ISSN 2075-9827 Carpathian Math. Publ. 2013, 5 (1), 114–120 doi:10.15330/cmp.5.1.114-120

PATRA M.I., SHARYN S.V.

OPERATOR CALCULUS ON THE CLASS OF SATO'S HYPERFUNCTIONS

We construct a functional calculus for generators of analytic semigroups of operators on a Banach space. The symbol class of the calculus consists of hyperfunctions with a compact support in $[0, \infty)$. Domain of constructed calculus is dense in the Banach space.

Key words and phrases: functional calculus, analytic semigroups of operators, hyperfunctions.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: patra-m@mail.ru (Patra M.I.), sharynsir@yahoo.com (Sharyn S.V.)

INTRODUCTION

Roughly speaking, the aim of functional calculus is to define an operator f(A) for a function f belonging to some algebra of functions (so called symbol algebra) and for some (in general unbounded) operator A on a Banach space. In the same time we understand a functional calculus as an algebraic (or more generally topological) isomorphism from symbol algebra to algebra of operators.

There are many ways to define a functional calculus for different classes of operators on different symbol algebras. One of them (the Hille-Phillips calculus) was developed in [6] and generalized in [10, 2, 9, 8]. For new helpful applications of a Hille-Phillips type functional calculus see [1] and the references given there.

In this article we use the class of hyperfunctions, supported by a compact set in positive semiaxis, as a symbol algebra and construct an analogue of Hille-Phillips calculus for generators of analytic semigroups of operators on a Banach space.

The hyperfunctions were introduced by M.Sato in [11]. We can understand Sato's hyperfunctions as a generalization of the concept of boundary values of complex analytic functions and as an extension of ultradistributions with a compact support [7]. Theory of hyperfunctions is a very useful tool in the study of *D*-modules, holonomic systems of differential equations, and especially some aspects of symplectic geometry and harmonic analysis that are part of microlocal analysis, especially algebraic microlocalization.

1 PRELIMINARIES AND DENOTATIONS

Let $\mathscr{L}(X)$ denote the space of continuous linear operators over a locally convex space X and let X' be the dual of X. Throughout the paper, the spaces $\mathscr{L}(X)$ and X' will be endowed with the locally convex topology of uniform convergence on bounded subsets of X.

²⁰¹⁰ Mathematics Subject Classification: 46F15, 47A60, 47D06.

Let $\mathbb{R}_+ := [0, \infty)$ stand for the nonnegative semiaxis. A family $\{U(t) : t \in \mathbb{R}_+\}$ of bounded linear operators on a complex Banach space $(E, \|\cdot\|)$ is called a one-parameter semigroup if $U(\cdot)$ is a mapping $U(\cdot) : \mathbb{R}_+ \longrightarrow \mathscr{L}(E)$ such that U(t + s) = U(t)U(s) and U(0) = I is the unit operator. The operator

$$Ax := \lim_{t \to +0} \frac{U(t)x - x}{t}, \qquad x \in \mathfrak{D}(A),$$

where $\mathfrak{D}(A)$ consists of all $x \in E$ for which the previous limit exists, is called a generator of the semigroup $\{U(t) : t \in \mathbb{R}_+\}$. To emphasize that an operator A generates a semigroup, we will use the standard notation $\{e^{tA} : t \in \mathbb{R}_+\}$ or $\{e^{tA}\}_{t \in \mathbb{R}_+}$ instead of $\{U(t) : t \in \mathbb{R}_+\}$.

The semigroup $\{e^{tA} : t \in \mathbb{R}_+\}$ is a C_0 -semigroup iff $\lim_{t\to+0} ||e^{tA}x - x|| = 0$ for all $x \in E$. If $\{e^{tA}\}_{t\in\mathbb{R}_+}$ is a C_0 -semigroup then the following properties hold (see [3]):

- if $x \in \mathfrak{D}(A)$ then $e^{tA}x \in \mathfrak{D}(A)$ and $Ae^{tA}x = e^{tA}Ax$,
- $e^{tA}x \in \mathfrak{D}(A)$ for all $x \in E$, $t \in \mathbb{R}_+$ and $\mathfrak{D}(A)$ is dense in *E*.

