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CONTINUOUS APPROXIMATIONS OF CAPACITIES ON METRIC COMPACTA

A method of “almost optimal” continuous approximation of capacities on a metric compactum
with possibility measures, necessity measures, or with capacities on a closed subspace, is presented.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different
theories. Spaces of upper semicontinuous capacities on compacta were systematically studied
in [2]. In particular, in the latter paper functoriality of the construction of a space of capac-
ities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of
capacities on a metric compactum were introduced. Needs of practice require that a capacity
can be approximated with capacities of simpler structure or with some convenient properties.
It was shown in[3] that each normalized capacity on a compactum is the value of a so-called
U-capacity (or possibility measure) on the space of N-capacities (necessity measures) under
the multiplication mapping of the capacity monad. Nevertheless it is impossible to represent
every capacity in this manner using only capacities of one of the two mentioned classes. We
can discuss only approximation of an arbitrary capacity with U- or N-capacities. A construc-
tion of the capacity from the class of U- or N-capacities that is the closest to the given one w.r.t.
the Prokhorov metric was described in [4]. A method of optimal approximation of a capacity
with a capacity on a closed subspace was also presented there. Although the proposed ap-
proximations are optimal (belong to the optimal ones), they does not depend continuously on
the original capacity. In this paper we consider the problem of continuous approximation. It
is proved that the space MX of subnormalized capacities on a metric compactum X is an I-
convex compactum, hence all elements of MX can be approximated with “almost optimal”
precision with elements of an arbitrary closed I-convex subset Xy C MX, in particular, with
U-capacities, N-capacities, or capacities on a fixed closed subspace Xy C X, so that the approx-
imation is continuous w.r.t. the original capacity and the chosen “tolerance”.
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1 BASIC FACTS AND DEFINITIONS

We follow the terminology and notation of [2] and denote by exp X the set of all non-empty
closed subsets of a compactum X. The set exp X is considered with the Vietoris topology. If
a metric d on X is admissible, then the Hausdorff metric d is admissible on exp X. For a point
xin (X, d) and a non-empty subset S C X we denote d(x,S) = inf{d(x,x’) | x' € S}, and I is
the unit segment [0, 1].

We call a function ¢ : exp X U {@} — I a capacity on a compactum X if the three following
properties hold for all subsets F, G g X:

1. ¢(@) =0;
2. if F C G, then ¢(F) < ¢(G) (monotonicity);

3. if ¢(F) < a, then there is an open subset U D F such that for all G C U the inequality
¢(G) < ais valid (upper semicontinuity).

If, additionally, c¢(X) = 1 (or ¢(X) < 1) holds, then the capacity is called normalized (resp.
subnormalized).

We denote by MX and MX the sets of all normalized and of all subnormalized capacities
respectively. It was shown in [2] that MX carries a compact Hausdorff topology with the sub-
base of all sets of the form

O_(F,a) = {c € MX | ¢(F) < a}, where F < X,a€el,
C

and
O+(U,a) ={ce MX | c(U) > a}

= {c € MX | there is a compactum F C U, c(F) > a},where U C X,a € I.
op
The same formulae determine a subbase of a compact Hausdorff topology on MX and
therefore MX C MX is a subspace.
We consider the following subclasses of MX.

1. M X is the set of the so-called N-capacities (or necessity measures) with the property:
c(ANB) =min{c(A),c(B)} forall A,B C1 X.
C

2. M X is the set of the so-called U-capacities (or possibility measures) with the property:
c(AUB) = max{c(A),c(B)} forall A, B C1 X.
C

3. Class MXj of capacities defined on a closed subspace Xy C X. We regard each capacity ¢
on Xy as a capacity on X extended with the formula ¢(F) = ¢o(F N Xp), F Cl X.
C

Analogous subclasses are defined in MX, with the obvious denotations. It was proved in
[3] that the subsets M~ X, M, X, and MXj are closed in M X, hence for a compactum X they are
compacta as well.

From now on we restrict to M X, results for M X are quite analogous. We consider the metric
on the set MX of subnormalized capacities on a metric compactum (X, d) :

d(c,c’) = inf{e > 0| c(Oc(F)) +¢& > c/(F), ' (Oc(F)) + ¢ > ¢(F),VF G X}.
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Here O,(F) is the closed e-neighborhood of a subset F C X. This metric is admissible [2].
Recall some definitions and well-known facts on compact topological semilattices and compact
idempotent semimodules.

