Зміст

Андрусяк І.В., Філевич П.В. Радіальні граничні значення лакунарних степеневих рядів 4
Василишин Т.В. Симетричні неперервні хімійні функціонали на комплексному просторі $L_0[0,1]$ 8
Гоеюко Н.П., Гладун В.Р., Манзій О.С. Про нескінченні залишки гілястого ланцюгового дробу Ньордуна для гіпергеометричних функцій Апеля .. 11
Дмітрошин М.І. Інтерполюційні шкали апроксимаційних просторів для регулярних еліптичних опе-
раторів на компактних многовидах ... 26
Заторський Р.А., Семенчук А.В. Алгоритм обчислення рациональних наближень періодичного дробу
4-го порядку ... 32
Ільків В.С., Волянська І.І. Нелокальна крайова задача для диференціалового рівняння з частинними
похідними у комплексній області ... 44
Косован В.М., Маслюченко В.К. Про поліноміальність наближеної симетрії функцій 59
Кудинова І.І. Математичне моделювання та чисельний розрахунок вимушених коливань п’є-
зокерамічного сферичного сегмента ... 64
Ластівка І.О. Варіаційне виведення диференціалових рівнянь коливань п’єзокерамічних оболонок
при меридіональній поляризації .. 68
Лебель В.О. Спектральний аналіз повного графа з нескінченними променями 73
Лопушанський А.О., Лопушанська Г.П. Обернені крайові задачи для дифузійно-хвильового рівняння
з узагальненими функціями в правих частинах .. 79
Лукашенко М.П. Кільця з нільпотентними диференціюваннями індексів < 2 91
Лукашів Т.О. Асимптотична стохастична стійкість стохастичних динамічних систем імпульсової
структури з постійним запізненням ... 96
Лучко В.М. Задача Коші для параболічного рівняння над полем p-адичних чисел з імпульсним
впливом ... 104
Махней О.В. Асимптотика фундаментальної системи розв’язків квазідиференціалового рівняння
з мірами на півосі ... 113
Пастухова І. Про неперервусть гомоморфізмів між топологічними кільцевими напівгрупами 123
Пилипів В.М., Маларчук А.Р. Про деякі властивості многочленів Коробова 130
Печерський Г.І. Рівняння теплопроводності на прямій з імпульсовою частиною зі степенем
Орліча .. 134
Слободяна С.Я. Нормальний граничний розподіл нормованого числа сторонніх розв’язків однієї системи
невідомих випадкових рівнянь над полем $GF(2)$ 149
Ель Хамма М.Е., Лахлалі Х., Дахер Р. (δ, γ)-Данкз-Ліпшицеві функції в просторі $L^p(R, |x|^{2a+1}dx)$ 161
Черковський Т.М. Регулярні ємності на метризованих просторах ... 166
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrusyak I.V., Filevych P.V.</td>
<td>Radial boundary values of lacunary power series</td>
<td>4</td>
</tr>
<tr>
<td>Vasylyshyn T.V.</td>
<td>Symmetric continuous linear functionals on complex space $l_{\infty}[0, 1]$</td>
<td>8</td>
</tr>
<tr>
<td>Hoyenko N.P., Hladun V.R., Manzij O.S.</td>
<td>On the infinite remains of the Norlund branched continued fraction</td>
<td>11</td>
</tr>
<tr>
<td>for Appell hypergeometric function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmytryshyn M.I.</td>
<td>Interpolated scales of approximation spaces for regular</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>elliptic operators on compact manifolds</td>
<td></td>
</tr>
<tr>
<td>Zatorsky R.A., Semenchuk A.V.</td>
<td>Calculation algorithm of rational estimations of recurrence</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>periodical fourth order fraction</td>
<td></td>
</tr>
<tr>
<td>Il'kiv V.S., Volyans'ka I.I.</td>
<td>Non-local boundary value problem for partial differential equation</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>in a complex domain</td>
<td></td>
</tr>
<tr>
<td>Kosovan V.M., Maslyuchenko V.K.</td>
<td>On the polynomiality of separately constant functions</td>
<td>59</td>
</tr>
<tr>
<td>Kudzinov's'ka I.P.</td>
<td>Mathematical modeling and numerical calculation of forced</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>vibrations of piezoceramic spherical segment</td>
<td></td>
</tr>
<tr>
<td>Lastivka I.O.</td>
<td>Variational inference of differential equations of vibrations of</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>piezoceramic shell with meridional polarization</td>
<td></td>
</tr>
<tr>
<td>Lebid V.O.</td>
<td>Spectral analysis of complete graph with infinite chains</td>
<td>73</td>
</tr>
<tr>
<td>Lopushanskyj A., Lopushanska H.</td>
<td>Inverse boundary value problems for diffusion-wave equation with</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>generalized functions in right-hand sides</td>
<td></td>
</tr>
<tr>
<td>Lukashenko M.P.</td>
<td>Rings with nilpotent derivations of index ≤ 2</td>
<td>91</td>
</tr>
<tr>
<td>Lukashiv T.O.</td>
<td>Asymptotic stochastic stability of the stochastic dynamical systems</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>of the random structure with constant delay</td>
<td></td>
</tr>
<tr>
<td>Luchko V.M.</td>
<td>The Cauchy problem for parabolic equation over the field of p-adic</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>numbers with impulse action</td>
<td></td>
</tr>
<tr>
<td>Makhnei O.V.</td>
<td>Asymptotics of a fundamental solution system for a quasidifferential</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>equation with measures on the semiaxis</td>
<td></td>
</tr>
<tr>
<td>Pastukhova I.</td>
<td>On continuity of homomorphisms between topological Clifford</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>semigroups</td>
<td></td>
</tr>
<tr>
<td>Pylypiv V.M., Maliarchuk A.R.</td>
<td>On some properties of Korobov polynomials</td>
<td>130</td>
</tr>
<tr>
<td>Slyvka-Tylyshchak A.</td>
<td>The heat equation on line with random right part from Orlicz space</td>
<td>134</td>
</tr>
<tr>
<td>Slobodian S.Ya.</td>
<td>The normal limit distribution of the normalized number of false</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>solutions of one system of nonlinear random equations over the field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$GF(2)$</td>
<td></td>
</tr>
<tr>
<td>El Hamma M., Lahlali H., Daher R.</td>
<td>(δ, γ)-Dunkl Lipschitz functions in the space $L^2(\mathbb{R},</td>
<td>x</td>
</tr>
<tr>
<td>Cherkovskyi T.M.</td>
<td>Regular capacities on metrizable spaces</td>
<td>166</td>
</tr>
</tbody>
</table>
Андусяк И.В., Филевич П.В. Радиальные предельные значения лакунарных степенных рядов 4
Василишин Т.В. Симметрические непрерывные линейные функционалы на комплексном пространстве $L_\infty[0,1]$.. 8
Гоенко Н.П., Гладун В.Р., Манзий А.С. О бесконечных остатках ветвящейся цепной дроби Нёрлунда для гипергеометрической функции Аппеля ... 11
Дмитришин М.И. Интерполационные шкалы аппроксимационных пространств для регулярных эллиптических операторов на компактных многообразиях ... 26
Заторский Р.А., Семенчук А.В. Алгоритм вычисления рациональных приближений периодической рекуррентной дроби 4-го порядка ... 32
Илькив В.С., Волянська И.И. Нелокальная краевая задача для уравнения с частными производными в комплексной области ... 44
Косован В.М., Маслюченко В.К. О полиномиальность раздельно постоянных функций 59
Кудзина Васили М.П. Математическое моделирование и численный расчет вынужденных колебаний пьезокерамического сферического сегмента 64
Ластикива И.А. Вариационный вывод дифференциальных уравнений колебаний пьезокерамической оболочки при меридиональной поляризации .. 68
Лебедь В.А. Спектральный анализ полного графа с бесконечными лучами 73
Лопушанский А.О., Лопушанская Г.П. Обратные краевые задачи для диффузионно-волнового уравнения с обобщенными функциями в правых частях 79
Лукашенко М.П. Кольца с нильпотентными дифференцированиями индексов ≤ 2 91
Лукавцева Т.О. Асимптотическая стохастическая устойчивость стохастических динамических систем случайной структуры с постоянным запаздыванием 96
Лучко В.М. Задача Коши для параболического уравнения над полем p-адических чисел с импульсным воздействием ... 104
Махней А.В. Асимптотика фундаментальной системы решений квазиадиабатического уравнения с мерами на полуоси .. 113
Пастухова И. О непрерывности гомоморфизмов между топологическими клиффордовыми полугруппами ... 123
Пылыпив В.М., Малярчук А.Р. О некоторых свойствах многочленов Коробова 130
Сливка-Тиличек А.И. Уравнение теплопроводности на прямой со случайной правой частью с пространства Орлича ... 134
Слободян С.Я. Нормальное предельное распределение нормированного числа посторонних решений одной системы нелинейных случайных уравнений над полем $GF(2)$ 149
Эль Хамма М., Лаххали Х., Дахер Р.(δ,γ)-Данк-Липшицевы функции в пространстве $L^2(R_+x^{-1}dx)$ 161
Черковский Т.М. Регулярные емкости на метризуемых пространствах 166
ANDRUSYAK I.V., FILEVYCH P.V.

RADIAL BOUNDARY VALUES OF LACUNARY POWER SERIES

We strengthened MacLane's theorem concerning radial boundary values of lacunary power series.

Key words and phrases: analytic function, lacunary power series, radial boundary value, asymptotic value.

1 Lviv Polytechnic National University, Lviv, Ukraine
2 Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
E-mail: andrusyak.ivanna@gmail.com (Andrusyak I.V.), filevych@mail.ru (Filevych P.V.)

INTRODUCTION

Denote by \mathcal{H} the class of analytic functions on the unite disk $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$ and let $\overline{\mathbb{C}} := \mathbb{C} \cup \{ \infty \}$. As usual, a value $v \in \overline{\mathbb{C}}$ is called the radial boundary value of a function $f \in \mathcal{H}$ at a point $e^{i\theta} \in \partial\mathbb{D}$ if
\begin{equation}
\lim_{r \uparrow 1} f(re^{i\theta}) = v.
\end{equation}

By \mathcal{R} we denote the class of functions $f \in \mathcal{H}$ having radial boundary values on a dense set of points $e^{i\theta}$ of $\partial\mathbb{D}$. A value $v \in \overline{\mathbb{C}}$ is called an asymptotic value of a function $f \in \mathcal{H}$ at a point $\omega \in \partial\mathbb{D}$ if there exists a path $\gamma : z = z(t)$, $t \in [0,1]$, such that $z(t) \in \mathbb{D}$ for all $t \in [0,1)$, $z(1) = \omega$ and
\begin{equation}
\lim_{t \uparrow 1} f(z(t)) = v.
\end{equation}

By \mathcal{A} we denote the MacLane class, i.e. the class of functions $f \in \mathcal{H}$ having asymptotic values on a dense set of points ω of $\partial\mathbb{D}$. Clearly, $\mathcal{R} \subset \mathcal{A}$. It is well known that this inclusion is strict. Recall that, by the classical Fatou theorem, for any bounded function $f \in \mathcal{H}$ we have $f \in \mathcal{R}$ and therefore $f \in \mathcal{A}$.

Let Λ be the class of increasing sequences that consists of nonnegative integers $\lambda = (\lambda_n)$. For any sequence $\lambda \in \Lambda$, let
\begin{equation}
q(\lambda) = \lim_{n \to \infty} \frac{\lambda_{n+1}}{\lambda_n}.
\end{equation}

Denote by $\mathcal{H}(\lambda)$ the class of functions $f \in \mathcal{H}$ of the form
\begin{equation}
f(z) = \sum_{n=0}^{\infty} a_n z^{\lambda_n}, \quad z \in \mathbb{D}.
\end{equation}

G.R. MacLane has proved the following theorems (see [1, Theorem 19]).
Theorem A. Let \(\lambda \in \Lambda \). If \(q(\lambda) > 3 \), then \(\mathcal{H}(\lambda) \subseteq \mathcal{R} \).

Theorem B. Let \(\lambda \in \Lambda \). If \(q(\lambda) > 3 \), then for any function \(f \in \mathcal{H}(\lambda) \) of the form (1) such that

\[
\sum_{n=0}^{\infty} |a_n| = +\infty
\]

(2)

there exists a dense set \(\Theta \) in \([0, 2\pi]\) such that for any \(\theta \in \Theta \) the following relation holds

\[
\lim_{r \uparrow 1} \Re f(re^{\theta}) = +\infty.
\]

(3)

Note, that if for a function \(f \) condition (2) is not satisfied, then this function is bounded in \(\mathbb{D} \). Therefore Theorem A is a consequence of the Fatou theorem and Theorem B. It is also clear that in Theorem B the value \(\Re f(re^{i\theta}) \) can be replaced by one of the values \(-\Re f(re^{i\theta}) \), \(\Im f(re^{i\theta}) \) or \(-\Im f(re^{i\theta}) \) (it is sufficient to apply this theorem to the functions \(-f \), \(-if \) or \(if \) respectively).

If we require only the inclusion \(\mathcal{H}(\lambda) \subseteq \mathcal{A} \), then the condition \(q(\lambda) > 3 \) can be essentially weakened. This fact follows from the following Murai theorem [2].

Theorem C. Let \(\lambda \in \Lambda \). If \(q(\lambda) > 1 \), then \(\mathcal{H}(\lambda) \subseteq \mathcal{A} \).

In connection with the stated results there is a question: does there exist \(q \in [1, 3) \) such that the condition \(q(\lambda) > q \) is sufficient for the inclusion \(\mathcal{H}(\lambda) \subseteq \mathcal{R} \)?

From our results we can conclude that the condition \(q(\lambda) > 3 \) in Theorem A is far from being final. Despite this, an answer to the question posed above is not obtained.

Theorem 1. For any \(q > 1 \) there exists a sequence \(\lambda \in \Lambda \) such that \(q(\lambda) = q \) and \(\mathcal{H}(\lambda) \subseteq \mathcal{R} \).

For a sequence \(\lambda \in \Lambda \) let

\[
q_1(\lambda) = \min \left\{ \lim_{k \to \infty} \frac{\lambda_{2k+1}}{\lambda_{2k}}, \lim_{k \to \infty} \frac{\lambda_{2k+2}}{\lambda_{2k+1}} \right\}, \quad q_2(\lambda) = \max \left\{ \lim_{k \to \infty} \frac{\lambda_{2k+1}}{\lambda_{2k}}, \lim_{k \to \infty} \frac{\lambda_{2k+2}}{\lambda_{2k+1}} \right\}.
\]

Theorem 1 is a direct consequence of the Fatou theorem and Theorem 2 stated below, which strengthens Theorem B.

Theorem 2. Let \(\lambda \in \Lambda \). If

\[
(q_1(\lambda) - 1)q_2(\lambda) > 6,
\]

(4)

then for any function \(f \in \mathcal{H}(\lambda) \) of the form (1) which satisfies condition (2) there exists a dense set \(\Theta \) in \([0, 2\pi]\) such that for any \(\theta \in \Theta \) equality (3) holds.

Proof of Theorem 2

Let for any sequence \(\lambda \in \Lambda \) inequality (4) holds. Put

\[
p_1 = \lim_{k \to \infty} \frac{\lambda_{2k+1}}{\lambda_{2k}}, \quad p_2 = \lim_{k \to \infty} \frac{\lambda_{2k+2}}{\lambda_{2k+1}}.
\]

Suppose that \(p_1 \leq p_2 \) (in the case \(p_1 \geq p_2 \) our considerations are similar). Then \(q_1(\lambda) = p_1 \), \(q_2(\lambda) = p_2 \), and condition (4) can be written as \((p_1 - 1)p_2 > 6 \). It is clear that \(p_1 > 1 \) and \(p_2 > 3 \), therefore there exist constants \(q_1 \in (1, p_1) \) and \(q_2 \in (3, p_2) \) such that \((q_1 - 1)q_2 > 6 \),
moreover $q_1 < 3$. From the definitions of variables p_1 and p_2 it follows that there exists an integer $k_0 \in \mathbb{N}_0$ such that for all integers $k \geq k_0$ the following inequalities $\lambda_{2k+1} \geq q_1 \lambda_{2k}$ and $\lambda_{2k+2} \geq q_2 \lambda_{2k+1}$ hold.

In what follows for each segment $I \subset \mathbb{R}$ we denote by $|I|$, $a(I)$, and $b(I)$ its length, the left end and right end respectively.

Consider any segment $I \subset [0, 2\pi]$ and a function $f \in \mathcal{H}(\lambda)$ of the form (1), which satisfies condition (2). Let us prove that there exists a point θ in the segment I such that relation (3) holds. Let Θ be the set of all $\theta \in [0, 2\pi]$, for which (3) holds. Then the set Θ is dense in $[0, 2\pi]$.

Put

$$\varepsilon = \frac{(q_1 - 1)q_2 - 6}{(q_1 + 1)q_2 - 2}. \quad (5)$$

It is easy to check that

$$\varepsilon < \frac{(q_1 - 1)\pi}{q_1 + 1}. \quad (6)$$

Take $\delta = \cos \frac{\varepsilon}{2}$. Since $\varepsilon \in (0, \pi)$, we have $\delta > 0$.

Let $n \in \mathbb{N}$, $\alpha_n = \arg a_n$. Then we have $\cos(\lambda_n \theta + \alpha_n) \geq \delta$ on the union of segments

$$\left[-\frac{\pi - \varepsilon}{2\lambda_n} + \frac{2\pi m - \alpha_n}{\lambda_n}, \frac{\pi - \varepsilon}{2\lambda_n} + \frac{2\pi m - \alpha_n}{\lambda_n} \right], \quad m \in \mathbb{Z}, \quad (7)$$

of length $\frac{\pi - \varepsilon}{\lambda_n}$. Obviously, if $n_0 = \min \left\{ n \in \mathbb{N} : |I| \geq \frac{2\pi - \varepsilon}{\lambda_n} \right\}$, then for every integer $n \geq n_0$ the segment I contains at least one of the segments (7).

Fix an integer $m \geq \max \{ k_0, \frac{n_0}{2} \}$ and let $l_{2m} \subset I$ be a segment of length $\frac{\pi - \varepsilon}{\lambda_{2m}}$ such that $\cos(\lambda_{2m} \theta + \alpha_{2m}) \geq \delta$ for all $\theta \in l_{2m}$. By l_{2m} we denote the midpoint of the segment l_{2m}. Then $l_{2m} = \left[\theta_{2m} - \frac{\varepsilon}{2\lambda_{2m}}, \theta_{2m} + \frac{\varepsilon}{2\lambda_{2m}} \right]$.

Let θ_{2m+1} be a point in the set $\{ \theta \in \mathbb{R} : \cos(\lambda_{2m+1} \theta + \alpha_{2m+1}) = -1 \}$ that is closest to θ_{2m}. Clearly, $|\theta_{2m+1} - \theta_{2m}| < \frac{\pi}{\lambda_{2m}}$ and $\cos(\lambda_{2m+1} \theta + \alpha_{2m+1}) \geq \delta$ for each segments

$$S_1 = \left[\theta_{2m+1} - \frac{3\pi - \varepsilon}{2\lambda_{2m+1}}, \theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}} \right], \quad S_2 = \left[\theta_{2m+1} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}}, \theta_{2m+1} + \frac{3\pi - \varepsilon}{2\lambda_{2m+1}} \right].$$

Put

$$x = \frac{(q_1 - 1)\pi - (q_1 + 1)\varepsilon}{2\lambda_{2m+1}}. \quad (8)$$

Then, according to (6), $x > 0$. Let us show that there exists a segment $l_{2m+1} \subset l_{2m}$ of length x such that $\cos(\lambda_{2m+1} \theta + \alpha_{2m+1}) \geq \delta$ for all $\theta \in l_{2m+1}$.

If $\theta_{2m} - \frac{\pi}{\lambda_{2m+1}} \leq \theta_{2m+1} \leq \theta_{2m}$, then let $l_{2m+1} = \left[\theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}}, \theta_{2m+1} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}} + x \right]$. It is clear that $|l_{2m+1}| = x$ and $a(l_{2m+1}) = a(S_2)$. Since $1 < q_1 < 3$, we have

$$b(l_{2m+1}) = \theta_{2m+1} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}} + x = \theta_{2m+1} + \frac{q_1(\pi - \varepsilon)}{2\lambda_{2m+1}} < \theta_{2m+1} + \frac{3\pi - \varepsilon}{2\lambda_{2m+1}} = b(S_2).$$

Thus $l_{2m+1} \subset S_2$, therefore $\cos(\lambda_{2m+1} \theta + \alpha_{2m+1}) \geq \delta$ for all $\theta \in l_{2m+1}$. In addition, $l_{2m+1} \subset l_{2m}$, because

$$a(l_{2m+1}) = \theta_{2m+1} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}} \geq \theta_{2m} - \frac{\pi}{\lambda_{2m+1}} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}} > \theta_{2m} - \frac{\pi - \varepsilon}{2\lambda_{2m}} = a(l_{2m}),$$

$$b(l_{2m+1}) = \theta_{2m+1} + \frac{\pi + \varepsilon}{2\lambda_{2m+1}} + x \leq \theta_{2m} + \frac{q_1(\pi - \varepsilon)}{2\lambda_{2m+1}} \leq \theta_{2m} + \frac{\pi - \varepsilon}{2\lambda_{2m}} = b(l_{2m}).$$
If \(\theta_{2m} \leq \theta_{2m+1} \leq \theta_{2m} + \frac{\pi}{2\lambda_{2m+1}} \), then let \(I_{2m+1} = \left[\theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}}, \theta_{2m+1} - \frac{\pi - \varepsilon}{2\lambda_{2m+1}} \right] \). It is clear that \(|I_{2m+1}| = x\) and \(b(I_{2m+1}) = b(S_1)\). Since \(1 < q_1 < 3\), we obtain
\[
a(I_{2m+1}) = \theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}} - x = \theta_{2m+1} - \frac{q_1(\pi - \varepsilon)}{2\lambda_{2m+1}} > \theta_{2m+1} - \frac{3\pi - \varepsilon}{2\lambda_{2m+1}} = a(S_1).
\]
Thus \(I_{2m+1} \subset S_1\), therefore \(\cos(\lambda_{2m+1}\theta + \alpha_{2m+1}) \geq \delta\) for all \(\theta \in I_{2m+1}\). In addition, \(I_{2m+1} \subset I_{2m}\), because
\[
b(I_{2m+1}) = \theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}} \leq \theta_{2m} + \frac{\pi}{2\lambda_{2m+1}} - \frac{\pi + \varepsilon}{2\lambda_{2m}} < \theta_{2m} + \frac{\pi - \varepsilon}{2\lambda_{2m}} = b(I_{2m}),
\]
\[
a(I_{2m+1}) = \theta_{2m+1} - \frac{\pi + \varepsilon}{2\lambda_{2m+1}} - x \geq \theta_{2m} - \frac{q_1(\pi - \varepsilon)}{2\lambda_{2m+1}} \geq \theta_{2m} - \frac{\pi - \varepsilon}{2\lambda_{2m}} = a(I_{2m}).
\]
From the aforementioned properties it follows the existence of segment \(I_{2m+1}\).

Further, using the inequality \(\lambda_{2m+1} \leq \lambda_{2m+2}/q_2\) and equality (5) we obtain
\[
|I_{2m+1}| = x \geq \frac{(q_1 - 1)q_2\pi - (q_1 + 1)q_2\varepsilon}{2\lambda_{2m+2}} = \frac{3\pi - \varepsilon}{\lambda_{2m+2}},
\]
whence we see that there exists a segment \(I_{2m+2} \subset I_{2m+1}\) of length \(\frac{\pi - \varepsilon}{\lambda_{2m+2}}\) such that the inequality \(\cos(\lambda_{2m+2}\theta + \alpha_{2m+2}) \geq \delta\) holds for all \(\theta \in I_{2m+2}\).

The analysis of our considerations shows that by induction it is possible to construct a system of embedded segments \(I_{2m} \supset I_{2m+1} \supset I_{2m+2} \supset I_{2m+3} \supset \ldots\) such that for every integer \(n \geq 2m\) the inequality \(\cos(\lambda_n\theta + \alpha_n) \geq \delta\) holds for all \(\theta \in I_n\). Let \(\theta\) be the common point of all segments \(I_n, n \geq 2m\). Then \(\theta \in I\) and
\[
\Re f(re^{i\theta}) = \sum_{n=0}^{\infty} |a_n|r^n \cos(\lambda_n\theta + \alpha_n) \geq -\sum_{n<2m} |a_n|r^n + \delta \sum_{n \geq 2m} |a_n|r^n,
\]
whence, according to (2), we obtain (3). Theorem is proved.

References

Received 16.03.2014
SYMMETRIC CONTINUOUS LINEAR FUNCTIONALS ON COMPLEX SPACE $L_\infty[0,1]$

We prove that every symmetric continuous linear functional on the complex space $L_\infty[0,1]$ can be represented as a Lebesgue integral multiplied by a constant.

Key words and phrases: symmetric linear functional.

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivs'k, Ukraine
E-mail: taras_vasylyshyn@mail.ru

INTRODUCTION

Let $L_\infty[0,1]$ be the space of all measurable complex-valued essentially bounded functions on $[0,1]$ with norm $\|x\| = \text{ess sup}_{t \in [0,1]} |x(t)|$. Let Ξ be the group of all measurable transformations of $[0,1]$, which preserve measure. A functional $f : L_\infty[0,1] \to \mathbb{C}$ is called symmetric if for every $x \in L_\infty[0,1]$ and $\sigma \in \Xi$

$$f(x \circ \sigma) = f(x).$$

In [1, 2, 3, 4] symmetric polynomials are studied in ℓ_p and $L_p[0,1]$ spaces when $1 \leq p < \infty$. Gonzales, Gonzalo and Jaramillo in [3] proved that every symmetric polynomial on $L_p[0,1]$ is an algebraic combination of the elementary symmetric polynomials

$$R_n(x) = \int_{[0,1]} (x(t))^n \, dt.$$

Proof of this result is based on the separability of $L_p[0,1]$ spaces. That is why the idea of this proof cannot be used in the case of symmetric polynomials on $L_\infty[0,1]$.

In this paper we restrict our attention to symmetric linear functionals as the most simple case of polynomials. Our purpose is to show that every symmetric continuous linear functional on $L_\infty[0,1]$, like in the case of $L_p[0,1]$ when $1 \leq p < \infty$, is proportional to R_1.

THE MAIN RESULT

We denote by χ_A the characteristic function of the set $A \subset [0,1]$, i.e. the function

$$\chi_A(t) = \begin{cases} 1, & \text{if } t \in A, \\ 0, & \text{otherwise}. \end{cases}$$

Theorem. Every symmetric continuous linear functional $f : L_\infty[0,1] \to \mathbb{C}$ can be represented as $f(x) = k \int_{[0,1]} x(t) \, dt$, where $k = f(\chi_{[0,1]})$.

© Vasylyshyn T.V., 2014
Proof. Let A be a measurable subset of $[0,1]$. Define the function $\sigma_A : [0,1] \to [0,1]$ by

$$
\sigma_A(t) = \begin{cases}
\mu([0,t] \cap A), & \text{if } t \in A, \\
\mu(A) + \mu([0,t] \cap \bar{A}), & \text{if } t \in \bar{A},
\end{cases}
$$

where $\bar{A} = [0,1] \setminus A$. Clearly, $\sigma_A \in \Xi$. Let $[0,b] \subseteq [0,1]$ and let $d \in \mathbb{R}$ be such that $[d,b+d] \subseteq [0,1]$. Since $\chi_{[d,b+d]} = \chi_{[0,b]} \circ \sigma_{[d,b+d]}$ and f is symmetric, it follows that

$$
f(\chi_{[d,b+d]}) = f(\chi_{[0,b]}).
$$

For $n \in \mathbb{N}$ we have

$$
f(\chi_{[0,1/n]}) = f\left(\sum_{n=1}^{\infty} \chi_{[\frac{i-1}{n}, \frac{i}{n}]^{+}}\right) = \sum_{n=1}^{\infty} f(\chi_{[\frac{i-1}{n}, \frac{i}{n}]^{+}}) = \sum_{n=1}^{\infty} f(\chi_{[0,1/n]})) = nf(\chi_{[0,1/n]})) \cdot
g
$$

Hence, for every $q \in [0,1] \cap \mathbb{Q}$

$$
f(\chi_{[0,q]}) = kq.
$$

Let $r \in [0,1]$ and let $n \in \mathbb{N}$ be such that $nr \in [0,1]$. Then

$$
f(\chi_{[0,nr]}) = f\left(\sum_{j=1}^{\infty} \chi_{[(j-1)r, jr]}\right) = nf(\chi_{[0,r]})) \cdot
g
$$

Let us prove that for every $r \in [0,1]$

$$
f(\chi_{[0,r]}) = kr.
$$

Let $g : [0,1] \to \mathbb{C}$, $g(t) = f(\chi_{[0,t]}))$. For $r_1, r_2 \in [0,1]$ such that $r_1 + r_2 \in [0,1]$ we have

$$
g(r_1 + r_2) = f(\chi_{[0,r_1]}) + f(\chi_{[r_1,r_2]}) \cdot
g
$$

Hence, g is additive.

Suppose that there exists $a \in (0,1)$ such that $g(a) \neq ka$. For $n \in \mathbb{N}$ choose $a_n \in (0,a) \cap \mathbb{Q}$ such that $a - a_n < \frac{1}{n}$ and $t_n = n(a - a_n)$. By (1), (2) and (3)

$$
g(t_n) = n(g(a) - g(a_n)) = n(g(a) - ka_n) = n(g(a) - ka) + nk(a - a_n)
$$

and

$$
|g(t_n)| \geq n|g(a) - ka| - n|k(a - a_n)| \geq n|g(a) - ka| - |k|.
$$

So, g is unbounded. This contradicts the fact that f is continuous. Hence, for every $r \in [0,1]$

$$
f(\chi_{[0,r]}) = kr.
$$

Let A be the measurable subset of $[0,1]$. Since $\chi_A = \chi_{[0,\mu(A)]} \circ \sigma_A$, it follows that

$$f(\chi_A) = f(\chi_{[0,\mu(A)]}) = k\mu(A).
$$

For every $x \in L_\infty[0,1]$ there exists a sequence $\{x_n\}_{n=1}^\infty$ of measurable simple functions with finite range of values, which uniformly converges to x. Every x_n can be represented as

$$
x_n(t) = \sum_{j=1}^{m_n} y_{j,n,\chi_{A_{j,n}}}(t),
$$

where $A_{j,n}$ are the disjoint measurable subsets of $[0,1]$ and $y_{j,n} \in \mathbb{C}$. Then by (4)

$$
f(x_n) = k \sum_{j=1}^{m_n} y_{j,n,\mu(A_{j,n})} = k \int_{[0,1]} x_n(t) dt.
$$

By the continuity of f

$$
f(x) = \lim_{n \to \infty} f(x_n) = k \lim_{n \to \infty} \int_{[0,1]} x_n(t) dt = k \int_{[0,1]} x(t) dt.
$$
References

Received 01.03.2014

В роботі доведено, що кожен симетричний неперервний лінійний функціонал на комплексному просторі $L_0[0,1]$ можна подати у вигляді інтеграла Лебега, помноженого на константу.

Ключові слова і фрази: симетричний лінійний функціонал.

В работе доказано, что каждый симметрический непрерывный линейный функционал на комплексном пространстве $L_0[0,1]$ можно представить в виде интеграла Лебега, умноженного на константу.

Ключевые слова и фразы: симметрический линейный функционал.
Гоенко Н.П.1, Гладун В.Р.2, Манзій О.С.2

ПРО НЕСКІНЧЕННІ ЗАЛИШКИ ГІЛЛЯСТОГО ЛАНЦЮГОВОГО ДРОБУ НЬОРЛУНДА ДЛЯ ГІПЕРГЕОМЕТРИЧНИХ ФУНКЦІЙ АППЕЛЯ

Досліджено відповідність, збіжність і стійкість до збурень нескінченних залишків гіллястого ланцюгового дробу Ньорлунда в полікруговій області \{(z_1, z_2) \in \mathbb{C}^2 : |z_j| \leq r, j = 1, 2\},
0 < r < 1/8, у випадку довільних параметрів гіпергеометричної функції Аппеля.

Ключові слова і фрази: гіпергеометрична функція Аппеля, гіллясний ланцюговий дріб.

1 Інститут прикладних проблем механіки і математики ім. Я.С.Підстригача НАН України, Львів, Україна
2 Національний університет "Альєвська політехніка", Львів, Україна
E-mail: hoyenko@gmail.com (Гоенко Н.П.), v_hladun@yahoo.com (Гладун В.Р.), lesly@ukr.net (Манзій О.С.)

ВСТУП

Ефективним апаратом наближення гіпергеометричних функцій багатьох змінних є гіллясті ланцюгові дроби (ГАД) [1, 12]. Алгоритми розвинення у ГАД деяких відношень гіпергеометричних функцій будуються послідовними вкладеннями певних рекурентних співвідношень. У даній роботі розглядається ГАД Ньорлунда, який є розвиненням відношень функцій Аппеля. Питання збіжності ГАД Ньорлунда вивчалося у випадку, коли параметри функції невід’ємні, а область збіжності — гіпероктант \{(z_1, z_2) \in \mathbb{C}^2 : \text{Re} z_j < 1/2, j = 1, 2\} [1]. У випадку довільних параметрів функції одержано полікругову область збіжності, радіус якої визначається параметрами функції [9]. Однак гранична поведінка елементів ГАД дозволяє вказати область \{(z_1, z_2) \in \mathbb{C}^2 : |z_j| < 1/8, j = 1, 2\}, незалежну від параметрів функції, в якій починаючи з деякого \(n_0\), всі елементи ГАД задовольняють багатовимірний аналог теореми Ворпіцького, тому нескінченні залишки ("хвости") \(Q_{[n]}^\infty\) ГАД є збіжними. Використовуючи принцип відповідності, в роботі доведено, що нескінченні залишки \(Q_{[n]}^\infty\) ГАД Ньорлунда рівномірно збігаються до відношения функцій, одержаних при побудові розширення на \(n\)-му поверсі.

Однією з фундаментальних властивостей неперервних дробів та їх багатовимірних узагальнень є властивість стійкості до збурень. У роботах [3, 4, 13, 14] встановлено оцінки відносних похибок підхідних дробів числових ГАД у випадку додатних елементів та у випадку комплексних елементів, які задовольняють багатовимірні аналоги теорем Ворпіцького та Слєшинського-Прінгсгейма. Ці результати сформульовані в термінах простих множин стійкості ГАД, що накладало обмеження на збурення елементів, які належать межі множини стійкості, тобто точні та збурені елементи ГАД належали одній і тій же множині. Вперше вводиться поняття ГАД стійкого до збурень, що природньо дозволяє

УДК 517.526
2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15, 33C65, 41A20.
збурені елементи вибирати з ширшої множини в порівнянні з множиною точних елементів. Запропонований підхід дослідження стійкості до збурень розглянуто на прикладі ГЛД, елементи якого задовольняють умови багатовимірного аналогу теореми Ворпіцького. Одержані результати застосовано до дослідження стійкості до збурень функціонального ГЛД Ньорлунда, у який розвивається відношення функцій Аппеля F_1.

1 Розвинення відношення гіпергеометричних функцій Аппеля F_1

у гілястий ланцюговий дріб

Гіпергеометрична функція Аппеля від двох змінних F_1 означена у роботах [2, 7] подвійним степеневим рядом вигляду:

$$F_1(\alpha, \beta, \beta'; \gamma; z_1, z_2) = \sum_{n,m=0}^{\infty} \frac{(\alpha)_{n+m}(\beta)_n(\beta')_m}{(\gamma)_{n+m} n! m!} z_1^n z_2^m,$$

de параметри $\alpha, \beta, \beta', \gamma \in \mathbb{C}, \gamma \neq 0, -1, -2, ..., (a)_k = a(a+1)...(a+k-1)$ — символ Поппамер а, $k \geq 1$, $(a)_0 = 1, z_1, z_2$ — комплексні змінні.

Теорема 1. Відношення гіпергеометричних функцій Аппеля

$$\frac{F_1(\alpha, \beta, \beta'; \gamma; z_1, z_2)}{F_1(\alpha + 1, \beta + 1, \beta'; \gamma + 1; z_1, z_2)}$$

розвивається у гілястий ланцюговий дріб Ньорлунда вигляду

$$b_0(z_1, z_2) + \sum_{k=1}^{D} \sum_{i_k=1}^{2} a_{i(k)}(z_1, z_2) b_{i(k)}(z_1, z_2),$$

коефіцієнти якого

$$b_0(z_1, z_2) = 1 - \frac{\alpha + \beta + 1}{\gamma} z_1 - \frac{\beta'}{\gamma} z_2,$$

$$a_{i(k)}(z_1, z_2) = \begin{cases} \frac{(\alpha + k)\beta + p}{(\gamma + k - 1)(\gamma + k)} z_1(1 - z_1), & \text{якщо } i_k = 1, \\ \frac{(\alpha + k)\beta' + q - 1}{(\gamma + k - 1)(\gamma + k)} z_2(1 - z_2), & \text{якщо } i_k = 2, \end{cases}$$

$$b_{i(k)}(z_1, z_2) = \begin{cases} 1 - \frac{\alpha + \beta + k + p + 1}{\gamma + k} z_1 - \frac{\beta' + q}{\gamma + k} z_2, & \text{якщо } i_k = 1, \\ 1 - \frac{\beta + p + 1}{\gamma + k} z_1 - \frac{\alpha + \beta' + k + q}{\gamma + k} z_2, & \text{якщо } i_k = 2, \end{cases}$$

de $(z_1, z_2) \in \mathbb{C}^2, \mu l t i n i x d e s i i(k) \in I = \{i(s) = i_1 i_2 ... i_s : i_1 = 1, 2; l = 1, s, s \in \mathbb{N}; i(0) = 0\}, p$ та q — кількість одиниць та двійок в мультиіндексі $i(k)$ відповідно, $k = p + q, k = 0, 1, 2, ...$.
2 Відповідність

Важливу роль у теорії неперервних дробів відіграє відповідність послідовностей мероморфних функцій. Деякі методи розвинення функцій у неперервні дроби грунтуються на відповідності між формальним степеневим рядом і послідовністю n-тих апроксимант неперервного дробу [6, 8, 11].

Нехай \(\{R_n(z_1, z_2)\} \) — послідовність раціональних функцій, голоморфних в початку координат. Розглянемо формальний подвійний степеневий ряд (ФПСР)

\[
P = \sum_{k_1, k_2 \geq 0} c_{k_1, k_2} z_1^{k_1} z_2^{k_2},
\]

де \(c_{k_1, k_2} \) — комплексні числа, \(z_1, z_2 \) — комплексні змінні, \(k_1, k_2 \in \mathbb{N}_0 \). Позначимо через \(P \) множину всіх ФПСР, яка є кільцем з одиницею відносно операцій додавання і множення на скаляр. Визначимо відображення \(\lambda : P \rightarrow \mathbb{N}_0 \cup \{\infty\} \) наступним чином: \(\forall P \in P \)

\[
\lambda(P) = \begin{cases}
\infty, & \text{якщо } P \equiv 0, \\
m, & \text{якщо } P \neq 0,
\end{cases}
\]

де \(m \) — найменший степінь однорідного полінома, для якого \(c_{k_1, k_2} \neq 0 \), тобто \(m = k_1 + k_2 \).

Нехай \(P(R_n) = P(R_n(z_1, z_2)) \) — розвинення функції \(R_n(z_1, z_2) \) в ФПСР, \(n \geq 1 \).

Послідовність раціональних функцій \(\{R_n(z_1, z_2)\} \), голоморфних в початку координат, назвемо відповідно до ФПСР (5) в точці \((z_1, z_2) = (0, 0) \), якщо \(\lim n \sup |v_n| = \infty \), де \(v_n = \lambda(P - P(R_n)) \) — порядок відповідності функції \(R_n(z_1, z_2) \).

Послідовність раціональних функцій \(\{R_n(z_1, z_2)\} \) рівномірно збігається на компактах області \(D, D \subset C^2 \), якщо для довільного компакта \(K \) області \(D \):

1) існує таке число \(N(K) \), що функції \(R_n(z_1, z_2) \) є голоморфними в деякій області, що містить \(K \) для всіх \(n > N(K) \);

2) для заданого \(\varepsilon > 0 \) існує таке \(N_\varepsilon > N(K) \), що

\[
\sup_{(z_1, z_2) \in K} |R_{n+k}(z_1, z_2) - R_n(z_1, z_2)| < \varepsilon \quad \text{для } n \geq N_\varepsilon, \quad k \geq 0.
\]

Послідовність раціональних функцій \(\{R_n(z_1, z_2)\} \) рівномірно обмежена на компактах області \(D \), якщо для довільного компакта \(K \) області \(D \) існують такі числа \(M(K) \) і \(B(K) \), що

\[
\sup_{(z_1, z_2) \in K} |R_n(z_1, z_2)| < B(K) \quad \text{для } n \geq M(K).
\]

Сформулюємо принцип відповідності для послідовності раціональних функцій двох змінних.

Теорема 2 (принцип відповідності). Нехай послідовність \(\{R_n(z_1, z_2)\} \) раціональних функцій, голоморфних в початку координат, є відповідно до ФПСР (5). Притом, що \(\lim_{n \to \infty} R_n(z_1, z_2) \) голоморфна в області \(\delta \subset C^2 \) і область \(D(D \subset C^2) \) містить \(D_\delta \). Тоді:

(А) послідовність \(\{R_n(z_1, z_2)\} \) збігається рівномірно на компактах області \(D \) тоді і тільки тоді, коли \(\{R_n(z_1, z_2)\} \) рівномірно обмежена на компактах області \(D \);

(Б) якщо послідовність \(\{R_n(z_1, z_2)\} \) збігається рівномірно на компактах області \(D \), то \(f(z_1, z_2) = \lim_{n \to \infty} R_n(z_1, z_2) \) голоморфна в \(D_\delta \) і \(P = P(f) \) є рядом Тейлора функції \(f(z_1, z_2) \) в початку координат.
Доведення цієї теореми проводиться аналогічно як і в роботі [10], з урахуванням того, що функції $R_n(z_1, z_2)$, $n = 1, 2, \ldots$, є раціональними і голоморфними в $D_δ$.

Нехай

$$v_0(z_1, z_2) + \frac{D}{D} \sum_{k=1}^{2} \frac{u_{i(k)}(z_1, z_2)}{v_{i(k)}(z_1, z_2)},$$

(6)

— функціональний гіллястий ланцюговий дріб, коефіцієнти $u_{i(k)}(z_1, z_2), v_{i(k)}(z_1, z_2)$ якого є поліномами. Апроксиманти ГЛД (6) визначають як скінченні ГЛД наступним чином:

$$f_n(z_1, z_2) = v_0(z_1, z_2) + \frac{n}{D} \sum_{k=1}^{2} \frac{u_{i(k)}(z_1, z_2)}{v_{i(k)}(z_1, z_2)}, \quad n \in \mathbb{N}.$$

(7)

Зауважимо, що апроксиманти $f_n(z_1, z_2), n \in \mathbb{N}$, ГЛД (6) є раціональними функціями в C^2.

ГЛД (6) збігається рівномірно на компактах області $D, D \subset C^2$, якщо послідовність його апроксимант $\{f_n(z_1, z_2)\}$ збігається рівномірно на компактах області D. ГЛД (6) називають відповідним до подвійного формального степеневого ряду P, якщо послідовність його апроксимант $\{f_n(z_1, z_2)\}$ є відповідно до P.

Наслідок 1. Нехай ГЛД (6) є відповідним в початку координат до подвійного формального степеневого ряду (5) і область $D, D \subset C^2$, містить початок координат.

Тоді:

(A) ГЛД (6) збігається рівномірно на компактах області D тоді і тільки тоді, коли послідовність його апроксимант (7) рівномірно обмежена на компактах області D;

(Б) якщо ГЛД (6) рівномірно збігається на компактах області D до деякої голоморфної функції $f(z_1, z_2)$, то ряд $P = P(f)$ є рядом Тейлора для $f(z_1, z_2)$ в точці $(z_1, z_2) = (0, 0)$.

Теорема 3. Нескінченний залишок гіллястого ланцюгового дробу Ньорлунда для довільного фіксованого мультиіндекса $i(n) \in \mathcal{T}, n \in \mathbb{N}_0$,

$$Q^\infty_{i(n)}(z_1, z_2) = b_{i(n)}(z_1, z_2) + \frac{D}{D} \sum_{k=n+1}^{2} \frac{a_{i(k)}(z_1, z_2)}{b_{i(k)}(z_1, z_2)},$$

(8)

коєфіцієнти якого визначаються формулами (2)–(4), є відповідним до формального подвійного степеневого ряду, в який розвивається відношення гіпергеометричних функцій Аппеля

$$\frac{F_1(\alpha + n, \beta + p, \beta' + q; \gamma + n; z_1, z_2)}{F_1(\alpha + n + 1, \beta + p + \delta^1, \beta' + q + \delta^2; \gamma + n + 1; z_1, z_2)},$$

(9)

де p та q — кількість одиниць та двійок в мультиіндексі $i(n)$ відповідно, $n = p + q, \delta^1, \delta^2$ — символ Кронекера, і для кожного його підхідного дробу $f_n(z_1, z_2), m > n$, порядок відповідності $v_m = m - n + 1$.

Доведення. Для $n = 0$ твердження теореми випливає з [5] при $N = 2$. Нехай $i(n) — деякий фіксований мультиіндекс, $i(n) \in \mathcal{T}, n \geq 1$. Припустимо, що $i_n = 1$ (у випадку $i_n = 2$ доведення аналогічне), причому p і $q — кількість одиниць та двійок у мультиіндексі $i(n)$ відповідно, $n = p + q$.

Позначимо

$$Q^{(m)}_{i(m)}(z_1, z_2) = b_{i(m)}(z_1, z_2), \quad Q^{(m)}_{i(k)}(z_1, z_2) = b_{i(k)}(z_1, z_2) + \sum_{i_{k+1}=1}^{2} \frac{a_{i(k+1)}(z_1, z_2)}{Q^{(m)}_{i(k+1)}(z_1, z_2)},$$

(10)
де $k = m - 1, m - 2, \ldots, n, m \geq n, i(m), i(k) \in I$. Тоді m-ту апроксиманту ГЛД (8) при $m > n \geq 1$ запишемо у вигляді

$$f_m(z_1, z_2) = Q_{i(n)}(z_1, z_2) = b_{i(n)}(z_1, z_2) + \sum_{k=n+1}^{m} \sum_{i(k)=1}^{i(m)} a_{i(k)}(z_1, z_2).$$

Нехай p_k і q_k — кількість одиниць та двійок у мультиіндексі $i(k)$ відповідно, $k = p_k + q_k, i(k) \in I$. Гіпергеометричні функції Аппеля F_1 задовольняють наступні рекурентні співвідношення (див. [5] для $N = 2$):

$$F_1(\alpha + k, \beta + p_k, \beta' + q_k; \gamma + k; z_1, z_2) = \left(1 - \frac{\alpha + \beta + p_k + 1}{\gamma + k} \right) z_1 \left(1 - \frac{\beta' + q_k}{\gamma + k} z_2 \right) \times F_1(\alpha + k + 1, \beta + p_k + 1, \beta' + q_k; \gamma + k + 1; z_1, z_2) + \frac{(\alpha + k + 1)(\beta + p_k + 1)}{(\gamma + k)(\gamma + k + 1)} z_1(1 - z_1) \quad (11)$$

$$F_1(\alpha + k + 1, \beta + p_k, \beta' + q_k; \gamma + k; z_1, z_2) = \left(1 - \frac{\alpha + \beta + k + q_k + 1}{\gamma + k} \right) z_2 \left(1 - \frac{\beta' + p_k}{\gamma + k} z_1 \right) \times F_1(\alpha + k + 1, \beta + p_k + 1, \beta' + q_k; \gamma + k + 1; z_1, z_2) + \frac{(\alpha + k + 1)(\beta' + q_k + 1)}{(\gamma + k)(\gamma + k + 1)} z_2(1 - z_2) \quad (12)$$

Нехай $\chi = F_1(\alpha + k, \beta + p_k, \beta' + q_k; \gamma; z_1, z_2)$.

Позначимо

$$X_{p_k,q_k} = \frac{F_1(\alpha + k, \beta + p_k, \beta' + q_k; \gamma + k; z_1, z_2)}{F_1(\alpha + k + 1, \beta + p_k + 1, \beta' + q_k; \gamma + k + 1; z_1, z_2)} \quad X'_{p_k,q_k} = \frac{F_1(\alpha + k + 1, \beta + p_k, \beta' + q_k; \gamma + k; z_1, z_2)}{F_1(\alpha + k + 1, \beta + p_k + 1, \beta' + q_k; \gamma + k + 1; z_1, z_2)}.$$

Тоді, згідно рекурентних формул (11)—(12) для гіпергеометричної функції Аппеля F_1 та формул для елементів гіллястого ланцюгового дробу типу Ньорлунда (2)—(4), маємо

$$X_{p_k,q_k} = b_{i(k)}(z_1, z_2) + \frac{a_{i(k)}(z_1, z_2)}{X_{p_k+1,q_k}} + \frac{a_{i(k)}(z_1, z_2)}{X'_{p_k+1,q_k}},$$

$$X'_{p_k,q_k} = b_{i(k)}(z_1, z_2) + \frac{a_{i(k)}(z_1, z_2)}{X_{p_k+1,q_k}} + \frac{a_{i(k)}(z_1, z_2)}{X'_{p_k+1,q_k}}.$$

Таким чином, для $i_n = 1$ відношення функцій (9) $X_{p,q}$ розвивається у скінчений гіллястий ланцюговий дріб вигляду

$$X_{p,q} = b_{i(n)}(z_1, z_2) + \sum_{i_{n+1}=1}^{i_m} \frac{a_{i(m+1)}(z_1, z_2)}{W_{i(m+1)}(z_1, z_2)},$$

де

$$W_{i(m+1)}(z_1, z_2) = \begin{cases} X_{p_{m+1},q_{m+1}}, & \text{якщо } i_{m+1} = 1, \\ X'_{p_{m+1},q_{m+1}}, & \text{якщо } i_{m+1} = 2. \end{cases}$$
Аналігічно до (10) позначимо:

\[Q_{i(n)}^{(m+1)}(z_1, z_2) = W_{i(n)}^{(m+1)}(z_1, z_2), \quad Q_{i(k)}^{(m+1)}(z_1, z_2) = b_{i(k)}(z_1, z_2) + \sum_{i_{k+1}=1}^{2} \frac{a_{i(k+1)}(z_1, z_2)}{Q_{i(n)}^{(m+1)}(z_1, z_2)}, \]

де \(n \leq k \leq m \). Зауважимо, що відношення (9) дорівнює \(X_{p,q} \) і \(X_{p,q} = Q_{i(n)}^{(m+1)}(z_1, z_2) \).

Використовуючи методику виведення формули різниці між підхідними дробами [3], маємо

\[X_{p,q} - f_{m}(z_1, z_2) = Q_{i(n)}^{(m+1)}(z_1, z_2) - Q_{i(n)}^{(m)}(z_1, z_2) = (-1)^m \sum_{i_{n+1},...,i_{m+1}=1}^{2} \prod_{k=n+1}^{m+1} a_{i(k)}(z_1, z_2) \prod_{k=n+1}^{m+1} \left[Q_{i(n)}^{(m)}(z_1, z_2) Q_{i(n)}^{(m+1)}(z_1, z_2) \right]. \] (13)

Оскільки величини \(W_{i(n+1)}^{(m+1)}(0, 0), Q_{i(k)}^{(m)}(0, 0), Q_{i(k)}^{(m+1)}(0, 0) \), \(n \leq k \leq m \), рівні одиниці, то \(W_{i(n+1)}^{(m+1)}(z_1, z_2), Q_{i(k)}^{(m)}(z_1, z_2), Q_{i(k)}^{(m+1)}(z_1, z_2) \) відмінні від нуля в деякому околі початку координат. Розкладаючи формально у подвійні степеневі ряди \(\left(W_{i(n+1)}^{(m+1)}(z_1, z_2) \right)^{-1}, \left(Q_{i(k)}^{(m)}(z_1, z_2) \right)^{-1}, \left(Q_{i(k)}^{(m+1)}(z_1, z_2) \right)^{-1} \) і враховуючи степінь чисельника в (13), одержимо:

\[X_{p,q} - f_{m}(z_1, z_2) = \sum_{j_1, j_2 \geq 0, j_1 + j_2 \geq v_m} c_{j_1, j_2} z_1^{j_1} z_2^{j_2}, \]

де \(c_{j_1, j_2} \) — деякі комплексні коефіцієнти, \(v_m = m - n + 1 \). Тому нескінчений залишок \(Q_{i(n)}^{(m)}(z_1, z_2) \) (9) ГЛД (1) є відповідним до ФПСР, у який розбивається відношення \(X_{p,q} \) з порядком відповідності \(v_m \).

\[\square \]

3 Збіжність залишків ГЛД Ньорлунда

Теорема 4. Нехай \(\alpha, \beta, \beta', \gamma \) — довільні комплексні числа \((\gamma \neq 0, -1, -2, \ldots) \), \(r \) — дійсне число, \(0 < r < 1/8 \), тоді існує таке натуральне число \(n_0 = n_0(\alpha, \beta, \beta', \gamma, r) \), що для кожного \(n > n_0 \) і довільного фіксованого мультиіндекса \(i(n) \in I \) нескінченний залишок \(Q_{i(n)}^{(\infty)}(z_1, z_2) \) (8) ГЛД Ньорлунда (1) рівномірно збігається в полікурузі

\[G_r := \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_j| \leq r, j = 1, 2 \right\} \] (14)

do голоморфної функції (9).

Доведення. Нехай \((z_1, z_2) \in G_r\) (14). Розглянемо послідовності \(\{\zeta_k\} \) та \(\{\xi_k\} \):

\[\zeta_k = \frac{|\alpha + k| (\max{|\beta|, |\beta'|} + k)}{|(\gamma + k - 1)(\gamma + k)|}, \quad \xi_k = \frac{|\alpha| + |\beta| + |\beta'| + 2k - 1}{|\gamma + k - 1|}, \quad k = 1, 2, \ldots \] (15)

Легко бачити, що \(\lim_{k \to \infty} \zeta_k = 1, \lim_{k \to \infty} \xi_k = 2 \). Виберемо \(\varepsilon, 0 < \varepsilon \leq \varepsilon_r \), де

\[\varepsilon_r = \frac{3 - 2\sqrt{2(1 + r)}}{r}, \] (16)

до голоморфної функції (9).
ПРО НЕСКІНЧЕНИІ ЗАЛИШКИ ГДА НЬЮРЛЮНДА

tоді \(\exists k_\xi = k_\xi(r) : \forall k > k_\xi \Rightarrow \xi_k < 1 + \varepsilon, \exists k_\zeta = k_\zeta(r) : \forall k > k_\zeta \Rightarrow \zeta_k < 2 + \varepsilon. \) Покладемо \(n_0 = \max\{k_\xi, k_\zeta\}, \) тоді

\[\forall k > n_0 \Rightarrow (\xi_k < 1 + \varepsilon) \land (\zeta_k < 2 + \varepsilon). \] (17)

Нехай \(i(n) \) — довільний фіксований мультиіндекс, \(i(n) \in \mathcal{I}, n > n_0. \) ГДА (8), який є нескінченим залишком ГДА Ньорлунда (1), після еквівалентних перетворень запишемо у вигляді

\[Q_{i(n)}(z_1, z_2) = b_{i(n)}(z_1, z_2) + \sum_{k=n+1}^{\infty} \sum_{l=1}^{k} a_{i(k)}(z_1, z_2) b_{i(k)}(z_1, z_2) \left(1 + \sum_{k=n+1}^{\infty} \sum_{l=1}^{k} c_{i(l)}(z_1, z_2) \right). \]

де \(c_{i(k)}(z_1, z_2) \) визначаються формулами: \(c_{i(k)}(z_1, z_2) = a_{i(k)}(z_1, z_2) b_{i(k)}(z_1, z_2) b_{i(k-1)}(z_1, z_2), \) \(i(k) \in \mathcal{I}, k > n. \) Встановимо оцінки виразів \(|c_{i(k)}(z_1, z_2)| \) для довільного мультиіндекса \(i(k) \in \mathcal{I}, k > n, \) в полікрузі (14). Враховуючи формули коефіцієнтів (2)-(4) теореми 1, позначення (15) та нерівності (17), маємо

\[
|c_{i(k)}(z_1, z_2)| = \left| \frac{a_{i(k)}(z_1, z_2)}{b_{i(k)}(z_1, z_2) b_{i(k-1)}(z_1, z_2)} \right| \leq \left| \frac{a + k}{b} \right| \left(\frac{\max\{\beta, \beta'\} + k}{\gamma + k - 1} \right)^{-1} \left(1 - \frac{2k - 1}{\gamma + k - 1} \right)^{-1} \leq \frac{\xi_k r(1 + r)}{(1 - \xi_k(1 + r))^2},
\]

де \(\xi_k(r) = \left(1 + \frac{1}{r} \right)^{-r} \).

Легко переконатися, що при заданому виборі \(\varepsilon, 0 < \varepsilon \leq \varepsilon_r, \) де \(\varepsilon_r \) визначається згідно (16), виконується нерівність

\[
(1 + \varepsilon)^r(1 + r) \leq \frac{1}{4},
\]

тобто

\[
|c_{i(k)}(z_1, z_2)| \leq \frac{1}{8^r}, \quad i(k) \in \mathcal{I}, k > n.
\] (18)

Оскільки для елементів ГДА (8) виконуються нерівності (18), то нескінчений залишок (8) ГДА Ньорлунда рівномірно збігається до деякої голоморфної функції \(f(z_1, z_2) \) за багатовимірним аналогом теореми Ворпіцького [3, теорема 3.14].

З теореми 3 і наслідувати 1 випливає збіжність нескінченного залишку \(Q_{i(n)}(z_1, z_2) \) до відношення функцій Аппеля (9). □

4 СТИЙКІСТЬ ДО ЗБУРЕНЬ

Розглянемо числовий гіллястий ланцюговий дріб

\[b_0 + \sum_{k=1}^{\infty} \sum_{l=1}^{k} a_{i(l)}(z_1, z_2) b_{i(l)}, \]

Позначимо множини мультиіндексів \(\mathcal{I}_0 = \varnothing, \mathcal{I}_k = \left\{ i(k) = (i(k, 1), i(k, 2), \ldots, i(k, m), k = 1, 2, \ldots, m = 1, 2, \ldots, l = 1, k \right\}, \)

\[k = 1, 2, \ldots \] Очевидно, що \(\mathcal{I} = \bigcup_{k=0}^{\infty} \mathcal{I}_k. \)
ГАД (19) називають відносно стійким до збурень, якщо для довільного ε > 0 існує таке δ > 0, що для кожного \(a_i(k) \in C, i(k) \in I_k, k = 1, 2, \ldots \), і кожного \(b_i(k) \in C, i(k) \in I_k, k = 0, 1, 2, \ldots \), таких, що \[|\tilde{a}_i(k) - a_i(k)| < \delta, \quad |\tilde{b}_i(k) - b_i(k)| < \delta, \] виконуються нерівності
\[\left| \frac{f_s - f_{s'}}{f_s} \right| < \varepsilon, \quad s = 1, 2, \ldots, \]
де \(f_s = b_0 + \sum_{k=1}^{s} \sum_{i_k=1}^{a} \frac{a_i(k)}{b_i(k)}, \quad f_{s'} = b_0 + \sum_{k=1}^{s'} \sum_{i_k=1}^{a} \frac{\tilde{a}_i(k)}{\tilde{b}_i(k)}. \]

Гіллястий ланцюговий дріб
\[\tilde{b}_0 + \sum_{k=1}^{\infty} \sum_{i_k=1}^{a} \frac{\tilde{a}_i(k)}{\tilde{b}_i(k)} \]
називають збуреним ГАД до дробу (19), а його елементи — збуреними до елементів дробу (19).

Припустимо, що
\[a_i(k) \neq 0, \quad \tilde{a}_i(k) \neq 0, \quad i(k) \in I_k, \quad k = 1, 2, \ldots, \]
\[b_i(k) \neq 0, \quad \tilde{b}_i(k) \neq 0, \quad i(k) \in I_k, \quad k = 0, 1, 2, \ldots, \]
\[Q^{(s)}_{i(p)} \neq 0, \quad \tilde{Q}^{(s)}_{i(p)} \neq 0, \quad i(p) \in I_p, \quad p = 0, s, s = 1, 2, \ldots, \]
де \(Q^{(s)}_{i(p)} = b_{i(p)} + \sum_{k=p+1}^{s} \sum_{i_k=1}^{a} \frac{a_i(k)}{b_i(k)}, \quad \tilde{Q}^{(s)}_{i(p)} = \tilde{b}_{i(p)} + \sum_{k=p+1}^{s} \sum_{i_k=1}^{a} \frac{\tilde{a}_i(k)}{\tilde{b}_i(k)}. \]

Позначимо через \(\alpha_i(k), \beta_i(k) \) відносні похибки елементів \(a_i(k), b_i(k) \) відповідно, \(\varepsilon^{(s)}_{i(p)} \) — відносні похибки залишків \(Q^{(s)}_{i(p)} \) підхідного дробу \(f_s \) ГАД (19), то бто
\[\tilde{a}_i(k) = a_i(k) \left(1 + \alpha_i(k) \right), \quad \tilde{b}_i(k) = b_i(k) \left(1 + \beta_i(k) \right), \quad i(k) \in I_k, \quad k = 1, 2, \ldots, \]
\[\tilde{Q}^{(s)}_{i(p)} = Q^{(s)}_{i(p)} \left(1 + \varepsilon^{(s)}_{i(p)} \right), \quad i(p) \in I_p, \quad p = 0, s, s = 1, 2, \ldots, \]

Розглянемо величини \(\varepsilon_{i(p)}^{(s)} \), що визначаються співвідношеннями
\[Q^{(s)}_{i(p)} = \tilde{Q}^{(s)}_{i(p)} \left(1 + \varepsilon_{i(p)}^{(s)} \right), \quad i(p) \in I_p, \quad p = 0, s, s = 1, 2, \ldots, \]

Доведемо, що для похибок \(\varepsilon_{i(p)}^{(s)} \), \(\tilde{\varepsilon}_{i(p)}^{(s)} \) справжняються рекурентні формули
\[\varepsilon_{i(p)}^{(s)} = \left(1 - \sum_{i_p+1=1}^{2} \tilde{q}_{i(p+1)}^{(s)} \right) \beta_{i(p)} + \sum_{i_p+1=1}^{2} \tilde{q}_{i(p+1)}^{(s)} \left(\alpha_{i(p+1)} \left(1 + \varepsilon_{i(p+1)}^{(s)} \right) + \varepsilon_{i(p+1)}^{(s)} \right), \]
\[\tilde{\varepsilon}_{i(p)}^{(s)} = -\left(1 - \sum_{i_p+1=1}^{2} \tilde{q}_{i(p+1)}^{(s)} \right) \frac{\beta_{i(p)}}{1 + \beta_{i(p)}} + \sum_{i_p+1=1}^{2} \tilde{q}_{i(p+1)}^{(s)} \left(-\frac{\alpha_{i(p+1)}}{1 + \alpha_{i(p+1)}} \left(1 + \varepsilon_{i(p+1)}^{(s)} \right) + \varepsilon_{i(p+1)}^{(s)} \right), \]
при \(i(p) \in I_p, \quad p = 0, s - 1, s = 1, 2, \ldots, \) де
\[\tilde{q}_{i(p)}^{(s)} = \frac{a_{i(p)}}{Q_{i(p-1)}^{(s)} Q_{i(p)}^{(s)}}. \]
Формули (24) для довільного мультиіндекса $i(s), s \in \mathbb{N}$, очевидні. Для фіксованого мультиіндекса $i(p), i(p) \in I_p, 0 \leq p \leq s - 1$, маємо

$$
\tilde{\eta}_{i(p)}^{(s)} = \beta_{i(p)}^{(s)} \frac{\tilde{\beta}_{i(p)}^{(s)}}{1 + \beta_{i(p)}^{(s)}} = \frac{\beta_{i(p)}^{(s)} - \hat{\beta}_{i(p)}^{(s)}}{1 + \beta_{i(p)}^{(s)}} = \frac{1}{Q_{i(p)}^{(s)}} \left(b_{i(p)} (1 + \beta_{i(p)}) + \sum_{i_{p+1}=1}^{2} a_{i(p+1)} \left(1 + \alpha_{i(p+1)} \right) \frac{Q_{i(p+1)}^{(s)}}{Q_{i(p)}^{(s)}} \left(1 + \frac{\eta_{i(p+1)}^{(s)}}{\tilde{\eta}_{i(p+1)}^{(s)}} \right) \right) - 1
$$

Аналогічно отримуємо рекурентні формуль (22) для відносних похибок $\tilde{\epsilon}_{i(p)}^{(s)}, i(p) \in I_p, p = 0, s - 1, s = 1, 2, \ldots$

Почергово використовуючи співвідношення (21), (22) та співвідношення (24), отримуємо формули відносних похибок $\tilde{\epsilon}_{i(p)}^{(s)}$:

$$
\epsilon_{i(p)}^{(s)} = \frac{Q_{i(p)}^{(s)} - Q_{i(p)}^{(s)}}{Q_{i(p)}^{(s)}} = \frac{1}{Q_{i(i)}^{(s)}} \left(b_{i(p)} (1 + \beta_{i(p)}) + \sum_{i_{p+1}=1}^{2} a_{i(p+1)} \left(1 + \alpha_{i(p+1)} \right) \frac{Q_{i(p+1)}^{(s)}}{Q_{i(p)}^{(s)}} \left(1 + \frac{\eta_{i(p+1)}^{(s)}}{\tilde{\eta}_{i(p+1)}^{(s)}} \right) \right) - 1
$$

$$
\epsilon_{i(p+1)}^{(s)} = \frac{Q_{i(p+1)}^{(s)} - Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} = \frac{1}{Q_{i(p+1)}^{(s)}} \left(b_{i(p+1)} (1 + \beta_{i(p+1)}) + \sum_{i_{p+1}=1}^{2} a_{i(p+1)} \left(1 + \alpha_{i(p+1)} \right) \frac{Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} \left(1 + \frac{\eta_{i(p+1)}^{(s)}}{\tilde{\eta}_{i(p+1)}^{(s)}} \right) \right) - 1
$$

Аналогічно отримуємо формулу (25) для відносної похибки $\epsilon_{i(p+1)}^{(s)}, i(p+1) \in I_p, p = 0, s - 1, s = 1, 2, \ldots$

$$
\epsilon_{i(p+1)}^{(s)} = \frac{Q_{i(p+1)}^{(s)} - Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} = \frac{1}{Q_{i(p+1)}^{(s)}} \left(b_{i(p+1)} (1 + \beta_{i(p+1)}) + \sum_{i_{p+1}=1}^{2} a_{i(p+1)} \left(1 + \alpha_{i(p+1)} \right) \frac{Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} \left(1 + \frac{\eta_{i(p+1)}^{(s)}}{\tilde{\eta}_{i(p+1)}^{(s)}} \right) \right) - 1
$$

$$
\epsilon_{i(p+1)}^{(s)} = \frac{Q_{i(p+1)}^{(s)} - Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} = \frac{1}{Q_{i(p+1)}^{(s)}} \left(b_{i(p+1)} (1 + \beta_{i(p+1)}) + \sum_{i_{p+1}=1}^{2} a_{i(p+1)} \left(1 + \alpha_{i(p+1)} \right) \frac{Q_{i(p+1)}^{(s)}}{Q_{i(p+1)}^{(s)}} \left(1 + \frac{\eta_{i(p+1)}^{(s)}}{\tilde{\eta}_{i(p+1)}^{(s)}} \right) \right) - 1
$$

Поклавши в (25) $p = 0$, отримуємо формулу відносної похибки s-го підхідного дробу ГЛД (19)

$$
\epsilon_{i(i)}^{(s)} = \left(1 - \sum_{i_{p+1}=1}^{2} \tilde{q}_{i(i)}^{(s)} \right) \beta_{i(i)}^{(s)} + \sum_{k=p+1}^{s} \sum_{i_{k+1}=1}^{2} \left(\gamma_{i(k)}^{(s)} + \tilde{\gamma}_{i(k)}^{(s)} \right) \beta_{i(k)}^{(s)} \prod_{m=p+1}^{k} \tilde{q}_{i(m)}^{(s)}.
$$
Лема. Величини \(q_i^{(s)}(p) = i(p) \in \mathcal{I}_p, p = 1, s, s = 1, 2, \ldots \), що визначаються згідно з (23), інваріантні відносно перетворень евіалентності

\[
b_i + \sum_{k=1}^{\infty} \sum_{i_{k+1}=1}^{2} \frac{r_{i(k-1)}r_{i(k)}a_{i(k)}}{r_{i(k)}b_{i(k)}},
\]

де \(r_{i(k)} \) — довільні комплексні числа, \(i(k) \in \mathcal{I}_k, k = 1, 2, \ldots, r_{i(k)} \neq 0, r_0 = 1 \).

