

# Lipschitz symmetric functions on Banach spaces with symmetric bases

Martsinkiv M.V., Vasylyshyn S.I., Vasylyshyn T.V.<sup>⊠</sup>, Zagorodnyuk A.V.

We investigate Lipschitz symmetric functions on a Banach space *X* with a symmetric basis. We consider power symmetric polynomials on  $\ell_1$  and show that they are Lipschitz on the unbounded subset consisting of vectors  $x \in \ell_1$  such that  $|x_n| \leq 1$ . Using functions max and min and tropical polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on the Banach space  $c_0$  which can be described as a semiring of compositions of tropical polynomials over  $c_0$ .

*Key words and phrases:* Lipschitz symmetric function on Banach space, symmetric basis, tropical polynomial.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018, Ivano-Frankivsk, Ukraine Corresponding author E-mail: maria.martsinkiv@pnu.edu.ua(Martsinkiv M.V.), sv.halushchak@gmail.com(Vasylyshyn S.I.), taras.vasylyshyn@pnu.edu.ua(Vasylyshyn T.V.),

```
andriy.zagorodnyuk@pnu.edu.ua(Zagorodnyuk A.V.)
```

## Introduction

Symmetric functions of infinitely many variables play an important role in the nonlinear functional analysis and its applications [12]. Let *X* be a real Banach space. We recall that a Schauder basis  $(e_n)$  in *X* is *symmetric* if it is equivalent to the basis  $(e_{\sigma(n)})$  for every permutation  $\sigma$  of the set of positive integers  $\mathbb{N}$ . Let us denote by  $S^{\infty}$  the group of all permutations (bijections) on the set of natural numbers  $\mathbb{N}$ . Any  $\sigma \in S^{\infty}$  acts on *X* by

$$\sigma(x) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)}, \ldots), \quad x = \sum_{n=1}^{\infty} x_n e_n = (x_1, \ldots, x_n, \ldots) \in X.$$

A function  $f: X \to \mathbb{R}$  is called *symmetric* if  $f(\sigma(x)) = f(x)$  for all  $x \in X$  and  $\sigma \in S^{\infty}$ . It is naturally to study symmetric polynomials and analytic functions on X as "simple" nonlinear symmetric functions. Algebras of symmetric analytic functions and their generalizations on real and complex Banach spaces were investigated by many authors (see [1–9, 14, 16–18] and references therein). However, some Banach spaces like  $c_0$  do not support symmetric polynomials while support a lot of symmetric Lipschitz functions. In [12] it was proposed symmetric slice polynomials for approximation of uniformly continuous symmetric functions on  $c_0$ . But the slice polynomials are not Lipschitz in the general case. In this paper we consider some classes of Lipschitz symmetric functions on a real Banach space X with a symmetric basis.

This research was funded by the National Research Foundation of Ukraine, 2020.02/0025, 0121U111037

© Martsinkiv M.V., Vasylyshyn S.I., Vasylyshyn T.V., Zagorodnyuk A.V., 2021

УДК 517.98

<sup>2020</sup> Mathematics Subject Classification: 41A65, 46E15, 46G25, 05E05.

A mapping *P* from a Banach space *X* to a Banach space *Y* is an *n*-homogeneous polynomial if there is an *n*-linear map *B* on the *n*th Cartesian power  $X^n$  to *Y* such that P(x) = B(x, ..., x). A finite sum of homogeneous polynomials  $P = P_0 + P_1 + \cdots + P_m$  is a polynomial of degree *m* if each  $P_n$  is an *n*-homogeneous polynomial,  $0 \le n \le m$ , and  $P_m \ne 0$ .

Let us recall that a function f from a metric space  $(M_1, \rho_1)$  to a metric space  $(M_2, \rho_2)$  is *Lipschitz* if there is a constant L such that  $\rho_2(f(x), f(y)) \leq L\rho_1(x, y)$ ,  $x, y \in M_1$ . The infimum over all constants L satisfying the inequality above is called the *Lipschitz constant* of f and denoted by L(f). We refer the reader to the N. Weaver book [19] for details about Lipschitz mappings and to J. Mujica book [13] for details on polynomials and analytic functions on Banach spaces.

