Popovych R.

LOWER BOUNDS ON THE ORDERS OF SUBGROUPS CONNECTED WITH AGRAWAL CONJECTURE

Abstract

Explicit lower bounds are obtained on the multiplicative orders of subgroups of a finite field connected with primality proving algorithm.

Key words and phrases: primality proving, finite field, multiplicative order.

Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
E-mail: rombp07@gmail.com

Introduction

Prime numbers are of fundamental importance in mathematics in general: there are few better known or more easily understood problems in pure mathematics than the question of rapidly determining whether a given number is prime or composite. Efficient primality tests are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time algorithm AKS that determines whether an input number n is prime or composite. It was proved [4] that AKS algorithm runs in $(\log n)^{7,5+o(1)}$ time. H.Lenstra and C.Pomerance [5] gave a significantly modified version of AKS with $(\log n)^{6+o(1)}$ running time.

Probabilistic versions of AKS are also known [3] with $(\log n)^{4+o(1)}$ time complexity. The Agrawal conjecture [1,4] was proposed for further improvement of AKS running time. A heuristic argument was given [5] which suggests that the above conjecture is false. However, it was pointed out [1] that some variant of the conjecture may still be true. A modified conjecture is given in [7]. A strongly ascending chain of subgroups of the multiplicative group of a finite field appears in this conjecture.

Using results from [8], we obtain in this paper lower bounds on the orders of these subgroups.

1 Preliminaries

Let q be a power of an odd prime number p, and F_{q} be a finite field with q elements. We use F_{q}^{*} to denote the multiplicative group of F_{q}. A partition of an integer C is a sequence of nonnegative integers u_{1}, \ldots, u_{C} such that $\sum_{j=1}^{C} j u_{j}=C . U(C)$ denotes the number of the partitions of $C . U(C, d)$ denotes the number of such partitions of C, for which $u_{1}, \ldots, u_{C} \leq d$, i.e., each part

[^0]appears no more than d times. $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ denotes the group generated by elements v_{1}, \ldots, v_{k}, and $G \times H$ - the direct product of groups G and $H .|G|$ denotes the multiplicative order of the group G.

Let q be a primitive root modulo r, that is the multiplicative order of q modulo r equals to $r-1$. Set $F_{q}(\theta)=F_{q^{r-1}}=F_{q}[x] / \Phi_{r}(x)$, where $\Phi_{r}(x)=x^{r-1}+x^{r-2}+\ldots+x+1$ is the r-th cyclotomic polynomial and $\theta=x\left(\bmod \Phi_{r}(x)\right)$. It is clear that the equality $\theta^{r}=1$ holds. The element $\beta=\theta+\theta^{-1}$ is called a Gauss period of type $((r-1) / 2,2)$. It generates normal base over F_{q} [2].

The following strongly ascending chain of subgroups of the multiplicative group appears (if to take $q=p$ is a prime number and $r<p$) in the modified conjecture [7]:

$$
\langle\theta\rangle \subset\langle\theta+1\rangle \subset\langle\theta-1\rangle \subset\langle\theta-1, \theta+2\rangle .
$$

It was shown in [2], that the order of Gauss period β is at least $U((r-3) / 2, p-1)$. In [8, Theorem 1], this result was improved and generalized, i.e. the following theorem was proved.

Theorem 1. Let q be a power of an odd prime number $p, r=2 s+1$ be a prime number coprime with q, q be a primitive root modulo r, θ generates the extension $F_{q}(\theta)=F_{q r-1}, e$ be any integer, f be any integer coprime with r, a be any non-zero element in the finite field F_{q}. Then
(a) $\theta^{e}\left(\theta^{f}+a\right)$ has the multiplicative order at least $U(r-2, p-1)$,
(b) $\left(\theta^{-f}+a\right)\left(\theta^{f}+a\right)$ for $a^{2} \neq \pm 1$ has the multiplicative order at least $U((r-3) / 2, p-1)$ and this order divides $q^{(r-1) / 2}-1$,
(c) $\theta^{-2 e}\left(\theta^{-f}+a\right)\left(\theta^{f}+a\right)^{-1}$ for $a^{2} \neq 1$ has the multiplicative order at least $U((r-3) / 2, p-1)$ and this order divides $q^{(r-1) / 2}+1$,
(d) $\theta^{e}\left(\theta^{f}+a\right)$ for $a^{2} \neq \pm 1$ has the multiplicative order at least $[U((r-3) / 2, p-1)]^{2} / 2$.

