Some results on η-Yamabe solitons in 3-dimensional trans-Sasakian manifold

Roy S. ${ }^{1, \boxtimes}$, Dey S. ${ }^{2}$, Bhattacharyya A. ${ }^{1}$

The object of the present paper is to study some properties of 3-dimensional trans-Sasakian manifold whose metric is η-Yamabe soliton. We have studied here some certain curvature conditions of 3-dimensional trans-Sasakian manifold admitting η-Yamabe soliton. Lastly, we construct a 3dimensional trans-Sasakian manifold satisfying η-Yamabe soliton.

Key words and phrases: Yamabe soliton, η-Yamabe soliton, η-Einstein manifold, trans-Sasakian manifold.

[^0]
Introduction

The concept of Yamabe flow was first introduced by R. Hamilton [7] to construct Yamabe metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian manifold M, a time-dependent metric $g(\cdot, t)$ is said to evolve by the Yamabe flow if the metric g satisfies the given equation

$$
\frac{\partial}{\partial t} g(t)=-r g(t), \quad g(0)=g_{0}
$$

where r is the scalar curvature of the manifold M.
In 2-dimension case, the Yamabe flow is equivalent to the Ricci flow, which is defined by $\frac{\partial}{\partial t} g(t)=-2 S(g(t))$, where S denotes the Ricci tensor. But in dimension >2 the Yamabe and Ricci flows do not agree, since the Yamabe flow preserves the conformal class of the metric but the Ricci flow does not in general.

A Yamabe soliton $[1,13]$ corresponds to self-similar solution of the Yamabe flow, is defined on a Riemannian or pseudo-Riemannian manifold (M, g) by a vector field ξ satisfying the equation

$$
\begin{equation*}
\frac{1}{2} £_{V} g=(r-\lambda) g \tag{1}
\end{equation*}
$$

where $£_{\xi} g$ denotes the Lie derivative of the metric g along the vector field ξ, r is the scalar curvature and λ is a constant. Moreover a Yamabe soliton is said to be expanding if $\lambda>0$, steady if $\lambda=0$ and shrinking if $\lambda<0$.

```
У\DeltaK 514.76
2010 Mathematics Subject Classification: 53C15, 53C25, 53C44.
```

The first author is supported by Swami Vivekananda Merit Cum Means Scholarship, Government of West Bengal, India.

Yamabe solitons on a three-dimensional Sasakian manifold were studied by R. Sharma [14]. If the potential vector field V is of gradient type, $V=\operatorname{grad}(f)$, for f a smooth function on M, then (V, λ) is called a gradient Yamabe soliton.

Definition. As a generalization of Yamabe soliton, a Riemannian metric on (M, g) is said to be a η-Yamabe soliton [3] if

$$
\begin{equation*}
\frac{1}{2} £_{\tilde{\xi}} g=(r-\lambda) g-\mu \eta \otimes \eta \tag{2}
\end{equation*}
$$

where λ and μ are contants and η is a 1-form.
If λ and μ are two smooth functions then (2) is said to be an almost η-Yamabe soliton or a quasi-Yamabe soliton [3].

Moreover if $\mu=0$, the above equation (2) reduces to (1) and so the η-Yamabe soliton becomes Yamabe soliton. Similarly an almost η-Yamabe soliton reduces to almost Yamabe soliton if in (2), λ is a smooth function and $\mu=0$.

Denote

$$
\begin{gather*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \tag{3}\\
H(X, Y) Z=R(X, Y) Z-\frac{1}{(n-2)}[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y], \tag{4}\\
P(X, Y) Z=R(X, Y) Z-\frac{1}{(n-1)}[g(Q Y, Z) X-g(Q X, Z) Y] \tag{5}\\
\tilde{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{6}\\
C^{*}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
-\frac{r}{n}\left[\frac{a}{n-1}+2 b\right][g(Y, Z) X-g(X, Z) Y] \tag{7}
\end{gather*}
$$

where a, b are constants,

$$
\begin{equation*}
W_{2}(X, Y) Z=R(X, Y) Z+\frac{1}{n-1}[g(X, Z) Q Y-g(Y, Z) Q X] \tag{8}
\end{equation*}
$$

the Riemannian-Christoffel curvature tensor R [10], the conharmonic curvature tensor H [8], the projective curvature tensor P [15], the concircular curvature tensor \tilde{C} [11], the quasi-conformal curvature tensor C^{*} [16] and the W_{2}-curvature tensor [11] respectively in a Riemannian manifold $\left(M^{n}, g\right)$, where Q is the Ricci operator, defined by $S(X, Y)=g(Q X, Y), S$ is the Ricci tensor, $r=\operatorname{tr}(S)$ is the scalar curvature, where $\operatorname{tr}(S)$ is the trace of S and $X, Y, Z \in \chi(M), \chi(M)$ being the Lie algebra of vector fields of M.