In Section 1, we discuss the question about existence of Lipschitz symmetric polynomials on an unbounded domain in  $\ell_1$ . In Section 2, we consider Lipschitz functions on *X*, constructed using operations max, min and their linear combinations. It leads us to so-called Tropical Mathematics [15] which proceeds with semirings involving such operations. Some connections between Lipschitz symmetric functions on *X* and tropical polynomials of infinitely many variables are found.

#### 1 Lipschitz symmetric polynomials

It is clear that any polynomial of degree greater than 1 is not Lipschitz on *X*, even if *X* is finite dimensional. However polynomials are locally Lipschitz. Among of symmetric polynomials we can find Lipschitz ones on some unbounded sets.

Let  $c_{00}$  be the space of all finite sequences, that is, if  $x = (x_1, ..., x_n, ...) \in c_{00}$ , then only a finite number of coordinates  $x_n$  is not equal to zero. We consider power symmetric polynomials

$$F_m(x) = \sum_{i=1}^{\infty} x_i^m$$

and elementary symmetric polynomials

$$G_m(x) = \sum_{i_1 < \cdots < i_m} x_{i_1} \cdots x_{i_m}, \quad m \in \mathbb{N}, \quad x \in c_{00}.$$

It is well known that polynomials  $(F_m)$  and  $(G_m)$ , form algebraic bases in the algebra of all symmetric polynomials on  $c_{00}$  (see e.g. [11]). Both  $(F_m)$  and  $(G_m)$  can be extended to  $\ell_1$  for every  $m \in \mathbb{N}$ . We will use the same symbols for the extensions.

**Lemma 1.** Symmetric polynomials  $F_m^k(x) = (\sum_{i=1}^n x_i^m)^k$  on  $\mathbb{R}^n$  with the  $\ell_1$ -norm are Lipschitz with constants  $n^{k-1} \leq L(F_m^k) \leq mkn^{k-1}$  on the domain  $D_n = \{x \in \mathbb{R}^n : |x_i| \leq 1, i = 1, ..., n\}$ .

Proof. We have

$$\begin{aligned} |F_m^k(x) - F_m^k(y)| &= |F_m(x) - F_m(y)| |F_m^{k-1}(x) + F_m^{k-2}(x) F_m(y) \\ &+ \dots + F_m(x) F_m^{k-2}(y) + F_m^{k-1}(y)| \\ &\leq \sum_{i=1}^n |x_i^m - y_i^m| \left| \left(\sum_{i=1}^n x_i^m\right)^{k-1} + \left(\sum_{i=1}^n x_i^m\right)^{k-2} \sum_{i=1}^n y_i^m + \dots + \sum_{i=1}^n x_i^m \left(\sum_{i=1}^n y_i^m\right)^{k-2} + \left(\sum_{i=1}^n y_i^m\right)^{k-1} \right|. \end{aligned}$$

Since  $|x_i| \le 1$  and  $|y_i| \le 1$ , it follows that

$$\begin{aligned} |F_m^k(x) - F_m^k(y)| &\leq kn^{k-1} \sum_{i=1}^n |x_i^m - y_i^m| \\ &= kn^{k-1} \sum_{i=1}^n |(x_i - y_i)(x_i^{m-1} + x_i^{m-2}y_i + \dots + x_iy_i^{m-2} + y_i^{m-1})| \\ &\leq mkn^{k-1} \sum_{i=1}^n |x_i - y_i| = mkn^{k-1} ||x - y||_{\ell_1}. \end{aligned}$$

To get a lower estimation, we set  $x_0 = (\underbrace{1, \dots, 1}_{n})$  and  $y_0 = 0$ . Then

$$|F_m^k(x) - F_m^k(y)| \ge |F_m^k(x_0) - F_m^k(y_0)| = n^k = n^{k-1} ||x_0 - y_0||_{\ell_1}.$$

Since all norms on  $\mathbb{R}^n$  are equivalent, we have that  $F_m^k$  are Lipschitz functions for any norm on  $\mathbb{R}^n$ . But for the case of  $\ell_1$ -norm we have estimations for the Lipschitz constant which do not depend on n if k = 1. Thus we can prove the following theorem.

