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Some results on η-Yamabe solitons in 3-dimensional
trans-Sasakian manifold
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The object of the present paper is to study some properties of 3-dimensional trans-Sasakian

manifold whose metric is η-Yamabe soliton. We have studied here some certain curvature conditions

of 3-dimensional trans-Sasakian manifold admitting η-Yamabe soliton. Lastly, we construct a 3-

dimensional trans-Sasakian manifold satisfying η-Yamabe soliton.
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Introduction

The concept of Yamabe flow was first introduced by R. Hamilton [7] to construct Yamabe

metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian mani-

fold M, a time-dependent metric g(·, t) is said to evolve by the Yamabe flow if the metric g

satisfies the given equation
∂

∂t
g(t) = −rg(t), g(0) = g0,

where r is the scalar curvature of the manifold M.

In 2-dimension case, the Yamabe flow is equivalent to the Ricci flow, which is defined by
∂
∂t g(t) = −2S(g(t)), where S denotes the Ricci tensor. But in dimension > 2 the Yamabe and

Ricci flows do not agree, since the Yamabe flow preserves the conformal class of the metric but

the Ricci flow does not in general.

A Yamabe soliton [1, 13] corresponds to self-similar solution of the Yamabe flow, is defined

on a Riemannian or pseudo-Riemannian manifold (M, g) by a vector field ξ satisfying the

equation
1

2
£V g = (r − λ)g, (1)

where £ξ g denotes the Lie derivative of the metric g along the vector field ξ, r is the scalar

curvature and λ is a constant. Moreover a Yamabe soliton is said to be expanding if λ > 0,

steady if λ = 0 and shrinking if λ < 0.
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Yamabe solitons on a three-dimensional Sasakian manifold were studied by R. Sharma [14].

If the potential vector field V is of gradient type, V = grad( f ), for f a smooth function on M,

then (V, λ) is called a gradient Yamabe soliton.

Definition. As a generalization of Yamabe soliton, a Riemannian metric on (M, g) is said to be

a η-Yamabe soliton [3] if
1

2
£ξ g = (r − λ)g − µη ⊗ η, (2)

where λ and µ are contants and η is a 1-form.

If λ and µ are two smooth functions then (2) is said to be an almost η-Yamabe soliton or a

quasi-Yamabe soliton [3].

Moreover if µ = 0, the above equation (2) reduces to (1) and so the η-Yamabe soliton be-

comes Yamabe soliton. Similarly an almost η-Yamabe soliton reduces to almost Yamabe soliton

if in (2), λ is a smooth function and µ = 0.

Denote

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z, (3)

H(X, Y)Z = R(X, Y)Z −
1

(n − 2)
[g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y], (4)

P(X, Y)Z = R(X, Y)Z −
1

(n − 1)
[g(QY, Z)X − g(QX, Z)Y], (5)

C̃(X, Y)Z = R(X, Y)Z −
r

n(n − 1)
[g(Y, Z)X − g(X, Z)Y], (6)

C∗(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY]

−
r

n

[ a

n − 1
+ 2b

]

[g(Y, Z)X − g(X, Z)Y],
(7)

where a, b are constants,

W2(X, Y)Z = R(X, Y)Z +
1

n − 1
[g(X, Z)QY − g(Y, Z)QX] (8)

the Riemannian-Christoffel curvature tensor R [10], the conharmonic curvature tensor H [8],

the projective curvature tensor P [15], the concircular curvature tensor C̃ [11], the quasi-con-

formal curvature tensor C∗ [16] and the W2-curvature tensor [11] respectively in a Riemannian

manifold (Mn, g), where Q is the Ricci operator, defined by S(X, Y) = g(QX, Y), S is the Ricci

tensor, r = tr(S) is the scalar curvature, where tr(S) is the trace of S and X, Y, Z ∈ χ(M), χ(M)

being the Lie algebra of vector fields of M.

