
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2021, 13 (2), 433–451 Карпатськi матем. публ. 2021, Т.13, №2, С.433–451

doi:10.15330/cmp.13.2.433-451

µ-statistical convergence and the space of functions µ-stat
continuous on the segment

Sadigova S.R.

In this work, the concept of a point µ-statistical density is defined. Basing on this notion, the

concept of µ-statistical limit, generated by some Borel measure µ (·), is defined at a point. We also

introduce the concept of µ-statistical fundamentality at a point, and prove its equivalence to the

concept of µ-stat convergence. The classification of discontinuity points is transferred to this case.

The appropriate space of µ-stat continuous functions on the segment with sup-norm is defined. It

is proved that this space is a Banach space and the relationship between this space and the spaces

of continuous and Lebesgue summable functions is considered.
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Introduction

Actually, the concept of statistical convergence of the sequences of complex numbers has

long been known as ”almost convergence” (see, e.g., the monograph of A. Zygmund [44]). It

was introduced in the study of pointwise convergence of the Fourier series of summable func-

tions. Equivalent definition for this concept was given by H. Fast in [14] (see also H. Steinhaus

[43]), where it was (for the first time) referred to as “statistical convergence”. In [16, 17, 38, 42],

the basic properties of statistically convergent sequences are investigated and are mainly gen-

eralized in two directions. The first direction included the generalizations of the concept of

statistical convergence itself, so there arose I-convergence (ideal convergence), F -convergence

(filter convergence), lacunar convergence, etc. (see, e.g., [9–11, 18–21, 30, 33, 37, 40]).

The second direction treated these kinds of convergence in various mathematical structures

(see [1–6,12,13,22–24,27,28,31,39,41]). In [26,34,36], the statistical convergence was generalized

for double sequences, and the properties of this convergence were studied. The number of all

relevant works is too big, and it should be noted that it is impossible to name all of them here.

Quite naturally, there arises the question about the existence of a continuous analog of the

concept of statistical convergence for number sequences (or for elements of other mathematical

structures). The first step in this direction was made by F. Moricz [32], who introduced the

concepts of statistical limit and statistical fundamentality for measurable functions at infinity

and at a finite point, generated by the Lebesgue measure. F. Moricz proved the equivalence of

these concepts and studied some of their properties. He also studied the relationship between

this kind of convergence and the one of Fourier series. But, this concept is not a generalization
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of the similar concept for sequences, because it does not imply, as a special case, the concept of

statistical convergence for sequences.

The direct generalization of the concept of statistical convergence in continuous case was

first carried out by B.T. Bilalov and S.R. Sadigova [7]. They introduced the concepts of µ-stat

convergence and µ-stat fundamentality, proved their equivalence and studied some of their

properties. They also introduced the concept of µ-stat continuity. µ-stat convergence is a di-

rect generalization of the statistical convergence in continuous case, as it turns out from this

concept as a special case.

It should be noted that the concept of a density point and approximately continuity at

a point are known with respect to the Lebesgue measure. In the main, some properties of

Lebesgue measurable functions in connection with these concepts are studied, Luzin type,

Denjoy type theorems, theorems on belonging to Baire class etc. are proved. More details on

this information can be considered in monographs [8, 15, 25]. In [29], these concepts are con-

sidered with respect to an arbitrary measure. It is proved that any approximately continuous

function has the property of Baire. The connection between such functions and measurable

functions is found.

We introduce the concepts of µ-stat limit, µ-stat fundamentality and µ-stat continuity,

which are the direct generalizations to the continuous case (or to the case of measurable spaces

with measure) of the corresponding concepts of the statistical limit and the statistical funda-

mentality of the sequences of elements. Therefore, we retained these names, in contrast to the

name of approximately continuous, and we study the problems dictated by the discrete case.

In the present paper, the concept of a point µ-statistical density is defined. Basing on this

notion, the concept of µ-statistical limit, generated by some Borel measure µ (·), is defined

at a point, in contrast to similar concepts [7]. We also introduce the concept of µ-statistical

fundamentality at a point, and prove its equivalence to the concept of µ-stat convergence. The

classification of discontinuity points is transferred to this case. The appropriate space of µ-stat

continuous functions on the segment with sup-norm is defined. It is proved that this space

is a Banach space and the relationship between this space and the spaces of continuous and

Lebesgue summable functions is considered.

1 µ-stat limit

We will use the standard notations: N will be the set of all positive integers; R is the set of

all real numbers; ∃ means “there exist(s)”; ∃! means “there exists a unique”; ⇒ will denote “it

follows”; ⇔ will stand for equivalence.

Let J ⊂ R be some segment, B be σ-algebra of all Borel subsets and µ : B → R+ := [0,+∞)

be a Borel measure. Let M ∈ B be some set. Put Oδ (x) = J ∩ (x − δ, x + δ).

Throughout this paper we assume that the measure µ (·) satisfies the following condition:

α) µ (Oδ (x)) > 0 & µ ({x}) = 0, ∀ x ∈ J, ∀ δ > 0.

We say that the point x0 ∈ J is a point µ-stat density for M, if

lim
δ→0

∣

∣M ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1,

where |A| = µ (A) and O0
δ (x0) = Oδ (x0) \ {x0}.
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Let f : J → R be some (J; B)-measurable function and ε > 0 be some number. For a given

number l ∈ R assume

∆ε ( f ; l) = {x ∈ J : | f (x)− l| < ε} .

Denote by Jst (x0) the family of all sets of B, which x0 is the point of µ-stat density.

Definition 1. We say that l is µ-stat limit of the function f at a point x0, if ∆ε ( f ; l) ∈ Jst (x0),

∀ ε > 0, i.e.

lim
δ→0

∣

∣∆ε ( f ; l) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1. (1)

This limit will be denoted as µ-st lim
x→x0

f (x) = l.

For M ∈ B assume Mc = J\M. Thus, it is clear that

O0
δ (x0) =

(

∆ε ( f ; l) ∩ O0
δ (x0)

)

∪
(

∆c
ε ( f ; l) ∩ O0

δ (x0)
)

,

where ∆c
ε ( f ; l) = J\∆ε ( f ; l) = {x ∈ J : | f (x)− l| ≥ ε}. Consequently

∣

∣∆ε ( f ; l) ∩ O0
δ (x0)

∣

∣+
∣

∣∆c
ε ( f ; l) ∩ O0

δ (x0)
∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1.

