Dobushovskyy M.S., Sheremeta M.M.

ANALOGUES OF WHITTAKER'S THEOREM FOR LAPLACE-STIELTJES INTEGRALS

Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals are found. Using these estimates we obtained analogues of Whittaker's theorem for entire functions given by lacunary power series.

Key words and phrases: Laplace-Stieltjes integral, maximum of integrand, Whittaker's theorem.
Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: mdobush19@gmail.com (Dobushovskyy M.S.), m_m_sheremeta@list.ru (Sheremeta M.M.)

Introduction

For an entire function

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} a_{n} z^{\lambda_{n}}, \quad z=r e^{i \theta} \tag{1}
\end{equation*}
$$

let $M_{g}(r)=\max \{|g(z)|:|z|=r\}$ and $\varrho=\varlimsup_{r \rightarrow+\infty} \frac{\ln \ln M_{g}(r)}{\ln r}, \lambda=\underset{r \rightarrow+\infty}{\lim } \frac{\ln \ln M_{g}(r)}{\ln r}$ be the order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that $\lambda \leq \varrho \beta$, where $\beta=\varliminf_{n \rightarrow+\infty}\left(\ln \lambda_{n}\right) / \ln \lambda_{n+1}$. For an analytic in $\{z:|z|<1\}$ function (1) of the order $\varrho_{0}=\varlimsup_{r \uparrow 1} \frac{\ln \ln M_{g}(r)}{-\ln (1-r)}$ and the lower order $\lambda_{0}=\varlimsup_{r \uparrow 1} \frac{\ln \ln M_{g}(r)}{-\ln (1-r)}$ L.R. Sons [2] tried to prove that $\lambda_{0}+1 \leq\left(\varrho_{0}+1\right) \beta$. In [3] this result is disproved and it is showed that $\lambda_{0} \leq \varrho_{0} \beta$, i. e. absolute analogue of Whittaker's theorem is valid. Moreover, in [3] it is obtained analogues of Whittaker's theorem for Dirichlet series $\sum_{n=0}^{\infty} a_{n} e^{\lambda_{n} s}, s=\sigma+i t$, with an arbitrary abscissa of the absolute convergence $\sigma_{a}=A \in(-\infty,+\infty]$, where $0=\lambda_{0}<\lambda_{n} \uparrow+\infty, n \rightarrow \infty$.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right functions F on $[0,+\infty)$. We say that $F \in V(l)$ if $F \in V$ and $F(x)-F(x-0) \leq l<+\infty$ for all $x \geq 0$.

For a nonnegative function f on $[0,+\infty)$ the integral

$$
\begin{equation*}
I(\sigma)=\int_{0}^{\infty} f(x) e^{x \sigma} d F(x), \quad \sigma \in \mathbb{R} \tag{2}
\end{equation*}
$$

y $\Delta \mathrm{K} 517.5$
2010 Mathematics Subject Classification: 33B50, 44A10.
is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace integral $I(\sigma)=\int_{0}^{\infty} f(x) e^{x \sigma} d x$ and of the Dirichlet series $\sum_{n=0}^{\infty} a_{n} e^{\lambda_{n} \sigma}$ with nonnegative coefficients a_{n} and exponents $\lambda_{n}, 0 \leq \lambda_{n} \uparrow+\infty, n \rightarrow \infty$, if we choose $F(x)=n(x)=\sum_{\lambda_{n} \leq x} 1$ and $f\left(\lambda_{n}\right)=a_{n} \geq 0$ for all $n \geq 0$. The maximal therm of this Dirichlet series is defined by formula $\mu(\sigma)=\max \left\{a_{n} e^{\lambda_{n} \sigma}: n \geq 0\right\}$.

By $\Omega(A)$ we denote the class of all positive unbounded on $(-\infty, A)$ functions Φ such that the derivative Φ^{\prime} is positive continuously differentiable and increasing to $+\infty$ on $(-\infty, A)$. From now on, we denote by φ the inverse function to Φ^{\prime}, and let $\Psi(x)=x-\Phi(x) / \Phi^{\prime}(x)$ be the function associated with Φ in the sense of Newton. It is clear that the function φ is continuously differentiable and increasing to A on $(0,+\infty)$. The function Ψ is [4-6] continuously differentiable and increasing to A on $(-\infty, A)$.

For $\Phi \in \Omega(A)$ and $0<a<b<+\infty$ we put

$$
G_{1}(a, b, \Phi)=\frac{a b}{b-a} \int_{a}^{b} \frac{\Phi(\varphi(t)}{t^{2}} d t, \quad G_{2}(a, b, \Phi)=\Phi\left(\frac{1}{b-a} \int_{a}^{b} \varphi(t) d t\right)
$$

It is known [5] that $G_{1}(a, b, \Phi)<G_{2}(a, b, \Phi)$, and in [3] the following Lemma is proved.
Lemma 1. Let $\left(x_{k}\right)$ be an increasing to $+\infty$ sequence of positive numbers, $\Phi \in \Omega(A)$ and $\mu_{D}(\sigma)$ be the maximal term of formal Dirichlet series

$$
D(s)=\sum_{k=1}^{\infty} \exp \left\{-x_{k} \Psi\left(\varphi\left(x_{k}\right)\right)+s x_{k}\right\}, \quad s=\sigma+i t
$$

Then

$$
\begin{gather*}
\varlimsup_{\sigma \uparrow A} \frac{\ln \mu_{D}(\sigma)}{\Phi(\sigma)}=1, \quad \varlimsup_{\sigma \uparrow A} \frac{\ln \ln \mu_{D}(\sigma)}{\ln \Phi(\sigma)}=1, \tag{3}\\
\varliminf_{\sigma \uparrow A}^{\lim } \frac{\ln \mu_{D}(\sigma)}{\Phi(\sigma)}=\varliminf_{k \rightarrow \infty}^{\lim } \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{4}
\end{gather*}
$$

and if

$$
\begin{equation*}
\ln \mu_{D}(\sigma)+\left(\frac{\Phi(\sigma) \Phi^{\prime \prime}(\sigma)}{\left(\Phi^{\prime}(\sigma)\right)^{2}}-1\right) \ln \Phi(\sigma) \geq 0, \quad \sigma \in\left[\sigma_{0}, A\right) \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\varliminf_{\sigma \uparrow A} \frac{\ln \ln \mu_{D}(\sigma)}{\ln \Phi(\sigma)}=\varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{6}
\end{equation*}
$$

It is clear that integral (2) either converges for all $\sigma \in \mathbb{R}$ or diverges for all $\sigma \in \mathbb{R}$ or there exists a number σ_{c} such that integral (2) converges for $\sigma<\sigma_{c}$ and diverges for $\sigma>\sigma_{c}$. In the latter case the number σ_{c} is called abscissa of the convergence of integral (2). If integral (2) converges for all $\sigma \in \mathbb{R}$ then we put $\sigma_{c}=+\infty$, and if it diverges for all $\sigma \in \mathbb{R}$ then we put $\sigma_{c}=-\infty$.

