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Order estimates of the uniform approximations by Zygmund
sums on the classes of convolutions of periodic functions

Serdyuk A.S.1, Hrabova U.Z.2

The Zygmund sums of a function f ∈ L1 are trigonometric polynomials of the form Zs
n−1( f ; t) :=

a0
2 + ∑

n−1
k=1

(
1 −

(
k
n

)s
)(

ak( f ) cos kt + bk( f ) sin kt
)
, s > 0, where ak( f ) and bk( f ) are the Fourier co-

efficients of f . We establish the exact-order estimates of uniform approximations by the Zygmund

sums Zs
n−1 of 2π-periodic continuous functions from the classes C

ψ
β,p. These classes are defined by

the convolutions of functions from the unit ball in the space Lp, 1 ≤ p < ∞, with generating fixed

kernels Ψβ(t) ∼ ∑
∞
k=1 ψ(k) cos

(
kt + βπ

2

)
, Ψβ ∈ Lp′ , β ∈ R, 1

p + 1
p′ = 1. We additionally assume

that the product ψ(k)ks+1/p is generally monotonically increasing with the rate of some power func-

tion, and, besides, for 1 < p < ∞ it holds that ∑
∞
k=n ψp′(k)kp′−2

< ∞, and for p = 1 the following

condition ∑
∞
k=n ψ(k) < ∞ is true.

It is shown, that under these conditions Zygmund sums Zs
n−1 and Fejér sums σn−1 = Z1

n−1

realize the order of the best uniform approximations by trigonometric polynomials of these classes,

namely for 1 < p < ∞

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍
( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

,
1

p
+

1

p′
= 1,

and for p = 1

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; Zs

n−1

)
C
≍





∞

∑
k=n

ψ(k), cos
βπ
2 6= 0,

ψ(n)n, cos
βπ
2 = 0,

where

En(C
ψ
β,p)C := sup

f∈C
ψ
β,p

inf
tn−1∈T2n−1

‖ f (·)− tn−1(·)‖C,

and T2n−1 is the subspace of trigonometric polynomials tn−1 of order n − 1 with real coefficients,

E
(

C
ψ
β,p; Zs

n−1

)
C

:= sup
f∈C

ψ
β,p

‖ f (·)− Zs
n−1( f ; ·)‖C.
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1 Notations, definitions and auxiliary statements

Denote by Lp, 1 ≤ p ≤ ∞, the space of 2π-periodic summable on [0, 2π] functions f with

the norm

‖ f‖p =





( ∫ 2π

0
| f (t)|p dt

)1/p
, 1 ≤ p < ∞,

ess sup
t

| f (t)|, p = ∞,

and by C the space of 2π-periodic continuous functions with the norm defined by the equality

‖ f‖C = max
t

| f (t)|.

Let f ∈ L1 and

S[ f ](x) =
a0

2
+

∞

∑
k=1

(ak( f ) cos kx + bk( f ) sin kx),

be the Fourier series of the function f .

If for a sequence ψ(k) ∈ R and fixed number β ∈ R the series

∞

∑
k=1

1

ψ (k)

(
ak( f ) cos

(
kx +

βπ

2

)
+ bk( f ) sin

(
kx +

βπ

2

))

is the Fourier series of a summable function ϕ, then this function is called a (ψ, β)-derivative

of the function f and is denoted by f
ψ
β . A set of functions, for which this condition is satisfied,

is denoted by L
ψ
β , and subset all continuous functions from L

ψ
β is denoted by C

ψ
β .

If f ∈ L
ψ
β and furthermore f

ψ
β ∈ N, where N ⊂ L1, then we write that f ∈ L

ψ
βN. Let us put

L
ψ
βN∩ C = C

ψ
βN. The concept of (ψ, β)-derivative is a natural generalization of the concept of

(r, β)-derivative in the Weyl-Nagy sense and coincides almost everywhere with the last one,

when ψ(k) = k−r, r > 0. Namely, in this case L
ψ
βN = Wr

βN, f
ψ
β = f r

β, where f r
β is the derivative

in the Weyl-Nagy sense, and Wr
βN are the Weyl-Nagy classes [22], [20]. In the case β = r, the

classes Wr
βN are the well known Weyl classes Wr

r N, while the derivatives f r
β coincide almost

everywhere with the derivatives in the sense of Weyl f r
r . If, in addition, β = r, r ∈ N, then

f r
β coincide almost everywhere with the usual derivatives f (r) of the order r of the function f

( f r
β = f r

r = f (r)) and at the same time Wr
βN = Wr

rN = Wr
N.