Now in (7), if $a=1$ and $b=-\frac{1}{n-2}$, then we get

$$
\begin{aligned}
C^{*}(X, Y) Z=R(X, Y) Z & -\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]=C(X, Y) Z
\end{aligned}
$$

where C is the conformal curvature tensor [5]. Thus the conformal curvature tensor C is a particular case of the tensor C^{*}.

In the present paper, we study η-Yamabe soliton on 3-dimensional trans-Sasakian manifolds. The paper is organized as follows. After introduction, Section 2 is devoted for preliminaries on 3-dimensional trans-Sasakian manifolds. In Section 3, we have studied η-Yamabe soliton on 3-dimensional trans-Sasakian manifolds. Here we examine if a 3-dimensional transSasakian manifold admits η-Yamabe soliton, then the scalar curvature is constant and the manifold becomes η-Einstein. We also characterized the nature of the manifold if the manifold is Ricci symmetric and the Ricci tensor is η-recurrent. Section 4 deals with the curvature properties of 3-dimensional trans-Sasakian manifold. In this section we have shown the nature of the η-Yamabe soliton, when the manifold is ξ-projectively flat, ξ-concircularly flat, ξ-conharmonically flat, ξ-quasi-conformally flat. Here we have obtained some results on η-Yamabe soliton satisfying the conditions $R(\xi, X) \cdot S=0$ and $W_{2}(\xi, X) \cdot S=0$. In last section we gave an example of a 3-dimensional trans-Sasakian manifold satisfying η-Yamabe soliton.

1 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is the compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \eta \circ \phi=0, \quad \phi \xi=0, \tag{9}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{10}\\
g(X, \phi Y)=-g(\phi X, Y), \tag{11}\\
g(X, \xi)=\eta(X), \tag{12}
\end{gather*}
$$

for all vector fields $X, Y \in \chi(M)$.
An almost contact metric structure (ϕ, ξ, η, g) on M is called a trans-Sasakian structure [9], if $(M \times R, J, G)$ belongs to the class W_{4} [6], where J is the almost complex structure on $M \times R$ defined by $J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$ for all vector fields X on M and smooth functions f on $M \times R$. It can be expressed by the condition [2]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{13}
\end{equation*}
$$

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type (α, β). From the above expression we can write

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{14}\\
\left(\nabla_{X} \eta\right) Y & =-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{15}
\end{align*}
$$

For a 3-dimensional trans-Sasakian manifold the following relations hold [4,12]:

$$
\begin{aligned}
& 2 \alpha \beta+\xi \alpha=0, \quad S(X, \xi)=\left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-X \beta-(\phi X) \alpha \\
& S(X, Y)=\left[\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right] g(X, Y)-\left[\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \eta(Y) \\
&-(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y)
\end{aligned}
$$

where S denotes the Ricci tensor of type $(0,2), r$ is the scalar curvature of the manifold M and α, β are defined as earlier.

For $\alpha, \beta=$ const, the following relations hold $[4,12]$:

$$
\begin{gather*}
S(X, Y)=\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] g(X, Y)-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \eta(Y) \tag{16}\\
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \\
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y] \tag{17}\\
R(\xi, X) Y=\left(\alpha^{2}-\beta^{2}\right)[g(X, Y) \xi-\eta(Y) X] \tag{18}\\
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(X) \xi-X] \\
\eta(R(X, Y) Z)=\left(\alpha^{2}-\beta^{2}\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{gather*}
$$

where R is the Riemannian curvature tensor, and

$$
Q X=\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] X-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \xi
$$

where Q is the Ricci operator defined earlier.
Again,

$$
\left(£_{\tilde{\xi} g} g\right)(X, Y)=\left(\nabla_{\tilde{\zeta}} g\right)(X, Y)-\alpha g(\phi X, Y)+2 \beta g(X, Y)-2 \beta \eta(X) \eta(Y)-\alpha g(X, \phi Y)
$$

Then using (11), the above equation becomes

$$
\begin{equation*}
\left(£_{\S} g\right)(X, Y)=2 \beta g(X, Y)-2 \beta \eta(X) \eta(Y), \tag{19}
\end{equation*}
$$

where ∇ is the Levi-Civita connection associated with g and $£_{\zeta}$ denotes the Lie derivative along the vector field ξ.