Доведення. Нехай \(s \) — довільне натуральне число і \(G_i^{(s)}(p) \) — залишки \(s \)-го підхідного дробу гілястого ланцюгового дробу (27). Покажемо, що \(G_i^{(s)}(p) = r_i(p) Q_i^{(s)}(p), i(p) \in \mathcal{I}_p, p = 0, s, \) де \(Q_i^{(s)}(p) \) — залишки \(s \)-го підхідного дробу ГАД (19). Застосуємо метод математичної індукції відносно \(p, p = s, s - 1, \ldots, 0. \) При \(p = s \) рівність очевидна. Припустивши, що рівність справджується для деякого \(p = k + 1, 0 < k < s - 1, \) при \(p = k \) маємо:

\[
G_i^{(s)}(k) = r_i(k)b_i(k) + \sum_{i_{k+1}=1}^{2} \frac{r_{i(k)}r_{i(k+1)}a_{i(k+1)}}{G_i^{(s)}(k+1)} = r_i(k)\left(b_i(k) + \sum_{i_{k+1}=1}^{2} \frac{a_{i(k+1)}}{Q_i^{(s)}(k+1)}\right) = r_i(k)Q_i^{(s)}(k).
\]

Тоді

\[
S_i^{(s)}(p) = \frac{r_i(p-1)r_i(p)a_i(p)}{G_i^{(s)}(p-1)Q_i^{(s)}(p)} = \frac{a_i(p)}{Q_i^{(s)}(p)}, i(p) \in \mathcal{I}_p, p = 0, s.
\]

Теорема 5. Нехай елементи ГАД (19) задовольняють умови

\[
\left| \frac{a_i(k)}{b_i(k-1)b_i(k)} \right| \leq \rho_i(k) \left(1 - \sum_{i_{k+1}=1}^{2} \rho_i(k+1)\right), i(k) \in \mathcal{I}_k, k = 1, 2, \ldots,
\]

де \(\rho_i(k) \) — такі додатні сталі, що

\[
\sum_{i_{k+1}=1}^{2} \rho_i(k) < 1, i(k - 1) \in \mathcal{I}_{k-1}, k = 1, 2, \ldots,
\]

\[
\sup_{i(k-1) \in \mathcal{I}_{k-1}, i_{k+1}=1} \sum_{i_{k+1}=1}^{2} \rho_i(k) \left(1 - \sum_{i_{k+1}=1}^{2} \rho_i(k+1)\right) < \frac{1}{4}.
\]

Тоді ГАД (19) відносно стійкий до збурень, якщо збігається ряд

\[
\sum_{k=1}^{\infty} \prod_{m=0}^{k} \frac{\eta_{2m+1}}{1 - \eta_{2m+1}},
\]

де \(\eta_k = \max_{i(k-1) \in \mathcal{I}_{k-1}} \left\{ \sum_{i_{k+1}=1}^{2} \rho_i(k) \right\}, k = 1, 2, \ldots \) Крім того, якщо відносні похибки елементів ГАД (19) задовольняють умови

\[
|\alpha_{i(k)}| \leq \tilde{\alpha}, \quad 0 < \tilde{\alpha} < 1, \quad i(k) \in \mathcal{I}_k, k = 1, 2, \ldots,
\]

\[
|\beta_{i(k)}| \leq \tilde{\beta}, \quad 0 < \tilde{\beta} < 1, \quad i(k) \in \mathcal{I}_k, k = 0, 1, 2, \ldots,
\]

\[
\frac{1 + \tilde{\alpha}}{(1 - \tilde{\beta})^2} \leq \left(\sup_{i(k-1) \in \mathcal{I}_{k-1}, i_{k+1}=1} \sum_{i_{k+1}=1}^{2} \rho_i(k) \left(1 - \sum_{i_{k+1}=1}^{2} \rho_i(k+1)\right)^{-1} \right),
\]
то для відносних похибок s-тих підхідних дробів справджується оцінка

$$|\varepsilon_0^{(s)}| = \left| \frac{f_s - f_s}{f_s} \right| < \frac{\bar{\beta} + \eta}{1 - \eta} \left(\frac{2 - \bar{\beta}}{1 - \bar{\beta}} \right) + \frac{2\bar{\alpha}}{1 - \eta} \sum_{k=0}^{s-1} \frac{\left[\frac{k}{2} \right]}{1 - \eta_{2m+1}}, \quad s = 1, 2, \ldots$$

(33)

Доведення. Збуримо елементи ГЛД (19) таким чином, щоб виконувалась умови (30)–(32). Перетворимо ГЛД (19) і збурений до нього дріб (20) до ГЛД з частинними знаменниками, що дорівнюють одиниці:

$$\hat{b}_0 \left(1 + \sum_{k=1}^{\infty} \sum_{i=1}^{2} \frac{c_i(k)}{i} \right), \quad \hat{b}_0 \left(1 + \sum_{k=1}^{\infty} \sum_{i=1}^{2} \frac{\hat{c}_i(k)}{i} \right),$$

де $c_i(k) = \frac{a_i(k)}{b_i(k-1)b_i(k)}$, $\hat{c}_i(k) = \frac{\hat{a}_i(k)}{b_i(k-1)b_i(k)}$, $i(k) \in I_k$, $k = 1, 2, \ldots$ Позначимо $G^{(s)}_{i(p)}$, $\hat{G}^{(s)}_{i(p)}$ — залишки s-них підхідних дробів ГЛД (34) відповідно,

$$\delta^{(s)}_{i(p)} = \frac{c_i(p)}{G^{(s)}_{i(p)-1}G^{(s)}_{i(p)}}, \quad \hat{\delta}^{(s)}_{i(p)} = \frac{\hat{c}_i(p)}{G^{(s)}_{i(p)-1}G^{(s)}_{i(p)}}, \quad i(p) \in I_p, p = 1, s, s = 1, 2, \ldots$$

Величини $\sum_{i=1}^{2} \delta^{(s)}_{i(2m+1)}$, $i(k) \in I_k$, $k = 1, s, s = 1, 2, \ldots$, перетворимо з врахуванням парності числа k. При $k = 2m$ маємо:

$$\sum_{i=1}^{2} \delta^{(s)}_{i(2m+1)} = \sum_{i=1}^{2} \frac{c_i(2m)}{Q^{(s)}_{i(2m)-1}Q^{(s)}_{i(2m)}} \alpha_i(2m) \left(1 + \varepsilon_i^{(s)}(2m) \right)$$

при $k = 2m + 1$ маємо:

$$\sum_{i=1}^{2} \delta^{(s)}_{i(2m+1)} = \sum_{i=1}^{2} \frac{c_i(2m+1)}{Q^{(s)}_{i(2m)}Q^{(s)}_{i(2m+1)}} \alpha_i(2m+1) \left(1 + \varepsilon_i^{(s)}(2m+1) \right)$$

В силу того, що величини $q^{(s)}_{i(p)}$, $i(p) \in I_p$, $p = 1, s, s = 1, 2, \ldots$, інваріантні відносно перетворень еквівалентності, формула (26) набуває вигляду

$$\varepsilon_0^{(s)} = \left(1 - \sum_{i=1}^{2} \delta^{(s)}_{i(1)} \right) \bar{\beta}_0$$

(35)
Використовуючи методику множин елементів та відповідних їм множин значень [3, 8], оцінююмо величини \(\sum_{i=1}^{2} |\tilde{\eta}_{i(k)}| \), \(i(k-1) \in \mathcal{I}_{k-1}, k = 1, 2, \ldots \) Для цього розглянемо послідовність множин

\[
V_{i(k)} = \left\{ z \in \mathbb{C} : |z| \leq \rho_{i(k)} \right\}, \quad i(k) \in \mathcal{I}_k, k = 1, 2, \ldots
\]

Множина \(\tilde{V}_{i(k)} = 1 + \sum_{i(k+1)=1}^{2} V_{i(k+1)} \) є кільцем з центром в точці 1 радіуса \(\tilde{\rho}_{i(k)} = \sum_{i(k+1)=1}^{2} \rho_{i(k+1)} \).

Оскілки \(\tilde{\rho}_{i(k)} < 1 \), то \(0 \notin \tilde{V}_{i(k)} \) і функція \(w = c_{i(k)}|z| \) відображає множину \(\tilde{V}_{i(k)} \) в кут

\[
\frac{c_{i(k)}}{\tilde{V}_{i(k)}} = \left\{ z \in \mathbb{C} : |z - \tilde{p}_{i(k)}| \leq r_{i(k)} \right\}
\]

де \(p_{i(k)} = c_{i(k)} \left(1 - \left(\tilde{\rho}_{i(k)}\right)^2\right)^{-1} \), \(r_{i(k)} = \left|c_{i(k)}\tilde{p}_{i(k)}\left(1 - \left(\tilde{\rho}_{i(k)}\right)^2\right)^{-1}\right| \). Множина (36) є множиною значень величин \(\tilde{c}_{i(k)} \), якщо \(p_{i(k)} + r_{i(k)} \leq \rho_{i(k)} \). Остання нерівність еквівалентна нерівності (28).

Із умов (28), (30)--(32) для довільного фіксованого мультиіндекса \(i(k-1) \in \mathcal{I}_{k-1}, k = 1, 2, \ldots \), маємо

\[
\sum_{i(k)=1}^{2} \left|\tilde{c}_{i(k)}\right| = \sum_{i(k)=1}^{2} \left|\tilde{a}_{i(k)}\right| = \sum_{i(k)=1}^{2} \left|\tilde{a}_{i(k)}\right| \left|\frac{a_{i(k)}}{b_{i(k)}(k-1) b_{i(k)}(k)}\right| \leq \frac{1 + \tilde{\alpha}}{(1 - \tilde{\beta})^2} \sum_{i(k)=1}^{2} \rho_{i(k)} \left(1 - \sum_{i(k)=1}^{2} \rho_{i(k)}(k+1)\right)
\]

\[
\leq \frac{1 + \tilde{\alpha}}{(1 - \tilde{\beta})^2} \sup_{k=1, 2, \ldots} \sum_{i(k)=1}^{2} \rho_{i(k)} \left(1 - \sum_{i(k)=1}^{2} \rho_{i(k)(k+1)}\right) \leq \frac{1}{4}.
\]

Тоді для залишків \(\tilde{c}_{i(k)}^{(s)} \) справжняються оцінки \(\left|\tilde{G}_{i(k)}^{(s)}\right| \geq 1/2 \).

Величини \(\sum_{i(s)=1}^{2} \left|\tilde{c}_{i(s)}^{(s)}\right|, i(k-1) \in \mathcal{I}_{k-1}, k = 1, 2, \ldots \), оцінююмо з врахуванням парності числа \(k \). При \(k = 2m + 1 \) маємо:

\[
\sum_{i(2m+1)=1}^{2} \left|\tilde{c}_{i(2m+1)}^{(s)}\right| = \sum_{i(2m+1)=1}^{2} \left|\tilde{c}_{i(2m+1)}^{(s)}\right| \left|\tilde{G}_{i(2m+1)}^{(s)}\right| \leq \left(1 - \sum_{i(2m+1)=1}^{2} \rho_{i(2m+1)}\right)^{-1} \sum_{i(2m+1)=1}^{2} \tilde{c}_{i(2m+1)}^{(s)} \left|\tilde{G}_{i(2m+1)}^{(s)}\right|
\]

\[
\leq \left(1 - \sum_{i(2m+1)=1}^{2} \rho_{i(2m+1)}\right)^{-1} \sum_{i(2m+1)=1}^{2} \rho_{i(2m+1)} \leq \frac{\eta_{2m+1}}{1 - \eta_{2m+1}},
\]

при \(k = 2m \) маємо:

\[
\sum_{i(2m)=1}^{2} \left|\tilde{c}_{i(2m)}^{(s)}\right| = \sum_{i(2m)=1}^{2} \left|\tilde{c}_{i(2m)}^{(s)}\right| \left|\tilde{G}_{i(2m)}^{(s)}\right| \tilde{c}_{i(2m)}^{(s)} \left|\tilde{G}_{i(2m)}^{(s)}\right| \leq 4 \sum_{i(2m)=1}^{2} \left|\tilde{c}_{i(2m)}\right| \leq 1.
\]

Знайдемо оцінки величин \(\sum_{i(k)=1}^{2} \left|\tilde{c}_{i(k)}^{(s)}\right|, i(k-1) \in \mathcal{I}_{k-1}, k = 1, 2, \ldots \), із враху-
ванням парності числа \(k \). При \(k = 2m \) маємо:

\[
\sum_{i_{2m}=1}^{2} \left| \frac{c_i(2m)}{\Delta_i(2m)} \right| = \sum_{i_{2m}=1}^{2} \left| \frac{c_i(2m)}{\Delta_i(2m)} \right| \leq \frac{2\bar{\alpha}}{1 - \beta} \sum_{i_{2m}=1}^{2} \left| \frac{\alpha_i(2m)}{1 + \beta_i(2m-1)} \right|
\]

при \(k = 2m + 1 \) маємо:

\[
\sum_{i_{2m+1}=1}^{2} \left| \frac{c_i(2m+1)}{\Delta_i(2m+1)} \right| = \sum_{i_{2m+1}=1}^{2} \left| \frac{c_i(2m+1)}{\Delta_i(2m+1)} \right| \leq \frac{2\bar{\alpha}}{1 - \beta} \sum_{i_{2m+1}=1}^{2} \left| \frac{\alpha_i(2m+1)}{1 + \beta_i(2m+1)} \right|
\]

із формулі (35), враховуючи оцінки величин

\[
\sum_{i_{2m+1}=1}^{2} \left| \frac{c_i(2m+1)}{\Delta_i(2m+1)} \right| \leq \frac{2\bar{\alpha}}{1 - \beta} \left(1 - \sum_{i_{2m+2}=1}^{2} \rho_i(2m+2) \right) \leq \frac{2\bar{\alpha}}{1 - \beta} \frac{\eta_{2m+1}}{1 - \eta_{2m+1}}.
\]

Наслідок 2. Нехай елементи ГЛА (19) задовольняють умови

\[
\left| \frac{a_i(k)}{b_i(k-1)} b_i(k) \right| \leq \frac{\rho(1 - \rho)}{2}, \quad 0 < \rho < \frac{1}{2}, \quad i(k) \in I_k, \quad k = 1, 2, \ldots
\]

тоді ГЛА (19) є відносно стійким до збурень. Крім того, якщо відносні похибки елементів задовольняють умови (30), (31) і

\[
\frac{1 + \bar{\alpha}}{(1 - \beta)^2} \leq \frac{1}{4\rho(1 - \rho)},
\]

то для відносних похибок \(s \)-тих підвідних дробів справджується оцінка

\[
|d_i(s)| \leq \frac{\bar{\beta}}{1 - \bar{\beta}} + \frac{2\bar{\alpha}}{1 - \bar{\beta}} \left(\frac{2\rho}{1 - 2\rho} - \frac{2\rho}{1 - 2\rho} + \frac{1 + (-1)^{s+1}}{2} \left(\frac{\rho}{1 - \rho} \right)^{\left[\frac{s+1}{2}\right]} \right), \quad s = 1, 2, \ldots
\]

Нехай \(u_i(k) (z_1, z_2), i(k) \in I_k, k = 1, 2, \ldots, v_i(k) (z_1, z_2), i(k) \in I_k, k = 0, 1, 2, \ldots \) — функції, визначені в області \(D \subset C^2 \).

Функціональний ГЛА (6) називаємо відносно стійким до збурень в точці \((z_0^0, z_0^0) \in D\), якщо числовий дріб \(v_0 (z_0^0, z_0^0) + \sum_{k=1}^{\infty} \sum_{i=1}^{2} u_i(k) (z_0^0, z_0^0) v_i(k) (z_0^0, z_0^0) \) відносно стійкий до збурень. Якщо ГЛА (6) є відносно стійким до збурень в кожної точці \((z_1^0, z_2^0) \in D\), то область \(D \) називаєм областю відносної стійкості до збурень ГЛА (6).
Наслідок 3. Нехай $\alpha, \beta, \gamma, \beta', \gamma$ — довільні комплексні числа ($\gamma \neq 0, -1, -2, \ldots$), r — дійсне число, $0 < r < 1/8$, тоді існує таке натуральне число $n_1 = n_1(\alpha, \beta, \gamma, \beta', r)$, що для кожного $n > n_1$ і довільного фіксованого мультиіндекса $i(n) \in I$ нескінченний залишок ГАД Ньорлунда $Q_{i(n)}^\infty(z_1, z_2)$ (8) є відносно стійким до збурень в полікрузі (14). Причому, якщо відносні похибки елементів ГАД (8) задовольняють умови (30), (31), (37), то для відносних похибок s-тих підхідних дробів ГАД (8) справджується оцінка

$$
|e_i^{(s)}(i(n))| \leq \frac{1}{2} + \frac{\beta(2 - \beta)}{1 - \beta} \left(\frac{2\rho}{1 - 2\rho} \right) \left(\frac{1 + (\rho + 1)^{s - n + 1}}{2} \right) \left(\frac{\rho}{1 - \rho} \right)^{[\frac{s}{2}]} - \frac{s}{2} - \frac{2}{\rho},$$

де $s = n, n + 1, n + 2, \ldots$,

$$
\rho = \frac{1 - \sqrt{1 - 8r}}{2}. \tag{38}
$$

Доведення. Якщо в доведенні теореми 4 вибрати $\varepsilon, 0 < \varepsilon \leq \varepsilon'$, де

$$
\varepsilon' = \frac{1 + 5r - 8r^2 - \sqrt{1 + 10r + r^2 - 8r^3}}{4r^2}, \tag{39}
$$

то існує таке натуральне число $n_1 = n_1(\alpha, \beta, \gamma, \beta', r)$, що виконується співвідношення (17). Нехай $i(n)$ — довільний фіксований мультиіндекс, $i(n) \in I$, $n > n_1$. Тоді, після еквівалентних перетворень, для елементів нескінченного залишку $Q_{i(n)}^\infty(z_1, z_2)$ (8) одержимо оцінку

$$
\left| \frac{a_{i(k)}(z_1, z_2)}{b_{i(k-1)}(z_1, z_2)}b_{i(k)}(z_1, z_2) \right| \leq \frac{(1 + \varepsilon)r(1 + r)}{2(1 - (1 + \varepsilon)r)^2} \leq \frac{\rho(1 - \rho)}{2r} < \frac{1}{8}
$$

де $i(k) \in I, k = n + 1, n + 2, \ldots$, величина ρ визначається згідно з (38). Отже, за наслідком 2, нескінченний залишок $Q_{i(n)}^\infty(z_1, z_2)$ є відносно стійким до збурень в полікрузі (14). □

Зауваження. Оскільки для величин $\varepsilon, \varepsilon'$, що визначаються формулами (16), (39) відповідно, виконується нерівність $\varepsilon' < \varepsilon$, $0 < r < 1/8$, то числа n_0, n_1 задовольняють співвідношення $n_1 > n_0$. Отже, для кожного $n > n_1$ і довільного фіксованого мультиіндекса $i(n) \in I$ нескінченний залишок ГАД Ньорлунда $Q_{i(n)}^\infty(z_1, z_2)$ (8) є рівномірно збіжним до голоморфної функції (9) і відносно стійким до збурень в полікрузі (14).

REFERENCES

The correspondence, convergence and stability to perturbations of the infinite remains of the Norlund branched continued fraction are investigated in a poly-disc \(\{(z_1, z_2) \in \mathbb{C}^2 : |z_j| \leq r, j = 1, 2\}, 0 < r < 1/8\), in case of arbitrary parameters of Appell hypergeometric function.

Key words and phrases: Appell hypergeometric function, branched continued fraction.

Исследованы соответствие, сходимость и устойчивость к возмущениям бесконечных остатков ветвящейся цепной дроби Нёрлунда в некоторой поликруговой области \(\{(z_1, z_2) \in \mathbb{C}^2 : |z_j| \leq r, j = 1, 2\}, 0 < r < 1/8\), в случае произвольных параметров гипергеометрической функции Аппеля.

Ключевые слова и фразы: гипергеометрическая функция Аппеля, ветвящаяся цепная дробь.
INTERPOLATED SCALES OF APPROXIMATION SPACES FOR REGULAR ELLIPTIC OPERATORS ON COMPACT MANIFOLDS

We define the interpolated scales of approximation spaces, generated by regular elliptic operators on compact manifolds. The appropriate Bernstein-Jackson inequalities and application to spectral approximations of regular elliptic operators are considered.

Key words and phrases: approximation spaces, Bernstein-Jackson-type inequalities, regular elliptic operators, compact manifolds.

INTRODUCTION AND PRELIMINARIES

One of the problems in the approximation theory is to characterize the set of functions which have a prescribed order of an approximation by a given method of an approximation [3], [7], [8], [11]. The classical results in this subject are the Jackson and Bernstein inequalities that express a relation between smoothness modules of functions and properties of their best approximations by polynomials.

From direct and inverse theorems it follows that certain classical function spaces can be viewed as special approximation spaces and this is one of the best mathematical expression of equivalences between the degree of smoothness of functions and the behaviour of their best approximation errors [1]. In many instances the approximation spaces can be identified with the interpolation spaces obtained by the real method of interpolation [9].

Approximation spaces and appropriate Bernstein-Jackson inequalities, generated by an unbounded linear operator A in a Banach space, are considered in [4]. Such inequalities are applied to a best approximation problem by invariant subspaces of exponential type entire vectors of A and to spectral approximations of an operator with the point spectrum.

The aim of the paper is to investigate a best approximation problem by subspaces of exponential type vectors of the regular elliptic operators on compact manifolds. Approximation spaces associated with such operators coincide with the Besov-type spaces (Theorem 1). The Bernstein-Jackson-type inequalities, estimating the minimal distance from a given element to a subspace of exponential type vectors and application to spectral approximations of regular elliptic operators are shown in Theorem 2.

Let a compact manifold has the form of the infinitely smooth boundary $\partial \Omega$ of an open bounded domain $\Omega \subset \mathbb{R}^n$ (see [12, Definition 3.2.1/2]). On $\partial \Omega$ we consider a regular elliptic operator A, that in the local coordinates $y^{(i)} = (y_1^{(i)}, \ldots, y_{n-1}^{(i)})$ ($j = 1, \ldots, N$) has the form

$$Au = \sum_{|s| \leq 2m} a_{s}^{(j)} D_{y^{(i)}}^{s} u, \quad a_{s}^{(j)} \in \mathbb{C},$$

UDK 517.98
2010 Mathematics Subject Classification: 47A58, 41A17, 47F05.
where $|s| = s_1 + \ldots + s_{n-1}$, $s_i \in \mathbb{Z}_+$ ($i = 1, \ldots, n - 1$).

We assume that $a_s^{(j)} \in \mathbb{R}$ for $|s| = 2m$ and there exists a constant $c > 0$ such that for all $\xi \in \mathbb{R}^{n-1}$ we have $(-1)^m \sum_{|s|=2m} a_s^{(j)} \xi^s \geq c |\xi|^{2m}$ (see [12, Definition 5.2.1/4]).

Let A with the domain $C^1(A) = C^\infty(\partial\Omega)$ is the symmetrical operator in the complex space $L_2(\partial\Omega)$. Then by [12, Theorem 7.6.1]) the operator \overline{A} has a point spectrum and $C^k(\overline{A}) = W^{2m,k}(\partial\Omega)$ for $k = 1, 2, \ldots, C^\infty(\overline{A}) = \bigcap_{k=1}^\infty C^k(\overline{A}) = C^\infty(\partial\Omega)$.

Let $U_j \subset \mathbb{R}^{n-1}$ ($j = 1, \ldots, N$) be open balls that covered $\partial\Omega$ and $\chi_j \in C^\infty(\partial\Omega)$ is the partition of unity that corresponds to the covering $\{U_j\}$: $\sum_{j=1}^N \chi_j = 1$ on $\partial\Omega$, $\chi_j \in C_0^\infty(U_j)$, $0 \leq \chi_j \leq 1$. For $0 < \alpha < \infty$ and $1 \leq \tau \leq \infty$ we consider the spaces $B^q(\partial\Omega) = \{u \in L_2(\partial\Omega); (\chi_j u)(\psi^{(j)}-1(y)) \in B^q(\mathbb{R}^{n-1}), j = 1, \ldots, N\}$ with the norm

$$
\|u\|_{B^q_\tau(\partial\Omega)} = \sum_{j=1}^N \| (\chi_j u)(\psi^{(j)}-1(y)) \|_{B^q_\tau(\mathbb{R}^{n-1})}
$$

(see [12, Definition 3.6.1]).

We use the real method of an interpolation (see [2, Section 3.11]). Let $(X, | \cdot |_X)$ and $(Y, | \cdot |_Y)$ be quasi-normed complex spaces and $\{0 < \theta < 1, 1 \leq q < \infty\}$ or $\{0 < \theta \leq 1, q = \infty\}$. The interpolation space can be defined as the set $(X, Y)_{\theta,p} = \{u \in X + Y; |u|_{(X, Y)_{\theta,p}} < \infty\}$ endowed with the quasi-norm

$$
|u|_{(X, Y)_{\theta,p}} = \begin{cases}
\left(\int_0^\infty [\tau^{-\theta}K(\tau, u; X, Y)]^{q/d} \frac{d\tau}{\tau} \right)^{1/q}, & q < \infty, \\
\sup_{0 < \tau < \infty} \tau^{-\theta}K(\tau, u; X, Y), & q = \infty,
\end{cases}
$$

where $K(\tau, u; X, Y) = \inf_{u = x+y} (|x|_X + \tau |y|_Y)$.

Main results

For any $t > 0$ we define the normed space

$$
E^t_2(\overline{A}) = \{ u \in C^\infty(\overline{A}); \|u\|_{E^t_2(\overline{A})} < \infty \},
$$

where $\|u\|_{E^t_2(\overline{A})} = \left(\sum_{k \in \mathbb{Z}_+} \| (\overline{A}/t)^k u \|_{L_2(\partial\Omega)}^2 \right)^{1/2}$. The elements of $E^t_2(\overline{A})$ can be called the exponential type vectors of \overline{A} (see [10]).

Lemma 1. (i) The following embeddings $E^t_2(\overline{A}) \subset E^r_2(\overline{A}) \subset L_2(\partial\Omega)$ with $t > r$ hold.

(ii) Each space $E^t_2(\overline{A})$ is \overline{A}-invariant and the restriction $\overline{A}|_{E^t_2(\overline{A})}$ is a bounded operator over $E^t_2(\overline{A})$ with the norm $\| \overline{A}|_{E^t_2(\overline{A})} \|_{E^t_2(\overline{A})} \leq t$.

Proof. (i) The inequalities $\|u\|_{L_2(\partial\Omega)} \leq \|u\|_{E^t_2(\overline{A})}$ and $\|u\|_{E^r_2(\overline{A})} \leq \|u\|_{E^t_2(\overline{A})}$ with $t > r$ yield the embeddings $E^r_2(\overline{A}) \subset L_2(\partial\Omega)$ and $E^t_2(\overline{A}) \subset E^r_2(\overline{A})$, respectively.

(ii) Using $\overline{A}(\overline{A}/t)^k u = t(\overline{A}/t)^{k+1} u$, we obtain $\|\overline{A}u\|_{E^t_2(\overline{A})} \leq t \|u\|_{E^t_2(\overline{A})}$.

On the subspace $E(\overline{A}) = \bigcup_{t>0} E^t_2(\overline{A})$ we define the function

$$
|u|_{E(\overline{A})} = \|u\|_{L_2(\partial\Omega)} + \inf \{ t > 0; u \in E^t_2(\overline{A}) \}.
$$

(1)
Lemma 2. The function (1) is a quasi-norm satisfying the inequality

$$|u + v|_{\mathcal{E}(\bar{A})} \leq |u|_{\mathcal{E}(\bar{A})} + |v|_{\mathcal{E}(\bar{A})}$$

for all $u, v \in \mathcal{E}(\bar{A})$ and the embedding $\mathcal{E}(\bar{A}) \subset L_2(\partial \Omega)$ holds.

Proof. Let $r(u) = \inf \{t > 0: u \in \mathcal{E}_t^\varepsilon(\bar{A})\}$. The values $\|u\|_{\mathcal{E}_t^{(u)+\varepsilon}(\bar{A})}, \|v\|_{\mathcal{E}_t^{(v)+\varepsilon}(\bar{A})}$ are finite for each $u, v \in \mathcal{E}(\bar{A})$ and $\varepsilon > 0$ and the inequalities $\|u + v\|_{\mathcal{E}_t^{(u)+\varepsilon}(\bar{A})} \leq \|u\|_{\mathcal{E}_t^{(u)+\varepsilon}(\bar{A})} + \|v\|_{\mathcal{E}_t^{(v)+\varepsilon}(\bar{A})}$, with $t = \max\{r(u), r(v)\}$ hold. It follows that $r(u + v) \leq r + \varepsilon \leq r(u) + r(v) + \varepsilon$. Since ε is arbitrary, $r(u + v) \leq r(u) + r(v)$ for all $u, v \in \mathcal{E}(\bar{A})$. Evidently, $r(u) = r(-u)$ for all $u \in \mathcal{E}(\bar{A})$. So, (1) is a quasi-norm. The embedding $\mathcal{E}(\bar{A}) \subset L_2(\partial \Omega)$ follows from the inequality $\|u\|_{L_2(\partial \Omega)} \leq |u|_{\mathcal{E}(\bar{A})}$ for all $u \in \mathcal{E}(\bar{A})$. □

Given a pair of numbers $\{0 < \alpha < \infty, 0 < \tau < \infty\}$ and $\{0 \leq \alpha < \infty, \tau = \infty\}$ we consider the scale of spaces $B^\alpha_{2,\tau}(\bar{A}) = \left\{ u \in L_2(\partial \Omega): |u|_{B^\alpha_{2,\tau}(\bar{A})} < \infty \right\}$,

$$|u|_{B^\alpha_{2,\tau}(\bar{A})} = \left\{ \begin{array}{ll} \left(\int_0^\infty \left[t^{\alpha} E(t, u) \right]^{\tau} \frac{dt}{t} \right)^{1/\tau}, & 0 < \tau < \infty, \\ \sup_{t > 0} t^\alpha E(t, u), & \tau = \infty, \end{array} \right.$$

where $E(t, u) = \inf \left\{ \|u - u^0\|_{L_2(\partial \Omega)}: u^0 \in \mathcal{E}(\bar{A}), |u^0|_{\mathcal{E}(\bar{A})} < t \right\}, u \in L_2(\partial \Omega)$.

The space $B^\alpha_{2,\tau}(\bar{A})$ can be identified with the interpolation space. If $[B^\alpha_{2,\tau}(\bar{A})]^\theta$ is the space $B^\alpha_{2,\tau}(\bar{A})$ with the quasi-norm $|u|_{B^\alpha_{2,\tau}(\bar{A})}^\theta$ then by [2, Theorem 7.1.7] the following equality

$$[B^\alpha_{2,\tau}(\bar{A})]^\theta = (\mathcal{E}(\bar{A}), L_2(\partial \Omega))_{\theta, g}^\tau, \quad \theta = 1/(\alpha + 1), \quad \tau = g^\theta,$$

holds with equivalent quasi-norms.

Theorem 1. If $\alpha > 1/2, 1 \leq \tau < \infty$, then the following isomorphism holds

$$B^\alpha_{2,\tau}(\bar{A}) = B^{2 - 1/2}_{2,\tau}(\partial \Omega). \quad (2)$$

Proof. Consider the space

$$\mathcal{E}_2(D) = \left\{ u \in C^\infty(\partial \Omega): D^s u \in L_2(\partial \Omega), \left| s \right| = k \in \mathbb{Z}_+ \right\}$$

endowed with the norm

$$\|u\|_{\mathcal{E}_2(D)} = \left(\sum_{k \in \mathbb{Z}_+} \sum_{\left| s \right| = k} t^{-2k} \|D^s u\|_{L_2(\partial \Omega)}^2 \right)^{1/2}.$$

The union $\mathcal{E}(D) = \bigcup_{l > 0} \mathcal{E}_2^l(D)$ we endow with the quasi-norm

$$|u|_{\mathcal{E}(D)} = \|u\|_{L_2(\partial \Omega)} + \inf \{t > 0: u \in \mathcal{E}_2^l(D)\}.$$

If $l > (n - 1)/2$ and $u \in \mathcal{E}_2^l(D)$ then the Sobolev embedding theorem yields

$$\sum_{j=1}^{N} \sup_{y \in \mathbb{R}^{n-1}} \left| D^s (\chi_j u)(\psi^{(j)-1}(y)) \right| \leq c \max \{1, t, \ldots, t^l\} t^k \|u\|_{\mathcal{E}_2^l(D)} \leq c_0 t^k. \quad (3)$$
It follows that
\[
\sum_{j=1}^{N} \left| (\chi_{j}u)(\psi^{(j)-1}(y + i\eta)) \right| \leq \sum_{k \in \mathbb{Z}^+} \sum_{|s| = k}^{N} \left| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \right| \frac{|\eta|^k}{k!} \leq c_1 |\eta|^{\tau}
\]
for all $\eta \in \mathbb{R}^{n-1}$, where the constant c_1 is independent of $k \in \mathbb{Z}^+$.

Let a function u satisfy (4). Then the inequality $\sum_{|s| = k}^{N} \| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \|_{L_2(\partial \Omega)} \leq c_2 (2(n-1)^2 t)^k$ holds and we have
\[
\sum_{k \in \mathbb{Z}^+} \sum_{|s| = k} \left(4(n-1)^2 t \right)^{-k} \| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \|_{L_2(\partial \Omega)}^2 \leq \frac{4}{3} \sup_{k \in \mathbb{Z}^+} \sum_{|s| = k} \| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \|_{L_2(\partial \Omega)}^2 \frac{(2(n-1)^2 t)^{2k}}{c_1 |\eta|^{\tau}}.
\]

It follows that $u \in \mathcal{E}_2^{(n-1)^2 t}(D)$ and consequently $u \in \mathcal{E}(D)$.

Using the inequality (3), (5) and the Paley-Wiener theorem, we obtain the quasi-norm equivalence
\[
\| u \|_{\mathcal{E}(D)} \sim \inf_{\varphi \in \mathcal{E}(D)} \left\{ \| \varphi \|_{L_2(\mathbb{R}^{n-1})} + \sup_{\xi \in \operatorname{supp} F \varphi} |\xi| \right\}
\]
where $\operatorname{supp} F \varphi$ denotes the support of the Fourier-image $F \varphi$ of a function $\varphi \in L_2(\mathbb{R}^{n-1})$.

Applying [12, Theorems 3.6.1, 4.2.2], [2, Theorem 7.1.7] and Bernstein-Jackson inequalities from [2, Section 7.2] for $l \in \mathbb{N}$, we obtain
\[
\| u \|_{W_{l}^{1/2}(\partial \Omega)} \leq c_1 |u|_{L_2(\partial \Omega)}^{1/2}, \quad u \in \mathcal{E}(D),
\]
\[
K(t, u; \mathcal{E}(D), L_2(\partial \Omega)) \leq c_1 t^{1/2} |u|_{W_{l}^{1/2}(\partial \Omega)}^{1/2}, \quad u \in W_{l}^{1/2}(\partial \Omega).
\]

We define the space
\[
B_{2, \tau}^s(D) = \left\{ u \in L_2(\partial \Omega) : |u|_{B_{2, \tau}^s(D)} = \left(\int_0^{\infty} \left(E(t, u) \right)^{\tau} dt \right)^{1/\tau} < \infty \right\},
\]
where $E(t, u) = \inf \left\{ \| u - u^0 \|_{L_2(\partial \Omega)} : u^0 \in \mathcal{E}(D), |u^0|_{\mathcal{E}(D)} < t \right\}$. Using [2, Theorems 3.11.5, 3.11.6, 7.1.7], [12, Theorems 2.4.2/2, 3.6.1, 3.6.3] and the inequalities (6), (7), we obtain
\[
B_{2, \tau}^s(D) = \left(\left(\mathcal{E}(D), L_2(\partial \Omega) \right)^{1/(\alpha + 1), \tau(\alpha + 1)} \right)^{\alpha + 1}
\]
\[
= (L_2(\partial \Omega), W_{l}^{1/2}(\partial \Omega))^{\alpha/\tau, \tau} = B_{2, \tau}^{s-1/2}(\partial \Omega).
\]

By [12, Theorems 5.4.3, 7.6.1] for any $k \in \mathbb{N}$ there exist positive numbers c and C such that
\[
c^k |u|_{W_{2nk}(\partial \Omega)} \leq \| A_k u \|_{L_2(\partial \Omega)} \leq C^k |u|_{W_{2nk}(\partial \Omega)}, \quad u \in C^k(\overline{A}).
\]

It follows that we have the inequality
\[
\sum_{k \in \mathbb{Z}^+} (C((n-1)t)^{2m})^{-2k} |A_k u|_{L_2(\partial \Omega)}^2 \leq C_1 \sum_{k \in \mathbb{Z}^+} \sum_{|s| = 2mk} t^{-4mk} \| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \|_{L_2(\partial \Omega)}^2.
\]

Thus, the embedding $\mathcal{E}_{2}^1(D) \subset \mathcal{E}_2^{(n-1)t}(D)$ with $\tau = C((n-1)t)^{2m}$ holds. Conversely, let $u \in \mathcal{E}_2^{(n-1)t}(\overline{A})$. Then
\[
\sum_{k \in \mathbb{Z}^+} t^{-2k} |A_k u|_{L_2(\partial \Omega)}^2 \geq \sum_{k \in \mathbb{Z}^+} \sum_{|s| = k} (c^{-1} t)^{-2k} \| D_s^{(\chi_{j}u)}(\psi^{(j)-1}(y)) \|_{L_2(\partial \Omega)}^2.
\]

It follows that $\mathcal{E}_2^{(n-1)t}(\overline{A}) \subset \mathcal{E}_2^{(n-1)t}(D)$. So, we have the equality $\mathcal{E}(\overline{A}) = \mathcal{E}(D)$. Using (8), we obtain the required equality (2). \qed
The distance between \(u \in L_2(\partial \Omega) \) and \(\mathcal{E}_2^t(A) \) we denote by

\[
d(t, u) = \inf \left\{ \| u - u^0 \|_{L_2(\partial \Omega)} : u^0 \in \mathcal{E}_2^t(A) \right\}, \quad u \in L_2(\partial \Omega).
\]

Let \(\mathcal{R}^t \) be the complex linear span of all \(\{ \mathcal{R}(\lambda_n) : |\lambda_n| < t \} \), where \(\mathcal{R}(\lambda_n) \) is the root subspace of \(A \) corresponding to \(\lambda_n \).

Theorem 2. Let \(\alpha > 1/2 \) and \(1 \leq \tau \leq \infty \). There are constants \(c_1 \) and \(c_2 \) such that the following inequalities

\[
\| u \|_{B_{2,\tau}^{\alpha-1/2}(\partial \Omega)} \leq c_1 \| u \|_{\mathcal{E}(D)} \| u \|_{L_2(\partial \Omega)}, \quad u \in \mathcal{E}(D), \quad (9)
\]

\[
d(t, u) \leq c_2 t^{-\alpha} \| u \|_{B_{2,\tau}^{\alpha-1/2}(\partial \Omega)}, \quad u \in B_{2,\tau}^{\alpha-1/2}(\partial \Omega), \quad (10)
\]

hold. In particular, there is a constant \(c \) such that

\[
\inf \left\{ \| u - u^0 \|_{L_2(\partial \Omega)} : u^0 \in \mathcal{R}^t \right\} \leq c t^{-\alpha} \| u \|_{B_{2,\tau}^{\alpha-1/2}(\partial \Omega)}, \quad u \in B_{2,\tau}^{\alpha-1/2}(\partial \Omega). \quad (11)
\]

Proof. By [4, Theorem 5] for some constants \(c_1 \) and \(c_2 \) we have

\[
\| u \|_{B_{2,\tau}^{\alpha}(\mathcal{E}(A))} \leq c_1 \| u \|_{\mathcal{E}(A)} \| u \|_{L_2(\partial \Omega)}, \quad u \in \mathcal{E}(A), \quad (12)
\]

\[
d(t, u) \leq c_2 t^{-\alpha} \| u \|_{B_{2,\tau}^{\alpha}(\mathcal{E}(A))}, \quad u \in B_{2,\tau}^{\alpha}(\mathcal{E}(A)). \quad (13)
\]

The inequalities (12), (13) and the isomorphism (2) imply that the inequalities (9), (10) hold.

Using [6, Theorem 2.2] and [5, Proposition 2], we obtain the equality \(\mathcal{E}_2^t(A) = \mathcal{R}^t \). Hence, the inequality (10) directly implies the estimation (11). \(\square \)

References

Received 02.04.2014

Визначено інтерполяційні шкали апроксимаційних просторів, асоційованих з регулярними еліптичними операторами на компактних многовидах. Встановлено відповідні нерівності типу Бернштейна і Джексона та показано їх застосування до спектральних апроксимацій регулярних еліптичних операторів.

Ключові слова і фрази: апроксимаційні простори, нерівності типу Бернштейна і Джексона, регулярні еліптичні оператори, компактні многовиди.

Определены интерполационные шкалы апроксимационных пространств, ассоцированных с регулярными эллиптическими операторами на компактных многообразиях. Установлены соответствующие неравенства типа Бернштейна и Джексона и показано их применение к спектральным апроксимациям регулярных эллиптических операторов.

Ключевые слова и фразы: апроксимационные пространства, неравенства типа Бернштейна и Джексона, регулярные эллиптические операторы, компактные многообразия.
ZATORSKY R.A., SEMENCHUK A.V.

CALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF RECURRENCE PERIODICAL FOURTH ORDER FRACTION

Recurrence fourth order fractions are studied. Connection with algebraic fourth order equations is established. Calculation algorithms of rational contractions of such fractions are built.

Key words and phrases: periodical recurrence fraction, triangular matrix, parapermanent, paradeterminant, rational approximation.

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
E-mail: romazz@rambler.ru (Zatorsky R.A.), andrisem333@mail.ru (Semenchuk A.V.)

INTRODUCTION

Continued fractions are generalized by quite a few Ukrainian [12, 13] and foreign mathematicians [1]-[11], [14].

The important conditions for generalization of continued fractions are following:

– construction of an easy-to-use algebraic object, the form of which would be similar to the form of continued fractions, would make it possible to naturally introduce the notion of their order and to single out the class of periodic objects generalizing periodic continued fractions;

– the algorithm for calculating the value of rational contractions of mathematical objects is to be simple in realization and efficient;

– by analogy with periodic chain fractions, random periodic algebraic objects of higher orders are to be of the forms of some algebraic irrationalities of higher orders.

In [15] it is suggested new generalization of continued fractions — recurrence fractions, which satisfy the above-mentioned conditions. In addition, the connection between singly periodic recurrence fractions of order n and algebraic equations of order n has been established. Recurrence fractions of order three have been studied in [16].

This article focuses on recurrence fractions of order four, proves their connection with corresponding algebraic equations of order four and determines algorithms for constructing rational approximations of order four.
1 Periodic recurrence fractions of order 4

A recurrence fraction of order four takes the form

\[
\begin{bmatrix}
q_1 \\
q_2 \\
\vdots \\
q_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
= \begin{bmatrix}
q_1 \\
q_2 \\
\vdots \\
q_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
\begin{bmatrix}
q_3 \\
q_4 \\
\vdots \\
q_5 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

(1)

Its rational contractions

\[
\frac{P_n}{Q_n} = \begin{bmatrix}
q_1 \\
q_2 \\
\vdots \\
q_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
= \begin{bmatrix}
q_1 \\
q_2 \\
\vdots \\
q_4 \\
0 \\
\vdots \\
0
\end{bmatrix}
\begin{bmatrix}
r_3 \\
r_4 \\
\vdots \\
r_5 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

satisfy the recurrence equations

\[
P_n = q_nP_{n-1} + p_nP_{n-2} + r_nP_{n-3} + s_nP_{n-4}, \quad n = 1, 2, 3, \ldots,
\]

\[
Q_n = q_nQ_{n-1} + p_nQ_{n-2} + r_nQ_{n-3} + s_nQ_{n-4}, \quad n = 2, 3, 4, \ldots
\]

with the initial conditions

\[
P_0 = 1, \quad P_{i<0} = 0,
\]

\[
Q_1 = 1, \quad Q_{i<1} = 0.
\]

Definition. The recurrence fraction (1) of order 4, the elements of which satisfy the conditions

\[
p_{rk+m} = p_m, \quad q_{rk+m} = q_m, \quad r_{rk+m} = r_m, \quad s_{rk+m} = s_m, \quad m = 1, 2, \ldots, k, \quad r = 0, 1, 2, \ldots
\]

is a periodic recurrence fraction of order 4 with the period k.

We shall determine the connections between periodic recurrence fractions of order four and real positive roots of quartic equations.

1. Consider a singly periodic recurrence fraction of order four. Let us decompose the parapermanent of the numerator of the rational contraction
by the elements of the first column. We get the equality

\[\frac{P_n}{Q_n} = q + \frac{p}{Q_{n-1}} + \frac{r}{Q_{n-2}} + \frac{s}{Q_{n-3}} = q + \frac{p}{Q_{n-1}} + \frac{r}{Q_{n-2}} + \frac{s}{Q_{n-3}}. \]

Let us take the limit

\[\lim_{n \to \infty} \frac{P_n}{Q_n} = \lim_{n \to \infty} \frac{P_n}{Q_{n-1}} = x, \]

then the equality (4) is written as

\[x = q + \frac{p}{x} + \frac{r}{x^2} + \frac{s}{x^3}, \]

or \(x^4 = q x^3 + px^2 + rx + s \). One of the roots of this equation is

\[x = \frac{q}{4} + \frac{\sqrt{a + 2y} + \sqrt{-3a + 2y + \frac{3\beta}{\sqrt{a + 2y}}}}{2}, \]

where

\[y = -\frac{5}{6} a + \sqrt{-\frac{Q}{2} + \sqrt{\frac{Q^2}{4} + \frac{p^3}{27}}}, \quad \alpha = -\frac{3}{8} q^2 - p, \]

\[\beta = -\frac{q^3}{8} - \frac{q p}{2} - r, \quad \gamma = -\frac{3q^4}{256} - \frac{p q^2}{16} - \frac{q r}{4} - s, \quad p = -\frac{\alpha^2}{12} - \gamma, \quad Q = -\frac{\alpha^3}{108} - \frac{\alpha \gamma}{3} - \frac{\beta^2}{8}. \]

It is easy to establish that if \(q = 4, p = -6, r = 4, s = 2 \), the singly periodic fraction will represent the irrationality \(\sqrt{1 + s} \).

Example 1. If

\[q = 4, \ p = -6, \ r = 4, \ s = 2, \]

then the recurrence fraction is written as

\[\begin{bmatrix} 4 & & & & \\ \frac{1}{2} & \frac{1}{2} & & & \\ 0 & 0 & & & \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix} \]
The relevant algebraic equation of order four is of the form \(x^4 = 4x^3 - 6x^2 + 4x + 2 \). The rational approximations to the maximum modulo root \(x = 1 + \sqrt{3} \approx 2.31607401295249246 \) of this equation can be found with the help of the linear recurrence relations of order four

\[
P_n = 4P_{n-1} - 6P_{n-2} + 4P_{n-3} + 2P_{n-4}, \quad P_0 = 1,
\]

while \(x = \lim_{m \to \infty} \frac{P_m - \sqrt{3}}{P_m} \).

Here are the first 35 rational approximations to this root:

\[
\begin{align*}
 u_1 &= 4, \quad u_8 = 1164, \quad u_{15} = 404736, \quad u_{22} = 144235520, \quad u_{29} = 51545829376, \\
 u_2 &= 10, \quad u_9 = 2704, \quad u_{16} = 937104, \quad u_{23} = 334031360, \quad u_{30} = 119382376448, \\
 u_3 &= 20, \quad u_{10} = 6136, \quad u_{17} = 2165568, \quad u_{24} = 773463744, \quad u_{31} = 276492099584, \\
 u_4 &= 38, \quad u_{11} = 13936, \quad u_{18} = 5006752, \quad u_{25} = 1791122688, \quad u_{32} = 640367841536, \\
 u_5 &= 80, \quad u_{12} = 32072, \quad u_{19} = 11591488, \quad u_{26} = 4148304768, \quad u_{33} = 1483139933184, \\
 u_6 &= 192, \quad u_{13} = 74624, \quad u_{20} = 26861920, \quad u_{27} = 9608400640, \quad u_{34} = 3435085834752, \\
 u_7 &= 480, \quad u_{14} = 174080, \quad u_{21} = 62256896, \quad u_{28} = 22255192192, \quad u_{35} = 7955959305216,
\end{align*}
\]

while \(\frac{u_{35}}{u_{34}} = \frac{7955959305216}{3435085834752} \approx 2.3160874 \).

2. Consider a doubly periodic recurrence fraction of order four

\[
\begin{bmatrix}
 q_1 & q_2 \\
 p_2 & q_1 \\
 p_1 & q_1 \\
 p_1 & q_1 \\
 \vdots & \vdots \\
 0 & 0 \\
 0 & s_1
\end{bmatrix}
\]

where \(q_i, p_i, r_i, s_i \) are some rational positive numbers.

Let us decompose the parapermanent of the numerator of the rational contraction by the elements of the first column

\[
\frac{[q_1]_n}{[q_2]_{n-1}} = \frac{q_1[q_2]_{n-1} + p_2[q_1]_{n-2} + r_1[q_2]_{n-3} + s_1[q_1]_{n-4}}{[q_2]_{n-1}} = q_1 + \frac{p_2[q_2]_{n-1}}{[q_1]_{n-2}} + \frac{r_1[q_2]_{n-3}}{[q_1]_{n-2}} + s_1.
\]

(5)

In this equality, the parapermanent of order \(i \) with the upper element \(q_j, j = 1, 2 \) is denoted by \([q_i]_j\). Likewise, we decompose the numerator of the fraction \([q_2]_{n-1}/[q_1]_{n-2}\) by the elements of the first column

\[
\frac{[q_2]_{n-1}}{[q_1]_{n-2}} = q_2 + \frac{p_1[q_1]_{n-2}}{[q_2]_{n-3}} + \frac{r_2[q_2]_{n-3}}{[q_1]_{n-4}} + s_1.
\]

(6)

Let us take the limits

\[
\lim_{m \to \infty} \frac{[q_1]_m}{[q_2]_{m-1}} = x, \quad \lim_{m \to \infty} \frac{[q_2]_m}{[q_1]_{m-1}} = y.
\]

Passing \(n \) to infinity in the equalities (5), (6), we get simultaneous equations

\[
\begin{cases}
 x = q_1 + \frac{p_2}{y} + \frac{r_1}{xy} + \frac{s_2}{xy^2}, \\
 y = q_2 + \frac{p_1}{x} + \frac{r_2}{xy} + \frac{s_1}{xy^2}.
\end{cases}
\]
from which we find that
\[y = \frac{q_2x + p_1 + \sqrt{(q_2x + p_1)^2 + 4(r_2x + s_1)}}{2x} \]
and \(x \) is the positive root of the equation of order four
\[
(q_2p_2r_2 + r_2^2 - q_2^2s_2)x^4 = (q_1q_2p_2r_2 + p_2^2r_2 + 2q_1r_2^2 + 2q_2p_1s_2 + 2r_2s_2 - p_1p_2r_2 - q_2r_2) \\
- 2r_2s_1 - q_2p_2s_1 - q_1q_2^2s_2 - q_2s_2p_2s_2)x^3 + (q_1p_1p_2r_2 + q_1q_2r_1r_2 + p_2^2r_1r_2 + p_2^2s_1 + q_1q_2p_2s_1 \\
+ 4q_1r_2s_1 + p_2^2s_2 + 2s_1s_2 - q_2^2 - p_1r_1r_2 - q_2r_1s_1 - p_1p_2s_1 - s_1^2 - s_2^2 - 2q_1q_2p_1s_2 \\
- 2q_1r_2s_1 - q_1p_2^2s_1 - q_1q_2^2s_2 - q_2s_2p_2s_2)x + x_1(q_1^2s_1 - q_1p_1r_1 - r_1^2).
\]
(7)

Thus, the following theorem is proved.

Theorem 1. If \(q_i, p_i, r_i, s_i \) are some rational positive numbers and there are limits
\[
\lim_{m \to \infty} \frac{[q_1]_m}{[q_2]_{m-1}} = x, \quad \lim_{m \to \infty} \frac{[q_2]_m}{[q_1]_{m-1}} = y,
\]
then \(x \) is the positive root of the equation (7) of order four.

Example 2. If \(q_1 = 3, p_1 = 3, r_1 = 3, s_1 = 3, q_2 = 2, p_2 = 2, r_2 = 2, s_2 = 2 \), then the recurrence fraction is written as

\[
\begin{bmatrix}
3 \\
2 \\
3 \\
3 \\
0 \\
3 \\
3 \\
0 \\
\vdots \\
\vdots
\end{bmatrix}
\]

and the rational contractions, which approximate the maximum modulo real root
\[
x = \frac{1}{2} + \frac{1}{2} \left(\sqrt{-\frac{29}{4} + 2\frac{87}{4} - 2y + \frac{27}{\sqrt{-\frac{29}{4} + 2y}}} \right) \approx 3.978743113,
\]
where
\[
y = \frac{1}{24} \left(145 + \sqrt{-63197 + 972\sqrt{7226} - \left(\frac{1415}{3\sqrt{-63197 + 972\sqrt{7226}}} \right) } \right),
\]
of the fourth order equation
\[4x^4 = 8x^3 + 23x^2 + 27x + 27,\]
are equal to
\[
\delta_1 = \frac{3}{1} = 3, \quad \delta_2 = \frac{8}{2} = 4, \quad \delta_3 = \frac{36}{9} = 4, \quad \delta_4 = \frac{96}{24} = 4, \quad \delta_5 = \frac{429}{108} \approx 3,9722, \\
\delta_6 = \frac{1138}{286} \approx 3,9790, \quad \delta_7 = \frac{5097}{1281} \approx 3,97892, \quad \delta_8 = \frac{13520}{3398} \approx 3,97881, \\
\delta_9 = \frac{60552}{15219} \approx 3,978711, \quad \delta_{10} = \frac{40368}{160614} \approx 3,9787455, \quad \delta_{11} = \frac{719349}{180798} \approx 3,9787442, \\
\delta_{12} = \frac{1908070}{479566} \approx 3,97874328, \quad \delta_{13} = \frac{8545755}{2147853} \approx 3,97874296, \quad \delta_{14} = \frac{22667576}{5697170} \approx 3,9787413, \\
\delta_{15} = \frac{101522250}{25516161} \approx 3,97874118, \quad \delta_{16} = \frac{269287302}{67681500} \approx 3,978741129.
\]
2 Algorithm for calculating rational contractions of periodic recurrence fractions of order four

Let us construct a new algorithm for calculating rational contractions of periodic recurrence fractions of order four.

Let \(k \) be the period of a recurrence fraction, and \(n \) — the order of the parapermanent of its rational contraction, while \(n = sk, s = 1, 2, 3, \ldots \)

Then the following theorem is true.

Theorem 2. The rational contraction

\[
\delta_n = \frac{p_n}{Q_n}
\]

of the periodic recurrence fraction (1) of order four, with the period \(k \geq 2 \), the elements of which satisfy the conditions (3), is equal to the value of the expression

\[
q_0 + p_1 \cdot \frac{D_{sk-1}^{s-1}}{A_{sk}^{s-1}} + r_2 \cdot \frac{C_{sk-2}^{s-1}}{A_{sk}^{s-1}} + s_2 \cdot \frac{D_{sk-3}^{s-1}}{A_{sk}^{s-1}},
\]

where \(A_{sk}^{s}, B_{sk-1}^{s-1}, C_{sk-2}^{s-1} \) and \(D_{sk-3}^{s-1} \) are defined by the recurrence equalities

\[
A_{sk}^{s} = s_3 \psi_{k-1} D_{k(s-1)-3}^{s-2} + (s_2 \psi_{k-2} + r_2 \psi_{k-2}) C_{k(s-1)-2}^{s-2} + (s_1 \psi_{k-3} + r_1 \psi_{k-3} + p_1 \psi_{k-2}) B_{k(s-1)-1}^{s-2} + \psi_{k} A_{k(s-1)-1}, \tag{9}
\]

\[
B_{sk-1}^{s-1} = s_3 \psi_{k-2} D_{k(s-1)-3}^{s-2} + (s_2 \psi_{k-3} + r_2 \psi_{k-2}) C_{k(s-1)-2}^{s-2} + (s_1 \psi_{k-4} + r_1 \psi_{k-3} + p_1 \psi_{k-2}) B_{k(s-1)-1}^{s-2} + \psi_{k-1} A_{k(s-1)-1}, \tag{10}
\]

\[
C_{sk-2}^{s-1} = s_3 \tau_{k-3} D_{k(s-1)-3}^{s-2} + (s_2 \tau_{k-4} + r_2 \tau_{k-3}) C_{k(s-1)-2}^{s-2} + (s_1 \tau_{k-5} + r_1 \tau_{k-4} + p_1 \tau_{k-3}) B_{k(s-1)-1}^{s-2} + \tau_{k-2} A_{k(s-1)-1}, \tag{11}
\]

\[
D_{sk-3}^{s-1} = s_3 \xi_{k-4} D_{k(s-1)-3}^{s-2} + (s_2 \xi_{k-5} + r_2 \xi_{k-4}) C_{k(s-1)-2}^{s-2} + (s_1 \xi_{k-6} + r_1 \xi_{k-5} + p_1 \xi_{k-4}) B_{k(s-1)-1}^{s-2} + \xi_{k-3} A_{k(s-1)-1}, \tag{12}
\]

where

\[
\varphi \phi = \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4 \\
q_5 \\
\vdots
\end{bmatrix},
\]

\[
\begin{align*}
q_1 & = \begin{bmatrix} 1 \end{bmatrix}, \\
q_2 & = \begin{bmatrix} 1 & 0 \end{bmatrix}, \\
q_3 & = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \\
q_4 & = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}, \\
q_5 & = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
p_1 & = \begin{bmatrix} 0 \end{bmatrix}, \\
p_2 & = \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
p_3 & = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \\
p_4 & = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
p_5 & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
r_1 & = \begin{bmatrix} 0 \end{bmatrix}, \\
r_2 & = \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
r_3 & = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \\
r_4 & = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
r_5 & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
s_1 & = \begin{bmatrix} 0 \end{bmatrix}, \\
s_2 & = \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
s_3 & = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \\
s_4 & = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
s_5 & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\tau_1 & = \begin{bmatrix} 0 \end{bmatrix}, \\
\tau_2 & = \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
\tau_3 & = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \\
\tau_4 & = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
\tau_5 & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\xi_1 & = \begin{bmatrix} 0 \end{bmatrix}, \\
\xi_2 & = \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
\xi_3 & = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \\
\xi_4 & = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
\xi_5 & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},
\end{align*}
\]
and if \(k = 2, 3, 4 \), we assume that

\[
\zeta_{<0} = \tau_{<0} = \psi_{<0} = \varphi_{<0} = 0,
\]

\[
\varphi_0 = \psi_0 = \tau_0 = \zeta_0 = 1.
\]

Proof. If \(n = sk \), then the numerator and the dominator of the \(n \)-th rational contraction of the periodic recurrence fraction (1) of order four, with the period of \(k \geq 2 \), the elements of which satisfy the conditions (3), are respectively in the form
Let us denote the parapermanent, formed from the parapermanent (17) as a result of deleting the first column, by $A_{s_{sk}}$, the parapermanent, formed as a result of deleting the first two columns, — by B_{sk}^{s-1}, the parapermanent, formed as a result of deleting the first three columns, — by C_{sk-1}, and the parapermanent, formed as a result of deleting the first four columns, — by D_{sk-3} (in the four cases, the superscript denotes the number of complete periods containing these parapermanents).

Let us decompose the parapermanent (17) by the elements of the first column and get the equality
\[P_{sk} = q_0 A_{sk}^S + p_1 B_{sk-1}^S + r_2 C_{sk-2}^S + s_3 D_{sk-3}^S. \]

(18)

Let us decompose the parapermanent \(A_{sk}^S \) by the elements of the inscribed rectangular table \(T(k + 1) \), then we get the recurrence (9). In the same way, let us decompose the parapermanents \(B_{sk-1}^S, C_{sk-2}^S, \) and \(D_{sk-3}^S \) by the elements of the tables \(T(k), T(k - 1), \) i \(T(k - 2) \). At that we get the recurrences (10), (11), (12).

As \(Q_{sk} = A_{sk}^S \), considering (18), we conclude that the rational contraction \(\delta_n = \frac{P_n}{Q_n} \) of the periodic recurrence fraction is equal to

\[\frac{P_{sk}}{Q_{sk}} = q_0 + p_1 \frac{B_{sk-1}^S}{A_{sk}^S} + r_2 \frac{C_{sk-2}^S}{A_{sk}^S} + s_3 \frac{D_{sk-3}^S}{A_{sk}^S}. \]

Example 3. Let us have a periodic recurrence fraction of order four with the period, where

- \(q_1 = 1, p_2 = 1, r_3 = 1, s_4 = 1, q_2 = 1, p_3 = 1, r_4 = 1, s_5 = 1, q_3 = 2, p_4 = 2, r_5 = 2, s_1 = 2, \)
- \(q_4 = 1, p_5 = 1, r_1 = 1, s_2 = 1, q_5 = 2, p_1 = 2, r_2 = 2, s_3 = 2. \)

This periodic recurrence fraction approximates to the maximum modulo real root

\[x = \frac{1}{4} + \frac{1}{2} \left(\sqrt{-\frac{11}{8}} + 2y \right), \]

where

\[y = \frac{1}{2} \left(\frac{55}{24} + \frac{1}{9} \sqrt{-2007 + 144 \sqrt{622}} - \frac{23}{\sqrt{-2007 + 144 \sqrt{622}}} \right), \]

the equation of order four

\[9x^4 - 9x^3 - 9x^2 - 8x - 16 = 0. \]

(19)

Let us find the rational contractions (20) of the relevant recurrence fraction first with the help of the recurrences (2), and then by the algorithm of the theorem 2.

\[
\begin{bmatrix}
1 \\
1 & 1 \\
1 & \frac{1}{2} & 2 \\
1 & \frac{1}{2} & 2 & 1 \\
0 & 2 & 1 & 2 \\
0 & 0 & 2 & \frac{1}{2} & 2 & 1 \\
0 & 0 & 0 & \frac{1}{2} & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1 & \frac{1}{2} & 2 \\
0 & 0 & 0 & 0 & 2 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 2 & \frac{1}{2} & 2 & \frac{1}{2} & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 & \frac{1}{2} & \frac{1}{2} & 2 & 1 \\
\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{bmatrix}
\]

(20)

By means of the recurrences (2) we shall have:
Calculation algorithm of rational estimations of recurrence fraction of 4-th order

\[\delta_1 = \frac{2}{1} = 2, \quad \delta_2 = \frac{6}{3} = 2, \quad \delta_3 = \frac{12}{6} = 2, \quad \delta_4 = \frac{35}{18} \approx 1.9444, \quad \delta_5 = \frac{69}{35} = 1.97142, \]

\[\delta_6 = \frac{134}{68} \approx 1.97059, \quad \delta_7 = \frac{396}{201} \approx 1.970149, \quad \delta_8 = \frac{768}{390} \approx 1.9692308, \quad \delta_9 = \frac{2269}{1152} \approx 1.969618, \]

\[\delta_{10} = \frac{4469}{2269} \approx 1.9695901, \quad \delta_{11} = \frac{8670}{4402} \approx 1.96955929, \quad \delta_{12} = \frac{25614}{13005} \approx 1.96955017, \]

\[\delta_{13} = \frac{49692}{25230} \approx 1.96956005, \quad \delta_{14} = \frac{14807}{74538} \approx 1.96955915, \quad \delta_{15} = \frac{289145}{146807} \approx 1.96955867, \]

\[\delta_{16} = \frac{560950}{284810} \approx 1.969558653, \quad \delta_{17} = \frac{1657236}{841425} \approx 1.969558784, \quad \delta_{18} = \frac{3215088}{1632390} \approx 1.969558745, \]

\[\delta_{19} = \frac{9498457}{4822632} \approx 1.969558739, \quad \delta_{20} = \frac{18707769}{9498457} \approx 1.9695587399, \]

\[\delta_{21} = \frac{36293638}{18427294} \approx 1.9695587426, \quad \delta_{22} = \frac{107223678}{54440457} \approx 1.969558741948, \]

\[\delta_{23} = \frac{105616134}{208017180} \approx 1.96955874185, \quad \delta_{24} = \frac{312025770}{2348209518} \approx 1.96955874189, \]

\[\delta_{25} = \frac{1210398397}{614553083} \approx 1.969558741926, \quad \delta_{26} = \frac{1192251578}{39761773093} \approx 1.9695587419051, \]

\[\delta_{27} = \frac{3522314277}{39761773093} \approx 1.9695587419044, \quad \delta_{28} = \frac{6833396286}{78313147789} \approx 1.969558741906103, \]

\[\delta_{29} = \frac{20188163088}{39761773093} \approx 1.96955874190598, \]

Let us do similar calculations with the help of the algorithm of the theorem 2.

We shall calculate \(\zeta_{-1}, \zeta_{0}, \zeta_{1}, \zeta_{2}, \tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5} \) from the equalities (13), (14), (15), (16):

\[\varphi_5 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} = 35, \quad \varphi_4 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} = 18, \quad \varphi_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} = 6, \]

\[\psi_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} = 3, \quad \psi_4 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} = 24, \quad \psi_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} = 12, \]

\[\psi_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = 4, \quad \psi_1 = 2, \quad \tau_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} = 6, \quad \tau_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 3, \quad \tau_1 = 1, \quad \tau_0 = 1, \]

\[\zeta_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = 4, \quad \zeta_1 = 2, \quad \zeta_0 = 1, \quad \zeta_-1 = 0. \]

Consequently, the recurrences (9), (10), (11), (12) will be written as:

\[A_{5s}^{s-1} = 18D_{5s-8}^{s-2} + 30C_{5s-7}^{s-2} + 33B_{5s-6}^{s-2} + 35A_{5s-5}^{s-1}, \]

\[B_{5s-1}^{s-1} = 12D_{5s-8}^{s-2} + 20C_{5s-7}^{s-2} + 22B_{5s-6}^{s-2} + 24A_{5s-5}^{s-1}, \]

\[C_{5s-2}^{s-1} = 3D_{5s-8}^{s-2} + 5C_{5s-7}^{s-2} + 6B_{5s-6}^{s-2} + 6A_{5s-5}^{s-1}, \]

\[D_{5s-3}^{s-1} = 2D_{5s-8}^{s-2} + 4C_{5s-7}^{s-2} + 4B_{5s-6}^{s-2} + 4A_{5s-5}^{s-1}. \]
The s-th approximation to the value of the given recurrence fraction, by the algorithm of the theorem 2 is of the form

$$
\gamma_s = 1 + \frac{B_{s-1}^{0}}{A_{s-1}^{0}} + \frac{C_{s-2}^{0}}{A_{s-2}^{0}} + \frac{D_{s-3}^{0}}{A_{s-3}^{0}}.
$$

Since, $D_2^0 = \xi_2 = 4$, $C_1^0 = \tau_3 = 6$, $B_4^0 = \psi_4 = 24$, $A_5^0 = \varphi_5 = 35$, then

$$
\gamma_1 = \frac{69}{35} = 1.97143, \quad \gamma_2 = \frac{4469}{2269} \approx 1.9695901, \quad \gamma_3 = \frac{289145}{146807} \approx 1.969558672.
$$

Thus, from this example it is clear that the s-th approximation γ_s, found by means of the algorithm of Theorem 2 coincides with the $(5s)$-th approximation δ_{5s}, found by the algorithm (2).

3 CONCLUSIONS

Therefore, recurrence fractions of order four are natural generalization of chain fractions. Periodic recurrence fractions of order four are connected with corresponding algebraic equations of order four and show irrationalities of order four, while Theorem 2 provides an effective algorithm for constructing rational approximations to these irrationalities.

REFERENCES

Calculation algorithm of rational estimations of recurrence fraction of 4-th order

Received 07.02.2014

Вивчаються рекурентні дроби четвертого порядку, встановлюються їх зв’язки з алгебраїчними рівняннями четвертого порядку і будується алгоритми обчислення раціональних наближень.

Ключові слова і фрази: періодичний дріб, трикутна матриця, параперманент, парадетерміnant, раціональне наближення.

Изучаются рекуррентные дроби четвертого порядка, устанавливаются их связи с алгебраическими уравнениями четвертого порядка и строятся алгоритмы вычисления их рациональных приближений.

Ключевые слова и фразы: периодическая рекуррентная дробь, треугольная матрица, параперманент, парадетерминант, рациональное приближение.
ІЛЬКІВ В.С., ВОЛЯНСЬКА І.І.

НЕЛОКАЛЬНА КРАЙОВА ЗАДАЧА ДЛЯ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ З ЧАСТИННИМИ ПОХІДНИМИ У КОМПЛЕКСНІЙ ОБЛАСТІ

Досліджено нелокальну крайову задачу для рівняння з частинними похідними з оператором узагальненого диференціювання \(B = z \frac{\partial}{\partial z} \), який діє на функції скалярної комплексної змінної \(z \). Доведено теорему єдності та теореми існування розв'язку задачі у просторі \(H^p(D) \).

Встановлено умови бієктивності оператора нелокальних умов задачі. Показано коректність за Адамаром задачі, що відрізняє її від некоректної за Адамаром задачі з багатьма просторовими комплексними змінними, розв'язність якої пов'язана з проблемою малих знаменників.

Ключові слова і фрази: рівняння з частинними похідними, оператор узагальненого диференціювання, узагальнені функції, дискримінант многочлена, результат многочленів, малі знаменники.

Національний університет "Львівська політехніка", Львів, Україна
E-mail: ilkiv@i.ua (Ільків В.С.), syluga@mail.ru (Волянська І.І.)

Вступ

В останні роки значний інтерес викликають крайові задачі для диференціальних рівнянь з частинними похідними. Зокрема, одним з найважливіших питань загальної теорії диференційних рівнянь з частинними похідними є встановлення умов коректності цих задач. У цьому плані порівняно добре вивчені крайові задачі для лінійних і нелінійних рівнянь класичних типів та їх узагальнень, які зберігають властивості відповідного типу. Що стосується побудови теорії безтипних рівнянь, то вона далеко не завершена, багато задач потребують подальшого ретельного вивчення.

Серед некласичних крайових задач для рівнянь з частинними похідними та для диференційно-операційних рівнянь важливе місце посідають задачі з нелокальними крайовими умовами, які пов'язують значення шуканих розв'язків та їх похідних у різних (двох або більше) граничних чи внутрішніх точках розглядуваної області. У загальному випадку такі задачі є некоректними за Адамаром, а їх розв'язність залежить від проблеми малих знаменників, які виникають при побудові загального розв'язку.

Коректність нелокальних крайових задач для диференціальних рівнянь з частинними похідними досліджувалася у роботах багатьох авторів (див. [2, 10, 11]), при накладанні додаткових обмежень на рівняння, крайові умови та області розгляду задач.

Досліджено задач з нелокальними крайовими умовами за часом та умовами періодичності за просторовими змінними для рівнянь з частинними похідними присвячено,

УДК 517.946+511.37
2010 Mathematics Subject Classification: 35G15, 35E05.

© Ільків В.С., Волянська І.І., 2014
1 ПОСТАНОВКА ЗАДАЧІ

Позначимо \(S \) — область з множини \(\mathbb{C} \setminus \{0\} \), \(\mathcal{D} = [0; T] \times S \), де \(T > 0 \). Нехай \(\mathcal{W} \) — лінійний простір скінчених сум (основних функцій) вигляду \(P(z) = \sum_{k} P_k z^k \), де \(z \in S \), \(P_k \) — комплексні коефіцієнти, \(k \in \mathbb{Z} \). Кожну основну функцію \(P(z) \) можна подати як суму трьох доданків: \(P(z) = P_0 + P_1(z) + P_2(\frac{1}{z}) \), де \(P_1(z) = \sum_{k} P_k z^k \) і \(P_2(w) = \sum_{k} P_{-k} w^k \) — многочлени з нульовими вільними членами \((P_1(0) = P_2(0) = 0) \).

Простір \(\mathcal{W}' \) — спряжений простір з простором \(\mathcal{W} \); це простір узагальнених функцій (лінійних неперервних функціоналів \(Q : \mathcal{W} \rightarrow \mathbb{C} \)), які є формальними рядами (рядами Лорана) \(Q(z) = \sum_{k} Q_k z^k = \sum_{k=\infty}^{\infty} Q_k z^k \), що діють на основну функцію \(P \in \mathcal{W} \) за правилом \((Q, P) = \sum_{k} Q_k P_k \).