According to [20, Statement 3.8.3], if the series

∞

∑
k=1

ψ(k) cos
(
kt −

βπ

2

)
, β ∈ R,

is the Fourier series of the function Ψβ ∈ L1, then the elements f of the classes L
ψ
βN for almost

every x ∈ R are represented as the convolution

f (x) =
a0

2
+ (Ψβ ∗ ϕ)(x) =

a0

2
+

1

π

π∫

−π

Ψβ(x − t)ϕ(t)dt, a0 ∈ R, ϕ ⊥ 1, ϕ ∈ N, (1)

where ϕ almost everywhere coincides with f
ψ
β .

As sets N we will consider the unit balls of the spaces Lp:

Up = {ϕ ∈ Lp : ‖ϕ‖p ≤ 1}, 1 ≤ p ≤ ∞.



70 Serdyuk A.S., Hrabova U.Z.

Then put: L
ψ
β,p := L

ψ
βUp, C

ψ
β,p := C

ψ
β Up, Wr

β,p := Wr
βUp.

According to [20, Statement 1.2], if the fixed kernel Ψβ of the classes L
ψ
β,p and C

ψ
β,p satisfies

the inclusion Ψβ ∈ Lp′ ,
1
p + 1

p′ = 1, 1 ≤ p ≤ ∞, then the convolutions of the form (1) are

continuous functions, where N = Up. It is clear that in this case for f ∈ C
ψ
β,p the equality (1) is

fulfilled for all x ∈ R.

We assume that the sequences ψ(k) are traces on the set of natural numbers N of some

positive continuous convex downwards functions ψ(t) of the continuous argument t ≥ 1, that

tends to zero for t → ∞. The set of all such functions ψ(t) is denoted by M.

To classify functions ψ from M on their speed of decreasing to zero it is convenient to use

the following characteristic

α(t) = α(ψ; t) =
ψ(t)

t|ψ′(t)|
, ψ′(t) := ψ′(t + 0).

With its help we consider the following subsets of the set M (see, e.g. [20])

M0 := {ψ ∈ M : ∃K > 0 ∀t ≥ 1 0 < K ≤ α(ψ; t)},

MC := {ψ ∈ M : ∃K1, K2 > 0 ∀t ≥ 1 0 < K1 ≤ α(ψ; t) ≤ K2}.

It is clear that MC ⊂ M0.

Zygmund sums of the order n − 1 of the function f ∈ L1 are the trigonometric polynomials

of the form

Zs
n−1( f ; t) =

a0

2
+

n−1

∑
k=1

(
1 −

( k

n

)s)(
ak( f ) cos kt + bk( f ) sin kt

)
, s > 0, (2)

where ak( f ) and bk( f ) are Fourier coefficients of the function f .

In the case s = 1 polynomials Zs
n−1 are Fejér sums

Z1
n−1( f ; t) =: σn−1( f ; t) =

a0

2
+

n−1

∑
k=1

(
1 −

k

n

)
(ak( f ) cos kt + bk( f ) sin kt).

In this paper we consider the following approximation characteristics

E
(

C
ψ
β,p; Zs

n−1

)

C
= sup

f∈C
ψ
β,p

‖ f (·) − Zs
n−1( f ; ·)‖C , 1 ≤ p ≤ ∞, β ∈ R, (3)

and solve the problem of establishing the order of decreasing to zero as n → ∞ of the men-

tioned quantities with respect to relations between parameters ψ, β, p and s. It is clear that we

can make conclusion about the approximation ability of a linear polynomial approximation

method (including Fejér σn−1 and Zygmund Zs
n−1 methods) on the class C

ψ
β,p, after compari-

son the rate of decreasing of the exact upper bounds of uniform deviations of trigonometric

sums, which are generated by this method, on the set C
ψ
β,p with the rate of decreasing of the

best uniform approximations of the class C
ψ
β,p by trigonometric polynomials tn−1 of order not

higher than n − 1, namely the quantities of the form

En(C
ψ
β,p)C = sup

f∈C
ψ
β,p

inf
tn−1

‖ f (·) − tn−1(·)‖C , 1 ≤ p ≤ ∞,
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where T2n−1 is the subspace of trigonometric polynomials tn−1 of order n − 1 with real coeffi-

cients. In this case, since always the following estimate holds

En

(
C

ψ
β,p

)

C
≤ E

(
C

ψ
β,p; Zs

n−1

)
C

, n ∈ N, (4)

it is important to know under which restrictions on the parameters ψ, s, β and p the following

equality takes place

En

(
C

ψ
β,p

)

C
≍ E

(
C

ψ
β,p; Zs

n−1

)
C

. (5)

The notation A(n) ≍ B(n) means, that A(n) = O(B(n)) and at the same time B(n) = O(A(n)),

where by the notation A(n) = O(B(n)) we mean, that there exists a constant K > 0 such that

the inequality A(n) ≤ K(B(n)) holds.