We take to the end of the paper that $q=p>3$ is a prime number and $r<p$.
Explicit lower bounds on the orders of subgroups connected with Agrawal conjecture in terms of p and r are of special interest. That is why we use in this paper Theorem 1 and some known estimate from [6] to derive explicit lower bounds on the multiplicative orders of $\langle\theta+1\rangle$, $\langle\theta-1\rangle$ and $\langle\theta-1, \theta+2\rangle$.

If $C<d$, then clearly $U(C, d)=U(C)$. Explicit lower bound on $U(C)$ for all integers C is proposed in [6]. According to [6, Theorem 4.2], the following inequality holds for all integers C:

$$
\begin{equation*}
U(C)>\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{C}\right)}{13 C} \tag{1}
\end{equation*}
$$

2 LOWER BOUNDS ON THE ORDERS

We obtain in this section lower bounds on the orders of subgroups connected with Agrawal conjecture. First of all, it is clear that $|\langle\theta\rangle|=r$.

Lemma 2.1. $\langle\theta+1\rangle=\langle\theta\rangle \times\left\langle\theta+\theta^{-1}\right\rangle$.
Proof. Let us show first that $\left\langle\theta^{2}+1\right\rangle=\langle\theta+1\rangle$. Since p is primitive modulo r, an integer i exists such that $p^{i} \equiv 2 \bmod r$. Then $(\theta+1)^{p^{i}}=\theta^{2}+1\left(\bmod p, \Phi_{r}(\theta)\right)$. Analogously an integer j exists such that $p^{j} \equiv 2^{-1} \bmod r$. Then we have $\left(\theta^{2}+1\right)^{p^{j}}=\theta+1\left(\bmod p, \Phi_{r}(\theta)\right)$.

Now we show that $\langle\theta\rangle \cdot\left\langle\theta+\theta^{-1}\right\rangle=\left\langle\theta^{2}+1\right\rangle$. Indeed, $\theta\left(\theta+\theta^{-1}\right)=\theta^{2}+1$ and the inclusion $\langle\theta\rangle \cdot\left\langle\theta+\theta^{-1}\right\rangle \supseteq\left\langle\theta^{2}+1\right\rangle$ is obvious. As $\theta \in\langle\theta+1\rangle=\left\langle\theta^{2}+1\right\rangle, \theta^{-1}\left(\theta^{2}+1\right)=\theta+\theta^{-1} \in$ $\left\langle\theta^{2}+1\right\rangle$ and we have the inclusion $\langle\theta\rangle \cdot\left\langle\theta+\theta^{-1}\right\rangle \subseteq\left\langle\theta^{2}+1\right\rangle$.

To prove that the intersection of $\langle\theta\rangle$ and $\left\langle\theta+\theta^{-1}\right\rangle$ equals to the trivial subgroup, consider the automorphism σ of the field $F_{p}(\theta)$, which sends θ to θ^{-1}. For every element $a \in F_{p}(\theta)$ we take $t(a)=a \cdot(\sigma(a))^{-1}$. It is clear that $t(a b)=t(a) t(b)$ and $t\left(a^{i}\right)=[t(a)]^{i}$. Then it is easy to obtain $t\left(\left(\theta+\theta^{-1}\right)^{u}\right)=1$ and $t\left(\theta^{c}\right)=\theta^{2 c}$. Suppose $\theta^{c}=\left(\theta+\theta^{-1}\right)^{u}$ for some integers c, u. Use for $\alpha=\theta^{c}$ and $\beta=\left(\theta+\theta^{-1}\right)^{u}$ the fact that $\alpha=\beta$ implies $t(a)=t(b)$. Then $\theta^{2 c}=1$, and therefore c is divided by r and $\theta^{c}=1$.