This immediately implies that the relation (1) is equivalent to

lim
δ→0

∣

∣∆c
ε ( f ; l) ∩ O0

δ (x0)
∣

∣

∣

∣O0
δ (x0)

∣

∣

= 0.

Let us show that µ-stat limit l is unique. Assume the opposite: there are two µ-stat limits

l1 and l2. Take ε such that 0 < ε < 1
2 |l1 − l2|. We have

[(

∆ε ( f ; l1) ∩ O0
δ (x0)

)

∪
(

∆ε ( f ; l2) ∩ O0
δ (x0)

)]

⊂ O0
δ (x0) .

Consequently
∣

∣

∣
∆ε ( f ; l1) ∩ O0

δ (x0)
∣

∣

∣
+

∣

∣

∣
∆ε ( f ; l2) ∩ O0

δ (x0)
∣

∣

∣
≤

∣

∣

∣
O0

δ (x0)
∣

∣

∣
.

Hence we arrive at a contradiction

2 = lim
δ→0

∣

∣∆ε ( f ; l1) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

+ lim
δ→0

∣

∣∆ε ( f ; l2) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

≤ 1.

It is absolutely obvious that, if lim
x→x0

f (x) = l, then ∃ µ-st lim
x→x0

f (x) and µ-st lim
x→x0

f (x) = l.

The converse is not always true. For example, let µ be a Lebesgue measure and consider the

Dirichlet function on J

D (x) =

{

0, x ∈ J\Q J,

1, x ∈ Q J ,

where Q J are rational numbers from J. It is absolutely obvious that for all x0 ∈ J\Q J we have

µ-st lim
x→x0

f (x) = 0, but for x0 ∈ Q J a µ-stat limit does not exist.

Since

λ 6= 0 : {x : |λ f (x)− λl| ≥ ε} ⇔

{

x : | f (x)− l| ≥
ε

|λ|

}

,
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then it is clear that

µ-st lim
x→x0

(λ f (x)) = λ

(

µ-st lim
x→x0

f (x)

)

.

Let µ-st lim
x→x0

fk (x) = lk, k = 1, 2. It is absolutely obvious that

{x : | f1 (x) + f2 (x)− (l1 + l2)| ≥ ε} ⊂
[{

x : | f1 (x)− l1| ≥
ε

2

}

∪
{

x : | f2 (x)− l2| ≥
ε

2

}]

.

Consequently

∣

∣

∣

{

x : | f1 + f2 − (l1 + l2)| ≥ ε
}

∩ O0
δ(x0)

∣

∣

∣

≤
∣

∣

∣

{

x : | f1 − l1| ≥
ε

2

}

∩ O0
δ(x0)

∣

∣

∣
+

∣

∣

∣

{

x : | f2 − l2| ≥
ε

2

}

∩ O0
δ(x0)

∣

∣

∣
.

Hence it directly follows that µ-st lim
x→x0

( f1 (x) + f2 (x)) = l1 + l2.

Thus, (J; B)-measurable functions with µ-stat limit at the point x0 ∈ J form a linear space

over a field K, and we denote this space by Bst (x0) .

Similarly we define the concepts of one-sided µ-stat limits at a point x0. Denote

O+
δ (x0) = (x0, x0 + δ) ∩ J.

Definition 2. We say that ℓ is a right-hand µ-stat limit of a function f at a point x0 if

lim
δ→0

∣

∣∆ε ( f ; l) ∩ O+
δ (x0)

∣

∣

∣

∣O+
δ (x0)

∣

∣

= 1.

We say that x0 ∈ J is a point of right-hand µ-stat density for the set M ∈ B if

lim
δ→0

∣

∣M ∩ O+
δ (x0)

∣

∣

∣

∣O+
δ (x0)

∣

∣

= 1.

By J+st (x0) we denote the family of all subsets of B, for which the point x0 is a point of right-

hand µ-stat density.

Similarly, we define the concept of the point of left-hand and right-hand µ-stat density and

the family J−st (x0).

Assume that the measure µ (·) additionally satisfies the condition

β) lim
δ→0

∣

∣O+
δ (x0)

∣

∣

∣

∣O−
δ (x0)

∣

∣

= λ 6= 0.

Let M ∈ Jst (x0). Assume
∣

∣O+
δ (x0)

∣

∣ = λδ

∣

∣O−
δ (x0)

∣

∣. It is clear that λδ → λ holds as δ → 0.

We have
∣

∣M ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

=

∣

∣M ∩ O+
δ (x0)

∣

∣

(

1 + λ−1
δ

)

∣

∣O+
δ (x0)

∣

∣

+

∣

∣M ∩ O−
δ (x0)

∣

∣

(1 + λδ)
∣

∣O−
δ (x0)

∣

∣

.

Let

a±δ =

∣

∣M ∩ O±
δ (x0)

∣

∣

∣

∣O±
δ (x0)

∣

∣

.
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We have 0 ≤ a±δ ≤ 1, ∀ δ > 0, and

a+δ
1 + λ−1

δ

+
a−δ

1 + λδ
→ 1, δ → 0. (2)

Hence it directly follows that a±δ → 1 as δ → 0. Indeed, let there exists {δn} ⊂ (0,+∞) such

that δn → 0 and a+δn
→ a < 1 as n → ∞. Then from (2) we obtain

a+δ+
1 + λ−1

δn

+
a−δn

1 + λδn

≤
aδn

1 + λ−1
δ

+
1

1 + λδn

→
a

1 + λ−1
+

1

1 + λ
<

1

1 + λ−1
+

1

1 + λ
= 1.

And this contradicts the relation (2). Thus, if the measure µ (·) satisfies the condition β),

then M ∈ Jst (x0) ⇒ M ∈ J±st (x0).