2η-Yamabe soliton on 3-dimensional trans-Sasakian manifold

Let M be a 3-dimensional trans-Sasakian manifold. Consider the η-Yamabe soliton on M as

$$
\begin{equation*}
\frac{1}{2}\left(£_{\S} g\right)(X, Y)=(r-\lambda) g(X, Y)-\mu \eta(X) \eta(Y) \tag{20}
\end{equation*}
$$

for all vector fields X, Y on M.
Theorem 1. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ), ξ being the Reeb vector field of M, then the scalar curvature is constant.

Proof. From (19) and (20), we get

$$
(r-\lambda-\beta) g(X, Y)=(\mu-\beta) \eta(X) \eta(Y)
$$

Taking $Y=\xi$ in the above equation and using (9), we have

$$
(r-\lambda-\mu) \eta(X)=0
$$

Since $\eta(X) \neq 0$, so we get

$$
\begin{equation*}
r=\lambda+\mu \tag{21}
\end{equation*}
$$

Now as both λ and μ are constants, r is also constant.

Corollary 1. If a 3-dimensional trans-Sasakian manifold M admits a Yamabe soliton (g, ξ), ξ being the Reeb vector field of M, then ξ becomes a Killing vector field.

Proof. In (21), if $\mu=0$, we get $r=\lambda$ and so (20) becomes, $£_{\xi \mathcal{G}}=0$. Thus ξ is a Killing vector field.

Corollary 2. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ), ξ being the Reeb vector field of M, then the manifold becomes η-Einstein manifold.

Proof. From (16) and (21), we have

$$
\begin{equation*}
S(X, Y)=\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] g(X, Y)-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \eta(Y) \tag{22}
\end{equation*}
$$

for all vector fields X, Y on M. This concludes the proof.
Proposition 1. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field of M. If the manifold is Ricci symmetric then $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$, where $\lambda, \mu, \alpha, \beta$ are constants.

Proof. We know $\left(\nabla_{X} S\right)(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right)$ for all vector fields X, Y, Z on M and ∇ is the Levi-Civita connection associated with g.

Now replacing the expression of S from (22), we obtain

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left[\eta(Z)\left(\nabla_{X} \eta\right) Y+\eta(Y)\left(\nabla_{X} \eta\right) Z\right] \tag{23}
\end{equation*}
$$

for all vector fields X, Y, Z on M.
Now, if the manifold is Ricci symmetric, i.e. $\nabla S=0$, then from (23) we have

$$
\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left[\eta(Z)\left(\nabla_{X} \eta\right) Y+\eta(Y)\left(\nabla_{X} \eta\right) Z\right]=0
$$

for all vector fields X, Y, Z on M.
Taking $Z=\xi$ in the above equation and using (15), (9), we get

$$
\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][\beta g(\phi X, \phi Y)-\alpha g(\phi X, Y)]=0
$$

for all vector fields X, Y on M. Hence we get $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.
Proposition 2. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field of M. If the Ricci tensor S is η-recurrent, then $\alpha= \pm \beta$.

Proof. If the Ricci tensor S is η-recurrent, then we have $\nabla S=\eta \otimes S$, which implies that

$$
\left(\nabla_{X} S\right)(Y, Z)=\eta(X) S(Y, Z)
$$

for all vector fields X, Y, Z on M. Then using (23), we get

$$
-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left[\eta(Z)\left(\nabla_{X} \eta\right) Y+\eta(Y)\left(\nabla_{X} \eta\right) Z\right]=\eta(X) S(Y, Z)
$$

for all vector fields X, Y, Z on M.

Using (15), the above equation becomes

$$
\begin{aligned}
-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][\eta(Z)(& -\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y)) \\
& +\eta(Y)(-\alpha g(\phi X, Z)+\beta g(\phi X, \phi Z))]=\eta(X) S(Y, Z)
\end{aligned}
$$

Now, taking $Y=\xi, Z=\xi$ and using formulas (9), (22), the above equation becomes $2\left(\alpha^{2}-\right.$ $\left.\beta^{2}\right) \eta(X)=0$. Since $\eta(X) \neq 0$, for all X on M, we have

$$
\begin{equation*}
\alpha= \pm \beta . \tag{24}
\end{equation*}
$$

This completes the proof.
Proposition 3. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field of M. If the manifold is Ricci symmetric and the Ricci tensor S is η-recurrent, then the manifold becomes flat.

Proof. If the manifold is Ricci symmetric and the Ricci tensor S is η-recurrent, then using (24) in $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$ and from (21) we obtain the result.

Theorem 2. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton $(g, V), V$ being a vector field on M. If V is pointwise co-linear with ξ, then V is a constant multiple of ξ, where ξ being the Reeb vector field of M.