In the work [27] A. Zygmund introduced trigonometric polynomials of the form (2) and

found exact order estimates of the quantities E
(
Wr

∞; Zs
n−1

)
C

at r ∈ N. B. Nagy investigated

in [7] the quantities E
(

Wr
β,∞; Zs

n−1

)
C

at r > 0, β ∈ Z, and for s ≤ r he established the asymp-

totic equality, and for s > r he found order estimates. Later, S.A. Telyakovsky [23] obtained

asymptotically exact equalities for the quantities E
(

Wr
β,∞; Zs

n−1

)

C
for r > 0 and β ∈ R for

n → ∞. On the Weyl-Nagy classes, the exact order estimates of the quantities E
(

Wr
β,p; Zs

n−1

)
C

for 1 < p < ∞ and r > 1/p and for p = 1 and r ≥ 1, β ∈ R are found in the work [6].

Concerning the Fejér sums σn−1( f ; t) it should be noticed that the order estimates of quan-

tities E
(

Wr
β,∞; σn−1

)
C

, r > 0, for β ∈ Z were found by S.M. Nikol’skii [8]; for the quantities

E
(

Wr
r,p; σn−1

)
C

for 1 < p ≤ ∞ and r > 1/p, and also for p = 1 and r ≥ 1 were found by

V.M. Tikhomirov [25] and by A.I. Kamzolov [5].

Approximation properties of Zygmund sums on the classes of (ψ, β)-differentiable func-

tions were studied in the works [2, 14, 15], (see also [20]). Particularly in the work [2] of

D.M. Bushev the asymptotic equalities for the quantities E(C
ψ
β,∞; Zs

n−1)C were established for

some quite natural constraints on ψ and s as n → ∞. In the case, when the series ∑
∞
k=1 ψ2(k) is

convergent, the exact values of the quantities E
(

C
ψ
β,2; Zs

n−1

)

C
were established in the work [15]

of A.S. Serdyuk and I.V.Sokolenko.

In the work [14], the authors found the exact order estimatites of uniform approximations

by Zygmund sums Zs
n−1 on the classes C

ψ
β,p, 1 < p < ∞, when ψ ∈ Θp, and Θp, 1 < p < ∞, is

the set of non-increasing functions ψ(t), for which there exists α > 1/p such that the function

tαψ(t) almost decreases, and ψ(t)ts+1/p−ε increases on [1, ∞) for some ε > 0.

Concerning the estimates of the best uniform approximations of functional compacts, it

should be noticed the following. For the Weyl-Nagy classes Wr
β,p, r > 1/p, β ∈ R, 1 ≤ p ≤ ∞,

the exact order estimates of the best approximations En

(
Wr

β,p

)

C
are known (see, e.g. [24]).

Moreover, for p = ∞ the exact values of the quantities En

(
Wr

β,∞

)

C
for all r > 0, β ∈ R and

n ∈ N are known (see [3]).

The order estimates of the best approximations of the classes C
ψ
β,p under certain restrictions

on ψ, β and p were investigated in the works [4, 17, 18, 20]. In some partial cases (especially for

p = ∞) the exact or asymptotically exact values of the quantities En

(
C

ψ
β,p

)

C
are also known

(see [9–13, 16, 20]).
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In this paper, we establish the exact order estimates of the quantities of the form (3) for

all 1 ≤ p < ∞ and β ∈ R, in case, when ψ(t)t1/p ∈ M0, the product ψ(k)ks+1/p generally

monotonically increases, ψ(k)ks+1/p−ε almost increases (according to Bernstein) for some ε > 0

and for 1 < p < ∞
∞

∑
k=n

ψp′(k)kp′−2
< ∞,

1

p
+

1

p′
= 1, (6)

and for p = 1
∞

∑
k=n

ψ(k) < ∞. (7)

The conditions (6) and (7) and the monotonic decreasing to zero of the sequence ψ(k) ensure

the inclusion Ψβ ∈ Lp′ , 1/p + 1/p′ = 1, 1 ≤ p < ∞ (see, e.g. [28, Lemma 12.6.6, p. 193]).

