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Abstract

In this paper, we evaluate determinants of several families of Hessenberg matrices having various
subsequences of the Jacobsthal sequence as their nonzero entries. These identities may be written
equivalently as formulas for certain linearly recurrent sequences expressed in terms of sums of
products of Jacobsthal numbers with multinomial coefficients. Among the sequences that arise in
this way include the Mersenne, Lucas and Jacobsthal-Lucas numbers as well as the squares of
the Jacobsthal and Mersenne sequences. These results are extended to Hessenberg determinants
involving sequences that are derived from two general families of linear second-order recurrences.
Finally, combinatorial proofs are provided for several of our determinant results which make use of
various correspondences between Jacobsthal tilings and certain restricted classes of binary words.

Keywords: Hessenberg matrix; Jacobsthal number; Jacobsthal-Lucas number; Mersenne num-
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192 T. Goy and M. Shattuck

1. Introduction

The Jacobsthal numbers have several noteworthy properties and applications to various areas
of mathematics such as number theory, graph theory, combinatorics and geometry (see, e.g.,
Barry (2016); Bruhn et al. (2015); Frey and Sellers (2000); Heubach (1999); Horadam (1988);
Ramirez and Shattuck (2019); Yılmaz and Bozkurt (2012) and references contained therein). For
instance, Akbulak and Öteleş (2014) and Öteleş et al. (2018) considered two n-square upper Hes-
senberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph
and investigated relations between determinants and permanents of these Hessenberg matrices and
sum formulas for the Jacobsthal sequence. Aktaş and Köse (2015) defined two upper Hessenberg
matrices and then showed that the permanents of these matrices are Jacobsthal numbers. Köken
and Bozkurt (2008) defined the n-square Jacobsthal matrix and using this matrix derived some
properties of Jacobsthal numbers. Cılasun (2016) introduced a recurrence relation for the so-called
multiple counting Jacobsthal sequences and showed their application to Fermat’s little theorem.

Further related formulas were given by Daşdemir (2019), who extended the Jacobsthal numbers to
terms with negative subscripts and presented many identities for new forms of these numbers. Cerin
(2007) considered sums of squares of odd and even terms of the Jacobsthal sequence and sums of
their products; these sums are related to products of appropriate Jacobsthal numbers and some
integer sequences. Uygun (2017), by using Jacobsthal and Jacobsthal-Lucas matrix sequences,
defined k-Jacobsthal and k-Jacobsthal-Lucas sequences depending upon a single parameter k and
established a combinatorial representation. In Cook and Bacon (2013), the Jacobsthal recurrence
is generalized to higher order recurrence relations and the main Jacobsthal identities are extended
in this way. Deveci and Artun (2018) defined the adjacency-Jacobsthal numbers and obtained a
combinatorial representation and sum formula by using the generating matrix of the sequence.

In Goy (2018), the first author considered determinants of some families of Toeplitz-Hessenberg
matrices having various translates of the Jacobsthal numbers for the nonzero entries. By the Trudi
formula, these determinant identities may be written equivalently as formulas involving sums of
products of Jacobsthal numbers and multinomial coefficients. Here, some comparable results are
provided within the framework of the generalized Trudi formula wherein the first column entries
are modified in a certain way and combinatorial proofs are also given in several cases.

The organization of this paper is as follows. In the next section, we review some basic properties
of Jacobsthal numbers and Hessenberg matrices. In the third section, we evaluate determinants of
several families of Hessenberg matrices having various subsequences of the Jacobsthal sequence
as their nonzero entries by an inductive approach. A comparable formula is also found for the
companion sequence known as the Jacobsthal-Lucas numbers. Applying a generalization of the
result of Trudi, one can rewrite these determinant formulas equivalently as identities expressing
certain linearly recurrent sequences as sums of products of Jacobsthal numbers with multinomial
coefficients. In the fourth section, we provide combinatorial proofs of several of our formulas
which draw upon various relationships between Jacobsthal tilings and certain restricted classes of
binary words. In the fifth section, we extend our results to sequences satisfying a more general
recurrence with arbitrary initial conditions using a generating function approach. We remark that
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some of the results in the third section were announced without proof in Goy (2020). Similar results
for Fibonacci, Lucas, Pell, Catalan, tribonacci and tetranacci numbers have recently been obtained
by the authors in Goy (2019), Goy and Shattuck (2019a), Goy and Shattuck (2019b), Goy and
Shattuck (2020a), Goy and Shattuck (2020b), and Goy and Shattuck (2020c).

2. Preliminaries

We wish to consider the determinants of certain n × n Hessenberg matrices having Jacobsthal
number entries. First recall (see, e.g., Horadam (1986)) that the Jacobsthal and Jacobsthal-Lucas
sequences (Jn)n≥0 and (jn)n≥0 are defined recursively by

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2, n ≥ 2, (1)

and

j0 = 2, j1 = 1, jn = jn−1 + 2jn−2, n ≥ 2. (2)

Note that the two definitions differ only in the first initial condition in analogy with the Fibonacci
and Lucas numbers. The main properties of these numbers are summarized in Koshy (2019), Chap-
ter 44.

It follows from (1) and (2) that Jn and jn at a specific point in the sequence may be calculated
directly using the Binet-like formulas

Jn =
2n − (−1)n

3
, n ≥ 0, (3)

and

jn = 2n + (−1)n, n ≥ 0. (4)

When n is even, Jn = Mn

3
, where n ≥ 0 and Mn = 2n− 1 denotes the n-th Mersenne number, and

when n is odd, jn =Mn, n ≥ 1.

These sequences occur in the On-Line Encyclopedia of Integer Sequences (Sloane (2020)) and
their first few terms are as follows:

{Jn}n≥0 = {0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, . . .} : A101045

{jn}n≥0 = {2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, . . .} : A114551

{Mn}n≥0 = {0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, . . .} : A000225

Consider now the n× n Hessenberg matrix having the form

Hn(a0; a1, a2, . . . , an) =


k1a1 a0
k2a2 a1 a0 0

...
... . . . . . .

kn−1an−1 an−2 an−3 · · · a1 a0
knan an−1 an−2 · · · a2 a1

 , (5)

3
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194 T. Goy and M. Shattuck

where ai 6= 0 for at least one i > 0. In Muir (1960), p. 228, one finds the following general
determinant formula for Hn = Hn(a0; a1, a2, . . . , an):

det(Hn) =
∑

s1+2s2+···+nsn=n

(−a0)n−|s|

|s|

( n∑
i=1

siki

)
mn(s)a

s1
1 a

s2
2 · · · asnn , n ≥ 1, (6)

where mn(s) =
(s1+···+sn)!
s1!···sn! and |s| = s1 + · · ·+ sn for an n-tuple s = (s1, . . . , sn) of non-negative

integers.

