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1 Introduction
Our purpose in this paper is to evaluate the partial sum

k∑
j=0

X
(1)
rj+sX

(2)
mj+tz

j , where (X
(1)
n )n∈Z and

(X
(2)
n )n∈Z are any two Horadam sequences, r, s, m, t and k are any integers and z is any complex

variable. Our results are related to those from [2–5, 7–10].
∗Statements and conclusions made in this paper by Robert Frontczak are entirely those of the author. They do

not necessarily reflect the views of Landesbank Baden-Württemberg.
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The Horadam sequence [6] (wn) = (wn(a, b; p, q)) is defined, for all integers, by the recurrence
relation

w0 = a, w1 = b, wn = pwn−1 − qwn−2 , n ≥ 2,

with

w−n =
(ap− b)un − aqun−1
qn(bun − aqun−1)

wn

or, equivalently,
w−n = q−n(avn − wn) ,

where a, b, p and q are arbitrary complex numbers, with p 6= 0 and q 6= 0; and (un(p, q)) =

(wn(0, 1; p, q)) and (vn(p, q)) = (wn(2, p; p, q)) are Lucas sequences of the first kind and of the
second kind, respectively. The most well-known Lucas sequences are the Fibonacci sequence
(Fn) = (un(1,−1)) and the sequence of Lucas numbers (Ln) = (vn(1,−1)).

The Binet formulas for un, vn and wn in the non-degenerate case p2 6= 4q are

un =
αn − βn

α− β
, vn = αn + βn, wn =

b− aβ
α− β

αn +
aα− b
α− β

βn ,

where α and β are the distinct zeros of the characteristic polynomial x2− px+ q of the Horadam
and Lucas sequences,

α =
p+

√
p2 − 4q

2
, β =

p−
√
p2 − 4q

2
.

The following power reduction formulas, which we require later, can be easily established by
induction:

αn = unα− qun−1, βn = unβ − qun−1 . (1)

Partial sum of Horadam numbers with subscripts in arithmetic progression for integers r, k
and s and arbitrary z can be evaluated as [1, 10]

k∑
j=0

wrj+sz
j =

qrwrk+sz
k+2 − wrk+r+sz

k+1 − qrws−rz + ws

qrz2 − vrz + 1
. (2)

In particular,
k∑

j=0

urj+sz
j =

qrurk+sz
k+2 − urk+r+sz

k+1 + qsur−sz + us
qrz2 − vrz + 1

,

k∑
j=0

vrj+sz
j =

qrvrk+sz
k+2 − vrk+r+sz

k+1 − qsvr−sz + vs
qrz2 − vrz + 1

.

The generating function of the Horadam sequence with subscripts in arithmetic progression
for integers r and s is [1]

∞∑
j=0

wrj+sz
j =
−qrws−rz + ws

qrz2 − vrz + 1
.

In particular,
∞∑
j=0

urj+sz
j =

qsur−sz + us
qrz2 − vrz + 1

,

∞∑
j=0

vrj+sz
j =
−qsvr−sz + vs
qrz2 − vrz + 1

.
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Further results on Horadam sequence can be found in the survey paper [13]. Properties of
Lucas sequences can be found in [14, Chapter 1].

2 Main results

Theorem 2.1. Let (X(1)
n ) =

(
wn(X

(1)
0 , X

(1)
1 ; p1, q1)

)
and (X

(2)
n ) =

(
wn(X

(2)
0 , X

(2)
1 ; p2, q2)

)
be

two non-degenerated Horadam sequences. Let{
(u(1)n ) = (wn(0, 1; p1, q1)), (v

(1)
n ) = (wn(2, p1; p1, q1))

}
,{

(u(2)n ) = (wn(0, 1; p2, q2)), (v
(2)
n ) = (wn(2, p2; p2, q2))

}
be the respective Lucas sequences associated with (X

(1)
n ) and (X

(2)
n ). Then

k∑
j=0

X
(1)
rj+sX

(2)
mj+tz

j =
X

(2)
0 (q2EG+ p2FG+ FH) +X

(2)
1 (EH − FG)

q2G2 +H2 + p2GH
,

where
E = qr1X

(1)
rk+su

(2)
mk+2m+tz

k+2 −X(1)
rk+r+su

(2)
mk+m+tz

k+1 − qr1X
(1)
s−ru

(2)
m+tz +X(1)

s u
(2)
t , (3)