Let Σ_{θ} be an open sector in \mathbb{C} , defined as

$$\Sigma_{\theta} := \{ z \in \mathbb{C} : |\arg z| < \theta \} \setminus \{ 0 \}$$

It is obvious that closure of a sector Σ_{θ} is defined as $\Sigma_{\theta}^{cl} := \{z \in \mathbb{C} : |\arg z| \le \theta\}.$

We say that a bounded C_0 -semigroup $\{U(t) : t \in \mathbb{R}_+\}$ on a Banach space *E* is a bounded analytic semigroup (see [5, 12]), if there exists $0 < \theta \leq \frac{\pi}{2}$ such that

- U(t) is a restriction onto \mathbb{R}_+ of an analytic family of operators U(z) in open sector Σ_{θ} ;
- $U(s+z) = U(s) \circ U(z)$ for all $s, z \in \Sigma_{\theta}^{cl}$;
- for each $\vartheta < \theta$ the family $\{U(z)\}$ is uniformly bounded in Σ_{ϑ}^{cl} and $U(z)x \to x$ as $z \to 0$ in Σ_{ϑ}^{cl} for each $x \in E$.

Let H(W) denote a vector space of all holomorphic functions on an open set $W \subset \mathbb{C}$. We follow [4] in defining the space of functions

$$H:=\liminf_{K}(\liminf_{k}\operatorname{Pr} H_{K,k}),$$

where

$$H_{K,k} := \Big\{ F \in H(\Omega_K) : \|F\|_{K,k} := \sup_{z \in \Omega_K} |F(z)| e^{k\operatorname{Re} z} < \infty \Big\},$$

and

$$\Omega_K := \left\{ z \in \mathbb{C} : |\mathrm{Im}z| < \frac{\mathrm{Re}z}{K} + \frac{1}{K^2} \right\}.$$
(1)

In other words, *H* is the space of functions *F*, which are holomorphic in a some angular neighborhood Ω_K of $[0, \infty)$ with finite norms $||F||_{K,k}$ for each *k*.

Here and subsequently, $\mathcal{A}(\Omega)$ denotes the space of real-analytic functions in an open set $\Omega \in \mathbb{R}$. Let $\mathcal{A}(\mathbb{R}_+)$ denote the space of germs of real-analytic functions on neighborhoods of the semiaxis $[0, \infty)$. A restriction of any element of $\mathcal{A}(\mathbb{R}_+)$ is uniquely defined function on \mathbb{R}_+ . In the sequel we will treat $\mathcal{A}(\mathbb{R}_+)$ as the space of such restrictions.

It is clear, that restrictions of functions from H onto $[0, \infty)$ form a subset in $\mathcal{A}(\mathbb{R}_+)$, which we will denote by the symbol H_+ . Since $\mathbb{R}_+ \subset \Omega_K$, for any bounded function f(z) the inequality $\sup_{z \in \mathbb{R}_+} |f(z)| \leq \sup_{z \in \Omega_K} |f(z)|$ holds. Therefore, $\varphi \in H_+$ iff it is a real-analytic function on \mathbb{R}_+ satisfying the condition

$$\sup_{t\in\mathbb{R}_+}|\varphi(t)|e^{kt}<\infty$$

for each *k* and it can be continued in an angle Ω_K for some *K*.

Let Ω be an open set in \mathbb{R} and V be an open set in \mathbb{C} containing Ω as a relatively closed set. The vector space of all hyperfunctions on Ω is defined (see [7, 11]) to be the quotient space

$$\mathcal{B}(\Omega) = H(V \setminus \Omega) / H(V),$$

where H(V) denotes the restriction of H(V) to $V \setminus \Omega$. The hyperfunction represented by an $F \in H(V \setminus \Omega)$ is denoted as follows

$$f = [F] = F(t + i0) - F(t - i0)$$
 or $f(t) = [F(z)]_{z=t}$.