Введемо ще шкали просторів \(\{\mathcal{H}_q(S)\}_{q \in \mathbb{R}} \) і \(\{\mathcal{H}_q''(\mathcal{D})\}_{q \in \mathbb{R}} \), де \(\mathcal{H}_q(S) \) — гільбертовий простір функцій \(\psi = \phi(z) = \sum_{k \in \mathbb{Z}} \psi_k z^k \), який отриманний поповненням \(\mathcal{W} \) за нормою

\[
\|\psi\|_q = \left(\sum_{k \in \mathbb{Z}} k^{2q} |\psi_k|^2 \right)^{\frac{1}{2}}, \quad k = \sqrt{1+k^2},
\]

а \(\mathcal{H}_q''(\mathcal{D}) \), \(n \in \mathbb{Z}_+ \), — банаховий простір таких функцій \(u(t, z) \), що похідні \(\frac{\partial^n u(t, z)}{\partial t^n} \), \(r = 0, 1, \ldots, n \), які визначені формулою \(\frac{\partial^n u(t, z)}{\partial t^n} = \sum_{k \in \mathbb{Z}} k^{(r)} u_k(t) z^k \), для кожного \(t \in [0, T] \) належать до просторів \(\mathcal{H}_{q-r}(S) \) відповідно і неперервні за змінною \(t \) у цих просторах. Квадрат норми функції \(u \) у просторі \(\mathcal{H}_q''(\mathcal{D}) \) обчислюється за формулою

\[
\|u\|_{\mathcal{H}_q''(\mathcal{D})}^2 = \sum_{r=0}^{n-1} \max_{[0, T]} \left\| \frac{\partial^r u(t, \cdot)}{\partial t^r} \right\|_{\mathcal{H}_{q-r}(S)}^2.
\]

Зауважимо, що \(B^s \psi \in \mathcal{H}_{q-s}(S) \) для всіх \(s \in \mathbb{N} \), якщо \(\psi \in \mathcal{H}_q(S) \), де \(B \) — оператор узагальненого диференціювання, тобто \(B \psi = z \frac{\partial \psi}{\partial z} \), а степені оператора \(B \) визначено формулами \(B^0 \psi = \psi, B^s \psi = B(B^{s-1} \psi) \) при \(s \in \mathbb{N} \setminus \{1\} \), (зокрема, маємо \(B^s(z^k) = k^s z^k \)).
В області D розглянуто задачу з нелокальними умовами

$$Lu = \sum_{s_0, s_1 \leq m} a_{s_0, s_1} B^{s_1} \frac{\partial^m u}{\partial t^{s_0}} = 0, \quad (1)$$

$$M_m u = \mu \frac{\partial^m u}{\partial t^m} \bigg|_{t=0} - \frac{\partial^m u}{\partial t^m} \bigg|_{t=T} = \varphi_m, \quad m = 0, 1, \ldots, n - 1, \quad (2)$$

де $a_{s_0, s_1} \in \mathbb{C}, \mu \in \mathbb{C} \setminus \{0\}, a_{n, 0} = 1, u = u(t, z)$ — шукана функція, а $\varphi_0, \varphi_1, \ldots, \varphi_{n-1}$ — задані функції змінної z.

Якщо виконується умова $u \in H^n_q(D)$ для елемента $u = \sum_{k \in \mathbb{Z}} u_k(t)z^k$, то вірними є формулі $Bu = \sum_{k \in \mathbb{Z}} k u_k(t)z^k \in H_{q-1}^n(D), Lu \in H_{q-n}(D)$ і $M_m u \in H_{q-m}(S)$ для $m = 0, 1, \ldots, n - 1$.

Ознання. Під розв’язком задачі (1), (2) будемо розуміти функцію $u = u(t, z)$, яка задовольняє рівняння (1) і умови (2) та належить до простору $H^n_q(D)$.

Для існування розв’язку задачі (1), (2) необхідно, щоб функції φ_m належали до просторів $H_{q-m}(S)$ при $m = 0, 1, \ldots, n - 1$ відповідно. Це твердження є наслідком з означення розв’язку задачі та властивостей просторів $H^n_q(D)$ і $H_q(S)$.

2 ПОБУДОВА ФОРМАЛЬНОГО РОЗВ’ЯЗКУ. ТЕОРЕМА ЄДИНОСТІ

Розв’язок задачі (1), (2) шукаємо у вигляді ряду:

$$u(t, z) = \sum_{k \in \mathbb{Z}} u_k(t)z^k, \quad (3)$$

де коефіцієнти $u_k = u_k(t)$ — невідомі функції, які треба визначити.

Запишемо оператор L з рівняння (1) у вигляді суми $Lu = \sum_{j=0}^n b_j(B) \frac{\partial^{n-j}}{\partial t^{n-j}}$, де оператор $b_j(B) = \sum_{s_1=0}^j a_{n-j, s_1} B^{s_1}, j = 0, 1, \ldots, n$, є многочленом не вище j-го степеня від оператора B, зокрема, $b_0(B)$ — одиничний оператор.

Функція u_k з формули (3) для кожного $k \in \mathbb{Z}$ є класичним розв’язком відповідної задачі для звичайного диференціального рівняння, а саме задачі:

$$\sum_{j=0}^n b_j(k)u_k^{(n-j)} = 0, \quad (4)$$

$$\mu u_k^{(m)} \bigg|_{t=0} - u_k^{(m)} \bigg|_{t=T} = \varphi_{mk}, \quad m = 0, 1, \ldots, n - 1, \quad (5)$$

де $b_j(k) = \sum_{s_1=0}^j a_{n-j, s_1} k^{s_1}$ — многочлені степеня не вище j, φ_{mk} — коефіцієнти Фур’є функції φ_m, тобто коефіцієнти ряду $\varphi_m(z) = \sum_{k \in \mathbb{Z}} \varphi_{mk}z^k$.

Единість розв’язку u_k задачі (4), (5) у просторі $C^n[0, T]$ для всіх $k \in \mathbb{Z}$ є необхідною і достатньою умовою едності розв’язку задачі (1), (2) у просторі $H^n_q(D)$ для довільного $q \in \mathbb{R}$. Саме тому, якщо хоча б для одного k існує нетривіальний розв’язок $\dot{u}_k = \dot{u}_k(t)$ однорідної задачі (4), (5), то однорідна задача (1), (2) також має нетривіальний розв’язок
и = \bar{u}(t, z), який визначається формулою \bar{u}(t, z) = \bar{u}_k(t)z^k, і розв'язок задачі (1), (2) не може бути єдиним.

Для побудови розв'язку задачі (4), (5) у рівнянні (4) пронормуємо коефіцієнти \(b_j(k), j = 1, \ldots, n \), і подамо їх у вигляді добутку \(b_j(k) = k!\bar{b}_j(k) \). Функції \(\bar{b}_j(k) \), як і коефіцієнти \(b_j(k) \), лінійно залежать від параметрів \(a_{n-j,0}, a_{n-j,1}, \ldots, a_{n-j,j} \) і рівномірно обмежені за \(k \).

Очевидно, виконується нерівність

\[
|\bar{b}_j(k)| \leq \sum_{s_1=0}^{j} |a_{n-j,s_1}| \frac{|k|^{s_1}}{k!} \leq \max_{s_1=0,1,\ldots,j} |a_{n-j,s_1}| \sum_{s_1=0}^{j} \frac{|k|^{s_1}}{k!}.
\]

Якщо коефіцієнти \(a_{s_0,s_1} \in \mathbb{C} \) рівняння (1) розглядаються у кругу деякого радіуса \(A \) з центром у початку координат комплексної площини, то отримуємо оцінки

\[
|\bar{b}_j(0)| = |a_{n-j,0}| \leq A, \quad |\bar{b}_j(\pm 1)| \leq (j + 1)2^{-\frac{j}{2}}A \leq \frac{3}{2}A,
\]

\[
|\bar{b}_j(k)| \leq \frac{A |k|^{j+1}}{k! |k| - 1} < \frac{A |k|}{|k| - 1}, \quad k \not\in \{-1, 0, 1\},
\]

тобто \(|\bar{b}_j(k)| < 2A \) для всіх \(k \in \mathbb{Z} \). Звісни випливає, що для всіх (з врахуванням кратності) коренів \(\lambda_1(k), \ldots, \lambda_n(k) \) многочлена

\[
P_k(\lambda) = \prod_{j=1}^{n} (\lambda - \lambda_j(k)) = \lambda^n + \sum_{j=1}^{n} \bar{b}_j(k)\lambda^{n-j}
\]

виконуються нерівності [5]:

\[
|\lambda_j(k)| \leq 1 + \max \{|\bar{b}_1|, \ldots, |\bar{b}_n|\} \leq 1 + 2A.
\]

Очевидно, що числа \(\gamma_j = \bar{\lambda}_j(k) \) є коренями відповідного характеристичного рівняння \(\gamma^n + b_1(k)\gamma^{n-1} + \ldots + b_n(k) = 0 \) для диференціального рівняння (4).

Позначимо через \(K \) множину тих цілих чисел \(k \), для яких многочлен \(P_k(\lambda) \) має кратний корінь.

Для різних коренів \(\lambda_1(k), \ldots, \lambda_n(k) \) загальний розв'язок рівняння (4) має вигляд

\[
u_k(t) = \sum_{l=1}^{n} C_{kl}e^{\lambda_l(k)t}, \quad k \in \mathbb{Z} \setminus K,
\]

де \(C_{kl} \) — довільні комплексні стали, і належать до простору \(\mathbb{C}^n[0, T] \).

Якщо \(u_k(t) \) — розв'язок задачі (4), (5), то числа \(\tilde{C}_{kl} = (\mu - e^{\lambda_l(k)}T)C_{kl}, \ l = 1, 2, \ldots, n \), утворюють розв'язок системи лінійних алгебричних рівнянь

\[
\sum_{l=1}^{n} \lambda_l^{m}(k)\tilde{C}_{kl} = \frac{\phi_{nk}k^m}{k^n}, \quad m = 0, 1, \ldots, n - 1
\]

з матрицею Вандермонда \((\lambda_l^{m-1}(k))_{m,l=1}^{n} \). Навпаки, якщо числа \(\tilde{C}_{kl} \), де \(l = 1, 2, \ldots, n \), утворюють розв'язок системи лінійних алгебричних рівнянь (8), то функція \(u_k(t) \), що визначена формулой (7), в якій \(C_{kl} = \frac{\tilde{C}_{kl}}{\mu - e^{\lambda_l(k)}T} \), є розв'язком задачі (4), (5).

Розв'язуючи систему (8) за правилом Крамера, одержуємо рівності

\[
\tilde{C}_{kl} = \sum_{j=0}^{n-1} \Delta_{k,l}(k)^{-1} \varphi_{jk}, \quad k \in \mathbb{Z} \setminus K,
\]
де $\Delta(k) = \prod_{1 \leq r < q \leq n} (\lambda_q(k) - \lambda_r(k))$ — визначник Вандермонда, а $\Delta_{ji}(k)$ — його відповідні алгебрачні доповнення, $i = 0, 1, \ldots, n - 1$, $l = 1, 2, \ldots, n$.

Для того, щоб задача (4), (5) мала едниний класичний розв'язок для кожного $k \in \mathbb{Z} \setminus K$, необхідно і достатньо, щоб виконувалась умова $\mu \neq e^{k\lambda_1(k)T}$ для $l = 1, 2, \ldots, n$. З цієї умови випливає, що $\ln \mu \neq k\lambda_1(k)T + i2\pi m$, або $\lambda_1(k) \neq \frac{\ln \mu - i2\pi m}{kT}$ для довільних $m \in \mathbb{Z}$ та $l = 1, 2, \ldots, n$.

У протилежному випадку, коли $\mu = e^{k\lambda_1(k)T}$ для деякого l, існує таке число $m \in \mathbb{Z}$, що корінь $\lambda_1(k)$ визначається за формулою: $\lambda_1(k) = \frac{\ln \mu - i2\pi m}{kT}$. Тому виконується рівність

$$\frac{(\ln \mu - i2\pi m)^n}{T^{n}k^n} + \sum_{j=1}^{n} b_j(k) \frac{(\ln \mu - i2\pi m)^{n-j}}{T^{n-j}k^{n-j}} = 0$$

із еквівалентна йй рівність

$$\frac{(\ln \mu - i2\pi m)^n}{T^{n}k^n} + \sum_{j=1}^{n} b_j(k) T^j (\ln \mu - i2\pi m)^{n-j} = 0.$$ \hspace{1cm} (9)

Для кратних коренів ($k \in K$) загальний розв'язок рівняння (4) також буде мати вигляд (7), в якому, залежно від кратності коренів $\lambda_1(k)$, замість числових коефіцієнтів C_{k1} будуть многочлени коефіцієнтів $C_{k1}(t)$. Можна показати, що умова (9) буде необхідною і достатньою умовою едності розв'язку задачі (4), (5) і за кратних коренів [6, 12].

Теорема 1. Для едності розв'язку задачі (1), (2) у просторі $H_j^n(D)$ необхідно і достатньо, щоб рівняння (9) не мало розв'язків у цілих числах m і k.

Доведення. Необхідність. Нехай однорідна задача (1), (2) у просторі $H_j^n(D)$ має не більше одного розв'язку. Якщо існує розв'язок задачі (1), (2), тоді всі функції $u_k(t)$ знаходяться однозначно, тобто однорідна задача (4), (5) у просторі $C^n[0; T]$ для всіх $k \in \mathbb{Z}$ має едниний розв'язок. Отже, $\Delta(k) \prod_{l=1}^{n} (\mu - e^{k\lambda_1(k)T}) \neq 0$, якщо $k \in \mathbb{Z} \setminus K$, тобто $\mu \neq e^{k\lambda_1(k)T}$ для $l = 1, 2, \ldots, n$. Таким чином, рівняння (9) не має розв'язків у цілих числах m і k. Аналогічні нерівності отримуємо при $k \in K$.

Достатність. Доведемо від супротивного. Нехай рівняння (9) має розв'язок для k^*, m^*. Тоді можна вважати, що $\lambda_1(k^*) = \frac{\ln \mu - i2\pi m^*}{k^*T}$, а однорідна задача (4), (5) має розв'язок $e^{k^*\lambda_1(k^*)t} = e^{(\ln \mu - i2\pi m^*)T}$. Звідси випливає, що задача (1), (2) у просторі $H_j^n(D)$ якщо має, то безліч розв'язків, оскільки $u^*(t, z) = C z e^{(\ln \mu - i2\pi m^*)T}$, де C — довільна комплексна стала, є розв'язками відповідної однорідної задачі. Теорему доведено.

Для фіксованих μ та T рівняння (9) визначають зліченну кількість прямих у просторі коефіцієнтів $a_{so,sl}$ диференціального рівняння (1), а для фіксованих $a_{so,sl} — зліченну кількість точок на площині змінної $\ln \mu$ за фіксованого T, або злічену кількість точок на осі змінної T за фіксованого μ. Тому множини коефіцієнтів чи параметрів задачі (1), (2), для яких не виконуються умови едності, мають нульову міру.

За умов теореми 1 для довільного $k \in \mathbb{Z}$ розв'язок $u_k(t)$ задачі (4), (5) існує, а при $k \in \mathbb{Z} \setminus K$ має такий вигляд:

$$u_k(t) = \sum_{l=0}^{n} \sum_{1 \leq r < q \leq n} \Delta_{ji}(k) \prod_{1 \leq r < q \leq n} (\lambda_q(k) - \lambda_r(k)) e^{k\lambda_1(k)t} \frac{(\ln \mu - i2\pi m)}{kT} \psi_{jk}. \hspace{1cm} (10)$$
За формуллю (3) формальний розв’язок задачі (1), (2) подається у вигляді ряду

\[u(t,z) = \sum_{k \in \mathbb{K}} u_k(t)z^k + \sum_{k \in \mathbb{Z} \setminus \mathbb{K}} \sum_{i=1}^{n} \sum_{j=0}^{n-1} \frac{\Delta_{ij}(k)}{\Delta(k)} \frac{e^{k\lambda_i(k)t}}{\mu - e^{k\lambda_i(k)t}} \sum_{j=0}^{n-1} k^{-j} \varphi_{jk} z^k. \] (11)

3 Оцінювання розв’язку. Теорема існування

Доведемо належність розв’язку (11) задачі (1), (2) до простору \(H^n(D) \). Враховуючи, що \(K \) — скінченна множина (буде показано далі), оцінимо абсолютну величину функцій \(u_k \) та їх похідних до порядку \(n \) лише для \(k \in \mathbb{Z} \setminus \mathbb{K} \), зокрема

\[|u_k(t)| \leq \frac{\tilde{k}}{\Delta(k)} \max_{j,l} |\Delta_{jl}(k)| \sum_{t=1}^{n} \frac{|\lambda_j(t)\varphi_{k\lambda_j}(t)|}{|\mu - e^{k\lambda_i(k)t}|} \sum_{j=0}^{n-1} |k^{-j} \varphi_{jk}|, \quad t \in [0, T]. \]

Піднесемо обидві частини нерівності до квадрату і перетворимо до вигляду

\[|u_k(t)|^2 \leq n^3(1+2A)^2r \frac{\tilde{k}^{2r}}{\Delta(k)^2} \max_{j,l} |\Delta_{jl}(k)|^2 \max_{i,j} \left| \frac{e^{k\lambda_i(k)t}}{\mu - e^{k\lambda_i(k)t}} \right|^2 \sum_{j=0}^{n-1} |k^{-j} \varphi_{jk}|^2. \] (12)

Оскільки \(\Delta_{jl}(k) \) — визначники порядку \(n-1 \), що мають обмежені елементи, які є степенями чисел \(\lambda_1, \ldots, \lambda_n \), то з (6) маємо

\[|\Delta_{jl}(k)| \leq (n-1)! (1+2A)^{(n-1)n/2}. \] (13)

Для подальшої оцінки \(|u_k| \) розглянемо вираз \(\Delta^2(k) \) у формулі (12), який є дискримінантом \(D(k) \) полінома \(P_k(\lambda) \), і для якого справедливі такі два зображення:

\[\Delta^2(k) = D(k) = \prod_{1 \leq r < q \leq n} (\lambda_q(k) - \lambda_r(k))^2 = k^{-n(n-1)} \prod_{1 \leq r < q \leq n} (k\lambda_q(k) - k\lambda_r(k))^2, \]

де знак перед визначником визначає формулу \((-1)^{(n-1)n/2} \).

Дискримінант \(D(k) \) подамо у вигляді многочлена:

\[D(k) = D_0(k) + D_1(k) + D_2(k) + \ldots + D_n(k), \]

де

\[D_0(k) = k^{n(n-1)} + \frac{D_1(k)}{k} + \frac{D_2(k)}{k^2} + \ldots + \frac{D_n(k)}{k^n(n-1)}, \] (14)
де $D_0, D_1, D_2, \ldots, D_{n(n-1)}$ — комплексні числа, які є многочленами від $a_{20,51}$, причому D_0 — дискримінат многочлена $\lambda^n + \sum_{j=1}^{n} a_{n-j,j} \lambda^{n-j}$ (цей многочлен будується за головною частиною рівняння (1)):

$$D_0 = (-1)^{\frac{(n-1)n}{2}}$$

$$|a_{n-1,1} \ldots \ a_{n,n-1} \ a_{0,n} \ 0 \ 0 |$$

$$|0 \ 1 \ ... \ a_{2,n-2} \ a_{1,n-1} \ a_{0,n} \ 0 |$$

$$|0 \ 0 \ ... \ a_{n-1,1} \ a_{n-2,2} \ a_{n-3,3} \ ... \ a_{0,n} |$$

$$|n \ (n-1)a_{n-1,1} \ ... \ a_{1,n-1} \ 0 \ 0 \ ... \ 0 |$$

$$|0 \ n \ ... \ 2a_{n-2,2} \ a_{1,n-1} \ 0 \ 0 \ ... \ 0 |$$

$$|0 \ 0 \ ... \ n \ (n-1)a_{n-1,1} \ (n-2)a_{n-2,2} \ ... \ a_{1,1}|$$

$D_{n(n-1)}$ — дискримінат многочлена $\lambda^n + \sum_{j=1}^{n} a_{n-j,0} \lambda^{n-j}$ (многочлен будується за коефіцієнтами біля чистих за t похідних):

$$D_{n(n-1)} = (-1)^{\frac{(n-1)n}{2}}$$

$$|1 \ a_{n-1,0} \ ... \ a_{1,0} \ a_{0,0} \ 0 \ ... \ 0 |$$

$$|0 \ 1 \ ... \ a_{2,0} \ a_{1,0} \ a_{0,0} \ 0 |$$

$$|0 \ 0 \ ... \ a_{n-1,0} \ a_{n-2,0} \ a_{n-3,0} \ ... \ a_{0,0} |$$

$$|n \ (n-1)a_{n-1,0} \ ... \ a_{1,0} \ 0 \ 0 \ ... \ 0 |$$

$$|0 \ n \ ... \ 2a_{2,0} \ a_{1,0} \ 0 \ 0 \ ... \ 0 |$$

$$|0 \ 0 \ ... \ n \ (n-1)a_{n-1,0} \ (n-2)a_{n-2,0} \ ... \ a_{1,0}|$$

Нехай $D_0 \neq 0$, тоді дискримінант $D(k)$ при $k \neq 0$ факторизуємо так:

$$D(k) = \frac{D_0}{2} \left(\frac{k}{k}\right)^{n(n-1)} \left(2 + \frac{2D_1}{D_0k^2} + \frac{2D_2}{D_0k^2} + \ldots + \frac{2D_{n(n-1)}}{D_0k^{n(n-1)}}\right)$$

$$= \frac{D_0}{2} \left(\frac{k}{k}\right)^{n(n-1)} \left(2 + \frac{2}{kB_0} \left(D_1 + \frac{D_2}{k} + \ldots + \frac{D_{n(n-1)}}{k^{n(n-1)-1}}\right)\right).$$

З останньої формули випливає нерівність $|D(k)| \geq \frac{|D_0|}{2} \cdot \left(\frac{|k|}{k}\right)^{n(n-1)}$ при $|k| \geq \frac{D_0}{|D_0|}$, де

$$D_0 = 2(|D_1| + |D_2| + \ldots + |D_{n(n-1)}|).$$

Для дробу $|k|/k$ справедливою є оцінка

$$\frac{|k|}{k} \geq \frac{1}{\sqrt{2}}, \quad k \in \mathbb{Z}^P \setminus \{0\}. \quad (15)$$

Врахувавши нерівність (15), оцінімо модуль $D(k)$ знизу

$$|D(k)| \geq \frac{|D_0|}{2} \cdot \left(\frac{1}{\sqrt{2}}\right)^{n(n-1)} = (\sqrt{2})^{-n(n-1)-2}|D_0|, \quad |k| \geq \frac{D_0}{|D_0|}. \quad (16)$$

Отримана оцінка є точною за k при $|k| \geq \frac{D_0}{|D_0|}$, оскільки оцінка зверху, яка випливає із зображення дискримінанта $D(k)$, має такий вигляд: $|D(k)| \leq \frac{3}{2}|D_0|$.
З оцінки (16) випливає також скінченность множини K.

У формулі (12) залишається оцінити зверху дроби $\frac{\mu_k e^{\lambda_j} t}{\mu - \mu_k}$. Для цього використовуємо такі дві формулі: $|\mu_k e^{\lambda_j} t| = \max \{ e^{\Re \Lambda_j} t \}$ та $\frac{\Re \Lambda_j}{|\Re \Lambda_j|} \to \infty$ при $|k| \to \infty$. Очевидно, що треба довести лише другу формулу.

З рівності $2 \Re \Lambda_i (k) = \Lambda_i (k) + \bar{\Lambda}_i (k) = \Lambda_i (k) - (-\Lambda_i (k))$ і того, що $-\Lambda_1 (k), \ldots, -\Lambda_n (k)$ є коренями многочлена $\mathcal{P}_k (\lambda) = \prod_{j=1}^n (\lambda + \bar{\Lambda}_j (k)) = \lambda^n + \sum_{j=1}^n (-1)^j \bar{b}_j (k) \lambda^{n-j}$, отримаємо, що число $2 \Re \Lambda_i (k)$ є множниками результатта $R(k) = \prod_{j=1}^n \prod_{l=1}^n (\Lambda_i (k) - (-\Lambda_l (k)))$ многочленів \mathcal{P}_k та \mathcal{P}_{1k}. Цей результат дорівнює такому визначнику:

$$
R(k) = \begin{vmatrix}
\lambda & \bar{b}_1 (k) & \bar{b}_2 (k) & \bar{b}_3 (k) & \cdots & \bar{b}_n (k) \\
-\bar{b}_1 (k) & \lambda & \bar{b}_2 (k) & \bar{b}_3 (k) & \cdots & \bar{b}_n (k) \\
-\bar{b}_2 (k) & -\bar{b}_1 (k) & \lambda & \bar{b}_3 (k) & \cdots & \bar{b}_n (k) \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
-\bar{b}_n (k) & -\bar{b}_2 (k) & -\bar{b}_3 (k) & \cdots & \lambda & \bar{b}_1 (k)
\end{vmatrix}
$$

Для довільного $i = 1, \ldots, n$ оцінимо модуль даного результатта зверху:

$$
|R(k)| \leq 2 n^2 (1 + 2A)^{n^2-1} |\Re \Lambda_j|.
$$

Для оцінки знизу подаємо результат у вигляді

$$
R(k) = \left(\frac{k}{\bar{k}} \right)^{n^2} \left(R_0 + \frac{R_1}{k} + \frac{R_2}{k^2} + \ldots + \frac{R_n}{k^{n^2}} \right), \quad k \neq 0,
$$

де R_0 дорівнює такому визначнику:

$$
R_0 = \begin{vmatrix}
a_{n-1,1} & \cdots & a_{1,n-1} & a_{0,n} & 0 & \cdots & 0 \\
0 & \cdots & a_{2,n-2} & a_{1,n-1} & a_{0,n} & \cdots & 0 \\
0 & \cdots & a_{n-1,1} & a_{n-2,2} & a_{n-3,3} & \cdots & 0 \\
1 & -a_{n-1,1} & (1)^{n-1} a_{1,n-1} & (1)^{n} a_{0,n} & 0 & \cdots & 0 \\
0 & 1 & (1)^{n-2} a_{2,n-2} & (1)^{n-1} a_{1,n-1} & (1)^{n} a_{0,n} & \cdots & 0 \\
0 & 0 & \cdots & -a_{n-1,1} & -a_{2,2} & -a_{n-3,3} & \cdots (1)^{n} a_{0,n}
\end{vmatrix}
$$

і у випадку $R_0 \neq 0$ маємо добуток

$$
R(k) = \frac{R_0}{2} \left(\frac{k}{\bar{k}} \right)^{n^2} \left(2 + \frac{\mu_1}{k R_0} \left(\frac{R_1}{k} + \frac{R_2}{k} + \ldots + \frac{R_n}{k^{n^2-1}} \right) \right).
$$

Якщо $k \in \mathbb{Z}$ і $|k| \geq \frac{R_0}{|R_0|}$, де $R_0 = 2(|R_1| + |R_2| + \ldots + |R_n|)$, то справджується нерівність

$$
|R(k)| \geq \frac{|R_0|}{2} \left(\frac{|k|}{k} \right)^{n^2} \geq (\sqrt{2})^{n^2-2} |R_0|.
$$
З даної нерівності випливає друга формула, оскільки $k \to \infty$, коли $|k| \to \infty$:

$$k|\text{Re} \lambda_j(k)| \geq k \cdot 2^{-n^2} (1 + 2A)^{1-n^2} |R(k)| \geq k \cdot (\sqrt{2})^{-3n^2-2} (1 + 2A)^{1-n^2} |R_0| \to \infty.$$

Для шуканої оцінки дробів врахуємо знак $\text{Re} \lambda_j(k)$. Якщо $\text{Re} \lambda_j(k) > 0$, то справждується рівномірна на $[0, T]$ оцінка

$$\left| \frac{e^{k\lambda_j(k)t}}{\mu - e^{k\lambda_j(k)t}} \right| \leq \frac{e^{k\text{Re} \lambda_j(k)T}}{|\mu - e^{k\lambda_j(k)t}|} = \frac{e^{k\text{Re} \lambda_j(k)T}}{e^{k\lambda_j(k)t} - 1} = \frac{1}{|\mu e^{-k\lambda_j(k)t} - 1|} \leq 2$$

при $k \geq \frac{M_1}{|R_0|}$ і $|k| \geq \frac{R_0}{|R_0|}$, де $M_1 = \frac{\ln(2|\mu|)}{T} (\sqrt{2})^{3n^2+2}(1 + 2A)n^2-1$.

Якщо ж $\text{Re} \lambda_j(k) < 0$, то аналогічно

$$\left| \frac{e^{k\lambda_j(k)t}}{\mu - e^{k\lambda_j(k)t}} \right| = \frac{1}{|\mu|}$$

при $k \geq \frac{M_2}{|R_0|}$ і $|k| \geq \frac{R_0}{|R_0|}$, де $M_2 = \frac{\ln(2/|\mu|)}{T} (\sqrt{2})^{3n^2+2}(1 + 2A)n^2-1$.

Отже, при $k \geq \max \left(\frac{M_1, M_2}{|R_0|} \right) = \frac{\ln(2/|\mu|)}{T|R_0|} \ln 2|\mu|$, і $|k| \geq \frac{R_0}{|R_0|}$ для виразу

$$\left| \frac{e^{k\lambda_j(k)t}}{\mu - e^{k\lambda_j(k)t}} \right| \text{справджується така нерівність:}$$

$$\left| \frac{e^{k\lambda_j(k)t}}{\mu - e^{k\lambda_j(k)t}} \right| \leq 2 \max \left(1, \frac{1}{|\mu|} \right). \quad (18)$$

Таким чином, враховуючи нерівності (12), (13), (16) і (18), для всіх $t \in [0, T]$ отримаємо оцінку розв’язку задачі (4), (5) та його похідних

$$|u_k^r(t)|^2 \leq \frac{\hat{C}_0}{|D_0|} \sum_{j=0}^{n-1} |k|^{2(r-j)}|\varphi_{k,j}|^2, \quad k \in \mathbb{Z} \setminus K_0, \quad r = 0, 1, \ldots, n, \quad (19)$$

де $\hat{C}_0 = \hat{C}_0(A, n, \mu) > 0$, K_0 — множина цілих чисел k, для яких справедлива нерівність $|k| \leq \max \left(\frac{D_0}{|D_0|}, \frac{R_0}{|R_0|} \right)$ або нерівність $k \leq \max \left(\frac{M_1, M_2}{|R_0|} \right)$.

Теорема 2. Нехай виконуються умови:

$(I_0) D_0 \neq 0$;

$(II_0) R_0 \neq 0$;

(III_0) для всіх $k \in K_0$ рівняння (9) не має розв’язків у цілих числах m; а також $\varphi_0 \in H_q(S)$, $\varphi_1 \in H_{q-1}(S)$, \ldots, $\varphi_{n-1} \in H_{q-n+1}(S)$. Тоді існує лише один розв’язок задачі (1), (2), який належить до простору $H^r_{\lambda_j}(D)$. Цей розв’язок неперервно залежить від правих частин $\varphi_0, \varphi_1, \ldots, \varphi_{n-1}$ умов (2).

Доведення. За умов (I_0) і (II_0) справждується оцінка (19) розв’язку u_k задачі (4), (5) для $k \in \mathbb{Z} \setminus K_0$. Якщо ж $k \in K_0$, то розв’язок u_k існує та належить до простору $C^n[0, T]$ за умовою (III_0).
Враховуючи формулу (11) та нерівність (19), оцінимо зверху квадрат норми розв'язку задачі (1), (2):

$$\|u\|^2_{\mathcal{H}_1(D)} \leq \sum_{r=0}^{n} \max_{[0,T]} \sum_{k \in \mathbb{K}_{00}} |u_k^{(r)}(t)|^2 ||k||^2 (s-r) + \frac{C_0}{|D_0|} \sum_{r=0}^{n} \sum_{k \in Z \setminus \mathbb{K}_{00}} k^2 (s-r) \sum_{i=0}^{n-r-1} |k|^{2(r-i)} |\varphi_k|^2 \leq \frac{C_0}{|D_0|} \sum_{r=0}^{n} \|\varphi_r\|^2_{\mathcal{H}_{-r-1}(S)},$$

де додатна величина C_0 залежить від коефіцієнтів a_{s_0,s_1} рівняння (1) і параметра μ, а також від чисел A та n. Остання нерівність у формулі (20) випливає зі скінченностю множини \mathbb{K}_{00}. Теорему доведено. □

Из теореми 2 існування розв'язку отримуємо важливий наслідок про бієктивну властивість оператора задачі (1), (2).

Наслідок. За умов теореми 2 оператор нелокальних умов (2) є бієктивним відображенням і ↔ (фі, фі, ..., фі) з простору розв'язків і рівняння (1), які належать до $\mathcal{H}_q^m(D)$, на простір $H_q(S) \times H_{q-1}(S) \times \ldots \times H_{q+n-1}(S)$ вектор-функцій (фі, фі, ..., фі).

Зазначимо, що умови теореми 2, для майже всіх, у сенсі міри Лебега, коефіцієнтів a_{s_0,s_1} диференціального рівняння (1) виконуються, тобто вони можуть не виконуватися лише для множини нульової міри.

4 ДОСЛІДЖЕННЯ УМОВ РОЗВ'ЯЗНОСТІ ЗАДАЧІ

Встановимо розв'язність задачі (1), (2) при порушенні умов теореми 2. Всього розглянемо чотири варіанти теорем існування, які узагальнюють цю теорему. Використаємо відповідну нумерацію з індексами для формул та позначення S_1, S_2, S_3, S_4 для додатних величин, які залежать від коефіцієнтів a_{s_0,s_1}, параметра μ, чисел A та n і не залежать від вектор-функцій (фі, фі, ..., фі).

А) У першому випадку нехай не виконується умова (I00), тобто $D_0 = 0$. Припустимо також, що $D_1 \neq 0$. Для $k \neq 0$ дискримінант (14) запишемо у вигляді добутку

$$D(k) = D_1 \left(\frac{k}{k} \right)^{n(n-1)} + D_2 \left(\frac{k}{k} \right)^{n(n-1)-2} + \ldots + D_n \left(\frac{k}{k} \right)^{n(n-1)} = \left(\frac{k}{k} \right)^{n(n-1)} \left(2 + \frac{2}{kD_1} \left(D_1 + D_3 + \ldots + D_n \left(\frac{k}{k} \right)^{n(n-1)-2} \right) \right).$$

Тоді для $|k| \geq \frac{D_1}{|D_1|}$, де $D_1 = 2(|D_2| + |D_3| + \ldots + |D_n|)$, отримаємо нерівність

$$|D(k)| \geq \frac{|D_1|}{2} \left(\frac{1}{k} \right)^{n(n-1)-1} \frac{1}{k}.$$

З нерівності (15) випливає така оцінка знизу модуля дискримінанта $D(k)$:

$$|D(k)| \geq \frac{|D_1|}{2} \left(\frac{1}{\sqrt{2}} \right)^{n(n-1)-1} \frac{1}{k} = \frac{(\sqrt{2})^{-n(n-1)-1}|D_1|}{k}, \quad |k| \geq \frac{D_1}{|D_1|}.$$ (16.1)

З точністю до сталої, отримуємо таку ж оцінку зверху: $|D(k)| \leq \frac{3|D_1|}{2k}.$
Ці оцінки показують, що порушення умови (I₀₀) означає нескінченну малість (першого порядку стосовно \(1/|k| \)) дискримінанта \(D(k) \) при \(|k| \to \infty \). Оцінка (16) показує, що при виконанні умови (I₀₀) модуль дискримінанта оцінюється знизу і зверху сталами.

На основі формул (12), (13), (16₁), (18) для всіх \(t \in [0, T] \) отримаємо нерівності

\[
|u_k^{(r)}(t)|^2 \leq \frac{\hat{C}_0}{|D_1|} \sum_{j=0}^{n-1} |k|^{2(r-j-1)}|\varphi_{jk}|^2, \quad k \in \mathbb{Z} \setminus K_{10}, \quad r = 0, 1, \ldots, n, \tag{19₁}
\]

де \(\hat{C}_0 = \hat{C}_{i₀}(A, n, \mu) > 0, K_{10} = \{k \in \mathbb{Z}: |k| \leq \max \left(\frac{\hat{D}_1}{|D_1|}, \frac{\hat{R}_0}{|R_0|} \right) \vee \hat{k} \leq \max \left(\frac{M_1, M_2}{|R_0|} \right) \} \).

Теорема 3. Нехай виконується умова (I₀₀) теореми 2 та умови:

- (I₀) \(D_0 = 0, D_1 \neq 0; \)
- (I₁₀) для всіх \(k \in K_{10} \) рівняння (9) не має розв’язків у цілих числах \(m \).

Тоді за умови \(\varphi_0 \in H_{q+1}(S), \varphi_1 \in H_q(S), \ldots, \varphi_{n-1} \in H_{q+n-2}(S) \) справджується твердження теореми 2.

Доведення. З умови \(D_1 R_0 \neq 0 \) (умови (I₁₀) і (I₀₀)) випливає оцінка (19₁) розв’язку \(u_k \) задачі (4), (5) для \(k \in \mathbb{Z} \setminus K_{10} \), а з умови (I₁₀) — існування \(u_k \) для всіх \(k \in K_{10} \).

Оскільки \(K_{10} \) — скінченна множина, то з формул (11) та нерівності (19₁) випливає така оцінка зверху розв’язку (11) задачі (1), (2):

\[
\|u\|_{H^s_0(D)}^2 \leq \frac{C_1}{|D_1|} \sum_{j=0}^{n-1} \|\varphi_j\|_{H_{q+j+1}(S)}^2.
\]

З останньої нерівності випливає доведення теореми.

Б) Розглянемо другий випадок, коли не виконуються обидві умови (I₀₀) теореми 2 та (I₁₀) теореми 3, а виконуються умови \(D_0 = D_1 = \ldots = D_{i-1} = 0, D_i \neq 0 \), де \(i \in \{2, \ldots, n(n-1)\} \). Це означає, що дискримінант \(D(k) \) полінома \(P_k(\lambda) \) не тотожний нулеві (оскільки, тоді \(D_0 = D_1 = \ldots = D_{n(n-1)} \) і для \(k \neq 0 \) подається формулою

\[
D(k) = \frac{D_i}{2} \left(k \right) l-k{n-l-1} \frac{1}{k} \left(2 + \frac{kD_i}{k} \left(D_{i+1} + \frac{D_{i+2}}{k} \ldots + \frac{D_n(n-1)}{k(n-1)(n-1)} \right) \right).
\]

Звідси випливає нерівність \(|D(k)| \geq \frac{|D_i|}{2} \left(\left| \frac{k}{k} \right| n(n-1)-i \right) \frac{1}{k} \) для \(|k| \geq \frac{|D_i|}{|D_i|} \), де число \(D_i = 2(|D_{i+1}| + |D_{i+2}| + \ldots + |D_{n(n-1)}|) \). Враховуючи цю нерівність та нерівність (15), дамо таку оцінку знизу \(D(k) \):

\[
|D(k)| \geq \left(\sqrt{2} \right)^{-n(n-1)+i-2} |D_i|, \quad |k| \geq \frac{|D_i|}{|D_i|}, \tag{16₂}
\]

Вона означає нескінченну малість дискримінанта порядку \((1/|k|)^i \), де \(i \geq 2 \), при \(|k| \to \infty \).

З нерівностей (12), (13), (16₂), (18) для всіх \(t \in [0, T] \) випливає формула

\[
|u_k^{(r)}(t)|^2 \leq \frac{\hat{C}_0}{|D_i|} \sum_{j=0}^{n-1} |k|^{2(r-j-i)}|\varphi_{jk}|^2, \quad k \in \mathbb{Z} \setminus K_{0}, \quad r = 0, 1, \ldots, n, \tag{19₂}
\]

де \(\hat{C}_0 = \hat{C}_{i₀}(A, n, \mu) > 0, K_{0} = \{k \in \mathbb{Z}: |k| \leq \max \left(\frac{D_i}{|D_i|}, \frac{\hat{R}_0}{|R_0|} \right) \vee \hat{k} \leq \max \left(\frac{M_1, M_2}{|R_0|} \right) \} \).
Теорема 4. Нехай виконується умова (Π₀₀) теореми 2 та умови:

(Ι₀) \(D₀ = D₁ = \ldots = Dₙ₋₁ = 0, Dᵢ ≠ 0, \ i \in \{2, \ldots, n(n-1)\} \);
(ΙΙ₀) для всіх \(k \in K₀ \) рівняння (9) не має розв’язків у цілих числах m.

Тоді за умов \(φ₀ \in H_{q+i}(S), \ φᵢ \in H_{q+i-1}(S), \ \ldots, \ φ_{n-1} \in H_{q+n-1}(S) \) справджується твердження теореми 2.

Доведення. Оскільки за умовами теореми \(Dᵢ \neq 0 \) і \(R₀ ≠ 0 \), то виконується оцінка (19ₜ) розв’язку \(uₖ \) задачі (4), (5) для \(k \in \mathbb{Z} \setminus K₀ \), а для \(k \in K₀ - uₖ \in \mathbb{C}^n[0, T] \) (за умовою (ΙΙΙ₀)).

Оцінку квадрата норми розв’язку i задачі (1), (2) отримуємо з формул (11), нерівності (19ₜ) та скінченності множини \(K₀ \), зокрема

\[
\|u\|^2_{H_q^2(D)} \leq \frac{C_2}{|D_1|} \sum_{j=0}^{n-1} \|φ_j\|^2_{H_{q+j+i}(S)}.\]

З останньої нерівності випливає доведення теореми.

□

В) У третьому випадку нехай не виконується умова (Π₀₀) теореми 2, тобто \(R₀ = 0 \), але \(R₁ \neq 0 \). Тоді результат \(R(k) \) матиме вигляд:

\[
R(k) = \frac{R₁}{k} \left(\left(\frac{k}{k} \right)^{n²-1} + \frac{R₂}{k²} \left(\frac{k}{k} \right)^{n²-2} + \ldots + \frac{Rₙ²}{k^{n²}} \right) = \frac{R₁}{k} \left(2 + \frac{2}{R₁} \left(\frac{R₂}{R₁} + \frac{R₃}{R₁} + \ldots + \frac{Rₙ²}{k^{n²-2}} \right) \right).\]

Якщо вектор \(k \in \mathbb{Z} \) задовольняє умову \(|k| \geq \frac{R₁}{|R₁|} \), де \(R₁ = 2(|R₂| + |R₃| + \ldots + |Rₙ²|) \), тоді, враховуючи нерівність (15), маємо \(|R(k)| \geq \frac{|R₁|}{2} \left(\frac{|k|}{k} \right)^{n²-1} \cdot \frac{1}{k} \geq (\sqrt{2})^{-n²-1} |R₁| \cdot \frac{1}{k} \).

Звідси для \(|k| \geq \frac{R₁}{|R₁|} \) отримаємо таке обмеження на величину \(k |\text{Re} \ λ_j(k)| \):

\[
|k| |\text{Re} \ λ_j(k)| \geq \frac{R₁}{|R₁|} \cdot \sqrt{2}^n \cdot (1 + 2A)^1 \cdot (1 + 2A)^{1-n²} \cdot |R₁| = \sigma > 0.
\]

Оцінимо окремо вираз \(\frac{e^{\text{Re} \ λ_j(k)t}}{μ - e^{\text{Re} \ λ_j(k)t}} \) для \(\text{Re} \ λ_j(k) > 0 \) та для \(\text{Re} \ λ_j(k) < 0 \). У разі \(|μ| < e^{σT} \) для \(\text{Re} \ λ_j(k) > 0 \) отримаємо

\[
\left| \frac{e^{\text{Re} \ λ_j(k)t}}{μ - e^{\text{Re} \ λ_j(k)t}} \right| = \frac{1}{1 - μ e^{-\text{Re} \ λ_j(k)t}} \leq \frac{e^{σT}}{|μ|}.
\]

Аналогічно, у разі \(|μ| > e^{-σT} \) для \(\text{Re} \ λ_j(k) < 0 \) отримаємо рівномірну на \([0, T]\) оцінку

\[
\frac{1}{|μ|} \leq \frac{e^{σT}}{|μ|} \leq \frac{e^{σT}}{|μ| e^{σT} - 1},
\]

тобто за умови \(e^{-σT} < |μ| < e^{σT} \) справджується нерівність

\[
\left| \frac{e^{\text{Re} \ λ_j(k)t}}{μ - e^{\text{Re} \ λ_j(k)t}} \right| \leq \max \left(\frac{e^{σT}}{|μ|}, \frac{e^{σT}}{|μ| e^{σT} - 1} \right), \ |k| \geq \frac{R₁}{|R₁|}.\]
На відміну від оцінки (18), подібна оцінка (183) отримана за додаткових обмежень на μ, які відсутні за виконання умови Π_0.

Отже, для всіх $t \in [0, T]$ і $\mu \in (e^{-\sigma T}, e^{\sigma T})$ отримуємо формулу

$$|u^{(r)}(t)|^2 \leq \frac{\tilde{c}_{01}}{|D_0|} \sum_{j=0}^{n-1} |k|^{2(r-j)} |\varphi_j|^2, \quad k \in \mathbb{Z} \setminus K_0, \quad r = 0, 1, \ldots, n,$$

де $\tilde{c}_{01} = \tilde{c}_{01}(A, n, \mu) > 0$, $K_0 = \{k \in \mathbb{Z} : |k| \leq \max \left(\frac{D_0}{|D_0|}, \frac{R_1}{|R_1|} \right) \}$ — скінченна множина.

Теорема 5. Нехай виконується умова Π_{10} теореми 2 та умови:

- $\Pi_{01}: R_0 = 0, R_1 \neq 0$;
- Π_{11} для всіх $k \in K_0$ рівняння (9) не має розв'язків у цілих числах m.

Тоді за умов $\varphi_0 \in H_q(S)$, $\varphi_1 \in H_{q-1}(S)$, ..., $\varphi_{n-1} \in H_{q-n+1}(S)$, а також за умови $e^{-\sigma T} < |\mu| < e^{\sigma T}$ справедлива теорема 3.

Доведення. Справедливість оцінки (193) роз'язку u_k задачі (4), (5) для $k \in \mathbb{Z} \setminus K_0$ випливає з умови Π_{01} та вибраного числа μ. З умови Π_{11} випливає існування u_k у просторі $C^n[0, T]$ для всіх $k \in K_0$.

На основі формул (11), (193) та зі скінченностю множини K_0 отримуємо

$$\|u\|_{H^q_p(D)}^2 \leq \frac{C_3}{|D_0|} \sum_{j=0}^{n-1} \|\varphi_j\|_{H_{q-j}}^2.$$

Теорему доведено.

Г) Розглянемо четвертий випадок, коли не виконуються дві умови Π_{10} і Π_{01} теореми 2, замість яких виконуються умови Π_{10} і Π_{01} теорем 4 і 5 відповідно. Тоді для дискримінанта $D(k)$ справедливо буде оцінка (162), а для величини $|\varphi_j|_{H_{q-j}(S)}$ за умови $\mu \in (e^{-\sigma T}, e^{\sigma T})$ — оцінка (183).

На основі нерівностей (12), (13), (162), (183) отримуємо оцінку квадрата абсолютної величини розв'язку u_k задачі (4), (5) та його похідних порядку r

$$|u^{(r)}(t)|^2 \leq \frac{\tilde{c}_{i1}}{|D_i|} \sum_{j=0}^{n-1} |k|^{2(r-j)} |\varphi_j|^2, \quad k \in \mathbb{Z} \setminus K_i, \quad r = 0, 1, \ldots, n,$$

де $\tilde{c}_{i1} = \tilde{c}_{i1}(A, n, \mu) > 0$, $K_i = \{k \in \mathbb{Z} : |k| \leq \max \left(\frac{D_i}{|D_i|}, \frac{R_1}{|R_1|} \right) \}$.

Теорема 6. Нехай виконуються умови Π_{10} та Π_{01} теореми 4 і 5 відповідно та умова

- Π_{11} для всіх $k \in K_1$ рівняння (9) не має розв'язків у цілих числах m.

Тоді за умови $\varphi_0 \in H_{q-i+1}(S)$, $\varphi_1 \in H_{q-i}(S)$, ..., $\varphi_{n-1} \in H_{q-i+n-1}(S)$ і за умови $e^{-\sigma T} < |\mu| < e^{\sigma T}$ справедлива теорема 2.

Доведення. За умови Π_{10}, Π_{01} та вибраного числа μ справедлива оцінка (194) розв'язку u_k задачі (4), (5) для $k \in \mathbb{Z} \setminus K_1$. За умови Π_{11} випливає існування u_k для всіх $k \in K_1$.

Зі скінченностю множини K_1 отримуємо нерівність

$$\|u\|_{H^q_p(D)}^2 \leq \frac{C_4}{|D_i|} \sum_{j=0}^{n-1} \|\varphi_j\|_{H_{q-i+j+1}(S)}^2,$$

з якої випливає доведення теореми.
Нелокальна двоточкова задача у комплексній області

З теорем 3–6 випливає, що за невиконання умов теореми 2 для розв'язності задачі (1), (2) необхідно накладати сильніші умови на функції \(\phi_0, \phi_1, \ldots, \phi_{n-1} \) та обмеження на параметр \(\mu \).

Висновки

У роботі розглянуто нелокальну двоточкову крайову задачу для рівняння з частинними похідними, у якому замість оператора диференціювання \(\frac{\partial}{\partial z} \) використовується оператор узагальненого диференціювання \(B = z \frac{\partial}{\partial z} \), що діє на функції скалярної комплексної змінної \(z \).

У роботі:
1) введено шкали функціональних просторів \(\{H_q(S)\}_{q \in \mathbb{R}} \) і \(\{H_q(D)\}_{q \in \mathbb{R}} \);
2) встановлено достатні умови існування та необхідні і достатні умови єдністі розв'язку задачі у просторі \(H_q(D) \);
3) доведено, що для майже всіх векторів, складених з коефіцієнтів рівняння та параметра \(\mu \), оператор нелокальних умов задачі є бієктивним відображенням;
4) показано, що на відміну від задачі з багатьма просторовими змінними, яка є некоректною за Адамаром, задача з однією комплексною змінною є коректною, оскільки відповідні вирази не породжують проблему малих знаменників і оцінюються знизу сталями.

References

The paper is devoted to the investigation of a non-local boundary value problem for partial differential equations with the operator of the generalized differentiation $B = z \frac{\partial}{\partial z}$, which operate on functions of scalar complex variable z. The unity theorem and existence theorems of the solution of problem in the space $H^p(D)$ are proved. Correctness after Hadamard of the problem is shown. It distinguishes her from an ill-conditioned after Hadamard problem with many spatial variables.

Key words and phrases: partial differential equation, operator of generalized differentiation, generalized functions, discriminant of the polynomial, small denominators.

Iсследовано нелокальну краєвую задачу для диференциального уравнения с частными производными с оператором обобщенного дифференцирования $B = z \frac{\partial}{\partial z}$, который действует на функции скалярной комплексной переменной z. Доказана теорема единственности и теоремы существования решения задачи в пространстве $H^p(D)$. Установлены условия биективности оператора нелокальных условий задачи. Показана корректность за Адамаром задачи, которая отличает ее от некорректной задачи со многими пространственными комплексными переменными, решение которой во многих случаях связана с проблемой малых знаменателей.

Ключевые слова и фразы: уравнение в частных производных, оператор обобщенного дифференцирования, обобщенные функции, дискриминант, малые знаменатели.
КОСОВАН В.М., МАСЛЮЧЕНКО В.К.

ПРО ПОЛІНОМІАЛЬНІСТЬ НАРІЗНО СТАЛИХ ФУНКЦІЙ

Вивчається, які необхідні і які достатні умови має задовольняти підмножина Е числової площини R^2 для того, щоб кожна нарізно сталь функція f : E \rightarrow R була поліноміальною і разом з тим існувала нарізно сталь і не сталь функція f_0 : E \rightarrow R.

Ключові слова і фрази: поліноміальність, нарізно сталь функція.

1. Для множини E \subseteq R^2 символи S_{0,0}(E), P_0(E) і P(E) означають відповідно множини всіх нарізно сталіх, сталіх і поліноміальних функцій f : E \rightarrow R. У працях [1, 2] було введено поняття hу-зв’язності множини E і показано, що рівність S_{0,0}(E) = P_0(E) виконується тоді і тільки тоді, коли множина E є hу-зв’язною. Там же був наведений приклад множини E (графік функції Діріхле), для якої S_{0,0}(E) \not\subseteq P_0(E), але S_{0,0}(E) \subseteq P(E). Тому постало природне питання про опис тих множин E, для яких S_{0,0}(E) \not\subseteq P_0(E) і S_{0,0}(E) \subseteq P(E).

У цій роботі ми доводимо деякі необхідні і деякі достатні умови для цього. Вони були анонсовані в [3].

2. Нагадаємо, що hу-ланцюжком в добутку X \times Y, що з’єднує точки p' = (x', y') і p'' = (x'', y'') з X \times Y, називається така скінченна послідовність точок (x_k, y_k), k = 0, 1, ..., n, з цього добутку, що p_0 = p', p_n = p'' і для кожного k = 1, ..., n виконується хоча б одна з рівностей x_{k-1} = x_k або y_{k-1} = y_k. Множина E в добутку X \times Y називається hу-зв’язною, якщо для будь-яких її точок p' і p'' існує hу-ланцюжок p_0, p_1, ..., p_n, який їх з’єднує і складається з елементів p_k \in E.

Легко перевірити, що об’єднання довільної сім’ї hу-зв’язних множин буде hу-зв’язною множиною, якщо перетин будь-яких двох із них непорожніх елементів непорожній. Тому для кожної точки p з E \subseteq X \times Y існує найбільша hу-зв’язна множина C в E, яка містить цю точку p. Вона називається компонентою hу-зв’язності множини E. Різні компоненти hу-зв’язності множини E обов’язково не перетинаються, а вся множина E подається у вигляді диз’юнктного об’єднання всіх своїх компонент hу-зв’язності.

Для підмножини C \subseteq R^2 і точок (x, y) \in R^2 покладемо

\[C^x = \{v \in R : (x, v) \in C\} \quad \text{та} \quad C_y = \{u \in R : (u, y) \in C\}.

Символом |M| ми позначатимемо потужність множини M.

Теорема 1. Нехай C — система всіх компонент hу-зв’язності підмножини E добутку Х \times Y

непорожніх множин Х і Y, Z — довільна множина, яка має хоча б два елементи. Тоді функція f : E \rightarrow Z буде нарізно сталою тоді і лише тоді, коли для кожного C \in C звуження f|_C є сталим.

УДК 517.51
2010 Mathematics Subject Classification: 54C30, 54E35.

© Косован В.М., Маслюченко Б.К., 2014
Доведення. Достатність. Нехай звуження $f|_C$ стало для кожного $C \subseteq E$. Зауважимо, що кожна множина $P^E = \{x\} \times Y$ чи $P_Y = X \times \{y\}$ перетинає щонайбільше одну компоненту hv-зв'язності множини E. Справді, ніякі, наприклад, $P^E \cap C_1 \neq \emptyset$ і $P^E \cap C_2 \neq \emptyset$ для деяких $x \in X$; $C_1, C_2 \subseteq C$. Покладемо $C = C_1 \cup C_2$ і покажемо, що множина C є hv-зв'язною. Для цього досить показати, що точки $p' \in C_1$ і $p'' \in C_2$ зв'язуються деяким hv-ланцюжком, що складається з точок з C. Для цього візьмемо точки $q' \in P^E \cap C_1$ і $q'' \in P^E \cap C_2$. Оскільки множина C_1 є hv-зв'язною, то її точки p' і q' зв'язуються деяким hv-ланцюжком p_1, \ldots, p_n в C_1. Таким чином, множина C є hv-зв'язною і $C \subseteq E$. Тоді обов'язково $C_1 = C_2$, адже C_1 і C_2 — це компоненти hv-зв'язності множини E. Отже, $C_1 = C_2$.

Нехай $x_0 \in pr(E)$. Тоді існує такий елемент $y_0 \in Y$, що $p_0 = (x_0, y_0) \in E$. Розглянемо ту компоненту hv-зв'язності C_0 множини E, що $p_0 \in C_0$. За доведеним вище $C_0 = E$. Тоді $f^{x_0} = (f|_{C_0})^{x_0}$, отже, функція f^{x_0} стала, бо таким є звуження $f|_{C_0}$. Так само доводиться сталість горизонтальних розрізів $f|_{Y_0}$.

Необхідність. Нехай $X \subseteq S_{0,0}(E)$ і $C \subseteq E$. Оскільки множина C є hv-зв'язною, то за теоремою 1 з праці [2] звуження $f|_{C_0}$ є сталою. □

3. Зараз ми отримаємо ряд необхідних умов для того, щоб $S_{0,0}(E) \subseteq P(E)$ і $S_{0,0}(E) \not\subseteq P_0(E)$. Нагадаємо, що поліноміальною функцією $f : E \to R$ на підмножині E числової площини R^2 називають звуження на E деякого полінома $g : R^2 \to R$. Сукупність таких функцій позначається через $P(E)$. Для множини $C \subseteq R$ введемо множини $A(C) = \{x \in R : |Cx| \geq \eta_0\}$ і $B(C) = \{y \in R : |Cy| \geq \eta_0\}$.

Теорема 2. Нехай $E \subseteq R^2$, $C — система всіх компонент hv-зв'язності множини E, $S_{0,0}(E) \subseteq P_0(E)$ і $S_{0,0}(E) \not\subseteq P_0(E)$ тоді і тільки тоді, коли множина E є hv-зв'язною, а саме $C = \{E\}$, тоді і тільки тоді $S_{0,0}(E) \not\subseteq P_0(E)$.

Доведення. (i) Оскільки $S_{0,0}(E) \subseteq P_0(E)$ тоді і тільки тоді, коли множина E є hv-зв'язною, то її компоненти hv-зв'язності містять лише одну компоненту hv-зв'язності, а саме $C = \{E\}$, тоді обов'язково $A(C) = \emptyset$. Тому $S_{0,0}(E) \not\subseteq P_0(E)$ обов'язково $|C| > 1$.

Припустимо, що система C нескінченна. Тоді існує така нескінченна послідовність елементів E_n з C, що $E_n \neq E_m$ при $n \neq m$. Оскільки при $n \neq m$ виходять різні компоненти hv-зв'язності E_n і E_m множини E, тоді $E_n \cap E_m = \emptyset$. Крім того, $E_n \neq \emptyset$ для кожного $n \in N$, отже, для кожного номера n існує точка $p_n = (x_n, y_n) \in E_n$.

Припустимо, що послідовність точок p_n площини R^2 має хоча б одну граничну точку $p_0 = (x_0, y_0)$ в цій площині. Тоді існує така підмножина $\{p_n\}_{n=1}^\infty$ послідовності, що $p_n \to p_0$ при $k \to \infty$. Покладемо $q_k = p_n$ і $F_k = E_n$ при $k = 1, 2, \ldots$. Визначимо функцію $f : E \to R$, покладаючи $f(p) = 0$, якщо $p \in A = \bigcup_{m=1}^\infty F_{2m}$, і $f(p) = 1$, якщо $p \in B = E \setminus A$. Очевидно, що функція f є сталою на кожній компоненті hv-зв'язності $C \subseteq E$. Тому побудована функція f є нарізно сталою за теоремою 1.

Покажемо, що функція f не є поліноміальною. Нехай це не так, тобто існує такий поліном $g : R^2 \to R$, що $g|_E = f$. Оскільки поліноми — це неперервні функції $q_k \to p_0$, \emptyset.
Про поліноміальність нарізно сталіх функцій

Відомо, що поліноміальна функція $g(q_k) = f(q_{2m}) = 0$, бо $q_{2m} \in F_{2m} \subseteq A$, а $g(q_{2m-1}) = f(q_{2m-1}) = 1$, бо $q_{2m-1} \in F_{2m-1} \subseteq B$. Виходить, що послідовність чисел $g(q_k)$ розбіжна, що призводить до суперечності.

Припустимо тепер, що послідовність $(p_n)_{n=1}^{\infty}$ не має скінченної граничної точки в площині R^2. Для точки $p = (x, y) \in R^2$ розглянемо максимум-норму

$$|p| = \max\{|x|, |y|\}$$

і для кожного номера k квадрат

$$Q_k = \{ p \in R^2 : |p| \leq k \}.$$

Зрозуміло, що для кожного $k \in N$ множина $\{ p_n : p_n \in Q_k \}$ обов'язково скінчена. Справді, якби для деякого k вона була нескінченною, то за лемою Больцано-Вейерштрасса послідовність $(p_n)_{n=1}^{\infty}$ мала би граничну точку в квадраті Q_k, що суперечить припущеню. Отже, для кожного номера k існує такий номер n_k, що $|p_n| > k$ при $n > n_k$. Це показує, що $|p_n| \to +\infty$, коли $n \to \infty$, тобто для кожного числа $\Delta > 0$ існує такий номер N, що $|p_n| > \Delta$, як тільки $n > N$.

Виберемо числа $c_n = e^{p_n}$ і побудуємо функцію $f : E \to R$, для якої $f(p) = c_n$, якщо $p \in E_n$ для деякого n і $f(p) = 0$, якщо $p \in E \setminus \bigcup_{n=1}^{\infty} E_n$. Функція f буде нарізно постійною, бо вона стала на кожній компоненті hu-зв'язності множини E. Покажемо, що функція f не може бути поліноміальною на E. Нехай це не так. Тоді існує такий поліном

$$g(x, y) = \sum_{k,j=0}^{m} a_{k,j} x^k y^j,$$

що $g|_E = f$. Зробимо оцінку $g(x, y)$, якщо для точки $p = (x, y)$ виконується нерівність $|p| \geq 1$. Оскільки $|x| \leq |p|, |y| \leq |p|$, то

$$|q(x, y)| \leq \sum_{k,j=0}^{m} |a_{k,j}| |x|^k |y|^j \leq \sum_{k,j=0}^{m} |a_{k,j}| |p|^{k+j} \leq \sum_{k,j=0}^{m} |a_{k,j}| |p|^{2m} = \gamma |p|^{2m},$$

де константа $\gamma = \sum_{k,j=0}^{m} |a_{k,j}|$ не залежить від точки p.

При $n > n_1$ будемо мати, що $|p_n| > 1$, отже, $|g(p_n)| \leq \gamma |p_n|^{2m}$. Але $g(p_n) = f(p_n) = e^{p_n}$ для кожного n. Тому $e^{p_n} \leq \gamma |p_n|^{2m}$ при $n > n_1$. Але, як добре відомо, $\lim_{t\to+\infty} e^{2m} < 0$. Тому існує таке число $\Delta_0 > 0$, що

$$t^{2m} < \frac{1}{\gamma}$$

при $t > \Delta_0$. Але $|p_n| \to +\infty$ при $n \to \infty$. Отже, існує такий номер n, що $n > n_1$ і $|p_n| > \Delta_0$.

Тоді $e^{p_n} < \frac{1}{\gamma}$, звідки випливає, що $e^{p_n} > \gamma |p_n|^{2m}$, але це неможливо, бо $n > n_1$.

Таким чином, ми з'ясували, що $|C| < \aleph_0$.

(iii) Нехай $C_0 \subseteq C, A(C) \neq \emptyset$ і $x_0 \in A(C_0)$. Візьмемо $C \subseteq C$ таке, що $C \neq C_0$, і покажемо, що $B(C) = \emptyset$.

Нехай це не так, тобто $B(C) \neq \emptyset$. Візьмемо $y_0 \in B(C)$. За означенням множин $A(C)$ і $B(C)$ будемо мати, що $|C_{00}| \geq \aleph_0$ і $|C_{y_0}| \geq \aleph_0$.

Розглянемо функцію $f : E \to R$ таку, що $f(p) = 0$, якщо $p \in C_0$, і $f(p) = 1$, якщо $p \in E \setminus C_0$. Ясно, що f — нарізно стала функція, бо вона стала на кожній компоненті hu-зв'язності множини E. Оскільки $S_{00}(E) \subseteq P(E)$, то існує такий поліном $g : R^2 \to R$, що

$$g|_E = f.$$ За побудовою,

$$g_{x_0}(y) = g(x_0, y) = f(x_0, y) = 0.$$
Для кожного \(y \in C_0^{x_0} = E_0 \), отже, многочлен \(g^{x_0} : \mathbb{R} \to \mathbb{R} \) перетворюється в нуль в нескінченній кількості точок, а тому \(g^{x_0}(y) = 0 \) для всіх \(y \in \mathbb{R} \).

Далі,
\[
g_{y_0}(x) = g(x, y_0) = f(x, y_0) = 1
\]

для будь-якого \(x \in C_{y_0} = E_{y_0} \). Отже, многочлен \(g_{y_0} - 1 \) перетворюється в нуль на нескінченній множині \(C_{y_0} \), а значить \(g_{y_0}(x) - 1 = 0 \) на \(\mathbb{R} \), тобто \(g_{y_0}(x) = 1 \) для всіх \(x \in \mathbb{R} \).

Але тоді
\[
0 = g^{x_0}(y_0) = g(x_0, y_0) = g_{y_0}(x_0) = 1,
\]
отже, 0 = 1. Ця абсурдна рівність показує, що наше припущення не вірне, отже, \(B(C) = \emptyset \) для всіх \(C \in (C) \setminus \{C_0\} \).

Так само доводиться i властивість (iii).

(iv) Нехай множина \(\{C \in C : A(C) \neq \emptyset \text{ або } B(C) \neq \emptyset \} \) — нескінчена. Тоді нескінченну буде одна з множин \(\{C \in C : A(C) \neq \emptyset \} \) чи \(\{C \in C : B(C) \neq \emptyset \} \). Припустимо, для певності, що \(\{C \in C : A(C) \neq \emptyset \} \) — нескінченна множина.

Виберемо нескінченну послідовність таких різних множин \(C_n \in C \), що \(A(C_n) \neq \emptyset \) для кожного \(n \). Тоді для кожного \(n \) існує елемент \(x_n \in A(C_n) \). Для цього елемента множина \(C_n^{x_n} \) нескінчена. Послідовність точок \(x_n \in \mathbb{R} \) обов'язково має хоча б одну граничну точку \(x_0 \), скінченну чи нескінченну, для якої існує така підпослідовність \((x_{n_k})_{k=1}^{\infty} \) послідовності \((x_n) \), що \(x_{n_k} \to x_0 \).

Для спрощення запису покладемо \(t_k = x_{n_k} \) і \(D_k = C_{n_k} \). Розглянемо функцію \(f : E \to \mathbb{R} \), для якої \(f(p) = 1 \), якщо \(p \in \bigcup_{j=1}^{\infty} D_{2j} \), і \(f(p) = 0 \), якщо \(p \in E \setminus \bigcup_{j=1}^{\infty} D_{2j} \). Оскільки функція \(f \) стала на кожній компоненті \(hv \)-зв'язності множини \(E \), то \(f \in S_{0,0}(E) \). Тоді за умовою \(f \in P(E) \), отже, існує такий многочлен \(g : \mathbb{R}^2 \to \mathbb{R} \), що \(g|_E = f \). Для довільного \(j \) маємо, що
\[
g^{2j}(y) = g(t_{2j}, y) = f(t_{2j}, y) = 1
\]
для довільного \(y \in D_{2j} \). Оскільки множина \(D_{2j} \) нескінчена, то \(g^{2j}(y) = 1 \) для кожного \(y \in \mathbb{R} \) і довільного \(j \in \mathbb{N} \). Так само,
\[
g^{2j-1}(y) = 0
\]
для довільного \(y \in \mathbb{R} \) і \(j \in \mathbb{N} \).

Закінчуємо якесь точку \(y_0 \in \mathbb{R} \). Для многочлена \(g_{y_0} : \mathbb{R} \to \mathbb{R} \) будемо мати
\[
g_{y_0}(t_{2j}) = g^{2j}(y_0) = 1, \quad g_{y_0}(t_{2j-1}) = g^{2j-1}(y_0) = 0.
\]

Тому послідовність чисел \(g_{y_0}(t_k) \) розбігається, але це неможливо, бо для скінченного \(x_0 \) ми будемо мати \(g_{y_0}(t_k) \to g_{y_0}(x_0) \) за основи неперервності функції \(g_{y_0} \), а для нескінченного \(x_0 \) обов'язково \(g_{y_0}(t_k) \to \infty \), якщо \(g_{y_0} \neq 0 \), або \(g_{y_0}(t_k) \to 0 \), якщо \(g_{y_0} = 0 \). Отримана суперечність показує, що наше припущення хибне, і тим самим властивість (iv) доведена.

4. Перейдемо до розгляду достатніх умов.

Теорема 3. Нехай множина \(E \) має рівно \(n \) різних компонент \(hv \)-зв'язності \(C_1, \ldots, C_n \), причому \(n \geq 2 \). Припустимо, що всі проекції \(pr_1(C_1), \ldots, pr_1(C_n) \) на вісь абсцис або всі проекції \(pr_2(C_1), \ldots, pr_2(C_n) \) на вісь ординат скінчені. Тоді \(S_{0,0}(E) \not\subseteq P_0(E) \) і \(S_{0,0}(E) \subseteq P(E) \).
Доведення. Припустимо, що $pr_1(C_k) — скінченна множина для кожного $k = 1, \ldots, n$ і $f \in S_{0,0}(E)$. Покажемо, що $f \in P(E)$.

Зрозуміло, що

$$pr_1(E) = \bigcup_{k=1}^{n} pr_1(C_k).$$

За умовою для кожного $k = 1, \ldots, n$ існують такі різні точки $x_{k,j}$, де $j = 1, \ldots, m_k$, що

$$pr_1(C_k) = \{x_{k,j} : j = 1, \ldots, m_k\}.$$

Оскільки $f \in S_{0,0}(E)$, то $f|_{C_k}$ — це стала функція для кожного $k = 1, \ldots, n$ за теоремою 1 з [2]. Тобто, існують такі числа c_k, що $f(p) = c_k$ на C_k. За інтерполяційною теоремою Лагранжа існує такий поліном $g : \mathbb{R} \to \mathbb{R}$, що

$$g(x_{k,j}) = c_k \text{ при } j = 1, \ldots, m_k$$

для кожного $k = 1, \ldots, n$. Покладемо $h(x,y) = g(x)$ для кожного $x \in \mathbb{R}$ і $y \in \mathbb{R}$. Ясно, що функція $h : \mathbb{R}^2 \to \mathbb{R}$ — це поліном, при цьому

$$h^{x_k,j}(y) = h(x_{k,j}) = g(x_{k,j}) = c_k = f^{x_k,j}(y)$$

для кожного $y \in \mathbb{R}$ і довільних $k = 1, \ldots, n$ та $j = 1, \ldots, m_k$. Тому $h|_{E} = f$. Таким чином, $f \in P(E)$.

References

Надійшло 17.10.2013

We establish necessary conditions and sufficient conditions on a set $E \subseteq \mathbb{R}^2$ under which every separately constant function $f : E \to \mathbb{R}$ is polynomial and there exist a separately constant function $f_0 : E \to \mathbb{R}$ which is not constant.

Key words and phrases: polynomiality, separately constant function.

Изучается, каким необходимым и каким достаточным условиям должно удовлетворять подмножество E числовой плоскости \mathbb{R}^2 для того, чтобы каждая раздельно постоянная функция $f : E \to \mathbb{R}$ была полиномиальной и вместе с тем существовала раздельно постоянная и не постоянная функция $f_0 : E \to \mathbb{R}$.

Ключевые слова и фразы: полиномиальность, раздельно постоянная функция.
КУДЗІНОВСЬКА І.П.