Conversely, suppose that

lim
δ→0

∣

∣M ∩ O±
δ (x0)

∣

∣

∣

∣O±
δ (x0)

∣

∣

= 1,

holds. We have

|M ∩ O0
δ(x0)|

|O0
δ(x0)|

=
|M ∩ O+

δ (x0)|

|O+
δ (x0)|

|O+
δ (x0)|

|O+
δ (x0)|+ |O−

δ (x0)|
+

|M ∩ O−
δ (x0)|

|O−
δ (x0)|

|O−
δ (x0)|

|O+
δ (x0)|+ |O−

δ (x0)|
.

If the condition β) is valid, hence we obtain

1 ≥
|M ∩ O0

δ(x0)|

|O0
δ(x0)|

=
|M ∩ O+

δ (x0)|

|O+
δ (x0)|

1

1 + λ−1
δ

+
|M ∩ O−

δ (x0)|

|O−
δ (x0)|

1

1 + λδ
→

1

1 + λ−1
+

1

1 + λ
= 1

as δ → 0. Consequently, M ∈ Jst (x0). So, the following proposition is true.

Proposition 1. Let the measure µ (·) satisfy the conditions α) and β). Then

M ∈ Jst (x0) ⇔ M ∈ J±st (x0) .

Proceeding from these concepts µ-stat one-sided limits of the function f (·) at the point x0

are defined. Namely, we say that the function f (·) has a µ-stat right-hand (left-hand) limit

equal to l at a point x0 if

∆ε ( f ; l) ∈ J+st (x0)
(

∆ε ( f ; l) ∈ J−st (x0)
)

, ∀ε > 0,

and this fact will be denoted as

µ-st lim
x→x0+0

f (x) = l (µ-st lim
x→x0−0

f (x) = l).

Similarly to the case of µ-stat limit, it is proved that these concepts are correct, i.e. if one-

sided µ-stat limits exist, then they are unique.

It is clear that if ∃ µ-st lim
x→x0

f (x), then ∃µ-st lim
x→x0±0

f (x) and

µ-st lim
x→x0

f (x) = µ-st lim
x→x0+0

f (x) = µ-st lim
x→x0−0

f (x) .

Now, let there exist one-sided µ-stat limits and they are equal, i.e.

µ-st lim
x→x0+0

f (x) = µ-st lim
x→x0−0

f (x) = l.

Take ∀ ε > 0. We have ∆ε ( f ; l) ∈ J±st (x0). Then it follows from Proposition 1 that if the

condition β) is fulfilled, then ∆ε ( f ; l) ∈ Jst (x0). From the arbitrariness of ∆ε ( f ; e) ∈ I±st (x0),

it follows that there exists µ-stat limit at the point x0 and µ-st lim
x→x0

f (x) = l. So, it is valid the

following assertion.
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Proposition 2. Let the measure µ (·) satisfy the conditions α) and β). If at the point x0 there

exist one-sided µ-stat limits, that are equal to µ-stat limit and conversely, then there exists a

µ-stat limit of the function f (·) at this point.

Theorem 1. Let the measure µ (·) satisfy the conditions α) and β). Then the following state-

ments are equivalent to each other:

i) ∃ µ-st lim
x→x0

f (x) = l;

ii) ∃ M ∈ Jst (x0) : lim
x→x0

x∈M

f (x) = l.

Proof. Let

M ∈ Jst (x0) ∧ lim
x→x0

x∈M

f (x) = l (3)

be fulfilled. Take ∀ ε > 0. Then we have

∃ δ0 > 0 ∀ δ ∈ (0, δ0) | f (x)− l| < ε, ∀ x ∈ M ∩ O0
δ (x0) .

Let t > 0 be an arbitrary fixed number. Assume

Mt (x0) = M ∩ O0
t (x0)&Mc

t (x0) = M\Mt (x0) .

Consequently M ∩ O0
δ (x0) =

(

Mc
t (x0) ∩ O0

δ (x0)
)

∪
(

Mt (x0) ∩ O0
δ (x0)

)

, and, as a result

∣

∣

∣
M ∩ O0

δ (x0)
∣

∣

∣
=

∣

∣

∣
Mc

t (x0) ∩ O0
δ (x0)

∣

∣

∣
+

∣

∣

∣
Mt (x0) ∩ O0

δ (x0)
∣

∣

∣
. (4)

It is absolutely obvious that for δ < t the following
(

Mt (x0) ∩ O0
δ (x0)

)

≡ M ∩ O0
δ (x0) is true

and therefore

lim
δ→0

∣

∣Mt (x0) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1, (5)

as M ∈ Jst (x0). As a result, we obtain that the following inclusion Mt (x0) ∈ Jst (x0) is true for

all t > 0. Then it follows from (4) that

lim
δ→0

∣

∣Mc
t (x0) ∩ O0

δ (x0)
∣

∣

∣

∣O0
δ (x0)

∣

∣

= 0, ∀ t > 0.

We have ∆ε ( f ; l) ⊃ Mt (x0) for all t ∈ (0, δ0). Consequently, from (5) we obtain
∣

∣∆ε ( f ; l) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

≥

∣

∣Mt (x0) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

→ 1, δ → 0.

Hence it directly follows that

lim
δ→0

∣

∣∆ε ( f ; l) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1.

And this in turn means that

µ-st lim
x→x0

f (x) = l. (6)

Thus, if ∃ M ∈ Jst (x0) such that the relation (3) holds, then there exists µ-stat limit at the point

x0, and the relation (6) is true.
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Now, to the contrary, assume that the relation (6) is true. Then

lim
δ→0

∣

∣∆ε ( f ; l) ∩ O0
δ (x0)

∣

∣

∣

∣O0
δ (x0)

∣

∣

= 1, ∀ ε > 0.

Let

Mn =

{

x ∈ J : | f (x)− A| <
1

n

}

, n ∈ N, I+x = (x0, x) , ∀ x > x0,

and assume M+
n = Mn ∩ {x > x0}. We have

lim
x→x0+0

|M+
n ∩ I+x |
∣

∣I+x
∣

∣

= 1, ∀ n ∈ N.