Now in (7), if a = 1 and b = − 1
n−2 , then we get

C∗(X, Y)Z = R(X, Y)Z −
1

n − 2
[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y] = C(X, Y)Z,

where C is the conformal curvature tensor [5]. Thus the conformal curvature tensor C is a

particular case of the tensor C∗.
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In the present paper, we study η-Yamabe soliton on 3-dimensional trans-Sasakian mani-

folds. The paper is organized as follows. After introduction, Section 2 is devoted for prelim-

inaries on 3-dimensional trans-Sasakian manifolds. In Section 3, we have studied η-Yamabe

soliton on 3-dimensional trans-Sasakian manifolds. Here we examine if a 3-dimensional trans-

Sasakian manifold admits η-Yamabe soliton, then the scalar curvature is constant and the

manifold becomes η-Einstein. We also characterized the nature of the manifold if the man-

ifold is Ricci symmetric and the Ricci tensor is η-recurrent. Section 4 deals with the cur-

vature properties of 3-dimensional trans-Sasakian manifold. In this section we have shown

the nature of the η-Yamabe soliton, when the manifold is ξ-projectively flat, ξ-concircularly

flat, ξ-conharmonically flat, ξ-quasi-conformally flat. Here we have obtained some results on

η-Yamabe soliton satisfying the conditions R(ξ, X) · S = 0 and W2(ξ, X) · S = 0. In last section

we gave an example of a 3-dimensional trans-Sasakian manifold satisfying η-Yamabe soliton.

1 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric struc-

ture (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is the

compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (9)

g(φX, φY) = g(X, Y) − η(X)η(Y), (10)

g(X, φY) = −g(φX, Y), (11)

g(X, ξ) = η(X), (12)

for all vector fields X, Y ∈ χ(M).

An almost contact metric structure (φ, ξ, η, g) on M is called a trans-Sasakian structure [9],

if (M × R, J, G) belongs to the class W4 [6], where J is the almost complex structure on M × R

defined by J(X, f d
dt) = (φX − f ξ, η(X) d

dt ) for all vector fields X on M and smooth functions f

on M × R. It can be expressed by the condition [2]

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX), (13)

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type

(α, β). From the above expression we can write

∇Xξ = −αφX + β(X − η(X)ξ), (14)

(∇Xη)Y = −αg(φX, Y) + βg(φX, φY). (15)

For a 3-dimensional trans-Sasakian manifold the following relations hold [4, 12]:

2αβ + ξα = 0, S(X, ξ) = (2(α2 − β2)− ξβ)η(X) − Xβ − (φX)α,

S(X, Y) =
[ r

2
+ ξβ − (α2 − β2)

]

g(X, Y) −
[ r

2
+ ξβ − 3(α2 − β2)

]

η(X)η(Y)

− (Yβ + (φY)α)η(X) − (Xβ + (φX)α)η(Y),

where S denotes the Ricci tensor of type (0, 2), r is the scalar curvature of the manifold M and

α, β are defined as earlier.
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For α, β = const, the following relations hold [4, 12]:

S(X, Y) =
[ r

2
− (α2 − β2)

]

g(X, Y) −
[ r

2
− 3(α2 − β2)

]

η(X)η(Y), (16)

S(X, ξ) = 2(α2 − β2)η(X),

R(X, Y)ξ = (α2 − β2)[η(Y)X − η(X)Y], (17)

R(ξ, X)Y = (α2 − β2)[g(X, Y)ξ − η(Y)X], (18)

R(ξ, X)ξ = (α2 − β2)[η(X)ξ − X],

η(R(X, Y)Z) = (α2 − β2)[g(Y, Z)η(X) − g(X, Z)η(Y)],

where R is the Riemannian curvature tensor, and

QX =
[ r

2
− (α2 − β2)

]

X −
[ r

2
− 3(α2 − β2)

]

η(X)ξ,

where Q is the Ricci operator defined earlier.

Again,

(£ξ g)(X, Y) = (∇ξ g)(X, Y) − αg(φX, Y) + 2βg(X, Y) − 2βη(X)η(Y) − αg(X, φY).

Then using (11), the above equation becomes

(£ξ g)(X, Y) = 2βg(X, Y) − 2βη(X)η(Y), (19)

where ∇ is the Levi-Civita connection associated with g and £ξ denotes the Lie derivative

along the vector field ξ.

2 η-Yamabe soliton on 3-dimensional trans-Sasakian manifold

Let M be a 3-dimensional trans-Sasakian manifold. Consider the η-Yamabe soliton on M as

1

2
(£ξ g)(X, Y) = (r − λ)g(X, Y) − µη(X)η(Y), (20)

for all vector fields X, Y on M.