Alternatively, a recurrence for det(Hn), which may be obtained by repeatedly expanding along the
last column, is given by

det(Hn) = (−a0)n−1knan +
n−1∑
i=1

(−a0)i−1ai det(Hn−i), n ≥ 1. (7)

Note that when k1 = · · · = kn = 1 in (6), one gets the classical formula of Trudi. Thus, one may
regard (6) as a generalized Trudi formula (Muir (1960), p. 214). If one takes ki = i for all i in (6),
then

det(Hn) = n(−a0)n ·
∑

s1+2s2+···+nsn=n

mn(s)

|s|

(
−a1
a0

)s1 (
−a2
a0

)s2
· · ·
(
−an
a0

)sn
. (8)

Henceforth, we will be interested in the case when ki = i for all i in (5) and denote
det
(
Hn(a0; a1, a2, . . . , an)

)
by det(a0; a1, a2, . . . , an) in this case for the sake of brevity.

3. Jacobsthal Determinant Identities

We have the following determinant formulas for Hessenberg matrices whose nonzero entries are
given by the (untranslated) Jacobsthal and Jacobsthal-Lucas numbers.

Theorem 3.1.

For n ≥ 1, the following formulas hold:

det(1; J1, J2, . . . , Jn) =

{
Mn, if n is odd,
−M2

n/2, if n is even,
(9)

det(1; j1, j2, . . . , jn) =

{
Mn, if n is odd,
−9J2

n/2, if n is even.
(10)

Proof:

To show (10), we proceed by induction on n, the n = 1 and n = 2 cases being clear. Let

vn = det(1; j1, j2, . . . , jn),

4
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for n ≥ 1. If n ≥ 3 is odd, then by (7), we have

vn = (−1)n−1njn +
n−1∑
i=1

(−1)i−1jivn−i

= (−1)n−1nJn −
n−1

2∑
i=1

j2iMn−2i − 9

n−1

2∑
i=1

j2i−1J
2
(n−2i+1)/2

= n (2n − 1)−
n−1

2∑
i=1

(
22i + 1

) (
2n−2i − 1

)
−

n−1

2∑
i=1

(
22i−1 − 1

)(
2

n−2i+1

2 − (−1)
n−2i+1

2

)2
= n (2n − 1)−

n− 1

2
· 2n −

n−1

2∑
i=1

22i +

n−1

2∑
i=1

2n−2i − n− 1

2


−

n− 1

2
·2n − 2

n−1

2∑
i=1

22i−1(−2)
n−2i+1

2 +

n−1

2∑
i=1

22i−1 −
n−1

2∑
i=1

2n−2i+1 + 2

n−1

2∑
i=1

(−2)
n−2i+1

2 − n− 1

2


= 2n − 1 +

n−1

2∑
i=1

22i−1 +

n−1

2∑
i=1

2n−2i + (−2)
n+1

2

n−1

2∑
i=1

(−2)i − 2

n−1

2∑
i=1

(−2)
n−2i+1

2

= 2n − 1 +

n−1

2∑
i=1

4i +
(
(−2)

n+1

2 − 2
) n−1

2∑
i=1

(−2)i

= 2n − 1 +
4

n+1

2 − 4

3
−
(
(−2)n+1

2 − 2
)(
(−2)n+1

2 + 2
)

3

= 2n − 1 +
2n+1 − 4

3
− 2n+1 − 4

3
= 2n − 1 =Mn.

If n is even, then we have

vn = (−1)n−1njn + 9

n

2
−1∑
i=1

j2iJ
2
(n−2i)/2 +

n

2∑
i=1

j2i−1Mn−2i+1

= −n(2n + 1) +

n

2
−1∑
i=1

(
22i + 1

) (
2

n−2i

2 − (−1)
n−2i

2

)2
+

n

2∑
i=1

(
22i−1 − 1

) (
2n−2i+1 − 1

)
.

Expanding the sums as in the odd case above and simplifying, we get

vn = −2n − 1 + 2(−2)
n

2 = −
(
2

n

2 − (−1)
n

2

)2
= −9J2

n/2,

which completes the induction and proof of (10). A similar argument may be given for (9). �

Let Ln = Fn+1+Fn−1 denote the n-th Lucas number, where Fn is the n-th Fibonacci number with
initial conditions F0 = 0, F1 = 1. We have the following further determinant formulas involving
various subsequences of the Jacobsthal numbers.

5
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196 T. Goy and M. Shattuck

Theorem 3.2.

For n ≥ 1, the following formulas hold:

det(1; J0, J1, . . . , Jn−1) = (−1)n(Ln − jn), (11)

det(−1; J1, J2, . . . , Jn) = (−1)n+1 − 2n + 2

bn
2
c∑

k=0

(
n

2k

)
3k, (12)

det(1; J2, J3, . . . , Jn+1) = (−1)n−1jn, (13)

det(1; J3, J4, . . . , Jn+2) =

{
Mn+1, if n is odd,
−1, if n is even,

(14)

det(1; J4, J5, . . . , Jn+3) =Mn+1 − (−2)n, (15)

det(1; J2, J4, . . . , J2n) = (−1)n−1M2
n, (16)

det(−1; J2, J4, . . . , J2n) = (3 +
√
5)n + (3−

√
5)n − 4n − 1, (17)

det(1; J3, J5, . . . , J2n+1) = (−1)n−1(4n −Mn), (18)

det(1; J4, J6, . . . , J2n+2) = (−1)n−1(4n + 1). (19)

Proof:

These results can be shown by induction on n using (7). We demonstrate with identity (11). To
establish the n-case of (11) from the m-cases for m < n, we must show

jn − Ln = nJn−1 +
n−1∑
i=1

Ji−1(Ln−i − jn−i), n ≥ 1, (20)

upon multiplying through by (−1)n−1. To prove (20), it suffices to show for n ≥ 1,

n−1∑
i=1

Ji−1Ln−i = Jn+1 − Ln, (21)

and

n−1∑
i=1

Ji−1jn−i = (n− 2)Jn−1, (22)

for then the right side of (20) would work out to

Jn+1 + 2Jn−1 − Ln = jn − Ln,

as desired. Identities (21) and (22) can be established by induction on n. For (21), first note that it
holds when n = 1, 2, so one may assume n ≥ 3.