Proof. Let an η-Yamabe soliton be defined on a 3-dimensional trans-Sasakian manifold M as

$$
\begin{equation*}
\frac{1}{2} £_{V} g=(r-\lambda) g-\mu \eta \otimes \eta \tag{25}
\end{equation*}
$$

where $£_{V} g$ denotes the Lie derivative of the metric g along a vector field V, r is defined by (1) and λ, μ are defined by (2). Let V be pointwise co-linear with ξ, i.e. $V=b \xi$, where b is a function on M.

Then the equation (25) becomes

$$
\left(£_{b \xi} g\right)(X, Y)=2(r-\lambda) g(X, Y)-2 \mu \eta(X) \eta(Y)
$$

for any vector fields X, Y on M.
Applying the property of Lie derivative and Levi-Civita connection we have

$$
b g\left(\nabla_{X} \xi, Y\right)+(X b) \eta(Y)+b g\left(\nabla_{Y} \xi, X\right)+(Y b) \eta(X)=2(r-\lambda) g(X, Y)-2 \mu \eta(X) \eta(Y) .
$$

Using (14) and (11), the above equation reduces to

$$
2 b \beta[g(X, Y)-\eta(X) \eta(Y)]+(X b) \eta(Y)+(Y b) \eta(X)=2(r-\lambda) g(X, Y)-2 \mu \eta(X) \eta(Y)
$$

Now taking $Y=\xi$ in the above equation and using (9), (12), we obtain

$$
\begin{equation*}
X b+(\xi b) \eta(X)=2(r-\lambda) \eta(X)-2 \mu \eta(X) \tag{26}
\end{equation*}
$$

Again taking $X=\xi$, we get

$$
\begin{equation*}
\xi b=r-\lambda-\mu \tag{27}
\end{equation*}
$$

Then using (27), the equation (26) becomes

$$
\begin{equation*}
X b=(r-\lambda-\mu) \eta(X) . \tag{28}
\end{equation*}
$$

Applying exterior differentiation in (28), we have $(r-\lambda-\mu) d \eta=0$. Since $d \eta \neq 0$ [4], the last equation gives

$$
\begin{equation*}
r=\lambda+\mu . \tag{29}
\end{equation*}
$$

Using (29), the equation (28) becomes $X b=0$, which implies that b is constant. This concludes the proof.

Corollary 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton $(g, V), V$ being a vector field on M, which is pointwise co-linear with ξ, where ξ being the Reeb vector field of M. V is a Killing vector field iff the soliton reduces to a Yamabe soliton.

Proof. Using (29), the equation (25) becomes

$$
\left(£_{V} g\right)(X, Y)=2 \mu[g(X, Y)-\eta(X) \eta(Y)]
$$

for all vector fields X, Y, Z on M. Hence the proof.
Theorem 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field on M. Then Q and S are parallel along ξ, where Q is the Ricci operator, defined by $S(X, Y)=g(Q X, Y)$ and S is the Ricci tensor of M.

Proof. From the equation (22), we get

$$
\begin{equation*}
Q X=\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] X-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \xi \tag{30}
\end{equation*}
$$

for any vector field X on M and Q is defined as earlier. We know

$$
\begin{equation*}
\left(\nabla_{\xi} Q\right) X=\nabla_{\xi} Q X-Q\left(\nabla_{\xi} X\right) \tag{31}
\end{equation*}
$$

for any vector field X on M. Then using (30), the equation (31) becomes

$$
\left(\nabla_{\xi} Q\right) X=-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left(\left(\nabla_{\tilde{\xi} \eta}\right) X\right) \xi .
$$

Using (15) in the above equation, we get $\left(\nabla_{\tilde{\xi}} Q\right) X=0$, for any vector field X on M. Hence Q is parallel along ξ.

Again from (23), we obtain

$$
\left(\nabla_{\tilde{\zeta}} S\right)(X, Y)=-\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left[\eta(Y)\left(\nabla_{\tilde{\zeta}} \eta\right) X+\eta(X)\left(\nabla_{\tilde{\zeta}} \eta\right) Y\right]
$$

for any vector fields X, Y on M. Using (15) in the above equation, we get $\left(\nabla_{\xi} S\right)(X, Y)=0$, for any vector fields X, Y on M. Hence, S is parallel along ξ.

3 Curvature properties on 3-dimensional trans-Sasakian manifold admitting η-Yamabe soliton

In this section, we have discussed and proved some of the curvature properties on 3-dimensional trans-Sasakian manifold admitting η-Yamabe soliton.

Theorem 4. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M, is ξ-projectively flat.