F =− qr1X
(1)
rk+su

(2)
mk+2m+t−1z

k+2 +X
(1)
rk+r+su

(2)
mk+m+t−1z

k+1

+ qr1X
(1)
s−ru

(2)
m+t−1z −X(1)

s u
(2)
t−1 ,

(4)

G = qr1u
(2)
2mz

2 − v(1)r u(2)m z (5)

and
H = −qr1q2u

(2)
2m−1z

2 + q2v
(1)
r u

(2)
m−1z + 1 . (6)

Proof. Let αi and βi, αi 6= βi, i ∈ {1; 2}, be the zeros of x2 − pix + qi, the characteristic
polynomial of the sequence (u

(i)
n ). Then

X(i)
n = Aiα

n
i +Biβ

n
i , i ∈ {1; 2},

where
Ai =

X
(i)
1 −X

(i)
0 βi

αi − βi
, Bi =

X
(i)
0 αi −X(i)

1

αi − βi
.

In (2) make the identification wn ≡ X
(1)
n , replace z with αm

2 z and multiply both sides by αt
2

to obtain

S1 =
k∑

j=0

X
(1)
rj+sα

mj+t
2 zj

=
qr1X

(1)
rk+sα

mk+2m+t
2 zk+2 −X(1)

rk+r+sα
mk+m+t
2 zk+1 − qr1X

(1)
s−rα

m+t
2 z +X

(1)
s αt

2

qr1α
2m
2 z2 − v(1)r αm

2 z + 1
.

(7)

Similarly,

S2 =
k∑

j=0

X
(1)
rj+sβ

mj+t
2 zj

=
qr1X

(1)
rk+sβ

mk+2m+t
2 zk+2 −X(1)

rk+r+sβ
mk+m+t
2 zk+1 − qr1X

(1)
s−rβ

m+t
2 z +X

(1)
s βt

2

qr1β
2m
2 z2 − v(1)r βm

2 z + 1
.

(8)
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Using the power reduction formulas (1), identities (7) and (8) can be written as

S1 =
k∑

j=0

X
(1)
rj+sα

mj+t
2 zj =

Eα2 + F

Gα2 +H
(9)

and

S2 =
k∑

j=0

X
(1)
rj+sβ

mj+t
2 zj =

Eβ2 + F

Gβ2 +H
, (10)

where E, F , G and H are as given in (3) – (6). Now

A2S1 +B2S2 =
k∑

j=0

X
(1)
rj+s(A2α

mj+t
2 +B2β

mj+t
2 )zj =

k∑
j=0

X
(1)
rj+sX

(2)
mj+tz

j .

But from (9) and (10) we have

A2S1 +B2S2 = A2
Eα2 + F

Gα2 +H
+B2

Eβ2 + F

Gβ2 +H
.

Thus,
k∑

j=0

X
(1)
rj+sX

(2)
mj+tz

j =
A2(Eα2 + F )(Gβ2 +H) +B2(Gα2 +H)(Eβ2 + F )

(Gα2 +H)(Gβ2 +H)
,

from which the stated identity follows after multiplying out the right-hand side and some
algebra.

3 Examples

We will draw illustrations of Theorem 2.1 from six well-known second-order sequences, namely
the Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas numbers. First we give
a quick review of the sequences.

The Fibonacci numbers Fn and the Lucas numbers Ln are defined, for n ∈ Z, as usual,
through the recurrence Fn = Fn−1 + Fn−2 (n ≥ 2), F0 = 0, F1 = 1 and Ln = Ln−1 + Ln−2

(n ≥ 2), L0 = 2, L1 = 1, with F−n = (−1)n−1Fn and L−n = (−1)nLn. Exhaustive discussion
of the properties of Fibonacci and Lucas numbers can be found in [11, 16].

The Jacobsthal numbers Jn and the Jacobsthal–Lucas numbers jn are defined, for n ∈ Z,
through the recurrence relations Jn = Jn−1 + 2Jn−2 (n ≥ 2), J0 = 0, J1 = 1 and
jn = jn−1 + 2jn−2 (n ≥ 2), j0 = 2, j1 = 1, with J−n = (−1)n−12−nJn and j−n = (−1)n2−njn.
The entries A001045 and A014551 from [15] conclude good reference materials on the Jacobsthal
and Jacobsthal–Lucas numbers, respectively.

