 )1 + · · ·+ (C

(n)
2 )i + · · · , I

(n)
2 = (I

(n)
2 )0 + (I

(n)
2 )1 + · · ·+ (I

(n)
2 )i + · · · ,

where each of the subspaces (C
(n)
1 )i, (I

(n)
1 )i, (C

(n)
2 )i and (I

(n)
2 )i is finite dimensional. The func-

tions

H(C
(n)
1 , i) = dim(C

(n)
1 )i, H(I

(n)
1 , i) = dim(I

(n)
1 )i,

H(C
(n)
2 , i) = dim(C

(n)
2 )i, H(I

(n)
2 , i) = dim(I

(n)
2 )i
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are called the Hilbert polynomials of the algebra of joint covariants for the n linear forms, the

Hilbert polynomial of the algebra of joint invariants for the n linear forms, the Hilbert polyno-

mial of the algebra of joint covariants for the n quadratic forms and the Hilbert polynomial of

the algebra of joint invariants for the n quadratic forms, respectively. The formal power series

P(C
(n)
1 , z) =

∞

∑
i=0

H(C
(n)
1 , i) zi, P(I

(n)
1 , z) =

∞

∑
i=0

H(I
(n)
1 , i) zi,

P(C
(n)
2 , z) =

∞

∑
i=0

H(C
(n)
2 , i) zi, P(I

(n)
2 , z) =

∞

∑
i=0

H(I
(n)
2 , i) zi

are called the Poincaré series of the algebras C
(n)
1 , I

(n)
1 , C

(n)
2 and I

(n)
2 respectively.

In the present paper we obtain explicit formulas for computation of the Hilbert polynomial

of those algebras. We present some results in terms of generalized hypergeometric functions. A

generalized hypergeometric function is given by a hypergeometric series, i.e., a series for which

the ratio of successive terms can be written as follows

pFq

[
a1, . . . , ap

b1, . . . , bq

∣
∣
∣
∣

z

]

=
∞

∑
k=0

p

∏
h=1

(ah)kzk

q

∏
j=1

(bj)kk!

,

where (a)k = a(a + 1) . . . (a + k − 1) is the Pochhammer symbol or rising factorial.

If any aj is a non-positive integer (0,−1,−2, . . .), then the series has only a finite number of

terms and in fact is a polynomial of degree aj. If any bk is a non-positive integer (excepting the

previous case with bk < aj), then the denominators become 0 and the series is undefined.

In the present paper we compute the Hilbert polynomials of the algebras of joint covariants

and invariants for the n linear and quadratic forms:

H(I
(n)
1 , i) =

{

Nn+k−1, k+1, if i = 2k,

0, if i = 2k + 1,

H(C
(n)
1 , i) =







(
n + k − 1

k

)2

, if i = 2k,

nNn+k, k+1, if i = 2k + 1,

H(I
(n)
2 , i)=







[ i
2 ]

∑
k=0

(
n+k−1

k

)2(n+i−2k−2

n−2

)
3k − i + 1

k + 1
, if i > 1,

1, if i = 1,

H(C
(n)
2 , i) =

[ i
2 ]

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

n − 1

)

,

where Nn,k =
1
n (

n
k)(

n
k−1), (1 ≤ k ≤ n) is the Narayana number.
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We also express the Hilbert polynomials H(I
(n)
2 , i),H(C

(n)
2 , i) in terms of generalized hy-

pergeometric function:

H(I
(n)
2 , i) = (1 − n)

(
n + i − 2

i

)

5F4

[
n, n,− i

2 ,− i−1
2 ,− i

3 +
4
3

1,−n+i−2
2 ,−n+i−3

2 ,− i
3 +

1
3

∣
∣
∣
∣
∣

1

]

, if n > 3, i > 1,

H(C
(n)
2 , i) =

(
n + i − 1

i

)

4F3

[
n, n,− i

2 ,− i−1
2 ,−n

3

1,−n+i−1
2 ,−n+i−2

2

∣
∣
∣
∣
∣

1

]

, if n > 2.

1 HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n

LINEAR FORMS

Poincaré series for the algebras of joint invariants and covariants of n linear forms was

derived by L. Bedratyuk in [2]. Using them, author found the following explicit formula for

Poincaré series those algebras in [11]:

P(I
(n)
1 , z) =

Nn−2(z
2)

(1 − z2)2n−3
and P(C

(n)
1 , z) =

Wn−1(z
2) + nzNn−1(z

2)

(1 − z2)2n−1
,

where

Nn(z) =
n

∑
k=1

1

k

(
n − 1

k − 1

)(
n

k − 1

)

zk−1 and Wn(z) =
n

∑
k=0

(
n

k

)2

zk

are the Narayana polynomials. Let us use these formulas to obtain the Hilbert polynomials of

the algebras I
(n)
1 and C

(n)
1 .

To prove Theorem 1, we need the following lemma.

Lemma 1 ([9, 11, 16]). Let m, k, s be non-negative integers. Then the generalized Le Jen Shoo

identity holds:

min{k,m}

∑
i=0

(
m

i

)(
m + 2s

i + s

)(
k − i + 2m + 2s

2m + 2s

)

=

(
m + k + s

m + s

)(
m + k + 2s

m + s

)

.

Theorem 1. The following formulas hold

(i) H(I
(n)
1 , i) =

{

Nn+k−1, k+1, if i = 2k,

0, if i = 2k + 1,

(ii) H(C
(n)
1 , i)=

{

(n+k−1
k )

2
, if i=2k,

nNn+k, k+1, if i=2k+1,

where Nn, k =
1

n

(
n

k

)(
n

k − 1

)

are the Narayana numbers.

Proof. (i) Let us expand function

P(I
(n)
1 , z) =

Nn−2(z
2)

(1 − z2)2n−3
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into the Taylor series about z = 0:

P(I
(n)
1 , z) =

n−3

∑
k=0

(
n − 3

k

)(
n − 2

k

)
z2k

k + 1

∞

∑
i=0

(
(2n − 3) + i − 1

i

)

z2i

=
∞

∑
k=0

min{k,n−3}

∑
i=0

(
n − 3

i

)(
n − 2

i

)(
2n + k − i − 4

k − i

)
1

i + 1
z2k

=
∞

∑
k=0

z2k

n − 1

min{k,n−3}

∑
i=0

(
n − 3

i

)(
n − 1

i + 1

)(
2n + k − i − 4

k − i

)

.

Using Lemma 1 (m = n − 3 and s = 1), we have:

P(I
(n)
1 , z) =

∞

∑
k=0

1

n − 1

(
n + k − 2

n − 2

)(
n + k − 1

n − 2

)

z2k.

Statement (i) follows immediately from the definitions of Poincaré series, Hilbert polynomials

and Narayana numbers.

Note that the identity P(I
(n)
1 , z) = Nn−2(z

2)
(1−z2)2n−3 holds for n ≥ 3. Then statement (i) holds

for n ≥ 3. Consider the case n = 2.We obtain that (x1, y1) are coordinates for the first V1 and

(x2, y2) are coordinates for the second one, both with respect to the canonical representation

of SL2. There is a single quadratic invariant y1x2 − x1y2. Hence

P(I
(2)
1 , z) =

1

1 − z2
= 1 + z2 + z4 + z6 + . . . .

We have

H(I
(2)
1 , i) = cos2 πi

2
= N2+[ i

2 ]−1, 2−1 cos2 iπ

2
.

This proves that statement (i) holds for n ≥ 2.

(ii) As above we use Poincaré series of the algebra C
(n)
1 (n > 1):

P(C
(n)
1 , z) =

n−1

∑
k=0

(
n − 1

k

)2

z2k

(1 − z2)2n−1
+

n−2

∑
k=0

(
n − 2

k

)(
n

k + 1

)

z2k+1

(1 − z2)2n−1

=
n−1

∑
k=0

(
n − 1

k

)2

z2k
∞

∑
k=0

(
(2n − 1) + i − 1

i

)

z2i

+
n−2

∑
k=0

(
n − 2

k

)(
n

k + 1

)

z2k+1
∞

∑
k=0

(
(2n − 1) + i − 1

i

)

z2i

=
∞

∑
k=0

min{k,n−1}

∑
i=0

(
n − 1

i

)2(2n + k − i − 2

k − i

)

z2k

+
∞

∑
k=0

min{k,n−2}

∑
i=0

(
n − 2

i

)(
n

i + 1

)(
k − i + 2n − 2

2n − 2

)

z2k+1.

Using Lemma 1, we get:

P(C
(n)
1 , z) =

∞

∑
k=0

(
n + k − 1

k

)2

z2k +
∞

∑
k=0

(
n+k−1

n−1

)(
n+k

n−1

)

z2k+1.
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This proves (ii) for n > 1. Using a Maple-procedure for computing the Hilbert polynomials

of the algebra C
(1)
1 , see [5], we get H(C

(1)
1 , i) = 1. By formulas (ii) we have H(C

(1)
1 , i) = 1, too.

Hence, (ii) holds for n ≥ 1.

Corollary 1.

(i) H(I
(n)
1 , i) =

1

(n − 1)!(n − 2)!

n−1

∑
m=1

[
n − 1

m

] [
i

2

]m−1 n−1

∑
j=1

[
n − 1

j

] ([
i

2

]

+ 1

)j−1

, n > 1,

(ii) H(C
(n)
1 , i)=

1

(n − 1)!2

n

∑
m=1

n

∑
j=1

[
n

m

][
n

j

] im+j−2 cos2 iπ

2
+ (i + 1)m−1(i − 1)j−1 sin2 iπ

2
2m+j−2

,

where [n
m] are the unsigned Stirling numbers of the first kind.

Proof. (i) Let us express the Narayana numbers in terms of the unsigned Stirling numbers of

the first kind:

Nn+[ i
2 ]−1, n−1 =

1

n − 1

(
n + [ i

2 ]− 2

n − 2

)(
n + [ i

2 ]− 1

n − 2

)

=

(

[ i
2 ]
)

n−1

(

[ i
2 ] + 1

)

n−1

(n − 1)!(n − 2)![ i
2 ]([

i
2 ] + 1)

=
1

(n − 1)!(n − 2)!

n−1

∑
m=1

[
n − 1

m

] [
i

2

]m−1 n−1

∑
j=1

[
n − 1

j

] ([
i

2

]

+ 1

)j−1

.

In Theorem 1(i), we proved that H(I
(n)
1 , i) = Nn+[ i

2 ]−1, n−1 cos2 iπ
2 as n > 1. Since cos2 iπ

2 = 0

as i is odd, it follows that

H(I
(n)
1 , i) =

1

(n − 1)!(n − 2)!

n−1

∑
m=1

n−1

∑
j=1

[
n − 1

m

][
n − 1

j

] ([
i

2

]

+ 1

)j−1 [ i

2

]m−1

cos2 iπ

2

=
1

(n − 1)!(n − 2)!

n−1

∑
m=1

n−1

∑
j=1

[
n − 1

m

][
n − 1

j

]
im−1(i + 2)j−1

2m+j−2
cos2 iπ

2
, if n > 1.

(ii) The proof of (ii) is completely analogous to that of (i).

2 HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n

QUADRATIC FORMS

The Poincaré series of the algebras of joint invariants and covariants of n quadratic forms

are needed for the sequel. They were derived by L.Bedratyuk in [2]. Using them, the author

obtained the following formulas in [12]:

P(C
(n)
2 , z) =

Wn−1(z
2)

(1−z)n(1−z2)2n−1
and P(I

(n)
2 , z) =

Wn−1(z
2)− nzNn−1(z

2)

(1 − z)n(1 − z2)2n−1
.

Theorem 2. Hilbert polynomials of the algebras of joint invariants and covariants of n quad-

ratic forms are calculated by the following formula:

(i) H(C
(n)
2 , i) =

[ i
2 ]

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

n − 1

)

,

(ii) H(I
(n)
2 , i)=







[ i
2 ]

∑
k=0

(
n+k−1

k

)2(n+i−2k−2

n−2

)
3k − i + 1

k + 1
, if i > 1,

1, if i = 1,

where n > 1.
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Proof. This theorem can be proved basically in the same way as Theorem 1.

(i) Let us expand the Poincaré series of the algebra C
(n)
2 into the Taylor series about z = 0.

We have:

P(C
(n)
2 , z) =

∞

∑
k=0

(
n + k − 1

k

)2

z2k
∞

∑
i=0

(
n + i − 1

i

)

zi

=
∞

∑
i=0

[ i
2 ]

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

i − 2k

)

zi.

(ii) Using Theorem 1 (ii), we get

P(I
(n)
2 , z)=

(
∞

∑
k=0

(
n + k − 1

k

)2

z2k −
∞

∑
k=0

(
n+k−1

n−1

)(
n+k

n−1

)

z2k+1

)
∞

∑
i=0

(
n + i − 1

i

)

zi

=
∞

∑
i=0

[i/2]

∑
k=0

(
n+k−1

k

)2(n+i−2k−1

n − 1

)

zi −
∞

∑
i=0

[i/2]

∑
k=0

(
n + k − 1

k

)(
n + k

n − 1

)(
n + i − 2k − 1

n − 1

)

zi+1

=
∞

∑
i=0

(
[i/2]

∑
k=0

(
n+k−1

k

)2(n+i−2k−1

n−1

)

−
[(i−1)/2]

∑
k=0

(
n+k−1

k

)(
n+k

n−1

)(
n+i−2k−2

n−1

))

zi.

By the definitions of Poincaré series and Hilbert polynomials,

H(I
(n)
2 , i)=

[i/2]

∑
k=0

(
n+k−1

k

)2(n+i−2k−1

n−1

)

−
[(i−1)/2]

∑
k=0

(
n+k−1

k

)(
n+k

n−1

)(
n+i−2k−2

n−1

)

.

Note that (n+i−2k−2
n−1 ) = 0, as k >

[
i−1

2

]

. We have

H(I
(n)
2 , i)=

[i/2]

∑
k=0

(
n+k−1

k

)2(n+i−2k−1

n−1

)

−
[i/2]

∑
k=0

(
n+k−1

k

)(
n+k

n−1

)(
n+i−2k−2

n−1

)

=
[i/2]

∑
k=0

(
n+k−1

k

)2(n+i−2k−2

n−2

)
3k − i + 1

k + 1
.

We used the Poincaré series I
(n)
2 and C

(n)
2 for n > 1. Using Maple-procedure for computing

the Hilbert polynomials of the algebras C
(1)
2 and I

(1)
2 (see [5]), we get

H(I
(1)
2 , i) =

1

2
cos(πi) +

1

2
= cos

(
πi

2

)

,

H(C
(1)
2 , i) =

i

2
+

1

4
cos(πi) +

3

4
=

[
i

2

]

+ 1.

This completes the proof of Theorem 2.

Let us express H(I
(n)
2 , i) in terms of a polynomial.

Corollary 2.

(i) H(C
(n)
2 , i) =

1

(n−1)!

[ i
2 ]

∑
k=0

n−1

∑
m=1

m−1

∑
j=1

(
n+k−1

k

)2(m − 1

j

)[
n−1

m

]

ij(−2k)m−j−1,

(ii) H(I
(n)
2 , i) =

1

(n−1)!

[ i
2 ]

∑
k=0

n−2

∑
m=1

(
n+k−1

k

)(
n+k−1

k+1

)[
n−2

m

]

(i−2k)m−1(3k−i+1).
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Proof. (i) By Theorem 2(i) we have:

H(C
(n)
2 , i) =

[ i
2 ]

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

i − 2k

)

.

Let us express (n+i−2k−1
i−2k ) in terms of the unsigned Stirling numbers of the first kind:

(
n + i − 2k − 1

i − 2k

)

=
∑

n−1
m=1 [

n−1
m ](i − 2k)m−1

(n − 1)!

=
1

(n − 1)!

n−1

∑
m=1

m−1

∑
j=0

[
n − 1

m

](
m − 1

j

)

(−2k)m−j−1ij.

(ii) The proof of (ii) is completely analogous to that of (i).

Let us express the Hilbert polynomial of the algebras of joint covariants and invariants for

n quadratic forms in terms of generalized hypergeometric function:

Corollary 3.

(i) H(C
(n)
2 , i) =

(
n + i − 1

i

)

4F3

[
n, n,− i

2 ,− i−1
2 ,−n

3

1,−n+i−1
2 ,−n+i−2

2

∣
∣
∣
∣
∣

1

]

, if n > 2,

(ii) H(I
(n)
2 , i) = (1 − n)

(
n + i − 2

i

)

5F4

[
n, n,− i

2 ,− i−1
2 ,− i

3 +
4
3

1,−n+i−2
2 ,−n+i−3

2 ,− i
3 +

1
3

∣
∣
∣
∣
∣

1

]

, if n > 3 and i > 1.

Proof. (i) By the above

H(C
(n)
2 , i) =

[ i
2 ]

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

i − 2k

)

.

Let us remark that (n+i−2k−1
i−2k ) = 0 as 2k > i. It means that:

H(C
(n)
2 , i) =

∞

∑
k=0

(
n + k − 1

k

)2(n + i − 2k − 1

i − 2k

)

.

Let us express ∑
∞
k=0 (

n+k−1
k )

2
(n+i−2k−1

i−2k ) in terms of a generalized hypergeometric function in a

way analogous to that used in [10]. Let us denote

ak =

(
n + k − 1

k

)2(n + i − 2k − 1

i − 2k

)

.

We have

a0 =

(
n + i − 1

i

)

,

ak+1

ak
=

(k + n)2(k − i
2)(k −

i−1
2 )

(k + 1)2(k − n+i−1
2 )(k − n+i−2

2 )
.
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It now follows that

H(C
(n)
2 , i) =

(
n + i − 1

i

)

4F3

[
n, n,− i

2 ,− i−1
2

1,−n+i−1
2 ,−n+i−2

2

∣
∣
∣
∣
∣

1

]

.

(ii) The proof of (ii) is completely analogous to that of (i).
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[1] Bedratyuk L. The Poincaré series of the algebras of simultaneous invariants and covariants of two binary forms.

Linear Multilinear Algebra. 2010, 58(6), 789–803. doi:10.1080/03081080903127262
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form. Linear Multilinear Algebra 2011, 59(11), 1189–1199. doi:10.1080/03081081003621303

[5] Bedratyuk L. Hilbert polynomials of the algebras of SL2-invariants. preprint 2011.–arXiv:1102.3290v1.

[6] Bruns W., Ichim. B. On the coefficients of Hilbert quasipolynomials. Proc. Amer. Math. Soc. 2007, 135(5), 1305–

1308.

[7] Eisenbud D. The geometry of syzygies. A second course in commutative algebra and algebraic geometry.

Springer, NY, 2005.

[8] Hilbert D. Theory of algebraic invariants. Cambridge Univ. Press, 1993.

[9] Graham R., Riordan J. The Solution of a Certain Recurrence. Amer. Math. Monthly, 1966, 73(6), 604–608.

[10] Graham R.L., Knuth D.E., Patashnik O. Concrete Mathematics - A foundation for computer science. In:

Reading. Addison-Wesley Professional, MA. USA, 1993.
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Iлаш Н.Б. Многочлени Гiльберта алгебр SL2-iнварiантiв // Карпатськi матем. публ. — 2018. —

Т.10, №2. — C. 303–312.

Ми розглядаємо одну з фундаментальних проблем класичної теорiї iнварiантiв — дослi-

дження многочленiв Гiльберта алгебри iнварiантiв групи Лi SL2. Форма многочленiв Гiльбер-

та несе важливу iнформацiю про структуру цiєї алгебри. Крiм того коефiцiєнти i степiнь мно-

гочленiв Гiльберта вiдiграють важливу роль в алгебраїчнiй геометрiї. Вiдомо, що починаючи

з деякого i функцiя Гiльберта алгебри SLn-iнварiантiв є квазiмногочленом. Формула Келлi-

Сiльвестра для обчислення значень функцiї Гiльберта алгебри коварiантiв бiнарної d-форми

Cd = C[Vd ⊕ C2] SL2 (тут Vd — комплексний d + 1-вимiрний векторний простiр бiнарних форм

степеня d) була запропонована ще Сiльвестром i пiзнiше узагальнена на алгебри спiльних iн-

варiантiв скiнченої кiлькостi бiнарних форм. Проте цi формули не виражають функцiї Гiль-

берта як многочлен вiд i.

В нашiй статтi ми розглядаємо задачу обчислення в явнiй формi многочленiв Гiльберта

алгебр спiльних iнварiантiв та спiльних коварiантiв n лiнiйних форм i n квадратичних форм.

Ми виразили многочлени Гiльберта цих алгебр H(I
(n)
1 , i) = dim(C

(n)
1 )i, H(C

(n)
1 , i) = dim(C

(n)
1 )i,

H(I
(n)
2 , i) = dim(I

(n)
2 )i, H(C

(n)
2 , i) = dim(C

(n)
2 )i у вигядi квазiмногочленiв вiд i, а також пода-

ли їх у термiнах вiдомих комбiнаторних структур, таких як число Нараяна та узагальнений

гiпергеометричний ряд.

Ключовi слова i фрази: класична теорiя iнварiантiв, iнварiанти, функцiя Гiльберта, много-

члени Гiльберта, квазiмногочлени, ряди Пуанкаре, комбiнаторика.
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KARAMI A.1 , SHAKERI R.1 , SEDGHI S.1 , ALTUN I.2

COUPLED FIXED POINT RESULTS ON METRIC SPACES DEFINED BY BINARY

OPERATIONS

In parallel with the various generalizations of the Banach fixed point theorem in metric spaces,
this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy
metric spaces, uniform spaces, partial metric spaces, b-metric spaces etc. In this context, first we
define a binary normed operation on nonnegative real numbers and give some examples. Then we
recall the concept of T-metric space and some important and fundamental properties of it. A T-
metric space is a 3-tuple (X, T, ⋄), where X is a nonempty set, ⋄ is a binary normed operation and T
is a T-metric on X. Since the triangular inequality of T-metric depends on a binary operation, which
includes the sum as a special case, a T-metric space is a real generalization of ordinary metric space.
As main results, we present three coupled fixed point theorems for bivariate mappings satisfying
some certain contractive inequalities on a complete T-metric space. It is easily seen that not only
existence but also uniqueness of coupled fixed point guaranteed in these theorems. Also, we provide
some suitable examples that illustrate our results.

Key words and phrases: binary normed operation, T-metric space, coupled fixed point.
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1 INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in metrical
fixed point theory. After this classical result, many authors have extended, generalized and
improved this theorem using different contractive conditions (see [1, 3, 4, 6]). On the other
hand, fixed and common fixed point results in different types of spaces including ultra metric
spaces, fuzzy metric space, uniform space, partial metric space, b-metric space etc, have been
developed (see [2, 5, 8, 9, 12]). An interesting generalization of metric space named as T-metric
space has been recently introduced by [11] (see also [10]). Briefly, the concept of T-metric space
is based on the fact that the triangle inequality in the metric definition depends on a binary
operation.

This study was organized as follows: first, we recall the definition of T-metric and some
properties of it. Finally, we prove some coupled fixed point theorems for single valued map-
pings in complete T-metric spaces satisfying different contractive type condition.

Here we will emphasize the concept of ultra metric because of it will be mentioned in the
next. Let (X, d) be a metric space. If the metric d satisfies strong triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)} ∀x, y, z ∈ X,

then d is called an ultra metric on X and the pair (X, d) is called an ultra metric space. An ultra
metric space (X, d) is said to be spherically complete if every shrinking collection of balls (that
is, every nested decreasing sequence of balls) in X has a nonempty intersection.

УДК 515.126.4
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2 A BINARY NORMED OPERATION AND T-METRIC SPACES

In this section, we define a binary normed operation and give some examples.
A binary normed operation is a mapping ⋄ : [0, ∞) × [0, ∞) → [0, ∞) which satisfies the

following conditions:

(i) ⋄ is associative and commutative,

(ii) ⋄ is continuous,

(iii) a ⋄ 0 = a for all a ∈ [0, ∞),

(iv) a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, ∞).

Some typical examples of ⋄ are as follows: let a, b ∈ [0, ∞)

(a) a ⋄1 b = max{a, b},

(b) a ⋄2 b =
√

a2 + b2,

(c) a ⋄3 b = a + b,

(d) a ⋄4 b = ab + a + b,

(e) a ⋄5 b = (
√

a +
√

b)2.

Straightforward calculations lead to the following relations among normed binary opera-
tions given above

a ⋄1 b ≤ a ⋄2 b ≤ a ⋄3 b ≤ a ⋄4 b

and
a ⋄3 b ≤ a ⋄5 b.

The following lemma defines a normed binary operation exploiting some properties of a self
map on [0, ∞).

Lemma 1. Let f : [0, ∞) → [0, ∞) be any continuous, increasing and onto mapping. Let
⋄ : [0, ∞)× [0, ∞) → [0, ∞) be defined by

a ⋄ b = f−1( f (a) + f (b))

for a, b ∈ [0, ∞). Then ⋄ is a normed binary operation.

Proof. It follows immediately.

Example 1. Let f : [0, ∞) → [0, ∞) defined by f (x) = ex − 1. Obviously f is a continuous
and increasing map. Therefore by Lemma 1, a ⋄ b = ln(ea + eb − 1) defines a normed binary
operation.

We have the following simple observations about a normed binary operation.

Lemma 2. The following statements hold for any normed binary operation.
i) If r, r′ ≥ 0, then r ≤ r ⋄ r′.
ii) For δ ∈ (0, r), there exists δ′ ∈ (0, r) such that δ′ ⋄ δ < r.
iii) For all ε > 0, there exists δ > 0 such that δ ⋄ δ < ε.
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Proof. i) Since r′ ≥ 0, using properties (iii) and (iv) of a normed binary operation ⋄, we have
r ⋄ r′ ≥ r ⋄ 0 = r.

ii) If we assume that every δ′ > 0 gives δ′ ⋄ δ ≥ r. In particular, if we set δ′ =
1

n
, we get

1

n
⋄ δ ≥ r which on taking the limit as n → ∞ implies that 0 ⋄ δ ≥ r which is a contradiction.

Hence, by part (i) of this lemma we obtain δ′ ≤ δ′ ⋄ δ < r.

iii) Assume the contrary, i.e., for all δ > 0, δ ⋄ δ ≥ ε. For δ =
1

n
we have

1

n
⋄ 1

n
≥ ε which on

taking the limit as n → ∞ gives 0 ≥ ε, which is a contradiction. Hence iii) follows.

Now, we recall the concept of T-metric.

Definition 1 ([10]). Let X be a nonempty set. A T-metric on X is a function T : X2 → R that
satisfies the following conditions, for each x, y, z ∈ X,

1. T(x, y) ≥ 0 and T(x, y) = 0 if and only if x = y,

2. T(x, y) = T(y, x),

3. T(x, y) ≤ T(x, z) ⋄ T(y, z).

The 3-tuple (X, T, ⋄) is called a T-metric space.

Example 2 ([11]). i) Every ordinary metric d is a T-metric with a ⋄ b = a + b.
ii) Every ultra metric d is a T-metric with a ⋄ b = max{a, b}.

iii) Let X = R and T(x, y) =
√

|x − y| for all x, y ∈ R. If we take a ⋄ b =
√

a2 + b2, then we
have

T(x, y) =
√

|x − y| ≤
√

|x − z|+ |z − y| =
√

√

|x − z|2 +
√

|z − y|2 = T(x, z) ⋄ T(z, y).

Therefore, the function T is a T-metric on X.
iv) Let X = R and T(x, y) = (x − y)2 for every x, y ∈ R. If we take a ⋄ b = (

√
a +

√
b)2,

then we get

T(x, y) = (x− y)2 = |x− y|2 ≤ (|x− z|+ |z− y|)2 =
(√

|x − z|2 +
√

|z − y|2
)2
=T(x, z)⋄T(z, y).

Hence, the function T is a T-metric on X.

Remark 1 ([11]). For a fixed 0 ≤ α ≤ π

4
, if there exist β, γ such that 0 ≤ α ≤ β + γ <

π

2
, then

tan α ≤ tan β + tan γ + tan β tan γ.

Example 3 ([11]). Let X = [0, 1] and T(x, y) = tan(
π

4
|x − y|) for every x, y ∈ X. If we take

a ⋄ b = a + b + ab, then by Remark 1 we obtain

T(x, y) = tan(
π

4
|x − y|)

≤ tan(
π

4
|x − z|) + tan(

π

4
|z − y|) + tan(

π

4
|x − z|) tan(

π

4
|z − y|)

= T(x, z) ⋄ T(z, y).

So, the function T is a T-metric on X.
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Let (X, T, ⋄) be a T-metric space. For r > 0 define

BT(x, r) = {y ∈ X : T(x, y) < r}.

Definition 2 ([11]). Let (X, T, ⋄) be a T-metric space r > 0 and A ⊂ X.

1. The set BT(x, r) is called the open ball of a center x and a radius r.

2. If for all x ∈ A there exists r > 0 such that BT(x, r) ⊂ A, then the subset A is called an
open subset of X.

3. The subset A of X is said to be T-bounded if there exists r > 0 such that T(x, y) < r for
all x, y ∈ A.

4. A sequence {xn} in X converges to x if T(xn, x) → 0 as n → ∞ and we write lim
n→∞

xn = x.

That is for each ε > 0 there exists n0 ∈ N such that T(xn, x) < ε for all n ≥ n0.

5. A sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there exists n0 ∈ N

such that T(xn, xm) < ε for all n, m ≥ n0.

6. The T-metric space (X, T, ⋄) is said to be complete if every Cauchy sequence is conver-
gent.

Let τ be the set of all open subsets of X, then τ is a topology on X (induced by the T-metric
T). Note that if A and B are open subsets of X and x ∈ A ∩ B, then there exist ε1, ε2 > 0 such
that BT(x, ε1) ⊂ A and BT(x, ε2) ⊂ B. Let ε = min{ε1, ε2} > 0, then by Lemma 2 (iii), there
exists δ > 0 such that δ ⋄ δ < ε. In this case, we have BT(x, δ ⋄ δ) ⊂ BT(x, ε1) ∩ BT(x, ε2) ⊂
A ∩ B, hence A ∩ B is open.

Lemma 3 ([11]). Let (X, T, ⋄) be a T-metric space. If r > 0, then the open ball BT(x, r) with a
center x ∈ X and a radius r is an open set.

Lemma 4 ([11]). Let (X, T, ⋄) be a T-metric space. If a sequence {xn} in X converges to x, then
x is unique.

Lemma 5 ([11]). Let (X, T, ⋄) be a T-metric space. Then every convergent sequence {xn} in X
is a Cauchy sequence.

Definition 3 ([11]). Let (X, T, ⋄) be a T-metric space. T is said to be continuous if

lim
n→∞

T(xn, yn) = T(x, y),

whenever
lim

n→∞

T(xn, x) = lim
n→∞

T(yn, y) = 0.

Lemma 6. Let (X, T, ⋄) be a T-metric space. Then T is a continuous function.

Proof. Assume that limn→∞ T(xn, x) = limn→∞ T(yn, y) = 0. By the triangular inequality we
have

T(xn, yn) ≤ T(xn, x) ⋄ T(x, y) ⋄ T(y, yn).

Hence we get
lim

n→∞

sup T(xn, yn) ≤ T(x, y).
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Similarly, we obtain

T(x, y) ≤ T(x, xn) ⋄ T(xn, yn) ⋄ T(yn, y)

and so
T(x, y) ≤ lim

n→∞

inf T(xn, yn).

Therefore
lim

n→∞

T(xn, yn) = T(x, y).

Henceforth, we assume that ⋄ is a binary operation on [0, ∞)× [0, ∞) such that
i) α(a ⋄ b) = αa ⋄ αb for every α ∈ R

+,
ii) there exists h ≥ 0 such that 1 ⋄ 1 ⋄ · · · ⋄ 1

︸ ︷︷ ︸

n

≤ nh.

Example 4. Let a ⋄ b = max{a, b}, a ⋄ b =
√

a2 + b2, a ⋄ b = a + b and a ⋄ b = (
√

a +
√

b)2. We

take h ≥ 0, h ≥ 1

2
, h ≥ 1 and h ≥ 2 respectively in (ii). But if a ⋄ b = a + b + ab, then is not

necessary that ⋄ satisfies the above conditions.