Let

$$
\mu(\sigma, I)=\sup \left\{f(x) e^{x \sigma}: x \geq 0\right\}, \quad \sigma \in \mathbb{R}
$$

be the maximum of the integrand. Then either $\mu(\sigma, I)<+\infty$ for all $\sigma \in \mathbb{R}$ or $\mu(\sigma, I)=+\infty$ for all $\sigma \in \mathbb{R}$ or there exists a number σ_{μ} such that $\mu(\sigma, I)<+\infty$ for all $\sigma<\sigma_{\mu}$ and $\mu(\sigma, I)=+\infty$
for for all $\sigma>\sigma_{\mu}$. By analogy the number σ_{μ} is called abscissa of maximum of the integrand. It is well known ([4]) that if $F \in V$ and $\ln F(x)=o(x)$ as $x \rightarrow+\infty$ then $\sigma_{c} \geq \sigma_{\mu}$.

For each Dirichlet series $\sigma_{c} \leq \sigma_{\mu}$. In general case this inequality can be not executed. We will say in this connection as in [4] that a nonnegative function f has regular variation in regard to F if there exist $a \geq 0, b \geq 0$ and $h>0$ such that for all $x \geq a$

$$
\begin{equation*}
\int_{x-a}^{x+b} f(t) d F(t) \geq h f(x) \tag{7}
\end{equation*}
$$

In [4] it is proved that if $F \in V$ and f has regular variation in regard to F then $\sigma_{c} \leq \sigma_{\mu}$. We need also the following lemma.

Lemma 2 ([4]). Let $\sigma_{\mu}=A \in(-\infty,+\infty]$ and $\Phi \in \Omega(A)$. In order that $\ln \mu(\sigma, I) \leq \Phi(\sigma)$ for all $\sigma \in\left[\sigma_{0}, A\right)$, it is necessary and sufficient that $\ln f(x) \leq-x \Psi(\varphi(x))$ for all $x \geq x_{0}$.

Let L be the class of all positive continuous functions α increasing to $+\infty$ on $\left(x_{0},+\infty\right)$, $x_{0} \geq-\infty$. We say that $\alpha \in L^{0}$ if $\alpha \in L$ and $\alpha((1+o(1)) x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$, and $\alpha \in L_{s i}$ if $\alpha(c x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ for each $c \in(0,+\infty)$.

Using Lemmas 1 and 2 first we will prove the following theorem.
Theorem 1. Let $\sigma_{\mu}=+\infty, \Phi \in \Omega(+\infty)$, $\ln \mu(\sigma, I) \leq \Phi(\sigma)$ for all $\sigma \geq \sigma_{0}$ and $X=\left(x_{k}\right)$ be a some sequence of positive numbers increasing to $+\infty$. Suppose that f is a nonincreasing function. Then:

1) if either $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ or $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ and $\Phi \in L^{0}$, or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$, or $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ and $\Phi \in L^{0}$, then

$$
\begin{equation*}
\varliminf_{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma, I)}{\Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{8}
\end{equation*}
$$

2) if

$$
\begin{equation*}
\ln \sigma+\left(\frac{\Phi(\sigma) \Phi^{\prime \prime}(\sigma)}{\left(\Phi^{\prime}(\sigma)\right)^{2}}-1\right) \ln \Phi(\sigma) \geq q>-\infty, \quad \sigma \geq \sigma_{0} \tag{9}
\end{equation*}
$$

and either $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ or $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ and $\ln \Phi \in L^{0}$, or $\ln f\left(x_{k}\right) \leq a \ln f\left(x_{k+1}\right), 0<a<1$, and $\ln \Phi \in L_{s i}$, or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$, or $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ and $\Phi \in L^{0}$ or $x_{k+1} \leq A x_{k}$ for all $k \geq 0$ and $\ln \Phi \in L_{s i}$ then

$$
\begin{equation*}
\varliminf_{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I)}{\ln \Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{10}
\end{equation*}
$$

Proof. At first we remark that in view of the condition $\sigma_{\mu}=+\infty$ we have $f(x) \rightarrow 0$ as $x \rightarrow+\infty$ and $\sigma=o(\ln \mu(\sigma, I))$ as $\sigma \rightarrow+\infty$. Now, we put $x_{0}=0$ and $\mu(\sigma, I ; X)=\max \left\{f\left(x_{k}\right) e^{\sigma x_{k}}: k \geq 0\right\}$. Clearly,

$$
\begin{equation*}
\ln \mu(\sigma, I)=\sup _{x \geq 0}(\ln f(x)+\sigma x) \geq \sup _{k \geq 0}\left(\ln f\left(x_{k}\right)+\sigma x_{k}\right)=\ln \mu(\sigma, I, X) \tag{11}
\end{equation*}
$$

Therefore, $\ln \mu(\sigma, I ; X) \leq \Phi(\sigma)$ for all $\sigma \geq \sigma_{0}$ and by Lemma $2 \ln f\left(x_{k}\right) \leq-x_{k} \Psi\left(\varphi\left(x_{k}\right)\right)$ for all $k \geq k_{0}$. Hence it follows that $\ln \mu(\sigma, I ; X) \leq \ln \mu_{D}(r)$ for $\sigma \geq \sigma_{0}$. Therefore, by Lemma 1 from (4) we obtain

$$
\begin{equation*}
\varliminf_{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma, I ; X)}{\Phi(\sigma)} \leq \underline{\lim _{k \rightarrow \infty}} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} . \tag{12}
\end{equation*}
$$

On the other hand for $\sigma>0$

$$
\begin{equation*}
\ln \mu(\sigma, I)=\max _{k \geq 0} \sup _{x_{k} \leq x<x_{k+1}}(\ln f(x)+x \sigma) \leq \max _{k \geq 0}\left(\ln f\left(x_{k}\right)+x_{k+1} \sigma\right) \tag{13}
\end{equation*}
$$

If $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ then for every $\varepsilon>0$ we have $\ln f\left(x_{k}\right) \leq$ $\left(\ln f\left(x_{k+1}\right)\right) /(1+\varepsilon)$ for all $k \geq k_{0}=k_{0}(\varepsilon)$. Therefore,

$$
\begin{aligned}
\max _{k>0} & \left(\ln f\left(x_{k}\right)+x_{k+1} \sigma\right) \\
& =\max \left\{\max _{k \leq k_{0}}\left(\ln f\left(x_{k}\right)+x_{k+1} \sigma\right), \max _{k \geq k_{0}}\left(\frac{\ln f\left(x_{k}\right)}{\ln f\left(x_{k+1}\right)} \ln f\left(x_{k+1}\right)+x_{k+1} \sigma\right)\right\} \\
& \leq \max \left\{O(\sigma), \max _{k \geq k_{0}}\left(\frac{\ln f\left(x_{k+1}\right)}{1+\varepsilon}+x_{k+1} \sigma\right)\right\} \\
& \leq \frac{1}{1+\varepsilon} \max _{k \geq 0}\left(\ln f\left(x_{k+1}\right)+x_{k+1} \sigma(1+\varepsilon)\right)+O(\sigma), \quad \sigma \rightarrow+\infty
\end{aligned}
$$