**Theorem 1.** Polynomials  $F_m$ ,  $m \in \mathbb{N}$  are Lipschitz functions on  $D_{\infty} = \{x \in \ell_1 : |x_i| \le 1, i \in \mathbb{N}\}$ with  $1 \le L(F_m) \le m$  and  $F_m^k$  are not Lipschitz on  $D_{\infty}$  for every k > 1.

*Proof.* Since the estimation  $1 \le L(F_m) \le m$  holds for every  $(\mathbb{R}^n, \|\cdot\|_{\ell_1})$ , it is still correct if  $n \to \infty$ . For k > 1 we have that  $n^{k-1} \le L(F_m^k)$  and so  $L(F_m^k) \to \infty$  as  $n \to \infty$ .

Note that polynomials  $G_m$  are not Lipschitz on  $D_\infty$ . For example, routine calculations show that for the Lipschitz constant of the restriction of  $G_2$  to  $D_2$  we have  $(n-1)/2 \le L(G_2) \le n-1$ .

#### 2 Banach spaces and tropical semirings of Lipschitz functions

It is well-known (see, e.g., [10, p. 114]) that, on every Banach space with a symmetric basis, there is an equivalent symmetric norm  $\|\cdot\|$  and

$$\|x\| = \left\|\sum_{n=1}^{\infty} x_n e_n\right\| = \left\|\sum_{n=1}^{\infty} |x_n| e_n\right\|, \quad x \in X.$$

Throughout this section we suppose that the real Banach space *X* has a symmetric basis  $(e_{\sigma(n)}), n \in \mathbb{N}$ , is endowed with a symmetric norm  $\|\cdot\| = \|\cdot\|_X$ , and the  $c_0$ -norm is continuous on *X*, that is there is a constant C > 0, such that  $\|x\|_{c_0} = \sup_n |x_n| \leq C \|x\|_X$  for every  $x = (x_1, \ldots, x_n, \ldots) \in X$ . Spaces  $c_0$  and  $\ell_p$ , for  $1 \leq p < \infty$  are typical examples of such spaces. Let  $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$ . We will use notation  $X(\mathbb{Z}_0)$  for the "two-side *X*", that is  $X \oplus X$  indexed by negative and positive integers.

Let  $x = (x_1, x_2, ..., x_n, ...) \in X$ . We denote by  $\operatorname{supp}^+(x) := \{k \in \mathbb{N} : x_k > 0\}$  and by  $\operatorname{supp}^-(x) := \{k \in \mathbb{N} : x_k < 0\}$ . Clearly,  $\operatorname{supp}(x) = \operatorname{supp}^+(x) \cup \operatorname{supp}^-(x)$ . For every vector  $x \in X$  we assign a vector  $\hat{x} = (..., 0, \hat{x}_{-j}, ..., \hat{x}_{-1}, \hat{x}_1, ..., \hat{x}_m, 0, ...)$  in the space  $X(\mathbb{Z}_0)$ , ordered by the following way:  $m = |\operatorname{supp}^+(x)|, j = |\operatorname{supp}^-(x)|$  (m and/or j may be equal to infinity) and  $\hat{x}_{-j} \leq \cdots \leq \hat{x}_{-1}$ , and  $\hat{x}_1 \geq \cdots \geq \hat{x}_m$ .

We denote by  $\mathcal{M}_X \subset X(\mathbb{Z}_0)$  the set  $\{\hat{x}: x \in X\}$ . The set  $\mathcal{M}_X$  can be considered as the quotient of X with respect to the following equivalence:  $x \sim y$  if and only if  $\hat{x} = \hat{y}$ . We suppose that  $\mathcal{M}_X$  is endowed with the quotient topology, that is, the strongest topology such that the quotient map  $x \mapsto \hat{x}$  is continuous.

**Proposition 1.** Let *Y* be a topological space and  $f: \mathcal{M}_X \to Y$  be a continuous map. Then  $\check{f}(x) := f(\hat{x})$  is a symmetric and continuous map on *X*.

*Proof.* The continuity of  $\check{f}$  follows from the fact that the quotient map is open. Also, by the definition of f, f(x) = f(y) if  $x \sim y$ .