Hence it follows that for all n ∈ N there exists x+n ∈ J ∩ {x > x0} such that x+1 > x+2 > . . . ,

x+n → x0 + 0 as n → ∞ and

|M+
n ∩ I+x |
∣

∣I+x
∣

∣

≥
n2 − 1

n2
, ∀ x ∈

(

x0, x+n
]

, (7)

is valid. We have
∣

∣(Mn)
c ∩ I+x

∣

∣

∣

∣I+x
∣

∣

= 1 −
|Mn ∩ I+x |

∣

∣I+x
∣

∣

≤ 1 −
n2 − 1

n2
=

1

n2
, ∀ n ∈ N. (8)

Denote M+ =
∞
⋃

n=1
A+

n , where A+
n =

[

x+n+1, x+n
)

∩ M+
n , ∀ n ∈ N. Let us show that

lim
x→x0+0

|M+ ∩ I+x |
∣

∣I+x
∣

∣

= 1.

Let nx = min
{

n : x ∈
[

x+n+1, x+n
)}

. We have

M+ ∩ I+x =
[

M+
nx
∩
[

x+nx+1, x
)]

∪
∞
⋃

k=nx+1

A+
k .

∣

∣M+ ∩ I+x
∣

∣ =
∣

∣

∣
M+

nx
∩
[

x+nx+1, x
)
∣

∣

∣
+

∞

∑
k=nx+1

A+
k . (9)

Let k ≥ nx + 1 be an arbitrary number. It holds

M+
nx
∩
[

x+k+1, x+k

)

=
[

M+
k ∩

[

x+k+1, x+k

)]

∪
[

M+
nx
∩
(

M+
k

)c
∩
[

x+k+1, x+k

)]

= A+
k ∪

[

M+
nx

∩
(

M+
k

)c
∩
[

x+k+1, x+k

)]

.

∣

∣A+
k

∣

∣ =
∣

∣

∣
M+

nx
∩
[

x+k+1, x+k

)
∣

∣

∣
−

∣

∣

∣
M+

nx
∩
(

M+
k

)c
∩
[

x+k+1, x+k

)
∣

∣

∣
.

So

[

(

M+
k

)c
∩
[

x+k+1, x+k

)]

⊂

[

(

M+
k

)c
∩ I+

x+k

]

and
∣

∣I+x
∣

∣ ≥

∣

∣

∣

∣

I+
x+k

∣

∣

∣

∣

⇔
1

∣

∣I+x
∣

∣

≤
1

∣

∣

∣

∣

I+
x+k

∣

∣

∣

∣

.
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Paying attention to (7), we have
∣

∣

∣
(M+

k )
c ∩

[

x+k+1, x+k
)

∣

∣

∣

∣

∣I+x
∣

∣

≤

∣

∣

∣
(M+

k )
c ∩ I+

x+k

∣

∣

∣

∣

∣I+
x+k

∣

∣

≤
1

k2
.

Thus
∣

∣

∣
M+

nx
∩
(

M+
k

)c
∩
[

x+k+1, x+k

)∣

∣

∣

∣

∣I+x
∣

∣

≤

∣

∣

∣

(

M+
k

)c
∩
[

x+k+1, x+k

)∣

∣

∣

∣

∣I+x
∣

∣

≤
1

k2
,

and, as a result
∣

∣A+
k

∣

∣

∣

∣I+x
∣

∣

≥

∣

∣

∣
M+

nx
∩
[

x+k+1, x+k

)
∣

∣

∣

∣

∣I+x
∣

∣

−
1

k2
, ∀ k ≥ nx + 1.

Then from the relation (9) it follows

|M+ ∩ I+x |
∣

∣I+x
∣

∣

≥

∣

∣

∣
M+

nx
∩
[

x+nx+1, x
)
∣

∣

∣

∣

∣I+x
∣

∣

+
∑k=nx+1

∣

∣

∣
M+

nx
∩
[

x+k+1, x+k

)
∣

∣

∣

∣

∣I+x
∣

∣

− ∑
k=nx+1

1

k2
.

It is easy to see that the relation

(

M+
nx
∩ I+x

)

=
[

M+
nx
∩
[

x+nx+1, x
)]

∪
∞
⋃

k=nx+1

[

M+
nx

∩
[

x+k+1, x+k

)]

,

is valid. Then from the previous inequality we have

|M+ ∩ I+x |
∣

∣I+x
∣

∣

≥

∣

∣M+
nx

∩ I+x
∣

∣

∣

∣I+x
∣

∣

− ∑
k=nx+1

1

k2
.

From (7) it follows

|M+ ∩ I+x |
∣

∣I+x
∣

∣

≥
n2

x − 1

n2
x

− ∑
k=nx+1

1

k2
. (10)

It is absolutely clear that from x → x0 + 0 follows nx → ∞. Then from (10) we have

1 ≥ lim
x→∞

|M+ ∩ I+x |
∣

∣I+x
∣

∣

≥ lim
nx→∞

n2
x − 1

n2
x

− lim
nx→∞

∑
k=nx+1

1

k2
= 1.

Hence, it is proved that M ∈ J+st (x0).

Let us show that lim
x→x0+0

x∈M+

f (x) = A. Let ε > 0 be an arbitrary number. Let n0 ∈ N be such

that 1
n0

< ε. Then for all x ∈
(

x0, 1
n0

)

we have

(

M+ ∩ I+x
)

⊂
(

M+
n0
∩ I+x

)

⇒ | f (y)− A| <
1

n0
< ε, ∀ y ∈

(

M+ ∩ I+x
)

,

that is lim
x→x0+0

x∈M+

f (x) = A. Thus, if the measure µ (·) satisfies the condition β) and (6) holds,

then

∃ M+ ∈ J+st (x0) : lim
x→x0+0

x∈M+

f (x) = l.
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In the same way we prove that if the measure µ (·) satisfies the condition β) and (6) holds,

then

∃ M− ∈ J−st (x0) : lim
x→x0−0

x∈M−

f (x) = l.

Let M = M− ∪ M+. Proposition 1 implies M ∈ Jst (x0) and it is clear that lim
x→x0

x∈M

f (x) = l.

Following the works [7, 16, 38], let us define the next concept.

Definition 3. We say that st lim
n→∞

an = a, if

lim
n→∞

∑
n
k=1χa(ε) (k)

n
= 1, ∀ ε > 0,

where a (ε) ≡ {k ∈ N : |ak − a| ≥ ε}, χM (·) is the characteristic function of the set M.