Theorem 1. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field of M, then the scalar curvature is constant.

Proof. From (19) and (20), we get

(r − λ − β)g(X, Y) = (µ − β)η(X)η(Y).

Taking Y = ξ in the above equation and using (9), we have

(r − λ − µ)η(X) = 0.

Since η(X) 6= 0, so we get

r = λ + µ. (21)

Now as both λ and µ are constants, r is also constant.
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Corollary 1. If a 3-dimensional trans-Sasakian manifold M admits a Yamabe soliton (g, ξ),

ξ being the Reeb vector field of M, then ξ becomes a Killing vector field.

Proof. In (21), if µ = 0, we get r = λ and so (20) becomes, £ξ g = 0. Thus ξ is a Killing vector

field.

Corollary 2. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field of M, then the manifold becomes η-Einstein manifold.

Proof. From (16) and (21), we have

S(X, Y) =
[λ + µ

2
− (α2 − β2)

]

g(X, Y) −
[λ + µ

2
− 3(α2 − β2)

]

η(X)η(Y) (22)

for all vector fields X, Y on M. This concludes the proof.

Proposition 1. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe

soliton (g, ξ), ξ being the Reeb vector field of M. If the manifold is Ricci symmetric then

λ + µ = 6(α2 − β2), where λ, µ, α, β are constants.

Proof. We know (∇XS)(Y, Z) = XS(Y, Z) − S(∇XY, Z) − S(Y,∇X Z) for all vector fields

X, Y, Z on M and ∇ is the Levi-Civita connection associated with g.

Now replacing the expression of S from (22), we obtain

(∇XS)(Y, Z) = −
[λ + µ

2
− 3(α2 − β2)

]

[η(Z)(∇X η)Y + η(Y)(∇X η)Z] (23)

for all vector fields X, Y, Z on M.

Now, if the manifold is Ricci symmetric, i.e. ∇S = 0, then from (23) we have

[λ + µ

2
− 3(α2 − β2)

]

[η(Z)(∇X η)Y + η(Y)(∇X η)Z] = 0

for all vector fields X, Y, Z on M.

Taking Z = ξ in the above equation and using (15), (9), we get

[λ + µ

2
− 3(α2 − β2)

]

[βg(φX, φY) − αg(φX, Y)] = 0

for all vector fields X, Y on M. Hence we get λ + µ = 6(α2 − β2).

Proposition 2. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton

(g, ξ), ξ being the Reeb vector field of M. If the Ricci tensor S is η-recurrent, then α = ±β.

Proof. If the Ricci tensor S is η-recurrent, then we have ∇S = η ⊗ S, which implies that

(∇XS)(Y, Z) = η(X)S(Y, Z)

for all vector fields X, Y, Z on M. Then using (23), we get

−
[λ + µ

2
− 3(α2 − β2)

]

[η(Z)(∇X η)Y + η(Y)(∇X η)Z] = η(X)S(Y, Z)

for all vector fields X, Y, Z on M.
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Using (15), the above equation becomes

−
[λ + µ

2
− 3(α2 − β2)

]

[η(Z)( − αg(φX, Y) + βg(φX, φY))

+ η(Y)(−αg(φX, Z) + βg(φX, φZ))] = η(X)S(Y, Z).

Now, taking Y = ξ, Z = ξ and using formulas (9), (22), the above equation becomes 2(α2 −

β2)η(X) = 0. Since η(X) 6= 0, for all X on M, we have

α = ±β. (24)

This completes the proof.

Proposition 3. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton

(g, ξ), ξ being the Reeb vector field of M. If the manifold is Ricci symmetric and the Ricci

tensor S is η-recurrent, then the manifold becomes flat.

Proof. If the manifold is Ricci symmetric and the Ricci tensor S is η-recurrent, then using (24)

in λ + µ = 6(α2 − β2) and from (21) we obtain the result.

Theorem 2. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton

(g, V), V being a vector field on M. If V is pointwise co-linear with ξ, then V is a constant

multiple of ξ, where ξ being the Reeb vector field of M.