6
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Then we have

n−1∑
i=1

Ji−1Ln−i = Jn−2 + 3Jn−3 +
n−3∑
i=1

Ji−1Ln−i

= Jn−2 + 3Jn−3 +
n−3∑
i=1

Ji−1(Ln−1−i + Ln−2−i)

= Jn−2 + 2Jn−3 +
n−2∑
i=1

Ji−1Ln−1−i +
n−3∑
i=1

Ji−1Ln−2−i

= Jn−2 + 2Jn−3 + (Jn − Ln−1) + (Jn−1 − Ln−2)
= Jn + 2Jn−1 − (Ln−1 + Ln−2) = Jn+1 − Ln,

which completes the induction. A similar argument may be given for (22). �

In Section 4, combinatorial proofs are provided for identities (9), (13), (14), (16) and (18), and in
the final section, some generalized determinant formulas are found.

We conclude this section with the following combinatorial identities involving sums of products of
Jacobsthal numbers with multinomial coefficients which follow from combining formula (8) with
Theorems 3.1 and 3.2 above.

Corollary 3.1.

For n ≥ 1, the following formulas hold:

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
1 J

s2
2 · · · Jsnn =

{
−Mn, if n is odd,
−M2

n/2, if n is even,

n
∑
σn=n

(−1)|s|

|s|
mn(s)j

s1
1 j

s2
2 · · · jsnn =

{
−Mn, if n is odd,
−9J2

n/2, if n is even,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
0 J

s2
1 · · · Jsnn−1 = Ln − jn,

n
∑
σn=n

1

|s|
mn(s)J

s1
1 J

s2
2 · · · Jsnn = (−1)n+1 − 2n + 2

bn
2
c∑

k=0

(
n

2k

)
3k,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
2 J

s2
3 · · · Jsnn+1 = −jn,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
3 J

s2
4 · · · Jsnn+2 =

{
−Mn+1, if n is odd,
−1, if n is even,

7
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198 T. Goy and M. Shattuck

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
4 J

s2
5 · · · Jsnn+3 = (−1)nMn+1 − 2n,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
2 J

s2
4 · · · Jsn2n = −M2

n,

n
∑
σn=n

1

|s|
mn(s)J

s1
2 J

s2
4 · · · Jsn2n = (3 +

√
5)n + (3−

√
5)n − 4n − 1,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
3 J

s2
5 · · · Jsn2n+1 =Mn − 4n,

n
∑
σn=n

(−1)|s|

|s|
mn(s)J

s1
4 J

s2
6 · · · Jsn2n+2 = −4n − 1,

where σn = s1 + 2s2 + · · · + nsn, |s| = s1 + · · · + sn, mn(s) =
(s1+···+sn)!
s1!···sn! for s = (s1, . . . , sn)

and the summation is over all s with non-negative integer components for which σn = n.

4. Combinatorial Proofs

Recall for an n× n matrix A = (ai,j)

det(A) =
∑
σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n), (23)

where sgn(σ) denotes the sign of the permutation σ. Assume that σ is expressed in standard cycle
form wherein the smallest element is first in each cycle and cycles are arranged from left to right in
increasing order of first elements. If A is Hessenberg, then only σ in which every cycle comprises
an interval of positive integers in increasing order can make a nonzero contribution to the expansion
of det(A) in (23). Given the ordering of cycles, such σ ∈ Sn may be regarded as compositions of
n.

If a0 = 1 and ki = i for all i in the Hessenberg matrix Hn defined by (5), then each part of size i is
assigned the weight ai, with an initial part of size i receiving weight iai. The product of the weights
of all the parts then gives the weight of a composition of n with the sign given by (−1)n−m, where
m denotes the number of parts. Thus, formula (23) implies det(A) gives the sum of the (signed)
weights of all compositions of n, where the sign and weight are as stated.

We now recall a combinatorial interpretation for the Jacobsthal number implicit in Benjamin and
Quinn (2003), Chapter 3, which will be made frequent use of. Consider coverings of the numbers
1, . . . , n, written in a row, by indistinguishable squares and dominos, where a square (domino)
covers a single number (two adjacent numbers, respectively). Assume that the dominos come in
one of two kinds, denoted by d and d′, with squares denoted by s. Let Jn be the set of all such
coverings of members of [n] = {1, . . . , n} if n ≥ 1, with J0 representing the empty tiling of length
zero. Members of Jn will be referred to as Jacobsthal n-tilings. Upon comparing recurrences and
initial values, we have |Jn| = Jn+1 for all n ≥ 0.

8
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Let Bn denote the set of words of length n in the alphabet {0, 1}. Our proofs below will draw upon
various correspondences between Jn and Bn. In defining these correspondences, it is convenient
to classify members of Bn according to the lengths of certain runs contained therein. Recall that a
run within a word w is a maximal subsequence of consecutive equal entries of w. An odd (even)
run will refer to one having an odd (even) number of entries. A run occurring at the very beginning
(end) of a word will be referred to as being initial (terminal).

The following combinatorial lemma and its bijection will be used in subsequent proofs.

Lemma 4.1.

If n ≥ 1, then Jn+1 + 2Jn−1 = jn.

Proof:

We first consider the n odd case, where clearly we may assume n ≥ 3. We define a bijection
between Hn = Jn ∪ Jn−2 ∪ J ′n−2 and Bn − {1n}, where J ′n−2 denotes an identical copy of the
set Jn−2. We first encode λ ∈ Jn as follows. An initial s, d or d′ corresponds to 0, 10 or 11,
respectively. For each subsequent s encountered, we start a new run (i.e., put 1 if the current last
letter is 0 and 0 if it is 1). For each subsequent d encountered, put 01 if the last letter is 0 and 10
if 1. If d′ is encountered, put 00 if the last letter is 0 and 11 if 1. Let f(λ) denote the resulting
member of Bn. Let En and On denote the subsets of Bn whose members have terminal run even or
odd, respectively. Then one may verify that f defines a bijection between Jn and On − {1n}.

To complete the proof in the odd case, it suffices to define a bijection g : Jn−2 ∪ J ′n−2 → En.
Given ρ ∈ Jn−2, we first apply f to ρ to obtain γ = f(ρ) ∈ On−2 − {1n−2}. To γ, we append an
extra copy of its final letter and then increase the length of the penultimate run by one by inserting
the appropriate letter to obtain g(ρ). (If γ = 0n−2, then we take 10n−1 for g(ρ), in which case
ρ = s(d′)(n−3)/2.) Now let ρ ∈ J ′n−2. In this case, we take γ = f(ρ) and add two copies of its final
letter to the end. Then we change all the letters within the final run of the current word to the other
option except for the first letter, letting g(ρ) denote the resulting word. (Note that γ = 0n−2 in this
case gives g(ρ) = 01n−1.) One may verify that g is a bijection. Combining f and g then gives the
desired bijection betweenHn and Bn − {1n}.