3 COUPLED FIXED POINT THEOREMS IN T-METRIC SPACES

Now, we remember the concept of a coupled fixed point on a T-metric space.

Definition 4 ([7]). Let X be a nonempty set and F : X × X → X be a function. An element
(x, y) ∈ X × X is said to be a coupled fixed point of the map F if F(x, y) = x and F(y, x) = y.

Example 5. Let X = R. Define a map F on X × X by F(x, y) = xy2. It is easy to see that
(1,−1) ∈ X × X is a coupled fixed point of the mapping F.

Theorem 1. Let (X, T, ⋄) be a complete T-metric space. Suppose that the map F : X × X → X
satisfies the following contractive condition for all x, y, u, v ∈ X

T(F(x, y), F(u, v)) ≤ kT(x, u) ⋄ lT(y, v), (1)

where k, l are nonnegative constants with k ⋄ l < 1. Then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F(x0, y0) and y1 = F(y0, x0). We can define sequences
{xn} and {yn} by xn+1 = F(xn, yn) and yn+1 = F(yn, xn). By (1) we have

T(xn, xn+1) = T(F(xn−1, yn−1), F(xn, yn))

≤ kT(xn−1, xn) ⋄ lT(yn−1, yn). (2)

Similarly

T(yn, yn+1) = T(F(yn−1, xn−1), F(yn, xn))

≤ kT(yn−1, yn) ⋄ lT(xn−1, xn). (3)

Letting
dn = T(xn, xn+1) ⋄ T(yn, yn+1), (4)
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we get

dn = T(xn, xn+1) ⋄ T(yn, yn+1)

≤ kT(xn−1, xn) ⋄ lT(yn−1, yn) ⋄ kT(yn−1, yn) ⋄ lT(xn−1, xn)

= (k ⋄ l)[T(xn−1 , xn) ⋄ T(yn−1, yn)]

= (k ⋄ l)dn−1. (5)

Consequently, if we set δ = k ⋄ l, then for each n ∈ N we obtain

dn ≤ δdn−1 ≤ δ2dn−2 ≤ · · · ≤ δnd0. (6)

If d0 = 0 then T(x0, x1) ⋄ T(y0, y1) = 0. Hence, we get x0 = x1 = F(x0, y0) and y0 = y1 =
F(y0, x0), i.e., (x0, y0) is a coupled fixed point of F. Now suppose that d0 > 0. For each n > m
we have

T(xn, xm) ≤ T(xn, xn−1) ⋄ T(xn−1, xn−2) ⋄ · · · ⋄ T(xm+1, xm).

In the same manner, we get

T(yn, ym) ≤ T(yn, yn−1) ⋄ T(yn−1, yn−2) ⋄ · · · ⋄ T(ym+1, ym).

Thus

T(xn, xm) ≤ T(xn, xm) ⋄ T(yn, ym)

≤ dn−1 ⋄ dn−2 ⋄ · · · ⋄ dm

≤ (δn−1 ⋄ δn−2 ⋄ · · · ⋄ δm)d0

≤ δmd0 (1 ⋄ · · · ⋄ 1)
︸ ︷︷ ︸

n−m

≤ δmd0 (1 ⋄ · · · ⋄ 1)
︸ ︷︷ ︸

n

≤ δmd0nh −→ 0.

Hence for ε > 0 we can find n0 ∈ N such that for all n > m ≥ n0 we get T(xn, xm) < ε.
Similarly, we can get T(yn, ym) < ε. It follows that {xn} and {yn} are Cauchy and by the
completeness of X, {xn} and {yn} converge to u∗ and v∗ in X respectively. Thus

lim
n→∞

T(xn, u∗) = lim
n→∞

T(yn , v∗) = 0. (7)

Using the triangular inequality and (1) we get

T(F(u∗, v∗), u∗) ≤ T(F(u∗, v∗), xn+1) ⋄ T(xn+1, u∗)
= T(F(u∗, v∗), F(xn, yn)) ⋄ T(xn+1, u∗)
≤ kT(xn , u∗) ⋄ lT(yn , v∗) ⋄ T(xn+1, u∗).

Letting n → ∞, then from (7), we obtain T(F(u∗, v∗), u∗)) = 0 and so F(u∗, v∗) = u∗. In the
same maner, we have F(v∗, u∗) = v∗; i.e., (u∗, v∗) is a coupled fixed point of F. Now, if (u′, v′)
is another coupled fixed point of F we get

T(u′, u∗) = T(F(u′, v′), F(u∗, v∗)) ≤ kT(u′, u∗) ⋄ lT(v′ , v∗)

and
T(v′, v∗) = T(F(v′ , u′), F(v∗, u∗)) ≤ kT(v′ , v∗) ⋄ lT(u′, u∗).

Then
T(u′, u∗) ⋄ T(v′ , v∗) ≤ (k ⋄ l)[T(u′ , u∗) ⋄ T(v′, v∗)].

As k ⋄ l < 1, we have T(u′, u∗) ⋄ T(v′, v∗) = 0 and so u′ = u∗ and v′ = v∗. The proof of
Theorem 1 is completed.



COUPLED FIXED POINT RESULTS ON METRIC SPACES DEFINED BY BINARY OPERATIONS 319

Example 6. Let X = R and T(x, y) =
√

|x − y| for all x, y ∈ R. If we take a ⋄ b =
√

a2 + b2,

then the function T is a T-metric on X. Let F(x, y) =
x + 2y

5
− 1 for all x, y ∈ X. For all

x, y, u, v ∈ X, we obtain

T(F(x, y), F(u, v)) =

√

|(x − u) + 2(y − v)|
5

≤ 1√
5
(
√

|x − u|+ 2|y − v|)

=
1√
5

T(x, u) ⋄
√

2√
5

T(y, v).

Hence for k =
1√
5

and l =

√
2√
5

, we get k ⋄ l < 1. It follows that all conditions of Theorem 1

hold, and (−5

2
,−5

2
) ∈ X × X is the unique coupled fixed point of the mapping F.

Example 7. Let X = R and T(x, y) = (x − y)2 for all x, y ∈ R. If we take a ⋄ b = (
√

a +
√

b)2,

then the function T is a T-metric on X. Let F(x, y) =
x + 2y

5
− 1 for all x, y ∈ X. For all

x, y, u, v ∈ X, we obtain

T(F(x, y), F(u, v)) =
(x − u

5
+ 2

y − v

5

)2

≤ 2
(x − u

5

)2
+ 4

(y − v

5

)2

=
2

25
(|x − u|)2 +

8

25
(|y − v|)2

≤
(
√

2

5
|x − u|+ 2

√
2

5
|y − v|

)2

=
2

25
T(x, u) ⋄ 8

25
T(y, v).

Hence for k =
2

25
and l =

8

25
, we get k ⋄ l = 18

25 < 1. It follows that the all conditions of

Theorem 1 hold, and
(

− 5

2
,−5

2

)

∈ X × X is the unique coupled fixed point of the mapping F.

Theorem 2. Let (X, T, ⋄) be a complete T-metric space. Suppose that the mapping F : X ×X →
X satisfies the following contractive condition for all x, y, u, v ∈ X

T(F(x, y), F(u, v)) ≤ kT(F(x, y), x) ⋄ lT(F(u, v), u), (8)

where k, l are nonnegative constants with k ⋄ l < 1. Then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F(x0, y0) and y1 = F(y0, x0). We can define sequences
{xn} and {yn} by xn+1 = F(xn, yn) and yn+1 = F(yn, xn). By (8), we have

T(xn, xn+1) = T(F(xn−1, yn−1), F(xn, yn))

≤ kT(F(xn−1, yn−1), xn−1) ⋄ lT(F(xn , yn), xn)

= kT(xn , xn−1) ⋄ lT(xn+1, xn).
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If T(xn+1, xn) ≥ T(xn, xn−1) then

T(xn, xn+1) ≤ kT(xn , xn−1) ⋄ lT(xn+1, xn)

≤ (k ⋄ l)T(xn+1, xn)

< T(xn+1, xn),

which is a contradiction. Hence

T(xn, xn+1) ≤ (k ⋄ l)T(xn−1, xn) = δT(xn−1, xn).

Similarly
T(yn, yn+1) ≤ (k ⋄ l)T(yn−1, yn) = δT(yn−1, yn).

So, if m > n

T(xn, xm) ≤ T(xn, xn+1) ⋄ T(xn+1, xn+2) ⋄ · · · ⋄ T(xm−1, xm)

≤ δnT(x0, x1) ⋄ δn+1T(x0, x1) ⋄ · · · ⋄ δm−1T(x0, x1)

= δnT(x0, x1)(1 ⋄ δ ⋄ δ2 ⋄ · · · ⋄ δm−n−1)

≤ δnT(x0, x1)(1 ⋄ 1 ⋄ 1 ⋄ · · · ⋄ 1
︸ ︷︷ ︸

m−n

)

≤ δnT(x0, x1)(1 ⋄ 1 ⋄ 1 ⋄ · · · ⋄ 1
︸ ︷︷ ︸

m

)

≤ δnT(x0, x1)m
h.

It is easy to see that for all m > n there exists s > 0 such that m ≤ ns. Thus

T(xn, xm) ≤ δnT(x0, x1)n
hs → 0.

Hence for ε > 0 we can find n0 ∈ N such that for all m > n ≥ n0 we get T(xn, xm) < ε.
Similarly, we can get T(yn, ym) < ε. It follows that {xn} and {yn} are Cauchy and by the
completeness of X, {xn} and {yn} converge to u∗ and v∗ in X respectively. Thus

lim
n→∞

T(xn, u∗) = lim
n→∞

T(yn , v∗) = 0. (9)

Applying the triangular inequality and (8) we get

T(F(u∗, v∗), u∗) ≤ T(F(u∗, v∗), xn+1) ⋄ T(xn+1, u∗)
= T(F(u∗, v∗), F(xn, yn) ⋄ T(xn+1, u∗)
≤ kT(F(u∗ , v∗), u∗) ⋄ lT(F(xn , yn), xn) ⋄ T(xn+1, u∗).

Letting n → ∞ and from (9) we obtain T(F(u∗, v∗), u∗)) ≤ kT(F(u∗, v∗), u∗)) which implies
that T(F(u∗, v∗), u∗)) = 0 and so F(u∗, v∗) = u∗. In the similar manner, we have F(v∗, u∗) = v∗,
i.e; (u∗, v∗) is a coupled fixed point of F. Now, if (u′, v′) is another coupled fixed point of F,
then

T(u′, u∗) = T(F(u′, v′), F(u∗, v∗))
≤ kT(F(u′ , v′), u′) ⋄ lT(F(u∗ , v∗), u∗)
= kT(u′, u′) ⋄ lT(u∗, u∗) = 0.

This implies that T(u′, u∗) = 0 and so u′ = u∗. Siimilarly v′ = v∗. The proof of Theorem 2 is
completed.
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Theorem 3. Let (X, T, ⋄) be a complete T-metric space. Suppose that the mapping F : X ×X →
X satisfies the following contractive condition for all x, y, u, v ∈ X

T(F(x, y), F(u, v)) ≤ kT(F(x, y), u) ⋄ lT(F(u, v), x), (10)

where k, l are nonnegative constants with k ⋄ l ⋄ l < 1. Then F has a unique coupled fixed
point.

Proof. Choose x0, y0 ∈ X and set x1 = F(x0, y0) and y1 = F(y0, x0). We can define sequences
{xn} and {yn} by xn+1 = F(xn, yn) and yn+1 = F(yn, xn). By (10), we have

T(xn, xn+1) = T(F(xn−1, yn−1), F(xn, yn))

≤ kT(F(xn−1, yn−1), xn) ⋄ lT(F(xn , yn), xn−1)

= kT(xn , xn) ⋄ lT(xn+1, xn−1)

= lT(xn+1, xn−1)

≤ lT(xn+1, xn) ⋄ T(xn, xn−1).

If T(xn+1, xn) ≥ T(xn, xn−1) then

T(xn, xn+1) ≤ lT(xn+1, xn) ⋄ lT(xn+1, xn)

≤ (l ⋄ l)T(xn+1, xn)

≤ (k ⋄ l ⋄ l)T(xn+1, xn)

< T(xn+1, xn).

which is contradiction. Hence

T(xn, xn+1) ≤ (l ⋄ l)T(xn−1, xn) = δT(xn−1, xn),

Similarly
T(yn , yn+1) ≤ (l ⋄ l)T(yn−1 , yn) = δT(yn−1, yn),

where δ = l ⋄ l ≤ k ⋄ l ⋄ l < 1. So, if m > n,

T(xn, xm) ≤ T(xn, xn+1) ⋄ T(xn+1, xn+2) ⋄ · · · ⋄ T(xm−1, xm)

≤ δnT(x0, x1) ⋄ δn+1T(x0, x1) ⋄ · · · ⋄ δm−1T(x0, x1)

= δnT(x0, x1)(1 ⋄ δ ⋄ δ2 ⋄ · · · ⋄ δm−n−1)

≤ δnT(x0, x1)(1 ⋄ 1 ⋄ 1 ⋄ · · · ⋄ 1
︸ ︷︷ ︸

m−n

)

≤ δnT(x0, x1)(1 ⋄ 1 ⋄ 1 ⋄ · · · ⋄ 1
︸ ︷︷ ︸

m

)

≤ δnT(x0, x1)m
h.

It is easy to see that for all m > n there exists s > 0 such that m ≤ ns. Thus

T(xn, xm) ≤ δnT(x0, x1)n
hs → 0.

Hence for ε > 0 we can find n0 ∈ N such that for all m > n ≥ n0 we get T(xn, xm) < ε.
Similarly, we can get T(yn, ym) < ε. It follows that {xn} and {yn} are Cauchy and by the
completeness of X, {xn} and {yn} converge to u∗ and v∗ in X respectively. Thus

lim
n→∞

T(xn, u∗) = lim
n→∞

T(yn , v∗) = 0. (11)
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Using the triangular inequality and (10) we get

T(F(u∗, v∗), u∗) ≤ T(F(u∗, v∗), xn+1) ⋄ T(xn+1, u∗)
= T(F(u∗, v∗), F(xn, yn) ⋄ T(xn+1, u∗)
≤ kT(F(u∗ , v∗), xn) ⋄ lT(F(xn , yn), u∗) ⋄ T(xn+1, u∗).

Letting n → ∞, then from (11) we obtain T(F(u∗, v∗), u∗)) ≤ kT(F(u∗, v∗), u∗)). This implies
that T(F(u∗, v∗), u∗)) = 0 and so F(u∗, v∗) = u∗. In the similar manner, we have F(v∗, u∗) = v∗;
i.e., (u∗, v∗) is a coupled fixed point of F. Now, if (u′, v′) is another coupled fixed point of F,
then

T(u′, u∗) = T(F(u′, v′), F(u∗, v∗))
≤ kT(F(u′ , v′), u∗) ⋄ lT(F(u∗, v∗), u′)
= kT(u′, u∗) ⋄ lT(u∗, u′)
= (k ⋄ l)T(u′, u∗)
≤ (k ⋄ l ⋄ l)T(u′, u∗)
< T(u′, u∗).

This implies that T(u′, u∗) = 0 and so u′ = u∗. Similarly v′ = v∗. The proof of Theorem 3 is
completed.

If we set a ⋄ b = a + b and T(x, y) = d(x, y) in Theorem 1 we have

Corollary 1. Let (X, d) be a complete metric space. Suppose that the mapping F : X × X → X
satisfies the following contractive condition for all x, y, u, v ∈ X

d(F(x, y), F(u, v)) ≤ kd(x, u) + ld(y, v),

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.
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Карамi А., Шакерi Р., Седхi С., Алтун I. Результати про пари нерухомих точок на метричних
просторах, визначених бiнарними операцiями // Карпатськi матем. публ. — 2018. — Т.10, №2.
— C. 313–323.

Паралельно до рiзних узагальнень теореми Банаха про нерухому точку в метричних про-
сторах, ця теорiя є застосовною до рiзних типiв просторiв, зокрема, таких як ультраметричнi
простори, нечiткi метричнi простори, рiвномiрнi простори, частково метричнi простори, b-
метричнi простори та iн. У цьому контекстi спочатку ми визначаємо бiнарну нормовану опе-
рацiю на невiд’ємних дiйсних числах i даємо кiлька прикладiв. Тодi ми згадуємо поняття T-
метричного простору та його важливi i фундаментальнi властивостi. T-метричний простiр —
це набiр (X, T, ⋄), де X є непорожньою множиною, ⋄ — бiнарною нормованою операцiєю i T є
деякою T-метрикою на X. Оскiльки нерiвнiсть трикутника для T-метрики залежить вiд бiнар-
ної операцiї, для якої частковим випадком є сума, T-метричний простiр є справжнiм узагаль-
ненням звичайного метричного простору. Головними результатами, якi ми представляємо, є
три теореми для пар нерухомих точок для двохвимiрних вiдображень, що задовольняють де-
якi нерiвностi стиску в повних T-метричних просторах. Легко бачити, що не тiльки iснування,
але i єдинiсть пари нерухомих точок гарантується цими теоремами. Також ми представляємо
деякi придатнi приклади, що iлюструють нашi результати.

Ключовi слова i фрази: бiнарна нормована операцiя, T-метричний простiр, пара нерухомих
точок.
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APPLICATION OF DUALITY THEORY TO SOLVE TWO-CRITERIA PROBLEM OF

LINEAR PROGRAMMING FOR ECOLOGICAL-ECONOMIC SYSTEM

In the paper, we investigate two-criterion optimization problem: maximization of one target

function and minimization of another target function. To solve the offered two-criterion problem,

the method of the main criterion is applied. We consider the problem of production activity of

the ecological-economic system with the maximization of the value of the final product as the first

target function and the minimization of emissions of polluters into the environment as the second

target function. We constructed of two production functions (economic and ecological). To construct

the economic production function, we select maximal producing of the final products in a costing

form as the most essential (main) criterion. Also, there is introduced the appropriate data of the

criterion level total volume of emissions of polluters into the environment. After this two-criteria

problem is reduced to one - criteria problem. For the construction of ecological production func-

tion, the main criterion in the problem of the minimal general volume of emissions of polluters into

the environment is defined. We use a parameter of the criterion level of the second criterion and

obtained one-criterion problem. Therefore, investigation of the appropriate dual problems explic-

itly provides economic and ecological production functions to the deduced one-criterion problems.

These functions in input two-criterion problem give way to optimal manage of ecological-economic

system.

Key words and phrases: Optimal management, two-criterion problem, dual problem, target func-
tion, main criterion method, ecological-economic equilibrium, production function.
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INTRODUCTION

Public production envisages not only a creation of material welfares but also activity con-

nected with a decrease of environmental pollution and restoring of natural resources. High

level of competitiveness in West European industries as well as a new policy of sustainable

development causes a rethinking of management strategy of individual countries.

One of basic tasks, which a modern specialist-economist must be able to solve, is providing

of the state, when economic and ecological requirements are balanced. That means providing

equilibrium state of ecological economy. The ecological economy is a market economy that

studies interaction between ecosystems, social associations and economic systems and also

conditions that provide a steady, inexhausting state and progressive development of all three

systems. The main task of the ecological economy is forming of fundamentally new direc-

tions of transformation of economy based on permanent recreation of innovative processes of

reformation of production and consumption of products. The final goal of ecological econ-

omy is the sequential passing to ecologically more perfect production technologies, types of

УДК 519.863
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products, processes of consumption, economic relations, lifestyle [11]. At consideration of eco-

logical economy activity of production can be presented as an ecological-economic production

function in which, next to economic values ecological factors also have their market estimation.

There is a necessity to build such a production function that has two constituents: economic

and ecological.

ANALYSIS OF THE LAST RESEARCHES AND PUBLICATIONS

A modeling of the ecological-economic systems is the topic of many researches. The ecolo-

gical-economic models by a structure can be divided into balance, optimization and simulation

models. The balance models include the inter-branch Leontief-Ford model of the economy

structure impact on the environment [6], and also its generalizations such as the Ayres-Kneese

model [1] and the Willen model [23]. At the fact, the Willen model is a matrix balance in

the Ayres-Kneese model. Among the simulation models we should mention the Meadows

model [10] and the Forrester model [3]. J.W. Forrester attempted to analyze the interactions

of demographic, industrial and agrarian systems. In the optimization ecological-economic

models, the formation of the optimality criterion is fundamental. Particularly, I. Schimazu [21]

proposed optimality criterion, which corresponds to three stages of society development. H.

E. Dali [2] and T. H. Tietenberg [22] also considered ecological component in their models.

Other scientists [12, 18–20] investigated regulation of the ecological consequences of economic

growth and improvements for environmental management.

Among the Ukrainian scientists we have to mark works of I.Lyashenko. Exactly his school

works actively on the problems of ecological-economic modeling. In spite of the large volume

of publications, plenty of questions and problems for today are not studied enough, and the

problem of the balanced economic, social and ecological development remains unsolved.

Now the problems of ecological-economic equilibrium are actively studied.

In [24, p. 446–455] the problem of manufactures ecologization is analyzed and the expan-

sion of the classical model of interbranch balance and its transformation into the optimization

model by inclusion of restrictions on emissions is carried out. This model is completed by

marginal variables and by corresponding to them coefficients.

In [14, p. 931–938] the research of optimal trajectories of development of the ecological-

economic system is carried out in case of equable division of labour resources between bran-

ches of material and nature protection productions.

In [15, p. 217–221], [16, p. 31] the technological structure of production in the ecological-

economic system with taking into account introduction of technological innovations was re-

searched. In particular, on the basis of distribution of production capacities according to tech-

nologies a corresponding equalization of dynamics, based on the set initial conditions and

limits on economic and ecological resources, was built. The modelling of ecological-economic

interaction in the process of realization of Kyoto protocol decisions which was made is very

important [13].

In [17, p. 331–333] the parametrization of mathematical models of the ecological - eco-

nomic systems is carried out in space of indexes of economic structure of society, prices and

environmental pollution.

In [5, p. 170] the conditions for optimal interaction between basic and auxiliary productions

in the ecological-economic systems have been investigated. The are the basis for prediction the
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of the investment level into auxiliary production, which provides its possible growth.

In [4, p. 184–185] the dynamic models of single sectorial economy taking into account the

utilization processes of the created pollution and socio-economic structurization were devel-

oped.

In [8, p. 149–150] a comparative analysis of the most famous models of ecological-eco-

nomic systems is presented. The approach to modelling of economic systems considering

environmental factors, based on a modified model of Leontief-Ford and the principle of input-

output is proposed.

The research of ecological-economic equilibrium is necessary nowadays, when the envi-

ronmental pollution gained the global character. Using of ecological-economic function is very

important in the researches as such function will reflect modelling of ecological-economic sys-

tem.

The aim of our researches is a construction of optimal functioning model for ecological-

economic system to find a solution of suitable two-criterion problem. The problem has solu-

tion as two ecological-production functions. We simultaneously consider the maximization of

value of the final product and the minimization of emissions of polluters. Since it is difficult to

create an effective production activity that takes into account not only economic benefits but

also an environmental impact, we want to propose an ecological-economic model combining

simultaneously these two factors. It is a necessary way of the problem solving.

THE MAIN RESULTS OF RESEARCHES

Let us consider at the ecological-economic system that includes a basic (material) produc-

tion and auxiliary production (sewage treatment plants). The volumes of productions are

limited to the present resources. The central core of the ecological-economic system is an

inter-branch model of V. Leontief and D. Ford [7, p. 21]. It represents cooperation of indus-

tries of producing of products and industries that destroy harmful wastes. The efficiency of

production activity is described by two criteria (economic and ecological). The first criterion

is maximal producing of the final products in a cost form. The second criterion is minimal

general volume of emissions of polluters into the environment.

We suggest to describe production activity of the ecological-economic system as following

two-criteria problem of linear programming:

f1(x) = c1y1 → max, f2(x) = c2y2 → min,

x1 = A11x1 + A12x2 + y1, x2 = A21x1 + A22x2 − y2,

B1x1 + B2x2 ≤ R, x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0,

(1)

where c1 is a vector of products’ prices, c2 is a vector of equivalence’s coefficients of polluters

(in relation to harm or in relation to the cost of destruction), x1 is a vector of the gross produc-

ing of products, y1 is a vector of producing of final products, x2 is a vector of volumes of the

destroyed polluters, y2 is a vector of volumes of emissions of polluters in the environment, A11

and A12 are technological matrices of direct issue of products, A21 and A22 are technological

matrices of the direct producing of pollutants (in a basic production and sewage treatment

plants accordingly), B1 and B2 are matrices of costs of economic resources for the basic and the

auxiliary productions, R is a vector of present economic resources.
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The necessary and sufficient condition of non-negativity of solutions of the Leontief-Ford

model at the productivity of block matrix A =

(

A11 A12

A21 A22

)

≥ 0 and at the y1
> 0, y2 ≥

0 is the condition x2 = (E2 − A2)
−1

(

A21 (E2 − A2)
−1 y1 − y2

)

≥ 0, where A2 = A22 +

A21 (E1 − A11)
−1 A12, and E1,E2 are diagonal identity matrices [7, p. 27]. Besides from Leon-

tief-Ford inter-branch balance we can get the next x1 = (I1 − A11)
−1 · (A12x2 + y1). It implies

that if x2 ≥ 0 and y1 ≥ 0 then x1 ≥ 0. So, the productivity of ecological-economic system
(

x1 ≥ 0, x2 ≥ 0
)

will be provided when
(

y1 ≥ 0, y2 ≥ 0
)

. Then the two-criterion problem (1)

after the exclusion of variables x1 and x2 can be the following form:

f1(x) = c1y1 → max, f2(x) = c2y2 → min,

x1 = A11x1 + A12x2 + y1,

x2 = (E2 − A2)
−1

(

A21 (E2 − A2)
−1 y1 − y2

)

≥ 0,

D1y1 − D2y2 ≤ R, y1 ≥ 0, y2 ≥ 0,

(2)

where
D1 = B1 (E1 − A1)

−1 + B2 (E2 − A2)
−1 A21 (E1 − A11)

−1 ≥ 0,

D2 = B1 (E1 − A1)
−1 A12 (E2 − A22)

−1 + B2 (E2 − A2)
−1 ≥ 0.

For the investigation of two-criterion problem (2) we apply the method of main criterion [9,

p. 47]. Thus, we build two production functions (economic and ecological).

For the construction of economic production function we will distinguish f1(x) as the main

criterion and we will set admissible value Z ≥ 0 for the criterion level f2(x), that is total

volume of emissions of polluters into the environment.

We obtain the following one-criterion problem:

c1y1 → max,

c2y2 ≤ Z,

(E2 − A2)
−1 A21 (E2 − A2)

−1 y1 − (E2 − A2)
−1 y2 ≥ 0,

D1y1 − D2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

(3)

Let us write the problem (3) in the next way:

c1y1 → max,

c2y2 ≤ Z,

− (E2 − A2)
−1 A21 (E2 − A2)

−1 y1 + (E2 − A2)
−1 y2 ≤ 0,

D1y1 − D2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

(4)

The dual problem to problem (3) has the following form:

pZ + rR → min,

− q (E2 − A22)
−1 A21 (E1 − A11)

−1 y1 + rD1 ≥ c1,

pc2 + q (E2 − A22)
−1 − rD2 ≥ 0,

p ≥ 0, q ≥ 0, r ≥ 0,

(5)
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where p ≥ 0, q ≥ 0, r ≥ 0 are dual variables (the cost of emissions of polluters into the envi-

ronment, the cost of the destroyed polluters, the cost of economic resources).

For problem (5) we will find the basic feasible solution from the auxiliary system of linear

equations:

− q (E2 − A22)
−1 A21 (E1 − A11)

−1 y1 + rD1 − λ = c1,

pc2 + q (E2 − A22)
−1 − rD2 − ω = 0,

(6)

where λ ≥ 0, ω ≥ 0 are slack variables.

We find all basic feasible solutions of system (6), namely (p∗1 , q∗1, r∗1) , (p∗2 , q∗2, r∗2) ,. . . ,

(p∗s , q∗s , r∗s ) . Then we explicitly write down an economic production function

F(Z, R) = c1y1∗ = min(p∗Z + r∗R)=







p∗1 Z + r∗1 R = f 1
1 (x(Z, R)) , x ∈ M1,

. . . . . . . . .

p∗s Z + r∗s R = f s
1 (x(Z, R)) , x ∈ Ms,

where
⋃s

i=1 Mi = M is the domain of definition of the problem (3).

A production function depends on the parameter Z and is presented in dependence of the

chosen set. At the different values of parameter Z we will obtain the different optimal solutions

for the two-criterion problem (1).

For the construction of ecological production function we will define f2(x) as the main

criterion in problem (2) and we will set admissible value Q ≥ 0 of final producing products in

a cost form (the first criterion).

We will get the following one-criterion problem

c2y2 → min,

c1y1 ≥ Q,

(E2 − A2)
−1 A21 (E2 − A2)

−1 y1 − (E2 − A2)
−1 y2 ≥ 0,

D1y1 − D2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

(7)

Let us write problem (7) in the next way:

− c2y2 → max,

− c1y1 ≤ −Q,

− (E2 − A22)
−1 A21 (E1 − A11)

−1 y1 + (E2 − A22)
−1 y2 ≤ 0,

D1y1 − D2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

(8)

The dual problem to problem (8) looks as following:

− uQ + wR → min,

− uc1 − v(E2 − A22)
−1A21(E1 − A11)

−1 + wD1 ≥ 0,

v(E2 − A22)
−1 − wD2 ≥ −c2,

u ≥ 0, v ≥ 0, w ≥ 0,

(9)

where u ≥ 0, v ≥ 0, w ≥ 0 are dual variables (the cost of producing of final products, the cost

of the destroyed polluters, the cost of economic resources).
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For problem (9) we will find the basic feasible solutions from the auxiliary system of linear

equations:

−uc1 − v(E2 − A22)
−1A21(E1 − A11)

−1 + wD1 − µ = 0,

v(E2 − A22)
−1 − wD2 − ν = −c2,

(10)

where µ ≥ 0, ν ≥ 0 are slack variables.

We find all basic feasible solutions of system (10), namely (u∗
1 , v∗1, w∗

1) , (u∗
2, v∗2 , , w∗

2) ,. . . ,
(

u∗
k , v∗k , w∗

k

)

. Then we explicitly write down an economic production function

F(Q, R) = c2y2∗ = min(−u∗Q + w∗R) = max(u∗Q − w∗R) =

=







u∗
1Q − w∗

1 R = f 1
2 (x(Q, R)) , x ∈ M̃1,

. . . . . . . . .

u∗
k Q − w∗

k R = f k
2 (x(Q, R)) , x ∈ M̃k,

where
⋃k

i=1 M̃i = M̃ is the domain of definition of the problem (7).

A production function depends on the parameter Q and in dependence of the chosen set.

At the different values of the parameter Q we will get the different optimal solutions for the

two-criterion problem (1).

Thus, investigation of the proposed two-criterion production activity model of ecological-

economic system (1) is reduced to investigation of a pair of one-criterion problems (3) and

(7). Applying theory of duality we obtained a pair of production functions for the ecological-

economic system in an explicit form:

F(Z, R) = c1y1∗ = min(p∗(Z, R) · Z + r∗(Z, R) · R),

F(Q, R) = c2y2∗ = max(u∗(Q, R) · Q − w∗(Q, R) · R).

Example 1. To demonstrate the construction of a pair of production functions for the ecologi-

cal-economic system, we consider the following example. Let (1) be a given problem, where

A11 = (0, 4), A12 = (0, 2), A21 = (0, 2), A22 = (0, 1), B1 = (2), B2 = (1), c1 = (1), c2 = (2),

R = (R). Then problem (2) looks as following

y1 → max, y2 → min,

x1 = 0, 4x1 + 0, 2x2 + y1,

x2 =
36

125
y1 −

6

5
y2 ≥ 0,

4y1 − 2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

Setting admissible value Z = (Z) ≥ 0 (that is a total volume of emissions of polluters into

the environment) we obtain one-criterion problem (4) in the following form:

y1 → max, y2 ≤ Z,

−
36

125
y1 +

6

5
y2 ≤ 0,

4y1 − 2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

Let us write a dual problem to the problem:

pZ + rR → min,

−
36

125
q + 4r ≥ 1,

p +
6

5
q − 2r ≥ 0,

p ≥ 0, q ≥ 0, r ≥ 0.
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Next, we construct an auxiliary system of linear equations and find the basic feasible solutions

of the problem

−
36

125
q + 4r − λ = 1,

p +
6

5
q − 2t − ω = 0.