Hence and from (13) it follows that $\ln \mu(\sigma, I) \leq \ln \mu(\sigma(1+\varepsilon), I ; X)$ for $\sigma \geq \sigma_{0}^{*}$. Thus,

$$
\begin{align*}
\varliminf_{r \rightarrow+\infty} \frac{\ln \mu(\sigma, I)}{\Phi(\sigma)} & \leq \varliminf_{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma(1+\varepsilon), I ; X)}{\Phi(\sigma)} \\
& \leq \varliminf_{r \rightarrow+\infty} \frac{\ln \mu(\sigma, I ; X)}{\Phi(\sigma)} \varlimsup_{\sigma \rightarrow+\infty} \frac{\Phi(\sigma(1+\varepsilon))}{\Phi(\sigma)} \leq A(\varepsilon) \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{14}
\end{align*}
$$

where $A(\varepsilon)=\varlimsup_{r \rightarrow+\infty} \frac{\Phi(\sigma(1+\varepsilon))}{\Phi(\sigma)}$. For $\Phi \in L^{0}$ in [7] is proved that $A(\varepsilon) \searrow 1$ as $\varepsilon \downarrow 0$. Therefore, (14) implies (8).

If $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ then for arbitrary $\varepsilon>0$ from (13) it follows that

$$
\ln \mu(\sigma, I) \leq \ln \mu(\sigma(1+\varepsilon), I ; X)+O(\sigma), \quad \sigma_{0}^{*}(\varepsilon) \leq \sigma \rightarrow+\infty,
$$

whence in view of the condition $\Phi \in L^{0}$ as above we obtain (8).
If $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ then from (13) we have

$$
\begin{equation*}
\ln \mu(\sigma, I) \leq \max _{k \geq 0}\left(\ln f\left(x_{k+1}\right)+x_{k} \sigma+\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)\right) \leq \ln \mu(\sigma, I ; X)+\text { const } \tag{15}
\end{equation*}
$$

that is in view of (12)

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\ln \mu(\sigma, I)}{\Phi(\sigma)} \leq \varliminf_{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma, I ; X)}{\Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{16}
\end{equation*}
$$

Finally, if $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$ then from (13) follows that

$$
\begin{equation*}
\ln \mu(\sigma, I) \leq \max _{k \geq 0}\left(\ln f\left(x_{k}\right)+x_{k} \sigma+\sigma\left(x_{k+1}-x_{k}\right)\right) \leq \ln \mu(\sigma, I ; X)+H \sigma \tag{17}
\end{equation*}
$$

that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.
Now we will prove the second part. Since $\ln \sigma=o(\ln \mu(\sigma, I))$ as $\sigma \rightarrow+\infty$, condition (9) follows from (5).

If either $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$ then from either (16), or (17) in view of (12) and Lemma 1 we obtain

$$
\varliminf_{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I)}{\ln \Phi(\sigma)} \leq \varliminf_{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I ; X)}{\ln \Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)}
$$

If either $\ln f\left(x_{k}\right) \leq(1+o(1)) \ln f\left(x_{k+1}\right)$ or $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ as $x \rightarrow+\infty$ then as above from (13) we have $\ln \ln \mu(\sigma, I) \leq \ln \ln \mu(\sigma(1+\varepsilon), I ; X)$ for every $\varepsilon>0$ and all $\sigma \geq \sigma_{0}(\varepsilon)$, whence (10) follows in view of the condition $\ln \Phi \in L^{0}$.

If $\ln f\left(x_{k}\right) \leq a \ln f\left(x_{k+1}\right), 0<a<1$, then from (13) we have

$$
\ln \mu(\sigma, I) \leq a \max _{k \geq 0}\left(\ln f\left(x_{k+1}\right)+x_{k+1} \sigma / a\right)=a \ln \mu(\sigma / a, I ; X)
$$

and since $\ln \Phi \in L_{s i}$, we obtain

$$
\lim _{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I)}{\ln \Phi(\sigma)} \leq \varliminf_{r \rightarrow+\infty} \frac{\ln \ln \mu(\sigma / a, I ; X)}{\ln \Phi(\sigma / a)} \varlimsup_{r \rightarrow+\infty} \frac{\ln \Phi(\sigma / a)}{\ln \Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)}
$$

If $x_{k+1} \leq A x_{k}$ for all $k \geq 0$ then $\ln \mu(\sigma, I) \leq \ln \mu(A \sigma, I ; X)+O(\sigma)$ as $\sigma \rightarrow+\infty$, whence in view of the condition $\ln \Phi \in L_{s i}$ we obtain (10). The proof of Theorem 1 is complete.

Now we consider the case $\sigma_{\mu}=0$. Let \hat{L} be the class of all positive continuous on $\left(\sigma_{0}, 0\right)$, $\sigma_{0} \geq-\infty$, functions β, increasing to $+\infty$. We say that $\beta \in \hat{L}^{0}$ if $\beta \in \hat{L}$ and $\beta((1+o(1)) \sigma)=(1+o(1)) \beta(\sigma)$ as $\sigma \uparrow 0$, and $\beta \in \hat{L}_{s i}$ if $\beta(c \sigma)=(1+o(1)) \beta(\sigma)$ as $\sigma \uparrow 0$ for each $c \in(0,+\infty)$.

Lemma 3. Let $\beta \in \hat{L}$ and $B(\delta)=\varlimsup_{\sigma \uparrow 0} \frac{\beta(\sigma /(1+\delta))}{\beta(\sigma)}(\delta>0)$. In order that $\beta \in \hat{L}^{0}$, it is necessary and sufficient that $B(\delta) \rightarrow 1$ as $\delta \downarrow 0$.

Proof. Suppose that $\beta \in \hat{L}^{0}$ but $B(\delta) \nrightarrow 1$ as $\delta \downarrow 0$. Since the function $B(\delta)$ is nondecreasing, there exists $\lim _{\delta \downarrow 0} B(\delta)=b^{*}>1$, that is $B(\delta) \geq b^{*}>1$. We choose an arbitrary sequence $\left(\delta_{n}\right) \downarrow 0$. For every δ_{n} there exists a sequence $\left(\sigma_{n, k}\right) \uparrow 0$ such that $\beta\left(\left(1+\delta_{n}\right) \sigma_{n, k}\right) \geq b \beta\left(\sigma_{n, k}\right), 1<b<b^{*}$. We put $\sigma_{1}=\sigma_{1,1}$ and $\sigma_{n}=\min \left\{\sigma_{n, k} \geq \sigma_{n-1}: k \geq n-1\right\}$ and construct a function $\gamma(\sigma) \rightarrow 0$, $\sigma \uparrow 0$, such that $\gamma\left(\sigma_{n}\right)=\delta_{n}$. Then $\beta\left(\sigma_{n} /\left(1+\gamma\left(\sigma_{n}\right)\right)\right)=\beta\left(\sigma_{n} /\left(1+\delta_{n}\right)\right) \geq b \beta\left(\sigma_{n}\right)$. In view of definition of \hat{L}^{0} it is impossible.