Now assume n ≥ 2 is even. In this case, we define a bijection between Hn and Bn ∪ {0n}, where
{0n} denotes an additional copy of the element 0n. Note that in this case the range of f when
applied to Jn yields all members of On as well as 1n. Define g : Jn−2 ∪ J ′n−2 → En − {1n}
as before, noting that γ = 1n−2 is now possible, in which case we let g(ρ) = 0n (where ρ =
(d′)(n−2)/2). Since γ = 1n−2 arises twice, the element 0n has two pre-images under g (and is the
only such element). Thus, combining f and g yields the desired bijection, which completes the
proof. �

We now provide combinatorial proofs of formulas (13), (14), (9), (16) and (18).
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Proof of (13):

LetMn denote the set of Jacobsthal n-tilings in which positions covered by squares or the right
halves of dominos may be circled, the last position is circled, and some position to the left of
and including the leftmost circled position is marked. Define the sign of ρ ∈ Mn by (−1)n−µ(ρ),
where µ(ρ) denotes the number of circled positions of ρ. Then, det(1; J2, . . . , Jn+1) is seen to
give the sum of the signs of all members ofMn. Define an involution onMn by either circling
or removing the circle enclosing the position corresponding to the penultimate tile. Note that this
operation is not defined on members of Mn containing one circled position (i.e., the final one)
with the marked position being one that is covered by the final tile. LetM∗

n denote this subset of
Mn. Then, members ofM∗

n each have sign (−1)n−1 and

|M∗
n| = Jn + 4Jn−1 = Jn+1 + 2Jn−1,

upon considering whether a member ofM∗
n ends in a square or a domino. Thus, by Lemma 4.1,

we have that det(1; J2, . . . , Jn+1) is given by

(−1)n−1|M∗
n| = (−1)n−12n − 1 = (−1)n−1jn,

as desired. �

Proof of (14):

Given 1 ≤ ` ≤ n, let Pn,` denote the set of all possible vectors λ = (λ1, . . . , λ`) such that the
following conditions hold: (i) λi ∈ Jni

where ni > 0 for all i, (ii)
∑`

i=1 ni = n + ` and (iii) one
of the first n1 − 1 positions within the tiling λ1 is marked. Define the sign of λ ∈ Pn,` by (−1)n−`
and let Pn = ∪n`=1Pn,`. Then, it is seen that det(1; J3, . . . , Jn+2) gives the sum of the signs of all
members of Pn, where we may assume n > 1 henceforth.

We define an involution on Pn upon considering several cases as follows. First, suppose that the
final component λ` of λ ends in a square. If λ ∈ Pn,` where ` ≥ 2 and λ` = ρs, then replace λ` with
the two components λ` = ρ, λ`+1 = ss assuming |ρ| ≥ 2, and vice versa if the final component
of λ is ss. Note that the preceding operation is also defined when ` = 1, provided the penultimate
position of λ1 is not the marked one.

Now suppose λ` within λ ∈ Pn,` where ` ≥ 1 ends in a domino (of either kind). Assume further
that at least one of the components λi of λ is not a tiling of length two consisting of a single d
or d′. Let t ∈ [`] denote the largest index i such that λi 6= d, d′. If 2 ≤ t < ` and λt = ρs, then
replace the λt, λt+1 components of λ where λt+1 = d, d′ with the single component λt = ρd or
ρd′, whichever is appropriate, leaving all other components of λ unchanged. Perform the reverse
operation of breaking the appropriate tiling into two subtilings if λt ends in a domino of either kind
(with t = ` being permitted in this case). Note that these two operations may also be performed
when t = 1, provided ` ≥ 2 concerning the former and the penultimate position within λ1 is not
marked concerning the latter.
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So assume λ = (λ1, . . . , λ`), where ` ≥ 1, λ1 = βd or βd′, the components λ2, . . . , λ` consist
of single dominos and β 6= ∅, with the penultimate position of λ1 marked. If β ends in s and
` > 1, then replace this s with the same type of domino that comprises λ2 and delete the λ2
component from λ. On the other hand, if β ends in a domino, then replace this domino by an s and
insert a second component consisting of a single domino of the same type. In both operations, the
penultimate position within λ1 is to remain marked in the resulting member of Pn.

Let P∗n ⊆ Pn consist of those λ ∈ Pn having one of the following three forms: (i) λ ∈ Pn,1,
with λ1 ending in s and having its penultimate position marked, (ii) λ ∈ Pn,1, with λ1 ending
in sd or sd′ and having its penultimate position marked, or (iii) λ ∈ Pn,n, with λi = d or d′ for
1 ≤ i ≤ n. Then, combining the three pairs of operations defined above is seen to yield a sign-
changing involution of Pn − P∗n. To complete the proof, we then must determine the sum of the
signs of members of P∗n. Note that there are Jn+1 and 2Jn−1 possible λ in cases (i) and (ii) above,
respectively, each of sign (−1)n−1, whereas there are 2n possible λ in (iii), each having a positive
sign. By Lemma 4.1, we then have that P∗n has signed cardinality

(−1)n−1(Jn+1 + 2Jn−1) + 2n = (−1)n−1(2n + (−1)n) + 2n

=

{
2n+1 − 1, if n is odd,

−1, if n is even.
�

Proof of (9):

Let Qn denote the set of Jacobsthal n-tilings in which squares may be circled and ending in a
circled square wherein some position to the left of and including the leftmost circled square is
marked. Define the sign of ρ ∈ Qn as −1 raised to n minus the number of circled squares of
ρ. Then, det(1; J1, . . . , Jn) is seen to give the sum of the signs of all members of Qn. Define an
involution on Qn by either circling the rightmost non-terminal square or erasing the circle that
encloses it. This operation is not defined on members of Qn in which only one square is circled
(i.e., the terminal one), with the terminal square the only square that occurs to the right of (possibly
coinciding with) the marked position. Denote this excluded subset of Qn by Q∗n. Note that each
member of Q∗n has sign (−1)n−1. To complete the proof, we then must determine |Q∗n|, for which
we consider cases based on the parity of n.

We first treat the n odd case, where we may assume n ≥ 5. In what follows, we denote a domino
that could either be d or d′ by D. A domino whose left (right) half corresponds to the marked
position will be denoted by D∗ (D∗, respectively). A square corresponding to the marked position
will be indicated by s∗.