For a given  $\hat{x} = (\dots, 0, \hat{x}_{-j}, \dots, \hat{x}_m, 0, \dots)$  and every  $n \in \mathbb{Z}_0$  we define

$$g_n(x) = \begin{cases} \widehat{x}_n, & \text{if } -j \le n \le m \\ 0, & \text{otherwise.} \end{cases}$$

**Theorem 2.** Functions  $g_n$  are Lipschitz symmetric on X with  $1 \le L(g_n) \le C$ , where C > 0 is such that  $||u||_{c_0} \le C ||u||_X$ ,  $u \in X$ . If  $\hat{x} = (\dots, 0, \hat{x}_{-j}, \dots, \hat{x}_m, 0, \dots)$ , then

$$g_n(x) = \max_{i_1 < \dots < i_n} \left( \min(\widehat{x}_{i_1}, \dots, \widehat{x}_{i_n}) \right) \quad \text{for} \quad n > 0, \tag{1}$$

and

$$g_n(x) = \min_{i_1 < \dots < i_n} \left( \max(\widehat{x}_{-i_1}, \dots, \widehat{x}_{-i_n}) \right) \quad \text{for} \quad n < 0.$$
<sup>(2)</sup>

*Proof.* The symmetry of  $g_n$  follows from Proposition 1. Equation (1) is correct because if  $0 < n \le m$ , then  $\max_{i_1 < \dots < i_n} (\min(\hat{x}_{i_1}, \dots, \hat{x}_{i_n}))$  will be attended at the tuple  $(\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)$  and will be equal to  $\hat{x}_n$ . If n > m, then each tuple  $(\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)$  will contain 0 and so  $g_n(x) = 0$ . Formula (2) can be proved in a similar way.

Let us show that  $g_n$  is a Lipschitz function for n > 0. Let  $x, y \in X$  and  $k, i \in \mathbb{N}$  are such that  $x_k = \hat{x}_n$  and  $y_i = \hat{y}_n$ . Without loss of the generality, we can assume that  $x_k \ge y_i$ . Consider the case n = 1. Since  $g_1(y) = y_i$ , it follows that  $y_i \ge y_s$  for every  $s \in \mathbb{N}$ . In particular,  $y_i \ge y_k$ . Thus, we have  $x_k \ge y_i \ge y_k \ge 0$ . Consequently,

$$|g_1(x) - g_1(y)| = |x_k - y_i| \le |x_k - y_k| \le ||x - y||_{c_0} \le C ||x - y||_X.$$

Consider the case n > 1. Since  $g_n(x) = x_k$ , it follows that there exists the set of indexes  $\{s_1, \ldots, s_n\}$  such that  $x_{s_1} \ge x_k, \ldots, x_{s_n} \ge x_k$ . Since  $g_n(y) = y_i$ , it follows that there exists not more than n - 1 indexes  $m \in \mathbb{N}$  such that  $y_m > y_i$ . Therefore, taking into account that  $|\{s_1, \ldots, s_n\}| = n > n - 1$ , there exists  $j \in \{1, \ldots, n\}$  such that  $y_{s_j} \le y_i$ . Thus, we have  $x_{s_j} \ge x_k \ge y_i \ge y_{s_j} \ge 0$ . Consequently,

$$|g_n(x) - g_n(y)| = |x_k - y_i| \le |x_{s_j} - y_{s_j}| \le ||x - y||_{c_0} \le C ||x - y||_X.$$

In the case n < 0 the proof is analogical.

Note that the functions  $g_n$  are nonlinear and  $g_1(x) = \sup_k x_k$ . It can be checked that we have the following formula for representation of any element in  $M_X$ .

**Proposition 2.** *Every*  $\hat{x} \in \mathcal{M}_X \subset X(\mathbb{Z}_0)$  *can be represented by* 

$$\widehat{x} = \sum_{n \in \mathbb{Z}_0} g_n(x) e_n.$$

Theorem 2 and Proposition 2 imply the following corollary.