Definition 4. We say that the function f : J → R has a statistical limit A at the point

a ∈ J, if st lim
n→∞

f (an) = A for all {an}n∈N ⊂ J such that st lim
n→∞

an = a. This fact will be

denoted as st lim
x→a

f (x) = A.

Theorem 2. Let the measure µ (·) satisfy the condition α). Then if ∃ st lim
x→a

f (x), then

∃ µ-st lim
x→a

f (x) and they are equal. The converse is generally not true.

Proof. Consider the following function

f (x) =

{

n , x = 1
n ,

x , x ∈ [−1, 1] \
{

1
n

}

n∈N
.

As µ (·) we take a Lebesgue measure on [−1, 1]. It is easy to see that µ-st lim
x→0

f (x) = 0, in

this case st lim
x→a

f (x) does not exist. This example shows that the Definitions 1 and 2 are not

equivalent, from the first definition does not follow the second.

Now, to the contrary, assume that ∃ st lim
x→a

f (x) = A. Let the relation µ-st lim
x→a

f (x) = A

does not hold. Consequently, ∃ ε0 > 0 such that the relation

lim
δ→0

∣

∣∆c
ε0
( f ; A) ∩ O0

δ (a)
∣

∣

∣

∣O0
δ (a)

∣

∣

= 0

does not hold, where ∆c
ε0
( f ; A) = J\∆ε0

( f ; A) = {x ∈ J : | f (x)− A| ≥ ε0}. Thus there exist

δ0 > 0 and {δn}n∈N such that δ1 > δ2 > . . . , δn → 0, and
∣

∣

∣
∆c

ε0
( f ; A) ∩ O0

δn
(a)

∣

∣

∣

∣

∣

∣
O0

δn
(a)

∣

∣

∣

≥ δ0, i.e.

∣

∣

∣
∆c

ε0
( f ; A) ∩ O0

δn
(a)

∣

∣

∣
≥ δ0

∣

∣

∣
O0

δn
(a)

∣

∣

∣
> 0 , ∀ n ∈ N. (11)

It follows directly from the condition α) that
∣

∣

∣
∆c

ε0
( f ; A) ∩ O0

δn
(a)

∣

∣

∣
→ 0 as n → ∞.

Then from (11) we obtain

∃ {ak}k∈N : ak ∈ ∆c
ε0
( f ; A) ∩ O0

δnk
(a) ∧ ak ∈ O0

δnk
(a) \O0

δnk+1
(a) .

It is obvious that lim
k→∞

ak = a, but on the other hand | f (ak)− A| ≥ ε0 for all k ∈ N. Thus, the

relation st lim
n→∞

f (an) = A is not true. The resulting contradiction proves the theorem.
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2 µ-stat fundamentality

Let us define the concept of µ-statistical fundamentality.

Definition 5. We say that the function f : J → R is fundamental at a point a ∈ J if for any

ε > 0 there exists xε ∈ J such that

lim
δ→0

∣

∣∆ ( f ; xε) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

= 1,

where ∆ ( f ; xε) = {x ∈ J : | f (x)− f (xε)| < ε}.

Assume that the measure µ (·) satisfies the conditions α), β) and ∃ µ-st lim
x→a

f (x) = A. Then

by Theorem 1

∃ M ∈ Jst (a) : lim
M∋x→a

f (x) = A.

Hence, we obtain that for all ε > 0 there exists δε > 0 such that

| f (x)− f (y)| < ε, ∀ x, y ∈ M ∩ O0
δ (a) , ∀ δ ≤ δε.

Take ∀ xε ∈ M ∩ O0
δε
(a). We have | f (x) − f (xε)| < ε for all x ∈ M ∩ O0

δ(a) and δ ≤ δε.

Consequently
(

M ∩ O0
δ (a)

)

⊂ ∆ ( f ; xε), and, as a result

∣

∣M ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

≤

∣

∣∆ ( f ; xε) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

, ∀ δ ≤ δε. (12)

From M ∈ Jst (a) it follows that

lim
δ→0

∣

∣M ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

= 1.

Then from (12) we obtain that

lim
δ→0

∣

∣∆ ( f ; xε) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

= 1.

We will also need the following lemma.

Lemma 1. Let Mk ∈ Jst (a), k = 1, 2, then M1 ∩ M2 ∈ Jst (a).

Proof. We have M1 ∩ M2 = (M1 ∪ M2) \ (M1∆M2), where M1∆M2 = (M2\M1) ∪ (M1\M2) is

a symmetric difference of sets M1 and M2. Consequently,

M1 ∩ M2 ∩ O0
δ (a) =

[

(M1 ∪ M2) ∩ O0
δ (a)

]

\
[

(M1∆M2) ∩ O0
δ (a)

]

. (13)

We have

(M1∆M2) ∩ O0
δ (a) =

[

(M2\M1) ∩ O0
δ (a)

]

∪
[

(M1\M2) ∩ O0
δ (a)

]

.

We pay attention to the fact that

(M2\M1) ∩ O0
δ (a) = Mc

1 ∩ O0
δ (a) , (14)
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where Mc = J\M is a complement of a set M in J. From M1 ∈ Jst (a) it follows that

lim
δ→0

∣

∣Mc
1 ∩ O0

δ (a)
∣

∣

∣

∣O0
δ (a)

∣

∣

= 0.

Then from (14) we obtain
|(M2\M1)∩O0

δ(a)|
|O0

δ(a)|
→ 0, δ→ 0. Similarly we establish

|(M1\M2)∩O0
δ(a)|

|O0
δ(a)|

→0,

δ →0. Thus, it is valid
∣

∣(M1∆M2) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

→ 0 , δ → 0. (15)

It is obvious that
∣

∣(M1 ∪ M2) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

→ 1 , δ → 0.

From (13) we directly obtain
|(M1∩M2)∩O0

δ(a)|
|O0

δ(a)|
=

|(M1∪M2)∩O0
δ(a)|

|O0
δ(a)|

−
|(M1∆M2)∩O0

δ(a)|
|O0

δ(a)|
. Taking

into account (14) and (15) we have
∣

∣(M1 ∩ M2) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

→ 1, δ → 0, i.e. M1 ∩ M2 ∈ Jst (a) .