Proof. Let an η-Yamabe soliton be defined on a 3-dimensional trans-Sasakian manifold M as

1

2
£V g = (r − λ)g − µη ⊗ η, (25)

where £V g denotes the Lie derivative of the metric g along a vector field V, r is defined by

(1) and λ, µ are defined by (2). Let V be pointwise co-linear with ξ, i.e. V = bξ, where b is a

function on M.

Then the equation (25) becomes

(£bξ g)(X, Y) = 2(r − λ)g(X, Y) − 2µη(X)η(Y)

for any vector fields X, Y on M.

Applying the property of Lie derivative and Levi-Civita connection we have

bg(∇Xξ, Y) + (Xb)η(Y) + bg(∇Yξ, X) + (Yb)η(X) = 2(r − λ)g(X, Y) − 2µη(X)η(Y).

Using (14) and (11), the above equation reduces to

2bβ[g(X, Y) − η(X)η(Y)] + (Xb)η(Y) + (Yb)η(X) = 2(r − λ)g(X, Y) − 2µη(X)η(Y).

Now taking Y = ξ in the above equation and using (9), (12), we obtain

Xb + (ξb)η(X) = 2(r − λ)η(X) − 2µη(X). (26)

Again taking X = ξ, we get

ξb = r − λ − µ. (27)
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Then using (27), the equation (26) becomes

Xb = (r − λ − µ)η(X). (28)

Applying exterior differentiation in (28), we have (r − λ − µ)dη = 0. Since dη 6= 0 [4], the last

equation gives

r = λ + µ. (29)

Using (29), the equation (28) becomes Xb = 0, which implies that b is constant. This concludes

the proof.

Corollary 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton

(g, V), V being a vector field on M, which is pointwise co-linear with ξ, where ξ being the Reeb

vector field of M. V is a Killing vector field iff the soliton reduces to a Yamabe soliton.

Proof. Using (29), the equation (25) becomes

(£V g)(X, Y) = 2µ[g(X, Y) − η(X)η(Y)],

for all vector fields X, Y, Z on M. Hence the proof.

Theorem 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton

(g, ξ), ξ being the Reeb vector field on M. Then Q and S are parallel along ξ, where Q is the

Ricci operator, defined by S(X, Y) = g(QX, Y) and S is the Ricci tensor of M.

Proof. From the equation (22), we get

QX =
[λ + µ

2
− (α2 − β2)

]

X −
[λ + µ

2
− 3(α2 − β2)

]

η(X)ξ (30)

for any vector field X on M and Q is defined as earlier. We know

(∇ξ Q)X = ∇ξ QX − Q(∇ξ X) (31)

for any vector field X on M. Then using (30), the equation (31) becomes

(∇ξ Q)X = −
[λ + µ

2
− 3(α2 − β2)

]

((∇ξ η)X)ξ.

Using (15) in the above equation, we get (∇ξ Q)X = 0, for any vector field X on M. Hence Q is

parallel along ξ.

Again from (23), we obtain

(∇ξ S)(X, Y) = −
[λ + µ

2
− 3(α2 − β2)

]

[η(Y)(∇ξ η)X + η(X)(∇ξ η)Y]

for any vector fields X, Y on M. Using (15) in the above equation, we get (∇ξ S)(X, Y) = 0, for

any vector fields X, Y on M. Hence, S is parallel along ξ.
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3 Curvature properties on 3-dimensional trans-Sasakian manifold admit-

ting η-Yamabe soliton

In this section, we have discussed and proved some of the curvature properties on 3-dimen-

sional trans-Sasakian manifold admitting η-Yamabe soliton.

Theorem 4. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M, is ξ-projectively flat.

Proof. From the definition of projective curvature tensor (5), defined on a 3-dimensional trans-

Sasakian manifold, using the property g(QX, Y) = S(X, Y), we have

P(X, Y)Z = R(X, Y)Z −
1

2
[S(Y, Z)X − S(X, Z)Y]

for any vector fields X, Y, Z on M. Putting Z = ξ in the above equation and using (17) and (22),

we obtain

P(X, Y)ξ = (α2 − β2)[η(Y)X − η(X)Y] −
1

2
[2(α2 − β2)η(Y)X − 2(α2 − β2)η(X)Y],

which implies that P(X, Y)ξ = 0. Hence the proof.

Theorem 5. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M, is ξ-concircularly flat iff λ + µ = 6(α2 − β2).