The representative *F* is called a defining function of the hyperfunction *f*.

The set of all hyperfunctions with a support in a fixed compact set $K \subset \Omega$ is represented as $\mathcal{B}_K(\Omega) = H(V \setminus K)/H(V)$. Let $\mathcal{B}_c(\Omega)$ denote the space of hyperfunctions with a compact support in Ω .

The following statement from [7] will be used in the sequel.

Theorem 1. Let $\Omega \subset \mathbb{R}$ be an open set. Then we have the isomorphism of vector spaces $\mathcal{B}_{c}(\Omega) \cong \mathcal{A}(\Omega)'$. For a $\varphi \in \mathcal{A}(\Omega)$ and an $f = [F] \in \mathcal{B}_{c}(\Omega)$ with $F \in H(V \setminus \text{supp } f)$, the canonical bilinear functional is given by

$$\langle f, \varphi \rangle = -\oint_{\Gamma} F(z) \varphi(z) dz,$$
 (2)

where Γ is a closed path in the intersection of the domain of the analytic continuation φ of a function φ and the domain of *F*, and surrounding supp *f* once in the positive orientation.

2 CROSS-CORRELATION

Let us denote by $\mathcal{B}_c(\mathbb{R}_+)$ the space of all hyperfunctions with a compact support in the semiaxis $[0, \infty)$. For any f = [F] and g = [G] from $\mathcal{B}_c(\mathbb{R}_+)$ we define the convolution f * g by f * g = [H], where

$$H(z) = -\oint_{\Gamma} F(w)G(z-w)dw,$$

and Γ is a closed path in the intersection of the domains of analytic functions $w \mapsto F(w)$ and $w \mapsto G(z - w)$. It is known [7], that the space $\mathcal{B}_c(\mathbb{R}_+)$ is an algebra with respect to the convolution with Dirac delta-function $\delta(x)$ as an unit element.

The cross-correlation of a hyperfunction $f = [F] \in \mathcal{B}_c(\mathbb{R}_+)$ and a real-analytic function $\varphi \in \mathcal{A}(\mathbb{R}_+)$ is defined to be

$$(f\star\varphi)(t):=-\oint_{\Gamma}F(z)\varphi(z+t)dz,\qquad t\in\mathbb{R}_{+,t}$$

where Γ is a closed path in the intersection of a domain of the analytic function $z \mapsto F(z)$ and a domain of $z \mapsto \varphi(z + t)$ (here φ is the analytic continuation of φ), and surrounding supp f once in the positive orientation. The correctness of the definition follows from Theorem 1.

Theorem 2. For a hyperfunction $f = [F] \in \mathcal{B}_c(\mathbb{R}_+)$ and a function $\varphi \in \mathcal{A}(\mathbb{R}_+)$ the cross-correlation $f \star \varphi$ is a real-analytic function, belonging to $\mathcal{A}(\mathbb{R}_+)$.

Proof. According to Pringsheim's theorem [7, Theorem 2.1], an infinitely differentiable function φ belongs to $\mathcal{A}(\mathbb{R}_+)$ iff for each compact set $K \subset \mathbb{R}_+$ there exist constants h > 0 and C > 0 such that inequality

$$\sup_{x\in K} |\varphi^{(n)}(x)| \le Ch^n n!$$

holds for any $n \in \mathbb{Z}_+$.