In this paper, it is also shown that for some conditions Zygmund sums (and at s = 1 also the

Fejér sums) realize the orders of the best uniform approximations on the classes C
ψ
β,p, that is the

order estimate (5) is true. Previously, this property was proved for Fourier sums [4, 18, 19, 21].

Let us formulate some necessary definitions.

A non-negative sequence a =
{

ak

}∞

k=1
, k ∈ N, is said to be generally monotonically in-

creasing (we write a ∈ GM+), if there exists a constant A ≥ 1, such that for any natural n1 and

n2 such that n1 ≤ n2 the inequalities

an1 +
m−1

∑
k=n1

|ak − ak+1| ≤ Aam, m = n1, n2, (8)

hold (see, e.g. [1, p. 811]). It is easy to see that if the positive sequence a =
{

ak

}∞

k=1
increases,

starting from some number, then it generally monotonically increasing.

A non-negative sequence a =
{

ak

}∞

k=1
, k ∈ N, is said to be almost increasing (according to

Bernstein, see, e.g. [26, p. 730]) if there exists a constant K, such that for all n1 ≤ n2 we have

an1 ≤ Kan2 . (9)

In this case, if for the sequence a =
{

ak

}∞

k=1
there exists a constant ε > 0, such that

{
akk−ε

}

almost increases, then we write a ∈ GA+. It is clear that if the sequence a belongs to GM+,

then it is almost increasing according to Bernstein.

Let us put further gδ(t) := ψ(t)tδ, t ∈ [1, ∞) with δ > 0.

2 Order estimates of the approximations by Zygmund sums on the classes

of convolutions

Theorem 1. Let s > 0, 1 ≤ p < ∞, g1/p ∈ M0, gs+1/p ∈ GM+ ∩ GA+, β ∈ R and n ∈ N. In

the case 1 < p < ∞, if the condition (6) holds and the inequality

inf
t≥1

α(g1/p; t) >
p′

2
(10)

holds, then the following order estimates take place

En

(
C

ψ
β,p

)
C
≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍

(
∞

∑
k=n

ψp′(k)kp′−2

)1/p′

,
1

p
+

1

p′
= 1; (11)
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in the case p = 1, if the condition (7) holds and the inequality

inf
t≥1

α(g1; t) > 1 (12)

holds, then the following order estimates take place

En

(
C

ψ
β,1

)
C
≍ E

(
C

ψ
β,1; Zs

n−1

)
C
≍






∞

∑
k=n

ψ(k), cos
βπ
2 6= 0,

ψ(n)n, cos
βπ
2 = 0.

(13)

Proof. Since the operator Zs
n−1 : f (t) → Zs

n−1( f , t) is linear polynomial operator, which is

invariant under the shift, i.e.

Zs
n−1( fh, t) = Zs

n−1( f , t + h), fh(t) = f (t + h), h ∈ R,

and norm in C and classes C
ψ
β,p also are invariant under the shift, that is

‖ fh‖C = ‖ f‖C ; f (t) ∈ C
ψ
β,p ⇒ fh(t) ∈ C

ψ
β,p,

then

E
(

C
ψ
β,p; Zs

n−1

)
C
= sup

f∈C
ψ
β,p

| f (0) − Zs
n−1( f ; 0)|. (14)

By virtue of (1) and (2) for any function f ∈ C
ψ
β,p, 1 ≤ p < ∞, β ∈ R, s > 0, the following

equality holds

f (0) − Zs
n−1( f ; 0) =

1

π

∫ π

−π

( 1

ns

n−1

∑
k=1

ψ(k)ks cos
(

kt +
βπ

2

)
+Ψ−β,n(t)

)
ϕ(t) dt, (15)

where Ψ−β,n(t) = ∑
∞
k=n ψ(k) cos

(
kt + βπ

2

)
, ‖ϕ‖p ≤ 1, n ∈ N.

Relations (14) and (15), Hölder’s inequality and triangle inequality imply that for 1 ≤ p < ∞

E
(

C
ψ
β,p; Zs

n−1

)

C
≤

1

π

∥∥∥∥∥
1

ns

n−1

∑
k=1

ψ(k)ks cos

(
kt +

βπ

2

)
+ Ψ−β,n(t)

∥∥∥∥∥
p′

≤
1

πns

∥∥∥∥∥
n−1

∑
k=1

ψ(k)ks cos

(
kt +

βπ

2

) ∥∥∥∥∥
p′

+
1

π

∥∥Ψ−β,n(t)
∥∥

p′
,

1

p
+

1

p′
= 1.