Let Q∗n,i for 1 ≤ i ≤ 7 consist of those λ ∈ Q∗n having the following respective forms, where
j, ` ≥ 0:
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(i) λ = λ′D∗Djs, where λ′ 6= ∅ and λ′ 6= (d′)i for any i ≥ 1,

(ii) λ = (d′)iD∗Djs, i ≥ 1,

(iii) λ = Djs∗,

(iv) λ = D∗Djs,

(v) λ = λ̃sDjs∗,

(vi) λ = λ′D∗D
js, where λ′ is as in (i),

(vii) λ = (d′)`D∗D
js.

Note that λ̃ in (v) is nonempty, by parity.

Now let Bn,i for 1 ≤ i ≤ 7 denote the subset of Bn whose members satisfy the following respective
properties Pi:

P1 : ends in an odd run with at least three odd runs altogether, with the penultimate run
even if the final run is of length one,

P2 : single odd run at end of length ≥ 3, preceded by one or more even runs,
P3 : single odd run of length one at end,

P4 : single odd run of the form 1` followed by even runs (possibly none),
P5 : ends in one or more even runs, preceded by an odd run (but not a single odd run of

the form 1` comprising all of the remaining letters),
P6 : has at least three odd runs altogether, with the last run of length one, penultimate

run odd and the third rightmost odd run not initial,
P7 : same as P6, but containing exactly three odd runs with the leftmost odd run initial.

One may verify that Q∗n = ∪7i=1Q∗n,i and Bn − {0n} = ∪7i=1Bn,i, with both unions being disjoint.

Suppose D∗Dj in (i), (ii), (iv) and Dj if j ≥ 1 in (iii), (v)–(vii) are expressed as

(d′)n0dn1(d′)n2 · · · (D)nk ,

where D depends upon the parity of k, n0 ≥ 0 and nj ≥ 1 for 1 ≤ j ≤ k if k ≥ 1 and n0 ≥ 1 if
k = 0. Let f denote the bijection defined on Jn from the proof of Lemma 4.1 above. Recall that
the range of f is given by On − {1n} when n is odd and by On ∪ {1n} when n is even. By the
run profile of ρ ∈ Bn, we mean the composition of n obtained by considering the lengths of all the
runs of ρ.
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We now define bijections fi : Q∗n,i 7→ Bn,i for 1 ≤ i ≤ 7 as follows.

(a) f1(λ) = f(λ′)γ, where γ has run profile (2n1, . . . , 2nk, 2n0 + 1),

(b) f2(λ) = γ, where γ has profile (2n0, . . . , 2nk, 2i+ 1) and ending in 0 if n0 ≥ 1

and profile (2n1, . . . , 2nk, 2i+ 1) and ending in 1 if n0 = 0,

(c) f3(λ) = γ, where γ = 02n012n102n2 · · · a2nk(1− a)1 and a ≡ k (mod 2),
(d) f4(λ) = γ, where γ = 12n0+102n112n2 · · · a2nk and a ≡ k + 1 (mod 2),

(e) f5(λ) = f(λ̃)γ, where γ has profile (2n0 + 2, 2n1, . . . , 2nk),

(f) f6(λ) = g(λ′)γ, where γ has profile (2n1, . . . , 2nk, 2n0 + 1, 1), if D∗ = d∗, and h(λ′)γ,
if D∗ = d′∗,

(g) f7(λ) = γ, where γ has profile (2`+ 1, 2n1, . . . , 2nk, 2n0 + 1, 1) and the first letter of γ
is determined by D∗,

where g(λ′) in part (f ) is obtained from λ′ by adding a run of length one to the beginning of f(λ′)
and h(λ′) is obtained by increasing the initial run of f(λ′) by one. Note that the words f(λ′) and
γ in part (a) are understood to be concatenated such that the first letter of γ starts a new run and
similarly for γ in (e) and (f ). Also, n0 = k = 0 is possible in parts (e)–(g), which corresponds to
j = 0 in (v)–(vii) above. One may verify that the fi, 1 ≤ i ≤ 7, are indeed bijections and hence

|Q∗n| = |Bn − {0n}| = 2n − 1,

if n is odd, as desired.

Now assume n ≥ 4 is even. In this case, we partition Q∗n into subsets Q∗n,i for 1 ≤ i ≤ 6 whose
respective forms are given as follows where j ≥ 0:

(i) λ = λ′D∗Djs,

(ii) λ = (d′)isDjs∗, i ≥ 1,

(iii) λ = sDjs∗,

(iv) λ = λ̃sDjs∗, where λ̃ 6= ∅ and λ̃ 6= (d′)i for any i ≥ 1,

(v) λ = s(d′)`D∗D
js, where 0 ≤ ` ≤ (n− 4)/2,

(vi) λ = λ̂D∗D
js, where λ̂ 6= s(d′)` for any ` ≥ 0.

Note that λ′ in (i) and λ̂ in (vi) are nonempty, by parity.

Let Bn,i for 1 ≤ i ≤ 6 consist of those members of Bn satisfying the following respective properties
Pi:

P1 : ends in an odd run with at least two odd runs altogether, where if the terminal run is
of length one, it is preceded by an even run, and where it is not possible for a word to
have exactly two odd runs if the first odd run is initial and of the form 1r for some
r ≥ 1,

P2 : consists of one or more even runs, followed by an odd run, followed by a 1-run, where
the first letter is 0,
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P3 : consists exclusively of even runs and starting with 0,

P4 : ends in one or more even runs, preceded by an odd run,
P5 : has run profile (1, a1, b1, . . . , bk, a2, 1), where a1, a2 are odd, k ≥ 0 and any bi are even,
P6 : has last run of length one, preceded by an odd run, with at least four runs altogether,

but not of the form in P5.

One may verify that the Bn,i for 1 ≤ i ≤ 6 partition the set Bn − B′n, where B′n ⊆ Bn consists of
those binary words satisfying one of the following:

(I) satisfies P2 above, but with first letter 1,
(II) satisfies P3 above, but with first letter 1,
(III) contains exactly two odd runs, occurring at the very beginning and end, with initial

run 1r for some r ≥ 1 and terminal run of length ≥ 3,

(IV) same as in (III), but with terminal run of length one and preceded by at least one
even run,

(V) has the form 0n−11 or 1n−10.