To solve the system we examine it in these cases 1) p ≥ 0, q ≥ 0; 2) p ≥ 0, r ≥ 0; 3) p ≥ 0, λ ≥ 0;

4) p ≥ 0, ω ≥ 0; 5) q ≥ 0, r ≥ 0; 6) q ≥ 0, λ ≥ 0; 7) q ≥ 0, ω ≥ 0; 8) r ≥ 0, λ ≥ 0; 9) r ≥ 0, ω ≥ 0;

10) λ ≥ 0, ω ≥ 0. A feasible solution can be obtained in the cases 2 and 5. As consequence,

there is the following economic production function F(Z, R) = min{1
2 Z + 1

4 R; 375
164 R}.

We set Q = Q(R) ≥ 0 as an admissible value of final producing products in a cost form.

Then problem (7) has form

y2 → min, y1 ≥ Q,

36

125
y1 −

6

5
y2 ≥ 0,

4y1 − 2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

It can be rewritten as following

− y2 → max, −y1 ≤ −Q,

−
36

125
y1 +

6

5
y2 ≤ 0,

4y1 − 2y2 ≤ R, y1 ≥ 0, y2 ≥ 0.

Find a dual problem to it

− uQ + wR → min,

− u −
36

125
v + 4w ≥ 0,

6

5
v − 2w ≥ −1,

u ≥ 0, v ≥ 0, w ≥ 0.

To find non-trivial feasible solutions of the system

− u −
36

125
v + 4w − µ = 0,

6

5
v − 2w − ν = −1

we investigate the cases 1) u ≥ 0, v ≥ 0; 2) u ≥ 0, w ≥ 0; 3) u ≥ 0, µ ≥ 0; 4) u ≥ 0, ν ≥ 0;

5) v ≥ 0, w > 0; 6) v ≥ 0; µ ≥ 0; 7) v ≥ 0, ν ≥ 0; 8) w ≥ 0, µ ≥ 0; 9) w ≥ 0, ν ≥ 0; 10)

µ ≥ 0, ν ≥ 0. It is possible to solve the problem only in cases 2 та 8. As a result, we obtain

an ecological production function F = min{−2Q + 1
2 R; 1

2 R}. Thus, there is a constructed pair

of productions functions for the ecological-economic system F(Z, R) = min{1
2 Z + 1

4 R; 375
164 R},

F(Q, R) = min{−2Q + 1
2 R; 1

2 R}.
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Conclusions. The proposed model of the ecological-economic system gives an opportunity

to treat the production activity as the problem of maximization of the final product value and

as the problem of minimization of polluters emissions into the environment. In both cases, the

ecological-economic production functions are constructed. The production functions describe

the optimal performance of the ecological-economic system. Our optimization model allows to

realize the largest volume of final product output, the best distribution of economic resources

and the least amount of polluters emissions into the environment. The proposed approach to

construct a pair of production functions best suits needs and is convenient for usage. Analysis

of this pair of production functions provides acceptance of better and more effective decisions

at the production management.
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Хрущ Л.З. Застосування теорiї двоїстостi до розв’язування двокритерiйної задачi лiнiйного програ-

мування для еколого-економiчної системи // Карпатськi матем. публ. — 2018. — Т.10, №2. — C.

324–332.

У статтi дослiджено оптимiзацiйну задачу з двома критерiями: максимiзацiя однiєї цiльо-

вої функцiї та мiнiмiзацiя iншої цiльової функцiї. Для розв’язання запропонованої двокрите-

рiйної задачi застосовано метод головного критерiю, причому розглянуто задачу виробничої

дiяльностi еколого-економiчної системи, в якiй реалiзується максимiзацiя вартостi кiнцево-

го продукту, як перша цiльова функцiя, i мiнiмiзацiя викидiв забруднювачiв у навколишнє

середовище, як друга цiльова функцiя. Внаслiдок цього здiйснюється побудова двох виро-

бничих функцiй (економiчної та екологiчної). Для побудови економiчної виробничої функцiї

за найбiльш суттєвий (головний) критерiй видiлено максимум випуску кiнцевої продукцiї у

вартiснiй формi й введено параметр iз значенням експертно встановленого ”порогового” (за-

довiльного) рiвня iншого критерiю. Пiсля цього двокритерiальну задачу приведено до одно-

критерiальної задачi. Аналогiчно, для побудови екологiчної виробничої функцiї за найбiльш

суттєвий (головний) критерiй видiлено мiнiмум загального обсягу викидiв забруднювачiв у

навколишнє середовище, введено параметр ”порогового” рiвня другого критерiю i отрима-

но однокритерiальну задачу. Шляхом дослiдження вiдповiдних двоїстих задач до отриманих

однокритерiйних задач у явному виглядi записано економiчну та екологiчну виробничi фун-

кцiї. Такi функцiї вiдносно первинної двокритерiйної задачi дають змогу здiйснювати опти-

мальне управлiння еколого-економiчною системою.

Ключовi слова i фрази: Оптимальне управлiння, двокритерiйна задача, двоїста задача, цiльо-

ва функцiя, метод головного критерiю, еколого-економiчна рiвновага, виробнича функцiя.
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ON FELLER SEMIGROUP GENERATED BY SOLUTION OF NONLOCAL PARABOLIC

CONJUGATION PROBLEM

The paper deals with the problem of construction of Feller semigroup for one-dimensional in-

homogeneous diffusion processes with membrane placed at a point whose position on the real line

is determined by a given function that depends on the time variable. It is assumed that in the inner

points of the half-lines separated by a membrane the desired process must coincide with the ordi-

nary diffusion processes given there, and its behavior on the common boundary of these regions is

determined by the nonlocal conjugation condition of Feller-Wentzell’s type. This problem is often

called a problem of pasting together two diffusion processes on a line.

In order to study the described problem we use analytical methods. Such an approach allows

us to determine the desired operator family using the solution of the corresponding problem of

conjugation for a linear parabolic equation of the second order (the Kolmogorov backward equation)

with discontinuous coefficients. This solution is constructed by the boundary integral equations

method under the assumption that the coefficients of the equation satisfy the Hölder condition

with a nonzero exponent, the initial function is bounded and continuous on the whole real line, and

the parameters characterizing the Feller-Wentzell conjugation condition and the curve defining the

common boundary of the domains, where the equation is given, satisfies the Hölder condition with

exponent greater than 1
2 .

Key words and phrases: Feller semigroup, diffusion process, parabolic problem of conjugation.
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INTRODUCTION

Consider on a plane (s, x) the set

St = {(s, x) : 0 ≤ s < t ≤ T, − ∞ < x < ∞},

and denote by St the closure of St. Suppose that St contains a continuous curve x = h(s), 0 ≤
s ≤ T, which separates St into two domains:

S
(1)
t = {(s, x) : 0 ≤ s < t ≤ T, − ∞ < x < h(s)}

and

S
(2)
t = {(s, x) : 0 ≤ s < t ≤ T, h(s) < x < ∞}.

Put D1s = (−∞, h(s)) and D2s = (h(s), ∞).

УДК 519.21
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Consider in ST two uniformly parabolic operators with bounded coefficients

∂

∂s
+ L

(i)
s ≡ ∂

∂s
+

1

2
bi(s, x)

∂2

∂x2
+ ai(s, x)

∂

∂x
, i = 1, 2. (1)

The problem is to find a solution u(s, x, t) of the equation

∂u

∂s
+ L

(i)
s u = 0, (s, x) ∈ S

(i)
t , i = 1, 2, (2)

which satisfies the ’initial’ condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ R, (3)

two conjugation conditions

u(s, h(s) − 0), t) = u(s, h(s) + 0, t), 0 ≤ s ≤ t ≤ T, (4)

γ(s)u(s, h(s), t) +
∫

D1s∪D2s

[u(s, h(s), t) − u(s, y, t)]µ(s, dy) = 0, 0 ≤ s ≤ t ≤ T, (5)

and two fitting conditions

ϕ(h(t)− 0) = ϕ(h(t) + 0), (6)

γ(t)ϕ(h(t)) +
∫

D1t∪D2t

[ϕ(h(t)) − ϕ(y)]µ(t, dy) = 0. (7)

The initial function ϕ(x) in (3) is assumed to be bounded and continuous on R (in this case

condition (6) holds automatically), the function γ(s) and the Borel measure µ(s, ·) in (5) are

nonnegative and such that γ(s) + µ(s, D1s ∪ D2s) > 0 for all s ∈ [0, T].

The problem (2)–(7) arises, in particular, in the theory of diffusion processes in the construc-

tion of a one-dimensional model of the diffusion phenomenon with a membrane, or, what is

the same, in solving using the analytical methods the so-called problem of pasting together

two diffusion processes on a line [3, 4, 8, 9]. In the considered case, the membrane is supposed

to be moving, and it is placed at the point x = h(s), which is at the same time the point of past-

ing together two given diffusion processes. If we assume that the solution u(s, x, t) ≡ Tst ϕ(x)

of (2)–(7) is a two-parameter Feller semigroup associated with some inhomogeneous Markov

process on a line, then the validity for it of equation (2) implies that this process coincides in

Dis with the diffusion processes given there by the differential operators L
(i)
s , i = 1, 2, and

initial condition (3) is in agreement with the equality Tss = I, where I is the identity opera-

tor. Next, conjugation condition (4) is the reflection of the Feller property of the process and

equality (5) is the Feller-Wentzell conjugation condition which has two terms. The local term

is responsible for disappearance of the diffusing particle and the nonlocal one for the jump-

like nature of the exit of process from the boundary of the region. Recall that in the general

case the Feller-Wentzell conjugation condition contains also the derivatives of the unknown

function in both variables, which correspond to the properties of the partial reflection at the

common boundary of the regions and the phenomenon of ’viscosity’ [1, 6, 11].

The classical solvability of problem (2)–(7) is proved under the assumption that the coeffi-

cients of equation (2) satisfy the Hölder condition with a nonzero exponent, the initial function
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ϕ in (3) is bounded and continuous on the whole real line, and the parameters γ, µ characteriz-

ing the Feller-Wentzell conjugation condition (5) and the curve x = h(s) defining the common

boundary of the domains S
(1)
t and S

(2)
t satisfy the Hölder condition with exponent greater than

1
2 . In the investigations we use the fundamental solutions of the parabolic equations and the

heat potentials generated by them [2, 5, 8]. As a result of their application, problem (2)–(7)

is reduced to a system of two singular Volterra integral equations of the second kind which

solution is obtained by the method of successive approximations.

Note that a similar problem was considered earlier in [9] for the case where the membrane

is placed at a fixed point of the line. We also mention works [7, 10], which present the results

concerning the construction of diffusion processes with jumps at the points of the boundary

of the region by the methods of stochastic [7] and functional analysis [10].

Assume that the following conditions I–V are satisfied.

I. Equation (2) is a parabolic equation in the domain ST, i.e., there exist positive constants

b and B such that

0 < b ≤ bi(s, x) ≤ B < ∞, i = 1, 2, (s, x) ∈ ST.

II. The coefficients bi(s, x) and ai(s, x), i = 1, 2, are continuous in (s, x) and belong to the

Hölder class H
α
2 ,α(ST), 0 < α < 1 (to recall the definitions of Hölder classes see [5]).

III. The initial function ϕ(x) belongs to the space of bounded continuous functions, which

we will denote by Cb(R). The norm in this space is defined by the equality ‖ϕ‖ =

sup
x∈R

|ϕ(x)|.

IV. In condition (5) the measure µ(s, ·) is nonnegative, µ(s, D1s ∪ D2s) = 1, s ∈ [0, T] and for

all f ∈ Cb(R) the integrals

G
(i)
f (s) =

∫

Dis

f (y)µ(s, dy), i = 1, 2,

belong to the Hölder class H
1+α

2 ([0, T]).

V. The functions γ(s) and h(s) are continuous and belong to H
1+α

2 ([0, T]).

In view of IV condition (5) can be rewritten as follows

(γ(s) + 1)u(s, h(s), t) =
∫

D1s∪D2s

u(s, y, t)µ(s, dy). (8)

Conditions I, II provide the existence of a fundamental solution for each of the equations

in (2) (see [5,8]), i.e., the existence of a function Gi(s, x, t, y), i = 1, 2 (0 ≤ s < t ≤ T; x, y ∈ R),

which satisfies equation (2) for fixed t ∈ (0, T], y ∈ R as a function of (s, x) ∈ [0, t)× R and

has the form

Gi(s, x, t, y) = Zi0(s, x, t, y) + Zi1(s, x, t, y), i = 1, 2, (9)
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where

Zi0(s, x, t, y) = [2πbi(t, y)(t − s)]−
1
2 exp

{
− (y − x)2

2bi(t, y)(t − s)

}
, (10)

Zi1(s, x, t, y) =

t∫

s

dτ
∫

R

Zi0(s, x, τ, z)Qi(τ, z, t, y)dz, (11)

and the function Qi(s, x, t, y) is a solution of some singular Volterra integral equation of the

second kind.

Note that

∣∣Dr
sD

p
x Zi0(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p

2 exp

{
−c

(y − x)2

t − s

}
, (12)

∣∣Dr
sD

p
x Zi1(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p−α

2 exp

{
−c

(y − x)2

t − s

}
, (13)

where i = 1, 2, 0 ≤ s < t ≤ T, x, y ∈ R, C i c are positive constants; in the sequel, various pos-

itive constants will be denoted by symbols C or c; r and p are nonnegative integers satisfying

2r + p ≤ 2, Dr
s is the partial derivative with respect to s of order r, D

p
x is the partial derivative

with respect to x of order p.

Given a fundamental solution Gi(s, x, t, y), i = 1, 2, and a function h(s), we define the

integrals

ui0(s, x, t) =
∫

R

Gi(s, x, t, y)ϕ(y)dy, i = 1, 2, (14)

ui1(s, x, t) =

t∫

s

Gi(s, x, τ, h(τ))Vi(τ, t)dτ, i = 1, 2. (15)

Here ϕ and Vi, i = 1, 2 are given functions, 0 ≤ s < t ≤ T, x ∈ R. In the theory of parabolic

equations the function ui0(s, x, t) is called the Poisson potential, and the function ui1(s, x, t) the

parabolic simple-layer potential.

We recall some properties of functions ui0(s, x, t) and ui1(s, x, t), i = 1, 2. Let ϕ ∈ Cb(R).

Then from the properties of the fundamental solution Gi(s, x, t, y), i = 1, 2, it follows that the

potential ui0 exists and satisfies equation (2) and the ’initial’ condition

lim
s↑t

ui0(s, x, t) = ϕ(x), x ∈ R, i = 1, 2, (16)

in the domain (s, x) ∈ [0, t)× R for a fixed t ∈ (0, T] as a function of arguments (s, x).

In addition, for the function ui0(s, x, t), i = 1, 2, the inequality

∣∣Dr
s D

p
xui0(s, x, t)

∣∣ ≤ C(t − s)−
2r+p

2 ‖ϕ‖, (17)

(where r and p are positive integers for which 2r + p ≤ 2) holds in each of the domains

0 ≤ s < t ≤ T, x ∈ R.

Consider integral (15). If we assume that the density V(τ, t) is continuous for τ ∈ [s, t) and

has a weak singularity with exponent ≥ −1
2 when τ = t, then the function ui1(s, x, t), i = 1, 2,
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is bounded and continuous in 0 ≤ s ≤ t ≤ T, x ∈ R, it satisfies equation (2) in the domain

(s, x) ∈ [0, t)× (R \ h(s)) and the initial condition

lim
s↑t

ui1(s, x, t) = 0, x ∈ R, i = 1, 2. (18)

An important property of the function ui1 is reflected in the so-called theorem on the jump

of the co-normal derivative of the parabolic simple-layer potential (see, for instance, [5, 8]). In

the present paper this assertion is not used, and therefore we do not provide it.

1 EXISTENCE AND UNIQUENESS

We find a solution of (2)–(7) in the form of sum of potentials ui0 and ui1 with unknown

densities Vi(s, t), i = 1, 2:

u(s, x, t) =
∫

R

Gi(s, x, t, y)ϕ(y)dy

+

t∫

s

Gi(s, x, τ, h(τ))Vi(τ, t)dτ, (s, x) ∈ S
(i)
t , i = 1, 2. (19)

Using conjugation conditions (4), (5) and (8), we get the following system of Volterra inte-

gral equations of the first kind for Vi(s, t):

(γ(s) + 1)

t∫

s

Gi(s, h(s), τ, h(τ))Vi (τ, t)dτ

−
2

∑
j=1

t∫

s

Vj(τ, t)dτ
∫

Djs

Gj(s, y, τ, h(τ))µ(s, dy) = Φi(s, t), i = 1, 2, (20)

where

Φi(s, t) =
2

∑
j=1

∫

Djs

uj0(s, y, t)µ(s, dy) − (γ(s) + 1)ui0(s, h(s), t), i = 1, 2.

Consider the function Φi(s, t) in (20). Let us prove that

lim
s↑t

Φi(s, t) = 0, i = 1, 2; (21)

|Φi(s, t)− Φi(s̃, t)| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , s̃ < s. (22)

Assertion (21) can be easily verified using property (16) of the Poisson potential ui0 and

fitting condition (7):

lim
s↑t

Φi(s, t) =
2

∑
j=1

∫

Djt

ϕ(y)µ(t, dy) − (γ(t) + 1)ϕ(h(t))

=
∫

D1t∪D2t

[ϕ(y)− ϕ(h(t))]µ(t, dy) − γ(t)ϕ(h(t)) = 0.
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To prove inequality (22), we write the difference Φi(s, t) − Φi(s̃, t) as a sum I1 + I2 + I3,

where

I1 =
2

∑
j=1

∫

Djs

[uj0(s, y, t)− uj0(s̃, y, t)]µ(s, dy),

I2 = (γ(s̃) + 1)ui0(s̃, h(s̃), t)− (γ(s) + 1)ui0(s, h(s), t),

I3 =
2

∑
j=1

( ∫

Djs

uj0(s̃, y, t)µ(s, dy)−
∫

Djs̃

uj0(s̃, y, t)µ(s̃, dy)

)
,

and study separately each term of this sum.

Since for s̃ < s

|uj0(s, y, t)− uj0(s̃, y, t)|
= |uj0(s, y, t)− uj0(s̃, y, t)| 1+α

2 |uj0(s, y, t)− uj0(s̃, y, t)| 1−α
2

≤
∣∣∣∣∣
∂uj0(ŝ, y, t)

∂ŝ

∣∣∣∣
ŝ=s̃+θ(s−s̃)

· (s − s̃)

∣∣∣∣∣

1+α
2

(|uj0(s, y, t)|+ |uj0(s̃, y, t)|) 1−α
2

≤ C‖ϕ‖
[
(t − s̃ − θ(s − s̃))−1(s − s̃)

] 1+α
2 ≤ C‖ϕ‖

[
((t − s)

+ (s − s̃)(1 − θ))−1(s − s̃)
] 1+α

2 ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 < θ < 1,

inequality (22) holds for the term I1. Recalling that the functions γ and h are Hölder continuous

(see assumption V) and using previous considerations, we arrive at inequality (22) for I2. For

I3 we have the estimate

|I3| ≤ C‖ϕ‖(s − s̃)
1+α

2 ,

which is an obvious consequence of assumption IV. Thus,

|I1 + I2 + I3| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , s̃ < s,

what had to be proved.

In order to regularize system of Volterra integral equations of the first kind (20), we apply

to both sides of each of its equations the integro-differential operator E , which acts by the rule

E(s, t)Φi =

√
2

π

∂

∂s

t∫

s

(ρ − s)−
1
2 Φi(ρ, t)dρ, 0 ≤ s < t ≤ T, i = 1, 2. (23)

Consider first the action of the operator E on the right hand side of the i-th equation of

system (20), i = 1, 2.

In view of (21) and (22), for the function Φ̂i(s, t) ≡ E(s, t)Φi we easily get the following

formula:

Φ̂i(s, t) =
1√
2π

t∫

s

(ρ − s)−
3
2 [Φi(ρ, t)− Φi(s, t)]dρ

−
√

2

π
(t − s)−

1
2 Φi(s, t), i = 1, 2. (24)
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Besides, for the function Φ̂i(s, t) in each domain of the form 0 ≤ s < t ≤ T the inequality

|Φ̂i(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 (25)

holds.

Now, we apply the operator E to the left hand side of the i-th equation of system (20),

i = 1, 2. As a result, we obtain the expression, which after changing the order of integration

and using formulas (9), (10) can be represented in the form

− Vi(s, t)√
bi(s, h(s))

+

√
2

π

∂

∂s

2

∑
j=1

t∫

s

Nij(s, τ)Vj(τ, t)dτ, i = 1, 2, (26)

where

Nii(s, τ) =

τ∫

s

(ρ − s)−
1
2

[
(Zi0(ρ, h(ρ), τ, h(τ)) − Zi0(ρ, 0, τ, 0)) + γ(ρ)Gi(ρ, h(ρ), τ, h(τ))

+ Zi1(ρ, h(ρ), τ, h(τ)) −
∫

Diρ

Gi(ρ, y, τ, h(τ))µ(ρ, dy)

]
dρ, i = j,

Nij(s, τ) = −
τ∫

s

(ρ − s)−
1
2 dρ

∫

Djρ

Gj(ρ, y, τ, h(τ))µ(ρ, dy), i 6= j.

To simplify the derivatives of integrals depending on parameters in expression (26), we

show that

lim
s↑τ

Nij(s, τ) = 0. (27)

In proving this fact, a certain complexity is only a study of the function

Lj(s, τ) ≡
τ∫

s

(ρ − s)−
1
2 dρ

∫

Djρ

Zj0(ρ, y, τ, h(τ))µ(ρ, dy),

which appears in the expression for Nij(s, τ) immediately after we rewrite Gj according to

formula (9). For all other terms in formula for Nij(s, τ) the relation (27) is easily established by

using the inequalities (12), (13) and condition V.

Write the function Lj(s, τ) as follows

Lj(s, τ) = Lj1(s, τ) + Lj2(s, τ), (28)
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where

Lj1(s, τ) =
1√

2πbj(τ, h(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

×
[ ∫

Djρ

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(ρ, dy)

−
∫

Djs

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(s, dy)

]
,

Lj2(s, τ) =
1√

2πbj(τ, h(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

×
∫

Djs

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(s, dy).

Since the functions fτ,ρ(y) = exp
{

(y−h(τ))2

2bj(τ,h(τ))(τ−ρ)

}
belong to Cb(R) for all 0 ≤ s < ρ < τ <

t ≤ T and are bounded by 1 on this set, and since condition IV holds, we have

|Lj1(s, τ)| ≤ C(τ − s)
1+α

2 , j = 1, 2. (29)

Let us study the function Lj2(s, τ). Write it in the form

Lj2(s, τ) =
1√

2πbj(τ, h(τ))

∫

Djs

[
exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)

}

− exp

{
− (y − h(s))2

2bj(τ, h(τ))(τ − s)

}]
Rj(s, τ, y)µ(s, dy)

+
1√

2πbj(τ, h(τ))

∫

Djs

exp

{
− (y − h(s))2

2bj(τ, h(τ))(τ − s)

}
Rj(s, τ, y)µ(s, dy), (30)

where Rj(s, τ, y) denotes the integral

Rj(s, τ, y) =

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)
· ρ − s

τ − ρ

}
dρ,

which after the substitution z = ρ−s
τ−ρ reduces to

Rj(s, τ, y) =

∞∫

0

z−
1
2 (1 + z)−1 exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)
· z

}
dz,

and thus, satisfies the inequality

|Rj(s, τ, y)| ≤ C. (31)
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Denote by L
(1)
j2 the first term in the right hand side of equality (30) and by L

(2)
j2 the second

one.

If we express, using the Lagrange formula, the difference of exponents in the square brack-

ets of the expression for L
(1)
j2 through the value of its derivative at the intermediate point

x = y − h(s) + θ(h(s) − h(τ)), and then take this derivative, we get

L
(1)
j2 (s, τ) =

1√
2πbj(τ, h(τ))

∫

Djs

x

bj(τ, h(τ))(τ − s)

× exp

{
− x2

2bj(τ, h(τ))(τ − s)

}
(h(τ)− h(s))Rj(s, τ, y)µ(s, dy).

From this equality and estimate (31) and condition V it follows that

|Lj1(s, τ)| ≤ C(τ − s)
α
2 . (32)

Then (31) implies

|Lj2(s, τ)| ≤ C

(
µ
(

s, Dδ
js

)
+ exp

{
− δ2

2B(τ − s)

})
, (33)

where Dδ
js = {y ∈ Djs : |y − h(s)| < δ}, δ is any positive number, B is the constant from I.

Combining (28)–(30), (32), (33), we conclude that

lim
s↑τ

Lj(s, τ) = 0.

This completes the proof of (27).

With relation (27) in mind, we put the derivative under the integral sign in expression (26)

and then equate this expression to (24). After elementary simplifications, we get the system of

Volterra integral equations of the second kind, which is equivalent to (20)

Vi(s, t) =
2

∑
j=1

t∫

s

Kij(s, τ)Vj(τ, t)dτ + Ψi(s, t), i = 1, 2, (34)

where

Ψi(s, t) = −
√

bi(s, h(s))Φ̂i(s, t),

Kij(s, τ) =

√
2

π

√
bi(s, h(s)) · ∂

∂s
Nij(s, τ).

The function Ψi in (34) satisfies inequality (25), but kernels Kij(s, τ) do not have the inte-

grable singularity. For Kij(s, τ) we can only get the estimate

Kij(s, τ) ≤ C(τ − s)−1, 0 ≤ s < τ < t ≤ T. (35)

Estimate (35) is caused by the integral

∫

Dδ
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy), (36)
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which is in the expression for the derivative of Lj

∂

∂s
Lj(s, τ) =

τ∫

s

(ρ − s)−
3
2

[ ∫

Djρ

Zj0(ρ, y, τ, h(τ))µ(ρ, dy)

−
∫

Djs

Zj0(ρ, y, τ, h(τ))µ(s, dy)

]
dρ

−

√
πbj(τ, h(τ))

2

( ∫

D
(δ)
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy)

+
∫

R\D
(δ)
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy)

)
.

All other components of the expression for Kij(s, τ) admit inequalities the right hand sides of

which have the form C(δ)(τ − s)−1+ α
2 , where C(δ) is a positive constant depending on δ.

Despite the fact that the kernels Kij(s, τ) do not have an integrable singularity, a solution

of system of equations (34) exists and can be found by the ordinary method of successive

approximations:

Vi(s, t) =
∞

∑
n=0

V
(n)
i (s, t), 0 ≤ s < t ≤ T, i = 1, 2, (37)

where

V
(0)
i (s, t) = Ψi(s, t),

V
(n)
i (s, t) =

2

∑
j=1

t∫

s

Kij(s, τ)V
(n−1)
i (τ, t)dτ, n = 1, 2, . . .

The convergence of series (37) is the consequence of the following inequality, which is

proved by induction according to the scheme applied in [9] in the study of system of equa-

tions (34) for the case when h ≡ 0:

∣∣∣V(n)
i (s, t)

∣∣∣ ≤ C‖ϕ‖(t − s)−
1
2

n

∑
k=0

Ck
na(n−k)(m(δ))k , n = 0, 1, . . . , (38)

where

a(k) =

(
2c(δ)T

α
2 Γ

(
α
2

))k
Γ
(

1
2

)

Γ
(

1+kα
2

) , k = 0, 1, . . . , n,

m(δ) = max
s∈[0,T]

µ(s, Dδ
1s ∪ Dδ

2s) < 1 (for sufficiently small δ).

From inequality (38) it also follows that the function Vi(s, t), i = 1, 2, admits the estimate

|Vi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 , 0 ≤ s < t ≤ T. (39)
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Thus, we have constructed the solution u(s, x, t) of problem (2)–(7) of form (19), (37), which,

in view of estimates (12), (13), (17), (39), belongs to the class C1,2(S
(1)
t ∪ S

(2)
t ) ∩ C(St) and satis-

fies the inequality

|u(s, x, t)| ≤ C‖ϕ‖(t − s)−
1
2 . (40)

The assertion on the uniqueness of the constructed solution of problem (2)–(7) follows from

the maximum principle [5].

The obtained result allows us to state the following theorem:

Theorem 1. Let the conditions I–V hold. Then problem (2)–(7) has a unique solution belonging

to C1,2(S
(1)
t ∪ S

(2)
t ) ∩ C(St). Besides, this solution admits representation (19), (37) and estimate

(40).

2 CONSTRUCTION OF FELLER SEMIGROUP

Denote by C0(R) the subspace of Cb(R), which consists of all functions ϕ ∈ Cb(R) for

which the condition (7) holds. Since the subspace C0(R) is closed in Cb(R), it is a Banach

space.

We introduce the two-parameter family of linear operators Tst : C0(R) → C0(R), 0 ≤ s <

t ≤ T, by the following rule:

Tst ϕ(x) = u(s, x, t, ϕ), (41)

where u(s, x, t, ϕ) is a solution of (2)–(7) with the function ϕ in (3).

Note that the operators Tst have the following properties in C0(R):

a) if a sequence of functions ϕn ∈ C0(R) is such that sup
n

‖ϕn‖ < ∞ and lim
n→∞

ϕn(x) = ϕ(x)

for all x ∈ R, then lim
n→∞

Tst ϕn(x) = Tst ϕ(x) for all 0 ≤ s < t ≤ T, x ∈ R;

b) the operators Tst are positivity preserving (0 ≤ s < t ≤ T), i.e, Tst ϕ ≥ 0 for every

ϕ ∈ C0(R) such that ϕ ≥ 0;

c) the operators Tst are contractive (0 ≤ s < t ≤ T), i.e., they do not increase the norm of

the element;

d) Tst = TsτTτt, 0 ≤ s < τ < t ≤ T (the semigroup propery).

The proof of property a) is based on well known assertions of calculus on passage of the

limit under the summation and integral signs (here this concerns series (37) and integrals on

the right hand side of equality (19)). This property allows us to prove the next properties of

the operator family Tst, without loss of generality, under the assumption that the function ϕ

has a compact support.

Let us prove property b). Let ϕ ∈ C0(R) be a nonnegative function with a compact support.

Denote by m the minimum of Tst ϕ(x) in (s, x) ∈ St. If we assume that m < 0, then from the

minimum principle [5] it follows that the value m is attained only when s ∈ (0, t) and x = h(s).

Fix s0 ∈ (0, t) for which Ts0t ϕ(h(s0)) = m. Then

γ(s0)Ts0t ϕ(h(s0)) +
∫

D1s0
∪D2s0

[Ts0t ϕ(h(s0))− Ts0t ϕ(y)]µ(s0 , dy) < 0,
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which contradicts (5). The contradiction we arrived at indicates that m ≥ 0, what had to be

proved.

The proof of property c) is similar to the proof of b).

The semigroup property of operators Tst is a consequence of the assertion on the

uniqueness of the solution of problem (2)–(7). Indeed, to find u(s, x, t) = Tst ϕ(x), provided

lims↑t u(s, x, t) = ϕ(x), one can solve the problem first in the time interval [τ, t], and then solve

it in the time interval [s, τ] with that ’initial’ function u(τ, x, t) = Tτt ϕ(x), which was obtained;

in other words, Tst ϕ(x) = Tsτ(Tτt ϕ)(x), ϕ ∈ C0(R), or Tst = TsτTτt.

Properties a)–d) of operators Tst imply the following assertion.

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter family of operators

Tst, 0 ≤ s < t ≤ T, defined by (41), describes the inhomogeneous Feller process on the line R,

which coincides in D1s and D2s with given diffusion processes generated by operators L
(1)
s and

L
(2)
s respectively, and its behavior at point x = h(s) is determined by conjugation condition (5).
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Копитко Б.I., Шевчук Р.В. Про напiвгрупу Феллера, породжену розв’язком нелокальної параболiчної

задачi спряження // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 333–345.