Proof. From the definition of projective curvature tensor (5), defined on a 3-dimensional transSasakian manifold, using the property $g(Q X, Y)=S(X, Y)$, we have

$$
P(X, Y) Z=R(X, Y) Z-\frac{1}{2}[S(Y, Z) X-S(X, Z) Y]
$$

for any vector fields X, Y, Z on M. Putting $Z=\xi$ in the above equation and using (17) and (22), we obtain

$$
P(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y]-\frac{1}{2}\left[2\left(\alpha^{2}-\beta^{2}\right) \eta(Y) X-2\left(\alpha^{2}-\beta^{2}\right) \eta(X) Y\right]
$$

which implies that $P(X, Y) \xi=0$. Hence the proof.
Theorem 5. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M, is ξ-concircularly flat iff $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.

Proof. From the definition of concircular curvature tensor (6), defined on a 3-dimensional trans-Sasakian manifold, we have

$$
\tilde{C}(X, Y) Z=R(X, Y) Z-\frac{r}{6}[g(Y, Z) X-g(X, Z) Y]
$$

for any vector fields X, Y, Z on M. Putting $Z=\xi$ in the above equation and using (12) and (17), we obtain

$$
\begin{equation*}
\tilde{C}(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y]-\frac{r}{6}[\eta(Y) X-\eta(X) Y] . \tag{32}
\end{equation*}
$$

Now using (21), we get

$$
\tilde{C}(X, Y) \xi=\left[\left(\alpha^{2}-\beta^{2}\right)-\frac{\lambda+\mu}{6}\right][\eta(Y) X-\eta(X) Y] .
$$

This implies that $\tilde{C}(X, Y) \tilde{\xi}=0$ iff $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.
Corollary 4. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field on M. If the manifold is ξ-concircularly flat and the Ricci tensor is η-recurrent, then the manifold M becomes flat.

Proof. If the Ricci tensor S is η-recurrent, then using (24) in (32), we have the result.

Theorem 6. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M, is ξ-conharmonically flat iff $\lambda+\mu=0$.

Proof. From the definition of conharmonic curvature tensor (4), defined on a 3-dimensional trans-Sasakian manifold, we have

$$
H(X, Y) Z=R(X, Y) Z-[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y]
$$

for any vector fields X, Y, Z on M. Putting $Z=\xi$ in the above equation and using (12), (17), (22) and (30), the above equation becomes

$$
H(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y]-\left[\frac{\lambda+\mu}{2}+\left(\alpha^{2}-\beta^{2}\right)\right][\eta(Y) X-\eta(X) Y]
$$

Hence we get

$$
H(X, Y) \xi=-\frac{\lambda+\mu}{2}[\eta(Y) X-\eta(X) Y] .
$$

This implies that $H(X, Y) \xi=0$ iff $\lambda+\mu=0$.
Theorem 7. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton $(g, \xi), \xi$ being the Reeb vector field on M, is ξ-quasi-conformally flat iff either $a+b=0$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.

Proof. From the definition of quasi-conformal curvature tensor (7), defined on a 3-dimensional trans-Sasakian manifold, we have

$$
\begin{aligned}
C^{*}(X, Y) Z=a R(X, Y) Z & +b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& -\frac{r}{3}\left[\frac{a}{2}+2 b\right][g(Y, Z) X-g(X, Z) Y]
\end{aligned}
$$

for any vector fields X, Y, Z on M and a, b are constants. Putting $Z=\xi$ in the above equation and using (12), (17), (21), (22) and (30), the above equation becomes

$$
\begin{aligned}
C^{*}(X, Y) \xi=a\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y] & +b\left[\frac{\lambda+\mu}{2}+\left(\alpha^{2}-\beta^{2}\right)\right][\eta(Y) X-\eta(X) Y] \\
& -\frac{\lambda+\mu}{3}\left[\frac{a}{2}+2 b\right][\eta(Y) X-\eta(X) Y]
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
C^{*}(X, Y) \xi=\left[a\left(\alpha^{2}-\beta^{2}\right)+b\left[\frac{\lambda+\mu}{2}+\left(\alpha^{2}-\beta^{2}\right)\right]-\frac{\lambda+\mu}{3}\left[\frac{a}{2}+2 b\right]\right][\eta(Y) X-\eta(X) Y] . \tag{33}
\end{equation*}
$$

This implies that $C^{*}(X, Y) \xi=0$ iff $a\left(\alpha^{2}-\beta^{2}\right)+b\left[\frac{\lambda+\mu}{2}+\left(\alpha^{2}-\beta^{2}\right)\right]-\frac{\lambda+\mu}{3}\left[\frac{a}{2}+2 b\right]=0$. Then by simplifying, we obtain $C^{*}(X, Y) \xi=0$ iff $(a+b)\left[\left(\alpha^{2}-\beta^{2}\right)-\frac{\lambda+\mu}{6}\right]=0$, i.e. either $a+b=0$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$. This concludes the proof.