Recalling that there are 2m−1 compositions of a positive integer m, and making use of halving
arguments, it is seen that cases (I), (III) and (IV) above each yield 2

n

2
−1 − 1 members of B′n,

whereas (II) gives rise to 2
n

2
−1 members. Thus, we have

|B′n| = 3(2
n

2
−1 − 1) + 2

n

2
−1 + 2 = 2

n

2
+1 − 1,

whence

|Bn − B′n| = 2n −
(
2

n

2
+1 − 1

)
=
(
2

n

2 − 1
)2
.

Assume thatD∗Dj in (i) andDj in (ii)–(vi) if j ≥ 1 are given sequentially as above in the odd case
by (d′)n0dn1(d′)n2 · · ·Dk, where we take k = n0 = 0 if j = 0 in (ii)–(vi). To complete the proof in
the even case, it suffices to define bijections fi : Q∗n,i → Bn,i for 1 ≤ i ≤ 6. These mappings are
given as follows:

(a) use f1 from the n odd case,
(b) f2(λ) = 02n0+212n102n2 · · · a2nk(1− a)2i−1a1 with a ≡ k (mod 2),
(c) f3(λ) = 02n0+212n102n2 · · · a2nk with a ≡ k (mod 2),

(d) f4(λ) = f(λ̃)γ, where γ has same run profile as in (c),
(e) f5(λ) = γ, where γ has profile (1, 2`+ 1, 2n1, . . . , 2nk, 2n0 + 1, 1) and first letter is

determined by D∗,
(f) use f6 from the n odd case.

One may verify that fi in each case yields a bijection between the respective sets, as desired. �
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Remark 4.1.

Upon considering the number i of dominos occurring in the run directly prior to the terminal square
within a member of Q∗n, one obtains with a combinatorial proof the following identity for n ≥ 1:

bn−1

2
c∑

i=0

2i(2i+ 1)Jn−2i−1 =

{
Mn − n2(n−1)/2, if n is odd,

M2
n/2, if n is even.

A comparable proof to the preceding one for (9) may be given for (16), but it is a simpler matter to
define a one-to-one correspondence between survivors of a certain involution and the setQ∗2n from
the even case of the preceding proof.

Proof of (16):

LetRn denote the set of Jacobsthal (2n)-tilings in which squares corresponding to even-numbered
positions may be circled and ending in a circled square, wherein an odd-numbered position to the
left of the leftmost circled square is marked. Define the sign of ρ ∈ Rn by −1 raised to n minus
the number of circled squares of ρ. Then det(1; J2, . . . , J2n) is seen to give the sum of the signs of
all members ofRn. Define an involution onRn by either circling or removing the circle enclosing
the rightmost non-terminal square corresponding to an even position. This mapping is not defined
for λ ∈ Rn containing only one circled square and of the form λ = λ′DisDjs, where i, j ≥ 0, λ′

ends in a square if nonempty and some odd position within the section DisDj is marked. Denote
this subset of Rn by R∗n. Each member of R∗n has sign (−1)n−1 and so to complete the proof, it
suffices to define a bijection α between R∗n and the set Q∗2n from the even case of the preceding
proof.

Since only odd positions within members of Rn may be marked, we may regard some tile within
the section DisDj of λ as being marked. If the square in DisDj within λ is marked, then let α(λ)
be the member of Q∗2n having the same sequence of tiles as λ, but with the final square marked. If
a domino in Dj is marked, then let α(λ) be the same as λ except that the position corresponding
to the left half of this domino is marked (instead of the entire tile). Finally, if a domino in Di is
marked, say the `-th, where 1 ≤ ` ≤ i, then replace the section DisDj within λ by Di−`sD`+j

and mark the position covered by the right half of the `-th domino within D`+j to obtain α(λ),
where all other tiles of λ remain unchanged. Combining the three cases above yields all possible
members of Q∗2n and implies α is the desired bijection. �

Similar to the argument for (16), the combinatorial proof for (18) may be shortened by defining a
near bijection between the setR∗n above and survivors of a certain involution.

Proof of (18):

Let Tn denote the set of Jacobsthal (2n)-tilings in which pieces terminating in even-numbered
positions may be circled and ending in a circled piece wherein an odd-numbered position to the
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left of (possibly including the left half of) the circled piece is marked. Let the sign of ρ ∈ Tn be
given by −1 raised to n minus the number of circled pieces of ρ. Then, det(1; J3, . . . , J2n+1) gives
the sum of the signs of all members of Tn. Consider the rightmost piece ending at 2i for some
i < n within a member of Tn and either circling that piece or removing the circle that encloses it.
This operation is seen to define a sign-changing involution of Tn − T ∗n , where T ∗n ⊆ Tn consists
of those tilings ρ containing only a single circled piece and of one of the following two forms:
(i) ρ = ρ′sDis, where i ≥ 0 and one of the pieces within sDi is marked (i.e., covers the marked
position), or (ii) ρ = ρ′D, where the final D is marked.

To complete the proof, we must determine |T ∗n |. To do so, we define a near bijection β between
R∗n and T ∗n , where R∗n is the set of survivors of the involution used in the proof of (16) above. Let
λ = λ′DisDjs ∈ R∗n, where i, j ≥ 0, λ′ ends in a square if nonempty and some piece within the
section DisDj is marked. If the s or a D within Dj is marked, then let β(λ) = λ, which yields all
members of T ∗n of the form (i) above. On the other hand, if some D within the run Di is marked,
then let Di = Di1D̃Di2 , where i1, i2 ≥ 0 and D̃ denotes the marked domino. Let β(λ) in this case
be given by β(λ) = λ′Di1sDi2sDjD̃. Note that this yields in a one-to-one fashion all members of
T ∗n of the form (ii) above except for those containing no squares, of which there are 2n. Combining
the two cases of β above then implies

|T ∗n | = |R∗n|+ 2n = (2n − 1)2 + 2n = 4n − 2n + 1,

as desired. �

Remark 4.2.

Determining the cardinalities of the survivor sets R∗n and T ∗n in a different way in the proofs of
(16) and (18) above leads to the following further Jacobsthal identities for n ≥ 1:

n−1∑
i=1

2i−1i2J2n−2i =M2
n − 2n−1n2,

and
n∑
i=1

2i−1iJ2n−2i+1 = J2n+1 − 2n.

5. General Determinant Formulas

In this section, we establish some general formulas involving determinants of Hessenberg matrices
whose nonzero entries are given by a certain second-order recurrence. Let wn be defined recur-
sively by

wn =
(
2` + (−1)`

)
wn−1 − (−2)`wn−2, n ≥ 2, (24)

with w0 = a and w1 = b, where ` is a positive integer and a and b are arbitrary. Note when ` = 1
that Jn corresponds to the a = 0, b = 1 case and jn to the a = 2, b = 1 case of wn. We have the
following formula for determinants involving wn.
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Theorem 5.1.