У статтi розглядається задача побудови напiвгрупи Феллера для одновимiрного неоднорi-

дного дифузiйного процесу з мембраною, розташованою в точцi, положення якої на числовiй

прямiй визначається за допомогою заданої функцiї, що залежить вiд часової змiнної. При цьо-

му припускається, що у внутрiшнiх точках пiвпрямих, роздiлених мiж собою мембраною, шу-

каний процес має збiгатися iз заданими там звичайними дифузiйними процесами, а його по-

ведiнка на спiльнiй межi цих областей визначається заданою нелокальною умовою спряження

типу Феллера-Вентцеля. Дану задачу ще називають задачею про склеювання двох дифузiйних

процесiв на прямiй.

З метою вивчення сформульованої проблеми в роботi застосовано аналiтичнi методи. Та-

кий пiдхiд дозволяє визначити шукану сiм’ю операторiв з допомогою розв’язку вiдповiдної за-

дачi спряження для лiнiйного параболiчного рiвняння другого порядку (оберненого рiвняння

Колмогорова) з розривними коефiцiєнтами. Цей розв’язок побудовано методом граничних iн-

тегральних рiвнянь за припущення, що коефiцiєнти рiвняння задовольняють умову Гельдера

з ненульовим показником, початкова функцiя є обмеженою i неперервною на всiй числовiй

прямiй, а параметри, якi характеризують умову спряження Феллера-Вентцеля та крива, що

визначає спiльну межу областей, де задане рiвняння, задовольняють умову Гельдера з пока-

зником бiльшим, нiж 1
2 .

Ключовi слова i фрази: напiвгрупа Феллера, дифузiйний процес, параболiчна задача спря-

ження.
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ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE RANDOM

PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an α-

stable random process (with 1 < α < 2) and some processes related to it are investigated. We

consider an α-stable process is killed with some intensity on the hyperplane and a pseudo-process

that is formed from the α-stable process using its perturbation by a fractional derivative operator

with a multiplier like a delta-function on the hyperplane. In each of these cases, the limit distri-

bution of the crossing number of the hyperplane by some discret approximation of the process is

related to the distribution of its local time on this hyperplane. Integral equations for characteristic

functions of these distributions are constructed. Unique bounded solutions of these equations can

be constructed by the method of successive approximations.

Key words and phrases: α-stable process, local time, pseudo-process.
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INTRODUCTION

Let (x(t),Mt, Px) denote a standard Markov process on R
d (d ≥ 1). Consider a fixed

hyperplane S = {x ∈ R
d : (x, ν) = r}, in R

d and two open sets

D− = {x ∈ R
d : (x, ν) < r}, D+ = {x ∈ R

d : (x, ν) > r},

where ν ∈ R
d is a given unit vector and r ∈ R is a given constant.

Our goal is to describe a changes number of the sets D− and D+ before a fixed time t > 0

by the trajectories of the process (x(t))t≥0 started at fixed point x ∈ R
d.

Consider for m, n ∈ N the random variable

ξ
(n)
m =

m

∑
k=1

v

(

x

(

k − 1

n

)

, x

(

k

n

))

,

where v(x, y) = 1ID−(x)1ID+(y) + 1ID+(x)1ID−(y).

The variable ξ
(n)
[nt]

equals to the number of crossings of the hyperplane S by the ordered set

of points in R
d: x(0), x(1/n),. . . ,x([nt]/n).

We are going to find out a sequence of normalizing multipliers {cn : n ≥ 1} such that the

limit distribution of the sequence {cnξ
(n)
[nt]

: n ≥ 1} exists and to describe it. It is obvious that

cn → 0, as n → ∞.

The limit theorems of this type were initiated by I. I. Gikhman in connection with some

problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional

Markov chains approaching a diffusion process with smooth local characteristics (see [1, 2]).

УДК 519.21
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1 SOME AUXILIARY RESULTS

We will use the following corollary of one A. V. Skorokhod’s theorem (see [3, Th. 1]).

Lemma 1. A limit distribution of the sequence of random variables cnξ
(n)
[nt]

exists if and only if

a limit distribution exists for the variables cnη
(n)
[nt]

, where

η
(n)
m =

m

∑
k=1

vn

(

x

(

k

n

))

, vn(x) = Exv

(

x(0), x

(

1

n

))

,

and these limit distributions coincide, if only they exist.

So, we will consider the random variables cnη
(n)
[nt]

.

For any fixed t > 0, x ∈ R
d, n ∈ N we consider the characteristic function

un(t, x, θ) = Ex exp
{

iθcnη
(n)
[nt]

}

, θ ∈ R,

of the random variable cnη
(n)
[nt]

.

The next equation for the function un(t, x, θ)

un(t, x, θ) = 1 + n
∫ [nt]/n

0
dτ

∫

Rd

(

1 − e−iθcnvn(y)
)

un(τ, y, θ)g

(

[nt]− [nτ]

n
, x, y

)

dy (1)

follows from the identity exp {∑
m
k=1 ak} = 1 + ∑

m
k=1 (1 − e−ak) exp

{

∑
m
j=k aj

}

, that holds true

for each set of complex numbers a1, a2, . . . , am and each natural number m. Here the function

(g(t, x, y))t>0,x∈Rd ,y∈Rd denotes the transition probability density of the process (x(t))t≥0.

If the transition probability density of the process (x(t))t≥0 is given by the equality

g(t, x, y) = (2π)−d
∫

Rd
exp{i(λ, y − x)− ct|λ|α} dλ, t > 0, x ∈ R

d, y ∈ R
d,

for fixed parameters c > 0 and α ∈ (1, 2], then the process (x(t))t≥0 is called rotationally

invariant α-stable random process. If α = 2, this process is the Brownian motion. In this case,

our problems have been addressed in many publications (see, for example, [4, 5] and others).

Therefore, we will not consider this case. So, we will further assume that 1 < α < 2, although

most of our results remain correct also for α = 2.

Consider the function f (t, x) =
∫ t

0 dτ
∫

S g(τ, x, y) dσy . It is a W-function for the process

(x(t))t≥0 satisfying the inequality f (t, x) ≤ N α
α−1 t1−1/α. So, there exists a W-functional (lt)t≥0

of the process (x(t))t≥0 such that Exlt = f (t, x) (see [8, Th. 6.6]). This functional is called the

local time on S for the process (x(t))t≥0.

Using the following representation of the functional (lt)t≥0:

lt = lim
h→0+

∫ t

0
dτ

∫

S
g(h, x(τ), y) dσy in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random

value lt, that is v(t, x, θ) = Ex exp{iθlt}, satisfies the following equation

v(t, x, θ) = 1 + iθ
∫ t

0
dτ

∫

S
g(t − τ, x, y)v(τ, y, θ) dσy . (2)



348 OSYPCHUK M.M.

2 THE MAIN RESULTS

The first statement concerns to the rotationally invariant α-stable random process.

Theorem 1. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt]

for fixed t > 0 and x ∈ R
d has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α). This distribution coincides with the distribution of the multiplied

by κ local time on the hyperplane S of the process (x(t))t≥0.

Next, let a continuous bounded function (r(x))x∈S with non-negative values be given. Con-

sider the function (G(t, x, y))t>0,x∈Rd ,y∈Rd which is a solution of to each one of the following

equations

G(t, x, y) = g(t, x, y)−
∫ t

0
dτ

∫

S
g(t − τ, x, z)G(τ, z, y)r(z) dσz ,

G(t, x, y) = g(t, x, y)−
∫ t

0
dτ

∫

S
G(t − τ, x, z)g(τ, z, y)r(z) dσz .

The function G is the transition probability density of the process (x(t))t≥0 killed on the hy-

perplane S at some stopping time ζ (see [6]). The function (r(x))x∈S is the killing intensity of

the process (x(t))t≥0. It is clear that

Px({ζ > t}) =
∫

Rd
G(t, x, y) dy = 1 −

∫ t

0
dτ

∫

S
G(τ, x, y)r(y) dσy .

Theorem 2. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt]

for fixed t > 0 and x ∈ R
d has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
G(t − τ, x, y)u(τ, y, θ) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α). It is the distribution of the multiplied by κ local time on the

hyperplane S for the process (x(t))t≥0 killed at the stopping time ζ.

And the last, let a continuous bounded function (q(x))x∈S be given. Introduce an operator

Bν determined by its symbol (i|ξ|α−2(ξ, 2cν))ξ∈Rd . Define the function (G(t, x, y))t>0,x∈Rd ,y∈Rd

by the following formula

G(t, x, y) = g(t, x, y) +
∫ t

0
dτ

∫

S
g(t − τ, x, z)Bνg(τ, ·, y)(z)q(z) dσz .

This function is “a transition probability density” of some pseudo-process with a mem-

brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in the

following form: A + q(x)δS(x)Bν, where A is the generator of the process (x(t))t≥0 (that is a

pseudo-differential operator whose symbol is given by the function (−c|ξ|α)ξ∈Rd ).
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Consider the function (u(t, x, θ))t≥0,x∈Rd ,θ∈R
defined by the equality

u(t, x, θ) = lim
n→∞

Êx exp
{

iθn−1+1/αη
(n)
[nt]

}

de f
=

lim
n→∞

∫

Rd
. . .

∫

Rd

[nt]

∏
k=1

exp
{

iθn−1+1/αv̂n(xk)
}

G

(

1

n
, xk−1, xk

)

dxk,

where x0 = x and v̂n(x) = Êxv
(

x(0), x
(

1
n

))

de f
=

∫

Rd v(x, y)G
(

1
n , x, y

)

dy. This function is

“the characteristic function” of the the random variables sequence n−1+1/αξ
(n)
[nt]

limit “distribu-

tion” for fixed t > 0 and x ∈ R
d.

Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary

random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t, x, θ))θ∈R for fixed t > 0 and x ∈ R
d is the unique bounded

solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ)(1 − q2(y)) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α).

3 PROOF OF THE MAIN RESULTS

The proofs of these results are executed according to the same scheme. Consider the first

result (i.e. it is for the rotationally invariant α-stable random process).

First of all, one can prove two technical lemmas. The first one prompts us that we must

choose cn = n−1+1/α. And the second one allows to pass from equation (1) to some simpler

one.

Lemma 2. Let the real-valued function (ϕ(x))x∈Rd be such that sup
ρ∈R

∫

Sρ
|ϕ(x)| dσ < ∞, where

Sρ = {x ∈ R
d : (x, ν) = ρ}, and there exist the nontangentional limits ϕ(x−) and ϕ(x+) from

the side of D− and D+ in each point x ∈ S.

Then the following relation (with κ = E0|(x(1), ν)| = 2c1/α

π Γ(1 − 1/α))

lim
n→∞

n1/α
∫

Rd
vn(x)ϕ(x) dx = κ

∫

S

ϕ(y−) + ϕ(y+)

2
dσ

holds true. In addition, the inequality
∣

∣n1/α
∫

Rd vn(x)ϕ(x) dx
∣

∣ ≤ κ

2 sup
ρ∈R

∫

Sρ
|ϕ(x)| dσ is fulfilled.

Let a measurable function (ψ(t, x))t≥0,x∈Rd be such that sup
t∈[0,T],x∈Rd

|ψ(t, x)| < ∞ for any

T > 0. Consider its transformation Ψn for n ∈ N given by

Ψn(t, x) = n1/α
∫ t

0
dτ

∫

Rd
vn(y)ψ(τ, y)g(t − τ, x, y) dy, t > 0, x ∈ R

d.
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Lemma 3. For given numbers ε > 0, L > 0, T > 0, there exists a number δ > 0 such that the

inequality |Ψn(t′, x′)− Ψn(t, x)| < ε is held for all t ∈ [0, T], t′ ∈ [0, T], x ∈ R
d, x′ ∈ R

d, n ∈ N

and all measurable functions ψ with the property sup
t∈[0,T],x∈Rd

|ψ(t, x)| ≤ L if only the inequality

|t − t′|+ |x − x′| < δ is fulfilled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the character-

istic function un(t, x, θ) of n−1+1/αη
(n)
[nt]

and solutions of the following equation

u∗
n(t, x, θ) = 1 + iθn1/α

∫ t

0
dτ

∫

Rd
vn(y)u

∗
n(τ, y, θ)g(t − τ, x, y) dy

satisfy the relation limn→∞ sup
x∈Rd

sup
0<t≤T

sup
θ1≤θ≤θ2

|un(t, x, θ)− u∗
n(t, x, θ)| = 0 for any T > 0, θk ∈ R

(k = 1, 2), θ1 < θ2.

As the corollary of Lemma 2 one can say that the characteristic function (u(t, x, θ))θ∈R (t

and x are fixed) of the limit distribution with respect to the measure Px for the sequence of the

random variables n−1+1/αξ
(n)
[nt]

(and n−1+1/αη
(n)
[nt]

also) satisfies the following equation

u(t, x, θ) = 1 + iθκ
∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ) dσy . (3)

A solution of equation (3) can be constructed by the method of successive approxima-

tions, that is we have u(t, x, θ) = ∑
∞
k=0 u(k)(t, x, θ)(iθκ)k , where u(0)(t, x, θ) ≡ 1, u(k)(t, x, θ) =

∫ t
0 dτ

∫

S g(t − τ, x, y)u(k−1)(τ, y, θ) dσy.

This follows from the estimation |u(k)(t, x, θ)| ≤ Ck (Γ(β))k

Γ(1+kβ)
tkβ, getting by the induction,

where C > 0 is some constant, β = 1 − 1/α.

The solution of equation (3) is unique in the class of bounded functions, because the differ-

ence between each two solutions of equation (3) satisfies the following equation

w(t, x, θ) = iθκ
∫ t

0
dτ

∫

S
g(t − τ, x, y)w(τ, y, θ) dσy

and we have inequalities |w(t, x, θ)| ≤ (CθκΓ(β))k

Γ(1+kβ)
tkβ for each k ∈ N.

Comparing equations (3) and (2) we get that the distribution of κlt and the limit distribu-

tion of n−1+1/αξ
(n)
[nt]

(with respect to the measure Px) are equal.
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Осипчук М.М. Про кiлькiсть перетинiв гiперплощини стiйким випадковим процесом // Карпат-

ськi матем. публ. — 2018. — Т.10, №2. — C. 346–351.

Дослiджено числа перетинiв гiперплощини дискретними наближеннями траекторiй α-стiй-

кого випадкового процесу (1 < α < 2) та деяких пов’язаних з ним процесiв. Розглядаються

α-стiйкий випадковий процес з убиванням з даною iнтенсивнiстю на гiперплощинi та псев-

допроцес, утворений з α-стiйкого випадкового процесу збуренням його оператором дробової

похiдної з множником типу дельта-функцiї на гiперплощинi. В кожному з цих випадкiв грани-

чний розподiл кiлькостi перетинiв гiперплощини деякою дискретною апроксимацiєю процесу

пов’язаний з розподiлом його локального часу на цiй гiперплощинi. Побудованi iнтегральнi

рiвняння для характеристичних функцiй цих розподiлiв. Єдинi обмеженi розв’язки цих рiв-

нянь можна одержати методом послiдовних наближень.

Ключовi слова i фрази: α-стабiльний процес, локальний час, псевдо-процес.
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PROKIP V.M.

ON THE SIMILARITY OF MATRICES AB AND BA OVER A FIELD

Let A and B be n-by-n matrices over a field. The study of the relationship between the products of
matrices AB and BA has a long history. It is well-known that AB and BA have equal characteristic
polynomials (and, therefore, eigenvalues, traces, etc.). One beautiful result was obtained by H.
Flanders in 1951. He determined the relationship between the elementary divisors of AB and BA,
which can be treated as a criterion when two matrices C and D can be realized as C = AB and
D = BA. If one of the matrices (A or B) is invertible, then the matrices AB and BA are similar.
If both A and B are singular then matrices AB and BA are not always similar. We give conditions
under which matrices AB and BA are similar. The rank of matrices plays an important role in these
investigations.

Key words and phrases: matrix, similarity, rank.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: v.prokip@gmail.com

1 INTRODUCTION

Let F be a field and let Mm,n(F) denote the set of m-by-n matrices with entries from F. In
what follows, GL(n, F) the group of nonsingular matrices in Mn,n(F), Ik is the identity k × k
matrix, and 0m,n is the zero m × n matrix.

Let A, B ∈ Mn,n(F). It is well known that the characteristic polynomials of AB and BA are
the same (see, for example, [6, 9, 10, 14]). If one of the matrices (A or B) is invertible, then the
matrices AB and BA are similar. If both A and B are singular then matrices AB and BA are
not always similar (see [6, Sec. 1.3]). It is clear that matrices AB and BA are similar if and only
if the matrix polynomials Inλ − AB and Inλ − BA are equivalent. It is evident, if matrices A
and B commute then AB and BA are similar.

Let A ∈ Mn,m(F) and B ∈ Mm,n(F). In paper [3], H. Flanders solved the problem of de-
termining the relationship between the elementary divisors of AB and those of BA. Another
proof of Flanders’ theorem, with some generalizations, has been given in [11] (see also [1]).
Robert C. Thompson [13] proposed a new proof of Flanders’ theorem. It is obvious that some
connection exists between the ranks of A and B and the intertwining of the elementary divi-
sors of AB and BA. A constructive proof of Flanders’ theorem was also given in [7]. Using the
Weyr characteristic the relationship between the Jordan forms of the matrix products AB and
BA for matrices A and B was given in [8]. Robert E. Hartwig [5] generalizes Flanders’ result for
matrices over a regular strongly-pi-regular ring. It will be observed that an extension of these
results to rings would be valuable and interesting. The rank conditions under which matrices
AB and BA are similar were proposed in [2, 3, 13].

Suppose that A and B are complex n × n matrices. The matrix AB is similar to BA if and
only if rank (AB)j = rank (BA)j for each j = 1, 2, . . . , n (see [6, Sec. 3]). If A is positive
semidefinite matrix and B is normal matrix, in [4] it has been proved that AB and BA are

УДК 512.643
2010 Mathematics Subject Classification: 15A04, 15A21.

c© Prokip V.M., 2018
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similar. The smallest nonnegative integer k such that rank Ak+1 = rank Ak, is the index for A
and denoted by Ind(A). In [8] was proved that matrices AB and BA are similar if and only if
Ind(AB) = Ind(BA) = k and rank (AB)i = rank (BA)i for all i = 1, 2, . . . , k − 1.

In this note we investigate the following widely known question: Let A, B ∈ Mn,n(F). When
are matrices AB and BA similar? We give conditions in terms of rank matrices, under which
matrices AB and BA are similar. If matrices AB and BA are similar we give their canonical
form with respect to similarity.

2 MAIN RESULTS

Let A, B ∈ Mn,n(F) be singular matrices and let rank A = r. We introduce the following
notation for the matrices A and B. For A there exist matrices U, V ∈ GL(n, F) such that

UAV =

[
Ir 0r,n−r

0n−r,r 0n−r,n−r

]
.

Put V−1BU−1 =

[
B11 B12

B21 B22

]
, where B11 ∈ Mr,r(F). It is easy to make sure that

UABU−1 = C =

[
B11 B12

0n−r,r 0n−r,n−r

]
(1)

and

V−1BAV = D =

[
B11 0r,n−r

B21 0n−r,n−r

]
. (2)

We will use these notations to give the characterization of similarity of matrices AB and
BA. Thus, AB and BA are similar if and only if the polynomial matrices Inλ − C and Inλ − D
are equivalent, i.e. the Smith normal forms of these polynomial matrices are coincide.

In view of the above, we give the following description of similarity of the matrices AB and
BA.

Theorem 1. Let A, B ∈ Mn,n(F) be singular matrices. If

(a) rank B11 = rank

[
B11

B21

]
= rank

[
B11 B12

]
, or

(b) B11 = 0r,r and rank B21 = rank B12, or

(c) the matrix

[
B11 B12

B21 0n−r,n−r

]
is symmetric,

then matrices AB and BA are similar.

Proof. (a) Since rank B11 = rank

[
B11

B21

]
= rank

[
B11 B12

]
, then the equations XB11 = B21

and B11Y = B12 are solvable. Let matrices X1 ∈ Mn−r,r(F) and Y1 ∈ Mr,n−r(F) be the solutions
to these equations respectively.

For matrix T1 =

[
Ir 0r,n−r

−X1 In−r

]
we have

T1

[
B11 0r,n−r

B21 0n−r,n−r

]
T−1

1 =

[
B11 0r,n−r

0n−r,r 0n−r,n−r

]
.
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Similarly, for matrix T2 =

[
Ir −Y1

0n−r,r In−r

]
we have

T−1
2

[
B11 B12

0n−r,r 0n−r,n−r

]
T2 =

[
B11 0r,n−r

0n−r,r 0n−r,n−r

]
.

Hence, matrices

[
B11 B12

0n−r,r 0n−r,n−r

]
and

[
B11 0r,n−r

B21 0n−r,n−r

]
are similar. Thus, AB and BA are

similar.

(b) Let B11 = 0r,r and rank B21 = rank B12 = s. For B12 there exist matrices U1 ∈ GL(r, F)

and V1 ∈ GL(n − r, F) such that

U1B12V1 =

[
0s,n−r−s Is

0r−s,n−r−s 0r−s,s

]
.

Thus, for the matrix T1 = diag
(

U1, V−1
1

)
we have

T1

[
0r,r B12

0n−r,r 0n−r,n−r

]
T−1

1 =

[
0s,n−s Is

0n−s,n−s 0n−s,s

]
.

Similarly, for matrix B21 there exist U2 ∈ GL(n − r, F) and V2 ∈ GL(r, F) such that

U2B12V2 =

[
0n−r−s,s 0n−r−s,r−s

Is 0s,r−s

]

and for the matrix T2 = diag
(

V−1
2 , U2

)
we have

T2

[
0r,r B12

0n−r,r 0n−r,n−r

]
T−1

2 =

[
0n−s,s 0n−s,n−s

Is 0s,n−s

]
.

It is obvious that matrices

[
0r,r B12

0n−r,r 0n−r,n−r

]
and

[
0r,r 0r,n−r

B21 0n−r,n−r

]
are similar. Thus, AB

and BA are similar.

(c) Matrix

[
B11 B12

0n−r,r 0n−r,n−r

]
and its transpose

[
B11 B12

0n−r,r 0n−r,n−r

]T

are similar.

Hence, we have

[
B11 B12

0n−r,r 0n−r,n−r

]T

=

[
BT

11 0r,n−r

BT
12 0n−r,n−r

]
=

[
B11 0r,n−r

B21 0n−r,n−r

]
.

Thus, matrices AB and BA are similar. The proof of Theorem 1 is complete.

From Theorem 1 we have the following statement.

Corollary 1. Let A, B ∈ Mn,n(F) be singular matrices. If det B11 6= 0 then matrices AB and BA
are similar.

Consider the following example.
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Example. Let F = Q be the field of rational numbers and let

A =




7 −3 −11 9
5 −2 −10 8

−12 5 21 −17
12 −5 −16 13


 and B =




−23 −18 −2 16
−55 −43 −5 38
−65 −52 −4 48
−80 −64 −5 59




be matrices over Q. For nonsingular matrices

U =




0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0


 and V =




3 2 1 2
7 5 2 5
0 0 9 4
0 0 11 5




over Q we have

UAV =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 =

[
I3 03,1

03,1 0

]

and

V−1BU−1 =




0 0 0 0
0 1 2 1
0 1 3 1
0 1 2 2


 =

[
B11 B12

B21 B22

]
, where B11 =




0 0 0
0 1 2
0 1 3


 .

Thus, rank B11 = rank

[
B11

B21

]
= rank

[
B11 B12

]
= 2. By statement (a) of Theorem 1

matrices AB and BA are similar to the matrix B11.

Lemma 1. Let A, B ∈ Mn,n(F) be singular matrices. If rank AB = rank BA = 1, then AB and
BA are similar.

To prove the Lemma we need the following proposition (see also Chapter 2 in [6] and
Theorem 1 in [12]).

Proposition 1. Let C ∈ Mn,n(F) be a matrix of rank one and tr C = c. The matrix C is similar
to one of the matrices

D1 = diag (c, 0 , . . . , 0) if c 6= 0
or

D2 = diag

( [
0 1
0 0

]
, 0, . . . , 0

)
if c = 0.

Proof. The proof of the Proposition is algorithmic. The matrix C we write in the form C = p · q,
where p ∈ Mn,1(F) and q ∈ M1,n(F). For the vector p there exists a matrix P ∈ GL(n, F) such

that P · p =
[

1 0 . . . 0
]T

. Then C is similar to a matrix of the form

PCP−1 = Pp · qP−1 = C1 =

[
α11 α12 . . . α1n

0n−1,1 0n−1,n−1

]
. (3)

It is clear that α11 = c is a trace of the matrix C.

Suppose, c 6= 0. For the matrix T1 =




1 01,n−1

− α12
c

... In−1

− α1n
c


 ∈ GL(n, F) we have

T−1
1 C1T1 = diag (c, 0 , . . . , 0) = D1.
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Thus, if tr C = c 6= 0, then matrices C and D1 are similar.
Let tr C = 0. From equality (3) it follows

C1 =

[
0 α12 . . . α1n

0n−1,1 0n−1,n−1

]
.

For elements {α12, α13, . . . , α1n} there exists a matrix T0 ∈ GL(n − 1, F) such that[
α12, α13, . . . , αn

]
T0 =

[
1 0 . . . 0

]
. Thus, for the matrix

T2 =

[
1 01,n−1

0n−1,1 T0

]
∈ GL(n, F)

we have

T−1
2 C1T2 = diag

( [
0 1
0 0

]
, 0, . . . , 0

)
= D2.

Since tr C = 0, matrices C and D2 are similar. This completes the proof of the Proposition.

Proof. Let A, B ∈ Mn,n(F) be singular matrices and

rank AB = rank BA = 1.

Suppose rank B ≥ rank A = r. Matrix AB is similar to the matrix

C =

[
B11 B12

0n−r,r 0n−r,n−r

]
,

where B11 ∈ Mr,r(F) (see equalities (1) and (2)). Similarly BA is similar to the matrix

D =

[
B11 0r,n−r

B21 0n−r,n−r

]
.

Thus, tr AB = tr BA = tr B11. Put tr B11 = c.
Suppose c 6= 0. By Proposition 1 matrices AB and BA are similar to the matrix

D1 = diag (c, 0 , . . . , 0).
If c = 0 then by Proposition matrices AB and BA are similar to the matrix

D2 = diag

( [
0 1
0 0

]
, 0, . . . , 0

)
, which completes the proof of the Lemma.

Corollary 2. Let A, B ∈ Mn,n(F) be singular matrices and rank A = 1. If AB 6= 0n,n and
BA 6= 0n,n then AB and BA are similar.

Corollary 3. Let A, B ∈ M2,2(F). If AB 6= 02,2 and BA 6= 02,2 then AB and BA are similar.

Theorem 2. Let A, B ∈ Mn,n(F) and let rank A = 2. If rank AB = rank BA then AB and BA
are similar.

Proof. If rank AB = rank BA = 1 then by Lemma 1 matrices AB and BA are similar. Sup-

pose rank AB = rank BA = 2. Matrix AB is similar to the matrix C =

[
B11 B12

0n−2,2 0n−2,n−2

]
,

where B11 ∈ M2,2(F) (see equalities (1) and (2)). Similarly, BA is similar to the matrix

D =

[
B11 02,n−2

B21 0n−2,n−2

]
. Thus, rank

[
B11

B21

]
= rank

[
B11 B12

]
= 2.
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If B11 = 02,2 or det B11 6= 0 then by Theorem 1b or Corollary 1 respectively matrices AB and
BA are similar. Let rank B11 = 1 and let tr B11 6= 0. For B11 there exists a matrix U11 ∈ GL(2, F)
such that

U11B11U−1
11 =

[
α 0
0 0

]
,

where α = tr B11. For the matrix T11 =

[
U11 02,n−2

0n−2,2 In−2

]
we have

T11CT−1
11 = C11 =




α 0
0 0

B̃12

0n−2,1 0n−2,n−1


 ,

where B̃12 = B12U−1
1 . It is evident that rank C11 = 2. It is easy to make sure that if n = 3 then

B̃12 =
[

c13 c23

]T
and c23 6= 0. For B̃12 the exists a matrix U12 ∈ GL(n − 2, F) such that

B̃12U12 =

[
α1 0 . . . . . . 0
0 1 0 . . . 0

]
.

Thus, for the matrix T12 =

[
I2 02,n−2

0n−2,2 U12

]
we have

T−1
12 C11T12 = C12 =




α 0 α1 0
0 0 0 1

02,n−4

0n−2,4 0n−2,n−4


 .

It is obvious that matrix C12 is similar to the matrix C13 =




α 0 0
0 0 1

02,n−3

0n−2,4 0n−2,n−3


 .

It may be noted that matrices D and DT are similar. Reasoning similarly we convince

ourselves that the matrix

[
BT

11 BT
21

0n−r,r 0n−r,n−r

]
is similar to the matrix C13. Thus, in the case

when tr B11 6= 0, matrices C and D are similar.

Let us now consider the case when rank B11 = 1 and tr B11 = 0. For B11 there exists a matrix
V11 ∈ GL(2, F) such that

V11B11V−1
11 =

[
0 1
0 0

]
.

For the matrix S11 =

[
V11 02,n−2

0n−2,2 In−2

]
we have

S11CS−1
11 = C21 =




0 1
0 0

B̂12

0n−2,1 0n−2,n−1


 , where B̂12 = B12V−1

11 .

Obviously that rank C21 = 2. We note, if n = 3 then B̂12 =
[

c13 c23

]T
and c23 6= 0.
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For B̂12 the exists a matrix V12 ∈ GL(n − 2, F) such that

B̂12V12 =

[
β1 0 . . . . . . 0
0 1 0 . . . 0

]
.

Thus, for the matrix S12 =

[
I2 02,n−2

0n−2,2 V12

]
we have

S−1
12 C21S12 = C22 =




0 1 β1 0
0 0 0 1

02,n−4

0n−2,4 0n−2,n−4


 .

It is evident that matrix C22 is similar to the matrix C23 =




0 1 0
0 0 1

02,n−3

0n−2,4 0n−2,n−3


 .

Reasoning similarly, we can prove that matrix

[
BT

11 BT
21

0n−r,r 0n−r,n−r

]
is similar to the matrix

C23. Thus in the case when tr B11 = 0 matrices C and D are similar.
So, we have that matrices AB and BA are similar and the proof of Theorem 2 is complete.

From Theorem 2 we have the following statement.

Corollary 4. Let A, B ∈ M3,3(F). If rank AB = rank BA then matrices AB and BA are similar.
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Прокiп В.М. Про подiбнiсть матриць AB i BA над полем // Карпатськi матем. публ. — 2018.
— Т.10, №2. — C. 352–359.

Нехай A i B — n × n матрицi над полем. Вивчення зв’язкiв мiж добутками матриць AB i BA
має давню iсторiю. Загальновiдомо, що матрицi AB та BA мають однаковi характеристичнi
многочлени (отже, власнi значення, слiди тощо). Один вагомий результат був отриманий Х.
Фландрерсом у 1951 роцi. Вiн вказав зв’язок мiж елементарними дiльниками AB та BA, який
можна розглядати як критерiй, коли двi матрицi C i D можуть бути зображенi у виглядi до-
буткiв C = AB i D = BA. Якщо одна з матриць (A або B) є неособливою, то матрицi AB i
BA подiбнi. Якщо ж A i B особливi матрицi, то матрицi AB i BA не завжди подiбнi. В статтi
наведено умови, за яких матрицi AB i BA подiбнi. Поняття рангу вiдiграє важливу роль у цих
дослiдженнях.

Ключовi слова i фрази: матриця, подiбнiсть, ранг.
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A homogeneous Dirichlet problem for a semilinear elliptic equations with the Laplace operator

and Helmholtz operator is investigated. To construct the two-sided approximations to a positive

solution of this boundary value problem the transition to an equivalent nonlinear integral equation

(with the help of the Green-Rvachev’s quasi-function) with its subsequent analysis by methods of

the theory of semi-ordered spaces is used. The work and efficiency of the developed method are

demonstrated by a computational experiment for a test problem with exponential nonlinearity.
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INTRODUCTION

Let us consider the problem of finding a positive solution of a semilinear elliptic equation

with a homogeneous Dirichlet condition:

Lu = f (x, u), x ∈ Ω, (1)

u(x) > 0, x ∈ Ω, (2)

u|∂Ω = 0, (3)

where Lu ≡ −∆u or Lu ≡ −∆u + κ2u, Ω is a bounded Jordan-measurable domain from R
2 or

R
3 with piecewise smooth boundary ∂Ω (Ω̄ = Ω ∪ ∂Ω), ∆ is the Laplace operator, x = (x1, x2),

∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
, if Ω ⊂ R

2, and x = (x1, x2, x3), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
, if Ω ⊂ R

3.