Let $K \subset \mathbb{R}_+$ be a compact set. The following inequalities hold

$$\sup_{t \in K} \left| (f \star \varphi)^{(n)}(t) \right| = \sup_{t \in K} \left| -\oint_{\Gamma} F(z) \varphi^{(n)}(z+t) dz \right| \le \sup_{t \in K} \oint_{\Gamma} |F(z)| \cdot |\varphi^{(n)}(z+t)| dz$$

$$\le \sup_{t \in K} \sup_{z \in \Gamma} |\varphi^{(n)}(z+t)| \oint_{\Gamma} |F(z)| dz \le \sup_{t \in K} \sup_{z \in \Gamma} |\varphi^{(n)}(z+t)| \sup_{z \in \Gamma} |F(z)| \mu(\Gamma),$$
(3)

where $\mu(\Gamma)$ denotes the length of Γ . Note, that $\sup_{z \in \Gamma} |F(z)| \mu(\Gamma) < \infty$.

Via the maximum-modulus principle in complex analysis there exists a point $z_0 \in \Gamma$, such that $\sup_{t \in K} \sup_{z \in \Gamma} |\varphi^{(n)}(z+t)| = \sup_{t \in K} |\varphi^{(n)}(z_0+t)|$. The function $\mathbb{R} \ni t \longmapsto |\varphi^{(n)}(z_0+t)|$ is a restriction of the analytic function $\mathbb{C} \ni z \longmapsto |\varphi^{(n)}(z_0+z)|$, therefore $|\varphi^{(n)}(z_0+t)|$ is a real-analytic function. So, by Pringsheim's theorem there exist constants h > 0 and C > 0 such that $\sup_{t \in K} |\varphi^{(n)}(z_0+t)| \le Ch^n n!$.

Finally, we can continue the inequality (3) as follows

$$\sup_{t\in K} |(f\star\varphi)^{(n)}(t)| \le \mu(\Gamma) \sup_{z\in\Gamma} |F(z)|Ch^n n! = C_1 h^n n!,$$

where $C_1 := \mu(\Gamma) \sup_{z \in \Gamma} |F(z)| C$, which proves that $(f \star \varphi)(t) \in \mathcal{A}(\mathbb{R}_+)$.

The following statement may be considered as an improvement of Theorem 2.

Theorem 3. For a hyperfunction $f = [F] \in \mathcal{B}_c(\mathbb{R}_+)$ and a function $\varphi \in H_+$ the cross-correlation $f \star \varphi$ belongs to H_+ .

Proof. Note, that function $t \mapsto (f \star \varphi)(t)$ can be continued to the analytic one

$$\Omega_K \ni s \longmapsto (f \star \varphi)(s) := -\oint_{\Gamma} F(z) \varphi(z+s) dz,$$

for some *K*, since $\varphi \in H$.

Since bilinear form (2) does not depend on choice of the path Γ , we assume, that a domain (1) always contain the path. Then for each *k* we have

$$\sup_{t\in\mathbb{R}_{+}} \left| (f\star\varphi)(t) \right| e^{kt} = \sup_{t\in\mathbb{R}_{+}} \left| -\oint_{\Gamma} F(z)\varphi(z+t) dz \right| e^{kt} \leq \sup_{s\in\Omega_{K}} \left| -\oint_{\Gamma} F(z)\varphi(z+s)e^{ks} dz \right| \\
= \sup_{s\in\Omega_{K}} \left| -\oint_{\Gamma} F(z)\varphi(z+s)e^{k(s+z)}e^{-kz} dz \right| \leq \sup_{s\in\Omega_{K}} \oint_{\Gamma} |F(z)||\varphi(z+s)|e^{k\operatorname{Re}(s+z)}e^{-k\operatorname{Re}z} dz \quad (4) \\
\leq \sup_{z\in\Gamma} \sup_{s\in\Omega_{K}} |\varphi(z+s)|e^{k\operatorname{Re}(s+z)} \oint_{\Gamma} |F(z)|e^{-k\operatorname{Re}z} dz.$$