If n ≥ 1, then

(−1)n det(a0;w1, w2, . . . , wn) = αn1 + αn2 −
(
2`a0

)n − ((−1)`a0)n, (25)

where α1 and α2 are given by

α1, α2 =

(
2` + (−1)`

)
a0 − b±

√((
2` + (−1)`

)
a0 − b

)2 − 4(−2)`a0(a0 − a)
2

.

Proof:

We compute the generating function

f(x) =
∑
n≥1

det(a0;w1, . . . , wn)x
n.

First, note that recurrence (7) when kn = n may be rewritten equivalently in terms of generating
functions as

f(x) = − h(−a0x)
a0 + g(−a0x)

, (26)

where g(x) =
∑

n≥1wnx
n and h(x) =

∑
n≥1 nwnx

n = x d
dx
g(x). To find g(x), first note that wn

is given explicitly by

wn =
1

2` − (−1)`
((
b− (−1)`a

)
2`n +

(
2`a− b

)
(−1)`n

)
, n ≥ 0.

Therefore, we get

g(x) =
1

2` − (−1)`
∑
n≥1

((
b− (−1)`a

)
2`n +

(
2`a− b

)
(−1)`n

)
xn

=
1

2` − (−1)`

((
b− (−1)`a

)
2`x

1− 2`x
+

(
2`a− b

)
(−1)`x

1− (−1)`x

)

=
x
(
b− (−2)`ax

)
(1− 2`x) (1− (−1)`x)

,

and thus

h(x) = x

(
b− 2a(−2)`x

(1− 2`x) (1− (−1)`x)
+

2`x
(
b− a(−2)`x

)
(1− 2`x)2 (1− (−1)`x)

+
(−1)`x

(
b− a(−2)`x

)
(1− 2`x) (1− (−1)`x)2

)

=
x
(
b+ (−2)`+1ax+

(
(−4)`a+ 2`a− (−2)`b

)
x2
)

(1− 2`x)2 (1− (−1)`x)2
.

By (26), we then have

f(x) =
x
(
b− (−2)`+1aa0x+

(
(−4)`a+ 2`a− (−2)`b

)
a20x

2
)

(1 + 2`a0x) (1 + (−1)`a0x) (1 + (2`a0 + (−1)`a0 − b)x+ (−2)`a0(a0 − a)x2)
. (27)
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By partial fractions, Equation (27) may be written as

f(x) =
A

1 + 2`a0x
+

B

1 + (−1)`a0x
+

C

1 + α1x
+

D

1 + α2x
, (28)

for some constants A,B,C,D, where α1 and α2 are as given above and are assumed for now to be
distinct. Clearing fractions in (28), and taking x = − 1

2`a0
, implies

A = −
1

2`a0

(
b+ 2a(−1)`+1 + a(−1)` + a

(
1
2

)` − b (−1
2

)`)(
1−

(
−1

2

)`)(
1−

(
1 +

(
−1

2

)` − b
2`a0

)
+
(
−1

2

)` (
1− a

a0

))
= −

b− a(−1)` −
(
−1

2

)` (
b− a(−1)`

)(
1−

(
−1

2

)`)
(b− a(−1)`)

= −1.

Similarly, taking x = (−1)`+1

a0
implies B = −1. To find C and D at this point, it is simplest to

substitute A = B = −1 into (28), clear fractions and equate coefficients of x0 and x3 on both sides
of the resulting equation. This gives C +D = 2 and(

a(−4)` + a2` − b(−2)`
)
a20 + (−2)`

(
2` + (−1)`

)
a20(a0 − a) = (α1D + α2C)(−2)`a20,

i.e.,

(−4)`a0 + 2`a0 − b(−2)` =
(
C +D

2

)(
2`a0 + (−1)`a0 − b

)
(−2)`

+

(
D − C

2

)
(−2)`a20

√(
2`a0 + (−1)`a0 − b

)2 − 4(−2)`a0(a0 − a).

Since C +D = 2, the latter equation implies D − C = 0, i.e., C = D = 1. Therefore, we have

f(x) =
1

1 + α1x
+

1

1 + α2x
− 1

1 + 2`a0x
− 1

1 + (−1)`a0x
. (29)

On the other hand, if α1 = α2, then

f(x) =
A

1 + 2`a0x
+

B

1 + (−1)`a0x
+

C

1 + α1x
+

D

(1 + α1x)
2 ,

where

α1 =

(
2` + (−1)`

)
a0 − b

2
.

Then A = B = −1 as before and clearing fractions leads to C +D = 2 and(
a(−4)` + a2` − b(−2)`

)
a20 + (−2)`

(
2` + (−1)`

)
a20(a0 − a)

= α1(−2)`a20C =
(−2)`a20C

2

(
2`a0 + (−1)`a0 − b

)
.

The last equation implies C = 2 and hence D = 0. Thus formula (29) is seen to hold also in the
case when α1 = α2. Extracting the coefficient of xn in (29) then yields (25). �
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For example, taking a = 0 and a0 = b = ` = 1 in (25) gives

(−1)n det(1; J1, J2, . . . , Jn) = (
√
2)n + (−

√
2)n − 2n − (−1)n,

which may be rewritten as (9). Similarly, taking a = 2 and a0 = b = ` = 1 in (25) gives

(−1)n det(1; j1, j2, . . . , jn) = (
√
2i)n + (−

√
2i)n − 2n − (−1)n,

where i =
√
−1, which implies (10). The formulas in Theorem 3.2 above may also be deduced in

a similar fashion.

The preceding result may be specialized to subsequences of Jn whose subscripts form an arithmetic
progression as follows. Let ` ≥ 1 and c be fixed integers. Note first that the sequence wn = Jn`+c
satisfies recurrence (24) for all integers n. To realize this in the case when c = 0 or c = 1, first note
that the sequence Jn`+c for such c satisfies (24) for all n ≥ 2, upon using the explicit formula for
Jn. It also satisfies (24) for all integers n ≤ 1, upon observing J−n = (−1)n−1Jn

2n for n ≥ 0, where
it is understood that Jm for negative indices m are obtained by applying Jn−2 = 1

2
(Jn − Jn−1)

repeatedly for n = 1, 0,−1, . . .. Once it is established that Jn`+c satisfies (24) if c = 0, 1, the
case for general c follows from using Jn = Jn−1 + 2Jn−2 to prove it for subsequently larger (and
smaller) c. Note that the initial term Jc when c < 0 may be obtained alternatively from (3), as it is
seen to hold also when n is negative.