The Pell numbers Pn and Pell–Lucas numbers Qn are defined, for n ∈ Z, through the
recurrence relations Pn = 2Pn−1 + Pn−2 (n ≥ 2), P0 = 0, P1 = 1 and Qn = 2Qn−1 + Qn−2

(n ≥ 2), Q0 = 2, Q1 = 2, with P−n = (−1)n−1Pn and Q−n = (−1)nQn. [12] and [15] (entries
A000129 and A002203) are useful source materials on Pell and Pell–Lucas numbers.

For reference, the first few values of the six sequences are given in Table 1 below.
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n −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Fn 5 −3 2 −1 1 0 1 1 2 3 5 8 13 21

Ln −11 7 −4 3 −1 2 1 3 4 7 11 18 29 47

Pn 29 −12 5 −2 1 0 1 2 5 12 29 70 169 408

Qn −82 34 −14 6 −2 2 2 6 14 34 82 198 478 1154

Jn 11/32 −5/16 3/8 −1/4 1/2 0 1 1 3 5 11 21 43 85

jn −31/32 17/16 −7/8 5/4 −1/2 2 1 5 7 17 31 65 127 257

Table 1. Terms of Fn, Ln, Pn, Qn, Jn and jn

3.1 Sum of the products of Fibonacci numbers
with subscripts in arithmetic progression

Let (X(1)
n ) ≡ (Fn) and (X

(2)
n ) ≡ (Fn). Then (u

(1)
n ) = (Fn), (v

(1)
n ) = (Ln), (u

(2)
n ) = (Fn) and

(v
(2)
n ) = (Ln). Thus p1 = p2 = 1, q1 = q2 = −1. We therefore have:

E = (−1)rFrk+sFmk+2m+tz
k+2 − Frk+r+sFmk+m+tz

k+1 − (−1)rFs−rFm+tz + FsFt , (11)

F = (−1)rFrk+sFmk+2m+t−1z
k+2 − Frk+r+sFmk+m+t−1z

k+1

− (−1)rFs−rFm+t−1z + FsFt−1 ,
(12)

G = (−1)rF2mz
2 − LrFmz (13)

and
H = (−1)rF2m−1z

2 − LrFm−1z + 1. (14)

Theorem 3.1. Let r, s, m, t and k be integers. Then
k∑

j=0

Frj+sFmj+tz
j =

EH − FG
H2 −G2 +GH

,

where E, F , G and H are as given in (11) – (14).

In particular, we have
k∑

j=0

F 2
j z

j =
(FkFk+2z

k+2 + F 2
k+1z

k+1 − z)(1− z2) + FkFk+1z
k(z + z2)2

(z + z2)2 − (1− z2)2 + (z + z2)(1− z2)
,

=
(FkFk+2z

k+2 + F 2
k+1z

k+1 − z)(z2 − 1)− FkFk+1z
k(z + z2)2

(1− 3z + z2)(z + 1)2
,

(15)

which at z = 1 gives the classical result
k∑

j=0

F 2
j = FkFk+1 ,

and from which we also get the generating function of the squares of Fibonacci numbers

∞∑
j=0

F 2
j z

j =
z − z2

1− 2z − 2z2 + z3
.
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Evaluation of (15) at z = −1, with the aid of L’Hospital rule gives
k∑

j=0

(−1)jF 2
j = −2

5
(k + 1) + (−1)kFk+1Lk

5
.

3.2 Sum of the products of Fibonacci and Lucas numbers
with subscripts in arithmetic progression

Let (X(1)
n ) ≡ (Fn) and (X

(2)
n ) ≡ (Ln). Then (u

(1)
n ) = (Fn), (v

(1)
n ) = (Ln), (u

(2)
n ) = (Fn) and

(v
(2)
n ) = (Ln). Thus p1 = p2 = 1, q1 = q2 = −1. We have

E = (−1)rFrk+sFmk+2m+tz
k+2 − Frk+r+sFmk+m+tz

k+1 − (−1)rFs−rFm+tz + FsFt , (16)

F = (−1)rFrk+sFmk+2m+t−1z
k+2 − Frk+r+sFmk+m+t−1z

k+1

− (−1)rFs−rFm+t−1z + FsFt−1 ,
(17)

G = (−1)rF2mz
2 − LrFmz (18)

and
H = (−1)rF2m−1z

2 − LrFm−1z + 1 . (19)

Theorem 3.2. Let r, s, m, t and k be integers. Then
k∑

j=0

Frj+sLmj+tz
j =

2(FH − EG) + EH + FG

H2 −G2 +GH
,

where E, F , G and H are as given in (16) – (19).