In the case $0 \notin \operatorname{supp} f$ it is possible to choose the curve Γ such that $\Gamma \subset V_K$, where $V_K := \left\{ z \in \mathbb{C} : |\operatorname{Im} z| < \frac{\operatorname{Re} z}{K} \right\}$. Note, that inequalities

$$|\operatorname{Im}(s+z)| = |\operatorname{Im}s + \operatorname{Im}z| \le |\operatorname{Im}s| + |\operatorname{Im}z| < \frac{\operatorname{Res}}{K} + \frac{1}{K^2} + \frac{\operatorname{Rez}}{K} = \frac{\operatorname{Re}(s+z)}{K} + \frac{1}{K^2}$$

imply $r = s + z \in \Omega_K$ for any $s \in \Omega_K$ and $z \in V_K$. Since $\varphi \in H$, the inequality (4) can be continued as follows

$$\sup_{t \in \mathbb{R}_{+}} |(f \star \varphi)(t)| e^{kt} \leq \sup_{z \in \Gamma} \sup_{s \in \Omega_{K}} |\varphi(z+s)| e^{k\operatorname{Re}(s+z)} \oint_{\Gamma} |F(z)| e^{-k\operatorname{Re}z} dz$$
$$= \sup_{r \in \Omega_{K}} |\varphi(r)| e^{k\operatorname{Re}r} \oint_{\Gamma} |F(z)| e^{-k\operatorname{Re}z} dz < \infty.$$

Consider the case $0 \in \text{supp } f$. Let us use Ω_{2K} instead of Ω_K in the estimation (4). Then we obtain

$$\sup_{t\in\mathbb{R}_+} |(f\star\varphi)(t)| e^{kt} \le \sup_{z\in\Gamma} \sup_{s\in\Omega_{2K}} |\varphi(z+s)| e^{k\operatorname{Re}(s+z)} \oint_{\Gamma} |F(z)| e^{-k\operatorname{Re}z} dz.$$
(5)

Inequalities

$$\left| \operatorname{Im}(s+z) \right| = \left| \operatorname{Im}s + \operatorname{Im}z \right| \le \left| \operatorname{Im}s \right| + \left| \operatorname{Im}z \right| < \frac{\operatorname{Res}}{2K} + \frac{1}{4K^2} + \frac{\operatorname{Rez}}{2K} + \frac{1}{4K^2} < \frac{\operatorname{Re}(s+z)}{K} + \frac{1}{K^2}$$

imply $r = z + s \in \Omega_K$ for any $z \in \Omega_{2K}$ and $s \in \Omega_{2K}$. Since $\Gamma \subset \Omega_{2K}$ and $\varphi \in H$, the inequality (5) can be continued as follows

$$\sup_{t \in \mathbb{R}_{+}} |(f \star \varphi)(t)| e^{kt} \leq \sup_{z \in \Gamma} \sup_{s \in \Omega_{2K}} |\varphi(z+s)| e^{k\operatorname{Re}(s+z)} \oint_{\Gamma} |F(z)| e^{-k\operatorname{Re}z} dz$$
$$= \sup_{r \in \Omega_{K}} |\varphi(r)| e^{k\operatorname{Re}r} \oint_{\Gamma} |F(z)| e^{-k\operatorname{Re}z} dz < \infty.$$

Hence, $f \star \varphi \in H_+$.

3 OPERATOR CALCULUS

Let *A* be a generator of an analytic semigroup $\{e^{tA}\}_{t \in \mathbb{R}_+}$. Let $D_+(A)$ be a subspace in the Banach space *E*, defined by

$$D_+(A) := \bigg\{ \widehat{x}_{(A)} : \widehat{x}_{(A)} := \int_0^{+\infty} e^{tA} x \varphi(t) dt, \quad x \in E, \varphi \in H_+ \bigg\}.$$

Note, that we understand the above integral in the Bochner sense [6].

Theorem 4. The subspace $D_+(A)$ is dense in *E*.