Proof. From the definition of concircular curvature tensor (6), defined on a 3-dimensional

trans-Sasakian manifold, we have

C̃(X, Y)Z = R(X, Y)Z −
r

6
[g(Y, Z)X − g(X, Z)Y]

for any vector fields X, Y, Z on M. Putting Z = ξ in the above equation and using (12) and (17),

we obtain

C̃(X, Y)ξ = (α2 − β2)[η(Y)X − η(X)Y] −
r

6
[η(Y)X − η(X)Y]. (32)

Now using (21), we get

C̃(X, Y)ξ =
[

(α2 − β2)−
λ + µ

6

]

[η(Y)X − η(X)Y].

This implies that C̃(X, Y)ξ = 0 iff λ + µ = 6(α2 − β2).

Corollary 4. Let M be a 3-dimensional trans-Sasakian manifold admitting an η-Yamabe soliton

(g, ξ), ξ being the Reeb vector field on M. If the manifold is ξ-concircularly flat and the Ricci

tensor is η-recurrent, then the manifold M becomes flat.

Proof. If the Ricci tensor S is η-recurrent, then using (24) in (32), we have the result.
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Theorem 6. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M, is ξ-conharmonically flat iff λ + µ = 0.

Proof. From the definition of conharmonic curvature tensor (4), defined on a 3-dimensional

trans-Sasakian manifold, we have

H(X, Y)Z = R(X, Y)Z − [g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y]

for any vector fields X, Y, Z on M. Putting Z = ξ in the above equation and using (12), (17),

(22) and (30), the above equation becomes

H(X, Y)ξ = (α2 − β2)[η(Y)X − η(X)Y] −
[λ + µ

2
+ (α2 − β2)

]

[η(Y)X − η(X)Y].

Hence we get

H(X, Y)ξ = −
λ + µ

2
[η(Y)X − η(X)Y].

This implies that H(X, Y)ξ = 0 iff λ + µ = 0.

Theorem 7. A 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton

(g, ξ), ξ being the Reeb vector field on M, is ξ-quasi-conformally flat iff either a + b = 0 or

λ + µ = 6(α2 − β2).

Proof. From the definition of quasi-conformal curvature tensor (7), defined on a 3-dimensional

trans-Sasakian manifold, we have

C∗(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY]

−
r

3

[ a

2
+ 2b

]

[g(Y, Z)X − g(X, Z)Y]

for any vector fields X, Y, Z on M and a, b are constants. Putting Z = ξ in the above equation

and using (12), (17), (21), (22) and (30), the above equation becomes

C∗(X, Y)ξ = a(α2 − β2)[η(Y)X − η(X)Y] + b
[λ + µ

2
+ (α2 − β2)

]

[η(Y)X − η(X)Y]

−
λ + µ

3

[ a

2
+ 2b

]

[η(Y)X − η(X)Y].

Hence we have

C∗(X, Y)ξ =
[

a(α2 − β2) + b
[λ + µ

2
+ (α2 − β2)

]

−
λ + µ

3

[ a

2
+ 2b

]]

[η(Y)X − η(X)Y]. (33)

This implies that C∗(X, Y)ξ = 0 iff a(α2 − β2)+ b[λ+µ
2 + (α2 − β2)]− λ+µ

3 [ a
2 + 2b] = 0. Then

by simplifying, we obtain C∗(X, Y)ξ = 0 iff (a + b)[(α2 − β2)− λ+µ
6 ] = 0, i.e. either a + b = 0

or λ + µ = 6(α2 − β2). This concludes the proof.
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Corollary 5. Let a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M. If the manifold is ξ-quasi-conformally flat and the Ricci

tensor is η-recurrent, then the manifold M becomes flat, provided a + b 6= 0.

Proof. If the Ricci tensor S is η-recurrent, then using (24) in (33), we get

C∗(X, Y)ξ = −
a + b

6
(λ + µ)[η(Y)X − η(X)Y]. (34)

Hence using (21) in (34), we have the result.

Theorem 8. If a 3-dimensional trans-Sasakian manifold M admitting η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M, is ξ-semi symmetric, then either (α2 − β2) = 0 or

λ + µ = 6(α2 − β2).