Corollary 5. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M. If the manifold is ξ-quasi-conformally flat and the Ricci tensor is η-recurrent, then the manifold M becomes flat, provided $a+b \neq 0$.

Proof. If the Ricci tensor S is η-recurrent, then using (24) in (33), we get

$$
\begin{equation*}
C^{*}(X, Y) \xi=-\frac{a+b}{6}(\lambda+\mu)[\eta(Y) X-\eta(X) Y] . \tag{34}
\end{equation*}
$$

Hence using (21) in (34), we have the result.
Theorem 8. If a 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M, is ξ-semi symmetric, then either $\left(\alpha^{2}-\beta^{2}\right)=0$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.

Proof. We know

$$
\begin{equation*}
R(\xi, X) \cdot S=S(R(\xi, X) Y, Z)+S(Y, R(\xi, X) Z) \tag{35}
\end{equation*}
$$

for any vector fields X, Y, Z on M.
Now let the manifold be ξ-semi symmetric, i.e. $R(\xi, X) \cdot S=0$. Then from (35), we have $S(R(\xi, X) Y, Z)+S(Y, R(\xi, X) Z)=0$ for any vector fields X, Y, Z on M. Using (18), the last equation becomes

$$
S\left(\left(\alpha^{2}-\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X), Z\right)+S\left(Y,\left(\alpha^{2}-\beta^{2}\right)(g(X, Z) \xi-\eta(Z) X)\right)=0
$$

Replacing the expression of S from (22) and simplifying we get

$$
\left(\alpha^{2}-\beta^{2}\right)\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][g(X, Y) \eta(Z)+g(X, Z) \eta(Y)-2 \eta(X) \eta(Y) \eta(Z)]=0
$$

Taking $Z=\xi$ in the above equation and using (9), (12), we obtain

$$
\left(\alpha^{2}-\beta^{2}\right)\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][g(X, Y)-\eta(x) \eta(Y)]=0
$$

for any vector fields X, Y on M. Using (10), the above equation becomes

$$
\left(\alpha^{2}-\beta^{2}\right)\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] g(\phi X, \phi Y)=0
$$

for any vector fields X, Y on M. Hence we get $\left(\alpha^{2}-\beta^{2}\right)\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]=0$. Then either $\left(\alpha^{2}-\beta^{2}\right)=0$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.

Theorem 9. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M and satisfies $W_{2}(\xi, X) \cdot S=0$, where W_{2} is the W_{2}-curvature tensor and S is the Ricci tensor, then either $\lambda+\mu=2\left(\alpha^{2}-\beta^{2}\right)$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.

Proof. From the definition of W_{2}-curvature tensor (8), defined on a 3-dimensional transSasakian manifold, we have

$$
\begin{equation*}
W_{2}(X, Y) Z=R(X, Y) Z+\frac{1}{2}[g(X, Z) Q Y-g(Y, Z) Q X] \tag{36}
\end{equation*}
$$

for any vector fields X, Y, Z on M.

Again we know, $W_{2}(\xi, X) \cdot S=S\left(W_{2}(\xi, X) Y, Z\right)+S\left(Y, W_{2}(\xi, X) Z\right)$ for any vector fields X, Y, Z on M. Replacing the expression of S from (22), on simplifying we get

$$
\begin{aligned}
W_{2}(\xi, X) \cdot S= & {\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[g\left(W_{2}(\xi, X) Y, Z\right)+g\left(Y, W_{2}(\xi, X) Z\right)\right] } \\
& -\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]\left[\eta\left(W_{2}(\xi, X) Y\right) \eta(Z)+\eta(Y) \eta\left(W_{2}(\xi, X) Z\right)\right] .
\end{aligned}
$$

Now, from the definition of W_{2}-curvature tensor (36) and then by using (18), the property $g(Q X, Y)=S(X, Y)$ and (22), the above equation becomes

$$
\begin{aligned}
W_{2}(\xi, X) \cdot S= & \frac{1}{2}\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \\
& \times[g(X, Y) \eta(Z)+g(X, Z) \eta(Y)-2 \eta(X) \eta(Y) \eta(Z)]
\end{aligned}
$$

for any vector fields X, Y, Z on M. Let in this manifold $M, W_{2}(\xi, X) \cdot S=0$. Then from the above equation, we get
$\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][g(X, Y) \eta(Z)+g(X, Z) \eta(Y)-2 \eta(X) \eta(Y) \eta(Z)]=0$,
for any vector fields X, Y, Z on M. Taking $Z=\xi$ in the above equation and using (9), (12), we obtain

$$
\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right][g(X, Y)-\eta(X) \eta(Y)]=0
$$

for any vector fields X, Y on M. Using (10), the above equation becomes

$$
\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] g(\phi X, \phi Y)=0
$$

for any vector fields X, Y on M. Hence we get,

$$
\begin{equation*}
\left[\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)\right]\left[\frac{\lambda+\mu}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right]=0 \tag{37}
\end{equation*}
$$