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА ЧИСЕЛЬНИЙ РОЗРАХУНОК ВИМУШЕНИХ КОЛИВАНЬ П'ЄЗОКЕРАМІЧНОГО СФЕРИЧНОГО СЕГМЕНТА

Розглядаються коливання поляризованого за товщиною п'єзокерамічного сегмента, що збуджуються гармонічно змінною різницею електричних потенціалів. Розв'язок відповідної двовимірної задачі електропруженості шукається у вигляді розкладів за поліномами Лежанда у поєднанні з методом степеневих рядів. Досліджується частотний спектр і кінематика відповідних мод для первих трьох значень індекса полінома Лежанда. Особливу увагу приділено поведінці досліджуваних характеристик в області основного товщинного резонансу.

Ключові слова і фрази: математичне моделювання, п'єзокерамічний сферичний сегмент, вимушенні гармонічні коливання, чисельний розрахунок, частотний спектр, кінематика мод коливань.

Вступ

Для роботи електромеханічних перетворювачів енергії плоскої або викривленої форми суттєвий інтерес становлять товщінні форми коливань за наявності лише нормальної до серединної поверхні складової вектора переміщення. Особливе значення при цьому мають моди з рівномірним по поверхні досліджуваного об'єкта розподілом нормальних переміщень (так звані «поршневі» моди). У цьому випадку розв'язання відповідної краєвої задачі, в силу її одномерності, не викликає особливої складності, і у випадку, коли об'єктом дослідження є куля, може бути представлений у замкненому вигляді [4]. Однак, як показали експериментальні дослідження на дискових резонаторах, збудження таких «поршневих» мод пов'язано з суттєвими труднощами через наявність цілого ряду небажаних близько розташованих резонансів з іншими формами коливань, змінними по поверхні. Для вивчення цього питання, яке має теоретичне і практичне значення, необхідно провести дослідження резонансних характеристик і кінематики відповідних форм коливань на основі просторових рівнянь теорії електропруженості з урахуванням як товщинних, так і тангеншільних переміщень.

1 ПОСТАНОВКА ЗАДАЧИ

У даній роботі розглядається товстостінна сферична п'єзокерамічна оболонка, яка віднесена до сферичних координат \(r, \theta, \psi \) і вирізана із сфери конусом \(\theta = \theta_0 = \text{const.} \). УДК 517.958:534.1

2010 Mathematics Subject Classification: 97M10.
Сферичні поверхні \(r = r_0 \pm h \) вільні від механічних напружень і покриті електродами, які в загальному випадку можуть бути розрізними, а торцева поверхня \(\theta = \theta_0, r \in [r_0 - h, r_0 + h] \) не має електричного покриття. Збудження коливань проводиться гармонічно змінною різницею електричних потенціалів за законом \(2V_0\phi^{(0)}(\theta)\cos\omega t \).

2 МАТЕМАТИЧНА МОДЕЛЬ ВИМУШЕНИХ КОЛІВАНЬ

Повна система рівень для даної задачі, що складається з рівнянь руху, квазістатичного наближення рівнянь Максвелла, співвідношення Коші та матеріальних залежностей, наведена в роботі [3]. Розв'язок цієї задачі, як і у випадку замкненої сфери [3], будемо шукати у вигляді розкладу в ряди за поліномами Лежандра

\[u_r(r, \theta) = \sum_{k=0}^{\infty} u_{1,k}(r)P_k(\cos \theta), \]

\[u_{\theta}(r, \theta) = \sum_{k=0}^{\infty} u_{2,k}(r) \frac{d}{d\theta}P_k(\cos \theta) \times \varphi(r, \theta) = \sum_{k=0}^{\infty} u_{4,k}(r)P_k(\cos \theta). \]

На відміну від [3], де індекс \(n_k \) набуває цілих значень, у даній задачі \(n_k \) вибирались з умови \[\cos \theta_{\rho} < \eta = \eta_0 = 0. \]

З урахування умови (2) система функцій \(\{P_n(\cos \theta)\} \) набуває необхідної властивості повної на досліджуваному інтервалі змінні \(\theta \in [0; \theta_0] \), і тому розклад (1) дає можливість отримати коректний розв'язок поставленої задачі. Співвідношення (2) не дозволяє виконати на межі довільні граничні умови, оскільки з нього (з урахуванням матеріальних залежностей та розкладу (1)) випливає, що

\[\frac{d}{d\theta} P_n(\cos \theta) |_{\theta=\theta_0} = 0. \]

Умови (3) мають реальний фізичний зміст — це умови гладкого контакту з абсолютно жорстким непровідним тілом. Виявлені при цьому закономірності в області товщиною резонансу, що становить особливий інтерес, зберегуться і при інших типах граничних умов.

Розрахунок значень індекса \(n_k \), які задовольняють умову (2), не становить особливої складності. Так, для сегмента з центральним кутом \(\theta_0 = 40^\circ \) три перші значення відповідають

\[n_1 = 0, \quad n_2 = 5,8, \quad n_3 = 10,4. \]

Для визначення більших значень індекса \(n_k \) можна користуватися асимптотичними формулами [1]

\[(n_k + 0,5)\theta_0 = (k + 0,25)\pi - \frac{3\theta_0 \ctg \theta_0}{8\pi} \frac{1}{k + 0,25}. \]

Підставляючи вирази (1) в рівняння відносно переміщення і електричного потенціалу, отримаємо систему звичайних диференціальних рівнянь другого порядку відносно трьох невідомих
\[
c_{55} \left(u''_2 + \frac{2}{r} u'_2 \right) - \left\{ \frac{1}{r^2} \left[2c_{55} + c_{12} + c_{11}(\mu_k - 1) \right] - \omega^2 \right\} u_2 \\
+ \frac{1}{r} \left[(c_{55} + c_{13}) u'_1 + \frac{1}{r} (2c_{55} + c_{11} + c_{12}) u_1 + (e_{15} + e_{13}) u'_4 + \frac{2}{r} e_{15} u_4 \right] = 0,
\]

\[
c_{33} \left(u''_1 + \frac{2}{r} u'_1 \right) - \left\{ \frac{1}{r^2} \left[\mu_k c_{55} - 2(c_{13} - c_{11} - c_{12}) \right] - \omega^2 \right\} x_1 - \frac{\mu_k}{r} \left[(c_{13} + c_{55}) u'_2 \\
+ \frac{1}{r} (c_{13} - c_{55} - c_{11} - c_{12}) u_2 \right] + e_{33} u''_4 + \frac{2}{r^2} (e_{33} - e_{13}) u'_4 - \frac{\mu_k}{r^2} e_{15} u_4 = 0,
\]

\[
- e_{33} \left(u''_4 + \frac{2}{r^2} u'_4 \right) + \frac{\mu_k e_{11}}{r^2} u_4 - \frac{\mu_k}{r} \left[(e_{15} + e_{13}) u'_2 + (e_{13} - e_{15}) u'_2 + e_{33} u''_1 \\
+ \frac{2}{r} (e_{13} + e_{33}) u'_1 + (2e_{13} - \mu_k e_{15}) \frac{u_1}{r^2} \right] = 0,
\]

de введено позначення \(\mu_k = v_k(v_k + 1) \).

Систему (3), яка записана в безрозмірних величинах

\[
c_{ij} = \frac{e_{ij}}{c_{00}}, \quad \tilde{e}_{ij} = \frac{e_{ij}}{\sqrt{c_{00} e_0}}, \quad e_{ii} = \frac{\tilde{e}_{ii}}{\tilde{e}_0}, \quad \tilde{u}_i = \frac{u_{ij}}{h}, \quad \tilde{u}_4 = \frac{u_4}{\sqrt{c_{00} / c_{00}}}, \quad c_{ij} = \frac{\omega^2 ph^2}{c_{00}},
\]

de \(c_{00} = 10^{10} \text{Н/м}^2, e_0 = 8.85 \cdot 10^{-12} \text{Ф/м} \), необхідно доповнити граничними умовами на поверхнях \(r = r_0 \pm h \). У нашому випадку вони мають вигляд

\[
\sigma_{rr} = 0, \quad \sigma_{r\theta} = 0, \quad \varphi = \pm 2V_0 \phi^{(0)}(\theta).
\]

3 РОЗВ’ЯЗАННЯ КРАЙОВОЇ ЗАДАЧІ ТА ЧИСЕЛЬНИЙ АНАЛІЗ РЕЗУЛЬТАТІВ

Для розв’язання крайової задачі (4), (5) скористаємося методом степеневих рядів, згідно з яким функції, що входять у систему диференціальних рівнянь, шукаються у вигляді

\[
\{ u_{1;k}; u_{2;k}; u_{4;k} \} = \sum_{n=0}^{\infty} \{ B_{n;k}^0, B_{n;k}^2, B_{n;k}^4 \left(\frac{r - r_0}{h} \right) \}^n.
\]

Підставляючи вирази (6) у рівняння (4) та прирівнюючи до нуля множники при однакових степенях \((r - r_0)/h \), отримаємо систему рекурентних співвідношень, яка дозволяє виразити усі коафіцієнти \(B_{n;k}^0 \) через незалежні коафіцієнти \(B_{0;k}^0 \), \(B_{1;k}^0 \). Підставляючи ці співвідношення у граничні умови (5) і враховуючи те, що функцію \(\phi^{(0)}(\theta) \) можна представити у вигляді

\[
\phi^{(0)}(\theta) = \sum_{k=0}^{\infty} a_k P_{nk}(\cos \theta), \quad a_k = \int_0^{\theta_h} \phi^{(0)}(\theta) P_{nk}(\cos \theta) d\theta,
\]

отримаємо неоднорідну лінійну систему алгебраїчних рівнянь для визначення невідомих \(B_{n;k}^0 \), \(B_{n;k}^2 \), \(B_{n;k}^4 \).

Для проведення чисельного аналізу був вибраний сферичний сегмент з наступними геометричними параметрами: \(r_0 = 20 \text{см}; h_1 = 0.5 \text{см}; \theta_0 = 40^\circ \). В матеріальних співвідношениях для п’єзокераміки використовувалися комплексні постійні матеріалу ЦТС-19 [4]. При розрахунках досліджувались резонансні частоти коливань та акісна поведінка відповідних форм по товщині для трьох перших значень індекса поліному Лежанда: \(v_1 = 0; v_2 = 5,8; v_3 = 10,4 \). Безрозмірна частота \(\omega \) змінювалась при цьому від 0 до 10.
Як показали проведені розрахунки, із збільшенням індекса v_k, зв’язаного з кількістю вузлових ліній на поверхні сегмента, збільшується також і число резонансів перетворювача. Якщо для $v_1 = 0$ («поршневі» форми) характерна наявність двох резонансів — радіального ($\omega = 0,06$) і товщинного ($\omega = 5,4$), то для v_2, v_3 у досліджуваному частотному діапазоні знаходиться відповідно три і чотири резонансні частоти, причому найбільшою в усіх випадках залишається частота основного товщинного резонансу. Як показав кінематичний аналіз форм, що відповідають цим резонансним частотам, вони є товщинно-зсувними.

Необхідно також відзначити, що зі зміною v_k резонансна частота основної товщинної моди змінюється несуттєво — від 5,46 при $v_1 = 0$ до 5,48 при $v_3 = 10,4$. Цей результат становить особливий інтерес, оскільки частково пояснює той факт, що при спробах збудження товщинної моди з «поршневою» формою руху збуджуються також і інші, близько розташовані за частотами форм з рівномірним по поверхні розподілі нормальних переміщень [2].

Необхідно також відзначити, що зі зміною v_k резонансна частота основної товщинної моди змінюється несуттєво — від 5,46 при $v_1 = 0$ до 5,48 при $v_3 = 10,4$. Цей результат становить особливий інтерес, оскільки частково пояснює той факт, що при спробах збудження товщинної моди з «поршневою» формою руху збуджуються також і інші, близько розташовані за частотами форм з рівномірним по поверхні розподілі нормальних переміщень [2].

Необхідно також відзначити, що зі зміною v_k резонансна частота основної товщинної моди змінюється несуттєво — від 5,46 при $v_1 = 0$ до 5,48 при $v_3 = 10,4$. Цей результат становить особливий інтерес, оскільки частково пояснює той факт, що при спробах збудження товщинної моди з «поршневою» формою руху збуджуються також і інші, близько розташовані за частотами форм з рівномірним по поверхні розподілі нормальних переміщень [2].

References

Надійшло 04.03.2014

Vibrations of a piezoceramic segment polarized along the thickness, which are excited by a harmonically time-varying difference of potential, are considered. The corresponding solution of a two-dimensional electroelasticity problem is searched in the form of Legendre polynomial expansions in combination with the power series method. The frequency spectrum and corresponding mode kinematics for the first three values of Legendre polynomial indices are investigated. Special attention is paid to the behavior of the characteristics under studying in the area of main thickness resonance.

Key words and phrases: mathematical modeling, piezoceramic spherical segment, forced harmonic vibrations, numerical calculation, frequency spectrum, kinematics of frequency modes.

Рассматриваются колебания поляризованного по толщине пьезокерамического сегмента, возбуждаемые гармонически переменной разницей электрических потенциалов. Решение соответствующей двумерной задачи электроупругости ищется в виде разложений по полиномам Лежандра в сочетании с методом степенных рядов. Исследуется частотный спектр и кинематика соответствующих мод для первых трех значений индекса полинома Лежандра. Особое внимание уделено поведению исследуемых характеристик в области основного толщинного резонанса.

Ключевые слова и фразы: математическое моделирование, пьезокерамический сферический сегмент, вынужденные гармонические колебания, численный расчет, частотный спектр, кинематика мод колебаний.
ВАРИАЦІЙНЕ ВИВЕДЕННЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ КОЛИВАНЬ П’ЄЗОКЕРАМІЧНОЇ ОБОЛОНКИ ПРИ МЕРИДІОНАЛЬНІЙ ПОЛЯРИЗАЦІЇ

Запропоновано побудову одного з варіантів уточненої теорії п’єзокерамічної оболонки при її меридіональній поляризації, отримано систему диференціальних рівнянь коливань оболонки та граничні умови з використанням варіаційного принципу Рейсснера.

Ключові слова і фрази: п’єзокерамічна оболонка, меридіональна поляризація, диференціальні рівняння коливань, граничні умови, варіаційний принцип.

Вступ

Коливання п’єзокерамічних тіл, як механічний процес, описується рівняннями механіки деформівного твердого тіла, а з точки зору електричних явищ — рівняннями електродинаміки. Обидві групи рівнянь є взаємозв’язаними, вони розв’язуються сумісно і складають рівняння теорії електропружності.

Розвиток сучасної техніки, експлуатація якої відбувається у складних умовах навантаження при взаємодії різних фізичних факторів, стимулює створення та розвиток теорії спряжених полів у пружних тілах.

Анізотропія фізико-математичних властивостей п’єзоелектриків і взаємозв’язок електромагнітного поля з механічним рухом суттєво ускладнюють опис процесів деформування і міцності. У зв’язку з цим значну увагу приділено розвитку і створенню математичних методів кількісного аналізу. Для моделювання коливних процесів електромеханічних систем, а також для розв’язання крайових задач електропружності дозволено сприймати кінцево-різницевий та варіаційно-різницевий методи. Широке застосування в техніці оболонок із п’єзокерамічних матеріалів потребує побудови для них прикладних теорій статичного і динамічного деформування.

1 ПОСТАНОВКА ЗАДАЧІ

У даній роботі ставиться задача математичного моделювання коливань п’єзокерамічної оболонки при меридіональній поляризації на основі уточненої теорії типу С.П. Тимошенка та варіаційного принципу Рейсснера [3], який стосовно зв’язаних задач для багатошарових оболонок був розвинений у роботі [4].

УДК 517.958:534.1
2010 Mathematics Subject Classification: 97M10.

© Ластівка І.О., 2014
2 ВИВЕДЕНИЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ КОЛІВАНЬ П'ЄЗОКЕРАМІЧНОЇ ОБОЛОНКИ, ПОЛАРИЗОВАНОЇ ВЗДОВЖ МЕРИДІАНУ. ГРАНІЧНІ УМОВИ

Попередньо поляризована по меридіану оболонку віднесемо до триортогональної системи координат \(a_1, a_2, a_3 = z\). На поверхні приведення \(z = 0\), положення якої може бути вибрано довільним чином, координатні лінії \(a_1 = const, a_2 = const\) є лініями головних кривизн оболонки, \(R_1, r_1\) — радіуси кривизн, \(h\) — товщина оболонки. Вісь 02 спрямована за нормальною до середньої поверхні оболонки, \(A_1\) і \(A_2\) — параметри Ламе або коефіцієнти першої квадратичної форми \(ds^2\) поверхні \(z = 0\), а саме: \(ds^2 = A_1^2 da_1^2 + A_2^2 da_2^2\).

Електропружний стан п'єзокерамічного тіла характеризується тензором механічних напружень \(\sigma\), деформацій \(\varepsilon\), векторами напруженості \(E\) та індукції \(D\) електричного поля. В лінійній теорії п'єзоелектрики залежності між вказаними характеристиками електропружного тіла вважаються лінійними. Вигляд співвідношень електропруженості залежить від вибору незалежних термодинамічних параметрів, що визначають функцію внутрішньої енергії, а також від напряму вектора попередньої поляризації п'єзокераміки.

Якщо за незалежні термодинамічні параметри вибрати напруження \(\sigma\) і напруженість електричного поля \(E\), то рівняння стану попередньо поляризованої по меридіану оболонки має вигляд [1]:

\[
\begin{align*}
\varepsilon_{11} &= s_{11} \sigma_{11} + s_{13} (\sigma_{22} + \sigma_{zz}) + d_{11} E_1; \\
\varepsilon_{22} &= s_{13} \sigma_{11} + s_{33} \sigma_{22} + d_{31} E_1; \\
\varepsilon_{zz} &= s_{31} \sigma_{11} + s_{32} \sigma_{22} + s_{33} \sigma_{zz} + d_{31} E_1; \\
2\varepsilon_{12} &= s_{55} \sigma_{12} + d_{53} E_z; \\
2\varepsilon_{22} &= s_{44} \sigma_{22}; \\
2\varepsilon_{2z} &= s_{44} \sigma_{22}; \\
2\varepsilon_{z2} &= s_{55} \sigma_{22} + d_{53} E_2; \\
D_1 &= d_{11} \sigma_{11} + d_{13} (\sigma_{22} + \sigma_{zz}) + \varepsilon_{11} E_1; \\
D_2 &= d_{33} \sigma_{11} + \varepsilon_{33} E_2.
\end{align*}
\]

У якості основних спрошенних припущень візьмемо відомі кінематичні гіпотези типу С.П. Тимошенка, відповідно до яких тангенціальні переміщення \(u_{ij}(z)\), \(u_{iz}(ab, a_2, z)\) змінюються за лінійним законом, а поперечні \(u_z^{(z)}\) не залежать від товщинної координати:

\[
\begin{align*}
&u_i^{(z)}(a_1, a_2, z) = u_i(a_1, a_2) + z \gamma_i(a_1, a_2); \quad (j = 1, 2), \\
&u_z^{(z)}(a_1, a_2, z) = W(a_1, a_2).
\end{align*}
\]

Співвідношення (2) доповнюємо гіпотезами достатньо загального характеру відносно розподілу електростатичного потенціалу за товщиною оболонки

\[
\Phi(a_1, a_2, z) = \frac{2z}{h} \Phi_0 + f(z) \Phi(a_1, a_2).
\]

Тут \(\Phi = const\), а \(f(z)\), взагалі кажучи, довільна неперервна функція, що задовольняє умову \(f \left(\pm \frac{h}{2}\right) = 0\), яка дозволить виконати граничні умови для розглянутих нижче оболонок, поверхні яких покриті електродами з постійною різницею потенціалів.

Вектор напруженості електричного поля \(E\) пов'язаний з функцією електростатичного потенціалу \(\Phi\) формuloю \(E = -\text{grad} \Phi\), тому в силу припущення (3)

\[
E = \frac{f(z)}{A_1} \frac{\partial \Phi}{\partial a_1}; \quad \frac{f(z)}{A_2} \frac{\partial \Phi}{\partial a_2}; \quad -\left(\frac{2\Phi_0}{h} + f'(z)\Phi\right).
\]
Для виведення диференціальних рівнянь коливань і граничних умов застосуємо варіаційний підхід [3], використаємо функціонал

$$I = \int_0^t \int_V \left(\sigma_{ij} \frac{1}{2} (\nabla_i u_j + \nabla_j u_i) + D_i \nabla_i \varphi + G_1(\sigma, D) - T \right) dV dt,$$

де σ_{ij} — тензор напружень, u_i — переміщення, φ — потенціал, \vec{D} — вектор електричної індукції, $G_1(\sigma, D)$ — пружна функція Гіббса, T — кінетична енергія.

З умови стаціонарності функціоналу (4) отримуємо

$$I = \int_0^t \int_V \left(T_{ij} \delta e_{ij} + M_{ij} \delta \chi_{ij} + 2Q_j \delta e_j + D_j \delta \left(\frac{1}{A_j} \frac{\partial \Phi}{\partial \alpha_j} \right) \right) dV dt + D_2 \delta \Phi - \left(\rho h^2 \gamma_i \delta \gamma_i \right) d\Omega dt = 0.$$

Тут введені наступні інтегральні характеристики:

$$T_{ij} = \int_{-h/2}^{h/2} \sigma_{ij} dz; \quad M_{ij} = \int_{-h/2}^{h/2} \sigma_{ij} \omega dz; \quad Q_j = \int_{-h/2}^{h/2} \sigma_j dz;$$

$$D_j = \int_{-h/2}^{h/2} D_j f(z) dz; \quad D_z = \int_{-h/2}^{h/2} D_z f(z) dz.$$

Величини e_{ij}, χ_{ij} та e_j пов'язані з переміщеннями та кутами повороту відомими співвідношеннями [2].

Перейдемо до варіацій переміщень, кутів повороту і потенціалу (незалежні варіації) і, користуючись формулою Гріна-Остроградського, з (5) отримаємо систему рівнянь

$$\frac{1}{A_i} T_{ii} + \frac{1}{A_i} T_{i1} A_j T_{j1} + \frac{1}{A_i} A_{1j} T_{i1} = Q_i k_i - \rho \dot{u}_i = 0;$$

$$\frac{1}{A_1} Q_1 + \frac{1}{A_2} Q_2 - (T_{11} k_1 + T_{22} k_2) - \rho \dot{\omega} = 0;$$

$$\frac{1}{A_i} M_{ii} + \frac{1}{A_j} A_i M_{ij} - Q_j \frac{1}{A_j A_1} A_{1j} A_{1j} - (\frac{\rho h^3}{12}) \gamma_i = 0;$$

$$\bar{D}_2 - \frac{1}{A_1} \bar{D}_1 - \frac{1}{A_2} \bar{D}_2 = 0, \quad (i, j = 1, 2), \quad (i \neq j)$$

і контурний інтеграл

$$\int_\Omega \left(M_{nj} \delta \gamma_j + T_{nj} \delta u_j + Q_n \delta \omega + \bar{D}_n \delta \Phi \right) d\Omega = 0,$$

на підставі якого необхідно сформулювати граничні умови. У рівняннях (7) записи типу $()$ означають диференціювання по відповідній компоненті.

Будемо вважати, що поверхні оболонок вільні від механічних напружень і покриті електродами з заданою різницею потенціалів. Тоді граничні умови мають вигляд

$$\sigma_{iz} \left(a_1, a_2, \pm \frac{h}{2} \right) = 0,$$

(8)
Напруження \(\sigma_j (j = 1, 2) \), знайдені з (1) за деформаціями, що визначаються співвідношеннями Коші, при введенних гіпотезах (2) не будуть задовольняти граничні умови (8). Тому будемо додатково вважати, що

\[
\sigma_j = \frac{1}{h} f(z) Q_j(\alpha_1, \alpha_2), \hspace{1cm} (j = 1, 2),
\]

причому \(f(z) \) така, що \(f\left(\pm \frac{h}{2}\right) = 0 \) і \(\frac{1}{h} \int_{-h/2}^{h/2} f(z)dz = 1 \), а \(Q_j(\alpha_1, \alpha_2) \) — перерізуюча сила. Протиріччя, пов’язані з задоволенням граничних умов (8), можна обійти, якщо два рівняння з (1) виконати інтегрально

\[
\int_{-h/2}^{h/2} \left(2e_{12} - \left(\frac{d_{33}^2}{e_{33}}\right) \sigma_{12} - \left(\frac{d_{33}}{e_{33}}\right) D_z\right) \delta \sigma_{12} dz = 0, \hspace{1cm} (9)
\]

\[
\int_{-h/2}^{h/2} \left(2e_{22} - s_{44}\sigma_{22}\right) \delta \sigma_{22} dz = 0. \hspace{1cm} (10)
\]

Знаходимо інтегральні характеристики за формулами (6), підставивши в них рівняння (1), розв’язані відносно напружень:

\[
T_{11} = D_{T1} (\epsilon_{11} + \nu_{31} \epsilon_{22} + (d_{11} + \nu_{31} d_{31})) \frac{\partial \Phi}{\partial \alpha_1};
\]

\[
T_{22} = D_{T2} (\epsilon_{22} + \nu_{13} \epsilon_{11} + (d_{31} + \nu_{13} d_{11})) \frac{\partial \Phi}{\partial \alpha_2};
\]

\[
T_{12} = \frac{2h}{s_{55}} \epsilon_{12} - \frac{h d_{33}}{s_{55}} \frac{1}{A_2} \frac{\partial \Phi}{\partial \alpha_2}; \hspace{1cm} M_{12} = \frac{h^3}{12s_{55}} \chi_{12};
\]

\[
M_{11} = D_{M1} (\chi_{11} + \nu_{31} \chi_{22}); \hspace{1cm} M_{22} = D_{M2} (\chi_{22} + \nu_{13} \chi_{11});
\]

\[
\bar{D}_1 = \frac{1}{D_{T1}} T_{11} + \frac{1}{D_{T2}} T_{22} - \epsilon_{11} \eta_1^2 \frac{1}{A_1} \frac{\partial \Phi}{\partial \alpha_1};
\]

\[
\bar{D}_2 = \frac{1}{D_{T1}} T_{12} - \epsilon_{11} \eta_2^2 \frac{1}{A_2} \frac{\partial \Phi}{\partial \alpha_2}; \hspace{1cm} \bar{D}_z = -\epsilon_{33} \eta_2^2 \Phi;
\]

де позначено:

\[
D_{T1} = \frac{h}{s_{11} (1 - \nu_{13} \nu_{31})}; \hspace{1cm} D_{T2} = \frac{h}{s_{33} (1 - \nu_{13} \nu_{31})};
\]

\[
D_{M1} = \frac{h^3}{12s_{11} (1 - \nu_{13} \nu_{31})}; \hspace{1cm} D_{M2} = \frac{h^3}{12s_{33} (1 - \nu_{13} \nu_{31})};
\]

\[
\eta_1^2 = \frac{1}{h} \int_{-h/2}^{h/2} f^2(z)dz; \hspace{1cm} \eta_2^2 = \frac{1}{h} \int_{-h/2}^{h/2} [f'(z)]^2 dz.
\]

Перерізуючі сили знаходимо після інтегрування (9) і (10) з урахуванням (11):

\[
Q_1 = \frac{2h}{s_{55} \eta_1^1} e_{11} + \frac{2d_{33} s_{55}}{s_{55} \eta_1^2} \Phi_0;
\]

\[
Q_2 = \frac{2h}{s_{55} \eta_2^2} e_{22}.
\]
Підставляючи (12) і (11) в систему (7) і замінюючи e_{ij}, X_{ij} та e, через переміщення та кути повороту, отримаємо рівняння руху, в яких визначальними функціями будуть переміщення, кути повороту та електростатичний потенціал. В ці рівняння увійдуть невизначені множники η_1^2 і η_2^2. Є два підходи при виборі величин коригуючих множників, аналогічні тим підходам, що обговорювались в [5]: або теоретично обґрунтовано задаючись видом функції $f(z)$, або шляхом порівняння дисперсійних співвідношень, отриманих за прикладною та тривимірною теоріями.

3 Висновок

На основі варіаційного принципу отримано систему диференціальних рівнянь, що описує поведінку поляризованої по меридіану п'єзокерамічної оболонки під дією заданих сил і зарядів, замкнену фізичними співвідношеннями. Для забезпечення єдності розв'язку сформульовано та записано граничні умови.

REFERENCES

Ластівка І.О.

Також прикладною варіаційною теорією пьезокерамічної оболонки при цих конфігураціях оболонки, визначено система диференціальних уравнення колебань оболонки і граничні умови з урахуванням варіаційного принципа Рейсснера.

Ключеви слова и фразы: пьезокерамічна оболонка, меридіональна поляризація, диференціальне уравнение колебаний, граничні умови, варіаційний принцип.
Лебідь В.О.

СПЕКТРАЛЬНИЙ АНАЛІЗ ПОВНОГО ГРАФА З НЕСКІНЧЕННИМИ ПРОМЕНЯМИ

У даній статті проведено детальний спектральний аналіз повного графа з нескінченими променями. Охарактеризовано спектр самоспряженого оператора, який породжений матрицею суміжності даного графа, побудовано спектральну міру, наведені у явній формі власні вектори та спектральний розклад за власними векторами.

Ключові слова і фрази: зліченний граф, матриця Якобі, абсолютно неперервний спектр, спектральний розклад, спектральна шільність.

Інститут математики НАН України, Київ, Україна
E-mail: lebiduk@gmail.com

Вступ

Теорія графів виникла із конкретних прикладних задач у теорії інформаційних, комунікаційних, енергетичних, транспортних мереж, органічній хімії, квантовій механіці та ін. Сучасна теорія графів є самостійним, актуальним розділом математики, яка розв’язує ряд теоретичних та прикладних задач, використовуючи і збагачуючи аналітичні, алгебраїчні, топологічні методи та методи функціонального аналізу, лінійної алгебри, теорії чисел та теорії функцій.

Простим неорієнтованим графом G називають пару (V, E), у якій V — деяка непорожня множина (множина вершин), а E — множина ребер, кожне з яких однозначно визначається парою вершин, які воно з’єднує. Геометрично вершини зображаються точками, а ребра — відрізками, що з’єднують відповідні вершини. З графом G однозначно пов’язана матриця суміжності $A(G) = (a_{ij})_{i,j=1}^n$, елементи якої a_{ij} рівні 1, якщо вершини з номерами i та j з’єднуються ребром, або 0, якщо таке ребро відсутнє.

У випадку зліченних графів матриця $A(G)$ порожує у гільбертовому просторі $l_2(V)$ самоспряжений опператор A, спектр якого має дискретну $\sigma_p(G)$ та неперервну компоненту $\sigma_c(G)$, яка може бути абсолютно-неперервною $\sigma_{ac}(G)$ або навіть чисто сингулярною $\sigma_{cs}(G)$ (див. [6]). Під спектральним аналізом графа G розуміють спектральний аналіз оператора A.

За останній час одержано чисельні результати про спектр зліченних графів, які знаходять застосування у теорії невід’ємних матриць, гармонічному аналізі дискретних груп, аналітичній теорії ймовірності тощо (див. [1], [4]).

UDК 517.983
2010 Mathematics Subject Classification: 05C50, 05C63.
Робота виконана в рамках проекту 03-01-12 "Обернені задачі в сучасній математичній фізиці" спільних проектів НАН України та Сибірського відділення РАН.

© Лебідь В.О., 2014
ПОСТАНОВКА ЗАДАЧИ

Нехай \(K(n, \infty) \) — повний граф з \(n \) вершинами, до кожної вершини якого приєднано один нескінчений ланцюг (див. [5]). Матриця суміжності такого графа породжує обмежений самоспряжений оператор \(B \) у гільбертовому просторі \(l_2(V) \), де \(V \) — множина вершин графа \(K(n, \infty) \). Оператор \(B \) діє на вектор \(x = (x_j) \in l_2(V) \) так:

\[
(Bx)_j = \sum_{k=1, k \neq j}^{n} x_k + x_{j+1}, \quad (Bx)_j = x_{j-1} + x_{j+1}, \quad \text{для кожного } j = 1, n, \ i \geq 2
\]

Тут компоненти векторів \(x \) та \(Bx \) із простору \(l_2(V) \), що відповідають \(i \)-й вершині на \(j \)-му промені, позначено нижнім індексом \(i \) та верхнім індексом \(j \).

ЗВЕДЕННЯ ДО ЯКОБІЕВИХ МАТРИЦІ

Теорема 1. Повному графу \(K(n, \infty) \) з \(n \) нескінченими променями відповідає обмежений самоспряжений оператор \(B \) виду (1), який визначений на всьому просторі \(l_2(V) \). Існує такий унітарний оператор \(U \), що

\[
U(B)U^{-1} = I_{n-1} \oplus I_{-1} \oplus \ldots \oplus I_{-1}
\]

де \(I_{n-1} \), \(I_{-1} \) — матриці Якобі виду

\[
I_{n-1} = \begin{pmatrix}
0 & 1 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \ldots \\
\end{pmatrix}
\]

\[
I_{-1} = \begin{pmatrix}
-1 & 1 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & \ldots \\
0 & 1 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \ldots \\
\end{pmatrix}
\]

Доведення. Нехай \(\{e_i^j\}_{i=1}^{n,j \in \mathbb{N}} \) — стандартний базис у просторі \(l_2(V) \), пов'язаний із вказаною нумерацією вершин \(V \) повного графа \(K(n, \infty) \). Розглянемо дійсну унітарну матрицю \(U = \{u_{ij}\}_{i,j=1}^{n} \), у якої перший рядок складається з чисел \(\frac{1}{\sqrt{n}} \), тобто \(u_{ij} = \frac{1}{\sqrt{n}}, \ j = 1, \ldots n \). Оскільки матриця \(U \) дійсна і унітарна, то

\[
\sum_{j=1}^{n} u_{kj} u_{mj} = \delta_{km},
\]

де \(\delta_{km} \) — символ Кронекера. Звідси випливає, що

\[
\sum_{j=1}^{n} u_{ij} = 0 \quad \text{при } i = 2, \ldots n.
\]

Розглянемо у просторі \(l_2(V) \) такий новий базис \(\{e_i^j\}_{i=1}^{n,j \in \mathbb{N}} \), що

\[
e_i^j = \sum_{k=1}^{n} u_{jk} e_i^k, \quad i \in \mathbb{N}, j = 1, 2, \ldots n.
\]

Згідно з (1) оператор \(B \) діє на вихідний базис наступним чином:

\[
Be_i^j = \sum_{k=1, k \neq j}^{n} e_i^k + e_i^{j+1}, \quad Be_i^j = e_{i-1}^j + e_{i+1}^j \quad \text{для кожного } j = 1, n \text{ та } i \geq 2.
\]
Враховуючи зв'язок між новим та вихідним базисами, маємо:

\[
 \mathbf{B}^1 e_1^i = (n - 1)e_1^i + e_2^i, \quad \mathbf{B}^1 e_2^i = e_1^i + e_2^i + e_i+1^i \quad \text{для кожної } j = 2, n \text{ та } i \geq 2.
\]

Таким чином, підпростори \(H_j \) з базисом \(\{e_1^j, \ldots, e_k^j, \ldots\} \) при кожному \(j = 1, n \), ізоморфні \(l_2(N) \), інваріантними для оператора \(\mathbf{B} \), який в \(H_1 \) зводиться до матриці Якобі \(J_{n-1} \), а в підпросторах \(H_2, H_3, \ldots, H_n \) — до матриці \(J_{-1} \). Оператор \(\mathbf{U} \) у просторі \(l_2(V) \), який переводить базис \(\{e_1^j\}_{j=1}^n \) у базис \(\{e_2^j\}_{j=1}^n \), є унітарним і задовольняє твердження теореми.

ВАСНЕ СПЕКТРАЛЬНИЙ АНАЛІЗ

Таким чином, спектральний аналіз зіркового графа \(K(n, \infty) \) зводиться до дослідження спектральних властивостей матриць Якобі \(J_{n-1}, J_{-1} \), який можна одержати за алгоритмом, наведеним у роботах [2], [3].

Теорема 2. Матриця Якобі \(J_{n-1} \) породжує у просторі \(l_2 \) обмежений самоспряжений оператор, спектр якого складається із абсолютно неперервної компоненти, що збігається із інтервалом \([-2,2]\), та при \(n \geq 3 \) ще із одного власного значення \(\lambda = \mu + \frac{1}{\mu} \), якому відповідає нормований власний вектор вищу

\[
 e = \frac{\sqrt{n(n-2)}}{n-1}(1, \mu, \mu^2, \mu^3, \ldots, \mu^j, \ldots),
\]

де число \(\mu = \frac{1}{n-1} \).

При цьому, кожному \(\lambda \in [-2,2] \) відповідає узагальнений власний вектор

\[
 \varphi \lambda = (P_0(\lambda), P_1(\lambda) - (n - 1)P_0(\lambda), \ldots, P_{j-1}(\lambda) - (n - 1)P_j(\lambda), \ldots),
\]

де polinomi \(P_k(\lambda) \) є поліномами степени \(k \) від \(\lambda \), що виражаються у вигляді \(P_k(\lambda) = U_k(\frac{1}{2}) \) через поліноми Чебишева другого роду, де \(U_k(z) = \frac{\sin((k+1)\arccos z)}{\sin(\arccos z)} \).

Для поліномів \(P_k(\lambda) \) вірне рекурентне співвідношення \(P_{k+1}(\lambda) = \lambda P_k(\lambda) - P_{k-1}(\lambda) \) з початковими умовами \(P_{-1}(\lambda) = 0, P_0(\lambda) = 1, P_1(\lambda) = \lambda \).

Справедливі розклад за приведеними власними функціями (2) та рівність Парсеваля зі спектральною щільністю \(\rho(\lambda) = \frac{\sqrt{4 - \lambda^2}}{2n(n-1) - (n-1)\lambda} \) неперервного спектру. Тобто кожному вектору \(x \in l_2 \) відповідає його перетворення Фур'є \(\hat{x} = \hat{x} \) за власними векторами \(e, \varphi \lambda \) вищу

\[
 \hat{x} = ((x, e), (x, e), \ldots, (x, e)), \quad \text{де } \hat{x}(\lambda) = (x, \varphi \lambda).
\]

Вектор \(\hat{x} \) належить гільбертовому простору \(\hat{S} = E \oplus L_2([-2,2], \rho(\lambda)d\lambda) \), де \(E \) — евклідів простір, а \(L_2([-2,2], \rho(\lambda)d\lambda) \) — простір функцій, квадратично інтегрованих на відрізку \([-2,2]\) за мірою \(\rho(\lambda)d\lambda \).

Вірне обернене перетворення Фур'є, визначене на всьому \(\hat{S} \):

\[
 x = \hat{S}^{-1}\hat{x}(\lambda) = (x, e)e + \int_{-2}^{2} \hat{x}(\lambda)\varphi \lambda \rho(\lambda)d\lambda.
\]

Для довільних \(x, y \in l_2 \) справедлива рівність Парсеваля:

\[
 (x, y)_l = (\hat{x}, \hat{y})_{\hat{S}} = (x, e)(y, e) + \int_{-2}^{2} \hat{x}(\lambda)\hat{y}(\lambda)\rho(\lambda)d\lambda.
\]
Доведення. Матриця Якобі \(I_{n-1} \) породжує у просторі \(L_2(\mathbb{N}) \) обмежений самоспряженний оператор, який будемо позначати тією ж літерою \(I_{n-1} \). Оператор \(I_{n-1} \) діє на вектор \(x = (x_1, x_2, \ldots) \in l_2(\mathbb{N}) \) так:

\[
I_{n-1}x = ((n - 1)x_1 + x_2, x_1 + x_3, \ldots, x_{k-1} + x_{k+1}, \ldots).
\]

Із вигляду оператора \(I_{n-1} \) випливає, що вектор \(e \), що відповідає власному значенню \(\lambda = \frac{(n-1)^2 + 1}{n-1} \), є його власним вектором, і для кожного \(\lambda \in [-2,2] \) функція \(\varphi_\lambda \) задовольняє рівність \(I_{n-1}\varphi_\lambda = \lambda\varphi_\lambda \).

Легко перевірити, що \((e, \varphi_\lambda)_{l_2} = 0 \). Вектор \(x \in l_2(\mathbb{N}) \) буде ортогональним до \(e \) тоді і тільки тоді, коли

\[
\sum_{k=0}^{\infty} \mu^k x_{k+1} = 0
\]

(5)

Розглянемо перетворення Фур’є за власними векторами \(e, \varphi_\lambda \). Враховуючи явний вигляд узагальненої власної функції \(\varphi_\lambda \), для \(x \in l_2(\mathbb{N}) \) маємо

\[
\hat{x}(\lambda) = (x, \varphi_\lambda)_{l_2} = \sum_{k=0}^{\infty} (x_{k+1} - (n - 1)x_{k+2}) P_k(\lambda)
\]

(6)

Рівність (6) можна розглядати як розклад функції \(\hat{x}(\lambda) \) за ортонормованою системою поліномів \(\{P_k(\lambda)\}_{k=0}^{\infty} \) у просторі \(L_2([-2,2], \rho_0(\lambda)d(\lambda)) \), де \(\rho_0(\lambda) = \frac{1}{2\pi} \sqrt{4 - \lambda^2} \). Тому

\[
\int_{-2}^{2} \hat{x}(\lambda) P_k(\lambda) \rho_0(\lambda) d\lambda = x_{k+1} - (n - 1)x_{k+2}, k = 0, 1, 2 \ldots
\]

(7)

Домножимо вираз (7) на \(\mu^k \) і просумуємо за \(k \). У випадку, коли \(x \perp e \) і виконуються рівності (5), аналогічно, як у [2], із врахуванням факту, що функція \(\frac{1}{1 - \mu \lambda + \mu^2} = \sum_{k=0}^{\infty} \mu^k P_k(\lambda) \) є твірною для системи поліномів \(\{P_k(\lambda)\}_{k=0}^{\infty} \), отримуємо

\[
x_{k+1} = \int_{-2}^{2} \hat{x}(\lambda) \varphi_{k+1} \rho(\lambda) d\lambda, k = 0, 1, 2 \ldots
\]

(8)

Таким чином, кожний вектор \(x \in l_2(\mathbb{N}) \), ортогональний до \(e \), розкладається за узагальненими власними функціями \(\varphi_\lambda \) зі спектральною мірою \(\rho(\lambda) d\lambda \), що є абсолютно неперервною відносно міри Лебега на інтервалі \([-2,2]\). Тому спектр оператора \(I_{n-1} \) містить однократну абсолютно неперервну компоненту, що збігається з інтервалом \([-2,2]\), та при \(n \geq 3 \) власне значення \(\lambda = \frac{(n-1)^2 + 1}{n-1} \). Оскільки \(e \perp \varphi_\lambda \), то для довільного \(x \in l_2(\mathbb{N}) \) вектор \(y = x - (x, e) e \) є ортогональний \(e \) та \(\hat{y}(\lambda) = (x - (x, e) e, \varphi_\lambda) = \hat{x}(\lambda) \). Із вигляду виразу (8) маємо \(y = \int_{-2}^{2} \hat{x}(\lambda) \varphi_{k+1} \rho(\lambda) d\lambda \), що еквівалентно (3).

Рівність Парсеваля (4) отримуємо із рівності Парсеваля для векторів \(x \perp e \) за узагальненіми власними функціями \(\varphi_\lambda \), оскільки система поліномів \(\{\varphi_{k,\lambda}\}_{k=1}^{\infty} \) утворює ортонормований базис у просторі \(L_2([-2,2], \rho(\lambda)d(\lambda)) \).

\[\square\]

Теорема 3. Матриця Якобі \(I_{-1} \) породжує у просторі \(l_2(\mathbb{N}) \) обмежений самоспряженний оператор, спектр якого чисто абсолютно неперервний і збігається із інтервалом \([-2,2]\).

Кожному \(\lambda \in [-2,2] \) відповідає узагальнений власний вектор

\[
\varphi_\lambda = (P_0(\lambda), P_1(\lambda) + P_0(\lambda), P_2(\lambda) + P_1(\lambda), \ldots, P_{j-1}(\lambda) + P_{j-2}(\lambda), \ldots)
\]

(9)
Спектральний аналіз повного графа з нескінченими променями

Справедливі розклад за приведеними власними функціями (9) та рівність Парсеваля зі спектральною шільністю \(\rho(\lambda) = \frac{\sqrt{4-4\lambda^2}}{2\pi(2+\lambda)} \) неперервного спектру. Тобто кожному вектору \(x \in l_2 \) відповідає його перетворення Фур'є \(\hat{x} = \hat{x} \) за власними функціями \(\varphi_\lambda \) вигляду \(\hat{x}(\lambda) = (x, \varphi_\lambda)_l_2 \). Вектор \(\hat{x} \) належить гільбертовому простору \(L_2([-2,2], \rho(\lambda)d\lambda) \).

Вірне обернене перетворення Фур'є, визначене на всьому \(\Re \):

\[
x = \hat{x}^{-1}(\hat{x}(\lambda)) \equiv \int_{-2}^{2} \hat{x}(\lambda) \varphi_\lambda \rho(\lambda)d\lambda
\]

(10)

Для довільних \(x, y \in l_2 \) справедлива рівність Парсеваля:

\[
(x, y)_{l_2} = (\hat{x}, \hat{y})_{l_2} \equiv \int_{-2}^{2} \hat{x}(\lambda) \hat{y}(\lambda) \rho(\lambda)d\lambda
\]

(11)

Доведення. Матриця Якобі \(J_{-1} \) породжує у просторі \(l_2(N) \) обмежений самоспряжений оператор, який будемо позначати тією ж літерою \(J_{-1} \). Оператор \(J_{-1} \) діє на вектор \(x = (x_1, x_2, \ldots) \) з \(l_2(N) \) так:

\[
J_{-1}x = (-x_1 + x_2, x_1 + x_3, \ldots, x_{k-1} + x_{k+1}, \ldots)
\]

Із вигляду оператора \(J_{-1} \) випливає, що для кожного \(\lambda \in [-2,2] \) функція \(\varphi_\lambda \) задовольняє рівність \(J_{-1} \varphi_\lambda = \lambda \varphi_\lambda \).

Розглянемо перетворення Фур'є за власними функціями \(\varphi_\lambda \). Враховуючи явний вигляд узагальненої власної функції \(\varphi_\lambda \), для \(x \in l_2(N) \) маємо

\[
\hat{x}(\lambda) = (x, \varphi_\lambda)_l_2 = \sum_{k=0}^{\infty} (x_{k+1} + x_{k+2}) P_k(\lambda)
\]

(12)

Рівність (12) можна розглядати як розклад функції \(\hat{x}(\lambda) \) за ортонормованою системою поліномів \(\{P_k(\lambda)\}_{k=0}^{\infty} \) у просторі \(L_2([-2,2], \rho_0(\lambda)d\lambda) \), де \(\rho_0(\lambda) = \frac{1}{2}\sqrt{4 - \lambda^2} \). Тому

\[
\int_{-2}^{2} \hat{x}(\lambda) P_k(\lambda) \rho_0(\lambda)d\lambda = x_{k+1} + x_{k+2}, k = 0, 1, 2, \ldots
\]

(13)

із загальної теорії якобієвих матриць випливає, що існує така шільність \(\rho(\lambda) \), що

\[
x_{k+1} = \int_{-2}^{2} \hat{x}(\lambda) \varphi_\lambda, k+1 \rho(\lambda)d\lambda, k = 0, 1, 2, \ldots
\]

(14)

Використовуючи метод математичної індукції, отримуємо вираз для оберненого перетворення Фур'є (10), та після підстановки рівності (14) у вираз (13) — вираз для шільності \(\rho(\lambda) = \frac{\sqrt{4 - \lambda^2}}{2\pi(2+\lambda)} \).

Підставляючи (14) у (13) одержуємо вираз для оберненого перетворення Фур'є (10), та після підстановки рівності (14) у вираз (13) — вираз для шільності \(\rho(\lambda) = \frac{\sqrt{4 - \lambda^2}}{2\pi(2+\lambda)} \).

Використовуючи метод математичної індукції, отримуємо вираз для оберненого перетворення Фур'є (10), та після підстановки рівності (14) у вираз (13) — вираз для шільності \(\rho(\lambda) = \frac{\sqrt{4 - \lambda^2}}{2\pi(2+\lambda)} \).

Підставляючи (14) у (13) одержуємо вираз для оберненого перетворення Фур'є (10), та після підстановки рівності (14) у вираз (13) — вираз для шільності \(\rho(\lambda) = \frac{\sqrt{4 - \lambda^2}}{2\pi(2+\lambda)} \).

Рівність Парсеваля (11) отримуємо аналогічно, як у доведенні теореми 2.

Висновок

Із теорем 1, 2, 3 випливає, що спектр зіркового графа \(K(n, \infty) \) складається із \(n \)-кратної абсолютно неперервої компоненти, що збігається із інтервалом \([-2, 2]\), а при \(n \geq 3 \) ще із одного власного значення \(\lambda = \frac{\sqrt{4 - \lambda^2}}{2\pi(2+\lambda)} \).

Методи проведення спектрального аналізу повного графа з нескінченими променями, що викладені у даній роботі, дають змогу досліджувати спектральніластивості широкого класу зв'язних графів з нескінченими променями.

Автор висловлює ширию подяку Л.П. Нижнику та Ю.С. Самойленку за конструктивні зауваження.
In the paper the detailed spectral analysis of a complete graph with semibounded infinite chains is given. The spectrum of a self-adjoint operator which is generated by the adjacency matrix of the graph is defined, the spectral measure is constructed, eigenvectors and spectral expansion in eigenvectors are provided.

Key words and phrases: infinite graph, matrix Jacobi, absolutely continuous spectrum, spectral decomposition, spectral density.

В данной статье проведен детальный спектральный анализ полного графа с бесконечными лучами. Охарактеризован спектр самосопряженного оператора, порожденного матрицей смежности такого графа, построена спектральная мера, приведены в явной форме собственные векторы и спектральное разложение по собственным векторам.

Ключевые слова и фразы: счетный граф, матрица Якobi, абсолютно непрерывный спектр, спектральное разложение, спектральная плотность.
ЛОПУШАНСЬКИЙ А.О.1, ЛОПУШАНСЬКА Г.П.2

ОБЕРНЕНІ КРАЙОВІ ЗАДАЧІ ДЛЯ ДИФУЗІЙНО-ХВИЛЬОВОГО РІВНЯННЯ З УЗАГАЛЬНЕННИМИ ФУНКЦІЯМИ В ПРАВИХ ЧАСТИНАХ

Доведено однозначну розв'язність задач про визначення пари функцій: розв'язку $u(x,t)$ першої крайової задачі для рівняння

$$u_t^{(\beta)} - a(t)u_{xx} = F_0(x) \cdot g(t), \quad (x,t) \in (0,l) \times (0,T],$$

з дробовою похідною $u_t^{(\beta)}$ порядку $\beta \in (0,2)$, узагальненими функціями в початкових умовах, а також невідомого неперервного коефіцієнта $a(t) > 0$, $t \in [0,T]$ (або невідомої неперервної функції $g(t)$) при відомих значеннях $(a(t)u_x(\cdot, t), \varphi_0(\cdot))$, $((u(\cdot, t), \varphi_0(\cdot)))$ відповідної узагальненої функції на заданій основній функції $F_0(x)$.

Ключові слова і фрази: похідна дробового порядку, узагальнена функція, обернена крайова задача, вектор-функція Гріна, операторне рівняння.

1 Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
2 Львівський національний університет імені Івана Франка, Львів, Україна

Вступ

Задача Коші та крайові задачі для рівняння дифузії чи дифузійно-хвильового рівняння з регуляризованою похідною дробового порядку [2], [4] вивчались у багатьох працях [1], [2], [5], [6], [10]–[15], [20] та інших. Активно вивчаються в останні роки обернені крайові задачі для таких рівнянь (див. [3], [7], [8], [16], [17], [21] та бібліографія там).

У даній статті встановлюємо однозначну розв'язність двох обернених крайових задач для дифузійно-хвильового рівняння з заданими узагальненими функціями у правих частинах прямої задачі.

ЗАДАЧА 1 полягає в визначенні пари функцій (u,a): розв'язку u першої крайової задачі

$$u_t^{(\beta)} - a(t)u_{xx} = F_0(x) \cdot g(t), \quad (x,t) \in (0,l) \times (0,T],$$

$$u(0,t) = 0, \quad u(l,t) = 0, \quad t \in [0,T],$$

$$u(x,0) = F_1(x), \quad x \in [0,l],$$

$$u_t(x,0) = F_2(x), \quad x \in [0,l],$$

із заданими узагальненими функціями F_j, $j = 0,1,2$, неперервною $g(t)$ (у правій частині рівняння (1) крапкою позначено прямий добуток узагальнених функцій), а також невідомого коефіцієнта $a(t) > 0$, $t \in [0,T]$, за додаткової умови

$$(a(t)u_x(x,t), \varphi_0(x)) = F_3(t), \quad t \in [0,T],$$

© Лопушанський А.О., Лопушанська Г.П., 2014
тобто задано значення $F_3(t)$ узагальненої функції $a(t)u_x(x,t)$ на деякій гладкій функції $\varphi_0(x)$, $x \in [0,1]$.

Розглядаємо випадок $\beta \in (0,2)$. Умова (4) відсутня у випадку $\beta \in (0,1]$.

Зауважимо, що при $\beta = 1$ та заданих регулярних функціях у правих частинах такого типу обернені крайові коефіцієнтні задачі з інтегровними умовами перевизначення вивчалися, зокрема, у [9].

ЗАДАЧА 2 полягає в визначені пари функцій (u,g): розв'язку u першої крайової задачі (1)-(4) при заданих узагальнених функціях F_j, $j = 0,1,2$, та невідомої неперервної функції $g(t)$ за додатковою умови

$$(u(x,t), \varphi_0(x)) = F_4(t), \quad t \in [0,T],$$

tобто задано значення $F_4(t)$ узагальненої функції $u(x,t)$ на деякій гладкій функції $\varphi_0(x)$, $x \in [0,1]$.

Визначеню регулярної правої частини рівняння (1) при різних умовах перевизначення присвячено найбільше праць. Зокрема, у [7] встановлено однозначну розв'язність задачі про визначення розв'язку u задачі Коші для абстрактного рівняння у гільбертовому просторі X з дробовою похідною за часом порядку $\beta \in (0,1]$ та регулярною (залежно від часової змінної) правої частини цього рівняння за умови перевизначення $(u, \varphi_0) = h$ (φ_0, h — задані), де під дужками розуміють скалярний добуток елементів гільбертового простору X.

1 ОСНОВНІ ПОЗНАЧЕННЯ ТА ФОРМУЛЮВАННЯ ЗАДАЧ

Використовуємо наступні позначення: $Q_0 = (0,1) \times (0,T)$; $C_+ [0,T]$ — клас неперервних на $[0,T]$ та обмежених знизу додатним числом функцій; $C_+^\infty [0,T] = C_+^\infty [0,T] \cap C_+ [0,T]$; $\mathcal{D}(RN)$ ($N = 1,2$), $\mathcal{D}(0,1)$, $\mathcal{D}[0,1]$ — простори нескінченно диференційованих функцій з компактними носіями відповідно в R^N, $(0,1)$, $[0,1]$ ([18], с. 13); $\mathcal{D}(Q_0) = \{v \in C_+^\infty (Q_0) : (\frac{\partial^k}{\partial t}) v|_{t=0} = 0, k = 0,1,\ldots\}$; $\mathcal{D}'(RN)$, $\mathcal{D}'(0,1)$, $\mathcal{D}'[0,1]$, $\mathcal{D}'(Q_0)$ — простори лінійних неперервних функціоналів (узагальнених функцій) відповідно на $\mathcal{D}(RN)$, $\mathcal{D}(0,1)$, $\mathcal{D}[0,1]$, $\mathcal{D}(Q_0)$; (F, φ) — значення $F \in \mathcal{D}'(RN)$ на основній функції $\varphi \in \mathcal{D}(RN)$, а також значення $F \in \mathcal{D}'(0,1)$ на $\varphi \in \mathcal{D}(0,1)$, $F \in \mathcal{D}'[0,1]$ на $\varphi \in \mathcal{D}[0,1]$, $F \in \mathcal{D}'(Q_0)$ на $\varphi \in \mathcal{D}(Q_0)$; $\mathcal{D}'(Q_0) \cap C[0,T] = \{F \in \mathcal{D}'(Q_0) : (F(x,\cdot), \varphi(x)) \in C[0,T] \ \forall \varphi \in \mathcal{D}(0,1)\}$ — клас узагальнених функцій із $\mathcal{D}'(Q_0)$, неперервних за змінною $t \in [0,T]$ ([19]).

Позначаємо через $*$ операцію згортки узагальненої функції g та основної функції φ ([18], с. 111). $(g*\varphi)(x) = (g(\xi), \varphi(x+\xi))$; через \ast — операцію згортки узагальнених функцій f і g, тобто узагальнену функцію $f \ast g$ із $\mathcal{D}'(R)$: $(f \ast g, \varphi) = (f,g*\varphi)$ для кожної основної функції $\varphi \in \mathcal{D}(R)$; $(f(x) \cdot g(t))$ — прямий добуток узагальнених функцій $f, g \in \mathcal{D}'(R)$, тобто узагальнену функцію $f \cdot g \in \mathcal{D}'(R^2)$, визначену формулою $(f \cdot g, \varphi) = (f(x), (g(t), \varphi(x,t)))$ для кожної основної функції $\varphi \in \mathcal{D}(R^2)$.

Зауважимо, що у випадку $g \in L_1(0,T)$ маємо

$$(f \cdot g, \varphi) = \left(f(x), \int_0^T g(t) \varphi(x,t) dt \right) = \int_0^T g(t) (f(x), \varphi(x,t)) dt, \quad \forall \varphi \in \mathcal{D}(R^2).$$
Використовуємо функцію \(f_\lambda \in \mathcal{D}'_+(R) = \{ f \in \mathcal{D}'(R) : f = 0 \text{ при } t < 0 \} : \)
\[
f_\lambda(t) = \frac{\theta(t) t^{\lambda-1}}{\Gamma(\lambda)} \quad \text{при } \lambda > 0, \quad \text{i} \quad f_\lambda(t) = f'_{1+\lambda}(t) \text{ при } \lambda \leq 0,
\]
de \(\Gamma(z) \) — гамма-функція, \(\theta(t) \) — одинична функція Хевісайда.

Правильні наступні співвідношення:
\[
f_\lambda * f_\mu = f_{\lambda+\mu}, \quad f_\lambda * f_\mu = f_{\lambda+\mu}.
\]

Нагадаємо, що похідну \(v_i^{(\beta)}(x,t) \) Рімана-Ліувіля функції \(v(x,t) \) порядку \(\beta > 0 \) визначають формулою
\[
v_i^{(\beta)}(x,t) = f_{-\beta}(t) * v(x,t),
\]
регуляризовану похідну дробового порядку —
\[
D_i^{(\beta)} v(x,t) = \frac{1}{\Gamma(1-\beta)} \int_0^t \frac{v(x,\tau)}{(t-\tau)^{\beta-1}} d\tau = \frac{1}{\Gamma(1-\beta)} \int_0^t \frac{v(x,\tau)}{(t-\tau)^{\beta-1}} d\tau - \frac{u(x,0)}{t^\beta}
\]
\[
= v_i^{(\beta)}(x,t) - f_{1-\beta}(t)v(x,0), \quad \beta \in (0,1),
\]
\[
D_i^{(\beta)} v(x,t) = \frac{1}{\Gamma(2-\beta)} \int_0^t \frac{v(x,\tau)}{(t-\tau)^{\beta-1}} d\tau
\]
\[
= v_i^{(\beta)}(x,t) - f_{1-\beta}(t)v(x,0) - f_{2-\beta}(t)v_i(x,0), \quad \beta \in (1,2).
\]

Нехай \(C_{2,\beta}(Q_0) = \{ v \in C(\bar{Q}_0) \mid v_{xx} \in \mathcal{D}(Q_0) \}. \)

Введемо оператори
\[
L : (Lv)(x,t) = v_i^{(\beta)}(x,t) - a(t)v_{xx}(x,t), \quad (x,t) \in Q_0, \quad v \in \mathcal{D}'(Q_0),
\]
\[
L^{reg} : (L^{reg} v)(x,t) = D_i^{(\beta)} v(x,t) - a(t)v_{xx}(x,t), \quad (x,t) \in Q_0, \quad v \in C_{2,\beta}(Q_0),
\]
\[
\hat{L} : (\hat{L} v)(x,t) = f_{-\beta} \ast v(x,t) - a(t)v_{xx}(x,t), \quad (x,t) \in Q_0, \quad v \in \mathcal{D}(Q_0)
\]
та функційний простір \(X(Q_0) = \{ v \in \mathcal{D}(Q_0) : v(0,t) = 0, v(l,t) = 0, t \in [0,T] \}. \)

Для \(v \in C_{2,\beta}(Q_0), \psi \in X(Q_0) \) правильна формула Гриня
\[
\int_{Q_0} v(y,\tau) (\hat{L} \psi)(y,\tau) dy d\tau = \int_{Q_0} (L^{reg} v)(y,\tau) \psi(y,\tau) dy d\tau
\]
\[
+ \int_0^T a(t)[v(0,\tau) \psi_y(0,\tau) - v(l,\tau) \psi_y(l,\tau)] d\tau
\]
\[
+ \int_0^l v(y,0) dy \int_0^T f_{1-\beta}(\tau) \psi(y,\tau) d\tau + \int_0^l v(y,0) dy \int_0^T f_{2-\beta}(\tau) \psi(y,\tau) d\tau.
\]

Припущення:

(F0) \(g \in C[0,T], F_j \in \mathcal{D}'[0,1], j = 0,1,2, \)

(F1) \(F_3 \in C[0,T] \) та \(F_3(t) \neq 0 \) на \([0,T], \varphi_0 \in \mathcal{D}(0,l). \)
ОЗНАЧЕННЯ 1. Розв'язком задачі 1 за припущення (F0), (F1) називається пара функцій

\[(u, a) \in \mathcal{M}_+ := (\mathcal{D}'(Q_0) \cap C[0, T]) \times C_+[0, T],\]

що задовольняє умови (5) та тотожність

\[(u, \tilde{\psi}) = \int_0^T g(t)(F_0, \psi(\cdot, t))dt + \sum_{j=1}^2 (F_j, f_j(t)\psi(\cdot, t)dt) \quad \forall \psi \in X(Q_0). \quad (8)\]

Припущення:

(F2) \quad a \in C_+[0, T], F_j \in \mathcal{D}'[0, l], j = 0, 1, 2, F_4 \in C^1[0, T], \varphi_0 \in \mathcal{D}(0, l), F_4(0) = (F_1, \varphi_0).

ОЗНАЧЕННЯ 2. Розв'язком задачі 2 за припущення (F2) називається пара функцій

\[(u, g) \in \mathcal{M} := (\mathcal{D}'(Q_0) \cap C[0, T]) \times C[0, T],\]

що задовольняє тотожність (8) та умову (6).

Розв'язність обох задач встановлюємо методом функції Гріна.

2 СПРЯЖЕНИ ОПЕРАТОРИ ГРІНА ПЕРШОЇ КРАЙОВОЇ ЗАДАЧИ

ОЗНАЧЕННЯ 3. Вектор-функція \((G_0(x, t, y, \tau), G_1(x, t, y, \tau), G_2(x, t, y, \tau))\), така що при достацькобо гладких \(g_0, g_1, g_2\) функція

\[v(x, t) = \int_0^t dt \int_0^1 G_0(x, t, y, \tau)g_0(y, \tau)dy + \sum_{j=1}^2 \int_0^1 G_j(x, t, y, 0)g_j(y)dy, \quad (x, t) \in Q_0, \quad (9)\]

є класичним (класу \(C_{2, \beta}(Q_0))\) розв'язком першої крайової задачі

\[D^\beta_t u - a(t)uxx = g_0(x, t), \quad (x, t) \in \Omega_0 \times (0, T), \quad (10)\]

\[u(0, t) = 0, \quad u(l, t) = 0, \quad x \in [0, l], t \in [0, T], \quad (11)\]

\[u(x, 0) = g_1(x), \quad u_t(x, 0) = g_2(x), \quad x \in [0, l], \quad (12)\]

(з відомою функцією \(a(t))\), називається вектор-функцією Гріна цієї задачі.

З означення випливає, що

\[(LG_0)(x, t, y, \tau) = \delta(x - y, t - \tau), \quad (x, t, (y, \tau) \in Q_0, \quad \text{де} \ \delta — \text{дельта-функція} \ \text{Дірака},\]

\[G_j(0, t, y, \tau) = G_j(l, t, y, \tau) = 0, \quad y \in (0, l), \quad t, \tau \in (0, T), \quad j = 0, 1, 2, \]

\[G_1(x, 0, y, 0) = \delta(x - y), \quad \frac{\partial}{\partial y} G_2(x, 0, y, 0) = \delta(x - y), \quad x, y \in (0, l).\]

Як при доведенні леми 1 із [12], показуємо, що

\[G_j(x, t, y, 0) = f_{j-\beta}(t) * G_0(x, t, y, 0), \quad (x, t) \in Q_0, \quad y \in (0, l), \quad j = 1, 2. \quad (13)\]

У [13] доведено існування вектор-функції Гріна першої крайової задачі (10)–(12) при \(a \in C_+[0, T].\)
Використовуємо далі позначення \(G_j(x, t, y, \tau, \alpha) \) замість \(G_j(x, t, y, \tau) \), \(j = 0, 1, 2 \).

Із принципу максимума [14] випливає додатність функцій \(G_0(x, t, y, \tau, \alpha), (x, t), (y, \tau) \in Q_0 \) та \(G_j(x, t, y, 0, \alpha), (x, t) \in Q_0, y \in (0, l), t > 0, j = 1, 2 \).

Оцінки компонент вектор-функції Гірна та їх похідних за зміною \(x \) наведено у [13]. Введемо оператори

\[
(G_0 \varphi)(y, t, \tau) = \int_0^l G_0(x, t, y, \tau, \alpha) \varphi(x) \, dx,
\]

\[
(G_j \varphi)(y, t) = \int_0^l G_j(x, t, y, 0, \alpha) \varphi(x) \, dx, \quad j = 1, 2, \quad \varphi \in \mathcal{D}[0, l].
\]

За лемою 1 із [13] при \(a \in C_+[0, T] \), \(\max_{t \in [0, T]} [a(t)]^{-1} \leq R \), довільних \(0 \leq \tau < t \leq T \) правильні оцінки

\[
|\left(\frac{\partial}{\partial y} \right)^k (G_0 \varphi)(y, t, \tau)| \leq c_0 \| \varphi \|_{C^k[0, l]} \cdot (t - \tau)^{\beta/2 - 1} \left[\sqrt{R} + (t - \tau)^{\beta/2} \right],
\]

\[
|\left(\frac{\partial}{\partial y} \right)^k (G_j \varphi)(y, t)| \leq c_j \| \varphi \|_{C^k[0, l]} \cdot t^{j-1}, \quad j = 1, 2, \quad k = 0, 1, 2, \ldots,
\]

а також

\[
|\left(\frac{\partial}{\partial y} \right)^k (G_0 \varphi)(y, t, \tau)| \leq c_0^* \sqrt{R} \| \varphi \|_{C^{k-1}[0, l]} \cdot (t - \tau)^{\beta/2 - 1},
\]

\[
|\left(\frac{\partial}{\partial y} \right)^k (G_j \varphi)(y, t)| \leq c_j^* \| \varphi \|_{C^{k-1}[0, l]} \cdot \left[\sqrt{R} t^{j-1} \right]^{1-\beta/2} + t^{j-1}], \quad j = 1, 2, \quad k = 1, 2, \ldots,
\]

\(c_j, c_j^* (j = 0, 1, 2) \) — додатні сталі.

3 Розв’язність задачі 1

Нехай виконуються припущення (F0), (F1) та наступне припущення

(F) \(\varphi_0(x) \geq 0, x \in (0, l), g(t) \geq 0, t \in [0, T] \),

а також нехай правильна одна з наступних умов:

1. \((F_0(y), \varphi_0(y, t)) > 0, (F_j(y), \varphi_j(y, t)) \geq 0 \) для всіх \(t \in [0, T] \), кожній невід’ємній \(\varphi \in \mathcal{D}(Q_0), j = 1, 2, F_3(t) < 0, t \in [0, T] \);

2. \((F_0(y), \varphi_0(y, t)) < 0, (F_j(y), \varphi_j(y, t)) \leq 0 \) для всіх \(t \in [0, T] \), кожній невід’ємній \(\varphi \in \mathcal{D}(Q_0), j = 1, 2, F_3(t) > 0, t \in [0, T] \).

Згідно з теоремою 3 із [13], за припущення (F0) при кожній відомій \(a \in C_+[0, T] \) існує єдиний розв’язок \(u \in \mathcal{D}'(Q_0) \cap C[0, T] \) першої крайової задачі (1)–(4), визначений формою

\[
(u(\cdot, t), \varphi(\cdot)) = \int_0^t g(\tau) \left(F_0(\cdot), (G_0 \varphi)(\cdot, t, \tau) \right) d\tau + \sum_{j=1}^{2} \left(F_j(\cdot), (G_j \varphi)(\cdot, t, \tau) \right)
\]

\(\forall \varphi \in \mathcal{D}[0, l], \quad t \in [0, T] \).
Підставимо функцію (16) в умову (5). Одержуємо

\[a(t) \left[\int_0^t g(\tau)(F_0, \hat{G}_0\varphi'_0)(t, \tau)d\tau + \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi'_0)(t) \right] = -F_3(t), \quad t \in [0, T], \]

або

\[h(t) = - \left[\int_0^t g(\tau)(F_0, \hat{G}_0\varphi'_0)(t, \tau)d\tau + \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi'_0)(t) \right] \cdot \left[F_3(t) \right]^{-1}, \quad t \in [0, T], \quad (17) \]

de \(h(t) = [a(t)]^{-1} \).

За властивостями компонент вектор-функції Гріна

\((\hat{G}_0\varphi'_0)(y, t, \tau) = \int_0^t G_0(x, t, y, \tau, a)\varphi'_0(x)dx = - \int_0^t \frac{\partial}{\partial x} G_0(x, t, y, \tau, a)\varphi_0(x)dx \)

\[= \frac{\partial}{\partial y} \int_0^t G_0(x, t, y, \tau, a)\varphi_0(x)dx = \frac{\partial}{\partial y} (\hat{G}_0\varphi_0)(y, t, \tau), \]

так само \((\hat{G}_j\varphi'_0)(y, t) = \frac{\partial}{\partial y} (\hat{G}_j\varphi)(y, t), j = 1, 2. \)

Тому з додатності функцій \(G_j(x, t, y, \tau, a), (x, t), (y, \tau) \in Q_0, j = 0, 1, 2, \) при невід'ємній \(\varphi_0 \) отримуємо \(\hat{G}_j\varphi_0 \geq 0, j = 0, 1, 2, \) а тоді, згідно з припущенням \((F) \) (при \(\varphi = \hat{G}_j\varphi_0, j = 0, 1, 2 \)), права частина рівняння (17) додатна. Наслідком цього та теореми 3 із [13] є наступна теорема.