(16)

Let us show that, if gs+1/p ∈ GM+ ∩ GA+, where gs+1/p =
{

ψ(k)ks+1/p
}∞

k=1
, then

∥∥∥
n−1

∑
k=1

ψ(k)ks cos

(
kt +

βπ

2

) ∥∥∥
p′
= O

(
ψ(n)n

s+ 1
p
)
, 1 ≤ p < ∞. (17)

Applying Abel transformation to the function ∑
n−1
k=1 ψ(k)ks cos

(
kt + βπ

2

)
, we have

n−1

∑
k=1

ψ(k)ks cos
(

kt +
βπ

2

)
=

n−2

∑
k=1

(
ψ(k)ks − ψ(k + 1)(k + 1)s

)
Dk,β(t)

+ ψ(n − 1)(n − 1)sDn−1,β(t)−
1

2
cos

βπ

2
,

(18)
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where

Dk,β(t) :=
1

2
cos

βπ

2
+

k

∑
ν=1

cos
(

νt −
βπ

2

)
.

Then, in view of ‖Dk,β(·)‖p′ = O(k
1− 1

p′ ) = O(k
1
p ), 1 ≤ p < ∞, k ∈ N, β ∈ R, (see, e.g. [4])

from (18) we get

∥∥∥∥∥
n−1

∑
k=1

ψ(k)ks cos

(
kt +

βπ

2

) ∥∥∥∥∥
p′

= O(1) + O

(
n−2

∑
k=1

∣∣ψ(k)ks − ψ(k + 1)(k + 1)s
∣∣k

1
p

)

+ O
(

ψ(n − 1)(n − 1)
s+ 1

p

)
.

(19)

Since gs+1/p ∈ GM+, then, by using the triangle inequality, inequality (8) and Lagrange

theorem, we have

n−2

∑
k=1

∣∣ψ(k)ks − ψ(k + 1)(k + 1)s
∣∣k

1
p ≤

n−2

∑
k=1

∣∣ψ(k)ks+ 1
p − ψ(k + 1)(k + 1)

s+ 1
p
∣∣

+
n−2

∑
k=1

∣∣ψ(k + 1)(k + 1)
s+ 1

p − ψ(k + 1)(k + 1)sk
1
p
∣∣

≤ Aψ(n − 1)(n − 1)
s+ 1

p +
1

p

n−2

∑
k=1

ψ(k + 1)(k + 1)sk
1
p−1

≤ Aψ(n − 1)(n − 1)
s+ 1

p + 2
n−1

∑
k=2

ψ(k)k
s+ 1

p

k
.

(20)

According to the condition gs+1/p ∈ GA+, there exits ε > 0 such that the sequence{
gs+1/p(k)k

−ε
}

=
{

ψ(k)ks+1/p−ε
}

almost increases, and hence taking into account (9), we

obtain

n−1

∑
k=2

ψ(k)ks+1/p

k
=

n−1

∑
k=2

ψ(k)ks+1/p−ε

k1−ε
≤ Kψ(n − 1)(n − 1)s+1/p−ε

n−1

∑
k=2

1

k1−ε

< Kψ(n − 1)(n − 1)s+1/p−ε
∫ n−1

1

dt

t1−ε
<

K

ε
ψ(n − 1)(n − 1)s+1/p.

(21)

From (20) and (21) we get the following inequality

∣∣ψ(k)ks − ψ(k + 1)(k + 1)s
∣∣k

1
p ≤

(
A +

2K

ε

)
ψ(n − 1)(n − 1)s+1/p. (22)

From (19) and (22) we obtain the estimation (17).