Hence, the result follows.
As a consequence of Lemma 2.1, we have the following more precisely specified chain of subgroups:

$$
\langle\theta\rangle \subset\langle\theta\rangle \times\left\langle\theta+\theta^{-1}\right\rangle=\langle\theta+1\rangle \subset\langle\theta-1\rangle \subset\langle\theta-1, \theta+2\rangle .
$$

Theorem 2. The Gauss period $\beta=\theta+\theta^{-1}$ has the multiplicative order larger than

$$
\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)}{13(r-2)}
$$

and this order divides $p^{(r-1) / 2}-1$.
Proof. Since

$$
\left(\theta+\theta^{-1}\right)^{p^{(r-1) / 2}-1}=\left(\theta^{p^{(r-1) / 2}}+\theta^{-p^{(r-1) / 2}}\right)\left(\theta+\theta^{-1}\right)^{-1}=\left(\theta^{-1}+\theta\right)\left(\theta+\theta^{-1}\right)^{-1}=1
$$

the multiplicative order of β divides $p^{(r-1) / 2}-1$.The fact that the order of $\beta=\theta+\theta^{-1}=$ $\theta^{-1}\left(\theta^{2}+1\right)$ is at least $U(r-2, p-1)$ follows from Theorem 1, part (a).

Since $p>r$, we have $r-2<p$ and $U(r-2, p-1)=U(r-2)$. Then it follows from inequality (1) that the multiplicative order $L_{1}(r)$ of $\beta=\theta+\theta^{-1}=\theta^{-1}\left(\theta^{2}+1\right)$ satisfies the bound

$$
L_{1}(r) \geq U(r-2, p-1)=U(r-2)>\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)}{13(r-2)} .
$$

We obtain from Lemma 2.1 and Theorem 2 the following explicit lower bound.
Corollary 2.1. $|\langle\theta+1\rangle|>\frac{r}{13(r-2)} \exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)$.
Since $\langle\theta+1\rangle \subset\langle\theta-1\rangle$, the following result is clear.
Lemma 2.2. $|\langle\theta-1\rangle| \geq 2|\langle\theta+1\rangle|$.
Remark. The order of element $\theta+1$ in the case $r=5$ and $p \equiv 2 \bmod r$ divides $2 r(p+1)$, because $(\theta+1)^{p+1}=\left(\theta^{p}+1\right)(\theta+1)=\left(\theta^{2}+1\right)(\theta+1)=\theta^{3}+\theta^{2}+\theta+1=-\theta^{4}$, and the order of $-\theta^{4}$ equals to $2 r$. On the other hand, one can show that $(\theta-1)^{2 r(p+1)} \neq 1$.

Taking into account Corollary 2.1 and Lemma 2.2, we have the following lower bound.
Corollary 2.2. $|\langle\theta-1\rangle|>\frac{2 r}{13(r-2)} \exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)$.
Now we are ready to give the lower bound on the order of $\langle\theta-1, \theta+2\rangle$.
Theorem 3. $|\langle\theta-1, \theta+2\rangle|>\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot\left(1+\frac{\sqrt{2}}{2}\right) \sqrt{r-3}\right)}{169(r-2)(r-3)}$.
Proof. Recall that the order of $F_{p^{r-1}}^{*}$ equals to $p^{r-1}-1=\left(p^{(r-1) / 2}-1\right)\left(p^{(r-1) / 2}+1\right)$. The factors $p^{(r-1) / 2}-1$ and $p^{(r-1) / 2}+1$ have the greatest common divisor 2 , since their sum equals to $2 p^{(r-1) / 2}$.

Consider the subgroup of $F_{p^{r-1}}^{*}$ generated by $\theta-1$ and $\theta+2$. This subgroup contains two subgroups: first one is generated by $\beta=\theta+\theta^{-1}$ (because $\langle\theta-1\rangle$ contains $\langle\theta+1\rangle$, and $\langle\theta+1\rangle$ contains $\left\langle\theta+\theta^{-1}\right\rangle$), and second one - by $\gamma=(\theta-2)^{p^{(r-1) / 2}-1}=\left(\theta^{-1}-2\right)(\theta-2)^{-1}$.

According to Theorem 2, β has the order that divides $p^{(r-1) / 2}-1$ and is at least

$$
\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)}{13(r-2)}
$$

As $2^{2} \neq 1(\bmod p)$, according to Theorem 1, part (c) (if to put $\left.e=0, f=1\right)$, the γ has the order that divides $p^{(r-1) / 2}+1$ and is at least $U((r-3) / 2, p-1)$.