Теорема 1. За припущень \((F_0), (F_1), (F) \) пара функцій \((u, a) \in \mathcal{M}_+ \) є розв’язком задачі 1 тоді і тільки тоді, коли додатна неперервна функція \(h(t) = [a(t)]^{-1}, t \in [0, T] \) є розв’язком рівняння (17), функція \(u(x, t) \) визначена формулою (16).

Теорема 2. За припущень \((F_0), (F_1), (F) \) розв’язок \((u, a) \in \mathcal{M}_+ \) задачі 1 існує: функція \(u(x, t) \) визначена формулою (16), \(a(t) = [h(t)]^{-1}, h(t) \) — розв’язок операторного рівняння (17).

Доведення. Враховуючи наведені вище міркування, перетворення, теорему 1, для доведення існування розв’язку задачі залишається довести розв’язність рівняння (17) у класі додатних неперервних функцій \(h(t), t \in [0, T] \). Доведемо спочатку його розв’язність у класі

\[M_R = \{h \in C[0, T] : ||h||_{C[0, T]} \leq R \}. \]

Це — банахів простір, як замкнений підпростір банахового простору \(C[0, T] \) з нормою

\[||h||_{C[0, T]} = \max_{t \in [0, T]} |h(t)|. \]

Використаємо принцип Шаудера. На \(M_R \) розглянемо оператор

\[(Ph)(t) := - \left[(F, \hat{G}_0\varphi'_0)(t) + \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi'_0)(t) \right] \cdot \left[F_3(t) \right]^{-1}, \quad t \in [0, T]. \]
Узагальнені функції в обмежених областях мають скінченний порядок сингулярності [18]: існують такі цілі числа k_0, k_1, k_2 та функції $g_{0k}, g_{1k}, g_{2k} \in L_1(0, l)$, що

$$ (F_j(y), \varphi(y)) = \sum_{k=0}^{k_j} \int_0^l g_{jk}(y) \left(\frac{\partial}{\partial y} \right)^k \varphi(y) dy \quad \forall \varphi \in \mathcal{D}[0, l], \quad j = 0, 1, 2. \quad (18) $$

Використовуючи зображення (18) та оцінки (14), (15), переконуємося, що для довільної $\varphi \in \mathcal{D}[0, l]$ функції

$$ \int_0^t g(\tau)(F_0(y), (G_0\varphi)(y, t, \tau)) d\tau = \sum_{k=0}^{k_0} \int_0^t g(\tau) \left[\int_0^l g_{0k}(y) \left(\frac{\partial}{\partial y} \right)^k (G_0\varphi)(y, t, \tau) dy \right] d\tau, $$

$$ (F_j(y), (G_j\varphi)(y, t)) = \sum_{k=0}^{k_j} \int_0^l g_{jk}(y) \left(\frac{\partial}{\partial y} \right)^k (G_j\varphi)(y, t) dy, \quad j = 1, 2, $$

неперервні на $[0, T]$, і при цьому правильні оцінки

$$ \left| \int_0^t g(\tau)(F_0(y), (G_0\varphi)(y, t, \tau)) d\tau \right| \leq c_0 \| \varphi \|_{C[0, l]} \cdot \int_0^t \left| g(\tau) \right| \left[\int_0^l \left| g_{00}(y) \right| dy \right] \left| (t - \tau)^{\beta - 1} + \sqrt{R}(t - \tau)^{\beta/2 - 1} \right| d\tau \quad (19) $$

$$ + c_0 \sqrt{R} \sum_{k=1}^{k_0} \| \varphi \|_{C^{k-1}[0, l]} \cdot \int_0^t \left| g(\tau) \right| \left[\int_0^l \left| g_{0k}(y) \right| dy \right] (t - \tau)^{\beta/2 - 1} d\tau \leq b_0 t^{\beta/2} (t^{\beta/2} + \sqrt{R}), $$

$$ \left| (F_j(y), (G_j\varphi)(y, t)) \right| \leq c_j \sum_{k=0}^{k_j} \| \varphi \|_{C[0, l]} \cdot t^{-1} \int_0^l \left| g_{jk}(y) \right| dy = b_j t^{-1}, \quad j = 1, 2, \quad (20) $$

а також

$$ \left| (F_j(y), (G_j\varphi)(y, t)) \right| \leq c_j^+ \| \varphi \|_{C[0, l]} \cdot t^{-1} \int_0^l \left| g_{j0}(y) \right| dy $$

$$ + c_j^+ \sum_{k=1}^{k_j} \| \varphi \|_{C^{k-1}[0, l]} \cdot \left[\sqrt{R} t^{-1} \beta/2 + t^{-1} \right] \int_0^l \left| g_{jk}(y) \right| dy \leq b_j^+ [\sqrt{R} t^{-1} \beta/2 + t^{-1}], \quad j = 1, 2, \quad (21) $$

де $b_j, b_j^+ \ (j = 0, 1, 2) — певні додатні стали. Тоді при $h \in M_R, t \in [0, T]$ одержуємо

$$ \|(Ph)(t)\| \leq \left[b_0 \sqrt{R} t^{\beta/2} + b_0 t^\beta + b_1 + b_2 t \right] \cdot \left[F_3(t) \right]^{-1} \leq A \sqrt{R} + B, $$

де $A = b_0 T^{\beta/2}/ \inf_{t \in [0, T]} | F_3(t) |, \ B = [b_0 T^\beta + b_1 + b_2 T]/ \inf_{t \in [0, T]} | F_3(t) |$. За властивістю функції $A \sqrt{R} + B$ при довільних додатних числах A, B існує таке $R_0 = R_0(A, B) > 0$, що для всіх $R > R_0$ виконується нерівність $A \sqrt{R} + B < R$. Ми показали, що для всіх $R > R_0, h \in M_R$

$$ \|Ph\|_{C[0, T]} < R, \quad \text{а, отже, } P : M_R \rightarrow M_R. $$
Оператор P неперервний на M_R. Справді, при $h_1, h_2 \in M_R$

$$(Ph_1)(t) - (Ph_2)(t) = -\sum_{j=1}^{2}[F_j(t)]^{-1}\left(F_j(y) - \int_{0}^{T}G_j(x,t,y,1/h_1) - G_j(x,t,y,1/h_2)\varphi_0(x)dx\right).$$

Використовуючи зображення (18) узагальнених функцій та властивості спряженних операторів Гріна, одержуємо, що значення $|(Ph_1)(t) - (Ph_2)(t)|$ малі для всіх $t \in [0, T]$ при малих значеннях $|h_1(t) - h_2(t)|$, $t \in [0, T]$.

Подібно одержуємо, що оператор P компактний на M_R: вище було встановлено рівномірну обмеженість множини $\{(Ph)(t), t \in [0, T]\}$ при $h \in M_R$, її одностайна неперервність випливає з рівномірної збіжності інтегралів у виразі $(Ph)(t + \Delta t) - (Ph)(t)$ при $h \in M_R$, якщо використати формули (18), оцінки (14) та наслідок 1 із [13], за яким

$$|G_i(x, t + \Delta t, y, \tau, a) - G_i(x, t, y, \tau, a)| \leq M_i(x, t, y, \tau, a)|\Delta t|^{\gamma}, \quad (x, t, (y, \tau) \in Q_0,$$

de $0 < \gamma < 1$, невід’ємні функції $M_i(x, t, y, \tau, a)$ мають такі ж оцінки, як $G_i(x, t, y, \tau, a)$, $i = 0, 1, 2$ відповідно із заміною β на $\beta - \gamma$.

Було показано неперервність правої частини в (17) для всіх $t \in [0, T]$. Також із оцінок (14) та додатності функцій $G_j(x, t, y, \tau, a)$ мають такі ж оцінки, як $G_i(x, t, y, \tau, a)$, $i = 0, 1, 2$ відповідно із заміною β на $\beta - \gamma$.

Теорема 3. За умови (F1) розв’язок $(u, a) \in M_+$ задачі 1 єдиний.

Доведення. Якщо $(u_1, a_1), (u_2, a_2) \in M_+$ — два розв’язки задачі, тоді

$$v_i^{(\beta)} - a_i(t)v_{xx} = a(t)u_{2xx}, \quad (x, t) \in Q_0,$$

$$v(0, t) = 0, \quad v(l, t) = 0, \quad t \in [0, T], \quad v|_{t=0} = 0, \quad x \in [0, l],$$

$$a_1v = a_1v_1 - a_1v_2 = a_1v - a_2v_2 - (a_1 - a_2)v,$$

$$a_1(t)(v(x, t), \varphi_0(x)) = a_1(t)(v(x, t), \varphi_0(x)) = \frac{a(t)}{a_2(t)}(a_2(t)v_2(x, t), \varphi_0'(x))$$

$$= -\frac{a(t)}{a_2(t)}(a_2(t)v_2(x, t), \varphi_0(x)) = -\frac{a(t)F_3(t)}{a_2(t)}, \quad t \in [0, T],$$

а, отже,

$$a_1(t)(v(x, t), \varphi_0'(x)) = \frac{a(t)F_3(t)}{a_2(t)}, \quad t \in [0, T] \quad \forall \varphi_0 \in \mathcal{D}(0, l).$$
За теоремою 3 із [13] для функції \(v \), як розв'язку першої крайової задачі (22), (23), правильне зображення

\[
(v(\cdot, t), \varphi(\cdot)) = \int_{0}^{t} a(\tau) \left(u_{2y}(\cdot, \tau), (\hat{G}_{0} \varphi)(\cdot, t, \tau) \right) d\tau \quad \forall \varphi \in \mathcal{D}[0,1], \quad t \in [0, T].
\]
(25)

Підставляючи функцію (25) в умову (24), одержуємо

\[
a_{1}(t) \int_{0}^{t} a(\tau) \left(u_{2y}(\cdot, \tau), (\hat{G}_{0} \varphi)(\cdot, t, \tau) \right) d\tau = \frac{a(t)F_{3}(t)}{a_{2}(t)},
\]
(26)

tобто

\[
a(t) \int_{0}^{t} a(\tau) \frac{a_{1}(t)a_{2}(l)}{F_{3}(t)} \left(u_{2y}(\cdot, \tau), (\hat{G}_{0} \varphi)(\cdot, t, \tau) \right) d\tau = 0, \quad t \in [0, T],
\]
де в підінтегральному виразі є значення узагальненої функції \(u_{2y}(\cdot, \tau) \) на \((\hat{G}_{0} \varphi)(\cdot, t, \tau) \) для фіксованих \(t, \tau \in [0, T] \).

За теоремою 3 та наслідком 2 із [13] \(u_{2}(y, \tau) \) та \(u_{2y}(y, \tau) \) — неперервні узагальнені функції змінної \(\tau \). Як узагальнена функція в обмежених області \(\overline{Q}_{0} \), \(u_{2y}(y, \tau) \) має скінченний порядок \(\tau \) та \(\tau \)-сингулярності. Тому правильне зображення вигляду (18)

\[
\left(u_{2y}(y, \tau), \varphi(y) \right) = \sum_{k=0}^{p} \int_{0}^{t} r_k(y, \tau) \left(\frac{\partial}{\partial y} \right)^{k} \varphi(y) dy \quad \forall \varphi \in \mathcal{D}[0,1],
\]
де \(r_k \in C(\overline{Q}_{0}), k = 0, 1, \ldots, p \), звідки ядро інтегрального рівняння (26) \(K(t, \tau) = \frac{a_{1}(t)a_{2}(l)}{F_{3}(t)} \).

Зауваження. За доведення теореми 2 випливає існування розв'язку задачі (1)-(5) i тоді, коли \(F_{0}(x) = 0 \) на \([0, l]\), але хоч одна з функцій \(F_{j} \in \mathcal{D}'[0, l], j = 1, 2 \), нетривіальна та має порядок сингулярності \(s(F_{j}) \geq 1 \), однак у випадку \(s(F_{1}) \geq 1 \) та регулярних або тривіальних \(F_{0}, F_{2} \) у припущення (F1) треба вважати \(F_{3} \in C_{\beta/2}[0, T] = \{ v \in C(0, T) | t^{\beta/2}v \in C[0, T], \inf_{t \in [0, T]} t^{\beta/2}|v(t)| > 0 \} \), оскільки тепер замість (20) при \(j = 1 \) потрібно використовувати оцінку (21).

За припущення \(F_{3} \in C_{\beta/2}[0, T] \) також одержуємо єдиність розв'язку цієї задачі.

За доведення теореми 2 бачимо, що достатньо вважати \(\varphi_{0} \in C_{0}^{m}(0, l), m = \max_{j=0, 1, 2} s(F_{j}). \)

4 Розв'язність задачі 2

Підставимо функцію (16) (розв'язок першої крайової задачі (1)-(4)) в умову (6). Маємо

\[
\int_{0}^{t} (F_{0}, \hat{G}_{0} \varphi_{0})(t, \tau) g(\tau) d\tau = F_{4}(t) - \sum_{j=1}^{2} (F_{j}, \hat{G}_{j} \varphi_{0})(t), \quad t \in [0, T].
\]
(27)
Ми одержали лінійне інтегральне рівняння Вольтерри першого роду, ядро якого

\[K_0(t, \tau) = (F_0, \hat{G}_0\varphi_0)(t, \tau), \]

згідно з (19), має оцінку \(|K_0(t, \tau)| \leq C(t - \tau)^{\beta/2 - 1}, \)

\(C — додатна стала. \)

Умова \(F_4(0) = \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi_0)(0) = (F_1, \varphi_0) \) є необхідною умовою розв'язності рівняння (27) у \(C[0, T]. \)

Підамо рівняння (27) у вигляді

\[f_{1-\beta/2}(t) \cdot \int_0^t (F_0, \hat{G}_0\varphi_0)(t, \tau)g(\tau)d\tau = g_4(t), \]

де \(g_4(t) = f_{1-\beta/2}(t) \cdot [F_4(t) - \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi_0)(t)]. \)

Після перетворень одержуємо рівнозначне рівнянню (27) лінійне інтегральне рівняння Вольтерри першого роду

\[\int_0^t K_1(t, \tau)g(\tau)d\tau = g_4(t), \tag{28} \]

ядро якого \(K_1(t, \tau) = f_{1-\beta/2}(t - \tau) \cdot (F_0, \hat{G}_0\varphi_0)(t - \tau, \tau) \) неперервне та має, згідно з (19), оцінку

\[|K_1(t, \tau)| \leq \hat{C}f_{1-\beta/2}(t - \tau) \cdot f_{\beta/2}(t - \tau) = \hat{C}f_1(t - \tau), \]

\(\hat{C} — додатна стала. \)

При неперервній диференційованості правої частини \(g_4(t) \) матимемо единої неперервний розв'язок рівняння (28). \(\)

Із одержаних у розділі 2 оцінок (20) випливає, що

\[|f_{1-\beta/2}(t) \cdot (F_j, \hat{G}_j\varphi_0)(t)| \leq P_j t^{-\beta/2 + j}, \quad P_j = \text{const} > 0, \quad j = 1, 2, \]

та \(f_{1-\beta/2} \cdot (F_j, \hat{G}_j\varphi_0) \in C^1[0, T]. \)

Тоді за умови \(f_{1-\beta/2} \cdot F_4 \in C^1[0, T] \) (яка виконується при \(F_4 \in C^1[0, T] \)) одержуємо розв'язність рівняння (28) у класі неперервних функцій на \([0, T]. \)

Ми довели наступну теорему.

Теорема 4. За припущення (F2) існує розв'язок \((u, g) \in M \) задачі 2: функція \(u \) задана формулою (16), \(g(t) — розв'язок інтегрального рівняння (27), рівнозначного рівнянню

\[\int_0^t f_{1-\beta/2}(t - \tau) \cdot (F_0, \hat{G}_0\varphi_0)(t - \tau, \tau)g(\tau)d\tau = f_{1-\beta/2}(t) \cdot [F_4(t) - \sum_{j=1}^{2} (F_j, \hat{G}_j\varphi_0)(t)], \quad t \in [0, T]. \]

Теорема 5. Розв'язок \((u, g) \in M \) задачі 2 єдиний.

Доведення. Якщо \((u_1, g_1), (u_2, g_2) \in M \) — два розв'язки задачі, \(v = u_1 - u_2, g = g_1 - g_2, \) то

\[v^{(\beta)}_t - a(t)v_{xx} = F_0(x) \cdot (g_1(t) - g_2(t)), \quad (x, t) \in Q_0, \tag{29} \]

\[v|_{t=0} = 0, \quad v|_{t=0} = 0, \tag{30} \]

\[(v(x, t), \varphi_0(x)) = 0, \quad t \in [0, T] \tag{31} \]

tа для функції \(v \), як розв'язку першої крайової задачі (29)–(30), правильне зображення

\[(v, \varphi) = \int_0^t \left((F_0, \hat{G}_0\varphi)(t, \tau) \left(g_1(\tau) - g_2(\tau) \right) \right) d\tau, \quad \forall \varphi \in D(Q_0). \tag{32} \]
Підставляючи функцію (32) в умову (31), одержуємо

\[\int_0^t \left(F_0, G_0 \varphi_0 \right)(t, \tau) \left(g_1(\tau) - g_2(\tau) \right) d\tau = 0. \]

Це однорідне лінійне інтегральне рівняння Вольтерри першого роду відносно функції \(z = g_1 - g_2 \). При доведенні попередньої теореми було показано, що воно рівнозначне лінійному однорідному інтегральному рівнянню Вольтерри першого роду з неперервним ядром, а тому \(z(t) = 0, t \in [0, T] \). Тоді з (32) одержуємо \(v(x, t) = 0, (x, t) \in Q_0 \). □

Зазначення. Розглянуто задачі в одновимірному просторовому випадку. Результати поширюються на випадок \(Q_0 = \Omega \times (0, T] \), де \(\Omega \) — обмежена область в \(\mathbb{R}^N \), \(N \geq 2 \).

REFERENCES

We prove the unique solvability of the problem on determination of the solution \(u(x,t) \) of the first boundary value problem for equation
\[
\frac{\partial^\beta}{\partial t^\beta} u - a(t)\Delta u = F_0(x) \cdot g(t), \quad (x,t) \in (0,1) \times (0,T],
\]
with fractional derivative \(\frac{\partial^\beta}{\partial t^\beta} \) of the order \(\beta \in (0,2) \), generalized functions in initial conditions, and also determination of unknown continuous coefficient \(a(t) > 0, t \in [0,T] \) (or unknown continuous function \(g(t) \)) under given the values \((a(t)u_x(\cdot,t), \varphi_0(\cdot))\) (\((u(\cdot,t), \varphi_0(\cdot))\), respectively) of according generalized function onto some test function \(\varphi_0(x) \).

Key words and phrases: fractional derivative, inverse boundary value problem, Green vector-function, operator equation.

Доказана однозначная разрешимость задач об определении решения \(u(x,t) \) первой краевой задачи для уравнения
\[
\frac{\partial^\beta}{\partial t^\beta} u - a(t)u_{xx} = F_0(x) \cdot g(t), \quad (x,t) \in (0,1) \times (0,T],
\]
с дробной производной \(\frac{\partial^\beta}{\partial t^\beta} \) порядка \(\beta \in (0,2) \), обобщенными функциями в начальных условиях, а также неизвестного непрерывного коэффициента \(a(t) > 0, t \in [0,T] \) (или неизвестной непрерывной функции \(g(t) \)) при дополнительно заданных значенияях \((a(t)u_x(x,t), \varphi_0(x))\) (\((u(x,t), \varphi_0(x))\)) соответствующей обобщенной функции на некоторой основной функции \(\varphi_0(x) \).

Ключевые слова и фразы: производная дробного порядка, обобщенная функция, обратная краевая задача, вектор-функция Грина, операторное уравнение.

ЛАУКАШЕНКО М.П.

КІЛЬЦЯ З НІЛЬПОТЕТНИМИ ДИФЕРЕНЦІЮВАНЯМИ ІНДЕКСІВ \(\leq 2 \)

Встановлено, що в напівпервинному кільці всі диференціювання (відповідно внутрішні диференціювання) нільпотентні тоді і тільки тоді, коли воно диференційно тривіальні (відповідно комутативні). Радикал Джекобсона кільма з нільпотентними диференціюваннями індексів \(\leq 2 \) містить всі нільпотентні елементи кільця.

Ключові слова і фрази: диференціювання, напівпервинне кільце.

1 Вступ

Нехай надалі \(R \) — асоціативне кільце з одиницею 1. Відображення \(d : R \rightarrow R \) називається диференціюванням кільця \(R \), якщо

\[
d(a + b) = d(a) + d(b) \quad \text{та} \quad d(ab) = d(a)b + ad(b)
\]

для будь-яких \(a, b \in R \). Множину всіх диференційовань кільця будемо позначати символом \(\text{Der} R \). Зрозуміло, що нульове відображення \(0_R : R \ni r \mapsto 0 \in R \)

є диференціюванням, тобто \(0_R \in \text{Der} R \). Множина \(\text{Der} R \) — кільце Лі стосовно операцій поточкового додавання " + " та поточкового множення Лі "[−, −]". Якщо \(\text{Der} R = \{0_R\} \), то кільце \(R \) будемо називати диференційно тривіальним [1]. Якщо \(a, x \in R \), то правило

\[
\partial_a(x) = ax - xa = [a, x]
\]

визначає диференціювання кільця \(R \), яке прийнято називати внутрішнім диференціюванням \(R \), породженим елементом \(a \).

Низка робіт присвячена дослідженню різних аспектів нільпотентності, пов'язаних з диференціюваннями (див. [4], [7]). Нагадаємо, що диференціювання \(d \in \text{Der} R \) називається нільпотентним, якщо \(d^n = 0_R \) для деякого додатнього цілого числа \(n \). Найменше таке \(n \) прийнято називати індексом нільпотентності диференціювання \(d \).

Нами встановлено такі результати.

Твердження 1. Нехай \(R \) — кільце вільне від 2-скруту, всі диференціювання якого нільпотентні індексу нільпотентності \(\leq 2 \). Тоді:

УДК 512.4
2010 Mathematics Subject Classification: 16N60, 16W25.
(i) всі його нільпотентні елементи містяться в радикалі Джекобсона $J(R)$.

(ii) якщо $J(R) = 0$, то R диференційно тривіальне.

Нагадаємо, що кільце R називається первінним, якщо для будь-яких $a, b \in R$ справді $aRb = 0 \Rightarrow a = 0$ або $b = 0$.

Кільце R називається напівпервинним, якщо воно не містить жодного ненульового нільпотентного ідеала [6]. Нехай n — додатне ціле число. Кільце R називається вільним від n-скруту, якщо для кожного $x \in R$ справді $nx = 0 \Rightarrow x = 0$.

Теорема 1. Нехай R — напівпервинне кільце. Якщо всі диференціювання (відповідно внутрішні диференціювання) кільца R нільпотентні, то R диференційно тривіальне (відповідно комутативне).

Надалі в роботі: p — просте число; $[A, B] = \{ab - ba | a \in A, b \in B\}$ — взаємний комутант підмножин $A, B \subseteq R$; $C(R)$ — комутаторний ідеал кільця. Інші позначення і факти можна знайти в [5] і [6].

2 Елементарні властивості

Лема 1. Нехай R — кільця, $d \in \text{Der} R$. Якщо $d^2 = 0$, то $2d(x)d(y) = 0$ для будь-яких $x, y \in R$.

Доведення. Справді, для довільних $x, y \in R$ встановлюємо

$$0 = d^2(xy) = d(dx)y + xd(y) = d(x)y + d(x)d(y) + d(x)d(y) + xd^2(y) = 2d(x)d(y).$$

Лема 2. Нехай R — кільце, всі диференціювання якого нільпотентні індексів ≤ 2, $d, \delta \in \text{Der} R$ та $a \in R$. Тоді:

(i) $d\delta = -\delta d$,

(ii) якщо $2[R, R] = 0$, то $d(R) \subseteq Z(R)$,

(iii) $[a, d(a)] = 0$,

(iv) $d(e) = 0$ для будь-якого ідемпотента $e \in R$ (а тому кожен ідемпотент є центральним в R),

(v) кожен R-підмодуль A із $\text{Der} R$ — ідеал кільця $A_i \text{Der} R$,

(vi) $\delta(Z(R))d(R) = 0$,

(vii) $3[R, d(R)] = 0$, $[R, d(R)]^2 = 0$ та $3d([R, R]) = 0$,

(viii) $[d(R), d(R)] = 0$.

АУКАШЕНКО М.П.
(ix) Якщо R — комутативне кільце, то $(ad(a))^2 = 0$.

Доведення. Нехай всі довільні $x, a \in R$.

(i) Знаходимо, що

$$0 = (d + \delta)^2(x) = (d + \delta)(d(x) + \delta(x))$$

$$= d^2(x) + (d\delta)(x) + (\delta d)(x) + \delta^2(x) = (d\delta)(x) + (\delta d)(x),$$

тобто $d\delta = -\delta d$.

(ii) Із рівностей

$$[x, d(a)] = xd(a) - d(a)x = \partial_x(d(a)) = -d(\partial_x(a)) = -d(xa - ax)$$

$$= -d(x)a - xd(a) + ad(x) + ad(a)x$$

виливає, що

$$2[x, d(a)] = 2(xd(a) - d(a)x) = ad(x) - d(x)a. \tag{1}$$

Якщо $2[R, R] = 0$, то $d(x) \in Z(R)$.

(iii) Покладаючи в (1) $x = a$, отримуємо, що $[a, d(a)] = 0$.

(iv) Оскільки $d(e^2) = d(e^2) = d(e)e + ed(e)$, то $ed(e)e = 0$. Застосовуючи (iii), робимо висновок, що $d(e) = 0$.

(v) Нехай $\theta \in A$. Позаяк $[\theta, \delta] = 2\theta\delta$, то

$$[\theta, \delta](R) \subseteq 2\theta(\delta(R)) \subseteq 2\theta(R) \subseteq \theta(R),$$

тобто

$$[\theta, \delta] \subseteq R\theta \subseteq A.$$

(vi) Нехай $c \in Z(R)$. Тоді композиція

$$d(c\delta) = -(c\delta)d$$

кососиметрична, а, отже, для будь-якого елемента $x \in R$ маємо

$$d(c)\delta(x) + c(d\delta)(x) = -c(\delta d)(x) = c(d\delta)(x).$$

Як наслідок,

$$d(c)\delta(x) = 0.$$

(vii) З огляду на властивість (ii),

$$-d(x)a - xd(a) + d(a)x + ad(x) = -d(xa - ax) = -(d\partial_x)(a) = (\partial_xd)(a) = xd(a) - d(a)x,$$

а тому

$$2(xd(a) - d(a)x) = ad(x) - d(x)a. \tag{2}$$

Побільшим чином до (1), отримуємо

$$xd(a) - d(a)x = 2(ad(x) - d(x)a). \tag{3}$$

Тоді з (2) та (3) випливає, що

$$3[a, d(x)] = 0. \tag{4}$$

Сумуючи (2) та (3) отримуємо, що $3[x, d(a)] = 3[a, d(x)]$, а звідси $3d([x, a]) = 0$. За лемою 1, $2[R, d(R)]^2 = 0$, звідки на основі (4) отримуємо стверджуване.

(viii) Справді,

$$0 = -(d^2\partial_x)(a) = d(\partial_x(d(a))) = d(xd(a) - d(a)x)$$

$$= d(x)d(a) + xd^2(a) - d^2(a)x - d(a)d(x) = [d(x), d(a)].$$

(ix) Якщо R — комутативне кільце, то $ad \in DerR$, і залишається застосувати властивість (vi).
3 ДОВЕДЕННЯ

Наслідок 1. Нехай R — кільця, всі диференціювання якого нільпотентні індексів нільпотентності ≤ 2, та $d, \delta \in \text{Der}R$. Тоді:

(i) якщо R вільне від 2-скруту, то композиція $d\delta \in \text{Der}R$,

(ii) якщо R вільне від 3-скруту, то $d(R) \subseteq Z(R), d([R,R]) = 0$ та група одиниць $U(R)$ нільпотентна ступеня ≤ 2.

Доведення. (i) Оскільки

$$d\delta + \delta d = d^2 + d\delta + \delta d + \delta^2 = (d + \delta)^2 = 0 \in \text{Der}R$$

та $d\delta - \delta d = [d, \delta] \in \text{Der}R$, то $2d\delta \in \text{Der}R$, а тому $d\delta$ — диференціювання.

(ii) Випливає з леми 2 (vii) та теореми з [3]. □

Доведення твердження 1.

Доведення. (i) Нехай $x \in R$ та $x^2 = 0$. Тоді для будь-якого елемента $a \in R$ маємо

$$0 = \partial_x^2(a) = \partial_x(xa - ax) = x(xa - ax) - (xa - ax) = x^2a - xax - xax + ax^2 = -2xax.$$ (5)

З огляду на те, що R вільне від 2-скруту, отримуємо $x^2t = 0$ для будь-якого $t \in R$, а тому $(xR)^2 = 0$. Це означає, що $x \in xR \subseteq J(R)$.

(ii) Випливає з огляду на лему 1. □

Наслідок 3. Якщо R — кільце, всі внутрішні диференціювання якого нільпотентні, то $C(R) \subseteq P(R) \cap J(R)$.

Доведення. Якщо $x \in R$ та P — первинний ідеал в R, то

$$\partial_t^n = 0$$

для $x = x + P \in R/P$ та деякого цілого додатнього числа n. За теоремою 3 із [2], факторкільце R/P комутативне, а тому $C(R) \subseteq P(R)$. □

Наслідок 4. Якщо R — регулярне кільце з нільпотентними диференціюваннями (відповідно нільпотентними внутрішніми диференціюваннями), то R диференційно тривіальнє (відповідно комутативне).

Доведення. За наслідком 2,

$$C(R) \subseteq J(R)$$

— ніль-ідеал в R. Оскільки радикал Джекобсона не містить нетривіальних ідемпотентів, то $J(R) = 0$. Тоді R — комутативне кільце. Решта випливає з огляду на наслідок 1. □
Наслідок 4. Нехай R — кільце, що є антисингулярним правим R-модулем. Якщо всі внутрішні диференціювання нільпотентні індексів нільпотентності ≤ 2, то кільце R комутативне.

Доведення теореми 1. Оскільки будь-яке внутрішнє диференціювання нільпотентне, то для кожного $x \in R$ знайдеться таке додатне ціле число $n = n(x)$, що

$$d^n_x(a) = 0$$

для всіх $a \in R$, тобто

$$[\ldots, [a, x], x] \ldots, x] = 0.$$

 За теоремою 3 із [2], кільце R комутативне. Тоді з огляду на лему 2 (ix)

$$\alpha \delta(a) = 0$$

для всіх $a \in R$, що неможливо. Отже, R — диференційно тривіальне кільце. □

References

We prove that a semiprime ring with nilpotent derivations (respectively inner derivations) is differentially trivial (respectively commutative). The Jacobson radical $J(R)$ of a ring R with nilpotent derivations contains all its nilpotent elements.

Key words and phrases: derivation, semiprime ring.

Лукашенко М.П. Кольца с нильпотентными дифференцированиями индексов ≤ 2 // Карпатские матем. публ. — 2014. — Т.6, №1. — С. 91–95.

Доказано, что в полупервичному кольці все диференцирования (соответственно внутренние дифференцирования) нильпотентны тогда и только тогда, когда оно дифференциально тривиальное (соответственно коммутативное). Радикал Джекобсона кольца с нильпотентными дифференцированиями индексов ≤ 2 содержит все нильпотентные элементы кольца.

Ключевые слова и фразы: дифференцирование, полупервичное кольцо.
ЛУКАШІВ Т.О.

АСИМПТОТИЧНА СТОХАСТИЧНА СТІЙКІСТЬ СТОХАСТИЧНИХ ДИНАМІЧНИХ СИСТЕМ ВИПАДКОВОЇ СТРУКТУРИ З ПОСТІЙНИМ ЗАПІЗНЕННЯМ

Використано метод функціоналів Ляпунова-Красовського для дослідження асимптичної стокоастичної стійкості в цілому стохастичних дифузійних динамічних систем випадкової структури з постійним запізненням, які перебувають під впливом зовнішніх імпульсних збурень типу ланцюга Маркова.

Ключові слова і фрази: метод функціоналів Ляпунова-Красовського, динамічна система випадкової структури, зовнішні марковські перемикання, асимптична стохастична стійкість в цілому.

Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна.
E-mail: t.lukashiv@gmail.com

Вступ

Стійкість стохастичних диференційних рівнянь з марковськими перемиканнями обговорювалася багатьма авторами, наприклад, І.Я. Кац [5], Є.Ф. Царков [10], К. Мао [6], Л.Ю. Шайхет [7], [11], М. Марітон [8], Г.К. Басак [1].

У даній роботі для дослідження асимптичної стохастичної стійкості нового класу стохастичних динамічних систем випадкової структури з постійним запізненням і зовнішніми марковськими перемиканнями використано методику [9], яка, в свою чергу, є об'єднанням методики дослідження систем випадкової структури за І.Я. Кацом [5] та методики врахування зовнішніх марковських перемикань за Є.Ф. Царковом [10].

1 Постановка задачі

На ймовірнісному базисі $(\Omega, \mathcal{F}, \mathbb{P} = \{\mathcal{F}_t \subset \mathcal{F}, t \geq 0\}, \mathbb{P})$ [4] розглянемо дифузійне стохастичне диференціально-різницеве рівняння (СДРР)

$$dx(t) = a(t, \xi(t), x(t), x(t-r))dt + b(t, \xi(t), x(t), x(t-r))dw(t),$$

із зовнішніми марковськими перемиканнями

$$\Delta x(t_k) = x(t_k) - x(t_k-) = g(t_k-, \xi(t_k-), \eta_k, x(t_k-)),$$

$$t_k \in S \equiv \{t_n \uparrow, n \in \mathbb{N}\},$$

УДК 519.217; 519.718
2010 Mathematics Subject Classification: 60J10, 60J27, 60H10, 68U20.

© Лукашів Т.О., 2014
із початковими умовами

\[x_t = \varphi \in D \equiv D ([t_0 - r, t_0], R^m), \xi(t_0) = y \in Y, \eta_{t_0} = h \in H. \] (3)

Тут \(\xi(t) \) — марковський процес із значеннями в метричному просторі \(Y \) з перехідною ймовірністю \(P(s, y, t, A); (\eta_k, k \geq 0) \) — ланцюг Маркова із значеннями в метричному просторі \(H \) з перехідною ймовірністю на \(k \)-ому крізь \(P_k(h, G) \); \(x_t = x(t + s), -r \leq s \leq 0; \theta \in [t_0 - r, t_0], r > 0; w(t) \) — одновимірний стандартний вінерів процес [4]; \(D \) — простір Скорохода неперервних справа функцій, що мають лівосторонні граничі [12] з нормою

\[||\varphi|| = \sup_{t_0 - r \leq \theta \leq t_0} |\varphi(\theta)|. \] (4)

Зазначення 1. Простір \(D \) не є повним відносно (4), тому будемо працювати у розширеному просторі Скорохода \(\mathcal{D} \), який містить всі граничні фундаментальних послідовностей [12]. Надалі \(D \) будемо розуміти як розширенний простір \(\mathcal{D} \).

Припустимо, що вимірні за сукупністю змінних відображення \(a : R_+ \times Y \times R^m \times R^m \to R^m; b : R_+ \times Y \times R^m \times R^m \to R^m; g : R_+ \times Y \times H \times R^m \to R^m \) задовольняють умову Ліпшиця

\[|a(t, y, \varphi_1, \varphi_2) - a(t, y, \psi_1, \psi_2)|^2 + |b(t, y, \varphi_1, \varphi_2) - b(t, y, \psi_1, \psi_2)|^2 + |g(t, y, \varphi_3) - g(t, y, \psi_3)|^2 \leq L (||\varphi_1 - \psi_1||^2 + ||\varphi_2 - \psi_2||^2 + ||\varphi_3 - \psi_3||^2) \] (5)

при \(\forall t \geq 0, y \in Y, h \in H, \varphi_i, \psi_i \in D, i \in \{1, 2, 3\}, \) та умову

\[|a(t, y, 0, 0)| + |b(t, y, 0, 0)| + |g(t, y, h, 0)| = c < \infty. \] (6)

Вказані умови щодо \(a, b \) і \(g \) гарантують існування сильного розв'язку задачі (1)–(3) з точністю до стохастичної еквівалентності при будь-яких \(t_0 \geq 0, \varphi \in D \) і заданих реалізаціях марковського процесу \(\{\xi(t), t \geq t_0\} \) \(Y \) і ланцюга Маркова \((\eta_k, k \geq k_0) [13, 14] \).

2 ПОВЕДІНКА ТРАЄКТОРІЙ

Обговоримо вплив процесу \(\{\xi(t), t \geq t_0\} \) і ланцюга Маркова \((\eta_k, k \geq k_0) \) на траекторії системи (1)–(3).

Випадкові зміни структури системи (1) викликаються зміною значення параметра \(\xi(t) \), який має наступний зміст.

I. Нехай \(\xi(t) \in Y \) — супро́вий скалярний марковський процес, умовна ймовірність якого допускає розклад [3]

\[P \{\xi(t + \Delta t) \in [\beta, \beta + \Delta \beta] / \xi(t) = \alpha \neq \beta\} = p(t, \alpha, \beta) \Delta \beta \Delta t + o(\Delta t), \]

\[P \{\xi(t) = \alpha, t < \tau < t + \Delta t / \xi(t) = \alpha\} = 1 - p'(t, \alpha) \Delta t + o(\Delta t). \]

II. Скалярний процес \(\xi(t) \) — однорідний марковський ланцюг із скінченим числом станів \(Y = \{y_1, y_2, ..., y_k\} \) і відомими параметрами \(q_{ij} \) за умови \(q_i = \sum_{j \neq i} q_{ij}, i, j = 1, k. \) При цьому умовні ймовірності допускають розклад

\[P \{\xi(t + \Delta t) = y_i / \xi(t) = y_1\} = q_{ij} \Delta t + o(\Delta t), \]

\[P \{\xi(t) = y_i, t < \tau < t + \Delta t / \xi(t) = y_i\} = 1 - q_i \Delta t + o(\Delta t). \]
III. Зміна розв'язку $x(t)$. У момент τ зміни структури системи $y_i \rightarrow y_j$ відбувається випадкова стрибкоподібна зміна фазового вектора $x(\tau - 0) = x$, $x(\tau) = z$, для якого задана умова шільність $p_{ij}(\tau, z)$, а саме:

$$P \{ x(\tau) \in [z, z + dz]/\xi(t - 0) = x \} = p_{ij}(\tau, z/x)dz + o(dz).$$

Розглянемо спочатку першу особливість, яка виникає при моделюванні системи (1), що знаходиться під впливом внутрішнього (параметричного) збурення $\xi(t)$ [5] з початковими даними (3) (без урахування зовнішніх марковських перемикань (2)).

Припустимо, для спрощення, що $\xi(t)$ — простий марковський ланцюг зі скінченним числом станів, то бото $Y = \{y_1, y_2, ..., y_i\}$ (випадок II), що означає майже кускову сталість всіх реалізацій $\xi(t)$, а переходи — перемикання системи — відбуваються у випадкові моменти часу.

Тоді на випадковому інтервалі $t \in [\tau - s, \tau)$, де $\xi(t) = y_i \in Y$, рух буде відбуватися, на підставі САРР (1), для $t \in [\tau - s, \tau)$ в силу системи

$$dx(t) = a(t, y_i, x(t), x(t - r))dt + b(t, y_i, x(t), x(t - r))dw(t), \quad (7)$$

$$x(t - s) = x(\theta), \theta \in [\tau - s, \tau - s]; \quad \xi(t - s) = y_i.$$

Далі, якщо τ — момент переходу значення $\xi(t - 0) = y_i$ до значення $\xi(\tau) = y_j \neq y_i$, то на наступному інтервалі сталості $\xi(\tau) = y_j$ слід розв'язувати САРР (7) з y_j замість y_i.

Цим, власне, і пояснюється визначення системи (1) як системи випадкової структури. Найцікавішими в більшості випадків є наступні варіанти поведінки траєкторії сильного розв'язку САРР (1) з початковою умовою (3).

В1. У момент стрибкоподібної зміни структури $\xi(t)$ фазовий вектор $x(t)$ змінюється неперервно з імовірністю 1, тобто в момент τ зміна структури системи не відбувається $x(\tau - 0) = x(\tau)$.

В2. У момент $\tau > 0$ стрибкоподібної зміни структури фазовий вектор однозначно визначається станом, в якому знаходилась система безпосередньо перед зміною структури і переходом $\xi(t - 0) = y_i$ в $\xi(\tau) = y_j \neq y_i$.

В цьому випадку природно припустити, що $x(\tau) = \varphi_{ij}(x(\tau - 0)), i \neq j$, де $\varphi_{ij} \in C(R^m)$, причому $\varphi_{ij}(0) = 0$.

В3. Найзагальніший випадок виникає тоді, коли для випадкового моменту τ зміни структури системи (1) $y_i \rightarrow y_j$ слід задати умовний закон розподілу початкового стану $x(\tau) \equiv x(\tau, \omega) \in R^m$, $\tau \in R^+$, $\omega \in \Omega$ для зміненої структури САРР (1):

$$P \{ x(\tau) \in [z, z + dz]/x(\tau - 0) = x \} = p_{ij}(\tau, z/x)dz + o(dz),$$

де $p_{ij}(\tau, z/x)$ означає умовну ймовірність вказаного m-вимірного розподілу.

Щодо зовнішніх перемикань (2), які визначаються ланцюгом Маркова $\{\eta_k, k \geq 0\}$, то їх врахування дозволяє розглядати скінченні стрибки траєкторій розв'язку системи (1) в перетині із вищезазначеними випадками.

3 АСИМПТОТИЧНА СТОХАСТИЧНА СТИЙКІСТЬ ЗА ЙМОВІРНІСТЮ В ЦІЛОМУ

Позначимо через $P_k((y, h), \Gamma \times G)$ перехідну ймовірність ланцюга Маркова $(\xi(t_k), \eta_k)$ на k-ому кроці. Ввівши індекс $P_{y,h}^k(\xi(t_{k+1}) \in \Gamma, \eta_{k+1} \in G) = P_k((y, h), \Gamma \times G)$, введемо функцію

$$P_k((y, h, \varphi), \Gamma \times G \times C) \equiv P_{y,h}^k(x(t_k, y, h, \varphi) \in C, \xi(t_{k+1}) \in \Gamma, \eta_{k+1} \in G)$$
при всіх \(t_k \in S \cup \{t_0\}, k \in \mathbb{N} \cup \{0\}, \varphi \in \mathbb{D}, y \in \mathbb{Y}, h \in \mathbb{H} \) і борелевих \(C \subset \mathbb{D}, \Gamma \subset \mathbb{Y}, G \subset \mathbb{H}, \) де \(x(t_k, y, h, \varphi) \) — розв'язок системи (1), (2) з початковими умовами (3).

Означення 1. Оператор Ляпунова \((lv_k)(y, h, \varphi)\) на послідовності вимірних функціоналів \(v_k(y, h, \varphi) : Y \times H \times D \to \mathbb{R}^1, k \in \mathbb{N} \cup \{0\}, \) для СДРР (1) із зовнішніми марковськими перемиканнями (2) визначаємо рівністю [3]

\[
(lv_k)(y, h, \varphi) \equiv \int_{Y \times H \times D} P_k(y, h, \varphi)(du \times dz \times dl)v_{k+1}(u, z, l) - v_k(y, h, \varphi).
\]

Означення 2. Функціоналом Ляпунова-Красовського для системи випадкової структури (1)–(3) назовемо послідовність таких невід'ємних функцій \(\{v_k(y, h, \varphi), k \geq 0\} \), що виконуються умови:

1) при \(s \to +\infty \)

\[
v(s) \equiv \inf_{k \in \mathbb{N}, y \in \mathbb{Y}, h \in \mathbb{H}, \varphi \geq s} v_k(y, h, \varphi) \to +\infty;
\]

2) при \(s \to 0 \)

\[
v(s) \equiv \sup_{k \in \mathbb{N}, y \in \mathbb{Y}, h \in \mathbb{H}, \varphi \leq s} v_k(y, h, \varphi) \to 0;
\]

причому \(v(s) \) і \(v(s) \) неперервні і монотонні.

Означення 3. Систему випадкової структури (1)–(3) назовемо:

— стійкою за ймовірністю в цілому, якщо \(\forall \varepsilon_1 > 0, \varepsilon_2 > 0 \) можна вказати таке \(\delta > 0 \), що з нерівності \(\|x(t_0)\| < \delta \) випливає нерівність

\[
P\left\{ \sup_{t \geq t_0} |x(t_0, y, h, \varphi)| > \varepsilon_1 \right\} < \varepsilon_2
\]

при всіх \(y \in \mathbb{Y}, h \in \mathbb{H}, \varphi \in \mathbb{D} \) і \(t_0 \geq 0 \);

— асимптотично стохастично стійкою в цілому, якщо вона стійка за ймовірністю, і для довільного \(\varepsilon > 0 \) існує таке \(\delta_1 > 0 \), що

\[
\lim_{T \to \infty} P\left\{ \sup_{t \geq T} |x(t, y, h, \varphi)| > \varepsilon \right\} = 0
\]

при всіх \(\|x(t)\| < \delta_1, y \in \mathbb{Y}, h \in \mathbb{H}, \varphi \in \mathbb{D} \) і \(T \geq t_0 > 0 \).

Для подальших викладок використовуватимемо оцінку розв'язку задачі (1)–(3) на інтервалах \([t_k, t_{k+1})\), \(k \geq 0 \).

Лема 1. При виконанні умов (5), (6) при всіх \(k \geq 0 \) для сильного розв'язку задачі Коші (1)–(3) має місце нерівність

\[
E\left\{ \sup_{t_1 \leq t \leq t_{k+1}} |x(t)|^2 \right\} \leq 15(1 + 4L)e^{5L(1+4L)(t_{k+1} - t_k)} \left(E\left\{ x^2(t_k) \right\} + 2c^2(t_{k+1} - t_k) \right).
\]

Доведення. При всіх \(t \in [t_k, t_{k+1}), t_k \geq t_0 \) використовуючи інтегральну форму запису розв'язку СДРР (1) [2, 14], легко записати нерівність

\[
|x(t)| \leq |x(t_k)| + \int_{t_k}^{t} |a(\tau, y, x(\tau), x(\tau - r)) - a(\tau, y, 0, 0)|d\tau
\]

\[
+ \int_{t_k}^{t} |a(\tau, y, 0, 0)|d\tau + \int_{t_k}^{t} |b(\tau, y, x(\tau), x(\tau - r)) - b(\tau, y, 0, 0)|dw(\tau) + \int_{t_k}^{t} |b(\tau, y, 0, 0)|dw(\tau)
\]

\[
+ \int_{t_k}^{t} |b(\tau, y, 0, 0)|d\tau.
\]
Піднесемо до квадрату ліву і праву частини одержаної нерівності, обчислимо sup від одержаного виразу, використовши нерівність Коші-Буняковського і нерівність для оцінки умовного математичного сподівання від квадрата супремума інтеграла Вінера-Іто. Врахувавши (5), (6), одержимо

\[E \left\{ \sup_{t_k \leq t < t_{k+1}} |x(t)|^2 \right\} \leq 5 \left[E \left\{ x^2(t_k) \right\} + 2c^2(t_{k+1} - t_k) \right] + \left(L(t_{k+1} - t_k) + 4L^2(t_{k+1} - t_k) \right) \cdot E \left\{ \sup_{t_k \leq t < t_{k+1}} \int |x(\tau)|^2 d\tau \right\} \]

Далі, застосовуючи нерівність Гронуолла [14], легко побачити, що

\[E \left\{ \sup_{t_k \leq t < t_{k+1}} |x(t)|^2 \right\} \leq 5 \left[E \left\{ x^2(t_k) \right\} + 2c^2(t_{k+1} - t_k) \right] e^{5L(1+4L)(t_{k+1} - t_k)^2}. \]

Для \(t = t_{k+1} \) сильний розв'язок системи (1)–(3), очевидно, повинен задовольняти нерівність

\[E \left\{ |x(t_{k+1})|^2 \right\} \leq 3 \left[E \left\{ x^2(t_{k+1}) \right\} \right] + 2E \left\{ |g(t_{k+1} - \xi(t_{k+1} -), \eta_{k+1}, x(t_{k+1} -)) - g(t_{k+1} - \xi(t_{k+1} -), \eta_{k+1}, 0)|^2 \right\} + 2E \left\{ |g(t_{k+1} - \xi(t_{k+1} -), \eta_{k+1}, 0)|^2 \right\} \leq 3 \left[1 + 2L \right] E \left\{ \sup_{t_k \leq t < t_{k+1}} |x(t)|^2 \right\} + 2c^2. \]

Об'єднуючи дві останні нерівності, одержимо потрібну нерівність (9). □

Теорема 1. Нехай:
1) \(0 < |t_{k+1} - t_k| \leq \Delta, k \geq 0, \Delta > 0; \)
2) виконується умова Ліпшица (5);
3) існують такі послідовності функціоналів Ляпунова-Красовського \(v_k(y, h, \phi) \) і \(a_k(y, h, \phi) \), \(k > 0 \), що на підставі системи (1)–(3) правильна нерівність

\[(lv_k)(y, h, \phi) \leq -a_k(y, h, \phi). \] (10)

Тоді сильний розв'язок системи випадкової структури (1), (3) із зовнішніми перемиканнями типу ланцюга Маркова (2) асимптотично стохастично стійкий в цілому.

Доведення. Позначимо через \(\mathcal{U}_t \) мінімальну \(\sigma \)-алгебру, відносно якої вимірні \(\xi(t) \) при всіх \(t \in [t_0, t_k] \) і \(\eta_n \) при \(n \leq k \). Тоді умовне математичне сподівання можна обчислити за формулою [3]

\[E\{v_{k+1}(\xi(t_{k+1}), \eta_{k+1}, x(t_{k+1}))/\mathcal{U}_t\} = \int_{Y \times H \times D} P_k(y, h, \phi)(du \times dz \times dl) \cdot v_{k+1}(u, z, l) \bigg|_{y=\xi(t_k), h=\eta_k, \phi=x(t)|t-r \leq l \leq t}, \] (11)

Тут \(v_{k+1}(\xi(t_{k+1}), \eta_{k+1}, x(t_{k+1})) \) означає, що розглядається функціонал Ляпунова-Красовського \(v_k(y, h, \phi) \) на інтервалі \([t_k, t_{k+1}) \).
У цьому випадку за означенням дискретного оператора Ляпунова \((lv_k)(y, h, \varphi)\) з рівності (11) одержимо, враховуючи (10), нерівність

\[
E\{v_{k+1}(\zeta(t_{k+1}), \eta_{k+1}, x(t_{k+1}))/U_k\} = v_k(\zeta(t_k), \eta_k, x(t_k)) + (lv_k)(\zeta(t_k), \eta_k, x(t_k)) \leq \sigma(\|x_k\|),
\]

яка виконується м.н., як і всі подальші нерівності.

З нерівності (9) (за нерівністю Ляпунова для моментів [4] з існування другого моменту випливає існування першого моменту) і властивостей функції \(\sigma\) випливає існування умовного математичного сподівання лівої частини нерівності (12).

Тепер, на основі (11), запишемо дискретний оператор Ляпунова \((lv_k)(\zeta(t_k), \eta_k, x(t_k))\) вздовж розв'язків (1)–(3):

\[
(lv_k)(\zeta(t_k), \eta_k, x(t_k)) = E\{v_{k+1}(\zeta(t_{k+1}), \eta_{k+1}, x(t_{k+1}))/U_k\} - v_k(\zeta(t_k), \eta_k, x(t_k)) \
\leq -a_k(\zeta(t_k), \eta_k, x(t_k)) \leq 0.
\]

(13)

Тоді при \(k \geq 0\) виконується нерівність

\[
E\{v_{k+1}(\zeta(t_{k+1}), \eta_{k+1}, x(t_{k+1}))/U_k\} \leq v_k(\zeta(t_k), \eta_k, x(t_k)).
\]

За означенням супермартингала [4], послідовність випадкових величин \(\{v_k(\zeta(t_k), \eta_k, x(t_k))\}\)
при \(k \in \mathbb{N}\) утворює супермартингал відносно \(\mathcal{F}_k\) [10].

Далі, знайшовши математичне сподівання від обох частин нерівності (13), і просумувавши за \(k\) від \(n \geq k_0\) до \(N\), одержимо

\[
E\{v_{N+1}(\zeta(t_{N+1}), \eta_{N+1}, x(t_{N+1}))/U_k\} - E\{v_n(\zeta(t_n), \eta_n, x(t_n))\}
= \sum_{k=n}^{N} E\{(lv_k)(\zeta(t_k), \eta_k, x(t_k))\} \leq -\sum_{k=n}^{N} E\{a_k(\zeta(t_k), \eta_k, x(t_k))\} \leq 0.
\]

(14)

Тому маємо

\[
P\left(\sup_{t \geq t_0} |x(t, y, h, \varphi)| > \varepsilon_1\right) = P\left(\sup_{n \in \mathbb{N}} \sup_{t \geq t_0, n+1 \leq t \leq t_0+n} |x(t, y, h, \varphi)| > \varepsilon_1\right)
\leq P\left(\sup_{n \in \mathbb{N}} |x(t_{0+n-1}, y, h, \varphi)| > \varepsilon_1\right)
\leq P\left(\sup_{n \in \mathbb{N}} v_{k_0+n-1}(\zeta(t_{k_0+n-1}), \eta_{k_0+n-1}, x(t_{k_0+n-1})) \geq \bar{\sigma}(\varepsilon_1)\right), \ \forall \varepsilon_1 > 0.
\]

(15)

Дійсно, якщо \(\sup \|x_{t_k}\| \geq s\), то на основі (8) виконується нерівність

\[
\inf_{k \geq k_0, \varphi \in Y, h \in H, \|\varphi\| \geq s} v_k(y, h, \varphi) = \bar{\sigma}(s).
\]

Тепер скористаємося відомою нерівністю для невід'ємних супермартингалів й одержимо, що (15):

\[
P\left(\sup_{n \in \mathbb{N}} v_{k_0+n-1}(\zeta(t_{k_0+n-1}), \eta_{k_0+n-1}, x(t_{k_0+n-1})) \geq \bar{\sigma}(\varepsilon_1)\right) \leq \frac{1}{\bar{\sigma}(\varepsilon_1)} v_{k_0}(y, h, \varphi) \leq \frac{\sigma(\|\varphi\|)}{\bar{\sigma}(\varepsilon_1)}.
\]

(16)

На основі нерівності (15) нерівність (16) дає можливість гарантувати виконання нерівності

\[
P\left(\sup_{t \geq t_0} |x(t_0, y, h, \varphi)| > \varepsilon_1\right) < \varepsilon_2, \ \forall \varepsilon_1 > 0, \varepsilon_2 > 0,
\]
а це означає, що система (1)–(3) стійка за ймовірністю в цілому.

З нерівностей (14) випливають оцінки

$$E\{v_{N+1}(\xi(t_{N+1}), \eta_{N+1}, x(t_{N+1}))\} \leq v_{k_0}(y, h, \varphi),$$

$$\sum_{k=k_0}^{N} E\{a_k(\xi(t_k), \eta_k, x(t_k))\} \leq v_{k_0}(y, h, \varphi),$$

(17)

при всіх \(N \geq k_0, y \in Y, h \in H, \varphi \in D. \)

На підставі того, що послідовність \(\{a_k\} \), \(k \geq 0 \), є функціоналами Ляпунова-Красовського, існують такі неперервні строго монотонні функції \(a(s) \) і \(\bar{a}(s) \), що

$$a(\|\varphi\|) \leq a_k(y, h, \varphi) \leq \bar{a}(\|\varphi\|),$$

для \(\forall k \in N, y \in Y, h \in H, \varphi \in D \) \(a(0) = \bar{a}(0) = 0. \)

Таким чином, із збіжності ряду у (17) випливає збіжність ряду

$$\sum_{k=k_0}^{\infty} E\{|x(t_k, y, h, \varphi)|\}$$

для \(\forall t_0 \geq 0, y \in Y, h \in H, \varphi \in D. \)

Тоді в силу неперервності \(a(s) \) і рівності \(a(0) = 0 \) матимемо \(\lim_{k \to \infty} |x(t_k, y, h, \varphi)| = 0. \)

Звідси випливає прямування до нуля за ймовірністю послідовності \(\sigma(|x(t_k, y, h, \varphi)|) \) при \(k \to \infty \) для \(\forall t_0 \geq 0, y \in Y, h \in H, \varphi \in D. \)

Отже, з властивостей функціоналів Ляпунова-Красовського [2, 10] робимо висновок, що невід'ємний супермартингал \(v_k(\xi(t_k), \eta_k, x(t_k)) \) при \(k \to \infty \) прямує до нуля за ймовірністю при всіх реалізаціях процесу \(\xi(t) = \xi(t, \upsilon) \) і послідовності \(\{\eta_k\}, k \leq 1. \)

Далі, невід'ємний обмежений зверху супермартингал має границю з імовірністю однієї [4]. Тоді, використовуючи (9), одержимо

$$\lim_{k \to \infty} P\{\sup_{t \geq T} |x(t_k, y, h, \varphi)| > \varepsilon\} = 0,$$

при всіх \(y \in Y, h \in H, \varphi \in D \) і \(T \geq t_0 \geq 0 \), що означає, асимптотичну стохастичну стійкість в цілому сильного розв'язку системи (1)–(3). Теорема доведена.

Як наслідок теореми 1, випливає твердження.

Теорема 2. Нехай:
1) виконуються умови 1), 2) теореми 1;
2) на підставі системи (1)–(3) для послідовності функціоналів Ляпунова-Красовського \(\{v_k, k \geq 0\} \) виконується нерівність \((l_k)(y, h, \varphi) \leq 0 \) для \(\forall k \geq 0, y \in Y, h \in H, \varphi \in D. \)

Тоді динамічна система випадкової структури (1)–(3) стійка за ймовірністю в цілому.

ВИСНОВКИ

Знайдено достатні умови стійкості за ймовірністю в цілому, асимптотичної стохастичної стійкості в цілому сильного розв'язку дифузійних стохастичних динамічних систем випадкової структури з постійним запізненням і зовнішніми перемиканнями типу ланцюга Маркова.
АСИМПТОТИЧНА СТОХАСТИЧНА СТІЙКІСТЬ

References

[14] Yasynskyy V.K., Yasynskyy Ye.V. Problems of the stability and stabilization of the dynamical systems with finite aftereffect. TViMS, Kyiv, 2005. (in Ukrainian)

The method of Lyapunov-Krasovskyy functionals is used for the researching of the asymptotic stochastic stability in whole of the stochastic diffusion dynamical systems of the random structure with constant delay, which is under the influence of external impulse disturbances of the Markov’s chain type.

Key words and phrases: Lyapunov-Krasovskyy functionals method, dynamical system of the random structure, external Markov switchings, asymptotic stochastic stability in the whole.

Использован метод функционалов Ляпунова-Красовского для исследования асимптотической стохастической устойчивости в целом стохастических диффузионных динамических систем случайной структуры с постоянным запаздыванием, которые пребывают под влиянием внешних импульсных возмущений типа цепи Маркова.

Ключевые слова и фразы: метод функционалов Ляпунова-Красовского, динамическая система случайной структуры, внешние марковские переключения, асимптотическая стохастическая устойчивость в целом.
ЛУЧКО В.М.

ЗАДАЧА КОШІ ДЛЯ ПАРАБОЛІЧНОГО РІВНЯННЯ НАД ПОЛЕМ p-АДИЧНИХ ЧИСЕЛ З ІМПУЛЬСНИМ ВПЛИВОМ

Розглянуто задачу Коші для параболічного рівняння з імпульсним впливом, побудовано її розв'язок та вивчено властивості розв'язку над полем Q_p.

Ключові слова і фрази: задача Коші, матрицант, імпульсна дія.

Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна
E-mail: vmluchko@gmail.com

Вступ

Однією з альтернативних можливостей для опису структури простору-часу є використання поля Q_p p-адичних чисел замість множини \mathbb{R} дійсних чисел. На можливість використання p-адичних чисел у математичній фізиці було вперше вказано у 1984 р. у роботі [7] Владімірова В.С. і Воловіча І.В.

У праці [6] побудована теорія узагальнених функцій над простором функцій з Q_p в \mathbb{C}, яка застосовується до тих задач, що виникають у математичній фізиці. Теорія у багато чому аналогічна відповідній теорії над множиною \mathbb{R}, але є певні суть зміни відмінності. Основну увагу приділяється теорії згортки, перетворення Фур'є, аналогу оператора Рімана-Ліувіля, обчисленню інтегралів.

Параболічні рівняння над полем p-адичних чисел вивчалися у праці А.Н. Кочубея [4], в якій при певних припущеннях відносно коефіцієнтів, побудовано і досліджені фундаментальний розв'язок задачі Коші, доведені існування та єдність розв'язку у класах зростаючих функцій, знайдені умови невід'ємності фундаментального розв'язку.

На даний момент опубліковано чимало праць, присвячених дослідженню задач з імпульсною дією для різних класів диференційальних рівнянь. Найбільш повні та глибокі дослідження таких задач вивчені А.М. Самойленком та О.М. Перестюком. В їх монографії [5] досліджуються основні питання теорії диференційальних рівнянь з імпульсною дією. Наведена загальна характеристика систем таких рівнянь, вказано подібність та відмінність задач даної теорії із задачами звичайних диференційальних рівнянь. Основну увагу в роботі приділяється дослідженню періодичних та майже періодичних розв'язків систем з імпульсною дією, інтегральних множин рівнянь, що розглядаються, питанню стійкості розв'язку, імпульсному керуванню процесами.

© Лучко В.М., 2014
1 ОСНОВНІ ПОНЯТТЯ P-АДИЧНОГО АНАЛІЗУ

Наведемо деякі твердження p-адичного аналізу, які будуть використовуватися в подальшому. Детальне їх викладення міститься у [2, 6].

Нехай p — просте число, яке надалі буде фіксованим. Введемо на множині Q норму |x|_p за правилом |0|_p = 0, |x|_p = p^{-γ}, якщо раціональне число x подане у вигляді

\[x = p^m \frac{m}{n}, \]

де \(\{m, n, \gamma\} \subseteq \mathbb{Z} \), \(m, n \) не діляться на \(p \). Доповнення Q за p-адичною нормою утворює поле \(\mathbb{Q}_p \) p-адичних чисел.

Норма \(| \cdot |_p\) володіє наступними властивостями:
1) \(|x|_p = 0 \) у тому випадку, коли \(x = 0 \);
2) \(|xy|_p = |x|_p \cdot |y|_p \); \(|x + y|_p \leq \max (|x|_p, |y|_p)\), причому якщо \(|x|_p \neq |y|_p \), то \(|x + y|_p = \max (|x|_p, |y|_p)\). Таким чином p-адична норма неархімедова.

Метрика \(\rho(x, y) = |x - y|_p \) перетворює поле \(\mathbb{Q}_p \) у повний сепарабельний цілком нев'язний локально компактний метричний простір. На \(\mathbb{Q}_p \) існує (едина, з точністю до множника) міра \(dx \), інваріантна відносно додавання. При цьому, якщо \(a \in \mathbb{Q}_p, a \neq 0 \), то \(d(ax) = |a|_p dx \). Будемо нормувати міру так, що

\[\int |x|_p \leq 1 \]

Простір \(\mathbb{Q}_p \) є об'єднанням зліченної сім'ї попарно неперетинних множин

\[\mathbb{Q}_p = \bigcup_{\nu = -\infty}^{\infty} \{ x : |x|_p = p^\nu \}, \]

при цьому

\[\int_{|x|_p = p^\nu} dx = p^\nu \left(1 - \frac{1}{p}\right). \]

Введемо у розгляд клас \(M_\gamma (\gamma \geq 0) \) комплекснозначних функцій \(\varphi(x) \) на \(\mathbb{Q}_p \), які задовольняють умови:
1) \(|\varphi(x)| \leq c (1 + |x|_p)^\gamma \), де \(c \) — довільна додатна константа;
2) існує таке натуральне число \(N = N(\varphi) \), що для довільного \(x \in \mathbb{Q}_p \)

\[\varphi(x + x') = \varphi(x), \quad |x'| \leq p^{-N}. \]

Функція \(\varphi \), що задовольняє умови 1), 2), називається локально сталою, а число \(N \) — показником локальної сталості функції \(\varphi \). Якщо функція \(\varphi \) залежить також від параметра \(t \), то будемо говорити, що \(\varphi \in M_\gamma \) рівномірно по \(t \), якщо константа \(c \) і показник \(N \) не залежить від \(t \).

Функція \(f(x) \) називається локально-інтегрована на \(\mathbb{Q}_p, f \in L_1(\mathbb{Q}_p, dx) \), якщо для довільного \(N \in \mathbb{Z}_+ \)

\[\int_{|x|_p \leq p^N} |f(x)|dx < \infty. \]
Множину фінітних функцій з \mathcal{M}_0 будемо позначати \mathcal{D}. Нехай χ — нормований адитивний характер поля Q_p, тоді $\chi \in \mathcal{M}_0$. Перетворення Фур'є функцій $\varphi \in L_1(Q_p, dx)$ визначається формулою

$$F(\varphi) = \int \chi(\xi x) \varphi(x) dx, \quad \xi \in Q_p.$$

Обернене перетворення:

$$F^{-1}(\varphi) = \varphi(x) = \int \chi(-\xi x) \varphi(\xi) d\xi, \quad x \in Q_p,$$

якщо $\varphi \in L_1(Q_p, dx)$.

Має місце формула [1]

$$\int f(|x|_p) \chi(\xi x) dx = \left(1 - \frac{1}{p}\right) |\xi|_p^{-1} \sum_{v=0}^{\infty} f\left(p^{-v} |\xi|_p^{-1}\right) p^{-v} - |\xi|_p^{-1} f\left(p |\xi|_p^{-1}\right),$$

де $\xi \neq 0$ і припускається збіжність ряду $\sum_{v=0}^{\infty} f\left(p^{-v}\right)p^{-v}$.

Оператор D^γ диференціювання порядку $\gamma > 0$ визначений на функціях $\varphi \in \mathcal{D}$ формулою [6]

$$(D^\gamma \varphi)(x) = \frac{1}{\Gamma_p(-\gamma)} \left\{ \int \frac{|y|_p^{-\gamma-1}[\varphi(x-y) - \varphi(x)] dy}{|y|_p \leq 1} + \int \frac{|y|_p^{-\gamma-1} \varphi(x-y) dy + \frac{1-p^{-1}}{1-p^{-\gamma}} \varphi(x)}{|y|_p > 1} \right\},$$

де $\Gamma_p(s) = \frac{1-p^{-s}}{1-p^{-s}}$ — p-адичний аналог гама-функції.

У другому інтегралі правої частини (2) додамо і віднімемо $|y|_p^{-\gamma-1} \varphi(x)$ та скористаємось тим, що

$$\int \frac{|y|_p^{-\gamma-1} dy}{|y|_p > 1} = \sum_{v=1}^{\infty} \int \frac{|y|_p^{-\gamma-1} dy}{|y|_p = p^v} = \left(1 - \frac{1}{p}\right) \sum_{v=1}^{\infty} p^{-v\gamma} = \frac{p-1}{p(p^\gamma - 1)}.$$

Тому

$$(D^\gamma \varphi)(x) = \frac{1}{\Gamma_p(-\gamma)} \times \int \frac{|y|_p^{-\gamma-1}[\varphi(x-y) - \varphi(x)] dy}{Q_p}.$$

Таким чином, оператор D^γ визначений на всіх функціях $\varphi \in \mathcal{M}_\beta$, $0 \leq \beta < \gamma$. Якщо $\varphi \in \mathcal{D}$, то перетворення Фур'є функції $D^\gamma \varphi$ дорівнює $|\xi|^\gamma \varphi(\xi)$ у сенсі узагальнених функцій.

2 ОСНОВНИЙ РЕЗУЛЬТАТ

Розглянемо параболічне рівняння

$$\frac{\partial u(t, x)}{\partial t} + a(D^\gamma u)(t, x) = f(t, x), \quad x \in Q_p, t \in (\tau_0, T),$$

(3)
розв'язок якого будемо шукати при $t \neq \tau_j$ такий, що задовольняє умови

$$u(t, x)|_{t=t_0} = \varphi(x),$$

$$u(\tau_j + 0, x) - u(\tau_j - 0, x) = B_j u(\tau_j - 0, x) + a_j(x), \quad j = 1, s,$$

де $\{\varphi, a_j, f\} \subset \mathbb{M}_0, B_j$ — сталі, $\tau_0 < \tau_1 < \ldots < \tau_s < T$, s скінченне, $a > 0$, $\alpha \geq 1$; під $u(\tau_j \pm 0, x)$ будемо розуміти $u(\tau_j \pm 0, x) = \lim_{t \to \tau_j \mp 0} u(t, x)$.