The lemma is proved.

Theorem 3. Let the measure µ (·) satisfies the conditions α) and β). Then the function

f : J → R is µ-stat fundamental at a point a ∈ R if and only if ∃ µ-st lim
x→a

f (x).

Proof. Let us assume that the function f : J → R is a µ-statistical fundamental at a point a ∈ J.

Then for ε1 = 1 there exists x1 ∈ J such that

lim
δ→0

∣

∣∆ ( f ; x1) ∩ O0
δ (a)

∣

∣

∣

∣O0
δ (a)

∣

∣

= 1,

where ∆ ( f ; xk) = {x ∈ J : | f (x)− f (xk)| < εk}, k ∈ N. Consequently, ∆ ( f ; x1) ∈ Jst (a).

Similarly, for ε2 = 1
2 there exists x2 ∈ J such that ∆ ( f ; x2) ∈ Jst (a). By Lemma 1, we obtain

∆ ( f ; x1) ∩ ∆ ( f ; x2) ≡ J1 ∈ Jst (a) .

Let

RJ1
= { f (x) : x ∈ J1} and I2 ≡

[

f (x2)−
1

2
, f (x2) +

1

2

]

.

It is clear that RJ1
⊂ I2.

Similarly, we define ∆ ( f ; x4)≡
{

x ∈ J : | f (x)− f (x4)|<
1
4

}

, and consider J2 ≡ J1 ∩∆ ( f ; x4).

Again, by Lemma 1, we have J2 ∈ Jst (a). Put RJ2
= { f (x) : x ∈ J2}. Let

RJ2
⊂ I22 ≡

([

f (x4)−
1

4
, f (x4) +

1

4

]

∩ I2

)

.

Continuing this process, we obtain a sequence of segments I2n and sets RJn ⊂ I2n , with the

following properties

I21 ⊃ I22 ⊃ . . . , d (I2n) ≤
1

2n−1
,

RJn ≡ { f (x) : x ∈ Jn} ⊂ I2n ,

Jn−1 ≡ ∆ ( f ; xn−1) ∩ ∆ ( f ; xn) ,

Jn ∈ Jst (a) , ∀ n ∈ N,
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where d (I) is the length of the segment I.

Absolutely obvious that ∃! A ∈
⋂∞

n=1 I2n .

Let us show that µ-st lim
x→a

f (x) = A. Let ε > 0 be an arbitrary number. It is clear that there

exists n0 ∈ N such that

I2n ⊂
(

A −
ε

2
, A +

ε

2

)

, ∀ n ≥ n0.

Thus, we have

RJn0
⊂ I2n0 ≡

[

f (x2n0 )−
1

2n0
, f (x2n0 ) +

1

2n0

]

∩ I2n0−1 .

On the other hand RJn0
≡ { f (x) : x ∈ Jn0}, and, due to the structure of Jn0 ∈ Jst (a), where

Jn0 ≡ Jn0−1 ∩ ∆ ( f ; x2n0 ), we have

∆ ( f ; x2n0 ) ≡
{

x ∈ J : | f (x)− f (x2n0 )| <
1

2n0

}

.

Choose n0 from the condition 1
2n0 <

ε
2 . We have

| f (x)− A| ≤ | f (x)− f (x2n0 )|+ | f (x2n0 )− A| < | f (x)− f (x2n0 )|+
ε

2
.

Hence it directly follows that

{

x ∈ J : | f (x)− f (x2n0 )| <
1

2n0

}

⊂ {x ∈ J : | f (x)− A| < ε} , i.e. ∆ ( f ; x2n0 ) ⊂ ∆ε ( f ; A) .

Since, ∆ ( f ; x2n0 ) ∈ Jst (a), from the previous inclusion follows that ∆ε ( f ; A) ∈ Jst (a). From

the arbitrariness of ε > 0, we obtain µ-st lim
x→a

f (x) = A. Thus, the theorem is proved.

Definition 6. The functions f ; g : J → R are called µ-statistical equivalent at a point a ∈ J if

J f ;g ∈ Jst (a), where

J f ;g ≡ {x ∈ J : f (x) = g (x)} .

This fact will be denoted as f
st
∼ g, x → a.

Assume that ∃ µ-st lim
x→a

f (x) = A. Then by Theorem 1, there exists M ∈ Jst (a) such that

lim
M∋x→a

f (x) = A. Define

g (x) ≡

{

f (x) , x ∈ M ,

A , x ∈ Mc .

It is clear that M ⊂ J f ;g ⇒ J f ;g ∈ Jst (a) ⇒ f
st
∼ g , x → a. Clearly, lim

x→a
g (x) = A.

Vice versa, let

lim
x→a

g (x) = A ∧ f
st
∼ g , x → a.

Then it is easy to see that µ-st lim
x→a

f (x) = A. As a result, the following assertion is valid.

Theorem 4. Let the measure µ (·) satisfies the conditions α) and β). Then for the function

f : J → R the following statements are equivalent to each other:

1) ∃ µ-st lim
x→a

f (x),

2) f is µ-stat fundamental at the point x = a,

3) ∃ g : J → R ∧∃ lim
x→a

g (x)∧ f
st
∼ g , x → a.
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3 The space of µ-stat continuous functions

Similar to the classical case, if

µ-st lim
x→x0−0

f (x) = µ-st lim
x→x0+0

f (x) 6= f (x0) ,

then x0 is called µ-stat removable discontinuity point. If ∃ µ-st lim
x→x0±0

f (x) and

µ-st lim
x→x0−0

f (x) 6= µ-st lim
x→x0+0

f (x) ,

then x0 is called µ-stat discontinuity of the first kind and the quantity

∆st
f (x0) = µ-st lim

x→x0+0
f (x)− µ-st lim

x→x0−0
f (x)

is called a µ-stat jump of the function f at x0.

In other cases, x0 is called a µ-stat discontinuity point of the second kind.

Example 1. Let (R; B; µ) be a measurable space with a Lebesgue measure. Consider the func-

tion

f (x) =

{

sin x, x ∈ Q,

sign x, x ∈ R\Q,

where Q are rational numbers in R. The point x0 = 0 is a µ-stat discontinuity of the first kind

and ∆st
f (0) = 2. All other points are µ-stat continuity points.