On the contrary, let $B(\delta) \rightarrow 1$ as $\delta \downarrow 0$ but $\beta \notin \hat{L}^{0}$. Then there exists a function $\gamma(\sigma) \rightarrow 0$, $\sigma \uparrow 0$, and sequence $\left(\sigma_{n}\right) \uparrow 0, n \rightarrow \infty$, such that $\lim _{n \rightarrow \infty} \beta\left(\sigma_{n} /\left(1+\gamma\left(\sigma_{n}\right)\right) / \beta\left(\sigma_{n}\right)=a \neq 1\right.$. Clearly, $a<1$ provided $\gamma\left(\sigma_{n}\right)<0$ and $a>1$ provided $\gamma\left(\sigma_{n}\right)>0$. We examine, for example, the second case. Let $\delta>0$ be an arbitrary number. Then $\gamma\left(\sigma_{n}\right)<\delta$ for $n \geq n_{0}$ and

$$
B(\delta)=\varlimsup_{\sigma \uparrow 0} \frac{\beta(\sigma /(1+\delta))}{\beta(\sigma)} \geq \varlimsup_{n \rightarrow \infty} \frac{\beta\left(\sigma_{n} /(1+\delta)\right)}{\beta\left(\sigma_{n}\right)} \geq \varlimsup_{n \rightarrow \infty} \frac{\beta\left(\sigma_{n} /\left(1+\gamma\left(\sigma_{n}\right)\right)\right)}{\beta\left(\sigma_{n}\right)}=a>1,
$$

which is impossible. Lemma 3 is proved.

Theorem 2. Let $\sigma_{\mu}=0, \Phi \in \Omega(0), \ln \mu(\sigma, I) \leq \Phi(\sigma)$ for all $\sigma \geq \sigma_{0}$ and $X=\left(x_{k}\right)$ be some sequence $X=\left(x_{k}\right)$ of positive numbers increasing to $+\infty$. Suppose that $f(x) \nearrow+\infty$ as $x \rightarrow+\infty$. Then:

1) if either $\ln f\left(x_{k+1}\right)-\ln f\left(x_{k}\right) \leq H$ or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$, or $\ln f\left(x_{k}\right)=$ $(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ and $\Phi \in \hat{L}^{0}$, or $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ and $\Phi \in \hat{L}^{0}$, or $x_{k+1} \leq A x_{k}$ for $k \geq 0$ and $\Phi \in \hat{L}_{s i}$ then

$$
\begin{equation*}
\varliminf_{\sigma \uparrow 0} \frac{\ln \mu(\sigma, I)}{\Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{18}
\end{equation*}
$$

2) if

$$
\begin{gather*}
\left(\frac{\Phi(\sigma) \Phi^{\prime \prime}(\sigma)}{\left(\Phi^{\prime}(\sigma)\right)^{2}}-1\right) \ln \Phi(\sigma) \geq q>-\infty, \quad \sigma \in\left[\sigma_{0}, 0\right) \tag{19}\\
\quad \frac{\lim }{\sigma \uparrow 0} \frac{\ln \ln \mu(\sigma, I)}{\ln \Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{20}
\end{gather*}
$$

Proof. As above let $\mu(\sigma, I ; X)=\max \left\{f\left(x_{k}\right) e^{\sigma x_{k}}: k \geq 0\right\}$. Clearly, (11) holds. Therefore, $\ln \mu(\sigma, I ; X) \leq \Phi(\sigma)$ for all $\sigma \in\left[\sigma_{0}, 0\right)$ and by Lemma $2 \ln f\left(x_{k}\right) \leq-x_{k} \Psi\left(\varphi\left(x_{k}\right)\right)$ for all $k \geq k_{0}$, that is $\ln \mu(\sigma, I ; X) \leq \ln \mu_{D}(r)$ for $\sigma \geq \sigma_{0}$. Therefore, by Lemma 1

$$
\begin{equation*}
\varliminf_{\sigma \uparrow 0} \frac{\ln \mu(\sigma, I ; X)}{\Phi(\sigma)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{21}
\end{equation*}
$$

On the other hand for $\sigma<0$ now we have

$$
\begin{equation*}
\ln \mu(\sigma, I)=\max _{k \geq 0} \sup _{x_{k} \leq x<x_{k+1}}(\ln f(x)+x \sigma) \leq \max _{k \geq 0}\left(\ln f\left(x_{k+1}\right)+x_{k} \sigma\right) \tag{22}
\end{equation*}
$$

Therefore, if either $\ln f\left(x_{k+1}\right)-\ln f\left(x_{k}\right) \leq H$ or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$ hence we obtain either $\ln \mu(\sigma, I) \leq \ln \mu(\sigma, I ; X)+H$ or $\ln \mu(\sigma, I) \leq \ln \mu(\sigma, I ; X)+H \sigma$, whence

$$
\begin{equation*}
\underline{\lim } \frac{\ln \mu(\sigma, I)}{\sigma \uparrow 0} \leq \underline{\lim _{\sigma \uparrow 0}} \frac{\ln \mu(\sigma, I ; X)}{\Phi(\sigma)} \tag{23}
\end{equation*}
$$

Inequalities (21) and (23) imply (18).
If either $x_{k+1}=(1+o(1)) x_{k}$ or $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ then from (23) as in the proof of Theorem 1 for every $\varepsilon>0$ we have correspondingly $\ln \mu(\sigma, I) \leq \ln \mu(\sigma /(1+$ $\varepsilon), I ; X)$ and $\ln \mu(\sigma, I) \leq(1+\varepsilon) \ln \mu(\sigma /(1+\varepsilon), I ; X)$ for $\sigma \in\left[\sigma_{0}(\varepsilon), 0\right)$, whence in view of condition $\ln \Phi \in \hat{L}^{0}$, of Lemma 3 and of the arbitrariness of ε we obtain (23) and, thus, (18) holds.

Finally, if $x_{k+1} \leq A x_{k}$ for $k \geq 0$ then $\ln \mu(\sigma, I) \leq \ln \mu(\sigma / A, I ; X)$, whence in view of condition $\Phi \in \hat{L}_{s i}$ we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition $f(x) \nearrow+\infty$ as $x \rightarrow+\infty$ it follows that $\ln \mu(\sigma, I) \uparrow+\infty$ as $\sigma \uparrow 0$. Therefore, (19) implies (5). We remark also that if either $\ln f\left(x_{k+1}\right)-\ln f\left(x_{k}\right) \leq H$ or $x_{k+1}-x_{k} \leq H<+\infty$ for all $k \geq 0$ or $\ln f\left(x_{k}\right)=$ $(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ and $\ln \Phi \in \hat{L}^{0}$ or $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ and $\ln \Phi \in \hat{L}^{0}$ or $x_{k+1} \leq A x_{k}$ for $k \geq 0$ and $\ln \Phi \in \hat{L}_{s i}$ then from the inequalities obtained above we get (20). If $\ln f\left(x_{k+1}\right) \leq A \ln f\left(x_{k}\right)$ for $k \geq 0$ then from (21) we obtain the inequality $\ln \mu(\sigma, I) \leq$ $A \ln \mu(\sigma / A, I ; X)$, whence in view of the condition $\ln \Phi \in \hat{L}_{s i}$ inequality (20) follows. The proof of Theorem 2 is complete.