Construct the element

$$
\delta= \begin{cases}\beta^{2} \gamma, & \text { if } \rho_{2}\left(p^{(r-1) / 2}-1\right)=2 \\ \beta \gamma^{2}, & \text { if } \rho_{2}\left(p^{(r-1) / 2}+1\right)=2\end{cases}
$$

Obviously the group $\langle\theta-1, \theta+2\rangle$ contains the subgroup generated by δ. If

$$
\rho_{2}\left(p^{(r-1) / 2}-1\right)=2
$$

then $\left(p^{(r-1) / 2}-1\right) / 2$ is odd and coprime with $p^{(r-1) / 2}+1$. Clearly the order of β^{2} is a divisor of $\left(p^{(r-1) / 2}-1\right) / 2$. Hence, in this case, we have the following direct product of subgroups $<\delta>=<\beta^{2}>\times<\gamma>$.

If $\rho_{2}\left(p^{(r-1) / 2}+1\right)=2$, then $\left(p^{(r-1) / 2}+1\right) / 2$ is odd and coprime with $p^{(r-1) / 2}-1$. Clearly the order of γ^{2} is a divisor of $\left(p^{(r-1) / 2}+1\right) / 2$. Hence, in this case, we have the following direct product of subgroups $\langle\delta\rangle=\langle\beta\rangle \times\left\langle\gamma^{2}\right\rangle$.

In both cases, the order of δ is the product of orders of β and γ divided by 2.
Since $(r-3) / 2<p$, we have $U((r-3) / 2, p-1)=U((r-3) / 2)$. Applying to $U((r-3) / 2)$ the inequality (1), we obtain that the multiplicative order $L_{2}(r)$ of δ satisfies the bound

$$
\begin{aligned}
L_{2}(r) & \geq \frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)}{13(r-2)} \cdot U((r-3) / 2) / 2 \\
& >\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)}{13(r-2)} U((r-3) / 2) / 2>\frac{\exp \left(\pi \sqrt{\frac{2}{3}} \cdot\left(1+\frac{\sqrt{2}}{2}\right) \sqrt{r-3}\right)}{169(r-2)(r-3)} .
\end{aligned}
$$

This finishes the proof.

References

[1] Agrawal M., Kayal N., Saxena N. PRIMES is in P. Annals of Mathematics 2004, 160 (2), 781-793. doi: 10.4007/annals.2004.160.781
[2] Ahmadi O., Shparlinski I.E., Voloch J.F. Multiplicative order of Gauss periods. Intern. J. Number Theory 2010, 6 (4), 877-882. doi:10.1142/S1793042110003290
[3] Bernstein D.J. Proving primality in essentially quartic random time. Math. Comp. 2007, 76 (257), 389-403.
[4] Granville A. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. 2005, 42 (1), 3-38. doi:10.1090/S0273-0979-04-01037-7
[5] Lenstra H.W. Jr., Pomerance C. Remarks on Agrawal's conjecture. In: Proc. ARCC workshop "Future directions in algorithmic number theory", Palo Alto, USA, March 24-28, 2003, The American Institute of Mathematics. http://www.aimath.org/WWN/primesinp/primesinp.pdf
[6] Maróti A. On elementary lower bounds for the partition function. Integers: Electronic J. Comb. Number Theory 2003, 3 (A10).
[7] Popovych R. A note on Agrawal conjecture. Cryptology ePrint Archive 2009. http:/ /eprint.iacr.org/2009/008
[8] Popovych R. Elements of high order in finite fields of the form $F_{q}[x] / \Phi_{r}(x)$. Finite Fields Appl. 2012, 18 (4), 700-710. doi:10.1016/j.ffa.2012.01.003

Received 10.01.2013

Попович Р. Нижні оиінки для порядків підгруп, пов'язаних з гіпотезою Агравала // Карпатські математичні публікації. - 2013. - Т.5, №2. - С. 310-314.

Отримано нижні оцінки для мультиплікативних порядків підгруп скінченого поля, пов’язаних з алгоритмом доведення простоти числа.

Ключові слова і фрази: нижні оцінки, скінченне поле, мультиплікативний порядок.
Поповыч Р. Нижние оценки для порядков подгрупп, связанныхх с гипотезой Агравала // Карпатские математические публикации. - 2013. - Т.5, №2. - С. 310-314.

Получены нижние оценки для порядков подгрупп конечного поля, связанных с алгоритмом доказательства простоты числа.

Ключевые слова и фразы: нижние оценки, конечное поле, мультипликативный порядок.

[^0]: У $\Delta \mathrm{K} 512.624$
 2010 Mathematics Subject Classification: 11T30.