If

µ-st lim
x→x0−0

f (x) = µ-st lim
x→x0+0

f (x) = f (x0) ,

holds, then f (·) is called a µ-stat continuous at the point x0.

Let f : [a, b] → R be some function. It is clear that if f ∈ C [a, b], then f (·) is a µ-stat

continuous on [a, b]. The following question arises naturally.

Question 1. Let f : [a, b] → R be a µ-stat continuous on [a, b]. Is it continuous on [a, b]?

It is obvious that if f (·) has a discontinuity of the first kind at the point x0 ∈ (a, b), then x0

is also a µ-stat discontinuity point of the first kind and moreover µ-st f (x0 ± 0) = f (x0 ± 0).

Therefore, if f (·) has a discontinuity of the first kind at the point x0, then it can not be a µ-stat

continuous at this point.

Denote the linear space of µ-stat continuous functions on [a, b] over the field K (K ≡ C or

R) by Cst [a, b]. It is absolutely clear that the pointwise limit of the sequence of µ-stat continu-

ous functions may not be µ-stat continuous on [a, b].

Let us give an example of a function on the interval E = [−1, 1], which is not continuous

on E, but at the same time, is µ-statistical continuous on E.

Lemma 2. The strict embedding C [a, b] ⊂ Cst [a, b], Cst [a, b] \C [a, b] 6= ∅, holds true.

Proof. The embedding C [a, b] ⊂ Cst [a, b] is obvious. So, we will prove the validity of

Cst [a, b] \ C [a, b] 6= ∅. Consider the following series

∞

∑
k=1

αk, αk > 0, ∀k ∈ N, (16)
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such that the remainder terms satisfy the conditions

σn ≤
1

(n + 1)3
, (17)

where σn = ∑
∞
k=n αk.

As [a, b] we take [−1, 1]. Let µ be a Lebesgue measure and Oδ (x) ≡ (x − δ, x + δ) ∩ [−1, 1].

Denote by in ⊂
(

1
n+1 , 1

n

)

an arbitrary interval of length αn, i.e. |in| = µ (in) = αn, n ∈ N.

✲

✻

0

1 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

1
3

a2 b2
1
2

a1 b1 1−1

☎
☎
☎
☎
☎☎

❉
❉
❉
❉
❉❉

☎
☎
☎
☎
☎☎

❉
❉
❉
❉
❉❉ f (·)

Figure 1

Let xn ∈ in be the middle of the interval in = (an, bn). Consider the points (1; 0), (b1; 0),

(x1; 1), (a1; 0), (b2; 0) , . . . , and connect them with the broken lines (see Figure 1). Denote the

function generated by this graph and the interval [−1, 0] by f (x). It is clear that f /∈ C [−1, 1],

because there does not exist f (+0). Let us show that f ∈ Cst [−1, 1]. Obviously, f (·) is

continuous at every point x0 6= 0, and therefore it is µ-stat continuous at these points. Let

us show that f (·) is µ-stat continuous at the point x = 0 too. To do so, it suffices to show that

there exist one-sided statistical limits at the point x = 0 and they are equal to each other.

Let ε > 0 be an arbitrary number. It is sufficient to prove that

Sn (ε) =

∣

∣

∣{x : | f (x) ≥ ε|} ∩ O 1
n
(0)

∣

∣

∣

∣

∣

∣
O 1

n
(0)

∣

∣

∣

→ 0 , n → ∞,

where |{ · }| is a Lebesgue measure of the set { · }. So, it is easy to see that

(

{x : | f (x) ≥ ε|} ∩ O 1
n
(0)

)

⊂
∞
⋃

k=n

ik,

and therefore

∣

∣

∣
{x : | f (x)| ≥ ε} ∩ O 1

n
(0)

∣

∣

∣
≤

∣

∣

∣

∣

∣

∞
⋃

k=n

ik

∣

∣

∣

∣

∣

=
∞

∑
k=n

|ik| = σn ≤
1

(n + 1)3
.

Consequently

Sn (ε) ≤
n

2 (n + 1)3
→ 0 , n → ∞.

This immediately implies that

Sδ (ε) =
|{x : | f (x)| ≥ ε} ∩ Oδ (0)|

|Oδ (0)|
→ 0 , δ → 0,

and, as a result f (·) is a µ-stat continuous at x = 0 and hence f ∈ Cst [−1, 1]. The lemma is

proved.
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Similarly, we can give an example of non-bounded function on the interval [−1, 1], which

is a µ-stat continuous on [−1, 1].

Lemma 3. The relations Cst [a, b] \Lp (a, b) 6= ∅ and Lp (a, b) \Cst [a, b] 6= ∅, ∀ p ∈ [1,+∞),

hold true.

Proof. The relation Lp (a, b) \Cst [a, b] 6= ∅ is obvious, since the function having a removable

discontinuity point does not belong to Cst [a, b]. Let us prove Cst [a, b] \Lp (a, b) 6= ∅ .

Consider the series (16), satisfying the condition (17). Similarly to the previous case, we

consider the intervals

in = (an, bn) ⊂

(

1

n + 1
,

1

n

)

: |in| = αn,

and let xn = an+bn
2 . Consider the points (1; 0), (b1; 0), (x1; α−1

1 ), (a1; 0), (b2; 0), (x2; α−1
2 ), . . . .

Let us connect them by segments. Denote by f (x) the function obtained by these segments

and the segment [−1, 0]. From previous arguments it follows that f ∈ Cst [−1, 1]. We have

∫ 1

−1
| f (x)| dx =

∞

∑
k=1

∫

ik

| f (x)| dx =
∞

∑
k=1

1

2
αk f (xk) =

1

2

∞

∑
k=1

1 = +∞.

Thus, f /∈ Lp (0, 1), ∀p ∈ [1,+∞). It is obvious that

C [a, b] ⊂
(

Cst [a, b] ∩ Lp (a, b)
)

, ∀p ∈ [1,+∞) .

The lemma is proved.

The previous example shows that C [a, b] is not dense in Cst [a, b] with respect to the norm

‖ · ‖p. The following question arises naturally.