Proof. We know

R(ξ, X) · S = S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) (35)

for any vector fields X, Y, Z on M.

Now let the manifold be ξ-semi symmetric, i.e. R(ξ, X) · S = 0. Then from (35), we have

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0 for any vector fields X, Y, Z on M. Using (18), the last

equation becomes

S((α2 − β2)(g(X, Y)ξ − η(Y)X), Z) + S(Y, (α2 − β2)(g(X, Z)ξ − η(Z)X)) = 0.

Replacing the expression of S from (22) and simplifying we get

(α2 − β2)
[λ + µ

2
− 3(α2 − β2)

]

[g(X, Y)η(Z) + g(X, Z)η(Y) − 2η(X)η(Y)η(Z)] = 0.

Taking Z = ξ in the above equation and using (9), (12), we obtain

(α2 − β2)
[λ + µ

2
− 3(α2 − β2)

]

[g(X, Y) − η(x)η(Y)] = 0

for any vector fields X, Y on M. Using (10), the above equation becomes

(α2 − β2)
[λ + µ

2
− 3(α2 − β2)

]

g(φX, φY) = 0

for any vector fields X, Y on M. Hence we get (α2 − β2)
[

λ+µ
2 − 3(α2 − β2)

]

= 0. Then either

(α2 − β2) = 0 or λ + µ = 6(α2 − β2).

Theorem 9. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M and satisfies W2(ξ, X) · S = 0, where W2 is the W2-curvature

tensor and S is the Ricci tensor, then either λ + µ = 2(α2 − β2) or λ + µ = 6(α2 − β2).

Proof. From the definition of W2-curvature tensor (8), defined on a 3-dimensional trans-

Sasakian manifold, we have

W2(X, Y)Z = R(X, Y)Z +
1

2
[g(X, Z)QY − g(Y, Z)QX] (36)

for any vector fields X, Y, Z on M.
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Again we know, W2(ξ, X) · S = S(W2(ξ, X)Y, Z) + S(Y, W2(ξ, X)Z) for any vector fields

X, Y, Z on M. Replacing the expression of S from (22), on simplifying we get

W2(ξ, X) · S =
[λ + µ

2
− (α2 − β2)

]

[g(W2(ξ, X)Y, Z) + g(Y, W2(ξ, X)Z)]

−
[λ + µ

2
− 3(α2 − β2)

]

[η(W2(ξ, X)Y)η(Z) + η(Y)η(W2(ξ, X)Z)].

Now, from the definition of W2-curvature tensor (36) and then by using (18), the property

g(QX, Y) = S(X, Y) and (22), the above equation becomes

W2(ξ, X) · S =
1

2

[λ + µ

2
− (α2 − β2)

][λ + µ

2
− 3(α2 − β2)

]

× [g(X, Y)η(Z) + g(X, Z)η(Y) − 2η(X)η(Y)η(Z)]

for any vector fields X, Y, Z on M. Let in this manifold M, W2(ξ, X) · S = 0. Then from the

above equation, we get

[λ + µ

2
− (α2 − β2)

][λ + µ

2
− 3(α2 − β2)

]

[g(X, Y)η(Z) + g(X, Z)η(Y) − 2η(X)η(Y)η(Z)] = 0,

for any vector fields X, Y, Z on M. Taking Z = ξ in the above equation and using (9), (12), we

obtain
[λ + µ

2
− (α2 − β2)

][λ + µ

2
− 3(α2 − β2)

]

[g(X, Y) − η(X)η(Y)] = 0

for any vector fields X, Y on M. Using (10), the above equation becomes

[λ + µ

2
− (α2 − β2)

][λ + µ

2
− 3(α2 − β2)

]

g(φX, φY) = 0

for any vector fields X, Y on M. Hence we get,

[λ + µ

2
− (α2 − β2)

][λ + µ

2
− 3(α2 − β2)

]

= 0. (37)

Then either λ + µ = 2(α2 − β2) or λ + µ = 6(α2 − β2).

Corollary 6. If a 3-dimensional trans-Sasakian manifold M admits an η-Yamabe soliton (g, ξ),

ξ being the Reeb vector field on M and satisfies W2(ξ, X) · S = 0, where W2 is the W2-curvature

tensor and S is the Ricci tensor which is η- recurrent, then the manifold becomes flat.