**Corollary 1.** The mapping  $\iota: c_0 \ni x \mapsto \hat{x} \in \mathcal{M}_{c_0}$  is 1-Lipschitz.

*Proof.* By Proposition 2,

$$\|\widehat{x} - \widehat{y}\| = \left\|\sum_{n \in \mathbb{Z}_0} (g_n(x) - g_n(y))e_n\right\|_{c_0} = \sup_{n \in \mathbb{Z}_0} |g_n(x) - g_n(y)|.$$

By Theorem 2,  $L(g_n) = 1$  for the case  $X = c_0$ . Therefore  $|g_n(x) - g_n(y)| \le ||x - y||_{c_0}$ . Consequently,  $||\widehat{x} - \widehat{y}|| \le ||x - y||_{c_0}$ .

Let  $\varphi \in c_0(\mathbb{Z}_0)^*$  be a linear continuous functional on  $c_0(\mathbb{Z}_0)$ . Then  $\varphi$  is completely defined by the sequence of its values on the basis vectors,  $(c_n) = (\varphi(e_n)) \in \ell_1(\mathbb{Z}_0)$ . In this sense, we will say that  $c_0(\mathbb{Z}_0)^*$  coincides with  $\ell_1(\mathbb{Z}_0)$ .

**Corollary 2.** For every  $\varphi = (c_n) \in \ell_1(\mathbb{Z}_0)$  the function

$$g_{\varphi}(x) := \sum_{n \in \mathbb{Z}_0} c_n g_n(x)$$

is a Lipschitz symmetric function and  $L(g_{\varphi}) \leq L(\varphi)$ .

*Proof.* According to Proposition 2, we have that  $g_{\varphi}(x) = \varphi(\hat{x})$  and so it is well-defined. From Corollary 1 it follows that  $g_{\varphi} = \varphi \circ \iota$  is a composition of two Lipschitz mappings and so it is Lipschitz with  $L(g_{\varphi}) \leq L(\iota)L(\varphi) = L(\varphi)$  [19, p. 4].

Let us estimate the norm of  $g_{\varphi}$ ,

$$\|g_{\varphi}\| = \sup_{\|x\| \le 1} |g_{\varphi}(x)| = \sup_{\|x\| \le 1} |g_{\varphi}(x) - g_{\varphi}(0)| \le L(\varphi) = \|\varphi\|.$$

**Theorem 3.** *For every*  $x \in c_0$ *,* 

$$||x|| = \sup_{\|\varphi\| \le 1} |g_{\varphi}(x)|.$$

*Proof.* For given  $x \in c_0$  and  $\varepsilon > 0$  let  $\psi_{\varepsilon} \in c_0^*$ ,  $\|\psi_{\varepsilon}\| = 1$ , be such that  $|\psi_{\varepsilon}(x)| = \|x\| - \varepsilon$ . Such a functional  $\psi_{\varepsilon}$  exists according to the Hahn–Banach Theorem. Let  $\psi_{\varepsilon}(e_n) = b_n$  and  $\gamma \colon \mathbb{Z}_0 \to \mathbb{N}$  be a map such that  $\gamma(k) = j$  if  $g_k(x) = x_j$ . Clearly,  $\gamma$  is a bijection from supp $(\widehat{x})$  to supp(x). Let us define a functional  $\varphi_{\varepsilon} \in c_0(\mathbb{Z}_0)^*$  so that  $c_k = b_{\gamma(k)}$ ,  $k \in \mathbb{Z}_0$ . Then  $\|\varphi_{\varepsilon}\| \le 1$  and

$$|g_{\varphi_{\varepsilon}}(x)| = |\varphi_{\varepsilon}(\widehat{x})| = |\psi_{\varepsilon}(x)| = ||x|| - \varepsilon.$$

Since it is true for every  $\varepsilon > 0$ , the required equality holds.

Note that functionals  $g_{\varphi}$ , where  $\varphi \in c_0(\mathbb{Z}_0)^*$ , does not cover all symmetric Lipschitz functions on  $c_0$ . It is known [19, p. 16] that if f and h are Lipschitz functions on a metric space, then both  $\max(f(x), h(x))$  and  $\min(f(x), h(x))$  are Lipschitz functions with Lipschitz constants bounded by  $\max(L(f), L(h))$ .