Then either $\lambda+\mu=2\left(\alpha^{2}-\beta^{2}\right)$ or $\lambda+\mu=6\left(\alpha^{2}-\beta^{2}\right)$.
Corollary 6. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ), ξ being the Reeb vector field on M and satisfies $W_{2}(\xi, X) \cdot S=0$, where W_{2} is the W_{2}-curvature tensor and S is the Ricci tensor which is η-recurrent, then the manifold becomes flat.

Proof. If the Ricci tensor S is η-recurrent then using (24) in (37) and from (21), we have the result.

4 Example of a 3-dimensional trans-Sasakian manifold admitting η-Yamabe soliton

In this section, we give an example of a 3-dimensional trans-Sasakian manifold with α, β being constants. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard coordinates in \mathbb{R}^{3}. Let e_{1}, e_{2}, e_{3} be a linearly independent system of vector fields on M given by

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z} .
$$

Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \quad g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{3}, e_{1}\right)=0
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M and ϕ be the (1,1)-tensor field defined by $\phi e_{1}=-e_{2}, \phi e_{2}=e_{1}$, $\phi e_{3}=0$. Then, using the linearity of ϕ and g, we have

$$
\eta\left(e_{3}\right)=1, \quad \phi^{2}(Z)=-Z+\eta(Z) e_{3} \quad \text { and } \quad g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$. Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then we have $\left[e_{1}, e_{2}\right]=0,\left[e_{2}, e_{3}\right]=-e_{2},\left[e_{1}, e_{3}\right]=-e_{1}$. The connection ∇ of the metric g is given by

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
$$ which is known as Koszul's formula. Using Koszul's formula, we can easily calculate,

$$
\begin{gathered}
\nabla_{e_{1}} e_{3}=-e_{1}, \quad \nabla_{e_{2}} e_{3}=-e_{2}, \quad \nabla_{e_{3}} e_{3}=0 \\
\nabla_{e_{1}} e_{1}=e_{3}, \quad \nabla_{e_{2} e_{1}}=0, \quad \nabla_{e_{3} e_{1}=0} \\
\nabla_{e_{1} e_{2}}=0, \quad \nabla_{e_{2}} e_{2}=e_{3}, \quad \nabla_{e_{3} e_{2}}=0 .
\end{gathered}
$$

We see that

$$
\begin{align*}
&\left(\nabla_{e_{1}} \phi\right) e_{1}=\nabla_{e_{1}} \phi e_{1}-\phi \nabla_{e_{1}} e_{1}=-\nabla_{e_{1}} e_{2}-\phi e_{3}=0 \\
&=0\left(g\left(e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) \phi e_{1}\right) . \tag{38}\\
&\left(\nabla_{e_{1}} \phi\right) e_{2}=\nabla_{e_{1}} \phi e_{2}-\phi \nabla_{e_{1}} e_{2}=\nabla_{e_{1}} e_{1}-0=e_{3} \\
&=0\left(g\left(e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) \phi e_{1}\right) . \tag{39}\\
&\left(\nabla_{e_{1}} \phi\right) e_{3}=\nabla_{e_{1}} \phi e_{3}-\phi \phi \nabla_{e_{1} e_{3}}=0+\phi e_{1}=-e_{2} \\
&=0\left(g\left(e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) \phi e_{1}\right) . \tag{40}
\end{align*}
$$

Hence from (38), (39) and (40) we can see that the manifold M satisfies (13) for $X=e_{1}$, $\alpha=0, \beta=-1$ and $e_{3}=\xi$. Similarly, it can be shown that for $X=e_{2}$ and $X=e_{3}$ the manifold also satisfies (13) for $\alpha=0, \beta=-1$ and $e_{3}=\xi$.