Як і в евклідовому випадку, перший крок полягає у побудові матриці задачі (3)–(5). Її розв'язок будемо шукати у вигляді

$$u(t, x) = F^{-1}(V(t, \sigma)),$$

de $V(t, \sigma)$ є розв'язком задачі Коші з імпульсним впливом для звичайного диференціального рівняння

$$\frac{dV(t, \sigma)}{dt} + a|\sigma|^p V(t, \sigma) = f(t, \sigma), \quad \sigma \in \mathbb{Q}_p,$$

$$V(t, \sigma)|_{t=t_0} = \bar{\varphi}(\sigma),$$

$$V(\tau_j + 0, \sigma) - V(\tau_j - 0, \sigma) = B_j V(\tau_j - 0, \sigma) + \bar{a}_j(\sigma).$$

Покладемо $K(t, \tau, \sigma) = \exp\{-a|\sigma|^p |(t - \tau)|\}$. Побудуємо розв'язок задачі (6)–(8). Для цього спочатку розглянемо проміжок $t \in (t_0, \tau_1]$. Розв'язок рівняння (6) на даному проміжку визначається формулою

$$V(t, \sigma) = K(t, \tau_0, \sigma)c + \int_{\tau_0}^{t} K(t - \tau, \tau_0, \sigma)\bar{f}(\tau, \sigma)d\tau.$$

Згідно з початковою умовою (7) отримаємо

$$V(t, \sigma) = K(t, \tau_0, \sigma)\bar{\varphi}(\sigma) + \int_{\tau_0}^{t} K(t - \tau, \tau_0, \sigma)\bar{f}(\tau, \sigma)d\tau.$$

На проміжку $t \in (\tau_1, \tau_2]$ розв'язок рівняння (6) запишеться

$$V(t, \sigma) = K(t, \tau_1, \sigma)c + \int_{\tau_1}^{t} K(t - \tau, \tau_1, \sigma)f(\tau, \sigma)d\tau.$$

Задовольняючи імпульсну умову (8), із врахуванням (9) будемо мати

$$c = (1 + B_1) \left(K(\tau_1, \tau_0, \sigma)\bar{\varphi}(\sigma) + \int_{\tau_0}^{\tau_1} K(\tau_1 - \tau, \tau_0, \sigma)\bar{f}(\tau, \sigma)d\tau \right) + \bar{a}_1(\sigma),$$

tоді

$$V(t, \sigma) = K(t, \tau_1, \sigma)(1 + B_1)K(\tau_1, \tau_0, \sigma)\bar{\varphi}(\sigma)$$

$$+ \int_{\tau_0}^{\tau_1} K(t, \tau_1, \sigma)(1 + B_1)K(\tau_1 - \tau, \tau_0, \sigma)f(\tau, \sigma)d\tau$$

$$+ \int_{\tau_1}^{t} K(t - \tau, \tau_1, \sigma)f(\tau, \sigma)d\tau + K(t, \tau_1, \sigma)\bar{a}_1(\sigma).$$
Продовжуючи подібні міркування, отримаємо, що розв'язок задачі Коші на проміжку \(t \in (\tau_{s-1}, \tau_s) \) однозначно визначається формулою

\[
V(t, \sigma) = M(t, t_0, \sigma) \phi(\sigma) + \sum_{j=1}^{s} \int_{\tau_{j-1}}^{\tau_j} \mathcal{M}_1(t, \tau, \tau_j, \sigma) \tilde{f}(\tau, \sigma) d\tau + \sum_{j=1}^{s} \mathcal{M}_2(t, \tau, \sigma) a(\sigma),
\]

де використано такі позначення:

\[
\mathcal{M}(t, t_0, \sigma) = K(t, \tau_0, \sigma) \prod_{k=s}^{1}(1 + B_k) K(\tau_k, \tau_{k-1}, \sigma),
\]

\[
\mathcal{M}_1(t, \tau, \tau_j, \sigma) = K(t, \tau, \sigma) \prod_{k=s}^{j+1}(1 + B_k) K(\tau_k, \tau_{k-1}, \sigma) (1 + B_j) K(\tau_j, \tau_{j-1}, \sigma),
\]

\[
\mathcal{M}_2(t, \tau, \sigma) = K(t, \tau, \sigma) \prod_{k=s}^{j+1}(1 + B_k) K(\tau_k, \tau_{k-1}, \sigma).
\]

Застосовуючи обернене перетворення Фур'є до (10), отримаємо зображення розв'язку задачі (3)–(5):

\[
u(t, x) = \int_{Q_p} G_0(t, x - \zeta) \varphi(\zeta) d\zeta + \sum_{j=1}^{s} \int_{Q_p} d\tau \int_{Q_p} G_1(t, \tau, x - \zeta) f(\tau, \zeta, \sigma) d\zeta,
\]

де

\[
G(t, \tau, x) = \int_{Q_p} \chi(-x\sigma) K(t - \tau, \tau_x, \sigma) d\sigma,
\]

\[
G_0(t, x) = \int_{Q_p} \chi(-x\sigma) M(t, t_0, \sigma) d\sigma,
\]

\[
G_1(t, \tau, x) = \int_{Q_p} \chi(-x\sigma) M_1(t, \tau, \tau_j, \sigma) d\sigma,
\]

\[
G_2(t, x) = \int_{Q_p} \chi(-x\sigma) M_2(t, \tau_j, \sigma) d\sigma.
\]

Лема 1. Має місце нерівність

\[
|G(t, \tau, x)| \leq c(t - \tau)^{-\frac{1}{a} + 1}.
\]

Доведення. Із зображення функції \(K(t, \tau, \sigma) \) видно, що функція \(G(t, \tau, x) \) неперервна по \(x \in Q_p \). Оцінимо її. Враховуючи представлення функції \(G(t, \tau, x) \), отримаємо

\[
|G(t, \tau, x)| \leq \int_{Q_p} \exp \left\{-a|\sigma|^a_p(t - \tau) \right\} d\sigma.
\]
Нехай ціле число k таке, що $p^{k-1} \leq (t - \tau)^{1/\alpha} \leq p^k$. Виберемо $\eta \in Q_p$, щоб $|\eta|_p = p^{k-1}$. Тоді

$$\left|G(t, \tau, x)\right| \leq \int_{Q_p} \exp\{-ap^{k-1}|\sigma|^\alpha\}d\sigma = \int_{Q_p} \exp\{-a|\eta||\sigma|^\alpha\}d\sigma$$

$$= |\eta|_p^{-1} \int_{Q_p} \exp\{-a|\rho|^\alpha\}d\rho = p^{-k} \int_{Q_p} \exp\{-a|\rho|^\alpha\}d\rho \leq C(t - \tau)^{-\frac{1}{\alpha}}. \tag{13}$$

Використовуючи формулу (1) при $x \neq 0$, отримаємо

$$G(t, \tau, x) = \left(1 - \frac{1}{p}\right) |x|_p^{-1} \sum_{\nu=0}^{\infty} p^{-\nu} \exp\{-a(t - \tau)p^{-\nu]|x|^{-\alpha}\} - |x|_p^{-1} \exp\{-a(t - \tau)p^\alpha|x|^{-\alpha}\}.$$

Розкладши експоненти у ряд, змінивши порядок сумування і просумувавши геометричну прогресію, отримаємо, що для $x \neq 0$

$$G(t, \tau, x) = \sum_{m=1}^{\infty} \frac{(-1)^m}{m!} \frac{1 - p^{am}}{1 - p^{am-1}} (a(t - \tau))^m |x|^{-am-1}. \tag{14}$$

Із (14) отримуємо, що для $0 < t < T$, $|x|_p \geq (t - \tau)^{\frac{1}{\alpha}}$

$$\left|G(t, \tau, x)\right| \leq |x|_p^{-1} \sum_{m=1}^{\infty} \frac{c^m}{m!} (t - \tau)^m |x|^{-am-1} \leq |x|_p^{-1} \left[\frac{c}{1!}(t - \tau)|x|^{-a} + \ldots + \frac{c}{m!}(t - \tau)^{m-1}|x|^{-am-1} + \ldots\right]$$

$$= |x|_p^{-1}(t - \tau) \left[\frac{c}{1!} + \ldots + \frac{c}{m!}(t - \tau)^{m-1} + \ldots\right] \leq c_1 |x|^{-a-1}(t - \tau). \tag{15}$$

Із нерівностей (13) та (15) отримуємо (12). Дійсно, якщо $|x|_p \geq (t - \tau)^{\frac{1}{\alpha}}$, то $|x|_p^{-a-1} \leq c (|x|_p + (t - \tau)^{\frac{1}{\alpha}})^{-a-1}$. Якщо ж $|x|_p < (t - \tau)^{\frac{1}{\alpha}}$, то $((|x|_p + (t - \tau)^{\frac{1}{\alpha}})^{-a-1} \geq c(t - \tau)^{-1}(t - \tau)^{-\frac{1}{\alpha}}$. Лема доведена.

Нерівність (12) показує, що по змінній x функція $G(t, \tau, x)$ належить $L^1(Q_p, dx)$. Із зображения функції $K(t, \tau, \sigma)$ легко побачити, що функцію $G(t, \tau, x)$ можна диференціювати під знаком інтегралу. Розглянемо похідну $\frac{\partial G}{\partial t}$

$$\frac{\partial G}{\partial t} = -a \int_{Q_p} |\sigma|^\alpha e^{-a|\sigma|^\alpha(t - \tau)} d\sigma.$$

Лема 2. Має місце нерівність

$$\left|\frac{\partial G(t, \tau, x)}{\partial t}\right| \leq c \left((t - \tau)^{\frac{1}{\alpha}} + |x|_p\right)^{-a-1},$$

de константа не залежить від t, x.

Доведення аналогічне доведенню леми 1.

Якщо $x \neq 0$, то в силу (14) $G(t, \tau, x + \xi) = G(t, \tau, x)$, $|\xi|_p < |x|_p$. Тому для $x \neq 0$ визначена за допомогою формули (2) функція

$$G_\gamma(t, \tau, x) = (D_{\gamma} G)(t, \tau, x), \quad 0 < \gamma \leq \alpha.$$
Знайдемо функцію G_γ та оцінимо її. Введемо таке позначення:

$$G^{(m)}(t, \tau, x) = \int_{|\eta|_p \leq p^m} \chi(-x\eta) \exp \left(-a(t - \tau)|\eta|_p^a\right) d\eta.$$

Враховуючи, що $|\chi(y)| = 1$ для $|y|_p \leq 1$, бачимо, що за зміною x $G^{(m)} \in \mathcal{M}_0$ з показником локальної сталості m. Звідси отримаємо

$$\left(D^\gamma_x G^{(m)} \right)(t, \tau, x) = \frac{1}{\Gamma_p(-\gamma)} \int_{|\xi|_p \geq p^{-m}} \left| \xi \right|_p^{\gamma - 1} \left[G^{(m)}(t, \tau, x - \xi) - G^{(m)}(t, \tau, x) \right] d\xi$$

$$= \int_{|\eta|_p \leq p^m} \exp \left(-a(t - \tau)|\eta|_p^a\right) d\eta \int_{|\xi|_p \geq p^{-m}} \frac{|\xi|_p^{-\gamma - 1}}{\Gamma_p(-\gamma)} \left[\chi(-x - \xi)\eta - \chi(-x\eta) \right] d\xi$$

$$= \int_{|\eta|_p \leq p^m} \exp \left(-a(t - \tau)|\eta|_p^a\right) \chi(-x\eta) d\eta \int_{Q_p} \frac{|\xi|_p^{-\gamma - 1}}{\Gamma_p(-\gamma)} \left[\chi(\xi\eta) - 1 \right] d\xi.$$

Внутрішній інтеграл, як функція η, є перетворення Фур'є узагальненої функції $f_{-\gamma}$ [6] — регуляризація функції $\frac{|\xi|_p^{-\gamma - 1}}{\Gamma_p(-\gamma)}$. Тому він дорівнює $|\eta|_p^{-\gamma}$, тобто

$$\left(D^\gamma_x G^{(m)} \right)(t, \tau, x) = \int_{|\eta|_p \leq p^m} \chi(-x\eta)|\eta|_p^\gamma \exp \left(-a(t - \tau)|\eta|_p^a\right) d\eta. \quad (16)$$

Згідно з формуллю (1) функція $G^{(m)}$ фактично залежить лише від $|x|_p$. Зафіксуємо $x \neq 0$, тоді

$$\left(D^\gamma_x G^{(m)} \right)(t, \tau, x) = \frac{1}{\Gamma_p(-\gamma)} \int_{|\xi|_p \geq |x|_p} \left| \xi \right|_p^{\gamma - 1} \left[G^{(m)}(t, \tau, x - \xi) - G^{(m)}(t, \tau, x) \right] d\xi \rightarrow \left(D^\gamma_x G \right)(t, \tau, x)$$

$$\text{для } m \to \infty \text{ за теоремою Лебега. Тоді із формулли (16) отримуємо}$$

$$\left(D^\gamma_x G \right)(t, \tau, x) = \int_{Q_p} \chi(-x\eta)|\eta|_p^\gamma \exp \left(-a(t - \tau)|\eta|_p^a\right) d\eta, \quad x \neq 0.$$

Правильна лема.

Лема 3. Масів рівність

$$|\left(D^\gamma_x G \right)(t, \tau, x)| \leq c \left((t - \tau)^\frac{1}{\gamma} + |x|_p \right)^{-\gamma - 1},$$

де c не залежить від t, x.

З формулли (16) та перетворення Фур'є отримаємо

$$\int_{Q_p} \left(D^\gamma_x G \right)(t, \tau, x) dx = 0.$$
Рассмотрим "термический" потенциал

\[u(t, \tau, x) = \int_0^t d\theta \int_{Q_\theta} G(t - \theta, \tau, x - y)f(\theta, y)dy, \]

где \(f \in M_\beta, 0 \leq \beta < \infty \). Согласно суждениям, которые указаны в [4], показано, что \(u \in M_\beta \) и для неё правильная оценка

\[|u(t, \tau, x)| \leq c(1 + \|x\|_p), \quad x \in Q_\tau, \]

где \(c \) не зависит от \(t, \tau, x \).

Як и в евклидовом случае, можно показать, что

\[\frac{\partial u(t, \tau, x)}{\partial t} = f(t, x) + \int_0^t d\theta \int_{Q_\theta} \frac{\partial G(t - \theta, \tau, x - y)}{\partial t}[f(\theta, y) - f(\theta, x)]dy \]

\[+ \int_0^t f(\theta, x)d\theta \int_{Q_\theta} \frac{\partial G(t - \theta, \tau, x - y)}{\partial t}dy. \]

Якщо \(0 < \gamma < \alpha \), то производные \(D_7 u \) берутся безусловно; якщо же \(\gamma = \alpha \), то

\[(D_7^\gamma u)(t, \tau, x) \leq \int_0^t d\theta \int_{Q_\theta} G(\alpha)(t - \theta, \tau, x - y)[f(\theta, y) - f(\theta, x)]dy. \]

Аналогичными суждениями, как в лемах 1,2,3, для функций \(G_0, G_1, G_2 \) получаем оценки

\[|G_0(t, \tau, x)| \leq c(t - \tau_0) \left((t - \tau_0)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\alpha - 1}, \]

\[|G_1(t, \tau, x)| \leq c(t - \tau) \left((t - \tau)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\alpha - 1}, \quad |G_2(t, \tau, x)| \leq c(t - \tau_0) \left((t - \tau_0)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\alpha - 1}, \]

\[\left|\frac{\partial G_0(t, \tau, x)}{\partial t}\right| \leq c \left((t - \tau_0)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\alpha - 1}, \quad \left|\frac{\partial G_1(t, \tau, x)}{\partial t}\right| \leq c \left((t - \tau)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\alpha - 1}, \]

\[\left|\frac{\partial G_2(t, \tau, x)}{\partial x}\right| \leq c \left((t - \tau_0)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\gamma - 1}, \quad \left|\frac{\partial G_2(t, \tau, x)}{\partial x}\right| \leq c \left((t - \tau)^{\frac{1}{\alpha}} + \|x\|_p\right)^{-\gamma - 1}. \]

Теорема. Нехай \(\varphi \in M_\beta, \{a_j\}_{j=1}^s \in M_\beta, f \in M_\beta, \beta < \alpha, 1 + B_i \neq 0, j = 1, s \). Тоді решётка задачи Коши по импульсной динамике (3)–(5) имеет единий, и подаётся формулой (11).

Доведение теоремы аналогично как у [4]. Позначимо

\[u_1(t, x) = \int_{Q_\tau} G_0(t, x - \xi)\varphi(\xi)d\xi + \sum_{j=1}^s \int_{Q_{\varphi}} G_2(t, x - \xi)a_j(\xi)d\xi, \]
$u_2(t, x) = \int_0^1 d\tau \int_{Q_p} G(t, \tau, x - \xi) f(\tau, \xi) d\xi + \sum_{j=1}^s \int_{\tau_{j-1}}^{\tau_j} d\tau \int_{Q_p} G_1(t, \tau, x - \xi) f(\tau, \xi) d\xi.$

Для потенциалов, которые входят в выражение для $u_1(t, x), u_2(t, x)$, на основании лем 1, 2, 3 и формулы дифференцирования, переконуемося, что функция $u(t, x)$ належит классу \mathcal{M}_p, задовольня все рівняння (3), початкову (4) та імпульсну (5) умови.

References

The Cauchy problem for a parabolic equation with the impulse action is considered. Its solution is constructed and properties of the solution are studied above the field Q_p.

Key words and phrases: Cauchy problem, matricant, impulse action.

Надійшло 09.10.2013
MAKHNEI O.V.

ASYMPTOTICS OF A FUNDAMENTAL SOLUTION SYSTEM FOR A QUASIDIFFERENTIAL EQUATION WITH MEASURES ON THE SEMIAxis

With the help of a conception of quasiderivatives asymptotic formulas for a fundamental solution system of a quasidifferential equation with measures on the semiaxis \([0, \infty)\) are constructed. The obtained asymptotic formulas allow to investigate asymptotics of eigenvalues and eigenfunctions of the corresponding boundary value problem.

Key words and phrases: quasidifferential equation, measure, distribution, quasiderivative, semiaxis, asymptotics of solutions.

INTRODUCTION

Linear differential operators generated by differential expressions with smooth coefficients (including asymptotics of the eigenvalues and eigenfunctions) were studied quite comprehensively in the literature (e.g., see [7]). There are numerous recent results that generalize these operators to some extent. In particular, interesting results for functional-differential equations of the form \(y^{(n)} + Fy + \rho^n y = 0\), where \(F\) is a linear operator mapping the Holder space \(C^\gamma[0, 1]\), \(\gamma < n - 1\), into the space \(L_1[0, 1]\), were obtained in the papers of the Kiev mathematicians [3, 8]. The papers [5, 9, 15], as well as the present paper, aim at relaxing the conditions imposed on the coefficients of differential expressions. A wide bibliography on the theory of differential operators with singularities can be found in [1].

Real problems often lead to differential expressions that contain terms of the following form \(p(x)y^{(m)}\) and cannot be reduced to conventional differential expressions by \(n\)-fold differentiation if the coefficient \(p(x)\) is not sufficiently smooth. Such expressions are said to be quasidifferential. The introduction of quasiderivatives [10, 11] is one of the oldest methods for their analysis. (The quasiderivatives are the components of a vector reducing a quasidifferential equation to a system of first-order differential equations.)

In the paper [7], in particular, by using the investigation of the asymptotics of a fundamental solution system for a quasidifferential equation with integrable coefficients on the interval \([a, b]\), the asymptotic behavior of eigenvalues and eigenfunctions of the corresponding differential operator was obtained. In the papers [2, 7] the previous results were extended to the semiaxis \([0, \infty)\).

In the present paper, by using the method of quasiderivatives, we analyze the asymptotics of a fundamental solution system for a quasidifferential equation with distributions in the coefficients on the semiaxis \([0, \infty)\). Our results generalize some of those in [2, 5, 6, 7].

© Makhnei O.V., 2014
1 FORMULATION OF THE PROBLEM

Consider the quasidifferential expression

$$L_{mn}(y) = \sum_{i=0}^{n} \sum_{j=0}^{m} \left(a_{ij} y^{(n-i)} \right)^{(m-j)},$$

where m and n are positive integers, a_{00} is a constant, $a_{10} = a_{01} = 0$, $a_{ij}(x), a_{0j}(x) \in L_2[0,\infty)$, $a_{ij}(x) = b_{ij}(x), b_{ij}(x) \in BV^+[0,\infty)$, $i = \overline{1,n}, j = \overline{1,m}$. Here $BV^+[0,\infty)$ is the space of right continuous functions of bounded variation on any interval $[a,b] \subset [0,\infty)$. The prime stands for generalized differentiation, and hence the a_{ij} are measures, i.e., zero-order distributions [4, p. 160]. The functions $a_{ij}(x)$ and $b_{ij}(x)$ are assumed to be complex-valued.

The quasiderivatives of $y(x)$ corresponding to the expression $L_{mn}(y)$ are defined as the functions given by the formulas

$$\begin{align*}
y^{[k]} &= y^{(k)}, \quad k = 0, n-1; \\
y^{[n]} &= \sum_{i=0}^{n} a_{0i} y^{(n-i)}; \\
y^{[n+k]} &= \left(y^{[n+k-1]} \right)' - \sum_{i=0}^{n} a_{ik} y^{(n-i)}, \quad k = 1, m.
\end{align*}$$

Let us pose the initial problem

$$L_{mn}(y) = \lambda y, \quad y^{[v-1]}(a) = c_v, \quad v = \overline{1,n+m}. \quad (1)$$
$$y^{[v-1]}(a) = c_v, \quad v = \overline{1,n+m}. \quad (2)$$

It was proved in [12, 14] that there exists a unique solution of the initial problem (1), (2); moreover, the solution, together with quasiderivatives of order less than $n-1$, is absolutely continuous, and other quasiderivatives of order less than $n + m - 1$ have bounded variation on any interval $[a,b] \subset [0,\infty)$.

We assume that $a_{00} = 1$; otherwise we can divide equation (1) by a_{00}. For reduction we enter denotation $r = n + m$. Set $\lambda = -\rho^r$; then equation (1) can be represented in the form

$$y^{(r)} + \rho^r y = - \sum_{0 \leq i \leq n} \sum_{0 \leq j \leq m} \sum_{i+j \geq 1} \left(a_{ij} y^{(n-i)} \right)^{(m-j)}. \quad (3)$$

We split the entire complex ρ-plane into $2r$ sectors $S_q, q = 0,2r-1$, where

$$S_q = \{ \rho : q \pi/r \leq \arg \rho \leq (q + 1) \pi/r \}. \quad (4)$$

We shall denote the domains S_q by S.

By $\omega_1, \omega_2, \ldots, \omega_r$ we denote the distinct r-th roots of -1. For each sector S_q, there exists a numbering [7, p. 55] of $\omega_1, \omega_2, \ldots, \omega_r$ such that

$$\text{Re}(\rho \omega_1) \leq \text{Re}(\rho \omega_2) \leq \ldots \leq \text{Re}(\rho \omega_r), \quad \rho \in S_q. \quad (5)$$

In [2] the asymptotics of a linearly independent system of solutions of the equation

$$y^{(n)} + p_2(x)y^{(n-2)} + \ldots + p_n(x)y + \rho^n y = 0$$

with integrable coefficients on the semiaxis $[0,\infty)$ is obtained for large values of the parameter ρ. In the present paper we obtain the analogous formulas for the solutions of equation (1) with imposed conditions to the coefficients at the beginning of this section. These formulas generalize some results of the paper [2].
By using the vector \(y = (y, y^{[1]}, \ldots, y^{[r-1]})^T \) (where \(T \) stands for transposition), one can reduce equation (1) to the system of first-order differential equations

\[
y' = C'(x)y,
\]
where

\[
C'(x) = \begin{pmatrix}
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n0} & -a_{n-1,0} & \cdots & -a_{10} & 1 & 0 & \cdots & 0 \\
A_{n1} & A_{n-1,1} & \cdots & A_{11} & -a_{01} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{n,m-1} & A_{n-1,m-1} & \cdots & A_{1,m-1} & -a_{0,m-1} & 0 & \cdots & 1 \\
A_{nm} + \lambda & A_{n-1,m} & \cdots & A_{1,m} & -a_{0m} & 0 & \cdots & 0
\end{pmatrix},
\]

\(A_{ij} = a_{0j}a_{i0} - a_{i0} \) (\(i = 1, n, j = 1, m \)).

Obviously,

\[
\Delta C(x) = C(x) - C(x - 0) = \begin{pmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
-\Delta b_{n1} & \cdots & -\Delta b_{11} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-\Delta b_{nm} & \cdots & -\Delta b_{1m} & 0 & \cdots & 0
\end{pmatrix},
\]

Since \(|\Delta C(x)|^2 = 0 \), it follows that system (5) is well posed [12].

The homogeneous equation

\[
y^{(r)} + \rho' y = 0 \tag{6}
\]

has the fundamental solution system \(e^{\rho_1 x}, e^{\rho_2 x}, \ldots, e^{\rho_r x} \). Vector equation (5) can be represented in the form \(y' = C'_1y + C'_2y \) such that the system \(y' = C'_1y \) is equivalent to equation (6). Consequently, the matrix \(C'_1 \) contains the unities above the main diagonal, \(-\rho'\) in the left below corner and zeros. If the right-hand side of relation (3) is treated as an “inhomogeneity”, then, by the Cauchy formula for the inhomogeneous equation (see [14, p. 61]),

\[
y(x) = B(x, a) y(a) + \int_a^x B(x, \xi) dC_2(\xi) y(\xi), \tag{7}
\]

where \(a \geq 0, B(x, \xi) \) is the fundamental matrix of the “homogeneous” system \(y' = C'_1y \); it has the structure [13]

\[
B(x, \xi) = \begin{pmatrix}
K^{[r-1]}(x, \xi) & \cdots & K^{[1]}(x, \xi) & K(x, \xi) \\
K^{(r-1)(1)}(x, \xi) & \cdots & K^{1}(x, \xi) & K^{[1]}(x, \xi) \\
\vdots & \vdots & \vdots & \vdots \\
K^{r-1}(x, \xi) & \cdots & K^{(1)(r-1)}(x, \xi) & K^{(r-1)}(x, \xi)
\end{pmatrix}, \tag{8}
\]

where \(K(x, \xi) \) is the Cauchy function of equation (6). The parentheses in (8) stand for the ordinary derivatives with respect to the variable \(x \), and the curly braces are used to denote
quasiderivatives in the sense of the adjoint equation of (6); they are taken with respect to the second variable and are defined by the formulas [14, p. 122]

$$z^{[0]} = z, \quad z^{[i]} = -(z^{[i-1]})', \quad i = 1, r - 1.$$ \hfill (9)

One can readily see that the Cauchy function for equation (6) has the form

$$K(x, \xi) = -\frac{\omega_1 e^{\omega_1 (x-\xi)} + \omega_2 e^{\omega_2 (x-\xi)} + \ldots + \omega_r e^{\omega_r (x-\xi)}}{r^{pr-1}}.$$ \hfill (10)

Indeed, it satisfies equation (6) with respect to x, $K^{(v)}(\xi, \xi) = 0$, $v = 0, r - 2$, $K^{(r-1)}(\xi, \xi) = 1$ since $\sum_{j=1}^r \omega_j^{v+1} = 0$, and $\sum_{j=1}^r \omega_j^v = -r$ (see [6, p. 55]).

By using relations (9) and (10), equality (8) can be represented in the form

$$B(x, \xi) = -\begin{pmatrix} \frac{1}{r} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} & \ldots & \frac{1}{r^{pr-2}} \sum_{j=1}^r \omega_j^2 e^{\omega_j (x-\xi)} & \frac{1}{r^{pr-1}} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} \\ \frac{1}{r} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} & \ldots & \frac{1}{r^{pr-2}} \sum_{j=1}^r \omega_j^2 e^{\omega_j (x-\xi)} & \frac{1}{r^{pr-1}} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} \\ \ldots & \ldots & \ldots & \ldots \\ \frac{1}{r} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} & \ldots & \frac{1}{r^{pr-2}} \sum_{j=1}^r \omega_j^2 e^{\omega_j (x-\xi)} & \frac{1}{r^{pr-1}} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} \end{pmatrix}$$

By denoting $y(a) = (\xi_1, \xi_2, \ldots, \xi_r)^T$, from equation (7) we can obtain

$$\begin{pmatrix} y(x) \\ \ldots \\ y^{(r-1)}(x) \end{pmatrix} = \begin{pmatrix} -\xi_1 \sum_{j=1}^r \omega_j e^{\omega_j (x-a)} & \ldots & -\xi_r \sum_{j=1}^r \omega_j e^{\omega_j (x-a)} \\ \ldots & \ldots & \ldots & \ldots \\ \frac{1}{r} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} & \ldots & \frac{1}{r^{pr-1}} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} \end{pmatrix} + \int_a^x \begin{pmatrix} 0 \\ \ldots \\ \frac{1}{r} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} & \ldots & \frac{1}{r^{pr-1}} \sum_{j=1}^r \omega_j e^{\omega_j (x-\xi)} \end{pmatrix} \begin{pmatrix} \sum_{s=2}^n a_{s0}(\xi)y^{(n-s)}(\xi)d\xi \\ \sum_{s=1}^n (db_{s1}(\xi) - a_{01}(\xi)a_{s0}(\xi)d\xi)y^{(n-s)}(\xi) \\ \sum_{s=1}^n (db_{s2}(\xi) - a_{02}(\xi)a_{s0}(\xi)d\xi)y^{(n-s)}(\xi) + a_{02}(\xi)y^{(n)}(\xi) \\ \ldots \\ \sum_{s=1}^n (db_{sm}(\xi) - a_{0m}(\xi)a_{s0}(\xi)d\xi)y^{(n-s)}(\xi) + a_{0m}(\xi)y^{(n)}(\xi) \end{pmatrix},$$

where the last column contains the null elements only in the first $n - 1$ rows. Constants $\xi_j, j = 1, r$ can be choose such that the system of Volterra–Stieltjes integro-quasidifferential equations
y^{[v]}(x) = \sum_{j=1}^{r} c_j \rho^v \omega_j \rho e^{\rho \omega_j x} \left[\sum_{s=1}^{n} x^{r-1} \sum_{j=1}^{r} \omega_j^{m+p+1} e^{\rho \omega_j (x-\xi)} a_0(\xi) y^{(n-s)}(\xi) d\xi \right] \\
+ \sum_{p=1}^{m} \frac{\rho^{1-n-p+v}}{r} \left[\sum_{s=1}^{n} x^{r-1} \sum_{j=1}^{r} \omega_j^{m+p+1} e^{\rho \omega_j (x-\xi)} a_0(\xi) y^{(n-s)}(\xi) d\xi \right] \\
- \sum_{s=1}^{n} x^{r-1} \sum_{j=1}^{r} \omega_j^{m+p+1} e^{\rho \omega_j (x-\xi)} a_0(\xi) y^{(n-s)}(\xi) d\xi \\
+ \frac{x^{r-1}}{r} \sum_{j=1}^{r} \omega_j^{m+p+1} e^{\rho \omega_j (x-\xi)} a_0(\xi) y^{[v]}(\xi) d\xi \right], \quad v = 0, r - 1, \\
holds. Indeed, from the equality
\left(-\frac{\xi_1}{r} \omega_1 - \ldots - \frac{\xi_r}{r \rho^{r-1}} \omega_r \right) e^{-\rho \omega_1 x} + \ldots + \left(-\frac{\xi_1}{r} \omega_r - \ldots - \frac{\xi_r}{r \rho^{r-1}} \omega_r \right) e^{-\rho \omega_r x} \\
= c_1 e^{\rho \omega_1 x} + \ldots + c_r e^{\rho \omega_r x}
we obtain the system
\begin{align*}
-e^{-\rho \omega_1 x} (c_1 \omega_1 \rho^{r-1} + \ldots + c_r \omega_1) &= c_1 \rho^{r-1}, \\
\ldots, \\
-e^{-\rho \omega_r x} (c_1 \omega_r \rho^{r-1} + \ldots + c_r \omega_r) &= c_r \rho^{r-1}
\end{align*}
such that its determinant is nonzero for \(|\rho| > 0\), because it is a Vandermonde determinant.

In the following theorem, asymptotic formulas for the solutions of equation (3) are derived on the basis of the analysis of the integro-quasidifferential equations (11).

Theorem 1. Under the above-mentioned conditions imposed on the coefficients, in the entire domain S of the complex \(\rho\)-plane, the quasidifferential equation (3) has \(r\) linearly independent solutions \(y_k(x, \rho)\), \(k = 1, r\), which satisfy the relations

\[y_k^{[v]}(x, \rho) = \rho^v e^{\rho \omega_k x} z_k(x, \rho) \]
(12)

for \(k = 1, r, v = 0, r - 1, x \geq a \geq 0\), where the functions \(z_k(x, \rho)\) are bounded in the domain \(a \leq x \leq \infty, \rho \in S, |\rho| \geq h > 0\).

The functions \(y_k^{[v]}(x, \rho)\) are continuous with respect to the set of variables \((x, \rho)\) for \(x \in (0, \infty), \rho \in S, |\rho| \geq h > 0\). These functions are regular (i.e., single-valued and analytic) with respect to \(\rho \in S, |\rho| \geq h > 0\).

With \(\rho \in S\) we have

\[y_k^{[v]}(x, \rho) = \rho^v e^{\rho \omega_k x} \left[\omega_k^v + O\left(\frac{1}{\rho}\right) \right] \quad \text{as } \rho \to \infty \]
(13)
uniformly with respect to \(x \in [0, \infty)\).

Proof. Suppose \(y^{[v]}(x, \rho) = \rho^v e^{\rho \omega_k x} z_v(x, \rho), \quad v = 0, r - 1, \)
(14)
for some fixed \(k, k = 1, r \).

Then we rewrite equations (11) in the form

\[
\rho^v e^{\omega_j x} z_v(x, \rho) = \sum_{j=1}^{r} c_j \rho^v \omega_j^v e^{\omega_j x} - \frac{\rho^{1-n-v}}{r} \sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+1} e^{\omega_j (x-\zeta)} a_{s0}(\zeta) \rho^{n-s} e^{\omega_j \zeta} z_{n-s}(\zeta) d\zeta
\]

\[
+ \sum_{p=1}^{m} \rho^{1-n-p+v} \left[\sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+p+v+1} e^{\omega_j (x-\zeta)} \rho^{n-s} e^{\omega_j \zeta} z_{n-s}(\zeta) \right] d\zeta,
\]

whence

\[
z_v(x, \rho) = \sum_{j=1}^{r} c_j \omega_j^v e^{(\omega_j - \omega_k) x} - \frac{1}{r} \sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+1} e^{(\omega_j - \omega_k) (x-\zeta)} a_{s0}(\zeta) z_{n-s}(\zeta) d\zeta
\]

\[
+ \sum_{p=1}^{m} \rho^{1-p} \left[\sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+p+v+1} e^{(\omega_j - \omega_k) (x-\zeta)} \rho^{n-s} z_{n-s}(\zeta) \right] d\zeta,
\]

(15)

Set

\[
c_j' = c_j \quad \text{for } j = 1, k,
\]

(16)

\[
c_j' = c_j - \frac{1}{r} \sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+1} e^{(\omega_j - \omega_k) (x-\zeta)} a_{s0}(\zeta) z_{n-s}(\zeta) d\zeta
\]

\[
+ \sum_{p=1}^{m} \rho^{1-p} \left[\sum_{s=1}^{n} \sum_{j=1}^{x} \omega_j^{m+p+v+1} e^{(\omega_j - \omega_k) (x-\zeta)} \rho^{n-s} z_{n-s}(\zeta) \right] d\zeta,
\]

(17)

for some fixed \(k, k = 1, r \).

Each Riman-Stieltjes integral in formulas (17) exists and converges via continuity and boundedness of the functions \(\rho^{1-s} e^{(\omega_j - \omega_k) \zeta} z_{n-s}(\zeta), \rho^{1-p-s} e^{(\omega_k - \omega_j) \zeta} z_{n-s}(\zeta), \rho^{1-p} e^{(\omega_k - \omega_j) \zeta} z_{n}(\zeta), \) since \(\text{Re}(\rho \omega_k) < \text{Re}(\rho \omega_j), j = k+1, r \) (it follows from inequalities (4)).
Then system (15) can be written in the form

$$z_{\nu}(x, \rho) = \sum_{j=1}^{r} c_j \nu e^{(\omega_j - \omega_k)x} - \frac{1}{r} \sum_{s=1}^{n} \sum_{j=1}^{k} \omega_j^{n+v+1} e^{\rho \omega_j(x-\xi)} d_{s0}(\xi) z_{n-s}(\xi) + \frac{m \rho_1 - p}{r} \left[\sum_{s=1}^{x} \sum_{j=1}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)} a_{0p}(\xi) a_{s0}(\xi) \rho^{-s} z_{n-s}(\xi) db_{sp}(\xi) \right]$$

$$- \frac{1}{r} \sum_{s=1}^{x} \sum_{j=1}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)} a_{0p}(\xi) a_{s0}(\xi) \rho^{-s} z_{n-s}(\xi) d\xi$$

$$+ \int \sum_{a}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)} a_{0p}(\xi) z_n(\xi) d\xi$$

$$- \frac{1}{r} \sum_{s=1}^{x} \sum_{j=1}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)} a_{0p}(\xi) a_{s0}(\xi) \rho^{-s} z_{n-s}(\xi) d\xi$$

$$+ \frac{m \rho_1 - p}{r} \left[\sum_{s=1}^{x} \sum_{j=1}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)} a_{0p}(\xi) a_{s0}(\xi) \rho^{-s} z_{n-s}(\xi) d\xi \right]$$

$$\left(18\right)$$

Suppose that equation (3) has a solution y_k such that $c'_r = 0$ for $\nu \neq k$, $c'_k = 1$. Let

$$y_k^{(r)} = \rho^r e^{\rho \omega_k x} z_{kr},$$

$$K_{kpvs}(x, \xi, \rho) = \begin{cases} \frac{1}{r} e^{\rho \omega_k(x-\xi)} \rho^{2-s-p-v} \sum_{j=1}^{k} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)}, & \xi \leq x, \\ -\frac{1}{r} e^{\rho \omega_k(x-\xi)} \rho^{2-s-p-v} \sum_{j=k+1}^{n} \omega_j^{m-p+v+1} e^{\rho \omega_j(x-\xi)}, & \xi > x, \end{cases}$$

$$k = 1, r, \nu = 0, r - 1, s = 0, n, p = \frac{1}{m}.$$ (19)

Then for the functions $z_{kr}(x, \rho)$ we obtain the system of integral equations

$$z_{kr}(x, \rho) = \omega_k^{(r)} - \frac{1}{r} \sum_{s=1}^{n} \sum_{a}^{k} K_{00s}(x, \xi, \rho) a_{s0}(\xi) z_{n-s}(\xi, \rho) d\xi$$

$$+ \frac{1}{r} \sum_{p=1}^{m} \sum_{s=1}^{k} K_{kpvs}(x, \xi, \rho) z_{kr-s}(\xi, \rho) db_{sp}(\xi)$$

$$- \frac{1}{r} \sum_{s=1}^{k} K_{kpvs}(x, \xi, \rho) a_{0p}(\xi) a_{s0}(\xi) z_{n-s}(\xi, \rho) d\xi$$

$$+ \frac{1}{r} \sum_{p=1}^{m} \sum_{s=1}^{k} K_{kpvs}(x, \xi, \rho) z_{kr-s}(\xi, \rho) db_{sp}(\xi)$$

$$\left(20\right)$$

We construct the functions $Q_{kpvs}(x, \xi, \rho)$ and $g_{sp}(x)$ ($k = 1, r, p = \frac{1}{m}, \nu = 0, r - 1, s = 0, n$) as follows: $Q_{kpvs}(x, \xi, \rho) = K_{kpvs}(x, \xi, \rho)$ for $s = 0, n, p = 1, r, Q_{kpvs}(x, \xi, \rho) = \omega_k^{(r)}$.
\(-K_{k,p-m,v}(x,\xi,\rho)\) for \(s = 1, n, p = m+1, 2m\); \(Q_{k,v}(x,\xi,\rho) = -K_{k,v}(x,\xi,\rho)\) for \(s = 1, n\);
\(Q_{k,v}(x,\xi,\rho) = 0\) for \(p = 0, m+1, m+2, \ldots, 2m\); \(g_{sp}(x) = b_{sp}(x)\) for \(s = 1, n, p = m, m+1, \ldots, 2m\);
\(g_{sp}(x) = \int_{a}^{x} a_{0,p-m}(t) a_{s}(t) dt\) for \(s = 0, n, p = m+1, 2m\). Obviously, all \(g_{sp}(x)\) have bounded variation on any interval \([a, b] \subset [0, \infty)\). Then system (20) can be represented in the compact form

\[
z_{kv}(x, \rho) = \omega_{k}^{u} + \frac{1}{\rho} \sum_{p=0}^{2m} \sum_{s=0}^{n} \int_{a}^{x} Q_{k,ps}(x, \xi, \rho) z_{k,n-s}(\xi, \rho) d g_{sp}(\xi). \tag{21}
\]

Each function \(Q_{k,ps}(x, \xi, \rho), k = 1, r, v = 0, r-1, p = 0, 2m, s = 0, n,\) is left continuous for all \(x, \xi \in [0, \infty)\) and it is regular for all \(|\rho| \geq h > 0\). There exists a constant \(C_{1} > 0\) such that

\[
|Q_{k,ps}(x, \xi, \rho)| \leq \frac{1}{r} |\rho|^{2-s-p-v} \sum_{j=1}^{k} \omega_{j}^{m-p+v+1} e^{(\rho \omega_{j}-\rho \omega_{k})(x-\xi)} \leq C_{1},
\]

\(k = 1, r, v = 0, r-1, s = 0, n, p = 0, 2m, \) for \(\xi \leq x\), because \(\text{Re}(\rho \omega_{j}) \leq \text{Re}(\rho \omega_{k}), j = 1, k,\) since (4). Similarly, there exists a constant \(C_{2} > 0\) such that

\[
|Q_{k,ps}(x, \xi, \rho)| \leq \frac{1}{r} |\rho|^{2-s-p-v} \sum_{j=k+1}^{r} \omega_{j}^{m-p+v+1} e^{(\rho \omega_{j}-\rho \omega_{k})(x-\xi)} \leq C_{2},
\]

\(k = 1, r, v = 0, r-1, s = 0, n, p = 0, 2m, \) for \(\xi > x\), because \(\text{Re}(\rho \omega_{j}) \geq \text{Re}(\rho \omega_{k}), j = k+1, r,\) since (4).

Let \(C = \max\{C_{1}, C_{2}\}\). Since bounded variation of the functions \(g_{sp}(x)\), we can find a number \(a > 0\) such that

\[
C \int_{a}^{\infty} |d g_{sp}(\xi)| = C \int_{a}^{\infty} g_{sp} \leq \frac{1}{r} |\rho|^{|s|-1-p} \quad s = 0, n, \quad p = 0, 2m.
\]

Then all conditions of theorems 1 and 2 from [5] are satisfied and by these theorems system (21) has the bounded continuous solution \(z_{kv}(x, \rho), x \in [a, \infty), \rho \in S, |\rho| \geq h > 0\); moreover, there are asymptotic formulas (13) for \(\rho \to \infty\).

Let us show that there exists solution (12) of equation (3) that satisfies system (21). To this end, it suffices to show that for all constants \(c'_{v}\) there exists solution (14) of equation (3) satisfying system (18) for these values \(c'_{v}\).

Equalities (16), (17) are a linear transformation from \(c_{j}\) to \(c'_{j}\). Obviously, it suffices to show that the determinant of the mapping (16), (17) is nonzero for sufficiently large \(|\rho|, \rho \in S\). In this case for any \(c'_{j}\) equations (16), (17) can be solved for \(c_{j}\).

If the determinant of the mapping (16), (17) is zero for arbitrarily large \(|\rho|, \rho \in S\), then, for these \(\rho\), equations (16), (17) have nontrivial solutions with respect to \(c_{j}\) for \(c'_{1} = c'_{2} = \ldots = c'_{r} = 0\). Then the corresponding function

\[
z_{v}(x, \rho) = \rho^{-v} e^{-\rho \omega_{x} y^{[v]}(x, \rho)} \tag{24}
\]

is a nontrivial solution of the system

\[
z_{v}(x, \rho) = \frac{1}{\rho} \sum_{p=0}^{2m} \sum_{s=0}^{n} \int_{a}^{x} Q_{k,ps}(x, \xi, \rho) z_{n-s}(\xi, \rho) d g_{sp}(\xi),
\]
which can be obtained from (18) for \(c_1' = c_2' = \ldots = c_r' = 0 \) and designations (19). Let us show that this is impossible. Let \(m(\rho) = \max |z_v(x, \rho)|, x \geq a, v = 0, r - 1 \). Using the inequalities (22), (23), we obtain
\[
|z_v(x, \rho)| \leq \frac{C_1}{|\rho|} \int_a^\infty |d_{\xi_{2p}}(\xi)| m(\rho) \leq m(\rho) \frac{C_1}{|\rho|},
\]
where \(C_1 \) is some constant. The last inequality should hold for all \(\rho \). But for large \(|\rho| \), this inequality is possible only if \(m(\rho) = 0 \); consequently, \(z_v(x, \rho) = 0 \). This, together with (24), implies that \(y \equiv 0 \) for \(v = 0 \).

It remains to prove a linear independence of the solutions \(y_k(x, \rho) \). To do this, calculate the Wronskian of these functions for \(\rho \to \infty \)
\[
W(x, \rho) = 1 \cdot \rho \ldots \rho^{r-1} e^{\rho(\omega_1 + \ldots + \omega_r)x} \begin{vmatrix} 1 & \ldots & 1 \\
\omega_1 & \ldots & \omega_r \\
\vdots & \ldots & \vdots \\
\omega_1^{r-1} & \ldots & \omega_r^{r-1} \end{vmatrix} = \rho^{r(r-1)/2} \begin{vmatrix} 1 & \ldots & 1 \\
\omega_1 & \ldots & \omega_r \\
\vdots & \ldots & \vdots \\
\omega_1^{r-1} & \ldots & \omega_r^{r-1} \end{vmatrix} .
\]
Since the Vandermonde determinant of distinct numbers \(\omega_1, \omega_2, \ldots, \omega_r \) is nonzero, we see that the Wronskian is nonzero for all \(x \in [a, \infty), \rho \in S \).

Remark 1. Each of obtained solutions \(y_k(x, \rho) \), \(k = 1, r \), can be extended to the interval \([0, a]\), constructing on it the solutions of equation (3) that satisfy the initial conditions \(y_v^{[1]}(a) = y_k^{[1]}(a) \), \(v = 0, r - 1, k = 1, r \).

Remark 2. If \(h \) is so large that \(\frac{1}{h} \int_0^\infty |d_{\xi_{2p}}(\xi)| < \frac{1}{t}, s = 0, n, p = 0, 2m \), in the designations of theorem 1 from this section, then in this theorem can be put \(a = 0 \).

For a example we consider the quasidifferential equation
\[
y^{IV} + (a_{11}y')' + (a_{20}y'')' + (a_{02}y'') + (a_{21}y)' + a_{12}y' + a_{22}y = \lambda y, \quad (25)
\]
where \(a_{20}(x), a_{02}(x) \in L_2[0, \infty), a_{11}(x) = b_{11}'(x), a_{12}(x) = b_{12}'(x), a_{21}(x) = b_{21}'(x), a_{22}(x) = b_{22}'(x), b_{11}(x), b_{12}(x), b_{21}(x), b_{22}(x) \in BV^+[0, \infty) \). The quasiderivatives for this equation are defined by the formulas \(y^{[1]} = y', y^{[2]} = y'' + a_{20}y, y^{[3]} = (y'' + a_{20}y)' - a_{01}y'' - a_{11}y' - a_{21}y \).

The conclusions of theorem 1 hold for equation (25).

The constructed asymptotic formulas for the linear independent system of the solutions of the quasidifferential equation with measures on the semiaxis allow to investigate an asymptotic behavior of eigenvalues and eigenfunctions of the corresponding boundary value problem. The presence of distributions in the coefficients of a quasidifferential equation does not affect these formulas.

References

С помощью концепции квазипроизводных построены асимптотические формулы для фундаментальной системы решений квазидифференциального уравнения с мерами на полуоси \([0, \infty)\). Полученные асимптотические формулы позволяют исследовать асимптотику собственных значений и собственных функций соответствующей краевой задачи.

Ключевые слова и фразы: квазидифференциальное уравнение, мера, распределение, квазипроизводная, полуось, асимптотика решений.
PASTUKHOVA I.

ON CONTINUITY OF HOMOMORPHISMS BETWEEN TOPOLOGICAL CLIFFORD SEMIGROUPS

Generalizing an old result of Bowman we prove that a homomorphism \(f : X \rightarrow Y \) between topological Clifford semigroups is continuous if

- the band \(E_X = \{ x \in X : xx = x \} \) of \(X \) is a \(U \)-semilattice;
- the topological Clifford semigroup \(Y \) is ditopological;
- the restriction \(f|E_X \) is continuous;
- for each subgroup \(H \subset X \) the restriction \(f|H \) is continuous.

Key words and phrases: ditopological unosemigroup, Clifford semigroup, topological semilattice.

Ivan Franko National University, Lviv, Ukraine
E-mail: irynkapastukhova@gmail.com

INTRODUCTION

This paper was motivated by the following old result of Yeager [6] who generalized an earlier result of Bowman [3].

Theorem 1. A homomorphism \(h : X \rightarrow Y \) between compact topological Clifford semigroups is continuous if and only if for any subgroup \(H \subset X \) and any subsemilattice \(E \subset X \) the restrictions \(h|H \) and \(h|E \) are continuous.

In this paper we shall extend this result of Yeager beyond the class of compact topological Clifford semigroups. Let us define a homomorphism \(h : X \rightarrow Y \) between topological semigroups to be \(EH \)-continuous if

- the restriction \(h|E_X \) to the set of idempotents of \(X \) is continuous;
- for every subgroup \(H \subset X \) the restriction \(h|H \) is continuous.

In terms of \(EH \)-continuity, Theorem 1 says that each \(EH \)-continuous homomorphism \(h : X \rightarrow Y \) between compact topological Clifford semigroups is continuous. For compact topological Clifford semigroup \(X \) with Lawson maximal semilattice \(E_X = \{ x \in X : xx = x \} \) this result of Yeager was proved by Bowman [3] in 1971. Generalizing the Bowman’s result, in Theorem 3 we shall prove that each \(EH \)-continuous homomorphism \(h : X \rightarrow Y \) from a topological Clifford \(U \)-semigroup \(X \) to a ditopological Clifford semigroup \(Y \) is continuous. Topological \(U \)-semigroups will be introduced and studied in Section 2. Section 1 presents some preliminaries. Section 4 contains our main result and some its corollaries.

© Pastukhova I., 2014
1 Preliminaries

1.1. Semigroups. A semigroup is a non-empty set endowed with an associative binary operation. A semigroup S is said to be

- inverse if for every $x \in S$ there is a unique element $x^{-1} \in S$ such that $x = xx^{-1}x$ and $x^{-1} = x^{-1}xx^{-1}$;
- Clifford if it is inverse and $xx^{-1} = x^{-1}x$ for every $x \in S$;
- a semilattice if it is commutative and every element $x \in S$ is an idempotent, that is $xx = x$.

For a semigroup S by $E_S = \{ e \in S : ee = e \}$ we denote the set of idempotents of S and for each idempotent $e \in E_S$ let

$$H_e = \{ x \in S : \exists y \in S \ xy = e = yx, \ xe = x = ex, \ ye = y = ey \}$$

denote the maximal subgroup of S containing e. If the semigroup S is inverse, then the maximal group H_e can be written as $H_e = \{ x \in S : xx^{-1} = e = x^{-1}x \}$.

Each semilattice E carries the natural partial order \leq defined by $x \leq y$ iff $xy = yx = x$. For a point $x \in E$ let $\downarrow x = \{ y \in E : y \leq x \}$ and $\uparrow x = \{ y \in E : x \leq y \}$ be the lower and upper cones of x, respectively. By $\uparrow x$ we shall denote the interior of the upper cone $\uparrow x$ in E.

A homomorphism between semigroups X, Y is a function $h : X \rightarrow Y$ preserving the operation in the sense that $h(x \cdot y) = h(x) \cdot h(y)$ for all $x, y \in X$. The uniqueness of the inverse element in an inverse semigroup implies that each homomorphism $h : X \rightarrow Y$ between inverse semigroups preserves the inversion in the sense that $h(x^{-1}) = h(x)^{-1}$ for all $x \in X$. More information on inverse semigroups can be found in [5].

A topological semigroup is a semigroup S endowed with a topology making the semigroup operation $\cdot : S \times S \rightarrow S$ continuous. A topological inverse (Clifford) semigroup is an inverse (Clifford) semigroup S endowed with a topology making the multiplication $\cdot : S \times S \rightarrow S$ and the inversion $(\cdot)^{-1} : S \rightarrow S$ continuous.

A topological semilattice E is Lawson if open subsemilattices form a base of the topology of E.

1.2. Unosemigroups and unomorphisms. By a left unit operation on a semigroup S we understand a unary operation $\lambda_S : S \rightarrow S$ such that $\lambda_S(x) \cdot x = x$ for all $x \in S$. A left unosemigroup is a semigroup S endowed with a left unit operation $\lambda_S : S \rightarrow S$. A left unosemigroup S is called λ-regular if for each $x \in S$ there is $x^* \in S$ such that $\lambda_S(x) = xx^*$. In this case the element $\lambda_S(x) = xx^*$ is an idempotent because $\lambda_S(x) \cdot \lambda_S(x) = \lambda_S(x)xx^* = xx^* = \lambda_S(x)$. So, for each λ-regular left unosemigroup S we get $\lambda_S(S) \subseteq E_S$.

By an unomorphism between left unosemigroups (X, λ_X) and (Y, λ_Y) we understand a semigroup homomorphism $h : X \rightarrow Y$ preserving the left unit operation in the sense that $h \circ \lambda_X = \lambda_Y \circ h$.

Left unosemigroups were introduced in [1]. By analogy we can define right unosemigroups, see [1].

Each inverse semigroup S endowed with the left unit operation $\lambda_S : S \rightarrow S, \lambda_S : x \mapsto xx^{-1}$, carries a canonical structure of a λ-regular left unosemigroup. If S is Clifford, then the left unit operation λ_S is a homomorphism coinciding with the projection $\pi : S \rightarrow E_S, \pi : x \mapsto xx^{-1} = x^{-1}x$. If S is a semilattice, then λ_S coincides with the identity map of S.
The uniqueness of the inverse element in an inverse semigroup implies that each homomorphism between inverse semigroups is a unomorphism of the corresponding left unosemigroups.

By a topological left unosemigroup we understand a topological semigroup S endowed with a continuous left unit operation $\lambda_S : S \to S$.

Proposition 1. If a topological left unosemigroup (S, λ_S) is λ-regular, then for any idempotent $e \in S$ and any point $x \in S$ with $e \cdot \lambda_S(x) = e$ the right shift $s_x : H_e \to H_{ex}$, $s_x : z \mapsto zx$, is a homeomorphism.

Proof. Since (S, λ_S) is λ-regular, $\lambda_S(x) = xx^*$ for some element $x^* \in S$. Consider the right shift $s_{x^*} : S \to S$, $s_{x^*} : z \mapsto zx^*$, and observe that for every element z of the maximal subgroup H_e, we get $s_{x^*} \circ s_x(z) = zxx^* = z \cdot \lambda_S(x) = ze \cdot \lambda_S(x) = ze = z$. This implies that the restriction $s_{x^*}|_{H_{ex}} : H_{ex} \to H_e$ is a continuous map, inverse to s_x. So, $s_x : H_e \to H_{ex}$ is a homeomorphism. □

1.3. Ditopological unosemigroups.

For two subsets A, B of a semigroup S consider the subsets

$$B \rhd A = \{y \in S : \exists b \in B \ \exists a \in A \text{ by } a \} \quad \text{and} \quad A \rhd B = \{x \in S : \exists a \in A \ \exists b \in B \text{ by } a = xb\}$$

which can be thought as the results of left and right division of A by B in the semigroup S.

A topological left unosemigroup (S, λ_S) is called a ditopological left unosemigroup if for each $x \in X$ and neighborhood $O_x \subset S$ there are neighborhoods $W_{\lambda_S(x)} \subset \lambda_S(S)$ and $U_x \subset S$ of the points $\lambda_S(x)$ and x, respectively, such that

$$(W_{\lambda_S(x)} \rhd U_x) \cap \lambda_S^{-1}(W_{\lambda_S(x)}) \subset O_x.$$

Ditopological left unosemigroups were introduced and studied in [1]. By analogy, ditopological right unosemigroups can be introduced; see [1]. By Theorem 4 of [1], each compact topological left unosemigroup is ditopological.

A topological Clifford semigroup S is ditopological if it is ditopological as a topological left unosemigroup (endowed with the canonical left unit operation $\lambda_S : x \mapsto xx^{-1}$). By [1], the class of ditopological Clifford semigroups contains all compact topological Clifford semigroups, all topological groups, all topological semilattices and is closed under many operations over topological Clifford semigroups (in particular, taking Clifford subsemigroups, Tychonoff products, reduced products, semidirect products).

2 Topological left U-unosemigroups

In this section we introduce the notion of a left U-unosemigroup, which is crucial in the proof of our main results.

Definition 1. A topological left unosemigroup (X, λ_X) is called a left U-unosemigroup if for each point $x \in X$ and each neighborhood $O_{\lambda_X(x)} \subset X$ of the element $\lambda_X(x)$ there is an open neighborhood $U_x \subset X$ of x and an idempotent $e \in O_{\lambda_X(x)}$ such that $e\lambda_X(x) = e$ and $eU_x \subset H_{ex}$.

In case S is a topological semilattice the notion of a left U-unosemigroup agrees with the notion of a U-semilattice.
A topological semilattice S is called a U-semilattice if for each point $x \in S$ and its neighborhood $U \subset S$ there is an idempotent $y \in U$ such that $x \in \uparrow y$. We recall that by $\uparrow y$ we denote the interior of the upper cone $\uparrow y$ in S.

The definitions of a left U-unosemigroup and a U-semilattice imply the following characterization:

Proposition 2. A topological semilattice E is a left U-unosemigroup if and only if it is a U-semilattice.

The interplay between topological U-semilattices and other classes of topological semilattices was studied in [2]. In particular, let us recall for future references that each locally compact Lawson semilattice is a U-semilattice. The same is true for locally compact zero-dimensional semilattices, as they are Lawson. Let us recall that a regular topological space X is locally compact if every point has a compact neighborhood and zero-dimensional if closed-and-open sets form a base of the topology of X.

2.1. Topological Clifford U-semigroups. Topological Clifford semigroups which are left U-unosemigroups can be characterized as follows.

Proposition 3. A topological Clifford semigroup S is a left U-unosemigroup if and only if its band $E_S = \{x \in S : xx = x\}$ is a U-semilattice.

Proof. Assume first that S is a left U-unosemigroup. Given any idempotent $e \in E_S$ and its neighborhood $U \subset E_S$, we need to find an idempotent $e' \in U$ such that $e \in \uparrow e'$. The set U is open in E_S and so $U = W \cap E_S$ for some open neighborhood $W \subset S$ of e. Since S is a U-unosemigroup, for the element e and the neighborhood W of the point $ee^{-1} = e$ we can find an open neighborhood $W_e \subset S$ of e and an idempotent $e' \in W$ such that $e'e = e'$ and $e'W_e \subset H_e e$. Without loss of generality we can assume that $W_e \subset W$ and therefore $U_e = W_e \cap E_S$ is an open neighborhood of e in E_S.

It remains to check that $e \in \uparrow e'$. For this observe that the inclusion $e'W_e \subset H_e e$ implies that $e'U_e \subset (H_e e) \cap E_S = \{e\} e = e'$ and consequently $e \in U_e \subset \uparrow e'$. Thus $e \in \uparrow e'$, which means that E_S is a U-semilattice.

Now assume that the maximal semilattice E_S of S is a U-semilattice. To show that S is a topological left U-unosemigroup, take any point $x \in S$ and neighborhood $O_{xx^{-1}} \subset S$ of the idempotent $\pi(x) = xx^{-1}$. Since E_S is a U-semilattice, we can find an idempotent $e \in O_{xx^{-1}}$ such that $xx^{-1} \in \uparrow e$. Then $U_x = \pi^{-1}(\uparrow e)$ is an open neighborhood of x.

It remains to show that $eU_x \subset H_e x$. First observe that for any element $z \in H_e$ we have $z = ze = zex^{-1}x$. It follows from

$$(zex^{-1})(zex^{-1})^{-1} = zex^{-1}xe^{-1} = zez^{-1} = e$$

that $zex^{-1} \in H_e$ and $z = (zex^{-1})x \in H_e x$. Hence, $H_e \subset H_e x$.

Finally, the inclusion $\pi(eU_x) = \pi(e)\pi(U_x) \subset \{e\} \uparrow e = \{e\}$ implies that $eU_x \subset \pi^{-1}(e) = H_e \subset H_e x$, which is the desired conclusion. \qed
Having in mind the previous proposition we define a topological Clifford semigroup S to be a topological Clifford U-semigroup if its maximal semilattice E_S is a U-semilattice. This happens if and only if S is a topological left U-unosemigroup.

3 THE CONTINUITY OF EH-CONTINUOUS UNOMORPHISMS BETWEEN TOPOLOGICAL LEFT UNOSEMIGROUPS

The following theorem is a key ingredient in the proof of Theorem 3, which is our main result. This theorem can be considered as a generalization of Bowman's result [3] to topological left unosemigroups.

Theorem 2. Any EH-continuous unomorphism $h : X \to Y$ from a λ-regular topological left U-unosemigroup (X, λ_X) into a ditopological left unosemigroup (Y, λ_Y) is continuous.

Proof. Given any point $x \in X$ and an open neighborhood $O_y \subset Y$ of the point $y = h(x)$ we need to find a neighborhood $V_x \subset X$ of x such that $h(V_x) \subset O_y$.

Since the left unosemigroup (Y, λ_Y) is ditopological, there are open neighborhoods $W_{\lambda_Y(y)} \subset \lambda_Y(Y)$ and $U_y \subset Y$ of the elements $\lambda_Y(y)$ and y, respectively, such that $(W_{\lambda_Y(y)} \wedge U_y) \cap \lambda_Y^{-1}(W_{\lambda_Y(y)}) \subset O_y$. Taking into account that $\lambda_Y(y) \cdot y \in U_y$, we can replace $W_{\lambda_Y(y)}$ by a smaller neighborhood and additionally assume that $W_{\lambda_Y(y)} \cdot y \subset U_y$.

Since the unomorphism h preserves the left unit operation, we have $h(\lambda_X(x)) = \lambda_Y(y)$. The λ-regularity of the left unit operation λ_X implies that $\lambda_X(X) \subset E_X$. By the continuity of the restriction $h|\lambda_X(X)$, there is an open neighborhood $W_{\lambda_X(x)} \subset \lambda_X(X)$ such that $h(W_{\lambda_X(x)}) \subset W_{\lambda_Y(y)}$.

Since X is a left U-unosemigroup, for the point x and the neighborhood $W_{\lambda_X(x)}$ of $\lambda_X(x)$ we can find an idempotent $e \in W_{\lambda_X(x)}$ and an open neighborhood $V_x \subset X$ of x such that $e\lambda_X(x) = e$ and $eV_x \subset H_x$. Replacing V_x by a smaller neighborhood, if necessary, we can additionally assume that $\lambda_X(X) \subset W_{\lambda_X(x)}$. In this case

$$\lambda_Y \circ h(V_x) = h \circ \lambda_X(V_x) \subset h(W_{\lambda_X(x)}) \subset W_{\lambda_Y(y)}$$

and $h(ex) = h(e) \cdot h(x) \in h(W_{\lambda_X(x)}) \cdot y \subset W_{\lambda_Y(y)} \cdot y \subset U_y$.

We claim that the restriction $h|H_x x$ is continuous. Indeed, by the λ-regularity of the left unit operation λ_X, there is an element $x^* \in X$ such that $\lambda_X(x) = xx^*$. By Proposition 1 the right shift $s_x : H_e \to H_e x, s_x : z \mapsto xz$, is a homeomorphism with inverse $s_{x^*} : H_e x \to H_e, s_{x^*} : z \mapsto zx^*$. The EH-continuity of h guarantees that the restriction $h|H_e x$ is continuous and so is the composition $h \circ s_{x^*} : H_e x \to Y$. For every point $z \in H_e x$ we can find an element $g \in H_e$ with $z = gx$ and observe that $zx^* x = gxx^* x = g\lambda_X(x) x = gx = z$. So, $h(z) = h(xz^* x) = h(xz^*) \cdot h(x) = h(xz^*) \cdot y$, which implies that the restriction $h|H_x x$ is continuous as the composition of the continuous map $h \circ s_{x^*}$ and the continuous right shift $s_y : Y \to Y, s_y : u \mapsto uy$.

By the continuity of the map $h|H_x x$, the set $h^{-1}(U_y) \cap H_x x$ is an open neighborhood of the point ex. Replacing the neighborhood V_x by a smaller one, if necessary, we can assume that $eV_x \subset h^{-1}(U_y) \cap H_x x$. Then $h(eV_x) \subset h(h^{-1}(U_y)) \subset U_y$.

To finish the proof of the continuity of h at x, it remains to check that $h(V_x) \subset O_y$. For this observe that for every $v \in V_x$ we get $h(e) \cdot h(v) = h(ev) \in U_y$ and $h(e) \in h(W_{\lambda_X(x)}) \subset W_{\lambda_Y(y)}$.

Combined with the inclusion $\lambda_Y \circ h(v) \in \lambda_Y \circ h(V_x) \subset W_{\lambda_Y(y)}$ proved above, this yields

$$h(v) \in (W_{\lambda_Y(y)} \setminus U_y) \cap \lambda_Y^{-1}(W_{\lambda_Y(y)}) \subset O_y$$

according to the choice of the neighborhoods $W_{\lambda_Y(y)}$ and U_y. □

4 THE CONTINUITY OF EH-CONTINUOUS HOMOMORPHISMS BETWEEN CLIFFORD U-SEMIGROUPS

Now we are in a position to prove the main result of the paper and state some its corollaries. Let us recall that a topological Clifford semigroup X is called topological Clifford U-semigroup if its band E_X is a U-semilattice.

Theorem 3. Each EH-continuous homomorphism $h : X \to Y$ from a topological Clifford U-semigroup X to a ditopological Clifford semigroup Y is continuous.

Proof. By Proposition 3, the topological Clifford U-semigroup X endowed with a canonical left unit operation $\lambda : x \mapsto xx^{-1}$ is a λ-regular topological left U-unosemigroup. The homomorphism h, being a homomorphism between Clifford semigroups, preserves the operation of inversion. It follows that h preserves the canonical unit operation on X and so is a unomorphism. Thus, $h : X \to Y$ is an EH-continuous unomorphism and by Theorem 2, it is continuous. □

Since each locally compact Lawson semilattice is a U-semilattice (see Proposition 2.4(3) of [2]), this Theorem implies

Corollary 1. For any topological Clifford semigroup X with locally compact Lawson maximal semilattice E_X, every EH-continuous homomorphism $h : X \to Y$ to a ditopological Clifford semigroup Y is continuous.

Since each locally compact zero-dimensional semilattice is Lawson (see Theorem 2.6 in [4]), we obtain

Corollary 2. For any topological Clifford semigroup X with locally compact zero-dimensional maximal semilattice E_X, every EH-continuous homomorphism $h : X \to Y$ to a ditopological Clifford semigroup Y is continuous.

Since each compact Hausdorff topological Clifford semigroup is ditopological (see Theorem 4 in [1]), Corollary 1 implies the following result of Bowman [3].

Corollary 3 (Bowman). Each EH-continuous homomorphism $h : X \to Y$ from a compact Hausdorff topological Clifford semigroup X with Lawson maximal semilattice X into a compact Hausdorff topological Clifford semigroup Y is continuous.

REFERENCES

On continuity of homomorphisms between topological Clifford semigroups

Received 16.07.2013

Узагальнюється результат, отриманий у статті [3], і доводиться неперервність гомоморфізму $f : X \rightarrow Y$ між топологічними кліфордовими напівгрупами за умов:

- множина $E_X = \{ x \in X : xx = x \} \subseteq X$ ідемпотентів є U-напівграткою;
- топологічна кліфордова напівгрупа Y дітопологічна;
- звуження $f|E_X$ неперервне;
- звуження $f|H$ неперервне для кожної підгрупи $H \subseteq X$.

Ключові слова і фрази: дітопологічна унонапівгрупа, кліфордова напівгрупа, топологічна напівгратка.

Обобщается результат, полученный в работе [3], и доказывается непрерывность гомоморфизма $f : X \rightarrow Y$ между топологическими клиффордовыми полугруппами при условиях:

- множество $E_X = \{ x \in X : xx = x \} \subseteq X$ идемпotentов является U-полурешеткой;
- топологическая клиффордова полугруппа Y дитопологическая;
- сужение $f|E_X$ непрерывно;
- сужение $f|H$ непрерывно для каждой подгруппы $H \subseteq X$.

Ключевые слова и фразы: дитопологическая унополугруппа, клиффордова полугруппа, топологическая полурешетка.
ON SOME PROPERTIES OF KOROBOV POLYNOMIALS

We represent Korobov polynomials as paradeterminants of triangular matrices and prove some of their properties.

Key words and phrases: Korobov polynomial, triangular matrix, paradeterminant, partition polynomial.

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

INTRODUCTION

Korobov in [2] introduces polynomials of a special form, which are discrete analogs of Bernoulli polynomials. These polynomials are used to derive some interpolation formulas of many variables and a discrete analog of the Euler summation formula [3]. Therefore, it is topical to conduct further research of their properties.

1 OVERVIEW ON TRIANGULAR MATRICES AND THEIR PARADETERMINANTS

Definition 1 ([4]). A triangular table of numbers from some field K

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}_n$$

is called a triangular matrix, and the number n — its order.

Note, that in our understanding a triangular matrix is not a matrix in its usual sense, it is a triangular but not rectangular table of numbers.

To every elements a_{ij} of the matrix (1) we correspond the $(i - j + 1)$ elements $a_{ik}, k = j, \ldots, i$, which are called the derived elements of the matrix, generated by the key element a_{ij}.

The product of all derived elements generated by the element a_{ij} is denoted by $\{a_{ij}\}$ and is called the factorial product of the key element a_{ij}, i.e.

$$\{a_{ij}\} = \prod_{k=j}^{i} a_{ik}.$$
Definition 2. The paradeterminant and the parapermanent of the triangular matrix

\[
A = \begin{pmatrix}
a_{11} & a_{21} & a_{22} & \cdots & a_{n1} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{n2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}
\]

are, respectively, the functions

\[
ddet(A) = \sum_{r=1}^{n} \sum_{p_1+\ldots+p_r=n} (-1)^{n-r} \prod_{s=1}^{r} \{a_{p_1+\ldots+p_s,p_1+\ldots+p_{s-1}+1}\},
\]

\[
pper(A) = \sum_{r=1}^{n} \sum_{p_1+\ldots+p_r=n} \prod_{s=1}^{r} \{a_{p_1+\ldots+p_s,p_1+\ldots+p_{s-1}+1}\}.
\]

To every element \(a_{ij}\) of the triangular matrix (1) we correspond the triangular matrix with this element in the bottom left corner, which is called a corner of the triangular matrix and denoted by \(R_{ij}(A)\). It is obvious that the corner \(R_{ij}(A)\) is the triangular matrix of the \((i-j+1)\)-th order. The corner \(R_{ij}(A)\) comprises only those elements \(a_{rs}\) of the triangular matrix (1), the indexes of which satisfy the relations \(j \leq s \leq r \leq i\).

The pararfunctions of triangular matrices can be decomposed by the elements of their last row:

\[
ddet(A) = \sum_{s=1}^{n} (-1)^{n+s} \{a_{ns}\} \cdot ddet(R_{s-1,1}),
\]

\[
pper(A) = \sum_{s=1}^{n} \{a_{ns}\} \cdot pper(R_{s-1,1}).
\]

Proposition. The following is true:

\[
pper(A) = \left[\begin{array}{cccc}
a_1 & \cdot & \cdot & \cdot \\
a_2 & a_1 & \cdot & \cdot \\
\vdots & \vdots & \ddots & \cdot \\
a_n & a_{n-1} & \ldots & a_1 \\
0 & a_n & \ldots & a_2 \\
\vdots & \vdots & \ddots & \cdot \\
0 & 0 & \ldots & a_n \\
\end{array} \right]_m = \sum_{\lambda_1+2\lambda_2+\ldots+n\lambda_n=m} \frac{k!}{\lambda_1!\lambda_2!\ldots\lambda_n!} a_1^{k} a_2^{\lambda_2} \cdots a_n^{\lambda_n},
\]

and

\[
ddet(A) = \left[\begin{array}{cccc}
a_1 & \cdot & \cdot & \cdot \\
a_2 & a_1 & \cdot & \cdot \\
\vdots & \vdots & \ddots & \cdot \\
a_n & a_{n-1} & \ldots & a_1 \\
0 & a_n & \ldots & a_2 \\
\vdots & \vdots & \ddots & \cdot \\
0 & 0 & \ldots & a_n \\
\end{array} \right]_m = \sum_{\lambda_1+2\lambda_2+\ldots+n\lambda_n=m} (-1)^{n-k} \frac{k!}{\lambda_1!\lambda_2!\ldots\lambda_n!} a_1^{k} a_2^{\lambda_2} \cdots a_n^{\lambda_n},
\]
where \(k = \lambda_1 + \lambda_2 + \ldots + \lambda_n \).