2 Analogues of Whittaker's Theorem

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases which more frequent at meet in mathematical works. The most used characteristics of growth for integrals (2) with $\sigma_{c}=+\infty$ (by analogy with Dirichlet series) are R-order $\varrho_{R}[I]$, lower R order $\lambda_{R}[I]$ and (if $\varrho_{R}[I] \in(0,+\infty)$) R-type $T_{R}[I]$, lower R-type $t_{R}[I]$, which are defined by formulas

$$
\begin{aligned}
& \varrho_{R}[I]=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \ln I(\sigma)}{\sigma}, \quad \lambda_{R}[I]=\lim _{\sigma \rightarrow+\infty} \frac{\ln \ln I(\sigma)}{\sigma}, \\
& T_{R}[I]=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln I(\sigma)}{\exp \left\{\sigma \varrho_{R}[I]\right\}}, \quad t_{R}[I]=\varliminf_{\sigma \rightarrow+\infty} \frac{\ln I(\sigma)}{\exp \left\{\sigma \varrho_{R}[I]\right\}} .
\end{aligned}
$$

We will show that in this formulas $\ln I(\sigma)$ can be replaced by $\ln \mu(\sigma, I)$ and will use the following Lemmas for this purpose.

Lemma $4([4,8])$. Let $F \in V, f$ has regular variation in regard to F and either $\sigma_{\mu}=+\infty$ or $\sigma_{\mu}=0$ and $\varlimsup_{x \rightarrow+\infty} f(x)=+\infty$. Then $\ln \mu(\sigma, I) \leq(1+o(1)) \ln I(\sigma)$ as $\sigma \uparrow \sigma_{\mu}$.

Lemma 5 ([4,9]). Let $F \in V, \sigma_{\mu}=+\infty$ and $\varlimsup_{x \rightarrow+\infty}(\ln F(x)) / x=\tau<+\infty$. Then $I(\sigma) \leq$ $\mu(\sigma+\tau+\varepsilon, I)$ for every $\varepsilon>0$ and all $\sigma \geq \sigma(\varepsilon)$.

It is easy to check that these lemmas imply the following statement.
Proposition 1. Let $F \in V, f$ has regular variation in regard to F and $\sigma_{\mu}=+\infty$. If $\ln F(x)=$ $O(x)$ as $x \rightarrow+\infty$ then

$$
\begin{equation*}
\varrho_{R}[I]=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I)}{\sigma}, \quad \lambda_{R}[I]=\lim _{\sigma \rightarrow+\infty} \frac{\ln \ln \mu(\sigma, I)}{\sigma}, \tag{24}
\end{equation*}
$$

and if $\ln F(x)=o(x)$ as $x \rightarrow+\infty$ then

$$
\begin{equation*}
T_{R}[I]=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma, I)}{\exp \left\{\sigma \varrho_{R}[I]\right\}}, \quad t_{R}[I]=\lim _{\sigma \rightarrow+\infty} \frac{\ln \mu(\sigma, I)}{\exp \left\{\sigma \varrho_{R}[I]\right\}} . \tag{25}
\end{equation*}
$$

Using Theorem 1 and Proposition 1 we prove the following theorem.
Theorem 3. Let $F \in V, \sigma_{\mu}=+\infty$ and $X=\left(x_{k}\right)$ be some sequence of positive numbers increasing to $+\infty$. Suppose that f is a nonincreasing function and has regular variation in regard to F.

If $\ln F(x)=O(x)$ as $x \rightarrow+\infty$ and $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$ then

$$
\begin{equation*}
\lambda_{R}[I] \leq \beta \varrho_{R}[I], \quad \beta=\varliminf_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}} . \tag{26}
\end{equation*}
$$

If $\ln F(x)=o(x)$ as $x \rightarrow+\infty$ and $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ then

$$
\begin{equation*}
t_{R}[I] \leq T_{R}[I] \frac{\gamma}{1-\gamma} \exp \left\{1+\frac{\gamma \ln \gamma}{1-\gamma}\right\} \ln \frac{1}{\gamma}, \quad \gamma=\varliminf_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}} . \tag{27}
\end{equation*}
$$

Proof. From (24) and (25) for every ε and all $\sigma \geq \sigma_{0}(\varepsilon)$ we have accordingly $\ln \mu(\sigma, I) \leq$ $\exp \left\{\left(\varrho_{R}[I]+\varepsilon\right) \sigma\right\}$ and $\ln \mu(\sigma, I) \leq\left(T_{R}[I]+\varepsilon\right) \exp \left\{\varrho_{R}[I] \sigma\right\}$. We choose $\Phi \in \Omega(+\infty)$ such that $\Phi(\sigma)=T e^{\rho \sigma}$ for $\sigma \geq \sigma_{0}(\varepsilon)$, where either $\varrho=\varrho_{R}[I]+\varepsilon$ and $T=1$ or $\varrho=\varrho_{R}[I]$ and $T=T_{R}[I]+\varepsilon$. Then $\ln \mu(\sigma, I) \leq \Phi(\sigma)$ for $\sigma \geq \sigma_{0}(\varepsilon), \ln \Phi \in L^{0}$ and it is well known ([4,10]) that

$$
G_{1}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{1}{\varrho} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}} \ln \frac{x_{k+1}}{x_{k}}
$$

and

$$
G_{2}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{1}{\varrho \varrho} \exp \left\{\frac{x_{k+1} \ln x_{k+1}-x_{k} \ln x_{k}}{x_{k+1}-x_{k}}\right\}
$$