Let us assume that the function f (x, u) is continuous and positive for x ∈ Ω̄, u > 0.

The problem (1)–(3) is often encountered in the mathematical modeling of nonlinear sta-

tionary processes considered in thermophysics, electromagnetism, biology, chemical kinetics,

etc. [11]. In this case, the condition of positivity (2) naturally arises from the meaning of the

function u in a particular applied field. It is convenient to carry out the analysis of the problem

by the methods of the theory of nonlinear operators in semi-ordered spaces [1, 5, 9, 10], pass-

ing to the equivalent Hammerstein integral equation with the help of the Green’s functions

method. In this case, it is possible to construct a two-sided iteration process to the desired

solution [4, 14]. But, the practical application of this approach has certain limitations due to

УДК 517.988 : 519.632
2010 Mathematics Subject Classification: 35J05, 35J08, 35J61, 45G10, 47H30, 65R20, 65N80.

c© Sidorov M.V., 2018
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the fact that the analytic expression of the Green’s function must be known. It is possible to

get rid of this restriction, if the corresponding Green-Rvachev’s quasi-function [12, 14] will be

used instead of Green’s function.

The purpose of the paper is to develop the iterative methods for solving the boundary

value problem (1)–(3), which have a two-sided nature of convergence to the desired solution

and are not tied to the presence of a known Green’s function. Two-sided approximate methods

for solving nonlinear operator equations based on the theory of nonlinear operators in semi-

ordered spaces were developed in [3, 6, 13, etc.]. This paper continues the research begun

in [4, 14], and extends them to the areas of arbitrary geometry and elliptic equations with the

Helmholtz operator.

1 CONSTRUCTION OF AN EQUIVALENT INTEGRAL EQUATION

To construct an integral equation that is equivalent to the problem (1)–(3), let us use the

Green-Rvachev’s quasi-function [12, 14].

Let the boundary ∂Ω of the domain Ω consists of a finite number of pieces of lines σi(x) = 0,

i = 1, 2, . . . , r, where each σi(x) is an elementary function. Then with the help of the R-

functions method [12] one can construct in the form of a single analytic expression an ele-

mentary function ω(x), which describes the geometry of the domain Ω, that is:

a) ω(x) > 0 in Ω;

b) ω(x) = 0 on ∂Ω;

c) |∇ω(x)| 6= 0 on ∂Ω.

Also, the function ω(x) can have certain properties of differentiation due to the use of

various sufficiently complete systems of R-functions [12].

Definition 1. Let gm(r) be a fundamental solution of the equation Lu = 0 in R
m. The Green-

Rvachev’s quasi-function of the first boundary value problem for the operator L in R
m is the

function

Qm(x, s) = gm(r)− g̃m(x, s), (4)

where x = (x1, . . . , xm), s = (s1, . . . , sm), r = |x − s| =
√

m

∑
i=1

(xi − si)
2,

g̃m(x, s) = gm

(

√

r2 + 4ω(x)ω(s)

)

,

ω(x) is the function that describes the geometry of the domain Ω.

Let us note [12] that for the case when Lu ≡ −∆u, Ω is a ball of radius R in R
m, and

ω(x) = 1
2R (R2 − x2

1 − · · · − x2
m), the Green-Rvachev’s quasi-function (4) turns into the exact

Green’s function of the first boundary value problem for the Laplace operator considered in a

ball Ω.

The fundamental solutions of the Laplace equation −∆u = 0 in R
2 and R

3 have the form

g2(r) =
1

2π
ln

1

r
, g3(r) =

1

4π
· 1

r
,
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consequently, the Green-Rvachev’s quasi-function of the first boundary value problem for the

operator −∆ acquires the form

Q2(x, s) =
1

2π
ln

√

1 +
4ω(x)ω(s)

r2
in R

2, (5)

Q3(x, s) =
1

4π
·
√

r2 + 4ω(x)ω(s) − r

r
√

r2 + 4ω(x)ω(s)
in R

3. (6)

For the Helmholtz equation −∆u + κ2u = 0 in R
2 and R

3 the fundamental solutions have

the form

g2(r) =
1

2π
K0(κr), g3(r) =

1

4πr
e−κr,

where K0(z) is modified Bessel function of the second kind, and the Green-Rvachev’s quasi-

function of the first boundary value problem for the operator −∆ + κ2 acquires the form

Q2(x, s) =
1

2π

(

K0(κr)− K0

(

κ
√

r2 + 4ω(x)ω(s)

))

in R
2, (7)

Q3(x, s) =
1

4π
·
√

r2 + 4ω(x)ω(s)e−κr − re−κ
√

r2+4ω(x)ω(s)

r
√

r2 + 4ω(x)ω(s)
in R

3. (8)

From (5)–(8) and Definition 1 the following lemma on the properties of the Green-Rvachev’s

quasi-function follows.

Lemma 1. The Green-Rvachev’s quasi-function (4) has the following properties:

a) Qm(x, s) = 0 on ∂Ω;

b) is a symmetric function: Qm(x, s) = Qm(s, x);

c) has the same feature for x = s as the usual Green’s function;

d) is positive in the domain Ω: Qm(x, s) > 0, x, s ∈ Ω, x 6= s.

For the function u ∈ C2(Ω)
⋂

C1(Ω̄) such that Lu ∈ L2(Ω), the following integral repre-

sentation [7, 8] holds:

u(x) =
∫

∂Ω

[

g(x, s)
∂u(s)

∂ns
− u(s)

∂g(x, s)

∂ns

]

dsσ +
∫

Ω

g(x, s)Lsu(s)ds, x ∈ Ω, (9)

and for the functions u, g̃ ∈ C2(Ω̄) the second Green’s formula [7]

0 = −
∫

Ω

[g̃(s)Lsu(s)− u(s)Ls g̃(s)]ds +
∫

∂Ω

[

u(s)
∂g̃(s)

∂ns
− g̃(s)

∂u(s)

∂ns

]

dsσ (10)

holds.

In formulas (9), (10) ns is the outer to ∂Ω normal in the variables s, dsσ means that the

integration for s is along ∂Ω, Lsu ≡ −∆su or Lsu ≡ −∆su + κ2u, ∆s = ∂2

∂s2
1
+ ∂2

∂s2
2
, if Ω ⊂ R

2,

and ∆s =
∂2

∂s2
1
+ ∂2

∂s2
2
+ ∂2

∂s2
3
, if Ω ⊂ R

3.
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Let u be a classical solution of the problem (1)–(3), and let us choose the function g̃ in (10)

as in Definition 1. Adding the equalities (9) and (10), taking into account (4), we obtain

u(x) =
∫

Ω

Ls g̃(x, s) · u(s)ds +
∫

Ω

Qm(x, s) · Lsu(s)ds

+
∫

∂Ω

[

Qm(x, s)
∂u(s)

∂ns
− u(s)

∂Qm(x, s)

∂ns

]

dsσ.

Then, taking into account that Qm(x, s) = 0 and u(x) = 0 on ∂Ω, and making allowance

for the equation (1), we finally obtain the integral equation for the function u in the form

u(x) =
∫

Ω

Km(x, s)u(s)ds +
∫

Ω

Qm(x, s) f (s, u(s))ds, (11)

where Km(x, s) = Ls g̃(x, s).

The nonlinear integral equation (11) can be written in the form of Urysohn equation

u(x) =
∫

Ω

P(x, s, u(s))ds,

where P(x, s, u(s)) = Km(x, s)u(s) + Qm(x, s) f (s, u(s)).

If the boundary value problem (1)–(3) has a classical solution, then it also satisfies the equa-

tion (11). If the classical solution of the problem does not exist, then the equation (11) can be

used to introduce the concept of a generalized solution of the boundary value problem (1)–(3).

The equation (11) will be considered in a Banach space C(Ω̄) of the functions continuous

in Ω̄. The norm in C(Ω̄) is entered by the rule ‖u‖ = max
x∈Ω̄

|u(x)|. Let us select in C(Ω̄) the

cone K+ = {u ∈ C(Ω̄) : u(x) ≥ 0, x ∈ Ω̄} of non-negative functions. Note that the cone K+

in C(Ω̄) is normal (and even acute). With the help of the cone K+ in the space C(Ω̄) let us

introduce a semiordering by the rule:

for u, v ∈ C(Ω̄) u 6 v, if v − u ∈ K+,

that is,

u 6 v, if u(x) ≤ v(x) for all x ∈ Ω̄.

Definition 2. By a solution (generalized) of the boundary value problem (1)–(3) will be meant

a function u∗ ∈ K+, which is a solution of the integral equation (11).

2 CONSTRUCTION OF A PROCESS OF TWO-SIDED APPROXIMATIONS

Let us construct a process of two-sided approximations for finding the solution of the inte-

gral equation (11) (and consequently, the solution of the boundary value problem (1)–(3) using

the methods of the theory of nonlinear operators in semi-ordered spaces [1, 5, 9, 10].

Let us introduce a nonlinear operator T acting in C(Ω̄) by the rule

T(u)(x) =
∫

Ω

P(x, s, u(s))ds. (12)
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Let us denote

K+
m(x, s) = max{0, Km(x, s)}, K−

m(x, s) = max{0,−Km(x, s)}.

Then K+
m(x, s) ≥ 0, K−

m(x, s) ≥ 0 for x, s ∈ Ω (x 6= s),

Km(x, s) = K+
m(x, s)− K−

m(x, s), |Km(x, s)| = K+
m(x, s) + K−

m(x, s),

and operator T of the form (12) will be written in the form

T(u)(x) =
∫

Ω

K+
m(x, s)u(s)ds −

∫

Ω

K−
m(x, s)u(s)ds +

∫

Ω

Qm(x, s) f (s, u(s))ds. (13)

Suppose that the function f (x, u) allows a diagonal representation f (x, u) = f̂ (x, u, u), be-

sides, continuous on the sets of variables x, v, w non-negative function f̂ (x, v, w) monotonically

increases with respect to v and monotonically decreases with respect to w for all x ∈ Ω. Then

the operator T of the form (13) will be heterotone with the companion operator

T̂(v, w)(x) =
∫

Ω

K+
m(x, s)v(s)ds −

∫

Ω

K−
m(x, s)w(s)ds +

∫

Ω

Qm(x, s) f̂ (s, v(s), w(s))ds. (14)

Operators T and T̂ are completely continuous.

Note that for the case when the function f (x, u) increases monotonically with respect to u

for all x ∈ Ω we can choose f̂ (x, v, w) = f (x, v), and if it decreases monotonically with respect

to u for all x ∈ Ω we can set f̂ (x, v, w) = f (x, w).

In the cone K+ let us select a strongly invariant cone segment < v0, w0
> by conditions

T̂(v0, w0) ≥ v0, T̂(w0, v0) ≤ w0, which for the operator T̂ that is defined by (14) will have the

form:

∫

Ω

K+
m(x, s)v0(s)ds −

∫

Ω

K−
m(x, s)w0(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, v0(s), w0(s))ds ≥ v0(x) for all x ∈ Ω̄,
(15)

∫

Ω

K+
m(x, s)w0(s)ds −

∫

Ω

K−
m(x, s)v0(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, w0(s), v0(s))ds ≤ w0(x) for all x ∈ Ω̄.
(16)

Let us form an iterative process by the scheme v(k+1) = T̂(v(k), w(k)), w(k+1) = T̂(w(k), v(k)),

k = 0, 1, 2, . . . (v(0) = v0, w(0) = w0):

v(k+1)(x) =
∫

Ω

K+
m(x, s)v(k)(s)ds −

∫

Ω

K−
m(x, s)w(k)(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, v(k)(s), w(k)(s))ds, k = 0, 1, 2, . . . ,
(17)
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w(k+1)(x) =
∫

Ω

K+
m(x, s)w(k)(s)ds −

∫

Ω

K−
m(x, s)v(k)(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, w(k)(s), v(k)(s))ds, k = 0, 1, 2, . . . ,
(18)

v(0)(x) = v0(x), w(0)(x) = w0(x). (19)

Since the cone segment < v0, w0
> is strongly invariant for the heterotone operator T for

which the operator T̂ is a companion one, it follows that the sequence {v(k)(x)} does not de-

crease with respect to the cone K+, and the sequence {w(k)(x)} does not increase with respect

to the cone K+. Besides, the cone K+ is normal and the operator T̂ is completely continuous,

so the boundaries v∗(x) and w∗(x) of these sequences exist. Thus, the chain of inequalities

holds:

v0 = v(0) 6 v(1) 6 · · · 6 v(k) 6 · · · 6 v∗ 6 w∗
6 · · · 6 w(k)

6 · · · 6 w(1)
6 w(0) = w0.

There are two possible cases: v∗ < w∗ and v∗ = w∗. In the second case, u∗ := v∗ = w∗ is

the unique on < v0, w0
> fixed point of the operator T, that is, it is the unique on < v0, w0

>

solution of the boundary value problem (1)–(3).

The functions v∗(x) and w∗(x) are a solution of the system of equations v = T̂(v, w),

w = T̂(w, v), which in the considered case has the form

v(x) =
∫

Ω

K+
m(x, s)v(s)ds −

∫

Ω

K−
m(x, s)w(s)ds +

∫

Ω

Qm(x, s) f̂ (s, v(s), w(s))ds , (20)

w(x) =
∫

Ω

K+
m(x, s)w(s)ds −

∫

Ω

K−
m(x, s)v(s)ds +

∫

Ω

Qm(x, s) f̂ (s, w(s), v(s))ds. (21)

The equality v∗ = w∗ will hold if the system (20), (21) does not have on < v0, w0
> such

solutions that v 6= w [9, 10].

Thus, such a theorem is true.

Theorem 1. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the system of equations

(20), (21) does not have on < v0, w0
> solutions such that v 6= w. Then the iterative process

(17)–(19) converges in the norm of the space C(Ω̄) to the unique on < v0, w0
> continuous

positive solution u∗ of the boundary value problem (1)–(3), and a chain of inequalities holds:

v0 = v(0) 6 v(1) 6 · · · 6 v(k) 6 · · · 6 u∗
6 · · · 6 w(k)

6 · · · 6 w(1)
6 w(0) = w0. (22)

Note that the chain of inequalities (22) characterizes the iterative process (17)–(19) as a

method of two-sided approximations.

From the chain of inequalities (22) it follows that each of the cone segments < v(k), w(k)
>,

k = 0, 1, 2, . . . , is strongly invariant for the heterotone operator T of the form (13) with the

companion operator T̂ of the form (14).

Let us determine the conditions for the existence of a unique positive solution of the bound-

ary value problem (1)–(3) and two-sided convergence of the successive approximations

(17)–(19) to it, by clarifying the conditions under which the system of equations (20), (21) does
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not have on some of the strongly invariant cone segments < v(k), w(k)
>, k = 0, 1, 2, . . . , such

solutions that v 6= w.

First we use such a condition [9, 10]: if

T̂(v + u, w − u) � T̂(v, w) + u, (23)

where u > θ, v < w, v, w, v + u, w − u ∈< v0, w0
>, then the system v = T̂(v, w), w = T̂(w, v)

does not have solutions on < v0, w0
>, such that v 6= w.

Theorem 2. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the following condition

holds: for any numbers v, w, u such, that 0 < v < w, 0 < u < w, and for all x ∈ Ω the

following inequality is satisfied:

f̂ (x, v + u, w − u) < f̂ (x, v, w) +
u

M + M1
,

where

M = max
x∈Ω̄

∫

Ω

Qm(x, s)ds, M1 = max
x∈Ω̄

∫

Ω

[K+
m(x, s) + K−

m(x, s)]ds. (24)

Then, the iterative process (17)–(19) bilaterally converges in the norm of the space C(Ω̄)

to the unique on < v0, w0
> continuous positive solution u∗ of the boundary value problem

(1)–(3).

Proof. Let u and w − v be such functions from K+\{θ} (θ is a zero element of C(Ω̄)), that

v, w, v + u, w − u ∈< v0, w0
>. Then u(x) ≥ 0 in Ω̄ and u|∂Ω = 0. So, if the function u(x) gets

the maximum value at the point x0, then x0 ∈ Ω. Thus,

T̂(v + u, w − u)(x0)

=
∫

Ω

K+
m(x0, s)[v(s) + u(s)]ds −

∫

Ω

K−
m(x0, s)[w(s) − u(s)]ds

+
∫

Ω

Qm(x0, s) f̂ (x, v(s) + u(s), w(s)− u(s))ds

<

∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

[K+
m(x0, s) + K−

m(x0, s)]u(s)ds

+
∫

Ω

Qm(x0, s)

[

f̂ (s, v(s), w(s)) +
u(s)

M + M1

]

ds

≤
∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

Qm(x0, s) f̂ (s, v(s), w(s))ds

+
1

M + M1
max
x∈Ω̄

u(x)





∫

Ω

[K+
m(x0, s) + K−

m(x0, s)]ds +
∫

Ω

Qm(x0, s)ds





≤
∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

Qm(x0, s) f̂ (s, v(s), w(s))ds + u(x0)

= T̂(v, w)(x0) + u(x0),

that is, the condition (23) holds, consequently, the system of equations (20), (21) does not have

on < v0, w0
> such solutions that v 6= w and the Theorem 1 is valid.
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Another condition that ensures equality v∗ = w∗ is the existence of γ ∈ (0; 1) such that

∥

∥T̂(v, w)− T̂(w, v)
∥

∥ ≤ γ ‖v − w‖

for all v, w ∈< v0, w0
> [2].

Let there exists a number L > 0, that the function f̂ (x, v, w) for all numbers v, w such that

0 < v, w < M0, where M0 = max
x∈Ω̄

w0(x), and for all x ∈ Ω satisfies the inequality

∣

∣

∣
f̂ (x, w, v)− f̂ (x, v, w)

∣

∣

∣
≤ L |w − v| . (25)

Let us consider the difference T̂(v, w)(x) − T̂(w, v)(x):

T̂(w, v)(x) − T̂(v, w)(x) =
∫

Ω

[K+
m(x, s) + K−

m(x, s)][w(s) − v(s)]ds

+
∫

Ω

Qm(x, s)[ f̂ (s, w(s), v(s)) − f̂ (s, v(s), w(s))]ds.

Then, taking into account the inequality (25), we obtain an estimate
∥

∥T̂(w, v)− T̂(v, w)
∥

∥ = max
x∈Ω̄

∣

∣T̂(w, v)(x) − T̂(v, w)(x)
∣

∣

≤ (M1 + LM) · max
x∈Ω̄

|w(x)− v(x)| = (M1 + LM) ‖w − v‖ ,

where constants M and M1 are defined by equalities (24).

Thus,
∥

∥T̂(w, v)− T̂(v, w)
∥

∥ ≤ γ ‖w − v‖ ,

where γ = M1 + LM.

Then the equality v∗ = w∗ will be held, if γ = M1 + LM < 1, and the following theorem

holds.

Theorem 3. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the condition (25) holds,

besides, γ = M1 + LM < 1, where the constants M and M1 are defined by the equalities (24).

Then, the iterative process (17)–(19) bilaterally converges in the norm of the space C(Ω̄) to the

unique on < v0, w0
> continuous positive solution u∗ of the boundary value problem (1)–(3).

If the k-th iteration have been performed, then as an approximate solution of the boundary

value problem (1)–(3) the function

u(k)(x) =
w(k)(x) + v(k)(x)

2
(26)

is accepted.

Then for an approximate solution (26) there will be convenient a posteriori estimate of the

error:
∥

∥

∥
u∗ − u(k)

∥

∥

∥
≤ 1

2
max
x∈Ω̄

(w(k)(x)− v(k)(x)). (27)

The presence of an estimation of the form (27) is an unconditional advantage of the con-

structed two-sided iterative process.
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If the accuracy ε > 0 is given, then the iterative process should be carried out until the

inequality

max
x∈Ω̄

(w(k)(x)− v(k)(x)) < 2ε

will be satisfied and then with an accuracy ε it can be expected that u∗(x) ≈ u(k)(x).

If the conditions of Theorem 3 are satisfied, then an a priori estimate of the error will be:

∥

∥

∥
u∗ − u(k)

∥

∥

∥
≤ γk

2
max
x∈Ω̄

(w0(x)− v0(x)).

Then from the inequality
γk

2
max
x∈Ω̄

(w0(x)− v0(x)) < ε

we obtained that to achieve the accuracy ε it is necessary to do

k0(ε) =







ln
max
x∈Ω̄

(w0(x)−v0(x))

2ε

ln 1
M1+LM






+ 1 (28)

iterations, where the square brackets denote the integer part of the number.

3 NUMERICAL EXPERIMENTS

The construction of two-sided approximations to the solution of the boundary value prob-

lem (1)–(3) will be demonstrated on the problem with exponential nonlinearities:

Lu = eu + 2e−u, x ∈ Ω, (29)

u(x) > 0, x ∈ Ω, (30)

u|∂Ω = 0, (31)

where Lu ≡ −∆u or Lu ≡ −∆u + u, Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.

The function f (x, u) = eu + 2e−u is positive and continuous with respect to the set of vari-

ables, if u > 0, and it allows a diagonal representation with the help of function

f̂ (x, v, w) = ev + 2e−w.

The problem (29)–(31) is replaced by an equivalent integral equation

u(x) =
∫

Ω

K2(x, s)u(s)ds +
∫

Ω

Q2(x, s)[eu(s) + 2e−u(s)]ds, (32)

where Q2(x, s) is determined by the formula (5), if Lu ≡ −∆u, and is determined by the

formula (7), if Lu ≡ −∆u + u, K2(x, s) = − ∂2

∂s2
1
g̃2(x, s)− ∂2

∂s2
2
g̃2(x, s),

g̃2(x, s) =
1

2π
ln

1
√

r2 + 4ω(x)ω(s)
, if Lu ≡ −∆u,

g̃2(x, s) =
1

2π
K0

(

κ
√

r2 + 4ω(x)ω(s)

)

, if Lu ≡ −∆u + u,
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ω(x) = [x1(1 − x1)]∧0[x2(1 − x2)] ≡ x1(1 − x1) + x2(1 − x2)−
√

x2
1(1 − x1)

2 + x2
2(1 − x2)

2.

With the equation (32) let us associate a heterotone operator

T(u)(x) =
∫

Ω

K2(x, s)u(s)ds +
∫

Ω

Q2(x, s)[eu(s) + 2e−u(s)]ds, (33)

for which the companion operator has the form

T̂(v, w)(x) =
∫

Ω

K+
2 (x, s)v(s)ds −

∫

Ω

K−
2 (x, s)w(s)ds +

∫

Ω

Q2(x, s)[ev(s) + 2e−w(s)]ds,

where

K+
2 (x, s) = max{0, K2(x, s)}, K−

2 (x, s) = max{0,−K2(x, s)}.

For the operator T of the form (33) a strongly invariant cone segment will be sought in the

form < v0, w0
>, where v0(x) = αu0(x), w0(x) = βu0(x), 0 < α < β, and

u0(x) =
∫

Ω

Q2(x, s)ds.

For the chosen functions v0, w0 the system of inequalities (15), (16) leads to the next system

of inequalities for determining the constants α, β: for all x ∈ Ω̄

α
∫

Ω

K+
2 (x, s)u0(s)ds − β

∫

Ω

K−
2 (x, s)u0(s)ds +

∫

Ω

Q2(x, s)[eαu0(s) + 2e−βu0(s)]ds ≥ αu0(x),

β

∫

Ω

K+
2 (x, s)u0(s)ds − α

∫

Ω

K−
2 (x, s)u0(s)ds +

∫

Ω

Q2(x, s)[eβu0(s) + 2e−αu0(s)]ds ≤ βu0(x).

If 0 < v, w < M0, where M0 = βmax
x∈Ω̄

u0(x), then

∣

∣

∣
f̂ (x, v, w)− f̂ (x, w, v)

∣

∣

∣
=

∣

∣(ev + 2e−w)− (ew + 2e−v)
∣

∣ ≤ (2 + eM0) |v − w| .

For the considering problem the iterative process (17)–(19) has the form

v(k+1)(x) =
∫

Ω

K+
2 (x, s)v(k)(s)ds −

∫

Ω

K−
2 (x, s)w(k)(s)ds

+
∫

Ω

Q2(x, s)[ev(k)(s) + 2e−w(k)(s)]ds
(34)

w(k+1)(x) =
∫

Ω

K+
2 (x, s)w(k)(s)ds −

∫

Ω

K−
2 (x, s)v(k)(s)ds

+
∫

Ω

Q2(x, s)[ew(k)(s) + 2e−v(k)(s)]ds,
(35)

k = 0, 1, 2, . . . ,

v(0)(x) = αu0(x), w(0)(x) = βu0(x). (36)
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For the problem (29)–(31), if Lu ≡ −∆u, it was found, that the system of inequalities for

determining the constants α, β is satisfied by the values α = 2.5, β = 5.8. Further we find

M = max
x∈Ω̄

∫

Ω

Q2(x, s)ds = 0.04093, M1 = max
x∈Ω̄

∫

Ω

[K+
2 (x, s) + K−

2 (x, s)]ds = 0.70819,

M0 = βmax
x∈Ω̄

u0(x) = 0.23740, L = 2 + eM0 = 3.26795, γ = M1 + LM = 0.842.

Thus, γ < 1 and by Theorem 3, the successive approximations that are formed by the

scheme (34)–(36) bilaterally converge to the solution of the problem (29)–(31) for Lu ≡ −∆u.

Let us choose ε = 10−4. Then, in accordance with (28), to achieve this accuracy, it is nec-

essary to make k0(ε) =

[

ln
(β−α)M

2ε

ln 1
γ

]

+ 1 = 38 iterations. In fact, the accuracy ε = 10−4 was

achieved at the eleventh iteration. As one can see, the theoretical error estimate turned out to

be greatly overestimated. As an approximate solution of the problem (29)–(31) for Lu ≡ −∆u,

the function u(11)(x) = v(11)(x)+w(11)(x)
2 will be accepted.

Iteration

number k
0 1 2 3 4 5

ε(k) 0.67 · 10−1 0.39 · 10−1 0.22 · 10−1 0.22 · 10−1 0.65 · 10−2 0.35 · 10−2

Iteration

number k
6 7 8 9 10 11

ε(k) 0.19 · 10−2 0.10 · 10−2 0.57 · 10−3 0.31 · 10−3 0.17 · 10−3 0.91 · 10−4

Table 1. The values of the estimate ε(k) of the approximate solution error for Lu ≡ −∆u

Table 1 gives the data how the estimate ε(k) = max
x∈Ω̄

1
2(w

(k)(x)− v(k)(x)) of the norm of the

error
∥

∥

∥
u∗ − u(k)

∥

∥

∥
of the approximate solution u(k)(x) varies depending on the iteration number

k, k = 0, 1, . . . , 11. It was found that
∥

∥

∥
u(11)

∥

∥

∥
= 0.2130.

Figure 1 shows the graph of the cross-sections of the upper w(k)(x) and the lower v(k)(x)

approximations at x2 = 0.5 for k = 0, 2, 6, 8. Figures 2, 3 show the surface of the approximate

solution u(11)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-

tionship ε(k+1)

ε(k)
, k = 0, 1, . . . , 11, according to the Table 1, it was received that ε(k+1)

ε(k)
≈ 0.543, that

indicates the geometric rate of convergence of the iterative sequence with the corresponding

index. Let us note that the convergence exponent turned out to be less than the exponent γ

estimated in accordance with Theorem 3.

Let us now consider the problem (29)–(31) for Lu ≡ −∆u + u. It was found that the system

of inequalities to determine the constants α, β is satisfied by the values α = 0.1, β = 5.3.

Further we find

M = max
x∈Ω̄

∫

Ω

Q2(x, s)ds = 0.03760,

M1 = max
x∈Ω̄

∫

Ω

[K+
2 (x, s) + K−

2 (x, s)]ds = 0.60410,

M0 = βmax
x∈Ω̄

u0(x) = 0.19929, L = 2 + eM0 = 3.22053, γ = M1 + LM = 0.725.
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Thus, γ < 1 and by Theorem 3, the successive approximations that are formed by the

scheme (34)–(36) bilaterally converge to the solution of the problem (29)–(31) forLu ≡−∆u+u.

Let us choose ε = 10−4. Then, in accordance with (28), to achieve this accuracy, it is

necessary to make k0(ε) =

[

ln
(β−α)M

2ε

ln 1
γ

]

+ 1 = 22 iterations. In fact, the accuracy ε = 10−4

was achieved at the tenth iteration. As one can see, the theoretical error estimate turned

out to be greatly overestimated too. As an approximate solution of the problem (29)–(31) for

Lu ≡ −∆u + u, the function u(10)(x) = v(10)(x)+w(10)(x)
2 will be accepted.

Iteration

number k
0 1 2 3 4 5

ε(k) 0.98 · 10−1 0.49 · 10−1 0.24 · 10−1 0.12 · 10−1 0.58 · 10−2 0.28 · 10−2

Iteration

number k
6 7 8 9 10

ε(k) 0.14 · 10−2 0.67 · 10−3 0.33 · 10−3 0.16 · 10−3 0.78 · 10−4

Table 2. The values of the estimate ε(k) of the approximate solution error for Lu ≡ −∆u + u

Table 2 gives the data how the estimate ε(k) = max
x∈Ω̄

1
2(w

(k)(x)− v(k)(x)) of the norm of the

error
∥

∥

∥
u∗ − u(k)

∥

∥

∥
of the approximate solution u(k)(x) varies depending on the iteration number

k, k = 0, 1, . . . , 10. It was found that
∥

∥

∥
u(10)

∥

∥

∥
= 0.1742. We can see, the norm of the approximate

solution in the transition to the equation with Lu ≡ −∆u + u has decreased.

Figure 4 shows the graph of the cross-sections of the upper w(k)(x) and the lower v(k)(x)

approximations at x2 = 0.5 for k = 0, 2, 6, 8. Figures 5, 6 show the surface of the approximate

solution u(10)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-

tionship ε(k+1)

ε(k)
, k = 0, 1, . . . , 10, according to the Table 2, it was received that ε(k+1)

ε(k)
≈ 0.488, that

indicates the geometric rate of convergence of the iterative sequence with the corresponding

index. Let us note that for case Lu ≡ −∆u + u the convergence exponent turned out to be less

than the exponent γ estimated in accordance with Theorem 3.

4 CONCLUSIONS

In the paper a method of two-sided approximations of the solution of the homogeneous

Dirichlet problem for a semilinear elliptic equation with Laplace operator −∆ and Helmholtz

operator −∆ + κ2 is proposed on the basis of the Green-Rvachev’s quasi-function method. A

computational experiment carried out for two equations with heterotone exponential nonlin-

earity demonstrated the possibilities and effectiveness of the method. The proposed approach

to the numerical solution of semilinear elliptic equations can be used in solving various applied

problems, the mathematical model of which is the problem (1)–(3). The proposed method is

more universal than the existing methods, and it allows to solve the boundary problem in do-

mains of arbitrary geometry, provided that this domain can be described by the R-function

method.
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Figure 1. Graph of the cross-sections of upper and lower approximations

w(k)(x1, 0.5), v(k)(x1, 0.5), k = 0, 2, 6, 8, for Lu ≡ −∆u
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Figure 2. Surface of the approximate solution u(11)(x) for Lu ≡ −∆u
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Figure 3. Contour lines of the approximate solution u(11)(x) for Lu ≡ −∆u
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w(k)(x1, 0.5), v(k)(x1, 0.5), k = 0, 2, 6, 8, for Lu ≡ −∆u + u
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Сидоров М.В. Метод квазiфункцiй Грiна-Рвачова побудови двобiчних наближень до додатного роз-

в’язку нелiнiйних крайових задач // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 360–375.