A poset (X, <) is called an upper semilattice is pairwise suprema x V y exist for all x,y € X.
A subset Y of an upper semilattice Y is called an upper subsemilattice if the supremum of each
two elements of Y is in Y. Then Y is an upper semilattice as well, and suprema of all finite
non-empty subsets of Y in X and in Y exist and are equal.

An upper semilattice (X, <) is called topological if a topology is fixed on X such that the pair-
wise supremum x \V y depends on x,y € X continuously.

A topological semilattice is called Lawson [7] if in each its point it possesses a local base
consisting of subsemilattices.

An upper semilattice is complete if each it non-empty subset has the least upper bound. It is
well-known that any compact topological upper semilattice is complete and contains agreatest
element [6]. A compact Hausdorff topological upper semilattice X is Lawson if and only if
the mapping sup : exp X — X that assigns the least upper bound to each non-empty closed
subset A C X is continuous w.r.t. the Vietoris topology.

We call (X, ®, ®) a (left idempotent) (I, max, x)-semimodule if X is a set with operations
P:XxX =X, ®:IxX— Xsuchthatforall x,y,z € X, a, B € I the following holds:

1L xby=ydx;

2. (x0y)©z=x0(yD2);

3. there is a unique 0 € X such that x &0 = x for all x;

1 w®(x@y) = (18 1) ® (¢ ®y), maxie, f} ® = (€ ®x) ® (&)
5. (axp)@x=a® (Bp®x);

6. 1®x =x;

7 0®x=0.

In the sequel we use a shorter term “I-semimodule” for (I, max, *)-semimodule.

A triple (X, ®,®) is called a compact Hausdorff Lawson I-semimodule if (X, ®,®) is an I-
semimodule and a compact Hausdorff topology is fixed on X that makes it a compact Lawson
upper semilattice with @ being pairwise supremum (hence the partial order is defined as
x <y <& x Dy =y), and the multiplication ® is continuous.

For all points xq,x2,...,x, € X and coefficients ay,ap,...,6y, € [ such that
max{ay, &y, ..., &, } = 1 we define the I-convex combination of a finite number of elements a; ®
X1 Dy ®x2D ... D ay ® xy,, which from now on is denoted simply as a1 x1  axxp O ... D apxy.
It can be calculated stepwise using pairwise convex combinations of the form x @ ay, which in
fact are values of a mapping X x I x X — X.

If the mentioned pairwise I-convex combination is continuous, then (X, ®, ®) is called
an [-convex compactum [5]. Hence an I-convex compactum is a compact Hausdorff space X
with a Lawson continuous pairwise [-convex combination (x,a,y) — x @ ay, X x I x X — X,
which (for « = 1) makes X a compact Hausdorff Lawson upper semilattice.
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In compact Hausdorff Lawson [-semimodules we can define an I-convex combination of
an infinite number of elements using finite combinations as follows:

@ a;x; = inf{supa; ® supx; & ... dsupw; ®supx; |[n € N,Z =7 UL, U...UZ,}.
i€l iely iely €T, i€T,

Observe that the above [-convex combination does not depend on «;x; such that the respec-
tive a; are equal to zero. Theorem [5, 5.9.2] implies an important property of the mapping that
sends each collection of elements with coefficients to their I-convex combination.

Lemma 1. Let (X, ®, ®) be an I-convex compactum and exp,(X x I) C exp(X x I) the sub-
space of all closed subsets of X x I that contain at least one pair of the form (x,1). Then
the mapping h : exp,(X x I) — X defined for A C1 X x I by the formula

C

h(A) = ig9z{“ixi|(xi, w;) € A}

is continuous.

2 SOME MAPPINGS IN METRIC [-CONVEX COMPACTA

We need some auxilliary statements. Let S C X be a non-empty closed I-convex subset
of a metric I-convex compactum (X, ®,®), i.e. S contains all I[-convex combinations of its
elements. Then S is known [5] to be an I-convex compactum as well. For the product topology
on X x R the metric p((x1,a1), (x2,a2)) = max{d(x1, x2), |41 — az|} is admissible.

For an element x € X consider the set §, = {(x/,a)|x € S,d(x,x") < a < diam X}.

Proposition 1. The set §x C S x [0, diamX] is closed and the mapping
f: X — exp(S x [0,diam X]) that assigns §x to each x € X is continuous.

The proof relies on the two following lemmas.

Lemma 2. Let (X,d) be a metric compactum, then for all x € X the set
Fr={(x",a)|x’ € X,d(x,x") <a < diam X} is non-empty and closed in X x [0, diam X].