Since $\Phi(\sigma) \Phi^{\prime \prime}(\sigma) / \Phi^{\prime}(\sigma)^{2}=1$, condition (9) holds and by Theorem 1 we have

$$
\begin{equation*}
\lambda_{R}[I] \leq \varrho \varliminf_{k \rightarrow \infty} \frac{\left(x_{k+1}-x_{k}\right) \ln \left(\frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}} \ln \frac{x_{k+1}}{x_{k}}\right)}{x_{k+1} \ln x_{k+1}-x_{k} \ln x_{k}} \tag{28}
\end{equation*}
$$

provided $\ln f\left(x_{k}\right)=(1+o(1)) \ln f\left(x_{k+1}\right)$ as $k \rightarrow \infty$, and

$$
\begin{equation*}
t_{R}[I] \leq e T \varliminf_{k \rightarrow \infty} \frac{\frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}} \ln \frac{x_{k+1}}{x_{k}}}{\exp \left\{\frac{x_{k+1} \ln x_{k+1}-x_{k} \ln x_{k}}{x_{k+1}-x_{k}}\right\}} \tag{29}
\end{equation*}
$$

provided $\ln f\left(x_{k}\right)-\ln f\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$.
We suppose that $\beta<1$. Then there exist a number $\beta^{*} \in(\beta, 1)$ and an increasing sequence $\left(k_{j}\right)$ of positive integers such that $\ln x_{k_{j}} \leq \beta^{*} \ln x_{k_{j}+1}$, that is $x_{k_{j}}=o\left(x_{k_{j}+1}\right)$ as $j \rightarrow \infty$. Therefore, from (28) we obtain

$$
\begin{aligned}
\lambda_{R}[I] & \leq \varrho \varliminf_{j \rightarrow \infty} \frac{\left(x_{k_{j}+1}-x_{k_{j}}\right) \ln \left(\frac{x_{k_{j}} x_{k_{j}+1}}{x_{k_{j}+1}-x_{k_{j}}} \ln \frac{x_{k_{j}+1}}{x_{k_{j}}}\right)}{x_{k_{j}+1} \ln x_{k_{j}+1}-x_{k_{j}} \ln x_{k_{j}}} \\
& \leq \varrho \varliminf_{j \rightarrow \infty}^{\lim } \frac{\ln x_{k_{j}}+o(1)+\ln \ln x_{k_{j}+1}}{\ln x_{k_{j}+1}} \leq \varrho \beta^{*}
\end{aligned}
$$

whence in view of the arbitrariness of β^{*} and ε we obtain inequality (26) follows.
Further, if $\gamma \in(0,1)$, then $x_{k_{j}}=(1+o(1)) \gamma x_{k_{j}+1}$ as $j \rightarrow \infty$ for some increasing sequence $\left(k_{j}\right)$ of positive integers and from (29) we obtain

$$
\begin{aligned}
t_{R}[I] & \leq e T \varliminf_{j \rightarrow \infty} \frac{x_{k_{j}} x_{k_{j}+1} \ln \left(x_{k_{j}+1} / x_{k_{j}}\right)}{\left(x_{k_{j}+1}-x_{k_{j}}\right) \exp \left\{\frac{x_{k_{j}+1} \ln x_{k_{j}+1}-x_{k_{j}} \ln x_{k_{j}}}{x_{k_{j}+1}-x_{k_{j}}}\right\}} \\
& =e T \varliminf_{j \rightarrow \infty} \frac{\gamma x_{k_{j}+1} \ln (1 / \gamma)}{(1-\gamma) \exp \left\{\ln x_{k_{j}+1}-(\gamma \ln \gamma) /(1-\gamma)\right\}}=T \frac{\gamma}{1-\gamma} \ln \frac{1}{\gamma} \exp \left\{1+\frac{\gamma \ln \gamma}{1-\gamma}\right\},
\end{aligned}
$$

whence in view of the arbitrariness of ε we get (27). Since $\frac{\gamma}{1-\gamma} \ln \frac{1}{\gamma} \exp \left\{1+\frac{\gamma \ln \gamma}{1-\gamma}\right\} \rightarrow 1$ as $\gamma \rightarrow 1$, then inequality (27) is obvious if $\gamma=1$. Finally, if $\gamma=0$, then $\ln x_{k_{j}}=o\left(\ln x_{k_{j}+1}\right)$ as $j \rightarrow \infty$ for some increasing sequence $\left(k_{j}\right)$ of positive integers and from (29) we obtain

$$
t_{R}[I] \leq e T \varliminf_{j \rightarrow \infty} \frac{x_{k_{j}}\left(\ln x_{k_{j}+1}-\ln x_{k_{j}}\right)}{\exp \left\{\ln x_{k_{j}+1}+o(1)\right\}}=e T \varliminf_{j \rightarrow \infty} \frac{x_{k_{j}}}{x_{k_{j}+1}} \ln \frac{x_{k_{j}+1}}{x_{k_{j}}}=0,
$$

i.e. inequality (27) holds. The proof of Theorem 3 is complete.

Now we consider the case $\sigma_{\mu}=0$. The order $\varrho_{0}[I]$, the lower order $\lambda_{0}[I]$ and (if $0<\varrho_{0}[I]<$ $+\infty)$ the type $T_{0}[I]$ and the lower type $t_{0}[I]$ are defined by formulas

$$
\begin{aligned}
& \varrho_{0}[I]=\varlimsup_{\sigma \uparrow 0} \frac{\ln \ln I(\sigma)}{\ln (1 /|\sigma|)}, \quad \lambda_{0}[\varphi]=\varliminf_{\sigma \uparrow 0} \frac{\ln \ln I(\sigma)}{\ln (1 /|\sigma|)}, \\
& T_{0}[I]=\varlimsup_{\sigma \uparrow 0}|\sigma|^{\varrho_{0}[I]} \ln I(\sigma), \quad t_{0}[I]=\varliminf_{\sigma \uparrow 0}|\sigma|^{\varrho_{*}[I]} \ln I(\sigma) .
\end{aligned}
$$

We will show that in this formulas $\ln I(\sigma)$ can be replaced by $\ln \mu(\sigma, I)$ and will use for this purpose the following lemmas.

Lemma 6 ($[4,9])$. Let $F \in V, \sigma_{\mu}=0$ and $\ln F(x) \leq h \ln f(x)$ for $x \geq x_{0}$. Then for every $\varepsilon>0$ and all $\sigma \in\left[\sigma_{0}(\varepsilon), 0\right)$

$$
\ln I(\sigma) \leq(1+h+\varepsilon) \ln \mu\left(\frac{\sigma}{1+h+\varepsilon}, I\right)+K, \quad K=K(\varepsilon)=\text { const. }
$$

Lemma $7([4,9])$. Let $F \in V, \sigma_{\mu}=0$ and $\ln F(x)=o(x \gamma(x))$ as $x \rightarrow+\infty$, where γ is a positive continuous and decreasing to 0 function on $[0,+\infty)$ such that $x \gamma(x) \uparrow+\infty$ as $x \rightarrow+\infty$. Then for every $\varepsilon>0$ and all $\sigma \in\left[\sigma_{0}(\varepsilon), 0\right)$

$$
\ln I(\sigma) \leq \ln \mu\left(\frac{\sigma}{1+\varepsilon}, I\right)+\frac{\varepsilon|\sigma|}{1+\varepsilon} \gamma^{-1}\left(\frac{|\sigma|}{\varepsilon(1+\varepsilon)^{2}}\right) .
$$