Thus, taking a = Jc and b = J`+c in Theorem 5.1 yields a comparable closed-form expression for
det(a0; J`+c, J2`+c, . . . , Jn`+c) for all n ≥ 1. For example, if c = 0, then we get

(−1)n det(1; J`, J2`, . . . , Jn`) = λn1 + λn2 − 2`n − (−1)`n, (30)

where λ1, λ2 are given by

λ1, λ2 =
2` + (−1)` − J` ±

√
(2` + (−1)` − J`)2 − 4(−2)`

2
.

Letting ` = 1 in (30) gives (9). Upon taking c = 1, a similar formula can be given for
det(1; J`+1, J2`+1, . . . , Jn`+1). If c = −`, one gets

(−1)n det(1; 0, J`, . . . , J(n−1)`) = θn1 + θn2 − 2`n − (−1)`n, (31)

where θ1, θ2 are given by

θ1, θ2 =
2` + (−1)` ±

√
4` + (−2)`+1 − 4J` + 1

2
.

Recalling jn = 2n + (−1)n and Ln = ρn + (−1/ρ)n, where ρ = 1+
√
5

2
, it is seen that the ` = 1

case of (31) corresponds to (11) above.

We conclude with a further general result. Let vn denote a generalized Jacobsthal sequence defined
by vn = vn−1 + 2vn−2 if n ≥ 2, with v0 = a and v1 = b, where a and b are arbitrary. Consider
the Hessenberg matrix Hn defined by (5) with ki = i, wherein ai for i ≥ 1 corresponds to a
subsequence of vn whose subscripts are evenly spaced and two adjacent terms of the original
sequence vn are specified (rather than of the subsequence as discussed above). Then, there is the
following explicit formula for det(Hn) in this case.
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Theorem 5.2.

Let ` ≥ 1 and c be integers. Then

(−1)n det(a0; v`+c, v2`+c, . . . , vn`+c) = βn1 + βn2 − (2`a0)
n −

(
(−1)`a0

)n
, n ≥ 1, (32)

where β1, β2 are the zeros of the polynomial

x2 +
1

3

(
(a+ b)2`+c + (2a− b)(−1)`+c − 3

(
2` + (−1)`

)
a0
)
x

− (−2)`a0
3

((a+ b)2c + (2a− b)(−1)c − 3a0) .

Proof:

First note that the initial conditions imply vn is given explicitly by

vn =
a+ b

3
· 2n + 2a− b

3
· (−1)n, n ∈ Z.

Let g(x) =
∑

n≥1 vn`+cx
n and h(x) =

∑
n≥1 nvn`+cx

n = x d
dx
g(x). Then we have

g(x) =
a+ b

3

∑
n≥1

2n`+cxn +
2a− b

3

∑
n≥1

(−1)n`+cxn

=
a+ b

3
· 2`+cx

1− 2`x
+

2a− b
3
· (−1)`+cx
1− (−1)`x

=

(
(a+ b)2`+c + (2a− b)(−1)`+c

)
x−

(
(a+ b)(−1)`2`+c + (2a− b)(−1)`+c2`

)
x2

3 (1− 2`x) (1− (−1)`x)
,

and

h(x) =
a+ b

3
· 2`+cx

(1− 2`x)2
+

2a− b
3
· (−1)`+cx
(1− (−1)`x)2

=
(a+ b)2`+cx

(
1− (−1)`x

)2
+ (2a− b)(−1)`+cx

(
1− 2`x

)2
3 (1− 2`x)2 (1− (−1)`x)2

.

Let f(x) =
∑

n≥1 det(a0; v`+c, v2`+c, . . . , vn`+c)x
n. By (26), we have

f(x) =
x
3
u(x)

(1 + 2`a0x) (1 + (−1)`a0x) v(x)
,

where u(x) and v(x) are given by

u(x) = (a+ b)2`+c
(
1 + (−1)`a0x

)2
+ (2a− b)(−1)`+c

(
1 + 2`a0x

)2
,

and

v(x) =
(
1 + 2`a0x

) (
1 + (−1)`a0x

)
− 1

3

(
(a+ b)2`+c + (2a− b)(−1)`+c

)
x

− 1

3

(
(a+ b)(−1)`2`+c + (2a− b)(−1)`+c2`

)
a0x

2.
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Upon proceeding as before using partial fractions (the details of which are left to the reader), we
have

f(x) =
1

1 + β1x
+

1

1 + β2x
− 1

1 + 2`a0x
− 1

1 + (−1)`a0x
,

where β1 and β2 are as given and not necessarily distinct. Extracting the coefficient of xn in the
last expression completes the proof. �

For example, taking a = ` = 2, a0 = b = 1 and c = 0 in Theorem 5.2 gives

(−1)n det(1; j2, j4, . . . , j2n) = 2n + (−2)n − 4n − 1,

which may be written as

det(1; j2, j4, . . . , j2n) =

{
4n + 1, if n is odd,

−M2
n, if n is even.

Assuming all the same values of the parameters as before but instead taking a = 0 gives

(−1)n det(1; J2, J4, . . . , J2n) = 2n+1 − 4n − 1,

which implies formula (16) above.

6. Conclusion

In this paper, we have evaluated the determinants of several Hessenberg matrices of the form (5) in
which ki = i and whose nonzero entries correspond to a subsequence of the Jacobsthal numbers.
As a consequence, some new connections are made between the Jacobsthal and other second-
order linearly recurrent sequences, such as the Mersenne, Lucas and Jacobsthal-Lucas numbers.
By the generalized Trudi formula, these determinant identities may be viewed explicitly as sums
of products of multinomial coefficients with certain translates of the Jacobsthal sequence.

Combinatorial proofs are given for several of these identities which make use of sign-changing
involutions and the definition of the determinant as a signed sum over the set of permutations of a
given length. In the process, we found some one-to-one correspondences between various subsets
of the binary words and Jacobsthal tilings of a given length; in particular, the explicit formula for
jn is afforded a bijective explanation which accounts for the (−1)n term. Finally, our results for Ja-
cobsthal determinants are extended to sequences satisfying a more general recurrence and/or initial
condition. As a consequence, one obtains comparable formulas for determinants involving Jacob-
sthal and Jacobsthal-Lucas subsequences whose indices form an arbitrary arithmetic progression.
In future work, one might consider determinants of matrices given by (5) wherein ki is a different
sequence or assumes a more general form (i.e., ki itself may be defined by a general recurrence).
Further, one could consider additional classes of recurrent sequences for the ai in conjunction with
the case ki = i in (5).
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