Proof. If the Ricci tensor S is η-recurrent then using (24) in (37) and from (21), we have the

result.

4 Example of a 3-dimensional trans-Sasakian manifold admitting η-Yama-

be soliton

In this section, we give an example of a 3-dimensional trans-Sasakian manifold with α, β

being constants. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3, z 6= 0}, where

(x, y, z) are standard coordinates in R
3. Let e1, e2, e3 be a linearly independent system of vector

fields on M given by

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
.
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Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M), where χ(M) is the set of all

differentiable vector fields on M and φ be the (1, 1)-tensor field defined by φe1 = −e2, φe2 = e1,

φe3 = 0. Then, using the linearity of φ and g, we have

η(e3) = 1, φ2(Z) = −Z + η(Z)e3 and g(φZ, φW) = g(Z, W) − η(Z)η(W)

for any Z, W ∈ χ(M). Let ∇ be the Levi-Civita connection with respect to the Riemannian

metric g. Then we have [e1, e2] = 0, [e2, e3] = −e2, [e1, e3] = −e1. The connection ∇ of the

metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X) − Zg(X, Y) − g(X, [Y, Z]) − g(Y, [X, Z]) + g(Z, [X, Y]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate,

∇e1e3 = −e1, ∇e2 e3 = −e2, ∇e3e3 = 0,

∇e1e1 = e3, ∇e2e1 = 0, ∇e3e1 = 0,

∇e1e2 = 0, ∇e2e2 = e3, ∇e3e2 = 0.

We see that

(∇e1 φ)e1 = ∇e1φe1 − φ∇e1e1 = −∇e1e2 − φe3 = 0

= 0(g(e1, e1)e3 − η(e1)e1)− 1(g(φe1, e1)e3 − η(e1)φe1). (38)

(∇e1 φ)e2 = ∇e1φe2 − φ∇e1e2 = ∇e1e1 − 0 = e3

= 0(g(e1, e2)e3 − η(e2)e1)− 1(g(φe1, e2)e3 − η(e2)φe1). (39)

(∇e1 φ)e3 = ∇e1φe3 − φ∇e1e3 = 0 + φe1 = −e2

= 0(g(e1, e3)e3 − η(e3)e1)− 1(g(φe1, e3)e3 − η(e3)φe1). (40)

Hence from (38), (39) and (40) we can see that the manifold M satisfies (13) for X = e1,

α = 0, β = −1 and e3 = ξ. Similarly, it can be shown that for X = e2 and X = e3 the manifold

also satisfies (13) for α = 0, β = −1 and e3 = ξ.

Hence the manifold M is a 3-dimensional trans-Sasakian manifold of type (0,−1). Also,

from the definition of the Riemannian curvature tensor R (3), we get

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3.

Then the Ricci tensor S is given by

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2. (41)

Then the scalar curvature is r = −6. From (22), we have

S(e1, e1) =
λ + µ

2
− (α2 − β2), S(e2, e2) =

λ + µ

2
− (α2 − β2), S(e3, e3) = 2(α2 − β2). (42)

Then from (41) and (42), we get
λ+µ

2 − (α2 − β2) = −2 and α2 − β2 = −1. This implies

the equality λ + µ = −6. Then the value of λ + µ is same as the value of r and so it sat-

isfies Theorem 1. Hence g defines an η-Yamabe soliton on a 3-dmensional trans-Sasakian

manifold M.
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Рой С., Дей С., Бхаттачарiя А. Деякi результати про η-Ямабе солiтони у трьохвимiрному транс-

Сасакяновому многовидi // Карпатськi матем. публ. — 2022. — Т.14, №1. — C. 158–170.

Метою цiєї статтi є вивчення деяких властивостей трьохвимiрного транс-Сасакянового

многовиду, чиєю метрикою є η-Ямабе солiтон. Ми вивчили деякi умови кривизни трьохви-

мiрного транс-Сасакянового многовиду, що допускає η-Ямабе солiтон. Нарештi, ми будуємо

трьохвимiрний транс-Сасакяновий многовид, що задовольняє η-Ямабе солiтон.

Ключовi слова i фрази: солiтон Ямабе, η-Ямабе солiтон, η-айнштайнiвський многовид, транс-

Сасакяновий многовид.