In particular, we have
k∑

j=0

FjLjz
j =

A+B

(1− z2)2 − (z + z2)2 − (z + z2)(1− z2)
, (20)

where
A = −2

(
FkFk+1z

k+1(1 + z)(1− z2) + (FkFk+2z
k+2 + F 2

k+1z
k+1 − z)(z + z2)

)
,

B = (−FkFk+2z
k+2 − F 2

k+1z
k+1 + z)(1− z2) + FkFk+1z

k+2(1 + z)2.

Two special evaluations are
k∑

j=0

FjLj = F2k+1 − 1 ,

which is also a classical result and
k∑

j=0

FjLj

2j
=

2F 2
k+1 + FkFk+3

2k
− 2 .

Applying L’Hospital rule twice to the right hand side of (20) at z = −1 and making use of
Cassini’s identity, we find

k∑
j=0

(−1)jFjLj = (−1)kFkFk+1 .
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3.3 Sum of the products of Fibonacci and Pell numbers
with subscripts in arithmetic progression

Let (X(1)
n ) ≡ (Fn) and (X

(2)
n ) ≡ (Pn). Then (u

(1)
n ) = (Fn), (v

(1)
n ) = (Ln), (u

(2)
n ) = (Pn) and

(v
(2)
n ) = (Qn). Thus, p1 = 1, q1 = −1, p2 = 2 and q2 = −1. We therefore have

E = (−1)rFrk+sPmk+2m+tz
k+2 − Frk+r+sPmk+m+tz

k+1 − (−1)rFs−rPm+tz + FsPt , (21)

F = (−1)rFrk+sPmk+2m+t−1z
k+2 − Frk+r+sPmk+m+t−1z

k+1

− (−1)rFs−rPm+t−1z + FsPt−1 ,
(22)

G = (−1)rP2mz
2 − LrPmz (23)

and
H = (−1)rP2m−1z

2 − LrPm−1z + 1 . (24)

Theorem 3.3. Let r, s, m, t and k be integers. Then

k∑
j=0

Frj+sPmj+tz
j =

EH − FG
H2 −G2 + 2GH

,

where E, F , G and H are as given in (21) – (24).

In particular, we have

k∑
j=0

FjPjz
j =

FkPkz
k+4 + (Fk+1Pk−1 − FkPk+1)z

k+3

z4 − 2z3 − 7z2 − 2z + 1

− (FkPk+2 + Fk+1Pk)z
k+2 + Fk+1Pk+1z

k+1 + z3 − z
z4 − 2z3 − 7z2 − 2z + 1

,

(25)

of which we can mention the special values

k∑
j=0

FjPj =
FkPk+1 + PkFk+1

3

and
k∑

j=0

(−1)jFjPj = (−1)k(Pk+1Fk − Fk+1Pk) .

Note that from (25), it follows that the generating function of the product of Fibonacci
numbers and Pell numbers is

∞∑
j=0

FjPjz
j =

z − z3

1− 2z − 7z2 − 2z3 + z4
.

3.4 Sum of the products of Fibonacci and Jacobsthal numbers
with subscripts in arithmetic progression

Let (X(1)
n ) ≡ (Fn) and (X

(2)
n ) ≡ (Jn). Then (u

(1)
n ) = (Fn), (v

(1)
n ) = (Ln), (u

(2)
n ) = (Jn) and

(v
(2)
n ) = (jn). Thus p1 = 1, q1 = −1, p2 = 1 and q2 = −2. We therefore have
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E = (−1)rFrk+sJmk+2m+tz
k+2 − Frk+r+sJmk+m+tz

k+1 − (−1)rFs−rJm+tz + FsJt , (26)

F =(−1)r2Frk+sJmk+2m+t−1z
k+2 − 2Frk+r+sJmk+m+t−1z

k+1

− (−1)r2Fs−rJm+t−1z + 2FsJt−1 ,
(27)

G = (−1)rJ2mz2 − LrJmz (28)

and
H = (−1)r2J2m−1z2 − 2LrJm−1z + 1 . (29)

Theorem 3.4. Let r, s, m, n and k be integers. Then

k∑
j=0

Frj+sJmj+tz
j =

EH − FG
H2 − 2G2 +GH

,

where E, F , G and H are as given in (26) – (29).