For more detailed information on triangular matrices and their paradeterminants, the reader is referred to [4], [5].

2 KOROBOV POLYNOMIALS AND PARADETERMINANTS

In [2] the Korobov numbers \(P_n \) and polynomials \(P_n(x) \) are defined by the equalities

\[
P_0 = 1, \quad \left(\begin{array}{c} p \\ 1 \end{array} \right) P_n + \ldots + \left(\begin{array}{c} p \\ n+1 \end{array} \right) P_0 = 0, \quad n \geq 1; \tag{3}
\]

\[
P_0(x) = 1, \quad P_n(x) = P_0 \left(\begin{array}{c} x \\ n \end{array} \right) + \ldots + P_{n-1} \left(\begin{array}{c} x \\ 1 \end{array} \right) + P_n, \quad n \geq 1.
\]

We shall write the Korobov numbers as the paradeterminant of the triangular matrix.

Theorem 1. The following is true

\[
P_n = (-1)^n \left\langle \begin{array}{cccc}
p-1 & p-2 & \cdots & p-n+1 \\ \frac{p-2}{3} & \cdots & \frac{p-n+1}{n} \\ \frac{p-n}{n+1} & \cdots & \frac{p-1}{2} \\
1
\end{array} \right\rangle. \tag{4}
\]

Proof. Let us divide the second equality (3) by \(\left(\begin{array}{c} 1 \\ 1 \end{array} \right) \), and we get the recurrence equality

\[
P_n + a_1 P_{n-1} + a_2 P_{n-2} + \ldots + a_{n-1} P_1 + a_n P_0 = 0,
\]

where

\[
a_i = \frac{(p - 1)^i}{(i + 1)!}.
\]

The last equality, according to [1], has the solution

\[
P_n = (-1)^n \left\langle \begin{array}{cccc}
a_1 & a_2 & \cdots & a_n \\ \frac{a_2}{a_1} & \cdots & \frac{a_n}{a_{n-1}} \\ \frac{a_3}{a_2} & \cdots & \frac{a_{n+1}}{a_{n-2}} \\
1
\end{array} \right\rangle. \tag{5}
\]

That is why, in virtue of the equality

\[
\frac{a_i}{a_{i-1}} = \frac{p - i}{i + 1},
\]

the equality (4) is true. \(\square \)

It should be noted that due to the connection between the paradeterminants of triangular matrices and the parapermanents of some triangular matrices, the Korobov numbers can also be written as the parapermanent of a triangular matrix.

By now there are several presentations of some algebraic objects as partition polynomials (e.g., Waring's formula presenting power sums through elementary symmetric polynomials). The following theorem obviously presents the Korobov numbers with the help of the partition polynomials.
Theorem 2. The following is true:

\[P_n = \sum_{\lambda_1 + \ldots + n \lambda_n = n} (-1)^k \frac{k!}{\lambda_1!\lambda_2!\ldots\lambda_n!(n+1)!^{\lambda_n}} (p - 1)^k (p - 2)^{k-\lambda_1} \ldots (p - n)^{\lambda_n}, \]

\[n = 1, 2, \ldots. \]

Proof. Considering the equality (5) and the identity (2), after some simplifications, we get the presentation of the Korobov numbers as partition polynomials (6). □

References

Received 07.03.2014
THE HEAT EQUATION ON LINE WITH RANDOM RIGHT PART FROM ORLICZ SPACE

In this paper the heat equation with random right part is examined. In particular, we give conditions for existence with probability one of the solutions in the case when the right part is a random field, sample continuous with probability one from the Orlicz space. Estimation for the distribution of the supremum of solutions of such equations is found.

Key words and phrases: the heat equation, Orlicz space.

INTRODUCTION

The Cauchy problem for the heat equation with random factors is a classical problem of mathematical physics. Several researchers have investigated solutions of the heat equation depending on various types with random conditions [1, 7, 10–12]. In this paper we consider the Cauchy problem for the heat equation on line with random right part. We consider right part as a class of random fields from the Orlicz spaces.

Similar problems for the parabolic type equations are considered in [2], for the hyperbolic type equations are considered in [3, 4, 8, 14, 15].

The paper is organized as follows. Section 1 contains necessary definitions and results of the theory of the Orlicz space. In section 2 we consider heat equations with random right part. For such problem conditions of existence with probability one of classical solution with random right part from the Orlicz space are found. The estimation for distribution of supremum of solution of this problem has been got in Section 3.

Using this results one can construct modeless, which approximate solutions of such equations with given accuracy and reliability in the uniform metric (see [9, 13]).

1 STOCHASTIC PROCESSES OF THE ORLICZ SPACE

Definition 1 ([3]). An even, continuous, convex function $U(x)$, $x \in \mathbb{R}$ such that $U(x) > 0$ for $x \neq 0$ is called a C-function.

Definition 2 ([5]). We say that a C-function U satisfies g-condition if there exit constants $z_0 > 0$, $k > 0$ and $A > 0$ such that the inequality

$$U(x)U(y) \leq AU(kxy)$$

holds for all $x > z_0$ and $y > z_0$.

УДК 519.21
2010 Mathematics Subject Classification: 35K05, 60G15.
Definition 3 ([5]). Suppose that \((T, \rho)\) is a nonempty metric space and \(\varepsilon > 0\). Denote by \(N_\rho(t, \varepsilon)\) the smallest number of points in \(\varepsilon\)-net for the set \(T\) with respect to the metric \(\rho\). The function \((N_\rho(t, \varepsilon), \varepsilon > 0)\) is called the massiveness of the set \(T\) with respect to the metric \(\rho\).

Let \(\{\Omega, \mathcal{B}, P\}\) be a probability space.

Definition 4 ([3]). The space \(L_U(\Omega)\) of a random variables \(\zeta(\omega) = \zeta, \omega \in \Omega\), is called the Orlicz space generated by a C-function \(U(x)\) if, for any \(\zeta \in L_U(\Omega)\) there exists a constant \(r_\zeta\) such that \(EU\left(\frac{\zeta}{r_\zeta}\right) \leq \infty\).

The Orlicz space \(L_U(\Omega)\) is a Banach space with the norm

\[
\|\zeta\|_{L_U} = \inf \left\{ r > 0 : EU\left(\frac{\zeta}{r}\right) \leq 1 \right\}.
\]

Definition 5 ([3]). A stochastic process \(X = \{X(t), t \in T\}\) is said to be from the Orlicz space \(L_U(\Omega)\) if for all \(t \in T\) the random variable \(X(t)\) belongs to \(L_U(\Omega)\).

Definition 6 ([3]). Let \(U(x)\) be a C-function such that \(U(x)\) is stronger than \(V(x) = x^2\) that is \(V(x) > cx^2\) as \(x > x_0, c > 0\). The set of random variables \(\zeta(E \zeta = 0)\) from the space \(L_U(\Omega)\) is called strongly Orlicz family of random variables if there exists a constant \(C_\Delta\) such that for \(\zeta_i \in \Delta, i \in I\) and for all \(\lambda_i \in \mathbb{R}^1\) the following inequality holds \((I\) is any finite set\)

\[
\left\| \sum_{i \in I} \lambda_i \zeta_i \right\|_{L_U} \leq C_\Delta \left(\mathbb{E} \left(\sum_{i \in I} \lambda_i \zeta_i^2 \right)^{1/2} \right).
\]

Definition 7 ([3]). A stochastic process \(X = \{X(t), t \in T\}, (X \in L_U(\Omega))\) is called a strongly Orlicz process if the family of random variable \(X = \{X(t), t \in T\}\) is a strongly Orlicz family.

Theorem 1 ([3]). Let \(\Delta\) be a strongly Orlicz family of random variables. Then the linear closure \(\overline{\Delta}\) of the family \(\Delta\) in the space \(L_2(\Omega)\) is a strongly Orlicz family.

Theorem 2 ([3]). Let \(X_i = \{X_i(t), t \in T, i \in I\}\) be a family of strongly Orlicz stochastic processes. Let \((T, \Theta, \mu)\) is a measurable space. If

\[
\varphi_k(t), i \in I, k = 1, \ldots, \infty
\]

is a family of measurable function in \((T, \Theta, \mu)\) and the integral

\[
\zeta_{ki} = \int_T \varphi_k(t) x_i(t) d\mu(t)
\]

is well defined in the mean square sense, then the family of random variables

\[
\Delta_e = \{\zeta_{ki}, i \in I,k = 1,\infty\}
\]

is a strongly Orlicz family.
Theorem 3 ([15]). Let \mathbb{R}^k be the k-dimensional space,

$$d(t, s) = \max_{1 \leq i \leq k} |t_i - s_i|,$$

$T = \{0 \leq t_i \leq T_i, i = 1, 2, \ldots, k\}$, $X_n = \{X_n(t), t \in T\}$, $n = 1, 2, \ldots$ be a sequence of stochastic processes belonging to the Orlicz space $L_\Omega (\Omega)$, and let the function u satisfy the g-condition. Assume that the process $X_n(t)$ is separable and

$$\sup_{d(t, s) \leq h} \sup_{n=1, \infty} \|X_n(t) - X_n(s)\| \leq \sigma(h),$$

where $\sigma = \{\sigma(h), h > 0\}$ is a monotone increasing continuous function such that $\sigma(h) \to 0$ as $h \to 0$. We also assume that

$$\int_0^\varepsilon U^{(-1)} \left(\prod_{i=1}^k \left(\frac{T_i}{2\sigma^{(-1)}(u)} + 1 \right) \right) du < \infty,$$

where $\sigma^{(-1)}(u)$ is the inverse function to $\sigma(u)$. If the processes $X_n(t)$ converge in probability to the process $X(t)$ for all $t \in T$, then $X_n(t)$ converge in probability in the space $C(T)$.

The following result contains for the existence of partial derivatives for stochastic processes of Orlicz space.

Theorem 4 ([14]). Let $T = \{a_i \leq x_i \leq b_i, i = 1, \ldots, m\}$. $\xi(X)$, $X \in T$, be a separable random field such that $\xi(X)$ is a strongly Orlicz stochastic processes. Let $B_{0000}(X, Y) = E_{\xi}^2(X)\xi(Y)$ and assume that the partial derivatives $B_{0000}(X, Y) = \frac{\partial^2 B(X, Y)}{\partial x_i \partial y_i}$, $i = 1, \ldots, m$, and

$$B_{ikik}(X, Y) = \frac{\partial^4 B(X, Y)}{\partial x_i \partial y_i \partial x_k \partial y_k},$$

$i = 1, \ldots, m$, $k = 1, \ldots, m$ exist. Let there exist a monotone increasing continuous increasing functions $\sigma_z(h) > 0$, $h > 0$, that $\sigma_z(h) \to 0$ as $h \to 0$ for $z = (0, 0, 0, 0)$, $z = (i, 0, i, 0)$, $i = 1, \ldots, m$ and $z = (i, k, i, k)$, $i = 1, \ldots, m$, $k = 1, \ldots, m$. Assume that

$$\sup_{|x_i - y_i| \leq h} (B_z(X, X) + B_z(Y, Y) - 2B_z(X, Y))^\frac{1}{2} \leq \sigma_z(h). \quad (1)$$

If

$$\int_0^\varepsilon U^{(-1)} \left(\left(\frac{\pi}{2\sigma_z^{(-1)}(u)} + 1 \right) \left(\frac{T}{2\sigma_z^{(-1)}(u)} + 1 \right) \right) du < \infty \quad (2)$$

for all z and for sufficiently small ε, then with probability one the partial derivatives

$$\frac{\partial \xi(X)}{\partial x_i}, \quad \frac{\partial^2 \xi(X)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, m.$$
2 The Cauchy Problem for the Heat Equation with a Random Right Part from Orlicz Space

We consider the Cauchy problem for the heat equation

\[
\frac{\partial u(x,t)}{\partial t} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2} + \xi(x,t),
\]

subject to the initial condition

\[
u(x,0) = 0, \quad -\infty < x < +\infty.
\]

Let the function \(\xi(x,t) = \{\xi(x,t), \ x \in \mathbb{R}, \ t > 0\}\) is a random field sample continuity with probability one from the Orlicz space such that \(E\xi(x,t) = 0, E(\xi(x,t))^2 < +\infty\). Let us denote

\[
B(x,t,y,s) = E\xi(x,t)^{y,s}.
\]

Let \(B(x,t,z,s)\) be a continuous function.

Problem with the nonrandom function \(\xi(x,t)\) is seen in [6].

Theorem 5 ([10]). Let the conditions \(\int_\mathbb{R} E(\xi^2(x,t))dx < \infty\) be satisfied and let

\[
G(y,t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-a^2y^2(t-\tau)} \xi(y,\tau)d\tau, \quad \xi(y,\tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(yx) \xi(x,\tau)dx,
\]

and

\[
u(x,t) = \int_{-\infty}^{+\infty} \cos(yx) G(y,t)dy.
\]

If the integrals

\[
\int_{-\infty}^{+\infty} y\sin(yx) G(y,t)dy, \quad \int_{-\infty}^{+\infty} y^2 \cos(yx) G(y,t)dy, \quad s = 0, 2,
\]

exist and for all \(A > 0\) and \(T > 0\) there exists a sequence \(a_n\) with \(a_n \to \infty\) for \(n \to \infty\) such that the sequence of integrals

\[
\int_{-a_n}^{+a_n} y\sin(yx) G(y,t)dy, \quad \int_{-a_n}^{+a_n} y^2 \cos(yx) G(y,t)dy, \quad s = 0, 2,
\]

converges in probability, uniformly for \(|x| < A, 0 \leq t \leq T\), then the function \(v(x,t)\) is the classical solution to the problem (3)-(4).

Indeed,

\[
\frac{\partial u(x,t)}{\partial t} = -a^2 \int_{-\infty}^{+\infty} y^2 \cos(yx) G(y,t)dy + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(yx) \xi(y,t)dy = a^2 \frac{\partial^2 u(x,t)}{\partial x^2} + \xi(x,t).
\]
Lemma 1 ([11]). Let a function $X(\lambda, u), \lambda > 0$ and $u > 0$ be such that:

1) $\sup_{0 \leq u < \infty, 0 \leq \lambda < \infty} |X(\lambda, u)| \leq B$;

2) $|X(\lambda, u) - X(\lambda, v)| \leq C\lambda|u - v|$ for all $u > 0, v > 0$.

Let $\varphi(\lambda), \lambda > 0$ be a continuous increasing function such that $\varphi(\lambda) > 0$ for all $\lambda > 0$, and the function $\frac{\lambda}{\varphi(\lambda)}$ is increasing for $\lambda > \nu_0$, and for some constant $\nu_0 > 0$. Then

$$|X(\lambda, u) - X(\lambda, v)| \leq \max(C, 2B) - \frac{\varphi(\lambda + \nu_0)}{\varphi\left(\frac{1}{|u - v|} + \nu_0\right)}$$

for all $\lambda \geq 0$ and $v > 0$.

Let

$$u_{a_n}^{(0)}(x, t) = \int_{-a_n}^{a_n} \cos(yx) G(y, t)dy, \quad u_{a_n}^{(1)}(x, t) = \int_{-a_n}^{a_n} y \sin(yx) G(y, t)dy,$$

$$u_{a_n}^{(2)}(x, t) = \int_{-a_n}^{a_n} y^2 \cos(yx) G(y, t)dy.$$

Theorem 6. Let $\xi(x, t)$ be a random field, sample continuous with probability one from the Orlicz space. Let

1) $\int R E(\xi^2(x, t)) dx < \infty$;

2) the derivatives $\frac{\partial^k B(x, t, \nu, \delta)}{\partial x^k \partial t^m}, \quad k = 0, \ldots, 4, l + m = k$ exist;

3) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left| \frac{\partial^k B(x, t, \nu, \delta)}{\partial x^k \partial t^m} \right| dx dt \leq B(k, l, m) < \infty, \quad k = 0, \ldots, 4, l + m = k$;

4) $\frac{\partial^k B(x, t, \nu, \delta)}{\partial x^k \partial t^m} \to 0, k = 0, \ldots, 4, l + m = k$, as $x \to \infty$ or $v \to \infty$;

5) $\sup_{|x-x_1| \leq h, |t-t_1| \leq h} \tau_\varphi \left(u_{a_n}^{(k)}(x, t) - u_{a_n}^{(k)}(x_1, t_1) \right) \leq \sigma_k(h), \quad \text{for} \quad k = 0, 1, 2, \text{where} \quad \sigma_k(h) \text{is a monotone increasing continuous function such that} \quad \sigma_k(h) \to 0 \text{as} \quad h \to 0$, moreover

$$\int_{0^+} u^{(-1)} \left(\left(\frac{A}{\sigma_k^2 - 1}(u) + 1 \right) \left(\frac{T}{2\sigma_k^2 - 1}(u) + 1 \right) \right) du < \infty, \quad (7)$$

where $\sigma_k^{-1}(\varepsilon)$ is the inverse function to $\sigma_k(\varepsilon)$.

Then the function $u(x, t)$, which is represented in the form (5), is a classical solution to the problem (3)-(4).

Proof. This theorem follows from Theorem 3 and Theorem 5.
Example 1. Assume that $\xi(x), \eta(x)$ are strongly Orlicz processes $L_U(\Omega)$. Let $u(x)$ be a function such that $u(x) = |x|^p$ for some $p > 2$ and all $|x| > 1$. Then condition (7) of Theorem 6 holds the function $\sigma_k(h) = C_k|h|^\delta$ for $0 < \delta < 1$. Indeed for $\varepsilon > 0$

$$I = \int_0^\varepsilon U^{(-1)} \left(\left(\frac{A}{\sigma_k^{(-1)}}(u) + 1 \right) \left(\frac{T}{2\sigma_k^{(-1)}}(u) + 1 \right) \right) du < \infty,$$

$$I \leq \int_0^\varepsilon \left(\frac{AC_k^{1/2}}{u^{1/2}} + \frac{TC_k^{1/2}}{2u^{1/2}} \right)^2 du \leq D \int_0^\varepsilon \frac{1}{u^{1/2}} du.$$

The latter integral converges under $\delta > \frac{2}{p}$.

Theorem 7. Let $\xi(x,t)$ be strongly Orlicz processes $L_U(\Omega)$ where $u(x)$ is a function such that $u(x) = |x|^p$ for some $p > 2$ and all $|x| > 1$, sample continuous with probability one. Let

1) $\int_\mathbb{R} E(\xi^2(x,t)) dx < \infty$;

2) the derivatives $\frac{\partial^k B(x,t,v,s)}{\partial x^l \partial v^m}$, $k = 0, \ldots, 4$, $l + m = k$ exist;

3) $\int_\mathbb{R} \int_\mathbb{R} \left| \frac{\partial^k B(x,t,v,s)}{\partial x^l \partial v^m} \right| dx dv \leq B(k,l,m) < \infty$, $k = 0, \ldots, 4$, $l + m = k$;

4) $\frac{\partial^k B(x,t,v,s)}{\partial x^l \partial v^m} \rightarrow 0$, $k = 0, \ldots, 4$, $l + m = k$, as $x \rightarrow \infty$ or $v \rightarrow \infty$;

5) $\int_\mathbb{R} \left(E(|\xi(x,t)|^2)^{1/2} dx < \Theta_2; \int_{\mathbb{R}} \left(E \left| \frac{\partial \xi(x,t)}{dx} \right|^2 \right)^{1/2} \leq \Theta_1; \int_{\mathbb{R}} \left(E \left| \frac{\partial^2 \xi(x,t)}{dx^2} \right|^2 \right)^{1/2} \leq \Theta_2$ for some $0 < \Theta_2 < 0, \Theta_1 > 0, \Theta_2 > 0$.

Then the function $u(x,t)$, which is represented in the form (5), is classical solution to the problem (3)-(4).

Proof. It follows from the condition 1) (see Lemma 1 of [10]) that the integral Fourier transform

$$\hat{\xi}(y,\tau) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(yx) \xi(x,\tau) dx$$

exists and

$$\hat{\xi}(y,\tau) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(yx) \xi(y,\tau) dy.$$

It follows conditions 2)-4) (see Lemma 2 of [10]) that there exist with probability one integrals

$$\int_{\mathbb{R}} y \sin(yx) G(y,t) dy, \int_{\mathbb{R}} y^s \cos(yx) G(y,t) dy, \quad s = 0, 2.$$

Then by Theorem 5 the integrals in (6) converge in probability to integrals

$$\int_{\mathbb{R}} y \sin(yx) G(y,t) dy, \int_{\mathbb{R}} y^s \cos(yx) G(y,t) dy, \quad s = 0, 2.$$
for \(|x| \leq A, 0 \leq t \leq T\).

According to Theorem 3 and Example 1, when the conditions in the probability space \(C(T)\) required that the conditions

\[
\left(E \left| u_{a_n}(x, t) - u_{a_n}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \leq Ch^\alpha, \quad \left(E \left| u_{a_n}^{(1)}(x, t) - u_{a_n}^{(1)}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \leq C_1 h^\alpha,
\]

\[
\left(E \left| u_{a_n}^{(2)}(x, t) - u_{a_n}^{(2)}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \leq C_2 h^\alpha
\]

hold, where

\[
u_{a_n}(x, t) = \int_{-a_n}^{a_n} \cos(yx) G(y, t) dy,
\]

\[
u_{a_n}^{(1)}(x, t) = \int_{-a_n}^{a_n} y \sin(yx) G(y, t) dy,
\]

\[
u_{a_n}^{(2)}(x, t) = \int_{-a_n}^{a_n} y^2 \cos(yx) G(y, t) dy,
\]

then the integrals in integrals (6) converge in the probability space \(C(T)\).

Using the generalized Minkovski’s inequality we obtain

\[
\left(E \left| u_{a_n}(x, t) - u_{a_n}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left| \int_{-a_n}^{a_n} \cos(yx) G(y, t) dy - \int_{-a_n}^{a_n} \cos(yx_1) G(y, t) dy \right|^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left| \int_{-a_n}^{a_n} \left[\cos(yx) G(y, t) - \cos(yx_1) G(y, t_1) \right] dy \right|^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left| \int_{-a_n}^{a_n} \left[\left(\cos(yx) - \cos(yx_1) \right) G(y, t_1) + \left(G(y, t) - G(y, t_1) \right) \cos(yx) \right] dy \right|^2 \right)^{\frac{1}{2}}
\]

\[
\leq \int_{-\infty}^{\infty} \left| \cos(yx) - \cos(yx_1) \right| \left(\left| G(y, t_1) \right|^2 \right)^{\frac{1}{2}} + \left(\left| G(y, t) - G(y, t_1) \right|^2 \right)^{\frac{1}{2}} dy.
\]

Using the inequality \(|\sin x| \leq |x|^\alpha\) for \(0 < \alpha \leq 1\) and arbitrary \(h, |x - x_1| \leq h\) we have

\[
|\cos(yx) - \cos(yx_1)| \leq 2 \left| \sin \frac{y(x - x_1)}{2} \right| \leq 2^{1-\alpha} |y|^\alpha h^\alpha.
\]

Consider

\[
\left(E |G(y, t_1)|^2 \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{0}^{t_1} e^{-a^2 \xi^2(t_1-\tau)} \xi(y, \tau) d\tau \right|^2 \right)^{\frac{1}{2}}
\]

\[
\leq \frac{1}{\sqrt{2\pi}} \int_{0}^{t_1} e^{-a^2 \xi^2(t_1-\tau)} \left(E |\xi(y, \tau)|^2 \right)^{\frac{1}{2}} d\tau.
\]
\[
\left(E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{-\infty}^{+\infty} \cos(yx) \xi(x, \tau) dx \right|^{2} \right)^{\frac{1}{2}} \\
\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left(E|\xi(x, \tau)|^2 \right)^{\frac{1}{2}} dx < \frac{1}{\sqrt{2\pi}} \Theta.
\]

Therefore

\[
\left(E|G(y, t_1)|^2 \right)^{\frac{1}{2}} \leq \frac{1}{2\pi} \int_{0}^{t_1} \Theta e^{-a^2 y^2(t_1-\tau)} d\tau < \frac{1}{2\pi} \Theta \frac{1}{a^2 y^2} \left| 1 - e^{-a^2 y^2 t_1} \right|.
\]

Let \(t_1 < t \), then

\[
\left(E|G(y, t) - G(y, t_1)|^2 \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{0}^{t} \left[e^{-a^2 y^2(t-\tau)} \xi(y, \tau) d\tau - \int_{0}^{t_1} e^{-a^2 y^2(t_1-\tau)} \xi(y, \tau) d\tau \right] \right|^{2} \right)^{\frac{1}{2}} \\
= \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{0}^{t} \left[e^{-a^2 y^2(t-\tau)} - e^{-a^2 y^2(t_1-\tau)} \right] \xi(y, \tau) d\tau \right|^{2} \right)^{\frac{1}{2}} \\
= \frac{1}{\sqrt{2\pi}} \left(\int_{0}^{t} \left| e^{-a^2 y^2(t-\tau)} - e^{-a^2 y^2(t_1-\tau)} \right| \left(E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} d\tau \right) \\
= \frac{1}{\sqrt{2\pi}} \left(\int_{0}^{t} \int_{1}^{t_1} e^{-a^2 y^2(t-\tau)} \left(E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} d\tau + \int_{t_1}^{t} e^{-a^2 y^2(t-\tau)} \left(E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} d\tau \right).
\]

Using Lemma 1, we obtain the estimate

\[
\left| e^{-a^2 y^2(t-\tau)} - e^{-a^2 y^2(t_1-\tau)} \right| = \left| e^{-a^2 y^2(t_1-\tau)} \right| \left| e^{-a^2 y^2(t-t_1)} - 1 \right| \\
\leq e^{-a^2 y^2(t_1-\tau)} \max(1, a^2) y^{2\alpha} |t - t_1|^\alpha \leq e^{-a^2 y^2(t_1-\tau)} \max(1, a^2) y^{2\alpha} h^\alpha.
\]

Therefore

\[
\left(E|G(y, t) - G(y, t_1)|^2 \right)^{\frac{1}{2}} \leq \frac{1}{2\pi} \left(\int_{0}^{t} e^{-a^2 y^2(t_1-\tau)} \max(1, a^2) y^{2\alpha} h^\alpha \Theta \frac{1}{2} d\tau + \int_{t_1}^{t} e^{-a^2 y^2(t-\tau)} \Theta \frac{1}{2} d\tau \right) \\
= \frac{\Theta}{2\pi} \left(\max(1, a^2) y^{2\alpha} h^\alpha \frac{1}{a^2 y^2} \left| 1 - e^{-a^2 y^2 t_1} \right| + \int_{t_1}^{t} e^{-a^2 y^2(t-\tau)} d\tau \right) \\
= \frac{\Theta}{2\pi} \left(\max(1, a^2) \frac{h^\alpha}{a^2 y^2(1 - \alpha)} \left| 1 - e^{-a^2 y^2 t_1} \right| + \int_{t_1}^{t} e^{-a^2 y^2(t-\tau)} d\tau \right).
\]
Then

\[\left(\frac{E |u_{a_n}(x, t) - u_{an}(x_1, t_1)|^2}{h^a} \right)^{\frac{1}{2}} \leq \frac{\Theta}{2\pi} \int_{-\infty}^{+\infty} \left[2^{1-a} \left| \frac{h^a}{a^2 y^2} \right| |1 - e^{-a^2 y^2 t_1}| + h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| \right] \, dy \]

\[+ \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \, dy = \frac{\Theta}{\pi} \int_{0}^{+\infty} \left[2^{1-a} \left| \frac{h^a}{a^2 y^2 - \alpha} \right| |1 - e^{-a^2 y^2 t_1}| + \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \right] \, dy \]

\[+ h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| + \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \right] \, dy \]

\[= \frac{\Theta}{\pi} \left\{ \int_{0}^{1} \left[2^{1-a} \frac{h^a}{a^2 y^2 - \alpha} |1 - e^{-a^2 y^2 t_1}| + h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| \right] \, dy \]

\[+ \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \, dy + \int_{t}^{+\infty} \left[2^{1-a} \frac{h^a}{a^2 y^2 - \alpha} |1 - e^{-a^2 y^2 t_1}| \right] \, dy \]

\[+ h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| + \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \right] \, dy \right\} = \frac{\Theta}{\pi} (I_1 + I_2). \]

Consider

\[I_1 = \int_{0}^{1} \left[2^{1-a} \frac{h^a}{a^2 y^2 - \alpha} |1 - e^{-a^2 y^2 t_1}| + h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| \right] \, dy \]

\[+ \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \, dy + \int_{t}^{+\infty} \left[2^{1-a} \frac{h^a}{a^2 y^2 - \alpha} |1 - e^{-a^2 y^2 t_1}| \right] \, dy \]

\[+ h^a \max(1, a^2 \frac{h^a}{a^2 y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| + \int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \right] \, dy \]

\[= \frac{2^{1-a} h^a}{a^2} I_1 + h^a \max(1, a^2) I_1 + I_{13}. \]

Since \(|1 - e^{-a^2 y^2 t_1}| \leq a^2 y^2 t_1 \leq a^2 y^2 T \),

\[I_{11} = \int_{0}^{1} \frac{1}{y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| \, dy < \frac{a^2 T}{\alpha + 1}, \quad I_{12} = \int_{0}^{1} \frac{1}{y^2 (1-\alpha)} |1 - e^{-a^2 y^2 t_1}| \, dy < \frac{a^2 T}{2\alpha + 1}. \]

Using that \(e^{-a^2 y^2 (t-\tau)} \leq 1 \), we have

\[I_{13} = \int_{0}^{t} \left(\int_{t_1}^{t} e^{-a^2 y^2 (t-\tau)} d\tau \right) \, dy \leq \int_{0}^{1} (t - t_1) \, dy \leq h \leq h^a T^{1-a}. \]
So we have

\[l_1 \leq h^a \left(\frac{2^{1-\alpha}T}{\alpha + 1} + \frac{\max(1, a^2)T}{2\alpha + 1} + T^{1 - \alpha} \right). \]

\[l_2 = \int_1^{+\infty} \left[2^{1-\alpha} \frac{h^a}{a^2 y^{2-\alpha}} \left| 1 - e^{-a^2 y^2 t_1} \right| dy \right. \]

\[+ h^a \max(1, a^2) \frac{h^a}{a^2 y^{2-\alpha}(1 - \alpha)} \left| 1 - e^{-a^2 y^2 t_1} \right| + \left. \int_{t_1}^{+\infty} \frac{1}{y^{2(1 - \alpha)}} \left| 1 - e^{-a^2 y^2(t - \tau)} \right| d\tau \right] dy \]

\[= \frac{2^{1-\alpha}h^a}{a^2} \int_1^{+\infty} \frac{1}{y^{2-\alpha}} \left| 1 - e^{-a^2 y^2 t_1} \right| dy + \frac{h^a}{a^2} \max(1, a^2) \int_1^{+\infty} \frac{1}{y^{2(1 - \alpha)}} \left| 1 - e^{-a^2 y^2 t_1} \right| dy \]

\[+ \int_1^{+\infty} \left(\int_{t_1}^t e^{-a^2 y^2(t - \tau)} d\tau \right) dy = \frac{2^{1-\alpha}h^a}{a^2} l_{21} + \frac{h^a}{a^2} \max(1, a^2) l_{22} + l_{23}. \]

\[l_{21} = \int_1^{+\infty} \frac{1}{y^{2-\alpha}} \left| 1 - e^{-a^2 y^2 t_1} \right| dy \leq \int_1^{+\infty} \frac{1}{y^{2-\alpha}} dy = \frac{1}{1 - \alpha}. \]

\[l_{22} = \int_1^{+\infty} \frac{1}{y^{2(1 - \alpha)}} \left| 1 - e^{-a^2 y^2 t_1} \right| dy \leq \int_1^{+\infty} \frac{1}{y^{2(1 - \alpha)}} dy = \frac{1}{1 - 2\alpha}. \]

\[l_{23} = \int_1^{+\infty} \left(\int_{t_1}^t e^{-a^2 y^2(t - \tau)} d\tau \right) dy = \frac{1}{a^2} \int_1^{+\infty} \frac{1}{y^{2(1 - \alpha)}} \left(1 - e^{-a^2 y^2(t - t_1)} \right) dy \]

\[\leq \frac{h^a}{a^2} \max(1, a^2) \int_1^{+\infty} \frac{dy}{y^{2(1 - \alpha)}} = \frac{h^a}{a^2} \max(1, a^2) \frac{1}{1 - 2\alpha}. \]

Therefore

\[l_2 = \left(\frac{2^{1-\alpha}}{a^2} \cdot \frac{1}{1 - \alpha} + \frac{2\max(1, a^2)}{a^2} \right) h^a. \]

Then for \(0 < \alpha < \frac{1}{2} \), we have

\[\left(E \left| u_{\alpha}(x, t) - u_{\alpha}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \leq Ch^\alpha, \]

where

\[C = \frac{\Theta}{\pi} \left(\frac{2^{1-\alpha}T}{\alpha + 1} + \frac{\max(1, a^2)T}{2\alpha + 1} + T^{1 - \alpha} + \frac{2^{1-\alpha}}{a^2} \cdot \frac{1}{1 - \alpha} + \frac{2\max(1, a^2)}{a^2} \right). \]
Consider

\[
\left(E \left| u^{(1)}_{a_n}(x,t) - u^{(1)}_{a_n}(x_1,t_1) \right|^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left[\int_{-a_n}^{a_n} y \sin(y x) G(y,t) dy - \int_{-a_n}^{a_n} y \sin(y x_1) G(y,t_1) dy \right]^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left[\int_{-a_n}^{a_n} y \left[\sin(y x) G(y,t) - \sin(y x_1) G(y,t_1) \right] dy \right]^2 \right)^{\frac{1}{2}}
\]

\[
= \left(E \left[\int_{-a_n}^{a_n} y \left[(\sin(y x) - \sin(y x_1)) G(y,t_1) + (G(y,t) - G(y,t_1)) \sin(y x) \right] dy \right]^2 \right)^{\frac{1}{2}}
\]

\[
\leq \int_{-\infty}^{\infty} y \left[|\sin(y x) - \sin(y x_1)| \left(E |G(y,t_1)|^2 \right)^{\frac{1}{2}} + \left(E |G(y,t) - G(y,t_1)|^2 \right)^{\frac{1}{2}} \right] dy
\]

\[
= \int_{-\infty}^{\infty} y \left[|\sin(y x) - \sin(y x_1)| \left(y^2 E |G(y,t_1)|^2 \right)^{\frac{1}{2}} + \left(y^2 E |G(y,t) - G(y,t_1)|^2 \right)^{\frac{1}{2}} \right] dy.
\]

Since

\[
|\sin(y x) - \sin(y x_1)| \leq 2 \left| \sin \left(\frac{y (x - x_1)}{2} \right) \right| \leq 2^{1-a} |y|^a h^a.
\]

\[
\left(y^2 E |G(y,t_1)|^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \int_{0}^{1} e^{-a^2 y^2 (t_1 - \tau)} \left(y^2 E |\xi(y,\tau)|^2 \right)^{\frac{1}{2}} d\tau.
\]

\[
\left(y^2 E |\xi(y,\tau)|^2 \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \left(E \left[\int_{-\infty}^{\infty} y \cos(y x) \xi(x,\tau) dx \right]^2 \right)^{\frac{1}{2}}
\]

\[
\leq \frac{1}{\sqrt{2\pi}} \left(E \left[\int_{-\infty}^{\infty} \left| \frac{\partial \xi(x,\tau)}{\partial x} \right| dx \right]^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(E \left| \frac{\partial \xi(x,\tau)}{\partial x} \right|^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \Theta_1.
\]

Similarly,

\[
\left(E \left| u^{(1)}_{a_n}(x,t) - u^{(1)}_{a_n}(x_1,t_1) \right|^2 \right)^{\frac{1}{2}} \leq C_1 h^a,
\]

where

\[
C_1 = \frac{\Theta_1}{\pi} \left(\frac{2^{1-a} T}{\alpha + 1} + \frac{\max(1,a^2) T}{2\alpha + 1} + T^{1-a} + \frac{2^{1-a}}{a^2} \cdot \frac{1}{1-a} + \frac{2 \max(1,a^2)}{a^2} \right).
\]
Consider
\[
\left(E \left| u_{(n)}^{(2)}(x, t) - u_{(n)}^{(2)}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \\
= \left(E \left| \int_{-a_n}^{a_n} y^2 \cos(yx) G(y, t) dy - \int_{-a_n}^{a_n} y^2 \cos(yx_1) G(y, t_1) dy \right|^2 \right)^{\frac{1}{2}} \\
= \left(E \left| \int_{-a_n}^{a_n} y^2 \left[\cos(yx) G(y, t) - \cos(yx_1) G(y, t_1) \right] dy \right|^2 \right)^{\frac{1}{2}} \\
\leq \int_{-\infty}^{\infty} \left| \cos(yx) - \cos(yx_1) \right| \left(y^4 E|G(y, t_1)|^2 \right)^{\frac{1}{2}} + \left(y^4 E|G(y, t) - G(y, t_1)|^2 \right)^{\frac{1}{2}} dy. \\
\left(y^4 E|G(y, t_1)|^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{\alpha^2}{2}(t_1 - \tau)} \left(y^4 E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} d\tau. \\
\left(y^4 E|\xi(y, \tau)|^2 \right)^{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{-\infty}^{+\infty} y^2 \cos(yx) \xi(x, \tau) dx \right|^2 \right)^{\frac{1}{2}} \\
\leq \frac{1}{\sqrt{2\pi}} \left(E \left| \int_{-\infty}^{+\infty} \frac{\partial^2 \xi(x, \tau)}{\partial x^2} dx \right|^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left(E \left| \frac{\partial^2 \xi(x, \tau)}{\partial x^2} \right|^2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2\pi}} \Theta_2. \\
\text{Then} \\
\left(E \left| u_{(n)}^{(2)}(x, t) - u_{(n)}^{(2)}(x_1, t_1) \right|^2 \right)^{\frac{1}{2}} \leq C_2 h^a,
\]
where
\[
C_2 = \frac{\Theta_2}{\pi} \left(\frac{2^{1-a} T}{\alpha + 1} + \frac{\max(1, a^2) T}{2\alpha + 1} + T^{1-a} + \frac{2^{1-a}}{a^2} \cdot \frac{1}{1-\alpha} + \frac{2\max(1, a^2)}{a^2} \right),
\]
for \(0 < \alpha < \frac{1}{2}\).

According to Theorem 3, the conditions of Theorem 7 hold for \(0 < \alpha < \frac{1}{2}\).

\[\square\]

3 Estimates of the distribution of the supremum of a solution of the heat equation

Theorem 8 ([11]). Let \((\bar{T}, \bar{\rho})\) be a compact metric space and \(N(u)\) the metric massiveness of the space \((\bar{T}, \bar{\rho})\), that is, the minimum number of closed balls of radius \(U\) that cover \((\bar{T}, \bar{\rho})\). Let \(X =\)
\{X(t), \ t \in T\} be a separable stochastic process from the space \(L_U(\Omega)\), and let the function \(U\) satisfies the \(g\)-condition. Assume that there exists a monotone increasing continuous function
\[\sigma = \sigma(h), \ 0 \leq h \leq \sup_{t,s \in T} \bar{\rho}(t,s)\] such that
\[\sup_{\bar{\rho}(t,s) \leq h} \|X(t) - X(s)\|_U \leq \sigma(h).\]

If for some \(\varepsilon\)
\[\int_0^\varepsilon \chi_U \left(N \left(\sigma^{(-1)}(u) \right) \right) du < \infty, \tag{8}\]
where
\[\chi_U(n) = \begin{cases} n, & n < U(z_0); \\ C_U U^{(-1)}(n), & n \geq U(z_0), \end{cases}\]
\[C_U = k(1 + U(z_0)) \max(1, A), z_0, \ A \text{ are constants from definition of } C\text{-function and } \sigma^{(-1)}(h) \text{ is the inverse of } \sigma(h),\]
then the random variable \(\sup_{t \in T} |X(t)|\) belongs to the space \(L_U(\Omega)\) with probability one and
\[\sup_{t \in T} |X(t)| \leq \|X(t_0)\|_U + \frac{1}{\theta(1 - \theta)} \int_0^{\omega_0} \chi_U \left(N \left(\sigma^{(-1)}(u) \right) \right) du = B(t_0, \theta),\]
where \(t_0 \in T, \omega_0 = \sigma(\sup_{t \in T}(\rho(t_0, t))), \ 0 < \theta < 1.\) In addition, for all \(\varepsilon > 0\) the following inequality holds:
\[P \left\{ \sup_{t \in T} |X(t)| > \varepsilon \right\} \leq \left(\frac{\varepsilon}{B(t_0, \theta)} \right)^{-1}.\]

Theorem 9. Let in conditions of Theorem 8
\[\bar{T} = \{(x, t): x \in [A, A], t \in [0, T]\}, \ \bar{\rho}(x, x_1, t, t_1) = \max\{ |x - x_1|, |y - y_1| \}.
\]
Let
\[u(x, t) = \int_{-\infty}^{+\infty} \cos(yx) G(y, t)dy,\]
where
\[G(y, t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-y^2(1-\tau^2)} \xi(y, \tau) d\tau, \ \xi(y, \tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(yx) \xi(x, \tau) dx,\]
be a separable stochastic process from the space \(L_U(\Omega)\), and let the function \(U\) satisfies the \(g\)-condition. Assume that there exists a monotone increasing continuous function \(\sigma = \sigma(h),\)
\[0 \leq h \leq \sup_{t,s \in T} \bar{\rho}(x, x_1, t, t_1)\] such that
\[\sup_{|x-x_1| \leq h, |t-t_1| \leq h} \tau_{\bar{\rho}}(u(x, t) - u(x_1, t_1)) \leq \sigma(h).\]
If for some ε

$$\int_{0^+}^{\varepsilon} U^{(-1)} \left(\left(\frac{A}{\sigma^{(-1)}(u)} + 1 \right) \left(\frac{T}{2\sigma^{(-1)}(u)} + 1 \right) \right) du < \infty,$$

where $\sigma^{(-1)}(h)$ is the inverse of $\sigma(h)$, then the random variable $\sup_{(x,t) \in \overline{T}} |u(x,t)|$ belongs to the space $L_U(\Omega)$ with the probability one and

$$\left\| \sup_{(x,t) \in \overline{T}} |u(x,t)| \right\|_U \leq \|u(x_0, t_0)\|_U$$

$$+ \frac{1}{\theta(1-\theta)} \int_{0^+}^{\omega_0 \theta} \int_{0^+}^{\varepsilon} U^{(-1)} \left(\left(\frac{A}{\sigma^{(-1)}(u)} + 1 \right) \left(\frac{T}{2\sigma^{(-1)}(u)} + 1 \right) \right) du = B(x_0, t_0, \theta),$$

where $(x_0, t_0) \in \overline{T}$, $\omega_0 = \sigma(\sup_{i \in T} \rho(x_0, x, t_0, t))$, $0 < \theta < 1$. In addition, for all $\varepsilon > 0$ the following inequality holds:

$$P \left\{ \sup_{(x,t) \in \overline{T}} |u(x,t)| > \varepsilon \right\} \leq \left(U \left(\frac{\varepsilon}{B(x_0, t_0, \theta)} \right) \right)^{-1}.$$

Proof: This Theorem follows from Theorem 8 since

$$N(\sigma^{(-1)}(u)) \leq \left(\frac{A}{\sigma^{(-1)}(u)} + 1 \right) \left(\frac{T}{2\sigma^{(-1)}(u)} + 1 \right).$$

References

Received 05.03.2014

В роботі розглядається рівняння теплопровідності на прямій з випадковою правою частиною з простору Орліча. Знайдено умови існування з ймовірністю одиниця розв’язку задачі Коші такого рівняння. Отримано оцінку для розподілу супремуму розв’язку даної задачі.

Ключові слова і фрази: рівняння теплопровідності, простір Орліча.

В работе рассматривается уравнение теплопроводности на прямой со случайной правой частью с пространства Орлича. Найдены условия существования с вероятностью единица решения задачи Коши для такого уравнения. Получены оценки для распределения супремума решения данной задачи.

Языковые слова и фразы: уравнение теплопроводности, пространство Орлича.
SLOBODIAN S.YA.

THE NORMAL LIMIT DISTRIBUTION OF THE NORMALIZED NUMBER OF FALSE SOLUTIONS OF ONE SYSTEM OF NONLINEAR RANDOM EQUATIONS OVER THE FIELD GF(2)

The theorem on a normal limit distribution of the normalized number of false solutions of a beforehand consistent system of nonlinear random equations over the field GF(2) is proved. The results with the additional condition on the number of nonzero components both false solutions and true solution of the solutions are obtained.

Key words and phrases: nonlinear random equation, field GF(2), normal limit distribution.

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
E-mail: slobodian_s@ukr.net

INTRODUCTION

Let us consider a system of equations over the field GF(2) consisting of two elements

\[\sum_{k=1}^{g_q(n)} \sum_{1 \leq j_1 < \ldots < j_k \leq n} a_{j_1 \ldots j_k}^{(q)} x_{j_1} \ldots x_{j_k} = b_q, \quad q = 1, 2, \ldots, N, \tag{1} \]

that satisfies condition (A).

Condition (A):

1) coefficients \(a_{j_1 \ldots j_k}^{(q)} \) \((1 \leq j_1 < \ldots < j_k \leq n, \ k = 1, \ldots, g_q(n), \ q = 1, 2, \ldots, N) \) are independent random variables, \(P\{a_{j_1 \ldots j_k}^{(q)} = 1\} = 1 - P\{a_{j_1 \ldots j_k}^{(q)} = 0\} = p_{qk}; \)

2) elements \(b_q \) \((q = 1, 2, \ldots, N) \) are the result of the substitution of a fixed \(n \)-dimensional \((0,1)\)-vector \(\bar{x}^0 \), that has \(\rho(n) \) components equal to one, \(\rho(n) = |\bar{x}^0|, \) in the left-hand side of the system (1);

3) the function \(g_q(n) \) is nonrandom, \(g_q(n) \in \{2, 3, \ldots, n\}, \ q = 1, 2, \ldots, N. \)

Denote by \(M(\bar{x}^0, f(n)) \) the set of all \(n \)-dimensional vectors \(\bar{x} \), which do not coincide with \(\bar{x}^0 \). These vectors have the number \(|\bar{x}| \) of nonzero components satisfying inequality \(|\bar{x}| \geq f(n), \)

\(f(n) \in \{0, 1, 2, \ldots, n\}. \)

Denote by \(v_n \) the number of all solutions \(\bar{x}, \bar{x} \in M(\bar{x}^0, f(n)) \) of the system (1) and we shall name their false. Most attention was paid to finding conditions for the convergence of the distribution of the random variable \(v_n \) to a Poisson distribution as \(n \to \infty \) in the previously published papers (see review article [2]). We are interested in the conditions under which in appropriate way normalized random variable \(v_n \) has a normal limit \((n \to \infty) \) distribution and \(n - \rho(n) \to \infty \ (n \to \infty), \ f(n) \geq 2. \) The case \(\rho(n) \to \infty \ (n \to \infty) \) and \(f(n) = 0 \) is considered in [5]. Put \(\lambda \) is a positive real number such that \(|\lambda| = 2^m, \ m = n - N, \ [\cdot] \) is the sign of the integer part.

YAK 519.21

2010 Mathematics Subject Classification: 60C05, 60F99.

© Slobodian S.Ya., 2014
1 FORMULATION OF THE THEOREM

Theorem. Let the condition (A) holds, parameters n and N are changed so that

$$\lambda = \frac{1}{\nu(1 + \alpha + \omega)} \log_2 \frac{n - \rho(n)}{f(n) \ln n},$$ \hspace{1cm} (2)

$$\nu = \nu(n) \geq 2, \quad \alpha = \alpha(n), \quad \omega = \omega(n), \quad \alpha > \exp\{1 + \alpha^{-1}\},$$ \hspace{1cm} (3)

$$\lambda \to \infty,$$ \hspace{1cm} (4)

as $n \to \infty$; for an arbitrary q, $q = 1, 2, \ldots, N$, exist a nonempty set T_q such that for all sufficiently large values of n

$$T_q \subseteq \{2, \ldots, g_q(n)\} \cap \{2, \ldots, ef(n)\}, \quad T_q \neq \emptyset, \quad 0 < \varepsilon < 1, \quad \varepsilon = \text{const},$$ \hspace{1cm} (5)

$$\frac{1}{2} - \delta_{qt} \leq p_{qt} \leq \frac{1}{2} + \delta_{qt}, \quad \delta_{qt} = \delta_{qt}(n), \quad t \in T_q, \quad q = 1, \ldots, N,$$ \hspace{1cm} (6)

$$(2 + (1 + \alpha + \omega) \ln 2)\lambda - \frac{\ln \lambda}{2} + \ln \left(\sum_{q=1}^{N} \prod_{t \in T_q} 2\delta_{qt}\right) \to -\infty \quad (n \to \infty).$$ \hspace{1cm} (7)

Then the distribution function of the random variable $\frac{\nu - \lambda}{\sqrt{\lambda}}$ tends $(n \to \infty)$ to the standard normal distribution function.

2 AUXILIARY STATEMENTS

Let $M(v_n)_r$ denotes r-factorial moment of a random variable v_n.

Proposition. If the condition (A) holds, then for integer $r \geq 1$

$$M(v_n)_r = 2^{-rN} S(n, r; Q),$$ \hspace{1cm} (8)

where

$$S(n, r; Q) = \sum_{s=0}^{n-\rho(n)} \sum (n - \rho(n))! \left(\frac{(n - \rho(n) - s)! \prod_{i \in I} i!}{\prod_{j \in J} j!}\right)^{-1}$$

$$\times \sum_{s'=0}^{\rho(n)} \sum' (\rho(n))! \left(\frac{(\rho(n) - s')! \prod_{j \in J} j!}{\prod_{i \in I} i!}\right)^{-1} Q,$$ \hspace{1cm} (9)

$$Q = \prod_{q=1}^{N} \left(1 + \sum_{u_1=1}^{r} \sum_{u_1<\ldots<u_v \leq r} \prod_{t=1}^{r} (1 - 2p_{qt})^{\sum_{i \in I} i \leq r} \left\{u_1, \ldots, u_v\right\}\right),$$

the sum $\sum (\Sigma')$ is taken over all $i \in I (j \in J)$, where $I = \{i \{u_1, \ldots, u_v\} : 1 \leq u_1 < \cdots < u_v \leq r, \nu = 1, \ldots, r\}$, $J = \{j \{u_1, \ldots, u_v\} : 1 \leq u_1 < \cdots < u_v \leq r, \nu = 1, \ldots, r\}$ such that

$$\sum_{i \in I} i = s \left(\sum_{j \in J} j = s'\right);$$

in accordance to (9), the numbers $i (i \in I), j (j \in J)$ satisfy the relations

$$\sum_{i \in I (j \in J)} (i + j) \geq 1, \quad u = 1, \ldots, r,$$ \hspace{1cm} (10)
\[
\sum_{i \in I_{u}} i + \rho(n) - \sum_{j \in I_{u}} j \geq f(n), \ u = 1, \ldots, r, \tag{11}
\]
for \(1 \leq u_{1} < \cdots < u_{v} \leq r, \ v \in \{1, \ldots, r\} \) and \(t \in \{1, \ldots, n\} \) the inequality
\[
\Gamma_{t,r}^{\{u_{1}, \ldots, u_{v}\}} \geq \sum_{(i,j) \in T} \left(C_{i}^{t} + C_{j}^{t}\right), \tag{13}
\]
holds true, where \(T = I_{\{u_{1}, \ldots, u_{v}\}} \times I_{\{u_{1}, \ldots, u_{v}\}} \); here
\[
I_{\{u_{r}, \ldots, u_{v}\}} = \left\{ i \{\sigma_{1}, \ldots, \sigma_{v}, \mu_{1}, \ldots, \mu_{l}\} : A(\psi, I, r) \right\}, \quad I_{\{u_{r}, \ldots, u_{v}\}} = \left\{ j \{\sigma_{1}, \ldots, \sigma_{v}, \mu_{1}, \ldots, \mu_{l}\} : A(\psi, I, r) \right\},
\]
\(A(\psi, I, r)\) is a notation for the following set of restrictions:
\[1 \leq \sigma_{1} < \cdots < \sigma_{v} \leq r, \ \sigma_{z} \in \{u_{1}, \ldots, u_{v}\}, \ z = 1, \ldots, \psi, \ \psi = 1, \ldots, v, \ \psi \equiv 1 (\text{mod} 2), \ 1 \leq \mu_{1} < \cdots < \mu_{l} \leq r, \ \mu_{l}, \ldots, \mu_{l} \notin \{u_{1}, \ldots, u_{v}\}, \ l = 0, \ldots, r, v. \]

Remark. The explicit expression \(\Gamma_{t,r}^{\{u_{1}, \ldots, u_{v}\}}\) for \(1 \leq u_{1} < \cdots < u_{v} \leq r, \ v \in \{1, \ldots, r\}\), \(t = 1, 2, \ldots, g_{q}(n), q = 1, \ldots, N\), is given in [3].

The proof of the proposition is realized similarly to the proof of the theorem 1 from the work [3], which holds true for \(f(n) = 0\).

Lemma 1. Let conditions (10) and (11) hold. Then the inequality
\[
\Gamma_{t,r}^{\{u\}} \geq C_{f(n)-1}^{u}, \ u = 1, \ldots, r, \tag{14}
\]
holds true.

Proof. Using the equalities (2)–(4) from the work [3], we obtain
\[
\Gamma_{t,r}^{\{u\}} = C_{F_{u} + \Phi_{u}} + C_{\rho(n)}^{t} - 2C_{\Phi_{u}}, \ u = 1, \ldots, r, \tag{15}
\]
where \(F_{u} = \sum_{i \in I_{u}} i, \ \Phi_{u} = \rho(n) - \Phi_{u}, \ \Phi_{u} = \sum_{j \in I_{u}} j\). By virtue of (10) \(F_{u} + \Phi_{u}^{*} \geq 1\). In order to prove of Lemma 1 it is, therefore, sufficiently to find the estimation for \(\Gamma_{t,r}^{\{u\}}\) in two cases:
\(\Phi_{u}^{*} \geq 0\) \((F_{u} \geq 1)\) and \(\Phi_{u}^{*} \geq 1\) \((F_{u} \geq 0)\).

Let \(\Phi_{u}^{*} \geq 0\). Then \(F_{u} \geq 1\) and taking into account (15)
\[
\Gamma_{t,k}^{\{u\}} \geq C_{F_{u} + \rho(n)} + C_{\rho(n)}^{t} \geq C_{1 + \rho(n)}^{t} - 2C_{\rho(n)} \geq C_{f(n)-1}^{f(n)-1}, \ u = 1, \ldots, r. \tag{16}
\]
Here, with the help of (11) and accepted designations, the fact \(F_{u} + \rho(n) - \Phi_{u}^{*} \geq f(n)\) has been used.

Let now \(\Phi_{u}^{*} \geq 1\). Then \(F_{u} \geq 0\) and similarly to (16), we find
\[
\Gamma_{t,k}^{\{u\}} \geq C_{\rho(n)}^{t} - C_{\rho(n)}^{t} - \Phi_{u}^{*} \geq C_{\rho(n)}^{t} - C_{\rho(n)-1}^{t} \geq C_{\rho(n)-1}^{t} \geq C_{f(n)-1}^{f(n)-1}, \ u = 1, \ldots, r. \tag{17}
\]

Lemma 2. Let conditions (11) and (12) hold. Then the inequality
\[
\Gamma_{t,r}^{\{u_{1}, u_{2}\}} \geq C_{f(n)-1}^{u_{1}}, \ 1 \leq u_{1} < u_{2} \leq r,
\]
holds.
Proof. Using equalities (2)-(4) from the work [3], we find

\[
\Gamma_{t,r}^{(u_1,u_2)} = C_{F_{u_1}}^{t} + \Phi_{u_1} - 2C_{F_{u_2}}^{t} + \Phi_{u_2}, \quad 1 \leq u_1 < u_2 \leq r, \tag{18}
\]

where \(F_{u_1,u_2} = \sum_{l=0}^{r-2} \sum_{\mu \notin \{u_1,u_2\}} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq r} i_{\{u_1 u_2 \mu_1 \cdots \mu_l\}} \).

\[
\Phi_{u_1,u_2} = \rho(n) - \sum_{l=0}^{r-2} \sum_{\mu \notin \{u_1,u_2\}} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq r} (j_{\{u_1 \mu_1 \cdots \mu_l\}} + j_{\{u_2 \mu_1 \cdots \mu_l\}}) - \sum_{l=0}^{r-2} \sum_{\mu \notin \{u_1,u_2\}} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq r} j_{\{u_1 u_2 \mu_1 \cdots \mu_l\}}, \quad 1 \leq u_1 < u_2 \leq r.
\]

We can write relation (18) in the following way:

\[
\Gamma_{t,r}^{(u_1,u_2)} = C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - 2C_{F_{u_1}}^{t} + \Phi_{u_1} + 2C_{F_{u_2}}^{t} + \Phi_{u_2}, \quad 1 \leq u_1 < u_2 \leq r. \tag{19}
\]

Using definitions of \(F_{u_1}, \Phi_{u_1}, (u = u_1, u_2) \) and \(F_{u_1,u_2}, \Phi_{u_1,u_2} \), we can present (19) in the following way:

\[
\Gamma_{t,r}^{(u_1,u_2)} = C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_1}}^{t} - \Phi_{u_1} - \psi_{*} + C_{F_{u_2}}^{t} + \Phi_{u_2} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*}, \quad 1 \leq u_1 < u_2 \leq r, \tag{20}
\]

where

\[
\psi_{*} = \sum_{l=0}^{r-2} \sum_{\mu \notin \{u_1,u_2\}} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq r} (i_{\{u_1 \mu_1 \cdots \mu_l\}} + j_{\{u_2 \mu_1 \cdots \mu_l\}}), \quad \psi_{*} = \sum_{l=0}^{r-2} \sum_{\mu \notin \{u_1,u_2\}} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq r} (i_{\{u_2 \mu_1 \cdots \mu_l\}} + j_{\{u_1 \mu_1 \cdots \mu_l\}}).
\]

According to condition (12), the inequality \(\psi_{*} + \psi_{*} \geq 1 \) holds true. Let us find the estimation \(\Gamma_{t,r}^{(u_1,u_2)} \) when \(\psi_{*} \geq 0 \) and \(\psi_{*} \geq 1 \).

If relation \(\psi_{*} \geq 0 \) holds, then from the equality (20), using lemma 7 from [3] and (11), we can obtain \(\Gamma_{t,r}^{(u_1,u_2)} \geq C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*} \geq C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*} - 1 \geq C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*} - 1 \geq \Gamma_{t,r}^{(u_1,u_2)}, \quad 1 \leq u_1 < u_2 \leq r.
\]

If inequality \(\psi_{*} \geq 1 \) satisfies, it is similarly easy to receive an estimation \(\Gamma_{t,r}^{(u_1,u_2)} \geq C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*} - 1 \geq C_{F_{u_1}}^{t} + \Phi_{u_1} - C_{F_{u_2}}^{t} + \Phi_{u_2} - \psi_{*} - 1 \geq \Gamma_{t,r}^{(u_1,u_2)}, \quad 1 \leq u_1 < u_2 \leq r.
\]

\[\square\]

3 PROOF OF THE THEOREM

Let us show that under the conditions of the theorem we can use Lemma 2 from the work [5]. Let the random variable \(Y \) in the mentioned lemma have a Poisson distribution with parameter \(2^m \), while the distribution of the random variable \(X \) coincides with the distribution of the random variable \(\nu_n \); and put \(\gamma = 1 + \omega \).

Let us check up condition (35) of the mentioned Lemma 2 of the work [5], that is let us show existence of the constant \(C \) such, that the estimation \(M(Y)_r \leq C(\lambda^*)^r \) satisfies for \(r \leq (\alpha + \gamma)\lambda^* \), where \(\lambda^* = M\nu_n \).

Using the equality (8) as \(r = 1 \), let us evaluate of the expectation of the random variable \(\nu_n \). Further we note that conditions (3), (5)-(7) and Lemma 1 (as \(r = 1 \)) provide the relation

\[
Q = 1 + O\left(\sum_{q=1}^{N} \prod_{t \in T_q} 2\delta_{yt} \right), \quad n \to \infty. \tag{21}
\]
By virtue of relation (21), the expectation of the random variable v_n can be presented in the following way:

$$Mv_n = 2^{-N} \sum_{i=0}^{n-\rho(n)} C_{n-\rho(n)}^i \sum_{j=0}^{\rho(n)} C_{\rho(n)}^j Q_i$$

$$= 2^{-N} \left(1 + O \left(\sum_{q=1}^{N} \prod_{t \in T_q} 2\delta_q \right) \right) \left(\sum_{i=0}^{n-\rho(n)} C_{n-\rho(n)}^i \sum_{j=0}^{\rho(n)} C_{\rho(n)}^j - \sigma_0 \right), \quad n \to \infty,$$

where $\sigma_0 = \sum_{i=0}^{n-\rho(n)} C_{n-\rho(n)}^i \sum_{j=0}^{\rho(n)} C_{\rho(n)}^j$ on the assumption of $i + j \geq 1, i + \rho(n) - j < f(n)$.

The normal limit distribution of the number of false solutions (23) over parameter $j, j = 0, \ldots, \rho(n)$, and additional conditions $i + j \geq 1, i + \rho(n) - j \geq f(n)$. It is easy to show that inequality for σ_0

$$\sigma_0 \leq \exp\{o(n)\}, \quad n \to \infty,$$

satisfies. With the help of (22) and (23) we find

$$Mv_n = 2^{-N} \left(2^n - 1 - \exp\{o(n)\} \right) \left(1 + O \left(\sum_{q=1}^{N} \prod_{t \in T_q} 2\delta_q \right) \right), \quad n \to \infty,$$

or according to the notations introduced above, we can write

$$\lambda^* = [\lambda] (1 + o(1)), \quad n \to \infty.$$

By virtue of (2), (7) and relations $M(Y)_r = 2^{mr}, m = n - N, (27)$, we find that condition (35) of Lemma 2 from the work [5] holds true for $C > 1$.

Let us proceed to verification of condition (38) (Lemma 2, [5]), according to which, the relation

$$\max_{1 \leq r \leq (a + 7)\lambda^*} M(X)_r(M(Y)_r)^{-1} - 1 \left(\frac{\lambda^{2\lambda^*}}{\sqrt{\lambda^*}} \right) \to 0, \quad n \to \infty,$$

satisfies for all $r \leq (a + \gamma)\lambda^*$. To achieve this, we write equality (8) in the following way:

$$M(v_n)_r = \frac{1}{2rN} \sum_{\Delta=0}^{2r-1} S^{(\Delta)}(n, r; Q),$$

where $S^{(\Delta)}(n, r; Q)$ differs from $S(n, r; Q)$ so that all i and $j, i \in I, j \in J$, participating in the notation $S(n, r; Q)$ given by (9) take only such values that there exist precisely Δ of various sets

$$\omega_n = \left\{ u_1^{(a)}, \ldots, u_{\xi_n}^{(a)} \right\}, \quad 1 \leq u_1^{(a)} < \cdots < u_{\xi_n}^{(a)} \leq r, \quad \xi_n \in \{1, 2, \ldots, r\}, \quad \alpha = 1, 2, \ldots, \Delta,$$

for each of which a number $t^{(a)} \in \{2, \ldots, k\}, k = \lceil ef(n) \rceil$ can be found such that

$$\Gamma_{t^{(a)}, r} = 0,$$

and for the sets $\{\theta_1, \ldots, \theta_q\}, \quad 1 \leq \theta_1 < \cdots < \theta_q \leq r, \quad q = 1, \ldots, r$, satisfying the relation $\{\theta_1, \ldots, \theta_q\} \neq \omega_n, \quad \alpha = 1, 2, \ldots, \Delta$, the estimate

$$\Gamma_{t_r, \theta} \geq 1$$
is valid for all \(t \in \{2, \ldots, k\} \).

Let us show that

\[
\sup_{1 \leq r \leq (\alpha + \gamma)\lambda^*} \left| \frac{S^{(0)}(n, r; Q)}{2 r N M(Y)_r} - 1 \right| \frac{2\lambda^*}{\sqrt{\lambda^*}} \to 0, \; n \to \infty. \tag{29}
\]

Firstly, we state that the equality \(\Delta = 0 \) can really be achieved.

Indeed, if for all \(i, \; i \in I, \) and (or) \(j, \; j \in J, \) at least one of two inequalities \(i \geq k \) or \(j \geq k, \) holds, then, by virtue of \((13), \) estimation \((28) \) holds true for all sets \(\{\vartheta_1, \ldots, \vartheta_q\}, \; 1 \leq \vartheta_1 < \cdots < \vartheta_q \leq r, \; q = 1, \ldots, r \) \(t \in \{2, \ldots, k\}. \) In turn, equality \(i = k \) and (or) \(j = k \) can satisfies for all \(i \in I, \) and (or) \(j \in J, \) since, taking into account condition \((2) \) and equality \((25), \) the relation

\[
2^kr \leq \max(n - \rho(n), \rho(n)) \tag{30}
\]

holds for \(r \leq (\alpha + \gamma)\lambda^*. \) Thus, the equality \(\Delta = 0 \) can really be reached.

Let \(u = (2^r - 1) \sum_{q=1}^{N} \prod_{i \in I_q} 2 \delta_q. \) Then for \(\Delta = 0, \) using inequalities \((6), \) \((28) \) and relation

\[
u \to 0, \; n \to \infty, \tag{31}
\]

which follows from \((7), \) product \(Q \) can be written as \(Q = 1 + \zeta(n)u + O(u^2), \; |\zeta(n)| \leq 1 \) as \(n \to \infty. \) Hence by the polynomial theorem and equality \((9)\)

\[
S^{(0)}(n, r; Q) = (2^r - \sigma_1 - \sigma_2) \left(1 + \zeta(n)u + O(u^2)\right), \tag{32}
\]

where

\[
\sigma_1 = \sum_{\mu=1}^{r} \sum_{1 \leq u_1 < \cdots < u_\mu \leq r} S^{(0)}_{\{u_1, \ldots, u_\mu\}}(n, r; 1), \tag{33}
\]

addendums \(S^{(0)}_{\{u_1, \ldots, u_\mu\}}(n, r; 1), \; 1 \leq u_1 < \cdots < u_\mu \leq r, \mu = 1, \ldots, r, \) in the right-hand side of \((33) \) are

\[
S^{(0)}_{\{u_1, \ldots, u_\mu\}}(n, r; 1) = \sum_{s=0}^{n - \rho(n)} \sum_{i \in I} (n - \rho(n) - s)! \left(\prod_{i \in I} i!\right)^{-1}
\times \sum_{s' = 0}^{\rho(n)} \sum_{j \geq f(n)} (\rho(n) - s')! \left(\prod_{j \in J} j!\right)^{-1}, \tag{34}
\]

the signs \(\Sigma \) (\(\Sigma' \)) are defined in the relation \((9) \) with additional condition

\[
\sum_{i \in I(u)} i + \rho(n) - \sum_{j \in I(u)} j < f(n), \; u \in \{u_1, u_2, \ldots, u_\mu\},
\]

\[
\sum_{i \in I(u)} i + \rho(n) - \sum_{j \in I(u)} j \geq f(n), \; u \in \{1, 2, \ldots, r\} \setminus \{u_1, u_2, \ldots, u_\mu\},
\]

and

\[
\Gamma_{t, r}^{\{\vartheta_1, \ldots, \vartheta_q\}} \geq 1, \; 1 \leq \vartheta_1 < \cdots < \vartheta_q \leq r, \; \mu = 1, \ldots, r; \tag{35}
\]

\[
\sigma_2 = 1 + \sum_{q=1}^{2^r-1} S^{(0)}_q(n, r; 1), \tag{36}
\]
$S_{q}^{(0)}(n, r; 1)$ differs from $S(n, r; 1)$ so that the numbers $i \in I$ and $j \in J$ in the right-hand side of (9) are changing so that there exist precisely q of the expressions of the type $\Gamma_{i, r, \ldots, u_{r}}$ for each of which

$$\Gamma_{i, r, \ldots, u_{r}} = 0,$$

where $q = 1, 2, 3, \ldots, 2^{r} - 1$.

Let us estimate σ. Firstly, for that we evaluate $S_{(u_{1}, \ldots, u_{r})}^{(0)}(n, r; 1)$. We notice that

$$S_{(u_{1}, \ldots, u_{r})}^{(0)}(n, r; 1) \leq S_{(u_{1})}^{(0)}(n, r; 1),$$

since there is no restriction $\sum_{i \in I_{[u_{1}]}} i + \rho(n) - \sum_{j \in J_{[u_{1}]}} j < f(n), u \in \{u_{2}, \ldots, u_{r}\}$, in the right-hand side of the inequality. In turn the sum $S_{(u_{1})}^{(0)}(n, r; 1)$ can be written in the following way:

$$S_{(u_{1})}^{(0)}(n, r; 1) = \left(\frac{n}{\rho(n)} - \sum_{s=0}^{n/\rho(n)} \binom{n - \rho(n)}{s} \prod_{i \in I} i^{-1}
ight) \times \sum_{s'=0}^{\rho(n)} \binom{\rho(n)}{s'} \left(\frac{(\rho(n) - s') ! \prod_{j \in J} j !}{\prod_{j \in J} (\rho(n) - s') ! \prod_{j \in J} j !}
ight)^{-1}$$

with additional conditions $\sum_{i \in I_{[u_{1}]}} i + \rho(n) - \sum_{j \in J_{[u_{1}]}} j < f(n)$ and (35).

Denote by $A(u_{1})$ the set of the elements $i_{u_{1}1, \ldots, u_{r}}$, $1 \leq \mu_{1} < \ldots < \mu_{l} \leq r$, $l = 0, 1, 2, \ldots, r - 1$, $\mu_{l} \not\in \{u_{1}\}$. The number of elements in the set $A(u_{1})$ equals 2^{r-1}

$$|A(u_{1})| = 2^{r-1}.$$

By virtue of (39) and (40), the sum $S_{(u_{1})}^{(0)}(n, r; 1)$ can be given as

$$S_{(u_{1})}^{(0)}(n, r; 1) = \sum_{s=0}^{n/\rho(n)} \binom{n/\rho(n)}{s} C_{n/\rho(n)}^{s} \times \sum_{s_{1}+s_{2}=s} C_{s_{1}}^{s_{1}} \left\{ \sum_{i \in A(u_{1})} \binom{s_{1}}{i ! \prod_{i \in I \setminus A(u_{1})} i !} \right\} \left(\sum_{s_{2}} \binom{s_{2}}{i ! \prod_{i \in I \setminus A(u_{1})} i !} C_{s_{2}}^{s_{2}} (2^{r-1})^{s_{2}} \right) C_{s_{2}}^{s_{2}} (2^{r-1})^{s_{2}},$$

where $\sum_{1} -$ is the sum over all $i \in A(u_{1})$ such that $\sum i = s_{1}, \sum_{2} -$ is the sum over all $i \in I \setminus A(u_{1})$ such that $\sum i = s_{2}$.