To estimate the norm ‖Ψ−β,n(·)‖p′ for 1 < p′ < ∞ we use the statement, which was es-

tablished in [18], and according to which in the case when
{

ak

}∞

k=1
is the monotonically non-

increasing sequence of positive numbers such that ∑
∞
k=1 a

p′

k kp′−2
< ∞, then for arbitrary n ∈ N

and γ ∈ R the following estimate holds

∥∥∥
∞

∑
k=n

ak cos
(
kx + γ

)∥∥∥
p′
= O

( ∞

∑
k=n

a
p′

k kp′−2 + a
p′

n np′−1
)1/p′

. (23)
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Putting in (23) ak = ψ(k), γ = βπ
2 we obtain that for 1 < p < ∞, β ∈ R and n ∈ N

‖Ψ−β,n(·)‖p′ = O
( ∞

∑
k=n

ψp′(k)kp′−2 + ψp′(n)np′−1
)1/p′

. (24)

Then, using [18, Lemma 3], we conclude that for 1 < p′ < ∞, n ∈ N, under condition (6)

and imbedding g1/p ∈ M0 the following estimate holds

ψp′(n)np′−1 = O

(
∞

∑
k=n

ψp′(k)kp′−2

)
. (25)

According to the conditions of Theorem 1 we have that g1/p ∈ M0, so taking into account (25),

from (24), we obtain

‖Ψ−β,n(·)‖p′ = O

(
∞

∑
k=n

ψp′(k)kp′−2

)1/p′

, 1 < p′ < ∞, β ∈ R, n ∈ N. (26)

Combining (16), (17) and (26) in the case when g1/p ∈ M0, and gs+1/p ∈ GM+ ∩ GA+, we

arrive at the estimate

E
(

C
ψ
β,p; Zs

n−1

)
C
= O

(
∞

∑
k=n

ψp′(k)kp′−2

)1/p′

, 1 < p < ∞,
1

p
+

1

p′
= 1. (27)

As follows from [18, Corollary 1 and 2], for 1 < p < ∞, 1/p + 1/p′ = 1, n ∈ N and

β ∈ R, under conditions (6) and (10) and imbedding g1/p ∈ M0 for En

(
C

ψ
β,p

)

C
we arrive at the

following order estimates

En

(
C

ψ
β,p

)

C
≍
( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

. (28)

Therefore, by virtue of inequality (4) and relations (27) and (28) we obtain order equality (11).

Further, let us consider the case p = 1. Let us establish the estimate of the norm

‖Ψ−β,n(·)‖p′ = ‖Ψ−β,n(·)‖∞. It is obvious that for any β ∈ R the following inequality holds

‖Ψ−β,n(·)‖∞ =

∥∥∥∥
∞

∑
k=n

ψ(k) cos

(
kt +

βπ

2

)∥∥∥∥
∞

≤
∞

∑
k=n

ψ(k). (29)

If β = 2k + 1, k ∈ Z, then following estimate takes place

‖Ψ−β,n(·)‖∞ =

∥∥∥∥
∞

∑
k=n

ψ(k) sin kt

∥∥∥∥
∞

≤ (π + 2)ψ(n)n (30)

(see, e.g. [21, relation (82)]).

According to [21, Lemma 3], if g1 ∈ M0, where g1 =
{

ψ(k)k
}∞

k=1
and the condition (7)

holds, then the following estimates are true

ψ(n)n = O

( ∞

∑
k=n

ψ(k)

)
. (31)
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If g1 ∈ M0 and the conditions (7) hold, then combining (16), (17), (29) – (31), we obtain the

following estimates

E
(

C
ψ
β,1; Zs

n−1

)
C
=





O
( ∞

∑
k=n

ψ(k)
)

, cos
βπ
2 6= 0,

O
(
ψ(n)n

)
, cos

βπ
2 = 0.

(32)

To estimate the quantity E
(

C
ψ
β,1; Zs

n−1

)
C

from below, we use [21, Theorems 3 and 4], ac-

cording to which, if g1 ∈ M0 and the conditions (7) and (12) are true, then for n ∈ N and

β ∈ R the following the order equalities take place

En

(
C

ψ
β,1

)

C
≍






∞

∑
k=n

ψ(k), cos
βπ
2 6= 0,

ψ(n)n, cos
βπ
2 = 0.

(33)

The estimate (13) follows from the inequality (4), estimates (32) and (33).

Assume that the conditions of Theorem 1 take place, moreover, more stronger imbedding

g1/p ∈ MC holds. As it follows from [18, Lemma 3], if g1/p ∈ MC and the condition (6) holds,

then for 1 < p < ∞ the following estimates take place

∞

∑
k=n

ψp′(k)kp′−2 ≍ ψp′(n)np′−1. (34)

In addition, as it was shown in [21, Lemma 3], if g1 ∈ MC and the condition (7) holds, then the

following order estimates are true

∞

∑
k=n

ψ(k) ≍ ψ(n)n. (35)

Formulas (34) and (35), and Theorem 1 allow us to write the following statement.