Lemmas 4, 6 and 7 imply the following statement.
Proposition 2. Let $F \in V, \sigma_{\mu}=+\infty, f$ has regular variation in regard to F and $f(x) \nearrow+\infty$ as $x \rightarrow+\infty$. If either $\ln F(x)=O(\ln f(x))$ or $\ln \ln F(x)=o(\ln x)$ as $x \rightarrow+\infty$ then

$$
\begin{equation*}
\varrho_{0}[I]=\varlimsup_{\sigma \uparrow 0} \frac{\ln \ln \mu(\sigma, I)}{\ln (1 /|\sigma|)}, \quad \lambda_{0}[\varphi]=\varliminf_{\sigma \uparrow 0} \frac{\ln \ln \mu(\sigma, I)}{\ln (1 /|\sigma|)}, \tag{30}
\end{equation*}
$$

and if either $\ln F(x)=o(\ln f(x))$ or $\ln \ln F(x)=o(\ln x)$ as $x \rightarrow+\infty$ then

$$
\begin{equation*}
\left.T_{0}[I]=\varlimsup_{\sigma \uparrow 0}|\sigma|^{\varrho_{0}[I]} \ln \mu(\sigma, I), \quad t_{0}[I]=\varliminf_{\sigma \uparrow 0}^{\lim }|\sigma|^{\varrho_{0}[I]} \ln \mu(\sigma, I)\right) . \tag{31}
\end{equation*}
$$

Proof. If $\ln F(x))=O(\ln f(x))$ (accordingly $\ln F(x)=o(\ln f(x))$) as $x \rightarrow+\infty$ then formulas (30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function γ such that $\gamma(x)=x^{\delta-1}$ for $x \geq x_{0}$, where $\delta \in(0,1)$ is an arbitrary numbers, then γ satisfies the conditions of Lemma 7. Therefore, if $\ln F(x)=o\left(x^{\delta}\right)$ as $x \rightarrow+\infty$ then

$$
\begin{aligned}
\ln I(\sigma) & \leq \ln \mu\left(\frac{\sigma}{1+\varepsilon^{\prime}}, I\right)+\frac{\varepsilon|\sigma|}{1+\varepsilon}\left(\frac{\varepsilon(1+\varepsilon)^{2}}{|\sigma|}\right)^{1-\delta} \\
& =\ln \mu\left(\frac{\sigma}{1+\varepsilon^{\prime}}, I\right)+\varepsilon^{2-\delta}(1+\varepsilon)^{1-2 \delta}|\sigma|^{\delta}=\ln \mu\left(\frac{\sigma}{1+\varepsilon}, I\right)+o(1), \quad \sigma \uparrow 0
\end{aligned}
$$

whence the formulas (30) and (31) follow. It remained to notice that the condition $\ln \ln F(x)=o(\ln x)$ as $x \rightarrow+\infty$ implies the condition $\ln F(x)=o\left(x^{\delta}\right)$ as $x \rightarrow+\infty$ for $\delta \in(0,1)$. Proposition 2 is proved.

Using Theorem 2 and Proposition 2 we prove the following theorem.
Theorem 4. Let $F \in V, \sigma_{\mu}=0$ and $X=\left(x_{k}\right)$ be some sequence of positive numbers increasing to $+\infty$. Suppose that f has regular variation in regard to F and $f(x) \nearrow+\infty$ as $x \rightarrow+\infty$.

If either $\ln F(x)=O(\ln f(x))$ or $\ln \ln F(x)=o(\ln x)$ as $x \rightarrow+\infty$ and $\ln f\left(x_{k+1}\right)=O\left(\ln f\left(x_{k}\right)\right)$ as $k \rightarrow \infty$ then

$$
\begin{equation*}
\lambda_{0}[I] \leq \beta \varrho_{0}[I], \quad \beta=\varliminf_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}} . \tag{32}
\end{equation*}
$$

If either $\ln F(x)=o(\ln f(x))$ or $\ln \ln F(x)=o(\ln x)$ as $x \rightarrow+\infty$ and $\ln f\left(x_{k+1}\right)=(1+o(1)) \ln f\left(x_{k}\right)$ as $k \rightarrow \infty$ then

$$
\begin{equation*}
t_{0}[I] \leq T_{0}[I] A(\gamma), \quad \gamma=\varliminf_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}} \tag{33}
\end{equation*}
$$

where

$$
A(\gamma)=: \frac{\gamma^{\varrho /(\varrho+1)}\left(1-\gamma^{1 /(\varrho+1)}\right)\left(1-\gamma^{\varrho /(\varrho+1)}\right)^{\varrho}}{(1-\gamma)^{\varrho+1}}
$$

Proof. If $\varrho_{0}[I]<+\infty\left(T_{0}[I]<+\infty\right)$ then $\ln \mu(\sigma, I) \leq \Phi(\sigma)=\frac{T}{|\sigma|^{\varrho}}$ for all $\sigma \in\left[\sigma_{0}(\varepsilon), 0\right)$, where either $\varrho=\varrho_{0}[I]+\varepsilon$ and $T=1$ or $\varrho=\varrho_{0}[I]$ and $T=T_{0}[I]+\varepsilon$. Clearly, $\Phi \in \hat{L}^{0}$ and $\ln \Phi \in \hat{L}_{s i}$. It is known [4, p. 40] that for this function

$$
G_{1}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{T(\varrho+1)}{(T \varrho)^{\varrho /(\varrho+1)}} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{x_{k}^{1 /(\varrho+1)}}-\frac{1}{x_{k+1}^{1 /(\varrho+1)}}\right)
$$

and

$$
G_{2}\left(x_{k}, x_{k+1}, \Phi\right)=T\left(\frac{(\varrho+1)(T \varrho)^{1 /(\varrho+1)}}{\varrho} \frac{x_{k+1}^{\varrho /(\varrho+1)}-x_{k}^{\varrho /(\varrho+1)}}{x_{k+1}-x_{k}}\right)^{-\varrho}
$$

We remark that

$$
\left(\frac{\Phi(\sigma) \Phi^{\prime \prime}(\sigma)}{\left(\Phi^{\prime}(\sigma)\right)^{2}}-1\right) \ln \Phi(\sigma)=\frac{1}{\varrho} \ln \frac{T}{|\sigma|^{\varrho}} \uparrow+\infty, \quad \sigma \uparrow 0
$$

that is (19) holds.
Therefore, if $\ln f\left(x_{k+1}\right)=O\left(\ln f\left(x_{k}\right)\right)$ as $k \rightarrow \infty$ then by Theorem 2 in view of arbitrariness of ε

$$
\begin{equation*}
\lambda_{0}[I] \leq \varrho_{0}[I] \varliminf_{k \rightarrow \infty} \frac{\ln \left(\frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{x_{k}^{1 /(\varrho+1)}}-\frac{1}{x_{k+1}^{1 /(\varrho+1)}}\right)\right)}{\ln \left(\frac{x_{k+1}-x_{k}}{x_{k+1}^{\varrho /(\varrho+1)}-x_{k}^{\varrho /(\varrho+1)}}\right)^{\varrho}} \tag{34}
\end{equation*}
$$

and if $\ln f\left(x_{k+1}\right)=(1+o(1)) \ln f\left(x_{k}\right)$ as $k \rightarrow \infty$ then

$$
\begin{equation*}
t_{0}[I] \leq T_{0}[I] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \varliminf_{k \rightarrow \infty} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{x_{k}^{1 /(\varrho+1)}}-\frac{1}{x_{k+1}^{1 /(\varrho+1)}}\right)\left(\frac{x_{k+1}^{\varrho /(\varrho+1)}-x_{k}^{\varrho /(\varrho+1)}}{x_{k+1}-x_{k}}\right)^{\varrho} \tag{35}
\end{equation*}
$$