Relations (34)-(41) and the polynomial formula let us obtain the estimate for $S_{(u_{1}, \ldots, u_{r})}^{(0)}(n, r; 1)$:

$$S_{(u_{1}, \ldots, u_{r})}^{(0)}(n, r; 1) \leq (2^{r-1})^{n/\rho(n)} \left(\sum_{s_{1}} C_{n/\rho(n)}^{s_{1}} (2^{r-1})^{s_{1}} \right) C_{n/\rho(n)}^{s_{1}} (2^{r-1})^{s_{1}},$$

where the summation over parameter s_{1} occurs on the interval $0 \leq s_{1} \leq 2^{r-1}k$. Upper restriction for s_{1} in the last inequality follows from (13), (27) and the assumption $i \in A(u_{1})$.

Since $0 \leq s_{1} \leq 2^{r-1}k$ and (30), the relation (42) can be rewritten in the following way:

$$S_{(u_{1}, \ldots, u_{r})}^{(0)}(n, r; 1) \leq 2^{(r-1)(n+2^{r-1}f(n)) + \rho(n)} \left(2^{r-1}f(n) + 1\right) C_{n/\rho(n)}^{2^{r-1}f(n)},$$
from whence, with the help of the Stirling’s formula, we can obtain
\[
S_{\{u_1, \ldots, u_\Delta\}}^{(0)}(n, r; 1) \leq 2^{(n+2r-1)\rho(n)}\left(2^{\rho(n)} + 1\right)
\]
\[
\times \left(\frac{(n - \rho(n))e^{2r-1\rho(n)}}{2r-1\rho(n)}\right)^{2r-1\rho(n)} \leq \frac{1}{\sqrt{2\pi e\rho(n)}}.
\]

Substitution (43) in (33) gives
\[
\sigma_1 \leq 2^{(n+\frac{1}{2})-n+\rho(n)-1} \left(\frac{(n - \rho(n))e^{2r-1\rho(n)}}{\rho(n)}\right)^{2r\rho(n)} \sqrt{\frac{e\rho(n)}{\pi}}.
\]

In analogy to how it was estimated of \(\sigma_0 \) in ([6], inequality (46)), we receive the estimation for \(\sigma_2 \):
\[
\sigma_2 \leq \frac{2^{2r-2+(r-1)n+\rho(n)}}{\pi} \left(\frac{(n - \rho(n))e^{2r\rho(n)}}{e\rho(n)}\right)^{2\rho(n)}.
\]

Taking into account (32), the fraction \(S_{\{n, r, Q\}}^{(0)} \) can be given as \(1 - \frac{\sigma_1}{2r} - \frac{\sigma_2}{2r} + O(u) \), in view of which the relation (29) can be rewritten in the following way:
\[
\sup_{1 \leq r \leq (\alpha + \gamma)\lambda^*} \left(\frac{\sigma_1}{2r} + \frac{\sigma_2}{2r} + O(u)\right) \frac{e^{2\lambda^*}}{\sqrt{\lambda^*}} \to 0, \quad n \to \infty.
\]

Using conditions (2), (3), (7) and relations (24), (44), (45), it is easy to show that
\[
u \frac{e^{2\lambda^*}}{\sqrt{\lambda^*}} \to 0, \quad \frac{\sigma_1}{2r} \frac{e^{2\lambda^*}}{\sqrt{\lambda^*}} \to 0, \quad \frac{\sigma_2}{2r} \frac{e^{2\lambda^*}}{\sqrt{\lambda^*}} \to 0
\]
as \(n \to \infty \). Using (47), we obtain (46). From the relation (46) and equality \(M(Y)_r = 2^{-r^m} \), (29) follows.

By virtue of (26) and (29), in order to complete the checking of the condition (38) (Lemma 2, [5]) it is necessary to establish that for \(1 \leq r \leq (\alpha + \gamma)\lambda^* \)
\[
\frac{1}{2r^N} \sum_{\Delta=1}^{2^\Delta-1} S^{(\Delta)}(n, r; Q) \frac{e^{2\lambda^*}}{\sqrt{\lambda^*}} \to 0, \quad n \to \infty.
\]

Denote by \(M_1 \) / \(\bar{M}_1 \) / the set of all \(i, i \in I, j \in J \), that do not belong to \(I_{\omega_x} \) / \(J_{\omega_x} \), \(x = 1, \ldots, \Delta \), and put \(M_2 = I \setminus M_1, \bar{M}_2 = J \setminus \bar{M}_1 \).

Let \(z \) be the least integer number such that \(\Delta \leq 2^z - 1, 1 \leq z \leq r \). Then by Proposition 1 from the work [4], the number of elements of the set \(M_1 \) / \(\bar{M}_1 \) / does not exceed
\[
|M_1| \leq 2^{r^z-1} - 1, \quad |\bar{M}_1| \leq 2^{r^z-1} - 1.
\]

Let \(\Delta < 2^z - 1 \).

With the help of (50), we denote the \(S^{(\Delta)}(n, r; Q) \) from the relation (48) by \(S_{\{2^z-2\}}^{(\Delta)}(n, r; Q) \). Then
\[
\sum_{\Delta=1}^{2^z-1} S^{(\Delta)}(n, r; Q) = \sum_{\Delta=1}^{2^z-1} S_{\{2^z-2\}}^{(\Delta)}(n, r; Q)
\]
exists under the relation (50). Taking into account (5) and (6), the estimation (28) gives the next inequality for \(Q \) in the right-hand side of (51)
\[
|Q| \leq 2^{2^z}Q_1,
\]
where \(Q_1 = \left(1 - \frac{1}{2^z} \right)^N \exp \left\{ \frac{\sum_{j=2}^{z-1} \log \left(\frac{2^{j-1}}{(2^{j-2}-1)^j} \right) u} {2^{z-1}} \right\} \).

By virtue of (52), each addendum in the right-hand side of (51) admits the estimation

\[
S_{(2^z-2)}^{(\Delta)}(n, r; Q) \leq 2^{zN} S_{(2^z-2)}^{(\Delta)}(n, r; 1) Q_1. \tag{53}
\]

Further, for all \(i \in M_2 \) (\(j \in \bar{M}_2 \))

\[
0 \leq i \leq k \quad (0 \leq j \leq k)
\]

follows from (13) and (27). Using (49)-(54), we find

\[
\frac{e^{\lambda^* \lambda^* - \frac{1}{2}}} {2^z N + rm} \sum_{\Delta=1}^{2^z-1} S^{(\Delta)}(n, r; Q) \leq \exp \left\{ -\frac{N}{2z} \left(1 + O \left(\frac{2z+1}{N} \ln \left(\frac{n e}{|f(n)|} \right) \right) + o(u) \right) \right\},
\]

the right-hand side of which tends to zero for \(1 \leq r \leq (\alpha + \gamma) \lambda^* \) as \(n \to \infty \) in view of (2), (3), (24) and (31). Therefore, the relation (48) holds under restrictions (49) and (50).

Let

\[
\Delta = 2^z - 1, \quad 1 \leq z \leq r,
\]

\[
|M_2| < 2^{r-z} - 1, \quad |\bar{M}_2| < 2^{r-z} - 1.
\]

Accordingly to (51), we put

\[
\sum_{\Delta=1}^{2^z-1} S^{(\Delta)}(n, r; Q) = \sum_{\Delta=1}^{2^z-1} S_{(2^z-2)}^{(\Delta)}(n, r; Q), \tag{57}
\]

where \(S_{(2^z-1)}^{(\Delta)}(n, r; Q) \) coincides with \(S^{(\Delta)}(n, r; Q) \) under restrictions (55) and (56).

Taking into account conditions (5), (6) and relation (28), we obtain the next inequality for \(Q \) in the right-hand side of (57)

\[
|Q| < 2^{zN} Q_2, \tag{58}
\]

where \(Q_2 = \exp \left\{ \frac{\sum_{j=2}^{z-1} \log \left(\frac{2^{j-1}}{(2^{j-2}-1)^j} \right) u} {2^{z-1}} \right\} \). With the help of (55)-(58), we find the inequality

\[
\sum_{\Delta=1}^{2^z-1} S^{(\Delta)}(n, r; Q) \leq \exp \left\{ -\frac{n e} {2^{r-z}} \left(1 + O \left(\frac{2z+1}{n} \ln \left(\frac{n e}{|f(n)|} \right) \right) + o(u) \right) \right\}, \tag{59}
\]

the right-hand side of which tends to zero for \(1 \leq r \leq (\alpha + \gamma) \lambda^* \) as \(n \to \infty \) by virtue of (2), (3), (24) and (31). Therefore, the relation (48) holds true under restrictions (55) and (56).

Next, let us check that if \(\Delta = 2^z - 1, \ 1 \leq z \leq r, \ i z \in \{r, r - 1\} \) or \(r \in \{1, 2\} \), then there exists some \(a, \ a \in \{1, 2, \ldots, \Delta\} \) such that \(\xi_a \leq 2 \). Indeed, when \(z = r \) or \(r \in \{1, 2\} \), then, obviously, there exists mentioned parameter \(a \). For \(z = r - 1 \) the existence of the parameter \(a \) such that \(\xi_a \leq 2 \) follows from the Remark 2 from the work [4]. Since, the inequality \(\Gamma_{\mu a}^{\mu a} \geq 1 \) holds true for values of the parameter \(a, \ a \in \{1, 2, \ldots, \Delta\} \) such that \(\xi_a \leq 2 \) (by virtue of Lemmas 1, 2 and condition (5), then below the notation \(\Delta = 2^z - 1 \) extends for all \(z, 1 \leq z \leq r - 2, 3 \leq r < \infty \), and value \(a \in \{1, 2, \ldots, \Delta\} \) such that \(\xi_a \geq 3 \).
Let restrictions
\[\xi_\alpha \geq 3, \quad \alpha = 1, \ldots, \Delta, \quad \Delta = 2^z - 1, \quad 1 \leq z \leq r - 2, \quad 3 \leq r < \infty, \tag{60} \]
\[|M_1| = |\bar{M}_1| = 2^{r-2} - 1 \tag{61} \]
hold true. Put
\[\sum_{\Delta=1}^{2^r-1} S^{(\Delta)}(n, r; Q) = \sum_{\Delta=1}^{2^r-1} S^{(\Delta)}(n, r; Q), \tag{62} \]
where \(S^{(\Delta)}(n, r; Q) \) coincides with \(S^{(\Delta)}(n, r; Q) \) under restrictions (60) and (61).

If (60) and (61) holds true, then according to Proposition 2 in [4] the set \(M_1 (\bar{M}_1) \) contains no less than three elements \(i_{m,v} \in M_1 (j_{m,v} \in \bar{M}_1), v = 1, 3, \) such that for some \(\alpha \in \{1, \ldots, \Delta\} \) (\(\bar{\alpha} \in \{1, \ldots, \Delta\} \))
\[|\omega_\eta \cap m(\eta, v)| = 2, \quad v = 1, 3, \quad |\omega_\eta \cap (a_\eta \cup b_\eta)| = 3, \quad \eta \in \{\alpha, \bar{\alpha}\}, \tag{63} \]
for any \(a_\eta, b_\eta \in \{m(\eta, v) : v = 1, 3\}, a_\eta \neq b_\eta, \) where \(m(\eta, v) = \{m_v, \text{ as } \eta = \alpha; \quad m_v, \text{ as } \eta = \bar{\alpha}\}, \quad v = 1, 3. \) With the help of (20) of the work [4] and (63), for above mentioned \(\eta \)
\[\Gamma_{t,r}^{\alpha_\eta} \geq \gamma_t^{\{a_\alpha \cup b_\alpha\}}, \quad t \in \{2, \ldots, k\}, \tag{64} \]
\[\Gamma_{t,r}^{\alpha_\eta} \geq \gamma_t^{\{a_\alpha \cap b_\alpha\}}. \]

According to (23), established in [4], the right-hand side of (64) can be estimated as
\[\gamma_t^{\{a_\alpha \cup b_\alpha\}} \geq t^{-1}j_s(j_s - 2^{-1}(j_s - 1))C_t^{(2)2}n^{(2)+1}(3j_s/4)+5/4 \tag{65} \]
under condition \(j_s \geq t, \) where \(j_s = \min\{j_{a_\alpha}, j_{b_\alpha}\}, j_s = \max\{j_{a_\alpha}, j_{b_\alpha}\}. \)

Analogly to (23) from the work [4], we can find
\[\gamma_t^{\{a_\alpha \cap b_\alpha\}} \geq t^{-1}i_s(i_s - 2^{-1}(i_s - 1))C_t^{(2)2}n^{(2)+1}(3i_s/4)+5/4 \tag{66} \]
under condition \(i_s \geq t, \) where \(i_s = \min\{i_{a_\alpha}, i_{b_\alpha}\}, i_s = \max\{i_{a_\alpha}, i_{b_\alpha}\}. \)

If \(i_s \geq \sqrt{\varepsilon f(n)}, j_s \geq \sqrt{\varepsilon f(n)} \) satisfy, then inequalities \(i_s \geq t, j_s \geq t, \) \(t \in \{2, \ldots, k\}, \) obviously, hold true for \(0 < \varepsilon < 1 \) and
\[\Gamma_{t,r}^{\alpha_\eta} \geq c(2t)^{-1}(\varphi(n))^{2}C_t^{(2)2}(5\sqrt{\varepsilon f(n)}/4)5/4, \tag{67} \]
follows from (65) and (66), which contradicts the equality (27) under the sufficiently small \(\varepsilon > 0 \) and \(t \in \{2, \ldots, k\}. \)

Therefore, under restrictions (60) and (61) at least one element \(i_s \in M_1 (j_s \in \bar{M}_1) \) satisfy inequalities
\[i_s < \sqrt{\varepsilon f(n)} (j_s < \sqrt{\varepsilon f(n)}). \tag{68} \]
Let us observe that the inequality (58) in the right-hand side of (62) holds true for parameter \(Q, \) we find the estimation according to (60)–(62)
\[\frac{e^{2n\lambda^*}}{2^rN^{N+r}} \sum_{\Delta=1}^{2^r-1} S^{(\Delta)}(n, r; Q) \leq \exp \left\{ -\frac{n}{2r} \left(1 + O \left(\frac{r^{2r+1}f(n)\ln n}{n} \right) + o(u) \right) \right\}, \tag{69} \]
the right-hand side of which tends to zero for \(1 \leq r \leq (\alpha + \gamma)\lambda^* \) as \(n \to \infty \) by virtue of (2), (3), (7), (24) and (31).

If (60) and \(|M_1| = 2^r - 1, \quad |\bar{M}_1| < 2^r - 1 \) or \(|M_1| < 2^r - 2 - 1, \quad |\bar{M}_1| = 2^r - 2 - 1 \) hold, then in the same way, taking into account which, (59) and (68) was found, we obtain (48).
The normal limit distribution of the number of false solutions

Relations (26), (29) and (48) prove the condition (38) from the work [5], where the random variable Y have a Poisson distribution with parameter 2^m.

Therefore, conditions of the Lemma 2 in [5] checked up and with the help of this Lemma, (2) and (25)

$$\max_{0 \leq t \leq (1+\omega)\lambda^*} |P \{ \nu_n \geq t \} - P \{ Y \geq t \} | \to 0 \text{ as } n \to \infty. \quad (69)$$

We can write relation (69) in the following way:

$$\max_{-\sqrt{\lambda^*} \leq l \leq \omega \sqrt{\lambda^*}} \left| P \left\{ \frac{\nu_n - \lambda^*}{\sqrt{\lambda^*}} \geq l \right\} - P \left\{ \frac{Y - \lambda^*}{\sqrt{\lambda^*}} \geq l \right\} \right| \to 0, \quad n \to \infty. \quad (70)$$

where $l = \frac{t - \lambda^*}{\sqrt{\lambda^*}}$.

By the virtue of (24), (25) and Theorem ([1], p.157), we find that the distribution of the random variable \(\frac{\nu_n - \lambda^*}{\sqrt{\lambda^*}} / \frac{Y - \lambda}{\sqrt{\lambda}} \) coincides with distribution of the random variable \(\frac{\nu_n - \lambda}{\sqrt{\lambda}} / \frac{Y - \lambda}{\sqrt{\lambda}} \) as $n \to \infty$.

Therefore, we can write the relation (70) in the following way:

$$\max_{-\sqrt{\lambda} \leq l \leq \omega \sqrt{\lambda}} \left| P \left\{ \frac{\nu_n - \lambda}{\sqrt{\lambda}} \geq l \right\} - P \left\{ \frac{Y - \lambda}{\sqrt{\lambda}} \geq l \right\} \right| \to 0, \quad n \to \infty. \quad (71)$$

Finally we notice that the random variable \(\frac{Y - \lambda}{\sqrt{\lambda}} \) has the standard normal distribution as $\lambda \to \infty$. Therefore, by virtue of C and (71), the random variable \(\frac{\nu_n - \lambda}{\sqrt{\lambda}} \) has the normal distribution with parameters $(0,1)$ as $\lambda \to \infty$. The theorem is proved.

Example 1. Let $\alpha = 5, \omega = 1, v = 2, \varepsilon = \text{const}, 0 < \varepsilon < 1, \rho(n) = \frac{n}{2}, T_q = \{2\}, q = 1, \ldots, N, f(n) = \ln n, \delta_{qt} = 1, t \in T_q, q = 1, \ldots, N, \text{ satisfy. Parameters } n, N, p_{qt} \text{ are changed so that } 2^{n-N} = \left[\frac{14}{\sqrt{2}} \log_2 \frac{n}{(\ln n)^2} \right] \text{ and the condition (6) holds.}

Then the conditions of the theorem hold true and the random variable \(\frac{\nu_n - \lambda}{\sqrt{\lambda}} \), where $\lambda = \frac{1}{14} \log_2 \frac{n}{(\ln n)^2}$, has a normal limit $(n \to \infty)$ distribution.

Example 2. Let $\alpha = 5, \omega = 1, v = 2, \varepsilon = \frac{1}{2}, \rho(n) = \frac{n}{2}, T_q = \{2\}, q = 1, \ldots, N, f(n) = 4, \delta_{qt} = 0, t \in T_q, q = 1, \ldots, N, \text{ satisfy. Parameters } n, N, p_{qt} \text{ are changed so that } 2^{n-N} = \left[\frac{14}{\sqrt{2}} \log_2 \frac{n}{8 \ln n} \right] \text{ and condition (6) holds.}

Then the conditions of the theorem hold true and the random variable \(\frac{\nu_n - \lambda}{\sqrt{\lambda}} \), where $\lambda = \frac{1}{14} \log_2 \frac{n}{8 \ln n}$, has a normal limit $(n \to \infty)$ distribution.

References

Received 04.12.2013
EL HAMMA M., LAHLALI H., DAHER R.

(\(\delta, \gamma \))-DUNKL LIPSCHITZ FUNCTIONS IN THE SPACE \(L^2(\mathbb{R}, |x|^{2\alpha+1}dx) \)

Using a generalized Dunkl translation, we obtain an analog of Theorem 5.2 in Younis’ paper [2] for the Dunkl transform for functions satisfying the \((\delta, \gamma))-Dunkl Lipschitz condition in the space \(L^2(\mathbb{R}, |x|^{2\alpha+1}dx) \).

Key words and phrases: Dunkl operator, Dunkl transform, generalized Dunkl translation.

University of Hassan II, Casablanca, Morocco
E-mail: m_elhamma@yahoo.fr (El Hamma M.)

INTRODUCTION AND PRELIMINARIES

Younis Theorem 5.2 [2] characterizes the set of functions in \(L^2(\mathbb{R}) \) satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms; namely, we have the following statement.

Theorem 1 ([2]). Let \(f \in L^2(\mathbb{R}) \). Then the following are equivalent:

1) \(\| f(x+h) - f(x) \|_2 = O \left(\frac{h^\alpha}{(\log \frac{1}{h})^\beta} \right) \) as \(h \to 0 \), \(0 < \alpha < 1, \beta > 0 \),

2) \(\int_{|x| \geq r} |\mathcal{F}(f)(x)|^2 dx = O \left(\frac{r^{-2\alpha}}{(\log r)^{2\beta}} \right) \) as \(r \to +\infty \),

where \(\mathcal{F} \) stands for the Fourier transform of \(f \).

In this paper we obtain an analog of Theorem 1 for the Dunkl transform. For this purpose we use a generalized Dunkl translation.

Assume that \(L_{2,\alpha} = L^2(\mathbb{R}, |x|^{2\alpha+1}dx) \), \(\alpha > -\frac{1}{2} \), is the Hilbert space of measurable functions \(f(t) \) on \(\mathbb{R} \) with the norm

\[
\| f \|_{2,\alpha} = \left(\int_{\mathbb{R}} |f(t)|^2 |t|^{2\alpha+1} dt \right)^{1/2}.
\]

The Dunkl operator is a differential-difference operator \(D \) which satisfies the condition

\[
Df(x) = \frac{df}{dx}(x) + \left(\alpha + \frac{1}{2} \right) \frac{f(x) - f(-x)}{x}.
\]

Let \(j_\alpha(x) \) be a normalized Bessel function of the first kind, i.e.,

\[
j_\alpha(x) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n + \alpha + 1)} \left(\frac{x}{2} \right)^{2n}.
\]

УДК 517.44
2010 Mathematics Subject Classification: 44A35.
The Dunkl kernel is defined by

\[e_\alpha(x) = j_\alpha(x) + ic_\alpha x j_{\alpha+1}(x), \]

where \(c_\alpha = (2\alpha + 2)^{-1} \). The function \(y = e_\alpha(x) \) satisfies the equation \(D_y = iy \) with the initial condition \(y(0) = 1 \). In the limit case with \(\alpha = -\frac{1}{2} \) the Dunkl kernel coincides with the usual exponential function \(e^{ix} \).

Lemma 1 ([1]). For \(x \in \mathbb{R} \) the following inequalities are fulfilled

(i) \(|e_\alpha(x)| \leq 1 \),

(ii) \(|1 - e_\alpha(x)| \leq 2|x| \),

(iii) \(|1 - e_\alpha(x)| \geq c \) with \(|x| \geq 1 \), *where* \(c > 0 \) *is a certain constant which depends only on* \(\alpha \).

The Dunkl transform is the integral transform

\[\hat{f}(\lambda) = \int_{-\infty}^{\infty} f(x) e_\alpha(\lambda x) |x|^{2\alpha+1} dx. \]

The inverse Dunkl transform is defined by the formula

\[f(x) = (2^{\alpha+1}\Gamma(\alpha + 1))^{-2} \int_{-\infty}^{\infty} \hat{f}(\lambda) e_\alpha(-\lambda x) |\lambda|^{2\alpha+1} d\lambda. \]

The Dunkl transform satisfies the Parseval’s equality (\(f \in L_{2,\alpha} \))

\[\|f\|_{2,\alpha} = (2^{\alpha+1}\Gamma(\alpha + 1))^{-1}\|\hat{f}\|_{2,\alpha}. \]

Consider the generalized Dunkl translation \(T_h \) in \(L_{2,\alpha} \), defined by

\[T_h f(x) = C \left(\int_0^\pi f_e(G(x, h, \varphi)) h^e(x, h, \varphi) \sin^{2\alpha} \varphi d\varphi + \int_0^\pi f_0(G(x, h, \varphi)) h^0(x, h, \varphi) \sin^{2\alpha} \varphi d\varphi \right), \]

where

\[C = \frac{\Gamma(\alpha + 1)}{\Gamma(\frac{1}{2})\Gamma(\alpha + \frac{1}{2})}, \quad G(x, h, \varphi) = \sqrt{x^2 + h^2 - 2|x|h\cos \varphi}, \quad h^e(x, h, \varphi) = 1 - \text{sgn}(xh) \cos \varphi, \]

and

\[h^0(x, h, \varphi) = \frac{(x + h) h^e(x, h, \varphi)}{G(x, h, \varphi)} \quad \text{for} \; (x, h) \neq (0, 0), \quad h^0(x, h, \varphi) = 0 \quad \text{for} \; (x, h) = (0, 0), \]

\[f_e(x) = \frac{1}{2} (f(x) + f(-x)), \quad f_0(x) = \frac{1}{2} (f(x) - f(-x)). \]

From [1] we have: if \(f \in L_{2,\alpha} \), then

\[\langle T_h f \rangle(\lambda) = e_\alpha(\lambda h) \hat{f}(\lambda). \]
In this section we give the main result of this paper. We need first to define \((\delta, \gamma)\)-Dunkl Lipschitz class.

Definition. Let \(0 < \delta < 1\) and \(\gamma > 0\). A function \(f \in L_{2,a}\) is said to be in the \((\delta, \gamma)\)-Dunkl Lipschitz class, denoted by \(\text{Lip}(\delta, \gamma, 2)\), if

\[
\| T_h f(t) - f(t) \|_{2,a} = O \left(\frac{h^\delta}{(\log \frac{1}{h})^{\gamma}} \right) \quad \text{as} \quad h \to 0.
\]

Theorem 2. Let \(f \in L_{2,a}\). Then the following conditions are equivalent

1. \(f \in \text{Lip}(\delta, \gamma, 2)\),
2. \(\int_{|\lambda| > r} |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda = O \left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}} \right) \quad \text{as} \quad r \to +\infty.

Proof. 1) \(\implies\) 2) Assume that \(f \in \text{Lip}(\delta, \gamma, 2)\). Then we have

\[
\| T_h f(t) - f(t) \|_{2,a} = O \left(\frac{h^\delta}{(\log \frac{1}{h})^{\gamma}} \right) \quad \text{as} \quad h \to 0.
\]

Formula (1) and Parseval's equality give

\[
\| T_h f(t) - f(t) \|_{2,a}^2 = \frac{1}{(2a+1)!} \int_{-\infty}^{+\infty} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda.
\]

If \(|\lambda| \in [\frac{1}{h}, \frac{2}{h}]\), then \(|\lambda h| \geq 1\) and (iii) of Lemma 1 implies that \(1 \leq \frac{1}{c^2} |1 - e_\alpha(\lambda h)|^2\). Then

\[
\int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda \leq \frac{1}{c^2} \int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda
\]

\[
\leq \frac{1}{c^2} \int_{-\infty}^{+\infty} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda
\]

\[
\leq \frac{1}{c^2} (2a+1)! \int_{-\infty}^{+\infty} (1 - e_\alpha(\lambda h))^2 |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda
\]

\[
= O \left(\frac{h^\delta}{(\log \frac{1}{h})^{\gamma}} \right).
\]

We obtain

\[
\int_{r \leq |\lambda| \leq 2r} |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda \leq C \frac{r^{-2\delta}}{(\log r)^{2\gamma}},
\]

where \(C\) is a positive constant. Now,

\[
\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda = \left[\int_{r \leq |\lambda| \leq 2r} + \int_{2r \leq |\lambda| \leq 4r} + \int_{4r \leq |\lambda| \leq 8r} + \ldots \right] |\hat{f}(\lambda)|^2 |\lambda|^{2a+1} d\lambda
\]

\[
\leq C \frac{r^{-2\delta}}{(\log r)^{2\gamma}} + C \frac{(2r)^{-2\delta}}{(\log 2r)^{2\gamma}} + C \frac{(4r)^{-2\delta}}{(\log 4r)^{2\gamma}} + \ldots
\]

\[
\leq C \frac{r^{-2\delta}}{(\log r)^{2\gamma}} (1 + 2^{-2\delta} + (2^{-2\delta})^2 + (2^{-2\delta})^3 + \ldots) \leq C C_\delta \frac{r^{-2\delta}}{(\log r)^{2\gamma}},
\]
where $C_\delta = (1 - 2^{-2\delta})^{-1}$ since $2^{-2\delta} < 1$.

Consequently
\[
\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = O \left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}} \right) \text{ as } r \to +\infty.
\]

2) \implies 1) Suppose now that
\[
\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = O \left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}} \right) \text{ as } r \to +\infty.
\]

We write
\[
\int_{-\infty}^{+\infty} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = I_1 + I_2,
\]

where
\[
I_1 = \int_{|\lambda| < \frac{1}{h}} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda, \quad I_2 = \int_{|\lambda| \geq \frac{1}{h}} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda.
\]

Firstly, we use the formulas $|e_\alpha(\lambda h)| \leq 1$ and
\[
I_2 \leq 4 \int_{|\lambda| \geq \frac{1}{h}} |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = O \left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}} \right).
\]

Set
\[
\psi(x) = \int_{-\infty}^{+\infty} |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda.
\]

Integrating by parts we obtain
\[
\int_0^x \lambda^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = -\int_0^x \lambda^2 \psi'(x) dx = -x^2 \psi(x) + 2 \int_0^x \lambda \psi(x) d\lambda \leq C_1 \int_0^x \lambda \lambda^{-2\delta} (\log \lambda)^{-2\gamma} d\lambda = O(x^{2-2\delta} (\log x)^{-2\gamma}),
\]

where C_1 is a positive constant.

We use the formula (ii) of lemma 1:
\[
\int_{-\infty}^{+\infty} |1 - e_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda = O(h^2 \int_{|\lambda| < \frac{1}{h}} \lambda^2 |\hat{f}(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda) + O \left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}} \right)
\]
\[
= O \left(\frac{h^{2\delta} \log (\frac{1}{h})^{-2\gamma}}{(\log \frac{1}{h})^{2\gamma}} \right)
\]
\[
= O \left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}} \right)
\]

and this ends the proof.
References

Received 17.07.2013
ЧЕРКОВСЬКИЙ Т.М.

РЕГУЛЯРНІ ЄМНОСТІ НА МЕТРИЗОВНИХ ПРОСТОРАХ

Доведено, що для (не обов’язково компактного) метричного простору: метрики на просторі ємностей у стилі Прохорова та Зарічного є рівними; повнота простору ємностей рівномірно до повноти вихідного простору. Показано, що для ємностей на метризовних просторах властивості ω-гладкості і τ-гладкості є рівносильними саме на сепарабельних просторах, а властивості ω-гладкості та регулярності щодо деякої (а тоді й кожної) сумісної метрики — саме на компактних просторах.

Ключові слова і фрази: регулярна ємність, ω-гладкість, τ-гладкість, метрика Гаусдорфа, повній метричний простір, сепарабельний простір.

Вступ

Неадитивні міри (ємності) є природним узагальненням адитивних та злічено-адитивних мір. Вперше запроваджені Шоке [2], вони знайшли численні застосування у математичній фізиці, теорії оптимізації і особливо у математичній економіці і теорії прийняття рішень. Подібно до неоднозначності перенесення поняття компактності на неметризовні простори, маємо широку гаму означень неадитивної (тобто не обов’язково адитивної) міри [5]. Основні властивості, що утворюють означення "тарної" адитивної міри, зокрема, зовнішня та внутрішня регулярність, можна сформулювати різними способами, які у припущені (зліченої) адитивності є рівносильними, однак без цього припущення рівносильність втрачається.

Метою цієї праці є порівняння різних властивостей типу зовнішньої регулярності на метричних та метризовних просторах та з'ясування їх (не-)рівносильності залежно від властивостей цих просторів.
1 ОСНОВНІ ПОНЯТТЯ І ПОЗНАЧЕННЯ

Пишемо \(A \subseteq X \) (відповідно \(A \subseteq X \)), якщо \(A \) є замкненою (відповідно відкритою) підмножиною у просторі \(X \). Позначаємо \(\mathbb{N} = \{1,2,3,\ldots\} \), \(I = [0,1] \), \(\mathbb{R}_+ = [0, +\infty) \). Компактом називаємо компактний гаусдорфовий простір. На дійсній прямій та її підмножинах розглядаємось стандартну топологію.

Для підмножини \(F \) і точки \(x \) метричного простору \((X,d) \) позначаємо

\[
d(x,F) = \inf \{ d(x,y) \mid y \in F \}.
\]

Якщо \(F \) замкнена у \((X,d) \) та \(\varepsilon > 0 \), то множини

\[
O_\varepsilon(F) = \{ x \in X \mid d(x,F) < \varepsilon \} = \{ x \in X \mid d(x,y) < \varepsilon \text{ для деякого } y \in F \}
\]

та

\[
\overline{O}_\varepsilon(F) = \{ x \in X \mid d(x,F) \leq \varepsilon \}
\]

є відповідно відкритою і замкненою, і називаються відповідно відкритим та замкненим \(\varepsilon \)-околами \(F \). Зауважимо, що остання множина для некомпактного \((X,d) \) необов'язково збігається з множиною

\[
\{ x \in X \mid d(x,y) \leq \varepsilon \text{ для деякого } y \in F \},
\]

хоча містить її, але збігається з перетином \(\bigcap_{\varepsilon > 0} O_\varepsilon(F) \). Зокрема, \(B_\varepsilon(x_0) = O_\varepsilon(\{x_0\}) \) і \(B_\varepsilon(x_0) = \overline{O}_\varepsilon(\{x_0\}) \) — відповідно відкрита та замкнена куля з центром в точці \(x_0 \in X \) радіуса \(\varepsilon > 0 \).

Через \(\text{Expr} X \) позначаємо множину всіх замкнених підмножин топологічного простору \(X \), \(\text{expr} X = \text{Expr} X \setminus \{\emptyset\} \). Топологія Вієторіса [3] на \(\text{expr} X \) — це найслабша з топологій, щодо яких всі \((U_1, U_2, \ldots, U_n) = \{ F \in \text{expr} X \mid F \subset U_1 \cup U_2 \cup \cdots \cup U_n, F \cap U_i \neq \emptyset \text{ для всіх } i = 1,2,\ldots,n \} \)

для \(n \in \mathbb{N} \) і відкритих \(U_1, U_2, \ldots, U_n \subset X \) є відкритими.

Якщо \(X \) — простір з обмеженою метрикою \(d \), то на \(\text{expr} X \) розглядаємось метрику Гаусдорфа \(d_H : \)

\[
d_H(F,G) = \inf \{ \varepsilon \geq 0 \mid F \subset \overline{O}_\varepsilon(G), G \subset \overline{O}_\varepsilon(F) \}, \quad F,G \in \text{expr} X.
\]

Відомо, що для метричного компакта метрика Гаусдорфа породжує топологію Вієторіса, але у некомпактному випадку це не завжди так.

2 КЛАСИ НЕАДИТИВНИХ МІР НА ТИХОНОВСЬКИХ І МЕТРИЧНИХ ПРОСТОРАХ

Регулярною неадитивною мірою [6] (регулярною ємністю) на тихоновському просторі \(X \) називаємо функцію \(c : \text{Expr} X \to \mathbb{R}_+ \) з такими трьома властивостями (нижче \(F, G \) — замкнені підмножини в \(X \)):

(1) \(c(\emptyset) = 0 \);

(2) якщо \(F \subset G \), то \(c(F) \leq c(G) \) (монотонність);

(3) якщо \(c(F) \leq a \), то існує така відкрита множина \(U \supset F \), що для кожної множини \(G \subset U \) виконується \(c(G) < a \) (напівнеперервність згори чи зовнішня регулярність).
Якщо, крім того, виконано \(c(X) = 1 \) (\(c(X) \leq 1 \)), то ємність називається нормованою (відповідно субнормованою).

Якщо топологія на просторі \(X \) визначена метрикою \(d \), то розглядаємо сильнішу версію властивості (3), яку називаємо регулярністю щодо метрики \(d \):

\[
(3') \text{ якщо } c(F) \leq a, \text{ то існує таке } \varepsilon > 0, \text{ що } c(\overline{O_\varepsilon(F)}) < a.
\]

Сім'ю множин \((F_a) \), індексовану елементами \(a \) частково впорядкованої множини \((A, \preceq) \), називаємо монотонно спадною, якщо з \(a, \beta \in A, \alpha \preceq \beta \) випливає \(F_a \supseteq F_\beta \).

Ємність \(c(F) \) називається \(\omega \)-гладкою, якщо для кожної монотонно спадної послідовності \((F_n)_{n \in \mathbb{N}} \), замкнених множин в \(X \) виконується рівність \(\inf_{n \in \mathbb{N}} c(F_n) = c(\bigcap_{n \in \mathbb{N}} F_n) \).

Ємність \(c(F) \) називається \(\tau \)-гладкою [4], якщо для кожної монотонно спадної спрямованості \((F_a) \) замкнених множин в \(X \) істинна рівність \(\inf_{a \in A} c(F_a) = c(\bigcap_{a \in A} F_a) \).

Множину всіх ємностей на \(X \) позначаємо \(M_X \). Множину всіх регулярних щодо метрики \(d \) (відповідно \(\omega \)-гладких, \(\tau \)-гладких) ємностей на \(X \) позначаємо \(M_dX \)(відповідно \(M_\omega X \), \(M_\tau X \)). Очевидно, що для метричного простору \(X \) виконано \(M_X \supseteq M_dX \supseteq M_\omega X \supseteq M_\tau X \).

Для метричного компакта \(X \) всі ці множини рівні, тому вживаємо для них спільне позначення \(\widetilde{M}_X \). Множини всіх субнормованих та нормованих ємностей на \(X \) позначаємо відповідно \(M_dX \) та \(M_\omega X \), додаючи для не обов'язково компактного \(X \) індекси \(d, \omega \) і \(\tau \) для підмножин з ємностей з відповідними властивостями.

Надалі всі ємності вважаємо регулярними та субнормованими, звідки \(c(F) \leq 1 \) для кожної розглядуваної ємності \(c \) і \(F \subseteq X \). Кожній функції \(c \) на \(\exp X \) зі значеннями в \(I \) відповідає її підграфік

\[
\text{sub } c = \{(F, a) \in \exp X \times I \mid a \leq c(F)\}.
\]

Твердження 2.1. Якщо функція \(c \) на \(\exp X \) має властивості (1), (2), то для множини \(S = \text{sub } c : \)

1. \(S \supseteq \exp X \times \{0\} ; \)

2. \(\exists (F, a) \in S, F \subseteq G \subseteq X, a \geq \beta \geq 0 \) випливає \((G, \beta) \in S. \)

Підмножина \(S \subseteq \exp X \times I \) є графіком ємності на тихоновському просторі \((X, \tau) \) (ємності, регулярної щодо метрики \(d \) на \(X \)), якщо і тільки якщо вона задовольняє (1), (2) і є замкненою щодо топології добутку, де на \(\exp X \) розглядається топологія Вієторіса (відповідно метрика Гаусдорфа).

3 Метрики \(\tilde{d} \) та \(\hat{d} \)

Надалі \(X \) — простір, топологія на якому визначена метрикою \(d \).

Для ємностей \(c_1, c_2 \in M_dX \) позначимо

\[
\hat{d}(c_1, c_2) = \inf \{\varepsilon \geq 0 \mid \text{для кожної } F \in \exp X : \quad c_1(\overline{O_\varepsilon(F)}) + \varepsilon \geq c_2(F), c_2(\overline{O_\varepsilon(F)}) + \varepsilon \geq c_1(F) \}.
\]

Очевидно, що \(0 \leq \hat{d}(c_1, c_2) \leq 1. \)
Нагадаємо, що інтеграли Шоке та Суґено щодо ємності c на X від функції $\phi : X \to \mathbb{R}$ за означенням рівні

$$\int_X \phi(x) \, dc(x) = \int_0^{+\infty} c(\{x \in X \mid \phi(x) \geq a\}) \, da - \int_{-\infty}^0 (1 - c(\{x \in X \mid \phi(x) \geq a\})) \, da$$

та

$$\int_X \phi(x) \wedge dc(x) = \sup_{F \subseteq X} \{c(F) \wedge \inf_{x \in F} \phi(x) \mid F \subseteq X\}.$$

Нехай $\text{Lip}(X,d)$ — множина всіх нерозтягуючих дійснозначних функцій на метричному просторі X. Якщо X — компакт, то для довільних $c_1, c_2 \in M_dX$ Зарічним [6] запроваджено величину

$$\tilde{d}(c_1, c_2) = \sup_{\phi \in \text{Lip}(X,d)} \{\|\int_X \phi(x) \, dc_1(x) - \int_X \phi(x) \, dc_2(x)\| \mid \phi \in \text{Lip}(X,d)\}.$$

Відомо, що для метричного компакта (X,d) функції \tilde{d} та \tilde{d}, перша з яких введена з використанням замкнучих ε-околів, а друга — з використанням нерозтягуючих функцій, є метриками на множині нормованих ємностей M_dX, які визначають ту саму компактну топологію [6].

Для інтеграла Суґено $\int_X \phi(x) \wedge dc(x)$ вживаємо скорочення $c(\phi)$ і розглянемо аналог метрики Зарічного \tilde{d}, для якого зберігаємо те ж позначення:

$$\tilde{d}(c_1, c_2) = \sup_{\phi \in \text{Lip}(X,d)} \{\|\int_X \phi(x) \, dc_1(x) - \int_X \phi(x) \, dc_2(x)\| \mid \phi \in \text{Lip}(X,d)\},$$

de $c_1, c_2 \in M_dX$.

Те, що \tilde{d} — метрика, випливає з наступної теореми.

Теорема 1. Для довільного метричного простору (X,d) функції \tilde{d} та \tilde{d} на $M_dX \times M_dX$ є рівними.

Доведення. Нехай $\tilde{d}(c_1, c_2) \leq \varepsilon$ для $c_1, c_2 \in M_dX$, тобто

$$c_1(\overline{O}_\varepsilon(F)) + \varepsilon \geq c_2(F), \quad c_2(\overline{O}_\varepsilon(F)) + \varepsilon \geq c_1(F)$$

dля кожного $F \subseteq X$. Потрібно довести, що $|c_1(\phi) - c_2(\phi)| \leq \varepsilon$ для довільної $\phi \in \text{Lip}(X, I)$.

Нехай $x \in \overline{O}_\varepsilon(F)$, тоді для будь-якого $\varepsilon' > \varepsilon$ існує таке $x_0 \in F$, що $d(x, x_0) < \varepsilon'$. Тоді для $\phi \in \text{Lip}(X,d)$ маємо $|\phi(x) - \phi(x_0)| \leq d(x, x_0) < \varepsilon'$. Враховуючи, що для кожного $\varepsilon > 0$ з того, що $F \subseteq \overline{O}_\varepsilon(F)$, випливає $\inf_{\phi \in \text{Lip}(X,d)} \phi(x) \geq \inf_{x \in \overline{O}_\varepsilon(F)} \phi(x)$, отримуємо:

$$0 \leq \inf_{x \in \overline{O}_\varepsilon(F)} \phi(x_0) - \inf_{x \in \overline{O}_\varepsilon(F)} \phi(x) \leq \varepsilon'.$$

Тому $\inf_{x \in \overline{O}_\varepsilon(F)} \phi(x) + \varepsilon' \geq \inf_{x \in \overline{O}_\varepsilon(F)} \phi(x)$, а при $\varepsilon' \to \varepsilon + 0$ матимемо:

$$\inf_{x \in \overline{O}_\varepsilon(F)} \phi(x) \leq \inf_{x \in \overline{O}_\varepsilon(F)} \phi(x) + \varepsilon.$$

З останньої нерівності та формули метрики d отримаємо:

$$c_1(F) \land \inf_{x \in F} \varphi(x) \leq (c_2(\overline{O}_\varepsilon(F)) + \varepsilon) \land (\inf_{x \in \overline{O}_\varepsilon(F)} \varphi(x) + \varepsilon) = c_2(\overline{O}_\varepsilon(F)) \land \inf_{x \in \overline{O}_\varepsilon(F)} \varphi(x) + \varepsilon.$$

Взявши з обох боків нерівності супремуми, матимемо:

$$\sup\{c_1(F) \land \inf_{x \in F} \varphi(x) \mid F \subset X\} \leq \sup\{c_2(\overline{O}_\varepsilon(F)) \land \inf_{x \in \overline{O}_\varepsilon(F)} \varphi(x) \mid F \subset X\} + \varepsilon$$

тобто

$$\int_X \varphi(x) \wedge dc_1(x) \leq \int_X \varphi(x) \wedge dc_2(x) + \varepsilon.$$

Аналогічно до $c_1(\varphi) \leq c_2(\varphi) + \varepsilon$ можна отримати нерівність $c_2(\varphi) \leq c_1(\varphi) + \varepsilon$. Отже, $|c_1(\varphi) - c_2(\varphi)| \leq \varepsilon$, а тому $d(c_1, c_2) \leq \varepsilon$. Цим доведено, що $d(c_1, c_2) \leq d(c_1, c_2)$.

В інший бік: нехай тепер $d'(c_1, c_2) \leq \varepsilon$. Доведемо, що $d(c_1, c_2) \leq \varepsilon$. Для кожної функції $\varphi(x) \in \text{Lip}(X, d)$ маємо:

$$|c_1(\varphi) - c_2(\varphi)| = \left| \int_X \varphi(x) \wedge dc_1(x) - \int_X \varphi(x) \wedge dc_2(x) \right| \leq \varepsilon. \quad (*)$$

Нехай для $F \subset X c_1(F) > \varepsilon$, і нехай $\varphi(x) = \max\{0, c_1(F) - d(x, F)\}$. Тоді $\varphi(x) \leq c_1(F)$, а із цього та з ознакення інтеграла Сугено випливає, що $c_1(\varphi) = \int_X \varphi(x) \wedge dc_1(x) = c_1(F)$, а $c_2(\varphi) = \int_X \varphi(x) \wedge dc_2(x) \leq c_1(F)$. Враховуючи це разом із $(*)$, отримуємо:

$$\int_X \varphi(x) \wedge dc_2(x) \geq \int_X \varphi(x) \wedge dc_1(x) - \varepsilon > c_1(F) - \varepsilon - \Delta, \quad \Delta > 0.$$

Існує $F' \subset X$ таке, що $c_2(F') \geq c_1(F) - \varepsilon - \Delta$ та $\varphi|_{F'} \geq c_1(F) - \varepsilon - \Delta > 0$ для будь-якого $\Delta > 0$. Оскільки $F' \subset \overline{O}_{\varepsilon + \Delta}(F)$, то $c_2(\overline{O}_{\varepsilon + \Delta}(F)) \geq c_1(F) - \varepsilon - \Delta$. При $\Delta \to 0$ згідно регулярності ємності отримуємо

$$c_2(\overline{O}_\varepsilon(F)) + \varepsilon \geq c_1(F).$$

Таким чином, якщо $c_1(F) > \varepsilon$, то $c_2(\overline{O}_\varepsilon(F)) + \varepsilon \geq c_1(F)$. Якщо ж $c_1(F) \leq \varepsilon$, то $c_2(\overline{O}_\varepsilon(F)) \geq 0 > c_1(F) - \varepsilon$. Аналогічно на підставі симетричності метрики можна довести, що

$$c_1(\overline{O}_\varepsilon(F)) + \varepsilon \geq c_2(F).$$

Цим доведено, що $d'(c_1, c_2) \leq \varepsilon$, а тому $d(c_1, c_2) \leq d'(c_1, c_2)$.

Отже, $d(c_1, c_2) = d'(c_1, c_2)$. \hfill \Box
Регулярні ємності на метризовних просторах

Нагадаємо, що гіперпростором включення на метричному просторі \(X \) називаємо непорожню сім’ю \(\mathcal{F} \) замкених непорожніх підмножин \(X \), таку, що:
1) \(\mathcal{F} \subset \text{exp} \ X \) — замкнена щодо метрики Гаусдорфа;
2) якщо \(A \subset B \in \text{exp} \ X, A \in \mathcal{F}, \) то \(B \in \mathcal{F} \).

Суккупність гіперпросторів включення на \(X \) позначаємо \(\mathcal{G} \) і розглядаємо як підпростір метричного простору \(\text{exp}^{2} X = \text{exp} \left(\text{exp} X \right) \) з метрикою \(d_{HH} \).

На множині \(M_{d}X \) ємностей, регулярних щодо метрики \(d \) на \(X \), розглядаємо метрику \(d \), означену вище.

Розглянемо довільний гіперпростір включення \(\mathcal{J} \in \mathcal{G} \). Він породжує нормовану ємність на \(X \), регулярну щодо \(d \), за формулю

\[
\mathcal{J}(F) = \begin{cases}
0, & F \notin \mathcal{F}, \\
1, & F \in \mathcal{F}.
\end{cases}
\]

Порівняємо відстані Гаусдорфа між гіперпросторами включення і відстані між породженими ними ємностями.

Твердження 3.1. Для довільних гіперпросторів включення \(\mathcal{J}_{1}, \mathcal{J}_{2} \in \mathcal{G} \) і відповідних ємностей \(\mathcal{J}_{1}, \mathcal{J}_{2} \) виконано рівність

\[
\min \{ d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}), 1 \} = d(\mathcal{J}_{1}, \mathcal{J}_{2}).
\]

Доведення. Оскільки при заміні метрики \(d \) на метрику \(d'(x, y) = \min \{ d(x, y), 1 \} \) відстань \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) \) не змінюється, а \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) \) змінюється на \(\min \{ d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}), 1 \} \), без обмеження загальнosti можемо вважати, що метрика обмежена згори однією, і доводимо, що відстань між сім’ями \(\mathcal{J}_{1} \) та \(\mathcal{J}_{2} \) та відстань між мірами \(\mathcal{J}_{1} \) і \(\mathcal{J}_{2} \), побудованими на основі цих сімей, є рівними, тобто \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) = d(\mathcal{J}_{1}, \mathcal{J}_{2}) \). Для цього потрібно показати для кожного \(\epsilon < 1 \), що, якщо \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \), то \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \), та навпаки, якщо \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \), то \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \).

Нагадаємо, що метрики задані формулами:

\[
d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) = \inf \{ \epsilon > 0 \mid \forall F_{1} \in \mathcal{J}_{1}, \exists F_{2} \in \mathcal{J}_{2} : d_{H}(F_{1}, F_{2}) \leq \epsilon, \\
\forall F_{2} \in \mathcal{J}_{2} \exists F_{1} \in \mathcal{J}_{1} : d_{H}(F_{1}, F_{2}) \leq \epsilon \},
\]

\[
d(\mathcal{J}_{1}, \mathcal{J}_{2}) = \inf \{ \epsilon > 0 \mid \forall F \in \text{exp} X : c_{\mathcal{J}_{1}}(F) \leq c_{\mathcal{J}_{2}}(\overline{O}_{\epsilon}(F)) + \epsilon, \\
c_{\mathcal{J}_{2}}(F) \leq c_{\mathcal{J}_{1}}(\overline{O}_{\epsilon}(F)) + \epsilon \}.
\]

Зауважимо, що при \(F_{1} \in \mathcal{J}_{1}, F_{2} \in \mathcal{J}_{2}, d_{H}(F_{1}, F_{2}) \leq \epsilon \) маємо, що \(F_{2} \subset \overline{O}_{\epsilon}(F_{1}) \), звідки \(\overline{O}_{\epsilon}(F_{1}) \in \mathcal{J}_{2} \).

Нехай \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) \leq \epsilon \). Доведемо, що \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) \leq \epsilon \). Розглянемо довільну непорожню замкнену множину \(F \subset X \). Якщо \(c_{\mathcal{J}_{1}}(F) = 0 \), тообо \(F \notin \mathcal{J}_{1} \), тоді \(c_{\mathcal{J}_{1}}(F) \leq c_{\mathcal{J}_{2}}(\overline{O}_{\epsilon}(F)) + \epsilon \). Інакше \(F \in \mathcal{J}_{1} \), тому \(\overline{O}_{\epsilon}(F) \in \mathcal{J}_{2} \), звідки \(c_{\mathcal{J}_{2}}(\overline{O}_{\epsilon}(F)) = 1 \), і теж \(1 = c_{\mathcal{J}_{1}}(F) \leq c_{\mathcal{J}_{2}}(\overline{O}_{\epsilon}(F)) + \epsilon = 1 + \epsilon \).

Аналогічно отримуємо \(c_{\mathcal{J}_{2}}(F) \leq c_{\mathcal{J}_{1}}(\overline{O}_{\epsilon}(F)) + \epsilon \) для кожної замкненої підмножини \(F \subset X \), звідки випливає нерівність \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) \leq \epsilon \).

Тепер залишилося показати, що при \(d(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \) виконується \(d_{HH}(\mathcal{J}_{1}, \mathcal{J}_{2}) = \epsilon \). Для будь-якої \(F_{1} \in \mathcal{J}_{1} \) маємо:

\[
c_{\mathcal{J}_{1}}(F_{1}) \leq c_{\mathcal{J}_{2}}(\overline{O}_{\epsilon}(F_{1})) + \epsilon.
\]
Черковський Т.М.

Оскільки $c_{F_1}(F_1) = 1$, то, враховуючи $\varepsilon < 1$, маємо $c_{F_1}(\overline{O}_e(F_1)) > 0$, тобто $\overline{O}_e(F_1) \in F_2$.

Отже, існує множина $F_2 = \overline{O}_e(F_1) \in F_2$, $d_H(F_1, F_2) \leq \varepsilon$. Аналогічно для $F_2 \in F_2$ маємо $F_1 = \overline{O}_e(F_2) \in F_1$, і теж $d_H(F_1, F_2) \leq \varepsilon$. Отже, $d_{HH}(F_1, F_2) \leq \varepsilon$, а тому $d_{HH}(F_1, F_2) = d(c_{F_1}, c_{F_2})$.

Отже, простір гіперпросторів включення можна вважати топологічним, а за умови $d \leq 1$ — і метричним підпростором простору емностей.

Відомо, що, якщо (X, d) — повний метричний простір з обмеженою метрикою, то простір expr X, наділений метрикою Гаусдорфа, є повним. Крім того, підпростір GX замкнений у повному просторі expr$^2 X = expr(expr X)$, тому теж є повним.

Аналогічно можемо довести повноту простору субнормованих нелінійних відповідних мір, регулярних шодо повної метрики d на X. З допомогою Твердження 2.1 неважко переверити, що суккупність підграфіків таких мір є замкненою у expr X, тому теж є повним.

Теорема 2. Якщо простір X є повним, то $(M_d X, \tilde{d})$ повний.

Надамо також пряме доведення.

Доведення. Нехай $c_1, c_2, \ldots, c_n, \ldots \in M_d X$ — фундаментальна послідовність емностей. При потребі перейшовши до підпослідовності, можемо вважати, що

$$d(c_1, c_2) \leq \frac{1}{2}, \quad d(c_2, c_3) \leq \frac{1}{4}, \ldots \quad d(c_n, c_{n+1}) \leq \frac{1}{2^n}, \ldots$$

Тоді для довільної замкненої множини $F \subset X$ виконано $c_i(\overline{O}_{\frac{1}{2^i}}(F)) + \frac{1}{2^i} \geq c_{i+1}(F)$, звідки

$$c_i(\overline{O}_{\frac{1}{2^i}}(\overline{O}_{\frac{1}{2^i}}(F))) + \frac{1}{2^{i+1}} + \frac{1}{2^i} \geq c_{i+1}(\overline{O}_{\frac{1}{2^i}}(F)) + \frac{1}{2^i}.$$

Враховуючи, що $\overline{O}_{\frac{1}{2^i}}(\overline{O}_{\frac{1}{2^i}}(F)) \subset \overline{O}_{\frac{1}{2^{i-1}}}(F)$, маємо:

$$c_i(\overline{O}_{\frac{1}{2^{i-1}}}(F)) + \frac{1}{2^{i-1}} \geq c_{i+1}(\overline{O}_{\frac{1}{2^i}}(F)) + \frac{1}{2^i},$$

тому числові послідовності $(c_i(\overline{O}_{\frac{1}{2^{i-1}}}(F)) + \frac{1}{2^{i-1}})_{i \in N}$ є незростаючою і обмеженою знизу нулем. Позначимо її границю $c_0(F)$. Неважко переверити, що функція c_0 є регулярною шодо d ємністю і границею послідовності емностей $c_1, c_2, c_3, \ldots, c_n, \ldots$.

4 Порівняння класів ω- й т-гладких емностей на сепарабельних та несепарабельних просторах

Теорема 3. Для емностей на метричному просторі X властивості ω-гладкості й т-гладкості є еквівалентними, якщо і тільки якщо X є сепарабельним.

Доведення. Нехай X — сепарабельний простір, тобто в ньому міститься не більш ніж зліченна всьодо шільна множина A, c — ω-гладка ємність на X, $F = (F_a)$ — спадна спрямованість замкнених множин в X, де a належить деякій множині індексів з відношенням часткового порядку (I, \leq), $F_0 = \bigcup_{a \in I} F_a$.

Позначимо $Q_+ = (0; +\infty) \cap \mathbb{Q}$ і покладемо

$$A_f = \{(a, r) \mid a \in A, r \in Q_+, B_r(a) \cap F_a = \emptyset \text{ для деякого } a \in I\} \subset A \times Q_+.$$

Для кожної скінчененої підмножини $\mathcal{H} \subset A_f$ покладемо $F_\mathcal{H} = X \setminus \bigcup_{(a,r) \in \mathcal{H}} B_r(a)$. Ця множина є замкненою, і для будь-яких скінчених $\mathcal{H} \subset A_f$ та $\mathcal{H}' \subset A_f$ виконано рівність $F_{\mathcal{H} \cup \mathcal{H}'} = F_\mathcal{H} \cap F_{\mathcal{H}'}$. Крім того, для кожної $(a, r) \in A_f$ за побудовою існує $F_a \subset F_{(a,r)}$, тому за спрямованістю I вгору для кожної скінченної $\mathcal{H} \subset A_f$ теж існує $F_a \subset F_{\mathcal{H}}$. З іншого боку, $F_a = \bigcap_{F_a \supset F_a}$, тому перетин всіх $F_\mathcal{H}$ дорівнює перетину всіх F_a, тобто F_0.

Оскільки множина A_f злічена, її можна зобразити як об'єднання послідовності скінчених підмножин $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \ldots$, звідки

$$c(F_0) = c(F_{\mathcal{H}_1} \cap F_{\mathcal{H}_2} \cap F_{\mathcal{H}_3} \cap \ldots) = \inf \{c(F_{\mathcal{H}_1}), c(F_{\mathcal{H}_2}), c(F_{\mathcal{H}_3}), \ldots \} \geq \inf_a c(F_a),$$

що й означає τ-гладкість ємності c.

Нехай тепер X несепарабельний, тоді існує множина $X_0 \subset X$ така, що $|X_0| = \omega_1$, та існує число $\varepsilon > 0$, що для будь-яких $x_1, x_2 \in X_0$ виконується $d(x_1, x_2) \geq \varepsilon$. Розглянемо ємність, задану формулою:

$$c(F) = \begin{cases} 1, & |X_0 \setminus F| \leq \omega, \\ 0, & |X_0 \setminus F| > \omega. \end{cases}$$

Доведемо, що $c(F)$ є ω-гладкою ємністю, але не є т-гладкою. Нехай (F_n) — деяка спадна спрямованість замкнених множин в X, збіжна до F_0. Тоді $F_0 = \bigcap_n F_n$. Оскільки $F_1 \supset F_2 \supset F_3 \supset \ldots \supset F_0$, то з властивості монотонності ємності отримуємо нерівність $c(F_1) \geq c(F_2) \geq c(F_3) \geq \ldots \geq c(F_0)$. Потрібно довести, що $\lim_{n \to \infty} c(F_n) = c(F_0)$. Якщо F_1 така, що $|X_0 \setminus F_1| > \omega$, то і $|X_0 \setminus F_0| > \omega$, а тому $\lim_{n \to \infty} c(F_n) = c(F_0) = 0$.

Нехай $|X_0 \setminus F_1| \leq \omega$, $|X_0 \setminus F_2| \leq \omega$, $|X_0 \setminus F_3| \leq \omega$, … Тоді для будь-якого натурального числа n маємо $c(F_n) = 1$. Оскільки $$(X_0 \setminus F_1) \cup (X_0 \setminus F_2) \cup (X_0 \setminus F_3) \cup \ldots = \bigcup_{n} (X_0 \setminus F_n) = X_0 \setminus F_0,$$
то $X_0 \setminus F_0$ — злічене об’єднання злічених чи скінчених множин, яке також є не більш ніж зліченою множиною. Тому $c(F_0) = 1$. Отже $c(F)$ є ω-гладкою ємністю.

Тепер покажемо, що для ємності c властивість т-гладкості не виконується. Нехай $2^{X_0} = \{B \subset X_0 \mid |B| \leq \omega\}$ — сім’я всіх не більш ніж злічених підмножин множини X_0. Впорядкуємо її кнопочку за зростанням. Замкнені множини $F_B = X_0 \setminus B$ утворюють спадну спрямованість, і для кожної F_B ємність $c(F_B)$ рівна 1, але $\bigcap_{B \in 2^{X_0}} F_B = \emptyset$, а тому $c(\bigcap_{B \in 2^{X_0}} F_B) = 0$. Отже, $c(F)$ не є т-гладкою ємністю.

5 ПОРІВНЯННЯ КЛАСІВ РЕГУЛЯРНИХ, РЕГУЛЯРНИХ ЩОДО МЕТРИКИ ТА ω-ГЛАДКИХ ЄМНОСТЕЙ НА МЕТРИЗОВНИХ ПРОСТОРАХ

Для простору т-гладких ємностей M_{tX} відомо, що якщо X — компакт, то класи т-гладких та регулярних ємностей на ньому співпадають, але у випадку некомпактних просторів це не так. Кожна т-гладка ємність є регулярною, проте зворотне є хибним [4]. З’ясувати, чи збігається простір ω-гладких ємностей $M_{\omega X}$ з простором регулярних ємностей M_X.

173 РЕГУЛЯРНІ ЄМНОСТИ НА МЕТРИЗОВНИХ ПРОСТОРАХ
Теорема 4. Для метризованого простору X наступні твердження рівносильні:

1. X компактний;
2. $M_\omega X = MX$;
3. $M d X = M_\omega X$ для деякої метрики d, сумісної з топологією на X;
4. $\overline{M d X} = M_\omega X$ для кожної метрики d, сумісної з топологією на X.

Доведення. Якщо X — компакт, то класи MX, $M_\omega X$ та $M d X$ збігаються, тому з першого твердження випливають трьо інші. Очевидно, що з четвертого твердження випливає третє.

Якщо ж метризовний простір X некompактний, то топологію на ньому можна визначити необмеженою метрикою d. Відповідно простір (X, d) не є шілком обмеженим, і існують $\varepsilon > 0$ і підмножина $A = \{x_n \in X, n \in \mathbb{N}\}$ така, що $d(x_i, x_j) \geq \varepsilon$ для кожної $x_i, x_j \in A$.

Розглянемо функцію, задану формулою $c(F) = \max(1 - \inf_{n \in \mathbb{N}} \frac{d(x_n, F)}{\varepsilon}, 0)$. Зрозуміло, що $0 \leq c(F) \leq 1$ для будь-якої замкненої $F \subseteq X$. Також, якщо $F, G \in \exp X, F \subseteq X$, то $c(F) \leq c(G)$. Доведемо напівнеперервність згір. Якщо $c(F) < a$, то $1 - \inf_{n \in \mathbb{N}} \frac{d(x_n, F)}{\varepsilon} < a$, а тому

$$\inf_{n \in \mathbb{N}} d(x_n, F) > (1 - a) \cdot \varepsilon.$$

Позначивши $\delta = \frac{1}{2} \cdot (1 - a) \cdot \varepsilon$, отримуємо $\inf_{n \in \mathbb{N}} d(x_n, \overline{\delta}(F)) > (1 - a) \cdot \varepsilon$, а тому $c(\overline{\delta}(F)) < a$. Отже, дана функція є регулярною емністю.

Розглянемо спадну послідовність множин $F_n = \{x_i \in A \mid i \geq n\}$. Очевидно, що для будь-якого $n \in \mathbb{N}$ маємо $c(F_n) = 1$, але $c(\bigcap_{n \in \mathbb{N}} F_n) = c(\emptyset) = 0$, тобто властивість ω-гладкості не виконано, і $M_\omega X \neq MX$.

Крім того, у некompактному метризовному просторі X існує спадна послідовність замкнених множин $F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots$ з порожнім перетином. Нехай метрика d сумісна з топологією на X. Не обмежуючи загальності, можна вважати, що точка x_0 не належить до F_1. Покладемо для кожної замкненої $F \subseteq X$:

$$c(F) = \begin{cases}
0, & F = \emptyset, \\
\min\{1, \sup\{d(x_0, x) \mid x \in F\}\}, & F \neq \emptyset.
\end{cases}$$

Тоді c субнормована і регулярна щодо метрики d, однак виконано $c(\bigcap_{n \in \mathbb{N}} F_n) = c(\emptyset) = 0$, $\inf_{n \in \mathbb{N}} c(F_n) \geq d(x_0, F_1) > 0$, тому c не є ω-гладкою, і $M_\omega X \neq M d X$.

Цим від супротивного показано, що з другого або третього твердження випливає перше твердження, тобто маємо потрібну рівносильність.

Зрозуміло, що рівність $MX = M d X$ залежить від вибору конкретної сумісної з топологією на X метрики d, однак:

Теорема 5. Якщо множина граничних точок метричного простору X не компактна, то на X існує регулярна емність, яка не є регулярною щодо жодної метрики, сумісної з топологією на X. Якщо ж множина граничних точок метричного простору X є компактною, то існує сумісна з топологією на X метрика, що є регулярною кожна регулярна (у топологічному сенсі) емність на X.

Доведення наступного допоміжного твердження є очевидним.
Лема 5.1. Нехай \((a_n^i)_{i \in \mathbb{N}}, n \in \mathbb{N}\) — несчётно малі послідовності додатніх чисел. Тоді існує така бієкція \(\varphi : \mathbb{N} \to \mathbb{N}\), що послідовність \(a_n^{\varphi(n)}\) містить як завгодно малі елементи.

Для довільної замкненої множини \(A \subset X\) задаємо функцію \(c_A : \text{Exp} X \to I\) формулою:

\[
c_A(F) = \begin{cases} 1, & F \supseteq A \\ 0, & F \not\supseteq A, \end{cases}
\]

для кожної замкненої \(F \subset X\). Очевидно, що ця функція є регулярною ємністю. Вживамо позначення \(\Lambda_{i \in \mathbb{N}} f_i\) для поаргументного інфімуму сім'ї функцій \((f_i)_{i \in \mathbb{N}}\) зі спільною областью визначення. Зауважимо, що поаргументний інфімум регулярних ємностей є регулярною ємністю.

Доведення теореми. Нехай множина граничних точок простору \(X\) некомпактна. Тоді для довільної метрики \(d\), сумісної з топологією на \(X\), можна знайти послідовність граничних точок \((x_n)_{n \in \mathbb{N}}\) простору \(X\) без збіжних підпослідовностей і попарно дійсно дискретні замкнені куля \(B_n^i\) щодо \(d\) з центрами у цих точках \(x_n\). Для кожного \(n \in \mathbb{N}\) будуємо послідовність \((B_n^i)_{i \in \{0,1,2,\ldots\}}\) куль з центром \(x_n\) і спадними до нуля радіусами так, щоб \(B_{n-1}^i \setminus B_n^i \neq \emptyset\) для всіх \(i \in \mathbb{N}\).

Позначимо \(F\) множину всіх бієкцій \(\varphi : \mathbb{N} \to \mathbb{N}\). Для кожного \(\varphi \in F\) покладемо \(A_\varphi = \bigcup_{i \in \mathbb{N}} B_i^{\varphi(i)}\), тоді \(\Lambda_{i \in \mathbb{N}} c_{A_\varphi}\) є регулярною ємністю. Зауважимо, що значення \(c\) від довільної замкненої множини \(F \subset X\) рівне нулю, якщо існує така перестановка \(\varphi : \mathbb{N} \to \mathbb{N}\), що \(F\) не перетинає жодну з куляр

Припустимо, що \(c\) регулярна щодо деякої сумісної з топологією на \(X\) метрики \(d'\). Для кожного натуральногон \(n\) послідовність додатних чисел \(a_n^i = \sup\{d'(x,x_n) : x \in B_{n-1}^i \setminus B_n^i\}, i \in \mathbb{N}\) прямує до нуля. За останньою лемою знайдемо таку перестановку \(\varphi : \mathbb{N} \to \mathbb{N}\), що для відповідно переставлених послідовностей \((a_n^{\varphi(n)})_{n \in \mathbb{N}}\) діагональна послідовність \((a_n^{\varphi(n)})_{n \in \mathbb{N}}\) містить як завгодно малі елементи. Оберемо по одній точці \(y_n\) з кожної різниці \(B_{n-1}^i \setminus B_n^{\varphi(n)}\) і позначимо \(Y = \text{Cl}(\{y_n : n \in \mathbb{N}\})\). За побудовою \(c(Y) = 0 < 1\), і повинно існувати таке \(\epsilon > 0\), що для кожної непорожньої замкненої множини \(F \subset X\) з \(d'_H(F,Y) \leq \epsilon\) випливає \(c(F) < 1\), тобто \(c(F) = 0\). Але \(\epsilon \in \mathbb{N}\), для якого \(d'(x_n,y_n) \leq \epsilon\), зв'як для множини \(F = Y \cup \{x_{\varphi(n)}\}\) водночас \(d'_H(F,Y) \leq \epsilon\) і \(c(F) = 1\), що суперечність.

Отже, побудована регулярна ємність \(c\) не є регулярною щодо жодної метрики \(d'\), сумісної з топологією на \(X\).

Нехай тепер множина \(X_0\) граничних точок простору \(X\) є компактною, \(d\) — довільна метрика, сумісна з топологією на \(X\). Формула

\[
d'(x,y) = \begin{cases} 0, & x = y \\ d(x,y) + d(x,X_0) + d(y,X_0), & x \neq y, \end{cases} \quad x,y \in X,
\]

визначає метрику на \(X\), топологічно еквівалентну до \(d\), але зластівистю: якщо \(U\) — відкритий окіл замкненої множини \(F\) в \(X\), то для деякого \(\epsilon > 0\) виконано \(\bar{O}_\epsilon(F) \subset U\). Звідси негайно випливає, що кожна ємність \(c \in MX\) є регулярною щодо \(d'\).

\(\square\)
У цій роботі з'ясовано тільки умови збігу різних класів регулярних мір на метричних і метризованих просторах. Топологічні властивості просторів таких мір з розглянутою метрикою (за винятком вже доведеної повноти простору регулярних щодо повної метрики емностей) стануть предметом наступних публікацій. Зокрема, ці простори буде вивчено засобами нескінченновимірної топології.

References

Надійшло 04.02.2014

It is proved that for a (not necessarily compact) metric space: the metrics on the space of capacities in the sense of Zarichnyi and Prokhorov are equal; completeness of the space of capacities is equivalent to completeness of the original space. It is shown that for the capacities on metrizable spaces the properties of ω-smoothness and of τ-smoothness are equivalent precisely on the separable spaces, and the properties of ω-smoothness and of regularity w.r.t. some (then w.r.t. any) admissible metric are equivalent precisely on the compact spaces.

Key words and phrases: regular capacity, ω-smoothness, τ-smoothness, Hausdorff metric, complete metric space, separable space.

Доказано, что для (не обязательно компактного) метрического пространства: метрики на пространстве емкостей в смысле Прохорова и Заричного равны; полнота пространства емкостей равносильна полноте исходного пространства. Показано, что для емкостей на метризуемых пространствах свойства ω-гладкости и τ-гладкости равносильны в точности на сепарабельных пространствах, а свойства ω-гладкости и регулярности относительно некоторой (а тогда и любой) совместимой метрики — в точности на компактных пространствах.

Ключевые слова и фразы: регулярная емкость, ω-гладкость, τ-гладкость, метрика Хаусдорфа, полное метрическое пространство, сепарабельное пространство.