Розглядається однорiдна задача Дiрiхле для напiвлiнiйних елiптичних рiвнянь з операто-

ром Лапласа та оператором Гельмгольця. Для побудови двобiчних наближень до додатного

розв’язку цiєї крайової задачi використовується перехiд за допомогою квазiфункцiї Грiна-

Рвачова до еквiвалентного нелiнiйного iнтегрального рiвняння з подальшим його аналiзом

методами теорiї напiвупорядкованих просторiв. Робота i ефективнiсть розробленого метода

продемонстрована обчислювальним експериментом для тестової задачi з експоненцiальною

нелiнiйнiстю.

Ключовi слова i фрази: додатний розв’язок, напiвлiнiйна елiптична крайова задача, гетеро-

тонний оператор, двобiчнi наближення, квазiфункцiя Грiна-Рвачова.
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SLIMANE A.

SPACES GENERATED BY THE CONE OF SUBLINEAR OPERATORS

This paper deals with a study on classes of non linear operators. Let SL(X, Y) be the set of all

sublinear operators between two Riesz spaces X and Y. It is a convex cone of the space H(X, Y) of

all positively homogeneous operators. In this paper we study some spaces generated by this cone,

therefore we study several properties, which are well known in the theory of Riesz spaces, like order

continuity, order boundedness etc. Finally, we try to generalise the concept of adjoint operator. First,

by using the analytic form of Hahn-Banach theorem, we adapt the notion of adjoint operator to the

category of positively homogeneous operators. Then we apply it to the class of operators generated

by the sublinear operators.

Key words and phrases: Riesz space, Banach lattice, homogeneous operator, sublinear operator,
order continuous operator.

Laboratory of functional analysis and geometry of spaces, University of M’sila, M’sila 28000, Algeria

E-mail: amr.slimane@gmail.com

INTRODUCTION

The theory of Riesz spaces plays an important role in several branches of mathematics,

in particular in the geometry of Banach spaces and the theory of linear operators where the

notion of Banach lattice play a central role. In this work we generalize some vector lattice

properties to the category of sublinear operators i.e., positively homogenous and subadditive.

The set obtained is not a Banach space but a positive convex cone. Hence, this paper deals

with the extension of this set and their properties. The paper is organized as follows.

In Section 1 we recall some basic definitions and properties of Riesz spaces, we also recall

the notion of sublinear operators between a vector space X and a Riesz space Y.

In Section 2 we introduce the spaces spanned by different cones of sublinear operators. In

other hand we present some principal notions concerning the theory of Riesz spaces like order

continuity, order ideal, and we apply these notions on these spaces.

In Section 3 we introduce the adjoint of positively homogeneous operator. We first establish

the following result.

Let u be in L(X, Y). Then the bounded adjoint operator u∗ of u can be extended to a

bounded linear operator ũ∗ belongs to L(H∗(Y), H∗(X)) such that ũ∗ = u∗ on Y∗ and ‖ũ∗‖ =

‖u∗‖ = ‖u‖, where H∗(Y) is the space of all bounded positively homogeneous functionals on

Y, Y∗ is the topological dual space of Y and L(X, Y) is the Banach space of all bounded linear

operators from X into Y. Finally we adapt the existence theorem of bounded adjoint linear

operator to the category of positively homogeneous operators as follows.

УДК 517.983.2
2010 Mathematics Subject Classification: 46B42, 46B40, 47A05, 47B60, 47B65.
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Let X, Y be two Banach spaces and T ∈ H(X, Y). Then, T∗
h ∈ L(H∗(Y), H∗(X)) such that

‖T‖ = ‖T∗
h ‖, where T∗

h denotes the adjoint of T and H(X, Y) is the Banach space of all bounded

positively homogeneous operators from X into Y.

1 PRELIMINARIES

In this section, we introduce some terminology concerning Riesz spaces and Banach lat-

tices. These spaces are well known. For more details, the interested reader can consult, for

example, the references [2, 4–6]. But for our convenience, we include some recalls. We also

introduce the class of positively homogeneous operators.

Let X be a real vector space. Then X is called a Riesz space (or vector lattice) if it is an

ordered vector space with the additional property that the supremum of every nonempty finite

subset of X exists in X. We denote the supremum of the set {x, y} by sup{x, y} or x ∨ y.

Similarly, inf{x, y} or x ∧ y denote the infimum of the set {x, y}.

Let X be a Riesz space. The subset X+ = {x ∈ E : x ≥ 0} is called the positive cone of

X (which is salient, i.e. X+ ∩ (−X+) = {0}) and the elements of X+ are called the positive

elements of X.

Let X be a Riesz space, equipped with a norm. The norm in X is called a Riesz norm if

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖,

where |x| = sup{x,−x}. Denote x+ = sup{x, 0}, x− = sup{−x, 0}. Then obviously we have

x = x+ − x− and |x| = x+ + x−. Note that this implies that for any x ∈ X, the elements x

and |x| have the same norm. A Riesz space X equipped with a Riesz norm, is called a normed

Riesz space. If the norm is complete, X is called a Banach lattice. The convex cone X+ is norm

closed. A complete Banach lattice is a Banach lattice such that every order bounded set in X

has a supremum.

By a Riesz subspace (or a vector sublattice) of a Riesz space X we mean a linear subspace E

of X so that sup{x, y} belongs to E whenever x, y ∈ E. A vector subspace E of a Riesz space X

is said to be an order ideal or simply ideal whenever |x| ≤ |y| and y ∈ E imply x ∈ E.

A non-empty subset D is said to be upwards directed (respectively downwards directed)

if for all x1, x2 ∈ D there is x3 ∈ D such that x1 ∨ x2 ≤ x3 (respectively x1 ∧ x2 ≥ x3), if

sup D = x exists and D upwards directed (respectively inf D = y exists and D downwards

directed) we shall write D ↑ x (respectively D ↓ y).

Definition. Let X be a vector space and Y be a Riesz space. An operator T : X −→ Y is

1- positively homogeneous if for all x in X and λ in R+ we have

T(λx) = λT(x),

2- subadditive if for all x, y in X we have

T(x + y) ≤ T(x) + T(y).

The operator T is sublinear if it is positively homogeneous and subadditive. The operator

T is said to be superlinear if T is positively homogeneous and superadditive (i.e. T(x + y) ≥

T(x) + T(y) for all x, y in X). We have for all x in X

−T(−x) ≤ T(x). (1)
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We denote by H(X, Y) (respectively SL(X, Y)) the real vector space of all positively homo-

geneous (the set of all sublinear) operators from X into Y, equipped with the natural order

inducted by Y, i.e.

T ≤ S if T(x) ≤ S(x), ∀ x ∈ X.

The set SL(X, Y) is a pointed convex cone of H(X, Y) which is not salient.

Let T be in SL(X, Y). We will denote by ∇T the subdifferential of T, which is the set of all

linear operators u : X −→ Y such that u(x) ≤ T(x) for all x in X. We know (see, for example,

[1]), that ∇T is not empty if Y is a complete Banach lattice and T(x) = sup{u(x) : u ∈ ∇T},

moreover, the supremum is attained. If Y is simply a Banach lattice, then ∇T is empty in

general (see [3]).

If X is a Banach space and Y is a Banach lattice, then we will denote by SL(X, Y) the set

of all bounded (= continuous) sublinear operators from X into Y and by L(X, Y) the Banach

space of all bounded linear operators from X into Y. Let T be in SL(X, Y). We have (see [1]),

that T is bounded if and only if u is bounded for all u in ∇T. The set SL(X, Y) (respectively the

space L(X, Y)) is a subset (respectively a subspace) of the space H(X, Y) of all homogeneous

bounded operators from X into Y. The space H(X, Y) is normed by the standard norm

‖T‖ = sup
‖x‖≤1

‖T(x)‖.

2 SPACES SPANNED BY SUBLINEAR OPERATORS

Let X be a vector space and Y be a Riesz space. We denote by

△SL(X, Y) = SL(X, Y)− SL(X, Y)

the subspace of H(X, Y) spanned by SL(X, Y), i.e.

△SL(X, Y) = {T − S : T, S ∈ SL(X, Y)}.

We denote by △SL(X, Y) the subspace of all bounded operators in △SL(X, Y).

Proposition 1. Let X be a vector space and Y be a Riesz space. Then H(X, Y) is a Riesz space.

If in addition X is a Banach space and Y is a Banach lattice, then H(X, Y) is also a Banach

lattice.

Proof. It is sufficent to endow the vector space H(X, Y) with the partial order induced by Y.

It is clear that H(X, Y) is a Riesz space with respect to this order. Suppose now X be a Ba-

nach space and Y be a Banach lattice. Let (Tn)n ⊂ H(X, Y) be a Cauchy sequence, then

lim
n→+∞

‖Tn+p − Tn‖ = 0 implies that lim
n→+∞

‖Tn+p(x)− Tn(x)‖ = 0 for all x in X.

As Y is a Banach space there is T(x) ∈ Y such that lim
n→+∞

Tn(x) = T(x). Since Tn(αx) =

αTn(x) for all α in R+ and all x in X we have T(αx) = lim
n→+∞

Tn(αx) = lim
n→+∞

αTn(x) = αT(x)

for all α in R+ and all x in X. Thus, T is positively homogeneous. The operator T is clearly

bounded and hence H(X, Y) is a Banach space. Let now T, S ∈ H(X, Y) such that |T| ≤ |S|

then ‖T(x)‖ ≤ ‖S(x)‖ for all x in X, so ‖T‖ ≤ ‖S‖ and H(X, Y) is a Banach lattice.
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Proposition 2. Let X be a vector space and Y be a Riesz space. Then

(a) the space △SL(X, Y) is a Riesz subspace of H(X, Y);

(b) if X is a normed space and Y be a normed Riesz space, then △SL(X, Y) is a normed

Riesz space.

Proof. (a) The space △SL(X, Y), which is included in H(X, Y), is partially ordered by the natu-

ral order inducted by Y. Consider T, S in △SL(X, Y). Then, there are T1, T2, S1, S2 in SL(X, Y)

such that

T = T1 − T2, S = S1 − S2.

For all x in X we define T ∨ S by

(T ∨ S)(x) = T(x) ∨ S(x).

Using for x, y, z in X the identity x ∨ y + z = (x + z) ∨ (y + z), we obtain

(T ∨ S)(x) = (T1 − T2)(x) ∨ (S1 − S2)(x)

= (T1 + S2)(x) ∨ (S1 + T2)(x)− (T2 + S2)(x) = T̃(x)− S̃(x)

with T̃, S̃ ∈ SL(X, Y), where

T̃ = (T1 + S2) ∨ (S1 + T2) and S̃ = T2 + S2.

(b) It is clear that △SL(X, Y) is a normed Riesz space with the norm induced by the stan-

dard norm of H(X, Y) on △SL(X, Y), i.e. by the norm ‖T‖△SL(X,Y) = sup
‖x‖≤1

‖T(x)‖.

Proposition 3. Let X be a vector space and Y be a Dedekind complete Riesz space. Then

H(X, Y) is also a Dedekind complete Riesz space.

Proof. Let M ⊂ H(X, Y) be a nonempty subset, which is upper bounded. Then there is

S ∈ H(X, Y) such that for all T ∈ M we have T ≤ S, that is for all T ∈ M and all x ∈ X

we have T(x) ≤ S(x). This implies that for all x ∈ X the set {T(x) : T ∈ M} is upper bounded

by S(x) ∈ Y. Since Y is a Dedekind complete Riesz space, the supremum of {T(x) : T ∈ M}

exists in Y. We can put now R(x) = sup{T(x) : T ∈ M}. It is clear that R is a positively

homogeneous operator.

Remark 1. For all T = P − Q in △SL(X, Y) there is ϕT ∈ SL(X, Y) and ϕT super linear

(i.e. −ϕT sublinear) such that ϕT ≤ T ≤ ϕT and ϕT(−x) = ϕ−T(x) (respectively ϕT(−x) =

ϕ−T(x)) for all x in X. It suffices to define ϕT, ϕT by

ϕT(x) = P(x) + Q(−x), ϕT(x) = −P(−x)− Q(x)

and use the inequality (1).

Definition 1. Let T ∈ △SL(X, Y) be an operator between two Riesz spaces. The operator T

is said to be order bounded if T carries order bounded subsets of X to order bounded subsets

of Y.
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Definition 2. Let T ∈ △SL(X, Y) be an order bounded operator. Then T is said to be

(1) order continuous if for any downwards directed set D in E having infimum the null

element (i.e. D ↓ 0) we have inf(|T(x)|, x ∈ D) = 0 in Y;

(2) σ-order continuous if for all xn ↓ 0 in X we have in Y

inf(|T(xn)|, n ≥ 0) = 0.

We denote by

△SLb(X, Y) = {T ∈ △SL(X, Y), T order bounded},

△SLco(X, Y) = {T ∈ △SL(X, Y), T order continuous}.

It should be clear that all these collections are real vector spaces under the usual pointwise

algebraic operations.

Proposition 4. The set △SLb(X, Y) is a Riesz subspace of △SL(X, Y).

Proof. Consider T1, T2 in △SLb(X, Y), (α, β) in R
2 and α ≤ x ≤ β. Then

|(αT1 + βT2)(x)| ≤ |α||T1(x)|+ |β||T2(x)| ≤ |α|c1 + |β|c2 = c.

This implies that αT1 + βT2 ∈ △SLb(X, Y) and hence T1 ∨ T2 ∈ △SLb(X, Y) because

T1 ∨ T2 = 1
2(T1 + T2 + |T1 − T2|). Consequently, △SLb(X, Y) is a Riesz subspace of the Riesz

space △SL(X, Y).

3 THE ADJOINT OF POSITIVELY HOMOGENEOUS OPERATORS

Definition 3. Let X, Y be two Riesz spaces. Put

△rSL(X, Y) = {T1 − T2 : T1, T2 ∈ (SL(X, Y))+} ⊂ △SL(X, Y).

A sublinear operator T ∈ SL(X, Y) is said to be regular if T ∈ △rSL(X, Y).

We denote by

SLi(X, Y) = {T ∈ SL(X, Y) : T increasing},

△SLi(X, Y) = {T1 − T2 : T1, T2 ∈ SLi(X, Y)}

= SLi(X, Y)− SLi(X, Y),

Li(X, Y) = {T ∈ L(X, Y) : Tincreasing},

△Li(X, Y) = {T1 − T2 : T1, T2 ∈ Li(X, Y)}

= Li(X, Y)− Li(X, Y),

and we put X′
i = △Li(X, R), X′

i,s = △SLi(X, R).

Proposition 5. The spaces △rSL(X, Y),△SLi(X, Y) are Riesz subspaces of △SL(X, Y).
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Proof. The set △rSL(X, Y) is a subspace of △SL(X, Y). Further, if T1, T2 ∈ △rSL(X, Y), then

there is P1, Q1, P2, Q2 ∈ (SL(X, Y))+ such that T1 = P1 − Q1 and T2 = P2 − Q2. We have

T1 ∨ T2 = (P1 + Q2) ∨ (P2 + Q1)− (Q1 + Q2), which is in △rSL(X, Y) because

(P1 + Q2) ∨ (P2 + Q1), (Q1 + Q2) ∈ (SL(X, Y))+ .

The same for △SLi(X, Y).

Proposition 6. The spaces △rSL(X, Y),△SLi(X, Y) are Riesz subspaces of △SL(X, Y).

Proof. The set △rSL(X, Y) is a subspace of △SL(X, Y). Further, if T1, T2 ∈ △rSL(X, Y), then

there is P1, Q1, P2, Q2 ∈ (SL(X, Y))+ such that T1 = P1 − Q1 and T2 = P2 − Q2. We have

T1 ∨ T2 = (P1 + Q2) ∨ (P2 + Q1)− (Q1 + Q2), which is in △rSL(X, Y) because

(P1 + Q2) ∨ (P2 + Q1), (Q1 + Q2) ∈ (SL(X, Y))+ .

The same for △SLi(X, Y).

Remark 2. 1) Any linear operator is a regular sublinear operator. Indeed, if u ∈ L(X, Y), then

u = u+ − u− with u+(x) = 0 ∨ u(x), u−(x) = 0 ∨ (−u(x)), which are positive sublinear

operators.

2) The existence of the regular sublinear operators (not linear) is assured by the fact that if

T ∈ SL(X, Y) such that |T| ∈ SL(X, Y), then T is regular

T = T+ − T− = 2T+ − |T| (2T+, |T| ∈ (SL(X, Y))+).

As example, consider α, β ∈ R
+ such that α > β and T : R −→ R defined by

T(x) =

{
αx, if x ≥ 0,

βx, if x < 0.

Then T is sublinear (T(x) = (αx) ∨ (βx)) and |T| also because

|T|(x) = |T(x)| = (αx) ∨ (−βx).

Lemma 1 ([6, Lemma 21.3]). Let E be an ordered vector space, and let A, B be two subsets of E

such that inf A = x0, inf B = y0. Then

x0 + y0 = inf(A + B) = inf{a + b such that a ∈ A, b ∈ B}.

Proposition 7. Let X, Y be two Riesz spaces. Put

SLo(X, Y) = {T ∈ SLi(X, Y) such that T order continuous},

△SLo(X, Y) = SLo(X, Y)− SLo(X, Y).

Then

(a) the set SLo(X, Y) is a convex cone;

(b) the space △SLo(X, Y) ⊂ △SLco(X, Y) is an order ideal.
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Proof. (a) Let D ↓ 0, and p, q ∈ SLo(X, Y), then (p + q)(D) is upwards directed such that

(p + q)(D) ↓ 0. Indeed, if x1, x2 ∈ D, then there is x3 ∈ D such that x3 ≤ x1 and x3 ≤ x2. This

implies that (p + q)(x3) ∈ (p + q)(D). Thus

(p + q)(x3) ≤ (p + q)(x1) and (p + q)(x3) ≤ (p + q)(x2).

Let h be the infimum of (p + q)(D), then for all x1, x2 ∈ D there is x3 ∈ D such that

h ≤ (p + q)(x3) ≤ p(x1) + q(x2) for all x1, x2 ∈ D.

We have

h ≤ inf{p(x1) + q(x2), x1, x2 ∈ D}

≤ inf{p(x1), x1 ∈ D}+ inf{q(x2), x2 ∈ D }

≤ inf{|p(x1)|, x1 ∈ D}+ inf{|q(x2)|, x2 ∈ D} ≤ 0.

Consequently,

inf{|(p + q)(x)|, x ∈ D} ≤ inf{|p(x)| + |q(x)|, x ∈ D}

≤ inf{p(x) + q(x), x ∈ D} ≤ 0.

It is clear that λp ∈ SLo (X, Y) for all λ ∈ R
+ and all p ∈ SLo(X, Y). Furthermore

inf{|(p ∨ q)(x)|, x ∈ D} = inf{(p ∨ q)(x), x ∈ D}

≤ inf{(p + q)(x), x ∈ D} ≤ 0.

(b) Let T ∈ △SLo(X, Y). Then T = p − q with p, q ∈ SLo(X, Y). Let D ↓ 0. We have

|p − q|(x) ≤ |p(x)| + |q(x)| ≤ p(x) + q(x) for all x ∈ D.

So,

inf{|(p − q)(x)|, x ∈ D} ≤ inf{(p + q)(x), x ∈ D} ≤ 0.

Consequently, T ∈ △SLco(X, Y).

Let now D ↓ 0. Assume that |T| ≤ |S|, S ∈ △SLo(X, Y), then

inf{|T|(x), x ∈ D} ≤ inf{|S|(x), x ∈ D} ≤ 0.

This ends the proof.

In the sequel, we extend the notion of adjoint operator on some spaces defined above. Let

X be a Banach space and Y be a Banach lattice. Put

X′ = L(X, R),

X∗ = L(X, R),

X′
∆
= △SL(X, R),

X∗
∆
= △SL(X, R),

H′(X) = H(X, R),

H∗(X) = H(X, R).

We have X′ ⊂ X′
∆
⊂ H′(X) and X∗ ⊂ X∗

∆
⊂ H∗(X).
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Theorem 1. Let X, Y be two Riesz spaces and u be in L(X, Y). Then there exists an ũ′ in

L(H′(Y), H′(X)) such that ũ′ = u′ on Y′ and ũ′(ϕ) ≤ |ϕ ◦ u| for all ϕ ∈ H′(Y), where u′ is the

adjoint operator of u.

Proof. Let u be in L(X, Y), the adjoint operator of u is defined by

u′ : Y′ −→ X′ ⊂ H′(X)

such that

u′(ϕ) = ϕ ◦ u for all ϕ ∈ Y′.

Let now P ∈ SL(H′(Y), H′(X)) be defined by

P(ϕ) = |ϕ ◦ u|.

We have

u′(ϕ) = ϕ ◦ u ≤ |ϕ ◦ u| = P(ϕ) for all ϕ ∈ Y′.

By the Hahn-Banach theorem (the analytic form), there is ũ′ ∈ L(H′(Y), H′(X)) such that

ũ′ = u′ on Y′ and

ũ′(ϕ) ≤ P(ϕ) ≤ |ϕ ◦ u|

for all ϕ ∈ H′(Y) and this completes the proof.

Theorem 2. Let X, Y be two Banach spaces and u be in L(X, Y). Then there exists an ũ′ in

L(H∗(Y), H∗(X)) such that ũ′ = u∗ on Y∗ and ‖ũ′‖ = ‖u∗‖ = ‖u‖. In this case ũ′ is denoted

by ũ∗.

Proof. Let u be in L(X, Y). By Theorem 1 there is ũ′ in L(H′(Y), H′(X)) such that ũ′ = u∗ on

Y′ and ũ′(ϕ) ≤ |ϕ ◦ u| for all ϕ ∈ H′(Y). On the other hand, because ũ′(ϕ) ≤ |ϕ ◦ u| we obtain

|ũ′(ϕ)| ≤ |ϕ ◦ u| and hence for all ϕ ∈ H∗(Y)

‖ũ′(ϕ)‖ ≤ ‖ϕ ◦ u‖ ≤ ‖u‖‖ϕ‖.

So, ũ′ ∈ L(H∗(Y), H∗(X)). It remains to show that ‖ũ′‖ = ‖u‖. Since ‖ũ′(ϕ)‖ ≤ ‖u‖‖ϕ‖,

we conclude that ‖ũ′‖ ≤ ‖u‖. For the converse inequality, we know that ‖u∗‖ = ‖u‖, hence

‖u‖ = ‖u∗‖ = sup
ϕ∈BY∗

‖u∗(ϕ)‖

= sup
ϕ∈BY∗

‖ũ′(ϕ)‖ (because ũ′
�Y∗ = u∗)

≤ sup
ϕ∈BH∗(Y)

‖ũ′(ϕ)‖ (because BY∗ ⊂ BH∗(Y))

= ‖ũ′‖

and then the theorem is proved.

Now, we extend the notion of adjoint operator to positively homogeneous operators.

Definition 4. Let X, Y be two Riesz spaces and T ∈ H(X, Y). We define the adjoint of T by

T′
h : H′(Y) −→ H′(X)

ϕ 7−→ T′
h(ϕ) = ϕ ◦ T

such that T′
h(ϕ)(x) = ϕ ◦ T(x).
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Proposition 8. Let X, Y be two Banach spaces and T ∈ H(X, Y). Then T′
h ∈ L(H∗(Y), H∗(X))

such that ‖T‖ = ‖T′
h‖. In this case T′

h is denoted by T∗
h .

Proof. Consider T in H(X, Y). We have for all ϕ ∈ H∗(Y)

‖T′
h(ϕ)‖ = ‖ϕ ◦ T‖ ≤ ‖ϕ‖‖T‖.

So, T′
h ∈ L(H∗(Y), H∗(X)). To show that ‖T‖ = ‖T′

h‖, we first consider the mapping

i : x ∈ X 7−→ i(x) ∈ H∗∗(X) such that

i(x) : H∗(X) −→ R,

ϕ 7−→ (i(x), ϕ) = 〈ϕ, x〉.

Then i is such that ‖i(x)‖ = ‖x‖ for all x ∈ X. Indeed,

‖i(x)‖ = sup
ϕ∈BH∗(X)

‖(i(x), ϕ)‖

= sup
ϕ∈BH∗(X)

‖〈ϕ, x〉‖

≤ ‖x‖.

Conversely

‖x‖ = sup
ξ∈BX∗

‖〈ξ, x〉‖ ≤ sup
ϕ∈BH∗(X)

‖〈ϕ, x〉‖ (because BX∗ ⊂ BH∗(X))

≤ sup
ϕ∈BH∗(X)

‖(i(x), ϕ)‖ ≤ ‖i(x)‖.

Finally, we have

‖T′
h‖ = sup

ϕ∈BH∗(Y)

‖T′
h(ϕ)‖ = sup

ϕ∈BH∗(Y)

‖ϕ ◦ T‖

= sup
ϕ∈BH∗(Y)

( sup
x∈BX

‖〈ϕ ◦ T, x〉‖)

= sup
ϕ∈BH∗(Y)

( sup
x∈BX

‖〈ϕ, T(x)〉‖)

= sup
x∈BX

( sup
ϕ∈BH∗(Y)

‖〈ϕ, T(x)〉‖)

= sup
x∈BX

( sup
ϕ∈BH∗(Y)

‖(i(T(x)), ϕ)‖)

= sup
x∈BX

‖i(T(x))‖

= sup
x∈BX

‖T(x)‖ = ‖T‖.

This completes the proof.

Definition 5. Let X, Y be two Riesz spaces. Consider T ∈ △SL(X, Y) with T = P − Q. We

define a linear operator on Y′
i,s denoted T′

i by

T′
i : Y′

i,s −→ X′
∆

,

T1 − T2 7−→ T′
i (T1 − T2) = T1 ◦ P + T2 ◦ Q − (T1 ◦ Q + T2 ◦ P).
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Note that this operator is well defined. Indeed, if S ∈ Y′
i,s such that S = S1 − S2 = S3 − S4,

then

T′
i (S1 − S2) = S1 ◦ P + S2 ◦ Q − (S1 ◦ Q + S2 ◦ P)

= (S1 − S2) ◦ P − (S1 − S2) ◦ Q

= (S3 − S4) ◦ P − (S3 − S4) ◦ Q = T′
i (S3 − S4).

Proposition 9. Let X, Y be two Riesz spaces, then there is T̃′
i in L(H′(Y), H′(X)) such that

T̃′
i = T′

i on Y′
i,s.

Proof. We define a sublinear operator S : H′(Y) −→ H′(X) by

S(ϕ) = |ϕ ◦ P|+ |ϕ ◦ Q|.

For all ϕ = ϕ1 − ϕ2 ∈ Y′
i,s we have

T′
i (ϕ) = T′

i (ϕ1 − ϕ2) = ϕ1 ◦ P + ϕ2 ◦ Q − (ϕ1 ◦ Q + ϕ2 ◦ P) = (ϕ1 − ϕ2) ◦ P − (ϕ1 − ϕ2) ◦ Q

≤ |(ϕ1 − ϕ2) ◦ P|+ |(ϕ1 − ϕ2) ◦ Q| = S(ϕ).

The Hahn-Banach theorem implies that T′
i can be extended to a linear operator

T̃′
i ∈ L(H′(Y), H′(X)) such that T̃′

i (ϕ) ≤ S(ϕ) for all ϕ ∈ H′(Y).

Remark 3. If T ∈ L(X, Y), then we have T̃′ = T∗
h on Y′, where T′

h denote the operator defined

in Definition 4. If T ∈ △SL(X, Y), then we have T̃′
i = T′

h on Y′
i .

Proposition 10. Let X, Y be two Riesz spaces and T be in (SL(X, Y))+ . Then the following

properties are satisfied.

(1) We have |T|′i ≤ |T′
i |.

(2) The restriction of T′
i to SLi(Y, R) verifies |T′

i | = |T|′i .

Proof. (1) Let T ∈ (SL(X, Y))+ and ϕ ∈ Y′
i,s, then there is ϕ1, ϕ2 ∈ SLi(X, Y) such that

ϕ = ϕ1 − ϕ2 and

|T′
i |(ϕ) = |T′(ϕ)| = |ϕ1 ◦ T − ϕ2 ◦ T| ≥ ϕ1 ◦ T − ϕ2 ◦ T

≥ ϕ1 ◦ |T| − ϕ2 ◦ |T| ≥ |T|′i(ϕ).

(2) Let T ∈ (SL(X, Y))+ and ϕ ∈ SLi(Y, R) we have

|T′
i |(ϕ) = |T′(ϕ)| = |ϕ(T)| = ϕ(T) (because ϕ ↑ and T ≥ 0)

= ϕ(|T|) = |T|′i(ϕ)

and this completes the proof.
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У цiй статтi дослiджуються деякi класи нелiнiйних операторiв. Нехай SL(X, Y) — множина

всiх сублiнiйних операторiв мiж двома просторами Рiса X та Y. Це є опуклий конус в про-

сторi H(X, Y) всiх позитивно однорiдних операторiв. У цiй статтi дослiджено деякi простори,

породженi цим конусом, зокрема ми дослiджуємо деякi властивостi, якi добре вiдомi в теорiї

просторiв Рiса, такi як порядкова неперервнiсть, порядкова обмеженiсть та iн. Насамкiнець,

ми пробуємо узагальнити концепцiю спряженого оператора. Спочатку, використовуючи ана-

лiтичну форму теореми Гана-Банаха, ми пристосовуємо поняття спряженого оператора до

категорiї позитивно однорiдних операторiв, а потiм застосовуємо його до класу операторiв,

породжених сублiнiйними операторами.

Ключовi слова i фрази: простiр Рiса, банахова ґратка, однорiдний оператор, сублiнiйний опе-

ратор, порядково неперервний оператор.
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ON AN APPROACH TO THE CONSTRUCTION OF THE FRIEDRICHS AND

NEUMANN-KREIN EXTENSIONS OF NONNEGATIVE LINEAR RELATIONS

Let L0 be a closed linear nonnegative (probably, positively defined) relation ("multivalued op-

erator") in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary

triples) and corresponding Weyl functions and Kochubei-Strauss characteristic ones, the Friedrichs

(hard) and Neumann-Krein (soft) extensions of L0 are constructed.

It should be noted that every nonnegative linear relation L0 in a Hilbert space H has two extremal

nonnegative selfadjoint extensions: the Friedrichs extension LF and the Neumann-Krein extension

LK, satisfying the following property:

(∀ε > 0)(LF + ε1)−1 ≤ (L̃ + ε1)−1 ≤ (LK + ε1)−1

in the set of all nonnegative selfadjoint subspace extensions L̃ of L0.

The boundary triple approach to the extension theory was initiated by F. S. Rofe-Beketov,

M. L. and V. I. Gorbachuk, A. N. Kochubei, V. A. Mikhailets, V. O. Dercach, M. N. Malamud,

Yu. M. Arlinskii and other mathematicians.

In addition, it is showed that the construction of the mentioned extensions may be realized in a

more simple way under the assumption that initial relation is a positively defined one.

Key words and phrases: Hilbert space, relation, operator, extension, boundary value space.
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INTRODUCTION

Beginning with the work by R. Arens [2], the efforts of many authors were directed at

the studying of linear relations (multivalued operators), in particular, at the investigations

concerning the extension theory of the linear relations in Hilbert space (see, e.g., [4, 5, 8, 9]). A

number of problems arising in the mentioned theory have been solved in terms of the so called

boundary value spaces (boundary triples) and corresponding Weyl functions (see Definitions

1, 2 and [3, 6, 7, 10, 11]).

Let ⊕ and ⊖ be the symbols of orthogonal sum and orthogonal complement, respectively.

Explain that under (closed) linear relation in H, where H is a fixed complex Hilbert space

equipped with the inner product (·|·) and norm ‖·‖ , we understand a (closed) linear manifold

in H2 de f
= H ⊕ H and that in the theory of linear relations every linear operator is identified

with its graph. Each such relation T has the inverse T−1 de f
=

{
(y′, y) ∈ H2 | (y, y′) ∈ T

}
and

the adjoint T∗ = H2 ⊖ JT
(
= J(H2 ⊖ T)

)
, where ∀ h1, h2 ∈ H J (h1, h2)

de f
= (−ih2, ih1). This

УДК 513.88
2010 Mathematics Subject Classification: 47A06, 47A56, 47B25.
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circumstance (the inverse and adjoint existence) makes the theory of linear relations extremely

useful in the study of various problems.