Proof. Obviously (x',diam X) € §, for all ¥’ € X, hence the set in question is non-empty.

We show that the complement X x [0,diam X] \ Fy is open. Let a point (x/,a) belong to

d(x,x') —a

the complement, i.e. d(x,x') > a. Pute = . Then ¢ > 0 and for any point

(y,b) in the e-neighborhood of (x’,a), which is a ball B¢(x") x (a — ¢,a + ¢€), the inequalities
d(y,x) >d(x',x) —d(x',y) > (a+2¢) —e = a+ e > b are valid. Hence the e-neighborhood of
the point (x/, 2) is contained in the set X x [0, diam X] \ F. O

Therefore the set §x = F» N (S x I) is non-empty and closed in S x [0, diam X] as well.

Lemma 3. Let (X, d) be a metric compactum and S its non-empty closed subset, then the map-
ping f from X to the space exp(S x [0, diam X]) of all non-empty closed subsets with the Haus-
dorff metric that sends each x € X to the set §y, is non-expanding.
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Proof. Let x,y € X, x # y, hence r = d(x,y) > 0. If (x',a) € Fy, ie. d(x,x') < a, put
b = min{a +r,diam X}. Thus |b —a| = p((x',a), (x',b)) <randd(y,x’) < d(x,y)+d(x,x') =
d(x,x") 4 r. Taking into account d(y, ") < diam X we deduce d(y,x") < b, hence (x’,b) € §,.
Thus for each point (x’,a) € Fx there is a point (x/,b) € §, at a distance < r, and vice
versa. Thus the Hausdorff distance pyy between § and §, does not exceed r = d(x,y),ie. fis
non-expanding. This completes the proof. O

Assignto all x € X and € > 0 the set &, C S x I of the form

/ —_
Gy = {(XI,IX)’X/ €S, xnecl, o <max {011_ d(xrx ) : d(er)}}

Observe that a point (¥, «), with @ > 0, can belong to &, only if x’ € S, d(x, x") < d(x,S) +«.
Proposition 2. The following statements hold:
(1) the set B, isclosedin S x I;

(2) the mapping g : X x (0,4+00) — exp(S x I) that assigns &, to each element x € X and
e > 0 is continuous;

(3) forall x € X, ¢ > 0 the equality max{a € I | (x/,a) € &, for some x’ € S} =1 is valid.
Proof. The set &x C S x I is the image of the set §x C S x [0, diam X], namely &, = (1x x
Oxe)(Fx), wWhere 0y, : [0, diam X] — I is defined by the formula
0.c(a) = max{l— a—d(x,S)
a continuous mapping of compacta (1). Moreover §y and 6, depend on x and & continuously,

therefore the same holds for &, (2). Compactness of S C X implies existence of x’ € S such
that d(x, x’) = d(x,S), hence (x/,1) € & (3). O

,0}. Hence &, is closed as the image of a closed set under

Proposition 3. The mapping ® : X x (0, +0c0) — S defined as
D(x,e) = @ {aixi|(x;,a;) € Gy}
icl
is continuous.

Proof. Continuity of @ is a corollary of Proposition 2 and Lemma 1 because @ is the composi-
tion of the continuous mappings g and / (cf. Lemma 1). O

3 CONSTRUCTION OF ALMOST OPTIMAL APPROXIMATIONS OF CAPACITIES

Consider the space M X of subnormalized capacities. For reader’s convenience we present
and prove properties of MX [5] in the following statement.

Proposition 4. The triple (MX,V, A) is a (I, max, min)-convex compactum, if the operations
ViMXxMX — MXand A : I x MX — MX are defined by the formulae:

c1V ca(F) = max{cy(F),c2(F)}, a Ac(F) = min{a, c(F)}

forci,co e MX,a € I, F Cl X.
C
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Proof. It is almost obvious that the defined above functions c¢; Ve, : expX — 1,

aAc:expXU{@} — Iare capacities on X. Put & = V, ® = A and set the zero element

0 € MX to the “zero capacity” with the values 0(F) = 0 for all F C1 X. Itis easy to observe that
C

axioms (1)—(7) from the definition of semimodule hold. Thus (MX, V, A) is a (left idempotent)
(I, max, min)-semimodule. Recall (see [2]) that the subbase of all sets of the form O_(F,a) and
O4(U,a), for A C1 X, U C X, a € I, determines a compact Hausdorff topology T on MX.