Proof. Suppose that $D_+(A)$ is not dense in *E*. Then by Hahn-Banach's theorem there is nonzero functional $x' \in E'$ such that $\langle x', \hat{x}_{(A)} \rangle = 0$ for all $x \in \mathfrak{D}(A^{\infty})$, where $\mathfrak{D}(A^{\infty}) := \bigcap_{\alpha \in \mathbb{Z}_+} \mathfrak{D}(A^{\alpha})$, and $\mathfrak{D}(A^{\alpha})$ is the domain of operator A^{α} .

From the Bochner's integral properties [6, 3.7] it follows that

$$\langle x', \widehat{x}_{(A)} \rangle = \int_0^{+\infty} \langle x', e^{tA} x \rangle \varphi(t) dt = 0.$$

Since *A* is a generator of a C_0 -semigroup, $\mathfrak{D}(A^{\infty})$ is dense in *E* (see [5]). It follows that for any $x \in \mathfrak{D}(A^{\infty})$ the real-analytic function $t \longmapsto \langle x', e^{tA}x \rangle$ must vanish identically on $[0, +\infty)$ since otherwise it would have been possible to choose $\varphi \in H_+$ such that $\langle x', \hat{x}_{(A)} \rangle$ does not vanish. Thus in particular for t = 0 we obtain that equality $\langle x', x \rangle = 0$ holds for every $x \in \mathfrak{D}(A^{\infty})$. Therefore x' = 0 which contradicts the choice of x'.

For each hyperfunction $f = [F] \in \mathcal{B}_c(\mathbb{R}_+)$ the operator f(A) is given by

$$f(A): D_{+}(A) \ni \widehat{x}_{(A)} \longmapsto f(A)\widehat{x}_{(A)} = \int_{0}^{+\infty} e^{tA}x(f \star \varphi)(t)dt \in D_{+}(A)$$

The mapping $\Phi_A : B_c(\mathbb{R}_+) \ni f \longmapsto f(A) \in \mathscr{L}(D_+(A))$ is called the operator calculus for generators of analytic semigroups of operators on the class of Sato's hyperfunctions with a compact support in \mathbb{R}_+ .

Theorem 5. For each $\varphi \in H_+$ the mapping Φ_A produces an algebraic homomorphism from the convolution algebra $B_c(\mathbb{R}_+)$ into the algebra of linear continuous operators over $D_+(A)$.

Proof. Let $f, g \in B_c(\mathbb{R}_+)$, $\alpha, \beta \in \mathbb{R}$. The linearity $\Phi_A(\alpha f + \beta g) = \alpha \Phi_A(f) + \beta \Phi_A(g)$ of the mapping Φ_A is clear via the linearity of the integral.

Let us show that $\Phi_A(f * g) = \Phi_A(f) \circ \Phi_A(g)$. Let *F* and *G* be defining functions of the hyperfunctions *f* and *g* respectively. Using the method of variable changing, for an arbitrary $\hat{x}_{(A)} \in D_+(A)$ we obtain

$$\begin{split} (f*g)(A)\widehat{x}_{(A)} &= \int_{0}^{+\infty} e^{tA}x((f*g)\star\varphi)(t)\,dt \\ &= \int_{0}^{+\infty} e^{tA}x\Big(-\oint_{\Gamma_1}\Big(-\oint_{\Gamma_2}F(w)G(z-w)\,dw\Big)\varphi(z+t)\,dz\Big)\,dt \\ &= \int_{0}^{+\infty} e^{tA}x\Big(-\oint_{\Gamma_2}F(w)\Big(-\oint_{\Gamma_1}G(z-w)\varphi(z+t)\,dz\Big)\,dw\Big)\,dt \\ &= \int_{0}^{+\infty} e^{tA}x\Big(-\oint_{\Gamma_2}F(w)\Big(-\oint_{\Gamma_3}G(z)\varphi(z+w+t)\,dz\Big)\,dw\Big)\,dt \\ &= \int_{0}^{+\infty} e^{tA}x(f\star(g\star\varphi))(t)\,dt = f(A)\int_{0}^{+\infty} e^{tA}x(g\star\varphi)(t)dt = f(A)g(A)\widehat{x}_{(A)}, \end{split}$$

where Γ_1 , Γ_2 are suitable curves and Γ_3 is a linear shift of the Γ_1 .