Question 2. Is there such a metric or such convergence, with respect to which the space

Cst [a, b] is complete?

Let

CJ
st [a, b] ≡ { f ∈ Cst [a, b] : ‖ f‖∞ < +∞} , where ‖ f‖∞ = sup

[a,b]

| f (·)| .

It is clear that the following strict embeddings hold true

C [a, b] ⊂ CJ
st [a, b] ⊂ Lp (a, b) , ∀p ∈ (0,+∞) .

Under Lp (a, b) we understand the space of measurable (with respect to the Lebesgue measure)

functions on (a, b), for p ∈ (0, 1), with finite integral

∫ b

a
| f (t)|p dt < +∞.

Theorem 5. Let (R; B; µ) be a measurable space with a σ-finite measure µ on the σ-algebra of

Borel sets B and

µ ((−∞, x0)) = µ ((x0,+∞)) = +∞

for some x0 ∈ R. Then the embeddings:

i) C [a, b] ⊂
(

Cst [a, b] ∩ Lp (a, b)
)

, ∀ p ∈ (0,+∞),

ii) C [a, b] ⊂
(

CJ
st [a, b] ⊂ Lp (a, b)

)

, ∀ p ∈ (0,+∞),

hold true, and they are strict.
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Theorem 6. The space CJ
st [a, b] is a Banach space with respect to the norm ‖ · ‖∞.

Proof. Let us show that the space CJ
st [a, b] is complete with respect to the norm of C [a, b] ⊂

(

Cst [a, b] ∩ Lp (a, b)
)

, ∀p ∈ (0,+∞). Let { fn}n∈N ⊂ CJ
st [a, b] be some fundamental sequence,

i.e. ‖ fn − fm‖∞ → 0 as n, m → ∞.

Fixing ∀x ∈ [a, b], we obtain that { fn (x)}n∈N is a fundamental sequence and, as a result,

it converges to a certain value f (x). Let us show that f ∈ CJ
st [a, b]. Let ε > 0 be an arbitrary

number and x0 ∈ [a, b] be an arbitrary point. Take ∀n ∈ N and let

En (ε) ≡
{

x : | fn (x)− fn (x0)| ≥
ε

3

}

, En ( f ; ε) ≡
{

x : | f (x)− fn (x)| ≥
ε

3

}

.

We have

| f (x)− f (x0)| ≤ | f (x)− fn (x)|+ | fn (x)− fn (x0)|+ | fn (x0)− f (x0)| . (18)

It is obvious that ‖ fn − f‖∞ → 0 as n → ∞. Therefore, it is clear that

| fn (x)− f (x)| <
ε

3
, ∀x ∈ [a, b] .

Then from (18) it follows that {x : | f (x)− f (x0)| ≥ ε} ⊂ En (ε), ∀n ≥ nε. Since, otherwise

| f (x)− f (x0)| ≤
2

3
ε + | fn (x)− fn (x0)| <

2

3
ε +

1

3
ε = ε.

Consequently ({x : | f (x)− f (x0)| ≥ ε} ∩ Oδ (x0)) ⊂ (En (ε) ∩ Oδ (x0)), and, as a result

|{x : | f (x)− f (x0)| ≥ ε} ∩ Oδ (x0)| ≤ |En (ε) ∩ Oδ (x0)| , ∀n ≥ nε. (19)

Take ∀n ≥ nε and fix it. So, fn0 ∈ CJ
st [a, b], then from (19) we obtain

lim
δ→0

|{x : | f (x)− f (x0)| ≥ ε} ∩ Oδ (x0)|

|Oδ (x0)|
≤ lim

δ→0

|En0 (ε) ∩ Oδ (x0)|

Oδ (x0)
= 0.

From the arbitrariness of x0 it follows that f ∈ CJ
st [a, b]. Theorem is proved.

Finally, compare the concept of µ-stat continuity with the concept of approximate continu-

ity. Let us recall the definition of approximate continuity.

Let E ⊂ R be some measurable (with respect to the Lebesgue measure) set and assume

E (x0; h) = E ∩ [x0 − h, x0 + h] = E [x0 − h, x0 + h] .

Definition 7. The limit

Dx0 E = lim
h→0

mE (x0; h)

2h
,

(in case it exists) is called a density of the set E at the point x0.

If Dx0 E = 1, then x0 is a point of density for the set E, and if Dx0 E = 0, then x0 is a

rarefaction point of E.

In our case, x0 is a point of m-stat density for the set E, where m is a Lebesgue measure.

The following theorem is known.
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Theorem 7. Almost all points of measurable set E are its density points.

More details about the following concept can be found in [35].

Definition 8. Let the function f (x) be given on the segment [a, b] and x0 ∈ [a, b]. If there exists

a measurable set E ⊂ [a, b] with a density point x0 such that f (x) is continuous along E at the

point x0, then f (x) is said to be approximate continuous at the point x0.

In our case, the concept of approximate continuity coincides with the one of m-stat conti-

nuity at the point x0 . Let us recall the following Denjoy theorem.

Theorem 8 (Denjoy). If f (x) is a measurable and almost everywhere finite function in [a, b],

then it is approximate continuous at almost every point in [a, b].

Consequently, if f (·) is measurable and almost everywhere finite in [a, b], then it is m-stat

continuous almost everywhere in [a, b].
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У цiй статтi введено поняття точкової µ-статистичної щiльностi, на основi чого визначе-

но поняття точкової µ-статистичної границi, що генерується деякою мiрою Бореля µ (·). Та-

кож ми вводимо поняття µ-статистичної фундаментальностi в точцi та доводимо її еквiвален-

тнiсть з µ-stat збiжнiстю. Класифiкацiя точок розриву перенесена на цей випадок. Визначено

вiдповiдний простiр µ-stat неперервних на вiдрiзку функцiй з sup-нормою. Доведено, що цей

простiр є банаховим та розглянуто зв’язок мiж цим простором та простором неперервних i

сумовних за Лебегом функцiй.

Ключовi слова i фрази: µ-stat збiжнiсть, µ-stat фундаментальнiсть, простiр µ-статистично не-

перервних функцiй.