C op

It a partial order at M X is defined as

c1 << Ve =c < c(F) <c(F), forall F C1 X,
C

then the pairwise suprema are calculated argumentwise: c¢1 V ¢z (F) = max{c1(F), c2(F)}, and
MX is an upper semilattice with the least element 0. It was proved in [5] that (MX, <) is
a topological (i.e. the pairwise supremum c; V ¢ depends on c; and ¢ continuously w.r.t.
the topology 7) upper Lawson semilattice (because subbase elements O_(F,a) and O, (U, a)
are subsemilattices), and 7 is the Lawson topology.

The function ¢1 V ac; : exp X U {@} — I defined by the formula

c1Vacy(F) =c1V (@ Acy)(F) = max{cy(F), min{a, cp(F)}}

is a subnormalized capacity on X, and the mapping MX x I x MX — MX that assigns c1 VV acp
to (c1, &, c2) is continuous. Hence MX is a compact Hausdorff space with a Lawson continuous
pairwise I-convex combination which makes it a compact Hausdorff Lawson upper semilat-
tice, i.e. (MX, V, A\) is an I-convex compactum. O

If a compact topology on X is determined with an admissible metric d, then (MX,d) is
a metric compactum and the defined above metric d on MX is admissible, i.e. (MX,V,N) is
a metric I-convex compactum. The following property of d is crucial.

Lemma 4. Let (X,d) be a metric compactum, cy,c; € MX fori € T are capacities such
that zf(co,ci) < ¢ for some ¢ > 0 and all i. Then for arbitrary coeficients a; € I such that
sup;.7 &; = 1 the inequality d(co, V wic;) < e is valid.

i€T

For a finite number of c¢; the inequality is straightforward, and by continuity we extend it
to infinite combinations.

Remark. Since MX C MX is a closed subsemimodule, everything said above on M X applies
also to M X.

Therefore the above statements can be used to approximate a capacity c € MX (or c € MX)
with capacities from a closed I-convex subspace S C MX (resp. S C MX). The convexity
means that S contains all I-convex combinations of the form .VI(‘Xi Ac¢;), wherec; € S, a; € 1,

1

max{w;|i € Z} = 1. For simplicity consider a more general case of MX.
For a capacity c € MX and a number ¢ > 0 construct the set

A N
& = {(Cl,rx)]c' eSael, a< maX{O,l— d(c,c) d(C,S)}},

)

which is closed in S x I due to Proposition 2.
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Define a capacity ¢, with the formula ¢, = ‘vz{ai Acil(ci, ;) € &.}. Equivalently & can be
i€

defined as

¢ (F) = sup {(1 -

for all F C1 X. Although ¢ is not the closest to c € MX in the subspace S, it is “almost
C

d(c,c') —d(c,S)
€

YAC(F)|c € S,d(c,c’) <dlc,S) —{—e} (1)

the closest” in the sense of the following theorem.

Theorem 1. For a capacity c € MX, a number ¢ > 0 and a closed I-convex subspace S C MX
the capacity ¢ belongs to S and satisfies the inequality d(c,&) < d(c,S) +¢e. The mapping
®: MX x (0,diam MX| — S defined as ®(c, €) = ¢, is continuous.

Proof. Continuity of ® and ¢, € S follow from Proposition 3. By the equality (1) the capacity
Ce is an [-convex combination of capacities ¢’ € S such that d (c,") < d (¢,S) + ¢, hence by
Lemma 4 the inequality d(c, &) < d(c,S) + ¢ is valid as well. O

Remark. Obviously an analogous theorem is valid for MX.

It is easy to verify that the subspaces MX and MXj are closed and I-convex subsets of
the semimodule (MX, V, A\) (M, X is I-convex if the I-convex combination on (MX, V, A) is de-
fined in a dual manner, cf. [5]). Methods of calculating of the distances d (¢, M X), d (¢, MuX),
d(c, MXy) were presented in [4]. Thus we can use the latter theorem to construct approxima-
tions of an arbitrary subnormalized capacity c on X with U-capacities, N-capacities or capaci-
ties on Xy C X that are e-closed to optimal and depend on ¢, € continuously.
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ITpeacTaBACHO METOA “Malike ONTMMAaABHOrO” HellepepBHOTO HAaOAVDKEHHs €MHOCTel Ha Me-
TPUUYHOMY KOMIIAKTi MipaMu MOXXAMBOCTi, MipamMy HeOOXiAHOCTI UM €éMHOCTSIMM Ha 3aMKHEHOMY
MiATIPOCTOPI.

Kontouosi cniosa i ¢ppasu: €MHICTb, METPUIHII KOMITIAKT, HaOAVDKEHHSI.