We suppose that $\beta<1$. Then there exists a number $\beta^{*} \in(\beta, 1)$ and an increasing sequence $\left(k_{j}\right)$ of positive integers such that $\ln x_{k_{j}} \leq \beta^{*} \ln x_{k_{j}+1}$, that is $x_{k_{j}}=o\left(x_{k_{j}+1}\right)$ as $j \rightarrow \infty$. Therefore, from (34) we obtain

$$
\begin{aligned}
\lambda_{0}[I] & \leq \varrho_{0}[I] \varliminf_{j \rightarrow \infty} \frac{\ln \left(\frac{x_{k_{j}} x_{k_{j}+1}}{x_{k_{j}+1}-x_{k_{j}}}\left(\frac{1}{x_{k_{j}}^{1 /(\varrho+1)}}-\frac{1}{x_{k_{j}+1}^{1 /(\varrho+1)}}\right)\right)}{\ln \left(\frac{x_{k_{j}+1}-x_{k_{j}}}{x_{k_{j}+1}^{\varrho /(\varrho+1)}-x_{k_{j}}^{\varrho /(\varrho+1)}}\right)^{\varrho}} \\
& =\varrho_{0}[I] \varliminf_{j \rightarrow \infty} \frac{\ln x_{k_{j}}^{\varrho /(\varrho+1)}}{\varrho \ln x_{k_{j}+1}^{1 /(\varrho+1)}}=\varrho_{0}[I] \varliminf_{j \rightarrow \infty} \frac{\ln x_{k_{j}}}{\ln x_{k_{j}+1}} \leq \varrho_{0}[I] \beta^{*},
\end{aligned}
$$

i.e. in view of arbitrariness of β^{*} we obtain the inequality $\lambda_{0}[I] \leq \beta \varrho_{0}[I]$. For $\beta=1$ this inequality is trivial.

Now we suppose that $\gamma \in(0,1)$. Then there exists an increasing sequence $\left(k_{j}\right)$ of positive integers such that $x_{k_{j}}=(1+o(1)) \gamma x_{k_{j}+1}$ as $j \rightarrow \infty$. Therefore, from (35) we obtain

$$
\begin{aligned}
t_{0}[I] & \leq T_{0}[I] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \varliminf_{j \rightarrow \infty} \frac{x_{k_{j}} x_{k_{i}+1}}{x_{k_{j}+1}-x_{k_{j}}}\left(\frac{1}{x_{k_{j}}^{1 /(\varrho+1)}}-\frac{1}{x_{k_{j}+1}^{1 /(\varrho+1)}}\right)\left(\frac{x_{k_{j}+1}^{\varrho /(\varrho+1)}-x_{k_{j}}^{\varrho /(\varrho+1)}}{x_{k_{j}+1}-x_{k_{j}}}\right)^{\varrho} \\
& \leq T_{0}[I] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \frac{\gamma}{\gamma-1}\left(\frac{1}{\gamma^{1 /(\varrho+1)}}-1\right) \frac{\left(1-\gamma^{\varrho /(\varrho+1)}\right)^{\varrho}}{(1-\gamma)^{\varrho}}=T_{0}[I] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} A(\gamma) .
\end{aligned}
$$

It is easy to show that $A(\gamma) \rightarrow \frac{\varrho^{\varrho}}{(\varrho+1)^{\varrho+1}}$ as $\gamma \rightarrow 1$ that (2) is transformed in obvious inequality $t_{0}[\varphi] \leq T_{0}[\varphi]$ as $\gamma \rightarrow 1$. If $\gamma=0$ then $x_{k_{j}}=o\left(x_{k_{j}+1}\right)$ as $j \rightarrow \infty$ and from (2) we obtain easy that $t_{0}[I]=0$, because $A(0)=0$. The proof of Theorem 4 is complete.

References

[1] Whittaker J.M. The lower order of integral functions. J. London Math. Soc. 1933, 8(1), 20-27. doi:10.1112/jlms/s18.1.20
[2] Sons L.R. Regularity of growth and gaps. J. Math. Anal. Appl. 1968, 24 (2), 296-306. doi:10.1016/0022-247X(68)90031-0
[3] Filevych P.V., Sheremeta M.M. On a L. Sons theorem and asymptotical behaviour of Dirichlet series. Ukr. Math. Bull. 2006, 3 (2), 187-198. (in Ukrainian)
[4] Sheremeta M.M. Asymptotical behaviour of Laplace-Stiltjes integrals. In: Mathematical Studies, 15. Lviv, VNTL Publishers, 2010.
[5] Sheremeta M.M., Fedynyak S.I. On the derivative of a Dirichlet series. Siberian Math. J. 1998, 39 (1), 181-197. doi:10.1007/BF02732373 (translation of Sibirsk. Mat. Zh. 1998, 39 (1), 206-223. (in Russian))
[6] Sheremeta M.M., Sumyk O.M. Connection detween the growth of Young conjugated functions. Mat. Stud. 1999, 11 (1), 41-47. (in Ukrainian)
[7] Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristic of entire functions. Mat. Stud. 2003, 19 (1), 73-82. (in Ukrainian)
[8] Posiko O.S., Sheremeta M.M. Asymptotic estimates for Laplace-Stiltjes integrals. Ukr. Math. Bull. 2005, 2 (4), 541-549. (in Ukrainian)
[9] Posiko O.S., Skaskiv O.B., Sheremeta M.M. Estimates of Laplace-Stiltjes integral. Mat. Stud. 2004, 21 (2), 179196. (in Ukrainian)
[10] Sumyk O.M., Sheremeta M.M. Estimates from below for maximal term of Dirichlet series. Izv. Vys. Uch. Zav. Matem. 2001, (4), 53-57. (in Russian)

Received 06.09.2016

Добушовський М.С., Шеремета М.М. Аналоги теореми Уіттекера для інтегралів Иапласа-Стілтьєса // Карпатські матем. публ. — 2016. - Т.8, №2. - С. 239-250.
$\Lambda_{л я}^{\text {ля максимум підінтегрального виразу інтегралу Лапласа-Стілтьєса знайдено нижні }}$ оцінки на деякій послідовсності. Використовуючи ці оцінки, отримано аналоги тереми Уіттекера для цілих функцій, зображених лакунарними степеневими рядами.

Ключові слова і фрази: інтеграл Лапласа-Стілтьєса, максимум підінтегрального виразу, теорема Уіттекера.