Hence the manifold M is a 3-dimensional trans-Sasakian manifold of type ($0,-1$). Also, from the definition of the Riemannian curvature tensor R (3), we get

$$
\begin{array}{lll}
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, & R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, & R\left(e_{2}, e_{1}\right) e_{1}=-e_{2} \\
R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, & R\left(e_{3}, e_{1}\right) e_{1}=-e_{3}, & R\left(e_{3}, e_{2}\right) e_{2}=-e_{3}
\end{array}
$$

Then the Ricci tensor S is given by

$$
\begin{equation*}
S\left(e_{1}, e_{1}\right)=-2, \quad S\left(e_{2}, e_{2}\right)=-2, \quad S\left(e_{3}, e_{3}\right)=-2 \tag{41}
\end{equation*}
$$

Then the scalar curvature is $r=-6$. From (22), we have

$$
\begin{equation*}
S\left(e_{1}, e_{1}\right)=\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right), \quad S\left(e_{2}, e_{2}\right)=\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right), \quad S\left(e_{3}, e_{3}\right)=2\left(\alpha^{2}-\beta^{2}\right) . \tag{42}
\end{equation*}
$$

Then from (41) and (42), we get $\frac{\lambda+\mu}{2}-\left(\alpha^{2}-\beta^{2}\right)=-2$ and $\alpha^{2}-\beta^{2}=-1$. This implies the equality $\lambda+\mu=-6$. Then the value of $\lambda+\mu$ is same as the value of r and so it satisfies Theorem 1. Hence g defines an η-Yamabe soliton on a 3-dmensional trans-Sasakian manifold M.

References

[1] Barbosa E., Ribeiro E. On conformal solutions of the Yamabe flow. Arch. Math.(Basel) 2013, 101 (1), 79-89. doi:10.1007/s00013-013-0533-0
[2] Blair D.E., Oubiña J.A. Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 1990, 34 (1), 199-207. doi:10.5565/PUBLMAT_34190_15
[3] Chen B.Y., Deshmukh S. Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediterr. J. Math. 2018, 15, article number 194. doi:10.1007/s00009-018-1237-2
[4] Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Hacet. J. Math. Stat. 2016, 45 (5), 1379-1392. doi:10.15672/hjms. 20164514287
[5] Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.
[6] Gray A., Hervella L. The sixteen classes of almost Hermitian manifolds and their Linear invariants. Ann. Mat. Pura Appl. 1980, 123 (4), 35-58. doi:10.1007/BF01796539
[7] Hamilton R. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237-261.
[8] Ishii Y. On conharmonic transformations. Tensor (N.S.) 1957, 7, 73-80.
[9] Oubina J.A. New Class of almost Contact metric structures. Publ. Math. Debrecen 1985, 32 (4), 187-193.
[10] Özgür C. ϕ-conformally flat Lorentzian para-Sasakian manifolds. Radovi Mathematički 2003, 12, 99-106.
[11] Pokhariyal G.P., Mishra R.S. Curvature tensors' and their relativistic significance. Yokohama Math. J. 1970, 18, 105-108.
[12] Roy S., Bhattacharyya A. Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Jordan J. Math. Stat. 2020, 13 (1), 89-109.
[13] Roy S., Dey S., Bhattacharyya A. Yamabe Solitons on (LCS $)_{n}$-manifolds. J. Dyn. Syst. Geom. Theor. 2020, 18 (2), 261-279. doi:10.1080/1726037X.2020.1868100
[14] Sharma R. A 3-dimensional Sasakian metric as a Yamabe Soliton. Int. J. Geom. Methods Mod. Phys. 2012, 9 (4), 1220003. doi:10.1142/S0219887812200034
[15] Yano K., Kon M. Structures on manifolds. In: Series in Pure Mathematics, 3. World Scientific Publ., Singapore, 1984. doi:10.1142/0067
[16] Yano K., Sawaki S. Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 1968, 2 (2), 161-184. doi:10.4310/jdg/1214428253

Revised 20.07.2021

Рой С., Дей С., Бхаттачарія А. Деякі результати про η-Ямабе солітони у трьохвимірному трансСасакяновому многовиді // Карпатські матем. публ. — 2022. - Т.14, №1. - С. 158-170.

Метою цієї статті є вивчення деяких властивостей трьохвимірного транс-Сасакянового многовиду, чиєю метрикою є η-Ямабе солітон. Ми вивчили деякі умови кривизни трьохвимірного транс-Сасакянового многовиду, що допускає η-Ямабе солітон. Нарешті, ми будуємо трьохвимірний транс-Сасакяновий многовид, що задовольняє η-Ямабе солітон.

Ключові слова і фрази: солітон Ямабе, η-Ямабе солітон, η-айнштайнівський многовид, трансСасакяновий многовид.

[^0]: ${ }^{1}$ Department of Mathematics, Jadavpur University, Kolkata, India
 ${ }^{2}$ Department of Mathematics, Bidhan Chandra College, Asansol, West Bengal, India
 Corresponding author
 E-mail: soumendu1103mtma@gmail.com (Roy S.), santu.mathju@gmail.com (Dey S.),
 bhattachar1968@yahoo.co.in(Bhattacharyya A.)