Remind that a linear relation S in H is said to be nonnegative (in symbols S ≥ 0) if for all

(y, y′) ∈ S (y′|y) ≥ 0, positively defined (in symbols S ≫ 0) if, in addition,

inf S
de f
= inf

{(
u′|u

)
|
(
u, u′

)
∈ S, ‖u‖ = 1

}
> 0,

and selfadjoint if S = S∗.

In this paper the role of initial object is played by a closed linear nonnegative relation L0 in

H. It is known [5] that there exist selfadjoint extensions (probably, subspace ones) LF and LK

of L0 satisfying the following property:

selfadjoint extension L1 of L0 is nonnegative iff for any ε > 0

∀y ∈ H
(
(LF + ε1H)

−1 y|y
)
≤

(
(L1 + ε1H)

−1 y|y
)
≤

(
(LK + ε1H)

−1 y|y
)

. (1)

In the case when L0 is a densely defined operator, this fact was proved by M. Krein [14].

The extensions LF and LK are called the Friedrichs and Neumann-Krein extensions of L0,

respectively. If L0 is a positively defined, the first of the inequalities (1) holds under ε = 0, too.

The aim of this article is to construct the mentioned extensions in the terms of boundary

value spaces and corresponding Weyl functions. We widely use the results exposed in [1, 3, 6,

7, 16, 19], but our approach is different from ones of these papers. In particular, we (as in our

previous articles [17] and [18]) deal with Cayley transforms U(λ) of Weyl functions (Strauss-

Kochubei characteristic functions in the sence of [13] and [20]). But the papers are mentioned

above devoted to the investigation of U(λ) under Imλ 6= 0, while we are interested to consider

the behaviour of U(λ) in the case when λ ∈ R, first of all in the situations as λ → −0 and

λ → −∞.

1 NOTATIONS AND PRELIMINARY RESULTS

Through this paper we use the following notations:

D(T), R(T), ker T are, respectively, the domain, range, and kernel of a (linear) relation (in

partial, operator) T;

D(T) = {y ∈ H| (∃ y′ ∈ H) : (y, y′) ∈ T} ; R(T) = {y′ ∈ H| (∃ y ∈ H) : (y, y′) ∈ T} ;

ker T = {y ∈ H| (y, 0) ∈ T} ;

if λ ∈ C then T − λ = {(y, y′ − λy) | (y, y′) ∈ T} , and so

ker(T − λ) = {y ∈ H| (y, 0) ∈ T − λ} (= {y ∈ H| (y, λy) ∈ T});
∧

ker(T − λ) = {(y, λy : y ∈ ker(T − λ)} ;

ρ(T) = {λ ∈ C| ker(T − λ) = {0}, R(T − λ) = H} (the resolvent set of T);

1X is the identity in X.

If X, Y are Hilbert spaces then (·|·)X is the symbol of scalar product in X, B(X, Y) is the set

of linear bounded operators A : X → Y such that D(A) = X; B(X)
de f
= B(X, X).

If Ai : X → Yi (i = 1, 2) are linear operators then the notation A = A1 ⊕ A2 means that

Ax =

(
A1x

A2x

)
for every x ∈ X. Let s − lim denotes the strong limit.

Under L0 we understand the linear relation described in the Introduction, and L
de f
= L∗

0 .
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Definition 1. Let H be a Hilbert space and Γ1, Γ2 ∈ B (L,H). The triple (H, Γ1, Γ2) is called

the boundary value space (BVS) for the linear relation L0 if

R(Γ1 ⊕ Γ2) = H⊕H, ker(Γ1 ⊕ Γ2) = L0

and for any ŷ = (y, y′) , ẑ = (z, z′) ∈ L we have

(
y′|z

)
−

(
y|z′

)
= (Γ1ŷ|Γ2ẑ)H − (Γ2ŷ|Γ1ẑ)H.

Through the paper we suppose that (the selfadjoint) relation L2
de f
= ker Γ2 is nonnegative,

and so ∀λ < inf L2 the following operators are correctly defined:

Lλ= (L2− λ)−1∈B(H), L̂λ=

(
Lλ

1H + λLλ

)
∈ B

(
H, H2

)
, L̃λ = (Lλ, 1H+λLλ)∈ B

(
H2, H

)
,

i.e. ∀y ∈ H L̂λy =

(
Lλy

y + λLλy

)
, ∀ŷ = (y, y′) ∈ H2 L̃λŷ = Lλy + (y′ + λLλy′)

(it is easy to see that R(L̂λ) = L2 and L̂∗
λ = L̃λ). Put

Zλ =
(
Γ1L̂λ

)∗
, Ẑλ =

(
Zλ

λZλ

)
.

Definition 2. A B(H)-valued function

M(λ) = Γ1Ẑλ (λ < inf L2)

is called the Weyl function of the relation L0 corresponding to its boundary value space

(H, Γ1, Γ2) .

Note that M(λ) = M(λ)∗.

Remark 1. The notion of BVS had been introduced at first in [12] under the assumption that L0

is a densely defined symmetric operator having equal defect numbers. In [16] this notion was

extended onto the case of nondensely defined Hermitian operators. The conception of Weyl

function corresponding to a given BVS was appeared in [6] and had found its development in

many papers (see, for example, [7, 10, 11] and references therein). It is easy to see that Defini-

tion 2 is equivalent to suitable defintions from the mentioned articles. It becomes clear after

analyzing the results of the monograph [15] (see also [17] and [18]).

Theorem 1. For arbitrary λ, µ ∈ (−∞, inf L2) M(λ)− M(µ)= (λ − µ)Z∗
λZµ

(
= (λ − µ) Z∗

µZλ

)
,

in particular, µ < λ implies M(λ)− M(µ) ≫ 0. Hence for any z < inf L2 there exist

s − lim
λ→−0

(M(λ)− M(z))−1 de f
= R0 (≥ 0) ,

s − lim
λ→−∞

(M(λ)− M(z))−1 de f
= R−∞ (≤ 0) .

Theorem 2. Let LA = ker(A1Γ1 + A2Γ2), where A1, A2 ∈ B(H) and

Aλ
de f
= A1M(λ) + A2 (λ < inf L2) .

If A−1
λ ∈ B (H) , then λ ∈ ρ (LA) and

(LA − λ)−1 = (L2 − λ)−1 − Zλ A−1
λ A1Z∗

λ. (2)
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Theorem 3. The linear relation L1 is a selfadjoint extension of L0 iff there exists a unitary

operator K ∈ B(H) such that L1 = ker [(K − 1H) Γ1 + i (K + 1H) Γ2] .

Put

L(λ) = L0

·
+

∧
ker (L − λ) (λ < inf L2) . (3)

Theorem 4. L(λ) = ker (Γ1 − M(λ)Γ2) .

Theorem 5. Suppose that z < inf L2, λ < inf L2 and z 6= λ. Then L(λ) is a selfadjoint relation

and z ∈ ρ(L(λ)). Moreover,

(LF − z)−1 = s − lim
λ→−∞

(
L(λ) − z

)−1
, (LK − z)−1 = s − lim

λ→−0

(
L(λ) − z

)−1
.

Remark 2. The results mentioned in Theorems 1–5 above are well known or are immediate

consequences of such ones (see, e. g., [1, 3, 5, 7, 9, 16]).

2 MAIN RESULTS

Let λ and z be as above. Before formulating the main results let us introduce the following

(defined on ρ(L2)) operator-functions by setting

R(λ) = (M(λ)− M(z))−1 , Ω±(λ) = (M(λ)± i) R(λ),

U(λ) = (M(λ)−i) (M(λ) + i)−1 .
(4)

It is easily to check by calculation that

U(λ) = Ω−(λ)Ω
−1
+ (λ), (5)

Ω±(λ) = 1H + (M(z)± i) R(λ), (6)

Ω
−1
± (λ) = 1H − (M(z)± i) (M(λ)± i)−1 . (7)

Lemma 1.

L(λ) = {ŷ ∈ L | (U(λ)− 1H) Γ1ŷ + i (U(λ) + 1H) Γ2ŷ = 0} . (8)

Proof. It is clear that (4) yields

(U(λ)− 1H) M(λ) = −i (U(λ) + 1H) . (9)

Let us denote (temporarily) the relation from the right side of (8) by L[λ]. Taking into ac-

count (9) we obtain the following:

ŷ ∈ L(λ) ⇒ Γ1ŷ − M(λ)Γ2 ŷ = 0 ⇒ (U(λ)− 1H) Γ1ŷ + i (U(λ) + 1H) Γ2ŷ = 0 ⇒ y ∈ L[λ].

Thus L(λ) ⊂ L[λ]. But L(λ), L[λ] are selfadjoint relations (see Theorem 3), therefore

L(λ) = L[λ].

Lemma 2. Let B and R be selfadjoint operators from B(H) and

Ω±
de f
= 1H + BR ± iR.

Then Ω
−1
± ∈ B(H).
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Proof. One can readily check by calculations that
(

B − i − Ω−

−(B + i) Ω+

)(
Ω

∗
− Ω

∗
+

B + i B − i

)
=

(
Ω

∗
− Ω

∗
+

B + i B − i

)(
B − i − Ω−

−(B + i) Ω+

)
=−2i1H⊕H,

in particular

Ω
∗
−Ω− = Ω

∗
+Ω+, (10)

Ω
∗
− (B − i)− Ω

∗
+ (B + i) = −2i1H, (11)

(B − i) Ω
∗
+ = Ω− (B − i) , (B + i) Ω

∗
− = Ω+ (B + i) . (12)

It follows from (10) that ‖Ω−h‖ = ‖Ω+h‖ for each h ∈ H. This yields that there exists an

isometry K : R(Ω−) → R(Ω+) such that Ω+ = KΩ−, consequently there exist K+, K− ∈

∈ B(H), satisfying the equalities Ω
∗
− = Ω

∗
+K+, Ω

∗
+ = Ω

∗
−K−. Thus R (Ω∗

−) = R (Ω∗
+) . Taking

into account (11) we see that R (Ω∗
−) + R (Ω∗

+) = H, therefore

R (Ω∗
−) = R (Ω∗

+) = H. (13)

The equalities (13) imply

ker Ω+ = ker Ω− = {0} . (14)

In view of (12) and (14) we obtain ker Ω
∗
− = ker Ω

∗
+ = {0} . To complete the proof it is sufficient

to apply (13).

Proposition 1. There exist the unitary operators U−∞, U0 ∈ B(H) defined as follows:

U−∞ = s − lim
λ→−∞

U(λ), U0 = s − lim
λ→−0

U(λ). (15)

Moreover,

U−∞ = (1H + (M(z)− i)R−∞)) (1H + (M(z) + i)R−∞))−1 , (16)

U0 = (1H + (M(z)− i)R0)) (1H + (M(z) + i)R0))
−1 , (17)

where R−∞ and R0 are as in the Theorem 1.

Proof. It follows from Theorem 1, from (6) and from Lemma 2, applied to the operators

1H + BR ± iR with B = M(z), R = R−∞, that s − lim
λ→−∞

Ω±(λ) = 1H + (M(z)± i) R−∞

and the operators in the right side of the latter equality are invertible in B(H). Further, in view

of (7) we obtain
∥∥∥Ω

−1
+ (λ)

∥∥∥ ≤ 1 + ‖M(z) + i‖ ·
∥∥∥(M(λ) + i)−1

∥∥∥ .

On the other hand, using the elementary properties of the resolvent of a selfadjoint operator

we conclude that for each λ < inf L2

∥∥∥(M(λ) + i)−1
∥∥∥ ≤ 1. Thus the family

{
Ω

−1
+ (λ)| − ∞ < λ < inf L2

}

is uniformly bounded in B(H), therefore

s − lim
λ→−∞

Ω
−1
+ (λ)

(
= s − lim

λ→−∞

Ω+(λ)

)−1

= (1H + (M(z) + i) R−∞)
−1.

Whence using (5) we conclude that there exists the first limit in (15) and the equality (16)

holds. Similar arguments show that there exists the second limit in (15) and the equality (17)

holds.

Finally, taking into account (15) and the invertibility in B(H) of the operators in right sides

of (16)–(17), we conclude that the unitarity of U(λ) under λ < inf L2 yields the unitarity of

U−∞ and U0.
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Theorem 6.

LF = {ŷ ∈ L | (U−∞ − 1H) Γ1ŷ + i (U−∞ + 1H) Γ2ŷ = 0} , (18)

LK = {ŷ ∈ L | (U0 − 1H) Γ1ŷ + i (U0 + 1H) Γ2ŷ = 0} , (19)

where U−∞ and U0 are defined according to (15).

Proof. Applying (2) under A1 = 1H, A2 = −M(λ) and Theorem 4 we obtain

(
L(λ) − z

)−1
= (L2 − z)−1 − Zz (M(z)− M(λ))−1 Z∗

λ (λ, z < inf L2, z 6= λ)

(recall that L(λ) is defined by (3)). The latter equality together Theorem 1 and Theorem 5

implies

(LF − z)−1 = (L2 − z)−1 + ZzR−∞Z∗
z , (LK − z)−1 = (L2 − z)−1 + ZzR0Z∗

z . (20)

On the other hand, Theorem 3 shows that there exists an unitary operator K ∈ B(H) such that

L1 = ker [(K − 1H) Γ1 + i (K + 1H) Γ2] .

Applying Theorem 2 under A1 = (K − 1H) , A2 = i (K + 1H) we conclude that

(LF − z)−1 = (L2 − z)−1 − Zz [(K − 1H) M(z) + i (K + 1H)]
−1 (K − 1H) Z∗

z . (21)

Comparing (20) and (21) we see that

[(K − 1H) M(z) + i (K + 1H)]
−1 (K − 1H) + R−∞ = 0,

i. e. (multiplying this identity from left by the expression contained in square brackets)

K [1H + M(z)R−∞ + iR−∞] = 1H + M(z)R−∞ − iR−∞.

Whence using (16) we obtain K = U−∞. The relation (18) is proved. The proof of relation (19)

is analogous.

The construction of Friedrichs and Neumann-Krein extensions of L0 may be realized in a

more simple way in the case when L2 (and hence L0) is a positively defined relation. Before

considering this case note that the Theorem 5 implies

L0 ≫ 0 ⇒ L−1
F = s − lim

λ→−∞

(
L(λ)

)−1
. (22)

Further, put

B
de f
= s − lim

λ→−∞

(M(λ)− M(0))−1 . (23)

It follows from the Theorem 1 that the limit in (23) exists. Moreover, B ∈ B(H) and B ≤ 0.

Theorem 7. Assume that L2 ≫ 0 and put

γ1ŷ = Γ1ŷ − M(0)Γ2ŷ, (24)

γ2ŷ = Γ2ŷ − Bγ1ŷ ≡ −BΓ1ŷ + (1H + BM(0)) Γ2ŷ, (25)

where ŷ runs through L and B is defined according to (23). Then
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i) (H, γ1, γ2) is a BVS for L0;

ii) LF = ker γ2 ≡ {ŷ ∈ L | γ2ŷ = 0};

iii) LK = ker γ1 ≡ {ŷ ∈ L | γ1ŷ = 0} .

Proof. Since LK = L0

·
+

∧
ker L (see [5] and [3, Prop. 3.2.1]) the statement iii) is an immediate

consequence of (3) and Theorem 4 under λ = 0. Further, thinking as in the proof of Theorem

6 we obtain (
L(λ)

)−1
= L−1

2 + Z0 (M(λ)− M(0))−1 Z∗
0 (λ < 0),

L̃−1 = L−1
2 + Z0 [−BM(0) + (1H + BM(0))]−1 BZ∗

0 = L−1
2 + Z0BZ∗

0 ,

where L̃ = ker γ2. So, item ii) follows from (22) and (23).

Furthermore, (24), (25) may be written in the following form:

(
γ1

γ2

)
=

(
1H − M(0)

−B 1H + BM(0)

)(
Γ1

Γ2

)
. (26)

It is clear that the matrix operator in the right side of (26) is invertible in B (H ⊕ H) and

(
Γ1

Γ2

)
=

(
1H + M(0)B M(0)

B 1H

)(
γ1

γ2

)
.

Moreover, the equality

(
1H − M(0)

−B 1H + BM(0)

)(
0 1H
−1H 0

)(
1H − B

−M(0) 1H + BM(0)

)
=

(
0 1H
−1H 0

)

implies that for any ŷ, ẑ ∈ L (Γ1ŷ|Γ2ẑ)H − (Γ2ŷ|Γ1ẑ)H = (γ1ŷ|γ2ẑ)H − (γ2ŷ|γ1ẑ)H. Hence

(see [15] for the details) (H, γ1, γ2) is a boundary value space for L0.
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Сторож О.Г. Про один пiдхiд до побудови розширень Фрiдрiхса та Неймана-Крейна невiд’ємного лi-

нiйного вiдношення // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 387–394.

Нехай L0 — замкнене лiнiйне невiд’ємне (можливо, додатно визначене) вiдношення (“ба-

гатозначний оператор”) у комплексному гiльбертовому просторi H. У термiнах так званих

просторiв граничних значень (граничних трiйок) i вiповiдних функцiй Вейля та характеристи-

чних функцiй Кочубея-Штрауса побудовано розширення Фрiдрiхса (жорстке розширення) та

Неймана-Крейна (м’яке розширення) вiдношення L0.

Зазначимо, що кожне невiд’ємне лiнiйне вiдношення L0 у гiльбертовому просторi H має

два екстремальнi невiд’ємнi самоспряженi розширення: розширення Фрiдрiхса LF та розши-

рення Неймана-Крейна LK , якi володiють такою властивiстю:

(∀ε > 0)(LF + ε1)−1 ≤ (L̃ + ε1)−1 ≤ (LK + ε1)−1

на множинi всiх невiд’ємних самоспряжених розширень-вiдношень L̃ вiдношення L0.

Розвивається пiдхiд, заснований на поняттi граничної трiйки. Цей пiдхiд був започатко-

ваний Ф. С. Рофе-Бекетовим, М. Л. Горбачуком та В. I. Горбачук, А. Н. Кочубеєм,

В. А. Михайлецем, В. О. Деркачем, М. Н. Маламудом, Ю. М. Арлiнським та iншими мате-

матиками.

Показано, що побудова згаданих розширень може бути реалiзованою простiшим шляхом

у випадку, коли вiдношення L0 є додатно визначеним.

Ключовi слова i фрази: гiльбертiв простiр, вiдношення, оператор, розширення, простiр гра-

ничних значень.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2018, 10 (2), 395–401 Карпатськi матем. публ. 2018, Т.10, №2, С.395–401

doi:10.15330/cmp.10.2.395-401

VASYLYSHYN T.V.

SYMMETRIC ∗-POLYNOMIALS ON Cn

∗-Polynomials are natural generalizations of usual polynomials between complex vector spaces.

A ∗-polynomial is a function between complex vector spaces X and Y, which is a sum of so-called

(p, q)-polynomials. In turn, for nonnegative integers p and q, a (p, q)-polynomial is a function be-

tween X and Y, which is the restriction to the diagonal of some mapping, acting from the Cartesian

power Xp+q to Y, which is linear with respect to every of its first p arguments, antilinear with respect

to every of its last q arguments and invariant with respect to permutations of its first p arguments

and last q arguments separately.

In this work we construct formulas for recovering of (p, q)-polynomial components of ∗-polyno-

mials, acting between complex vector spaces X and Y, by the values of ∗-polynomials. We use these

formulas for investigations of ∗-polynomials, acting from the n-dimensional complex vector space

C
n to C, which are symmetric, that is, invariant with respect to permutations of coordinates of its

argument. We show that every symmetric ∗-polynomial, acting from C
n to C, can be represented as

an algebraic combination of some “elementary” symmetric ∗-polynomials.

Results of the paper can be used for investigations of algebras, generated by symmetric ∗-poly-

nomials, acting from Cn to C.

Key words and phrases: (p, q)-polynomial, ∗-polynomial, symmetric ∗-polynomial.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION AND PRELIMINARIES

∗-Polynomials (see definition below), acting between complex vector spaces X and Y, were

studied in [4–6]. If X has a symmetric structure, like a symmetric basis, it is natural to consider

∗-polynomials, which are invariant (symmetric) with respect to a group of operators, acting

on X, which preserve this structure.

Symmetric (invariant) analytic functions of several complex variables with respect to a

group of operators on the n-dimensional complex vector space Cn were investigated by many

authors (see, e. g., [1–3]).

In this work we consider symmetric (see definition below) ∗-polynomials, acting from

C
n to C. We investigate the structure of such ∗-polynomials and show that every symmetric

∗-polynomial, acting from C
n to C, can be represented as an algebraic combination of some

“elementary” symmetric ∗-polynomials. Also we establish the general result, which gives us

the method of recovering of components of a ∗-polynomial by the values of this ∗-polynomial.

Let N be the set of all positive integers and Z+ be the set of all nonnegative integers.

Let X and Y be complex vector spaces. A mapping A : Xp+q → Y, where p, q ∈ Z+ are

such that p 6= 0 or q 6= 0, is called a (p, q)-linear mapping, if A is linear with respect to every

УДК 517.98
2010 Mathematics Subject Classification: 46J20, 46E15.

c©Vasylyshyn T.V., 2018



396 VASYLYSHYN T.V.

of first p arguments and it is antilinear with respect to every of last q arguments. A (p, q)-

linear mapping, which is invariant with respect to permutations of its first p arguments and

last q arguments separately, is called (p, q)-symmetric. A mapping P : X → Y is called a

(p, q)-polynomial if there exists a (p, q)-symmetric (p, q)-linear mapping AP : Xp+q → Y such

that P is the restriction to the diagonal of AP, i.e.

P(x) = AP(x, . . . , x
︸ ︷︷ ︸

p+q

)

for every x ∈ X. The mapping AP is called the (p, q)-symmetric (p, q)-linear mapping, associ-

ated with P. Note that

P(x1 + . . . + xm) = ∑
µ1+...+µm=p
µ1,...,µm∈Z+

∑
ν1+...+νm=p
ν1,...,νm∈Z+

p!

µ1! . . . µm!

q!

ν1! . . . νm!

× AP(x1, . . . , x1
︸ ︷︷ ︸

µ1

, . . . , xm, . . . , xm
︸ ︷︷ ︸

µm

, x1, . . . , x1
︸ ︷︷ ︸

ν1

, . . . , xm, . . . , xm
︸ ︷︷ ︸

νm

), (1)

for every x1, . . . , xm ∈ X. Also note that

P(λx) = λpλ̄qP(x) (2)

for every x ∈ X and λ ∈ C.

For convenience, we define (0, 0)-polynomials from X to Y as constant mappings.

A mapping P : X → Y is called a ∗-polynomial if it can be represented in the form

P =
K

∑
k=0

k

∑
j=0

Pj,k−j, (3)

where K ∈ Z+ and Pj,k−j is a (j, k − j)-polynomial for every k ∈ {0, . . . , K} and j ∈ {0, . . . , k}.

Let deg P be the maximal number k ∈ Z+, for which there exists j ∈ {0, . . . , k} such that

Pj,k−j 6≡ 0.

A ∗-polynomial P : Cn → C, where n ∈ N, is called symmetric if

P((z1, . . . , zn)) = P((zσ(1), . . . , zσ(n)))

for every (z1, . . . , zn) ∈ Cn and for every bijection σ : {1, . . . , n} → {1, . . . , n}.

For every γ = (γ1, γ2) ∈ Z2
+ let us define a (γ1, γ2)-polynomial H

(n)
γ : Cn → C by

H
(n)
γ (z) =

n

∑
m=1

z
γ1
m z̄

γ2
m , (4)

where z = (z1, . . . , zn) ∈ Cn. Note that H
(n)
γ is symmetric.

A mapping f : S → C, where S is an arbitrary set, is called an algebraic combination of

mappings f1, . . . , fk : S → C if there exists a polynomial Q : C
k → C such that

f (x) = Q( f1(x), . . . , fk(x))

for every x ∈ S.

In this work we show that every symmetric ∗-polynomial, acting from Cn to C, can be

represented as an algebraic combination of ∗-polynomials H
(n)
γ , defined by (4).
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1 THE MAIN RESULT

Let us prove formulas for recovering of (p, q)-polynomials by the values of a ∗-polynomial.

For complex numbers t1, . . . , tm, let Vt1,...,tm be the Vandermonde matrix:

Vt1,...,tm :=








1 t1 t2
1 . . . tm−1

1

1 t2 t2
2 . . . tm−1

2
...

...
...

. . .
...

1 tm t2
m . . . tm−1

m








.

It is well-known that

det(Vt1,...,tm) = ∏
1≤j<s≤m

(ts − tj).

If all the numbers t1, . . . , tm are distinct, then det(Vt1 ,...,tm) 6= 0.

Proposition 1. Let P : X → Y be a ∗-polynomial of the form (3), where X and Y are complex

vector spaces. Let λ0, . . . , λK be distinct real numbers. Then

k

∑
j=0

Pj,k−j(x) =
K

∑
s=0

wksP(λsx)

for every k ∈ {0, . . . , K} and x ∈ X, where wks are elements of the matrix W = (wks)k,s=0,K,

which is the inverse matrix of the Vandermonde matrix Vλ0,...,λK
.

Proof. Let x ∈ X. For every s ∈ {0, . . . , K}, by (3),

P(λsx) =
K

∑
k=0

k

∑
j=0

Pj,k−j(λsx).

By (2), taking into account that λs is real,

Pj,k−j(λsx) = λ
j
sλ̄

k−j
s Pj,k−j(x) = λ

j
sλ

k−j
s Pj,k−j(x) = λk

s Pj,k−j(x).

Therefore, for every s ∈ {0, . . . , K},

P(λsx) =
K

∑
k=0

λk
s

k

∑
j=0

Pj,k−j(x).

Thus, we have the vector equality
(

P(λ0x), . . . , P(λKx)
)T

= Vλ0 ,...,λK

(
P0,0(x), ∑

1
j=0 Pj,1−j(x), . . . , ∑

K
j=0 Pj,K−j(x)

)T
.

Since λ0, . . . , λK are distinct, it follows that det(Vλ0 ,...,λK
) 6= 0. Consequently, Vλ0,...,λK

is invert-

ible. Let

W = (wks)k,s=0,K := V−1
λ0,...,λK

.

Then
(
P0,0(x), ∑

1
j=0 Pj,1−j(x), . . . , ∑

K
j=0 Pj,K−j(x)

)T
= W

(
P(λ0x), . . . , P(λKx)

)T
.

Therefore,
k

∑
j=0

Pj,k−j(x) =
K

∑
s=0

wksP(λsx)

for every k ∈ {0, . . . , K}.
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Proposition 2. Let k ∈ Z+ and Pj,k−j : X → Y be a (j, k − j)-polynomial for every j ∈

{0, . . . , k}, where X and Y are complex vector spaces. Let ε0, . . . , εk be complex numbers such

that ε2
0, . . . , ε2

k are distinct and |ε0| = . . . = |εk| = 1. Then

Pj,k−j(x) =
k

∑
l=0

ujlε
k
l

k

∑
j=0

Pj,k−j(ε lx)

for every j ∈ {0, . . . , k} and x ∈ X, where ujl are elements of the matrix U = (ujl)j,l=0,K, which

is the inverse matrix of the Vandermonde matrix Vε2
0,...,ε2

K
.

Proof. Let x ∈ X. For every j, l ∈ {0, . . . , k}, by (2), Pj,k−j(ε lx) = ε
j
l ε̄

k−j
l Pj,k−j(x). Since |ε l | = 1,

it follows that ε̄
k−j
l = ε

j−k
l . Therefore,Pj,k−j(ε lx) = ε

2j−k
l Pj,k−j(x).

Consequently,

εk
l

k

∑
j=0

Pj,k−j(ε l x) =
k

∑
j=0

ε
2j
l Pj,k−j(x)

for every l ∈ {0, . . . , k}. Thus, we have the vector equality

(
εk

0 ∑
k
j=0 Pj,k−j(ε0x), . . . , εk

k ∑
k
j=0 Pj,k−j(εkx)

)T
= Vε2

0,...,ε2
k

(
P0,k(x), P1,k−1(x), . . . , Pk,0(x)

)T
.

Since ε2
0, . . . , ε2

k are distinct, it follows that det(Vε2
0 ,...,ε2

k
) 6= 0. Consequently, Vε2

0 ,...,ε2
k

is invertible.

Let

U = (ujl)j,l=0,k := V−1
ε2

0,...,ε2
k

.

Then

(
P0,k(x), P1,k−1(x), . . . , Pk,0(x)

)T
= U

(
εk

0 ∑
k
j=0 Pj,k−j(ε0x), . . . , εk

k ∑
k
j=0 Pj,k−j(εkx)

)T
.

Therefore,

Pj,k−j(x) =
k

∑
l=0

ujlε
k
l

k

∑
j=0

Pj,k−j(ε lx)

for every j ∈ {0, . . . , k}.

Let us consider ∗-polynomials on Cn.

Lemma 1. Every ∗-polynomial P : Cn → C can be uniquely represented in the form

P(z) =
K

∑
k=0

k

∑
j=0

∑
µ1+...+µn=j
µ1,...,µn∈Z+

∑
ν1+...+νn=k−j

ν1,...,νn∈Z+

αµ1,...,µn,ν1,...,νnz
µ1
1 . . . z

µn
n z̄ν1

1 . . . z̄νn
n , (5)

where z = (z1, . . . , zn) ∈ C
n, K = deg P and αµ1,...,µn,ν1,...,νn ∈ C.

Proof. Let P : Cn → C be a ∗-polynomial of the form (3). If K = 0, then P = P0,0, where

P0,0 ∈ C. Thus, in this case, we have the representation of P in the form (5). Consider the case

K > 0. Every z = (z1, . . . , zn) ∈ Cn can be represented as z = ∑
n
m=1 zmem, where

em = (0, . . . , 0
︸ ︷︷ ︸

m−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−m

)
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for every m ∈ {1, . . . , n}. Therefore, by (1),

P(z) = P0,0 +
K

∑
k=0

k

∑
j=0

∑
µ1+...+µn=j
µ1,...,µn∈Z+

∑
ν1+...+νn=k−j

ν1,...,νn∈Z+

j!

µ1! . . . µn!

(k − j)!

ν1! . . . νn!
z

µ1
1 . . . z

µn
n z̄ν1

1 . . . z̄νn
n

× APj,k−j
(e1, . . . , e1
︸ ︷︷ ︸

µ1

, . . . , en, . . . , en
︸ ︷︷ ︸

µn

, e1, . . . , e1
︸ ︷︷ ︸

ν1

, . . . , en, . . . , en
︸ ︷︷ ︸

νn

),

where APj,k−j
is the (j, k − j)-symmetric (j, k − j)-linear mapping, associated with the (j, k − j)-

polynomial Pj,k−j. Let α0,...,0 = P0,0 and

αµ1,...,µn,ν1,...,νn =
j!

µ1! . . . µn!

(k − j)!

ν1! . . . νn!

× APj,k−j
(e1, . . . , e1
︸ ︷︷ ︸

µ1

, . . . , en, . . . , en
︸ ︷︷ ︸

µn

, e1, . . . , e1
︸ ︷︷ ︸

ν1

, . . . , en, . . . , en
︸ ︷︷ ︸

νn

)

for µ1, . . . , µn, ν1, . . . , νn ∈ Z+ such that 1 ≤ µ1 + . . . + µn + ν1 + . . . + νn ≤ K. Then

P(z) =
K

∑
k=0

k

∑
j=0

∑
µ1+...+µn=j
µ1,...,µn∈Z+

∑
ν1+...+νn=k−j

ν1,...,νn∈Z+

αµ1,...,µn,ν1,...,νnz
µ1
1 . . . z

µn
n z̄ν1

1 . . . z̄νn
n .

Theorem 1. Every symmetric ∗-polynomial P : C
n → C can be represented as an algebraic

combination of ∗-polynomials H
(n)
γ , where γ = (γ1, γ2) ∈ Z2

+ are such that γ1 + γ2 ≤ deg P.