For Dirac delta-function $\delta(x)$ we have

$$\delta(A)\widehat{x}_{(A)} = \int_{0}^{+\infty} e^{tA}x(\delta\star\varphi)(t)dt = \int_{0}^{+\infty} e^{tA}x\varphi(t)dt = \widehat{x}_{(A)}.$$

So, $\delta(A)$ is an unit operator on $D_+(A)$.

PATRA M.I., SHARYN S.V.

References

- Baeumer B., Haase M., Kovács M. Unbounded functional calculus for bounded groups with applications. J. Evol. Eqv. 2009, 9 (1), 171–195. doi:10.1007/s00028-009-0012-z
- Balakrishnan A.V. An operational calculus for infinitesimal operators of semigroups. Trans. Amer. Math. Soc. 1960, 91, 330–353. doi: 10.1090/S0002-9947-1959-0107179-0
- [3] Butzer P.L., Berens H. Semi-groups of operators and approximation. Springer, London, 2012.
- [4] Domanski P., Langenbruch M. On the Laplace Transform for Vector Valued Hyperfunctions. Functiones et Approximatio 2010, 43 (2), 129–159. doi:10.7169/facm/1291903394
- [5] Engel K.-J., Nagel R. One-parameter semigroups for linear evolution equations. Graduate Text in Mathematics, 194. Springer-Verlag, Berlin, 2000.
- [6] Hille E., Phillips R. Functional Analysis and Semi-Groups. Amer. Math. Soc., Coll. Publ., 31, Providence R.I., 2000.
- [7] Komatsu H. An Introduction to the Theory of Generalized Functions. University Publ., Tokyo, 2000.
- [8] Lopushansky O.V., Sharyn S.V. Functional calculus for generators of analytic semigroups of operators. Carpath. Math. Publ. 2012, 4 (1), 83–89. (in Ukrainian)
- [9] Lopushansky O.V., Sharyn S.V. Operator calculus for convolution algebra of Schwartz distributions on semiaxis. Mat. Stud. 1997, 7 (1), 61–72.
- [10] Nelson E.A. Functional Calculus Using Singular Laplace Integrals. Trans. Amer. Math. Soc. 1958, 88, 400–413. doi: 10.1090/S0002-9947-1958-0096136-8
- [11] Sato M. Theory of hyperfunctions. I, II. J. Fac. Sci. Univ. Tokyo 1959/60, 8, 139–193, 387–436.
- [12] Vrabie I.I. C₀-semigroups and Applications. Mathematics Studies, **191**. North-Holland, Amsterdam, 2003.

Received 15.01.2013

Патра М.І., Шарин С.В. *Функціональне числення в класі гіперфункцій Сато* // Карпатські математичні публікації. — 2013. — Т.5, №1. — С. 114–120.

Ми будуємо функціональне числення для генераторів аналітичних напівгруп операторів на банаховому просторі. Клас символів такого числення складається з гіперфункцій з компактними носіями в $[0, \infty)$. Область визначення побудованого числення є щільною в банаховому просторі.

Ключові слова і фрази: функціональне числення, аналітичні напівгрупи операторів, гіперфункції.

Патра М.И., Шарин С.В. *Функциональное исчисление в классе гиперфункций Сато* // Карпатские математические публикации. — 2013. — Т.5, №1. — С. 114–120.

Ми строим функциональное исчисление для генераторов аналитических полугрупп операторов, действующих в банаховом пространстве. Класс символов такого исчисления состоит из гиперфункций с компактными носителями в $[0,\infty)$. Область определения построенного исчисления плотна в банаховом пространстве.

Ключевые слова и фразы: функциональное исчисление, аналитические полугруппы операторов, гиперфункции.