In particular, we have

k∑
j=0

FjJjz
j =

4FkJkz
k+4 + 2(2Fk+1Jk−1 − FkJk+1)z

k+3

4z4 − 2z3 − 7z2 − z + 1

− (FkJk+2 + 2Fk+1Jk)z
k+2 + Fk+1Jk+1z

k+1 + 2z3 − z
4z4 − 2z3 − 7z2 − z + 1

,

(30)

giving the special values

k∑
j=0

FjJj =
Fk(Jk+3 − 4Jk) + Fk+1(Jk+2 − 4Jk−1)

5

and
k∑

j=0

(−1)jFjJj = (−1)k(FkJk+2 − Fk+1Jk+1) + 1 .

From (30) we obtain the generating function of the product of Fibonacci and Jacobsthal numbers

∞∑
j=0

FjJjz
j =

z − 2z3

1− z − 7z2 − 2z3 + 4z4
.

3.5 Sum of the products of Pell and Jacobsthal numbers
with subscripts in arithmetic progression

Let (X(1)
n ) ≡ (Pn) and (X

(2)
n ) ≡ (Jn). Then (u

(1)
n ) = (Pn), (v

(1)
n ) = (Qn), (u

(2)
n ) = (Jn) and

(v
(2)
n ) = (jn). Thus p1 = 2, q1 = −1, p2 = 1 and q2 = −2. We therefore have

E = (−1)rPrk+sJmk+2m+tz
k+2 − Prk+r+sJmk+m+tz

k+1 − (−1)rPs−rJm+tz + PsJt , (31)
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F =(−1)r2Prk+sJmk+2m+t−1z
k+2 − 2Prk+r+sJmk+m+t−1z

k+1

− (−1)r2Ps−rJm+t−1z + 2PsJt−1 ,
(32)

G = (−1)rJ2mz2 −QrJmz , (33)

and
H = (−1)r2J2m−1z2 − 2QrJm−1z + 1 . (34)

Theorem 3.5. Let r, s, m, t and k be integers. Then
k∑

j=0

Prj+sJmj+tz
j =

EH − FG
H2 − 2G2 +GH

,

where E, F , G and H are given in (31) – (34).

In particular, we have
k∑

j=0

PjJjz
j =

(−PkJk+2z
k+2 − Pk+1Jk+1z

k+1 + z)(1− 2z2)

(4z2 + 4z − 1)(z2 − 2z − 1)

− 2(PkJk+1z
k+2 + Pk+1Jkz

k+1)(2z + z2)

(4z2 + 4z − 1)(z2 − 2z − 1)
,

(35)

from which we get the special values
k∑

j=0

PjJj =
3

7
(PkJk+1 + JkPk+1)−

1

14
(PkJk+2 + Jk+1Pk+1) +

1

14
,

and
k∑

j=0

(−1)jPjJj =
(−1)k

2
(Pk+1Jk+2 − PkJk+3)−

1

2
.

From (35), we obtain the generating function of the product of Pell and Jacobsthal numbers
as follows

∞∑
j=0

PjJjz
j =

z − 2z3

(4z2 + 4z − 1)(z2 − 2z − 1)
.

4 Conclusion

In this paper, we have derived an expression for the partial sum of the products of two arbitrary
Horadam sequences with subscripts in arithmetic progression. Illustrative examples were drawn
from six well-known Horadam sequences. Some more ideas for future work were stated implicitly
in the text.
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[8] Kiliç, E., Ömür, N., & Ulutaş, Y. T. (2011). Some finite sums involving generalized
Fibonacci and Lucas numbers. Discrete Dynamics in Nature and Society, 2011(1), Article
ID 284261.
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