Proof. We proceed by induction on n. In the case n = 1 for z = z1 ∈ C, by Lemma 1, we have

P(z) =
deg P

∑
k=0

k

∑
j=0

αj,k−jz
j
1z̄

k−j
1 =

deg P

∑
k=0

k

∑
j=0

αj,k−jH
(1)
(j,k−j)

(z).

Suppose the statement holds for n − 1 and prove it for n. Let P : Cn → C be a symmetric

∗-polynomial and z = (z1, . . . , zn) ∈ Cn. Then P(z) can be represented in the form

P(z) =
K

∑
k=0

k

∑
j=0

z
j
n z̄

k−j
n rj,k−j((z1, . . . , zn−1)),

where K = deg P and rj,k−j : C
n−1 → C are ∗-polynomials. Let us show that ∗-polynomials

rj,k−j are symmetric. For fixed z1, . . . , zn−1 ∈ C, the mapping R : zn 7→ P((z1, . . . , zn)) is

a ∗-polynomial, acting from C to C. Let λ0, . . . , λK be distinct real numbers. Then, by Proposi-

tion 1,
k

∑
j=0

z
j
n z̄

k−j
n rj,k−j((z1, . . . , zn−1)) =

K

∑
s=0

wksR(λszn) (6)

for every k ∈ {0, . . . , K}. For k ∈ {0, . . . , K}, let ε0, . . . , εk be complex numbers such that

ε2
0, . . . , ε2

k are distinct and |ε0| = . . . = |εk| = 1. Then, by Proposition 2,

z
j
n z̄

k−j
n rj,k−j((z1, . . . , zn−1)) =

k

∑
l=0

ujlε
k
l

k

∑
j=0

(ε lzn)
j(ε̄ l z̄n)

k−jrj,k−j((z1, . . . , zn−1)) (7)
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for every j ∈ {0, . . . , k}. By (6) and (7),

z
j
n z̄

k−j
n rj,k−j((z1, . . . , zn−1)) =

k

∑
l=0

ujlε
k
l

K

∑
s=0

wksR(λsε lzn)

for every k ∈ {0, . . . , K} and j ∈ {0, . . . , k}. Let zn = 1. Then

rj,k−j((z1, . . . , zn−1)) =
k

∑
l=0

ujlε
k
l

K

∑
s=0

wksR(λsε l) =
k

∑
l=0

ujlε
k
l

K

∑
s=0

wksP((z1, . . . , zn−1, λsε l)). (8)

Let σ : {1, . . . , n − 1} → {1, . . . , n − 1} be a bijection. Then, by (8) and by the symmetry of P,

rj,k−j((zσ(1), . . . , zσ(n−1))) =
k

∑
l=0

ujlε
k
l

K

∑
s=0

wksP((zσ(1), . . . , zσ(n−1), λsε l))

=
k

∑
l=0

ujlε
k
l

K

∑
s=0

wksP((z1, . . . , zn−1, λsε l)) = rj,k−j((z1, . . . , zn−1)).

Thus, rj,k−j is symmetric for every k ∈ {0, . . . , K} and j ∈ {0, . . . , k}. By the induction hypothe-

sis, every ∗-polynomial rj,k−j can be represented as an algebraic combination of ∗-polynomials

H
(n−1)
γ . Since

H
(n−1)
γ ((z1, . . . , zn−1)) = H

(n)
γ ((z1, . . . , zn))− z

γ1
n z̄

γ2
n

for every γ = (γ1, γ2) ∈ Z
2
+, it follows that P can be represented as an algebraic combination

of ∗-polynomials H
(n)
γ and ∗-polynomials, defined by C

n ∋ (z1, . . . , zn) 7→ z
γ1
n z̄

γ2
n ∈ C, where

γ = (γ1, γ2) ∈ Z2
+. Therefore,

P(z) =
K

∑
k=0

k

∑
j=0

z
j
nz̄

k−j
n Qj,k−j(z),

where Qj,k−j is an algebraic combination of ∗-polynomials H
(n)
γ for every k ∈ {0, . . . , K} and

j ∈ {0, . . . , k}. Since ∗-polynomials H
(n)
γ are symmetric, it follows that ∗-polynomials Qj,k−j

are symmetric. Since ∗-polynomials P and Qj,k−j are symmetric, it follows that

P(z) =
K

∑
k=0

k

∑
j=0

z
j
mz̄

k−j
m Qj,k−j(z),

for every m ∈ {1, . . . , n}. Therefore,

n

∑
m=1

P(z) =
n

∑
m=1

K

∑
k=0

k

∑
j=0

z
j
m z̄

k−j
m Qj,k−j(z),

that is,

nP(z) =
K

∑
k=0

k

∑
j=0

n

∑
m=1

z
j
mz̄

k−j
m Qj,k−j(z).

Thus,

P(z) =
1

n

K

∑
k=0

k

∑
j=0

H
(n)
(j,k−j)

(z)Qj,k−j(z).

Hence, P is an algebraic combination of ∗-polynomials H
(n)
γ . This completes the proof.
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Василишин Т.В. Симетричнi ∗-полiноми на C
n // Карпатськi матем. публ. — 2018. — Т.10, №2.

— C. 395–401.

Поняття ∗-полiнома є природним узагальненням поняття полiнома мiж комплексними ве-

кторними просторами. ∗-Полiном — це функцiя мiж комплексними векторними просторами

X та Y, яка є сумою так званих (p, q)-полiномiв. В свою чергу, для невiд’ємних цiлих чисел p

i q, (p, q)-полiном — це функцiя мiж просторами X та Y, яка є звуженням на дiагональ де-

якого вiдображення, що дiє з декартового степеня Xp+q в Y, яке є лiнiйним вiдносно кожного

зi своїх перших p аргументiв, антилiнiйним вiдносно кожного зi своїх останнiх q аргументiв i

iнварiантним вiдносно перестановок окремо перших p аргументiв i останнiх q агрументiв.

В данiй роботi побудовано формули для знаходження (p, q)-полiномiальних компонентiв

∗-полiномiв, якi дiють мiж комплексними векторними просторами X та Y, за значеннями цих

∗-полiномiв. Цей результат використано для дослiдження ∗-полiномiв, якi дiють з n-вимiрного

комплексного векторного простору C
n в C, якi є симетричними, тобто, iнварiантними вiдно-

сно перестановок координат їхнього аргумента. Показано, що кожен симетричний ∗-полiном,

який дiє з C
n в C, можна подати у виглядi алгебраїчної комбiнацiї деяких “елементарних”

симетричних ∗-полiномiв.

Результати даної роботи можуть бути використанi для дослiдження алгебр, породжених

симетричними ∗-полiномами, якi дiють з Cn в C.

Ключовi слова i фрази: (p, q)-полiном, ∗-полiном, симетричний ∗-полiном.
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ZABAVSKY B.V., ROMANIV O.M.

COMMUTATIVE BEZOUT DOMAINS IN WHICH ANY NONZERO PRIME IDEAL IS

CONTAINED IN A FINITE SET OF MAXIMAL IDEALS

We investigate commutative Bezout domains in which any nonzero prime ideal is contained in

a finite set of maximal ideals. In particular, we have described the class of such rings, which are

elementary divisor rings. A ring R is called an elementary divisor ring if every matrix over R has a

canonical diagonal reduction (we say that a matrix A over R has a canonical diagonal reduction if

for the matrix A there exist invertible matrices P and Q of appropriate sizes and a diagonal matrix

D = diag(ε1, ε2, . . . , εr, 0, . . . , 0) such that PAQ = D and Rε i ⊆ Rε i+1 for every 1 ≤ i ≤ r − 1). We

proved that a commutative Bezout domain R in which any nonzero prime ideal is contained in a

finite set of maximal ideals and for any nonzero element a ∈ R the ideal aR a decomposed into a

product aR = Q1 . . . Qn, where Qi (i = 1, . . . , n) are pairwise comaximal ideals and rad Qi ∈ spec R,

is an elementary divisor ring.

Key words and phrases: Bezout domain, elementary divisor ring, adequate ring, ring of stable
range, valuation ring, prime ideal, maximal ideal, comaximal ideal.
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INTRODUCTION

The classical notion of an elementary divisor ring was first introduced by I. Kaplansky

[5]. Among the well-known classes of rings, a special place is occupied by adequate rings

introduced by Helmer [3]. Henriksen proved that in an adequate ring any nonzero prime ideal

is contained in a unique maximal ideal, i.e. an adequate ring is a PM∗-ring [4]. Larsen, Lewis

and Shores [6] raised the question: is it true that every commutative Bezout domain, in which

any non-zero prime ideal is contained in a unique maximal ideal, is an adequate ring? In [1],

an example is given for a commutative PM∗ Bezout domain that is not adequate, but when

is an elementary divisor ring. Gatalevych and Zabavsky proved that a commutative Bezout

domain, in which any nonzero prime ideal is contained in a unique maximal ideal (PM∗-

ring), is an elementary divisor ring [9]. While investigating Bezout rings with the Noetherian

spectrum [2], the authors encountered examples of commutative Bezout domains, in which

any nonzero prime ideal is contained in a finite set of maximal ideals. An obvious example of

such a ring is an adequate ring. In this paper, the existence and properties of such rings are

established.

УДК 512.552.13
2010 Mathematics Subject Classification: 06F20, 13F99.
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We introduce the necessary definitions and facts.

All rings considered will be commutative with identity. A ring is a Bezout ring, if every its

finitely generated ideal is principal. Let GLn(R) be the group (the general linear group) of all

invertible (n × n)-matrices over the ring R. We say that matrices A and B over a ring R are

equivalent if there exist invertible matrices P and Q of appropriate sizes such that B = PAQ.

The fact that matrices A and B are equivalent is denoted by A ∼ B. If for a matrix A there

exists a diagonal matrix D = diag(ε1, ε2, . . . , εr, 0, . . . , 0) such that A ∼ D and Rε i ⊆ Rε i+1 for

every i then we say that the matrix A has a canonical diagonal reduction. A ring R is called an

elementary divisor ring if every matrix over R has a canonical diagonal reduction.

Let I be an ideal of a ring R. The radical of an ideal I, denoted by rad I or
√

I, is defined as

rad I = { a ∈ R | an ∈ I for some n ∈ N }.

Obviously, rad I =
⋂

P∈spec I
P where spec I denotes the set of all the prime ideals of the ring R

containing the ideal I (the spectrum of the ideal I). Note that rad I can be defined differently,

namely rad I =
⋂

P∈minspec I
P, where minspec I is the set of minimal ideals of the ideal I, i.e.

proper prime ideals of spec I, not containing prime ideals from spec I.

Two ideals I, J of a ring R are said to be comaximal if x + y = 1 for some x ∈ I and y ∈ J.

1 SECTION WITH RESULTS

Let R be a commutative domain, mspec R be a set of all maximal ideals of the ring R, M be

any maximal ideal of the ring R (M ∈ mspec R). Let us denote by RM the localization of the

ring R with respect to the multiplicatively closed set S = R\M. Note that if R is a commutative

Bezout domain, then RM is a local Bezout domain for any maximal ideal M ∈ mspecR. And

since a local Bezout domain is a valuation ring, i.e. a ring in which the set of ideals is linearly

ordered with respect to ideal inclusion, we obtain such a result.

Proposition 1. Let R be a commutative Bezout domain. For any maximal ideal M ∈ mspec R,

the set of the prime ideals of R, contained in M, is linearly ordered with respect to inclusion.

The Proposition 1 shows that spec R is a tree [1].

Let us consider the case of the commutative Bezout domain R in which the set minspec R

is finite for any nonzero element a ∈ R.

Theorem 1. Let R be a commutative Bezout domain, a be a nonzero element R such that

minspec aR is a finite and any prime ideal of spec aR is contained in a unique maximal ideal.

Then the factor ring R/aR is the direct sum of valuation rings.

Proof. Let P1, P2, . . . , Pn ∈ minspec aR. We consider the factor ring R = R/aR. We denote

Pi = Pi/aR, where Pi ∈ minspec aR, i = 1, 2, . . . , n. Note that Pi ∈ minspec R are all minimal

prime ideals of the ring R. Moreover, by Proposition 1, the ideals Pi are comaximal in R.

Obviously, rad R =
n⋂

i=1
Pi, and by the Chinese remainder theorem we have

R/rad R ∼= R/P1 ⊕ R/P2 ⊕ . . . ⊕ R/Pn.
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Since any prime ideal of spec aR is contained in a unique maximal ideal, R/Pi are valuation

rings. Moreover, there exist pairwise orthogonal idempotents e1, . . . , en, where ei ∈ R/Pi such

that e1 + . . . + en = 1. Then, by lifting the idempotent ei modulo rad R to pairwise orthogonal

idempotents e1, . . . , en ∈ R we find that 1 − (e1 . . . + en) is an idempotent and 1 − (e1 + . . . +

en) ∈ rad R, which is possible only if it is zero. Therefore,

R = e1R ⊕ e2R ⊕ · · · ⊕ enR

and each eiR is a homomorphic image of R, i.e. a commutative Bezout ring. Since any prime

ideal of R is contained in a unique maximal ideal, eiR is a valuation ring.

A minor modification of the proof of Theorem 1 gives us the following result.

Theorem 2. Let R be a commutative Bezout domain in which any nonzero prime ideal is

contained in a finite set of maximal ideals. Then for any nonzero element a ∈ R such that the

set minspec aR is finite, the factor ring R = R/aR is a direct sum of semilocal rings.

Proof. According to the notations from Theorem 1 and its proof, we have

R = e1R ⊕ e2R ⊕ . . . ⊕ enR.

Since any prime ideal of the ring R is contained in a finite set of maximal ideals, eiR is a

semilocal ring.

Obviously, if a commutative ring R is a direct sum of valuation rings Ri, then R is a commu-

tative Bezout ring. Let a = (a1, . . . , an), b = (b1, . . . , bn) be any elements of R, where ai, bi ∈ Ri,

i = 1, 2, . . . , n. Since Ri is a valuation ring, ai = risi, where riR + biR = R and s′iRi + biRi 6= Ri

for any non invertible divisor s′i of the element si. If r = (r1, . . . , rn), s = (s1, . . . , sn) then obvi-

ously a = rs, rR + bR = R. For each i such that s′i is a non invertible divisor of si ∈ Ri, we have

siRi + biRi 6= Ri. Hence s′R + bR 6= R, i.e. a is an adequate element.

Recall the definitions.

Definition 1. An element a of a commutative ring R is called adequate, if for every element

b ∈ R one can find elements r, s ∈ R such that:

1) a = rs;

2) rR + bR = R;

3) s′R + bR 6= R for any s′ ∈ R such that sR ⊂ s′R 6= R.

The most trivial examples of adequate elements are units, atoms in a ring, and also square-

free elements [8].

A ring R is said to be everywhere adequate if any element of R is adequate.

Note that, as shown above, in the case of a commutative ring, which is a direct sum of valu-

ation rings, any element of the ring (in particular zero) is adequate, i.e. this ring is everywhere

adequate. Moreover, by [10], this ring is clean, i.e. a ring in which any element is the sum of

an idempotent and an invertible element.
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Definition 2. A ring R is called a ring of stable range 1 if for every a, b ∈ R such that aR+ bR = R

there exists an element t ∈ R such that (a + bt)R = R.

Definition 3. An nonzero element a of a ring R is called an element of almost stable range 1 if the

quotient-ring R/aR is a ring of stable range 1.

Any ring of stable range 1 is a ring of almost stable 1 (see [7]). But not every element of

stable range 1 is an element of almost stable range 1. For example, let e be a nonzero idempotent

of a commutative ring R and eR + aR = R. Then ex + ay = 1 for some elements x, y ∈ R and

(1 − e)ex + (1 − e)ay = 1 − e, so e + a(1 − e)y = 1. And we have that e is an element of

stable range 1 for any commutative ring. However if you consider the ring R = Z × Z and the

element e = (1, 0) ∈ R then, as shown above, e is an element of stable range 1, by R/eR ∼= Z,

and e is not element of almost stable range 1. Moreover, if R is a commutative principal ideal

domain (i.e. ring of integers), which is not of stable range 1, then every nonzero element of R

is an element of almost stable range 1.

Definition 4. A commutative ring in which every nonzero element is an element of almost

stable range 1 is called a ring of almost stable range 1.

The first example of a ring of almost stable range 1 is a ring of stable range 1. Also, every

commutative principal ideal ring which is not a ring of stable range 1 (for example, the ring of

integers) is a ring of almost stable range 1 which is not a ring of stable range 1.

We note that the semilocal ring is an example of a ring of stable range 1. Moreover, the

direct sum of rings of stable range 1 is a ring of stable range 1. As a result, we obtain the result

from the previous theorems.

Theorem 3. Let R be a commutative Bezout domain, a be a nonzero element R such that the

set minspec aR is finite and any prime ideal of spec aR is contained in a unique maximal ideal.

Then the factor ring R/aR is everywhere adequate if and only if R/aR is a direct sum of a

valuation rings.

Proof. Since R be a commutative Bezout domain, a be a nonzero element R such that the set

minspec aR is finite and any prime ideal of spec aR is contained in a unique maximal ideal,

factor ring R/aR is a semilocal ring. By [6] proof the semilocal ring R is everywhere adequate

if and only if R is a direct sum of a valuation rings.

Theorem 4. Let R be a commutative Bezout domain and a be a nonzero element of R such that

the set minspec aR is finite, and any nonzero prime ideal spec aR is contained in a finite set of

maximal ideals. Then a is an element of almost stable range 1.

The proof of the Theorem 4 is similar to the proof of the Theorem 3.

Proposition 2 ([2]). Let R be a commutative Bezout domain in which any nonzero prime ideal

is contained in a finite set of maximal ideals. Then the following properties are equivalent:

1) for any nonzero element a ∈ R there exists a representation aR = Q1 . . . Qn, where

Q1, . . . , Qn are pairwise commaximal ideals such that rad Qi is a prime ideal;

2) minspec aR is finite.
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As a result of Proposition 2 and Theorem 4 we obtain the following results.

Theorem 5. Let R be a commutative Bezout domain in which any nonzero prime ideal is

contained in a finite set of maximal ideals and for any nonzero element a ∈ R there exists

a representation aR = Q1 . . . Qn, where Q1, . . . , Qn are pairwise comaximal ideals such that

rad Qi ∈ spec R. Then R is a ring of almost stable range 1.

Proof. Since R be a commutative Bezout domain in which any nonzero prime ideal is contained

in a finite set of maximal ideals and for any nonzero element a ∈ R there exists a representation

aR = Q1 . . . Qn, where Q1, . . . , Qn are pairwise comaximal ideals such that rad Qi ∈ spec R,

minspec aR is finite. By Theorem 4, a is an element of almost stable range 1. Then R is a ring

of almost stable range 1.

Since a commutative Bezout ring of almost stable range 1 is an elementary divisor ring [7],

as a result, we obtain the following.

Theorem 6. Let R be a commutative Bezout domain in which any nonzero prime ideal is

contained in a finite set of maximal ideals and for any nonzero element a ∈ R let the ideal aR

is decomposed into a product aR = Q1 . . . Qn, where Qi (i = 1, . . . , n) are pairwise comaximal

ideals and rad Qi ∈ spec R. Then R is an elementary divisor ring.

Open Question. Is it true that every commutative Bezout domain in which any non-zero

prime ideal is contained in a finite set of maximal ideals is an elementary divisor ring?
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Забавський Б.В., Романiв О.М. Комутативнi областi Безу, в яких довiльний ненульовий простий

iдеал мiститься у скiнченнiй множинi максимальних iдеалiв // Карпатськi матем. публ. — 2018.

— Т.10, №2. — C. 402–407.

Дослiджуються комутативнi областi Безу, яких довiльний ненульовий простий iдеал мi-

ститься в скiнченнiй множинi максимальних iдеалiв. Зокрема описано клас таких кiлець, якi

є кiльцями елементарних дiльникiв. Кiльце R називається кiльцем елементарних дiльникiв,

якщо кожна матриця над R володiє канонiчною дiагональною редукцiєю (матриця A володiє

канонiчною дiагональною редукцiєю, якщо iснує така дiагональна матриця

D = diag(ε1, ε2, . . . , εr, 0, . . . , 0), що матрицi A та D еквiвалентнi i Rε i ⊆ Rε i+1 для кожного

1 ≤ i ≤ r − 1). Зокрема, ми довели, що комутативна область Безу R, в якiй кожен ненульовий

простий iдеал мiститься в скiнченнiй множинi максимальних iдеалiв i для довiльного елемента

a ∈ R iдеал aR розкладається в добуток aR = Q1 . . . Qn, де Qi (i = 1, . . . , n) є попарно комакси-

мальними iдеалами i rad Qi ∈ spec R, є кiльцем елементарних дiльникiв.

Ключовi слова i фрази: кiльце Безу, кiльце елементарних дiльникiв, адекватне кiльце, кiльце

стабiльного рангу, кiльце нормування, простий iдеал, максимальний iдеал, комаксимальний

iдеал.
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THE CONVERGENCE CLASSES FOR ANALYTIC FUNCTIONS IN THE REINHARDT

DOMAINS

Let L0 be the class of positive increasing on [1,+∞) functions l such that l((1 + o(1))x) =

(1+ o(1))l(x) (x → +∞). We assume that α is a concave function such that α(ex) ∈ L0 and function

β ∈ L0 such that
∫ +∞

1 α(x)/β(x)dx < +∞. In the article it is proved the following theorem: If

f (z) = ∑
+∞
‖n‖=0

anzn, z ∈ Cp, is analytic function in the bounded Reinhard domain G ⊂ Cp, then the

condition
1
∫

R0

α(ln+ MG(R, f ))
(1−R)2β(1/(1−R))

d R < +∞, MG(R, f ) = sup{|F(Rz)| : z ∈ G}, yields that

+∞

∑
k=0

(α(k)− α(k − 1))β1

(

k/ln+ |Ak|
)

< +∞, β1(x) =

+∞
∫

x

dt

β(t)
, Ak = max{|an| : ‖n‖ = k}.

Key words and phrases: analytic function, Reinhardt domain, convergence class.

1 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
2 National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova str. 61002, Kharkiv, Ukraine

E-mail: tetyan.salo@gmail.com (Salo T.M.), savinskaolga@gmail.com (Tarnovecka O.Yu.)

1 INTRODUCTION

We denote by Ap(G), p ∈ N, the class of analytic functions f in G ⊂ Cp, represented by

power series of the form

f (z) = f (z1, . . . , zp) =
+∞

∑
‖n‖=0

anzn, z = (z1, . . . , zp), (1)

with the domain of convergence G, where zn = zn1
1 . . . z

np
p , n = (n1, . . . , np) ∈ Z

p
+, ‖n‖ =

∑
p
j=1 nj; E

p := Ap(Cp) is the class of entire functions in several variables (i.e., analytic functions

in Cp). From the one hand, it is well-known that every analytic function f in the complete

Reinhardt domain G with center at z = 0 can be represented in G by the series of form (1).

On the other hand, the domain of convergence of each series of form (1) is the logarithmically-

convex complete Reinhardt domain with center z = 0.

We say that a domain G ⊂ Cp is the complete Reinhardt domain if:

a) z = (z1, . . . , zp) ∈ G =⇒ (∀R = (R1, . . . , Rp) ∈ [0, 1]p) : Rz = (R1z1, . . . , Rpzp) ∈ G (a

complete domain);

b) (z1, . . . , zp) ∈ G =⇒ (∀(θ1, . . . , θp) ∈ R
p) : (z1eiθ1, . . . , zpeiθp) ∈ G (a multiple-circular

domain).
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The Reinhardt domain G is called logarithmically-convex if the image of the set G∗ = {z ∈

G : z1 · . . . · zp 6= 0} under the mapping Ln : z → Ln(z) = (ln |z1|, . . . , ln |zp|) is a convex set in

the space Rp.

In one complex variable (p = 1), a logarithmically-convex Reinhardt domain is a disc.

The following complete Reinhardt domains (p ≥ 2) are considered most frequently:

Cp(R) := {z ∈ C
p : |z1| < R1, . . . , |zp| < Rp}, R = (R1, . . . , Rp) ∈ (0,+∞)p, (polydisk),

Bp(r) := {z ∈ C
p : |z| :=

√

|z1|2 + . . . + |zp|2 < r} (ball),

Πp(r) := {z ∈ C
p : |z1|+ . . . + |zp| < r}, r > 0.

Remark 1. Cp(R) ⊂ G for every w = (w1, . . . , wp) ∈ G and R = (|w1|, . . . , |wp|). In particular,

Cp(rw) ⊂ Gr for every w = (w1, . . . , wp) ∈ G.

The domains Cp(re1), e1 = (1, . . . , 1) ∈ Rp, Bp(r), Πp(r) (r > 0) are the logarithmically-

convex complete Reinhardt domains. But, for example, the complete Reinhardt domain

G = {z = (z1, zp) : |z1| < 1, |z2| < 2} ∪ {z = (z1, zp) : |z1| < 2, |z2| < 1}

is not logarithmically-convex.

For a domain G and any R ∈ (0, 1) we denote GR = R · G := {Rz : z ∈ G}, and for a

function f ∈ Ap(G) of the form (1) set

MG(R, f ) = max{| f (z)| : z ∈ GR}, µG(R, f ) = max{
∣

∣anzn
∣

∣ : z ∈ GR, n ∈ Z
p
+},

dG(n) = max{|zn| : z ∈ G}.

Note, that dG(n) = 1 in the case G = Cp(e1).

Let us denote by L the class of positive increasing on [0,+∞) functions, and by L0 the class

of functions α ∈ L such that α((1 + o(1))x) = (1 + o(1))α(x) (x → +∞).

For α ∈ L and β ∈ L we consider the following convergence classes of integrals (in one

variable definition see in [1])

1
∫

R0

α(ln+ MG(R, f ))

(1 − R)2β(1/(1 − R))
d R < +∞, (2)

1
∫

R0

α(ln+ µG(R, f ))

(1 − R)2β(1/(1 − R))
d R < +∞. (3)

By E
p
αβ and E

p
αβ we denote the classes of entire functions f ∈ E p for which conditions (2) and

(3) are fulfilled, respectively.

We prove the following theorem.

Theorem 1. Let α be a concave function on [x0,+∞), α(ex) ∈ L0, and a function β ∈ L0 satisfies

the conditions xβ′(x)/β(x) − 2 ≥ h > 0 on [x0,+∞) and
∫ +∞

x0

α(x)
β(x)

dx < +∞. In order that the

function f ∈ E p(G) of form (1) belongs to the class E
p
αβ(G), it is necessary that

+∞

∑
k=0

(α(k) − α(k − 1))β1

(

k

ln+ |Ak|

)

< +∞, β1(x) =

+∞
∫

x

dt

β(t)
, (4)

where Ak := max{|an| : ‖n‖ = k}.
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2 THE PROOF OF THE MAIN RESULT

Proposition 1. For each function f ∈ E p(G) and any functions α, β ∈ L2 we have the following

implication f ∈ E
p
αβ(G) =⇒ F ∈ E

p
αβ.

The statement of this propositions follows from Proposition 2.

Proposition 2. For every function f ∈ E p(G) and for any r ∈ (0, 1)

µG(r, F) = max{Bkrk : k ≥ 0} ≤ MG(r, f ) ≤ c
1

(1 − r)p+1
µG

(1 + r

2
, F

)

,

where c = c(p) < +∞.

Lemma 1 ( [2]). Let r ∈ (0, 1), τ ∈ Cp, k ≥ 0,

Bk = max{|an|dG(n) : ‖n‖ = k}, Pk(τ) = ∑
‖n‖=k

anτn, F1(r) =
+∞

∑
k=0

MG(1, Pk)r
k.

Then

Bk ≤ MG(1, Pk) ≤ Bk(k + 1)p, µF1
(r) = max{MG(1, Pk)r

k : k ≥ 0} ≤ MG(r, f ) ≤ F1(r).

Proof of Proposition 2. By Lemma 1,

µG(r, F) =max{
∣

∣anzn
∣

∣ : z ∈ Gr, n ∈ Z
p
+} = max{

∣

∣an

∣

∣max{
∣

∣zn
∣

∣ : z ∈ Gr, } : n ∈ Z
p
+}

=max{
∣

∣an

∣

∣dG(n)r
k : n ∈ Z

p
+, ‖n‖ = k ≥ 0}

=max
{

max
{∣

∣an

∣

∣dG(n) : n ∈ Z
p
+, ‖n‖ = k

}

rk : k ≥ 0
}

= max{Bkrk : k ≥ 0}

≤max{MG(1, Pk)r
k : k ≥ 0} = µF1

(r) ≤ MG(r, f ).

On the other hand,

MG(r, f ) ≤
+∞

∑
k=0

∑
‖n‖=k

|an|max{
∣

∣zn
∣

∣ : z ∈ Gr} =
+∞

∑
k=0

( 2r

1 + r

)k

∑
‖n‖=k

|an|max{
∣

∣zn
∣

∣ : z ∈ G 1+r
2
}

≤µG

(1 + r

2
, F

) +∞

∑
k=0

( 2r

1 + r

)k
(k + 1)p ≤ c

1

(1 − r)p µG

(1 + r

2
, F

)

, c = c(p) < +∞.

The proof of Theorem 1. Let

F2(R) = ∑
+∞

k=0
BkRk, F3(R) = ∑

+∞

k=0
AkRk, R ∈ (0, 1).

From Remark 1 it follows

AkRk =max{|an| : ‖n‖ = k}Rk = max{|an|max{|z|n : z ∈ Cp(e1)} : ‖n‖ = k}Rk

=max{|an|max{|z|n : z ∈ Cp(Re1)} : ‖n‖ = k}max{|an|max{|z|n : z ∈ GR} : ‖n‖ = k}

=max{|an|max{|z|n : z ∈ G} : ‖n‖ = k}Rk = max{|an |dG(n) : ‖n‖ = k}Rk = BkRk.

Therefore, µF3
(R) ≤ µF2

(R) = µG(R, F), R ∈ (0, 1).

Hence, by Proposition 2

f ∈ E
p
αβ(G) =⇒

1
∫

R0

α(ln+ µF3
(R))

(1 − R)2β(1/(1 − R))
d R < +∞.

Thus, from Theorem 2 in [1] it follows that for the function F3 condition (4) holds.
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In the case α(x) ≡ x, β(x) = epx, p > 0, we obtain the following converse statement to

Theorem 1.

Theorem 2. Let f ∈ E p(G) of form (1) with G = Cp(e1), Ak = max{|an | : ‖n‖} = k ≥ 0. If

Ak/Ak+1 ր 1 as k0 ≤ k ↑ +∞ and

+∞

∑
k=1

( ln+ Ak

k

)2
exp

{

−
pk

ln+ Ak

}

< +∞,

then
1

∫

R0

ln+ MG(R, F)

(1 − R)2 exp{p/(1 − R)}
dR < +∞.

From Lemma 1 we obtain the following statement (see also proof of Proposition 2).

Lemma 2. For R ∈ (0, 1)

µF2
(R) ≤ µF1

(R) ≤ c(p)
1

(1 − R)p µF2

(1 + R

2

)

.

Then Ak = Bk. The statement of Theorem 2 follows from Theorem 6 in [1] in a similar way

as in the proof of Theorem 1 we use Theorem 2 from [1].
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Нехай L0 — клас додатних неспадних на [1,+∞) функцiй l таких, що l((1 + o(1))x) =

(1 + o(1))l(x) (x → +∞). Припустимо, що α — вгнута функцiя така, що α(ex) ∈ L0, а функцiя

β ∈ L0 така, що
∫ +∞

1 α(x)/β(x)dx < +∞. У статтi доведено теорему: якщо f (z) = ∑
+∞
‖n‖=0

anzn,

z ∈ Cp, — аналiтична в обмеженiй областi Рейнгарда G ⊂ Cp функцiя, то з того, що виконує-

ться умова
1
∫

R0

α(ln+ MG(R, f ))
(1−R)2β(1/(1−R))

d R < +∞, MG(R, f ) = sup{|F(Rz)| : z ∈ G}, випливає, що

+∞

∑
k=0

(α(k)− α(k − 1))β1

(

k/ln+ |Ak|
)

< +∞, β1(x) =

+∞
∫

x

dt

β(t)
, Ak = max{|an| : ‖n‖ = k}.

Ключовi слова i фрази: аналiтична функцiя, область Рейнгарда, клас збiжностi.