Theorem 2. Let s > 0, 1 ≤ p < ∞, g1/p ∈ MC, gs+1/p ∈ GM+ ∩ GA+, β ∈ R and n ∈ N.

In the case 1 < p < ∞, if the conditions (6) and (10) hold, then the following order estimates

take place

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍ ψ(n)n1/p, (36)

and in the case p = 1 if the conditions (7) and (12) hold, then the following order estimates

take place

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; Zs

n−1

)
C
≍ ψ(n)n. (37)

Proof. Order estimates (36) were established in [14]. Note, that when 1 < p < ∞, g1/p ∈ M0

and

lim
t→∞

α
(

g1/p; t
)
= ∞, (38)

then the order estimates (36) do not take place, since in this case we have the following (see [18])

ψ(n)n
1
p = o

(( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

)
, n → ∞.
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Similarly, when p = 1, g1/p = g1 ∈ M0 and

lim
t→∞

α
(

g1; t
)
= ∞, (39)

then as follows from [21, Lemma 3]

ψ(n)n = o
( ∞

∑
k=n

ψ(k)
)

,

in this case, for β such that cos
βπ
2 6= 0 order estimates (37) do not take place.

As example of the function ψ(t), for which the conditions of Theorem 1 and the equalities

(38) and (39) take place, we can use the function

ψ(t) = t−1/p ln−γ(t + K), γ >

{
1
p′ , 1 < p < ∞,

1, p = 1,
K >

{
eγp′/2, 1 < p < ∞,

eγ, p = 1,
(40)

(see [18,21]). Let us write the order estimates for the quantities En

(
C

ψ
β,p

)

C
and E

(
C

ψ
β,p; Zs

n−1

)
C

in the case, when ψ(t) has the form (40).

Theorem 3. Let ψ(t) = t−1/p ln−γ(t + K), β ∈ R and n ∈ N. If 1 < p < ∞, γ > 1/p′,

K > eγp′/2, 1/p + 1/p′ = 1, then

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍ ψ(n)n1/p ln1/p′ n, n ≥ 2; (41)

if p = 1, γ > 1, K > eγ, then

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; Zs

n−1

)
C
≍

{
ψ(n)n ln n, cos

βπ
2 6= 0,

ψ(n)n, cos
βπ
2 = 0,

n ≥ 2. (42)

Proof. We show that for the indicated function ψ of the form (40) all conditions of the Theo-

rem 1 are true. Indeed, for 1 < p < ∞, γ > 1/p′, K > eγp′/2 we have

∞

∑
k=n

ψp′(k)kp′−2 =
∞

∑
k=n

1

k lnγp′(k + K)
< ∞, α

(
g1/p; t

)
=

(t + K) ln(t + K)

γt
>

ln(t + eγp′/2)

γ
,

and hence lim
t→∞

α
(

g1/p; t
)
= ∞ and α

(
g1/p; t

)
>

p′

2 .

For p = 1, γ > 1, K ≥ eγ, we have

∞

∑
k=n

ψ(k) ≤
∞

∑
k=n

1

k lnγ(k + eγ)
< ∞, α

(
g1; t

)
>

ln(t + eγ)

γ
,

and hence lim
t→∞

α
(

g1; t
)
= ∞ and α

(
g1; t

)
> 1.

It is obvious that for any s > 0 and 1 ≤ p < ∞ the functions gs+1/p(t) = ts ln−γ(t + K) in-

crease monotonically, starting from some point t0. Therefore, it is not difficult to be convinced

that the sequence gs+1/p(k) belongs to the set GM+ ∩ GA+.

Therefore, the function ψ of the form (40) satisfies the conditions of Theorem 1.
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Further, using [18, formula (79)], we obtain

( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

≍
( ∞∫

n

ψp′(t)tp′−2dt
)1/p′

=
( ∞∫

n

dt

t lnγp′(t + K)

)1/p′

≍ ln1/p′−γ n

= ψ(n)n1/p ln1/p′ n
ln−γ n

ln−γ(n + K)
≍ ψ(n)n1/p ln1/p′ n, n ≥ 2.

Then formula (41) follows from the estimate (11) and the above relations.

Similarly, by virtue of [21, inequality (87)] we get

∞

∑
k=n

ψ(k) ≍
∫ ∞

n
ψ(t)dt =

∫ ∞

n

dt

t lnγ(t + K)
≍ ln1−γ n ≍ ψ(n)n ln n, n > 2. (43)

Formula (42) follows from the estimates (13) and relations (43), in the case where β is such

that cos
βπ
2 6= 0.