**Example.** Let  $f(x) = \max(g_1(x), 2g_2(x))$ . Then f can not be represented in the form  $g_{\varphi}$ . Indeed, if  $f = g_{\varphi}$  for some  $\varphi \in c_0(\mathbb{Z}_0)^*$ , then, since f(x) depends only on  $\hat{x}_1$  and  $\hat{x}_2$ , it should be of the form  $f(x) = c_1g_1(x) + c_2g_2(x)$  for some constants  $c_1$ ,  $c_2$ . If x is such that  $\hat{x}_1 = 5$ ,  $\hat{x}_2 = 1$ , then f(x) = 5; y is such that  $\hat{y}_1 = 5$ ,  $\hat{y}_2 = 2$ , then f(y) = 5; and z is such that  $\hat{z}_1 = 5$ ,  $\hat{z}_2 = 3$ , then f(z) = 6. But there are no constants  $c_1$ ,  $c_2$  which satisfy these conditions.

Another example of a Lipschitz symmetric function which can not be represented as  $g_{\varphi}$  is  $x \mapsto ||x||_{c_0} = \max(g_1(x), -g_{-1}(x)).$ 

Let us recall that a *tropical semiring* is the semiring  $(\mathbb{R} \cup \{+\infty\}, \oplus, \odot)$ , where the operations  $\oplus$  and  $\odot$  are defined by

 $a \oplus b = \min(a, b)$  and  $a \odot b = a + b$ ,  $a, b \in \mathbb{R} \cup \{+\infty\}$ .

It is known (see, e.g., [15]) that  $\mathbb{R} \cup \{+\infty\}$  is actually a semiring, where  $\oplus$  plays the role of addition, where  $+\infty$  is the zero-element, and  $\odot$  plays the role of multiplication. Note that  $\max(a,b) = -\min(-a,-b) = a + b - \min(a,b)$ . A *tropical polynomial* of several variables  $t_1, \ldots, t_n$  in  $\mathbb{R} \cup \{+\infty\}$  is a function of the form

$$p(t_1,\ldots,t_n) = a \odot t_1^{i_1} \ldots t_n^{i_n} \oplus b \odot t_1^{j_1} \cdots t_n^{j_n} \oplus \ldots$$
$$= \min(a + i_1t_1 + \cdots + i_nt_n, b + j_1t_1 + \cdots + j_nt_n, \ldots),$$

where the coefficients a, b, ... are real numbers and the exponents  $i_1, j_1, ...$  are integers. We can see that any tropical polynomial can be represented as minimum of some affine functions. Hence, every tropical polynomial is a Lipschitz function on  $\mathbb{R}^n$  and a finite composition of tropical polynomials is a Lipschitz function. Note that a composition of tropical polynomials is not a tropical polynomial in the general case. Thus we have the following result.

**Proposition 3.** Let  $g_{\varphi_1}, \ldots, g_{\varphi_n}$  be Lipschitz functions on  $c_0$ , generated by functionals

$$\varphi_1,\ldots,\varphi_n\in c_0(\mathbb{Z}_0)^*$$

as in Corollary 2 and  $q(t_1, ..., t_n)$  be a finite composition of tropical polynomials of variables  $t_1, ..., t_n$ . Then

$$Q(x) = q(g_1(x), \dots, g_n(x)), \quad x \in c_0,$$
 (3)

is a Lipschitz function on  $c_0$ .

**Question.** Under which conditions on  $c_0$  every Lipschitz symmetric function can be approximated by functions of the form (3) uniformly on  $c_0$ ?

Note that the norm in  $c_0$  can be written exactly as a composition of tropical polynomials of  $g_1$  and  $g_{-1}$ 

$$\|x\|_{c_0} = \max(g_1(x), -g_{-1}(x)) = g_1(x) - g_{-1}(x) - \min(g_1(x), -g_{-1}(x))$$
  
=  $g_1(x) \odot g_{-1}^{-1}(x) \odot (g_1(x) \oplus (g_{-1})^{-1})^{-1}(x).$ 

Thus, we have represented the Lipschitz symmetric function  $x \mapsto ||x||_{c_0}$  in the form (3).

### References

- Alencar R., Aron R., Galindo P., Zagorodnyuk A. *Algebra of symmetric holomorphic functions on ℓ<sub>p</sub>*. Bull. Lond. Math. Soc. 2003, **35** (1), 55–64. doi:10.1112/S0024609302001431
- [2] Aron R.M., Falcó J., García D., Maestre M. Algebras of symmetric holomorphic functions of several complex variables. Rev. Mat. Complut. 2018, 31 (3), 651–672. doi:10.1007/s13163-018-0261-x
- [3] Aron R., Falcó J., Maestre M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28 (1), 393–404. doi:10.1007/s12220-017-9825-0
- [4] Aron R., Galíndo P., Pinasco D., Zalduendo I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48 (5), 779–796. doi:10.1112/blms/bdw043

- [5] Chernega I., Holubchak O., Novosad Z., Zagorodnyuk A. Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2020, 6, 153–163. doi:10.1007/s40879-019-00390-z
- [6] Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55 (1), 125–142. doi:10.1017/S0013091509001655
- [7] Galindo P., Vasylyshyn T., Zagorodnyuk A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on L<sub>∞</sub>. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 2020, **114**, 56. doi:10.1007/s13398-020-00791-w
- [8] Gonzaléz M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc. 1999, 59 (2), 681–697. doi:10.1112/S0024610799007164
- [9] Jawad F., Zagorodnyuk A. Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 2019, 11 (9), 1111. doi:10.3390/sym11091111
- [10] Lindestrauss J., Tzafriri L. Classical Banach Spaces I: Sequence Spaces. In: Ergebnisse der mathematik und ihrer Grenzgebiete, 92. Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [11] Macdonald I.G. Symmetric Functions and Orthogonal Polynomials. In: University Lecture Series, 12. AMS, Providence, R.I., 1998.
- [12] Martsinkiv M., Zagorodnyuk A. Approximations of symmetric functions on Banach spaces with symmetric bases. Symmetry 2021, 13 (12), 2318. https://doi.org/10.3390/sym13122318
- [13] Mujica J. Complex Analysis in Banach Spaces. Elsevier, Amsterdam, 1986.
- [14] Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Math. USSR Sb. 1973, 21 (2), 255–277. (translation of Math. Sb. 1973, 92(134) (2(10)), 257–281. (in Russian))
- [15] Speyer D.E., Sturmfels B. *Tropical mathematics*. Math. Mag. 2009, 82 (3), 163–173. doi:10.1080/0025570X.2009.11953615
- [16] Vasylyshyn T. Symmetric functions on spaces  $\ell_p(\mathbb{R}^n)$  and  $\ell_p(\mathbb{C}^n)$ . Carpathian Math. Publ. 2020, **12** (1), 5–16. doi:10.15330/cmp.12.1.5-16
- [17] Vasylyshyn T.V., Zagorodnyuk A.V. Symmetric polynomials on the Cartesian power of the real Banach space  $L_{\infty}[0,1]$ . Mat. Stud. 2020, **53** (2), 192–205. doi:10.30970/ms.53.2.192-205
- [18] Vasylyshyn T., Zagorodnyuk A. Continuous symmetric 3-homogeneous polynomials on spaces of Lebesgue measurable essentially bounded functions. Methods Funct. Anal. Topology 2018, 24 (4), 381–398.
- [19] Weaver N. Lipschitz Algebras. World Scientific, New Jersey, 1999.

Received 02.02.2021 Revised 03.11.2021

*Ключові слова і фрази:* Ліпшицева симетрична аналітична функція на банаховому просторі, симетричний базис, тропічний поліном.

Марцінків М.В., Василишин С.І., Василишин Т.В., Загороднюк А.В. *Ліпшицеві симетричні функції на банахових просторах з симетричним базисом //* Карпатські матем. публ. — 2021. — Т.13, №3. — С. 727–733.

Досліджено ліпшицеві симетричні функції на банаховому просторі X з симетричним базисом. Розглянуто степеневі симетричні поліноми на  $\ell_1$  і показано, що вони є ліпшицевими у необмеженій області, яка складається з векторів  $x \in \ell_1$  координати яких  $|x_n| \leq 1$ . Використовуючи функції тах та тіп і тропічні поліноми від кількох змінних, побудовано широкий клас ліпшицевих симетричних функцій на банаховому просторі  $c_0$ , який можна описати як напівкільце композицій тропічних поліномів над простором  $c_0$ .