As it was already mentioned, for s = 1 the Zygmund sums Zs
n−1 coincide with the known

Fejér sums σn−1. Therefore, Theorem 1 and 2 imply the following statements.

Proposition 1. Let 1 ≤ p < ∞, g1/p ∈ M0, g1+1/p ∈ GM+ ∩ GA+, β ∈ R and n ∈ N.

In the case 1 < p < ∞, if the conditions (6) and (10) hold, then the following order estimates

take place

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; σn−1

)
C
≍
( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

;

in the case p = 1, if the conditions (7) and (12) hold, then the following order equlaities take

place

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; σn−1

)
C
≍





∞

∑
k=n

ψ(k), cos
βπ
2 6= 0,

ψ(n)n, cos
βπ
2 = 0.

Proposition 2. Let 1 ≤ p < ∞, g1/p ∈ MC, g1+1/p ∈ GM+ ∩ GA+, β ∈ R and n ∈ N.

In the case 1 < p < ∞, if the conditions (6) and (10) hold, then the following order estimates

take place

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; σn−1

)
C
≍ ψ(n)n1/p;

in the case p = 1, if the conditions (7) and (12) hold, then the following order estimates take

place

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; σn−1

)
C
≍ ψ(n)n.
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Сердюк А.С., Грабова У.З. Порядковi оцiнки рiвномiрних наближень сумами Зиґмунда на класах

згорток перiодичних функцiй // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 68–80.

Cуми Зиґмунда Zs
n−1( f ; t) функцiї f ∈ L1 — це тригонометричнi полiноми вигляду

Zs
n−1( f ; t) := a0

2 + ∑
n−1
k=1

(
1 −

(
k
n

)s
)
(ak( f ) cos kt + bk( f ) sin kt), s > 0, де ak( f ) i bk( f ) — коефi-

цiєнти Фур’є функцiї f . Отримано точнi порядковi оцiнки рiвномiрних наближень сумами

Зиґмунда Zs
n−1 на класах C

ψ
β,p. Цi класи складаються з 2π-перiодичних неперервних функцiй

f , якi зображаються у виглядi згортки функцiй, що належать одиничним кулям просторiв Lp,

1 ≤ p < ∞, з фiксованими твiрними ядрами Ψβ(t) ∼ ∑
∞
k=1 ψ(k) cos

(
kt + βπ

2

)
, Ψβ ∈ Lp′ , β ∈ R,

1
p + 1

p′ = 1, у випадку, коли добуток ψ(k)ks+1/p узагальнено монотонно зростає з деякою сте-

пеневою швидкiстю, i, крiм того, при 1 < p < ∞ виконується нерiвнiсть ∑
∞
k=n ψp′(k)kp′−2

< ∞,

а при p = 1 — нерiвнiсть ∑
∞
k=n ψ(k) < ∞. Показано, що при виконаннi зазначених умов суми

Зиґмунда Zs
n−1, а також суми Фейєра σn−1 = Z1

n−1 реалiзують порядки найкращих рiвномiр-

них наближень тригонометричними полiномами на вказаних функцiональних класах, а саме

при 1 < p < ∞

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍
( ∞

∑
k=n

ψp′(k)kp′−2
)1/p′

,
1

p
+

1

p′
= 1,

а при p = 1

En(C
ψ
β,1)C ≍ E

(
C

ψ
β,1; Zs

n−1

)
C
≍

∞

∑
k=n

ψ(k), cos
βπ

2
6= 0,

En(C
ψ
β,p)C ≍ E

(
C

ψ
β,p; Zs

n−1

)
C
≍ ψ(n)n, cos

βπ

2
= 0,

де

En(C
ψ
β,p)C := sup

f∈C
ψ
β,p

inf
tn−1∈T2n−1

‖ f (·)− tn−1(·)‖C,

T2n−1 — пiдпростiр тригонометричних полiномiв tn−1 порядку n − 1 з дiйсними коефiцiєнта-

ми,

E
(

C
ψ
β,p; Zs

n−1

)
C

:= sup
f∈C

ψ
β,p

‖ f (·)− Zs
n−1( f ; ·)‖C.

Ключовi слова i фрази: найкраще наближення, сума Зиґмунда, сума Фейєра, пiдпростiр три-

гонометричних полiномiв, порядкова оцiнка.


