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We find some sufficient conditions for a radical class of an idempotent radical in the category
of modules over a Dedekind left bounded duo-domain to be axiomatisable. In the case of the
integer numbers ring this result implies the Gorbachuk-Komarnitskii Theorem on axiomatizable
radical classes of abelian groups.

BASIC NOTIONS

We begin with recalling some basic facts and definitions. In this paper by A we denote
an associative ring with the identity 1 # 0, and assume that all modules are left unitary
A-modules. The category of left A-modules we denote by A — Mod. Recall that a ring A
is called a domain if it not contains left or right zero divisors (a # 0 is a left zero divisor if
there exists b # 0 such that ab = 0). An ideal P of A is prime if, for all elements a,b € P,
ab € P implies that a € P or b € P. A prime ring is a ring with the zero ideal to be a prime
ideal. A ring A is called left hereditary if every left ideal is a projective module. A ring
A is left Noetherian if every nonempty set of left ideals has a maximal element. Similarly
we can define a right Noetherian and a right hereditary ring. A ring A is hereditary if it is
right and left hereditary. Also a ring A is Noetherian if it is right and left Noetherian. Next
recall that a ring () is called a quotient ring if every regular element of @) is a unit. Given a
quotient ring (), a subring R, not necessarily containing 1, is called a left order in @) if each
g € @ has the form s~'r for some r,s € R.

Let @ be some fixed quotient ring and R, Ry left orders of it. Then R; and R, are
equivalent if there are units aq, as, by, by € () such that a;R1b; C Ry and asR1bs C Ry. If )
is a quotient ring and R is a left order in ), then R is called a maximal left order if it is
maximal within its equivalence class. A ring A is a noncommutative Dedekind domain if it
is a hereditary Noetherian prime ring and is a maximal order. A left duo-ring is a ring with
every left ideal to be two-sided. For noncommutative Dedekind duo-domain (see [9]) is true
the following
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Theorem 1. If A is a noncommutative Dedekind duo-domain and P is a proper ideal of A,
then there exist a1,as € A such that

P= alA -+ CLQA.

Recall that an ideal I of a ring A is called essential if, for any ideal J of A, it holds
that I NJ # (0). Moreover, a ring A is called bounded if its every essential ideal contains a
two-sided ideal. An A-module M is said to be divisible if Mc¢ = M for any nonzero ¢ € A.

Let r : A— Mod — A — Mod be a functor. We say that r is a preradical of A — Mod
if r assigns to each object M a subobject (M) in such way that every morphism M — N
induces (M) — r(N). A preradical r is called a radical if r(M/r(M)) = 0 for every object
M. A preradical r is idempotent if r(r(M)) = r(M).

In this paper all radicals are idempotent. With every preradical r we can associate two
classes of objects from A — Mod, namely

T,={MecA—Mod|r(M)=M}

and

F.={M e A—Mod|r(M)=0}.

If r is a radical, then T, is called a radical class and its objects are radical objects, while F
is a torsion-free class consisting of torsion-free objects. This classes have such properties:

Theorem 2. The class T, is closed under quotient objects, coproducts and extensions, while
F,. is closed under subobjects, products and extensions.

We need (see [1]) also the following

Theorem 3. If A is a Dedekind domain and P is its prime ideal, then, for every radical r
of A — Mod, the module A/P is either radical or radical-free.

Recall also some notions of the model theory. We use a language 4L which is appropriate
to the left A-modules first order language. A set of all sentences of the language which are
true class of modules ¥ is called a theory of a class of modules ¥ and denoted by Th(¥).
A set of models of a theory T is any class of modules which satisfies all sentences from
T. A class is axiomatisable (or elementary) if there is a set of sentences T' such that it is
exactly the class of models of T'. Two modules are elementarily equivalent if every sentence
which is true in one of them is true in other. Next we give notions about ultrafilters and
ultraproducts.

Let I be a set. Then D is called a filter over I if D is some nonempty collection of subsets
from [ satisfying:

(1) @ ¢ D;
(2) if S,T € D, then SNT € D;

(3)ifSeDand SCT CI, then T € D.
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A filter D is said to be an ultrafilter if, for every S C I, it holds S € D or I\ S € D. If
{A; | i € I} is a family of all sets indexed by I, then an ultraproduct of A; with respect to
D is the quotient of [[,.; A; by an equivalence relationship

f=pgifandonlyif {i eI | f(i)=g(i)} € D

for any f, g € [[,; Ai- An ultraproduct of the A; with respect to D is denoted by |
Now we can formulate the following test of axiomatisability

A/ D.

el

Theorem 4. A class of modules is axiomatisable if and only if it is closed under ultraproducts
and an elementarily equivalency of modules.

1 EKLOF-FISHER THEOREMS

In this section we consider theorems from [6] that are proved for commutative Dedekind
domains. In view of [1], this results can be used for noncommutative Dedekind duo-domains.
First of all, we recall some designations from [6]. If M is left A-module, then M* denote
direct sum of « copies of a module M. If P is a prime ideal of a Dedekind domain A and M
is a left A-module, then M[P] will be the biggest submodule of M that has the annihilator
P. Let us
dim(P"M|[P]/P"™'M[P]) if this dimension is finite,

00 in else case.

U(P,n;M):{

TH(P M) = limy, s oodim (P M[P]/P" M[P]) if it is finite,
00 in else case.
D(P: M) = limy—oodim(P"M[P]) if it is finite,
00 in else case.
It is necessary to say that we consider dimension over A/P. Let
0 if U(P,n; M) =0 and A/P is infinite,
U (P,n; M) =< oo if U(P,n; M) # 0 and A/P is infinite,
U(P,n; M) if A/P is finite.

0 if Tf(P; M) =0 and A/P is infinite,
Tf(P;M)={ o if Tf(P; M) +# 0 and A/P is infinite,
Tf(P,n; M) if A/P is finite.
0 if D(P; M) =0 and A/P is infinite,
D*(P; M) =< oo if D(P; M) # 0 and A/P is infinite,

D(P; M) if A/P is finite.
We say that a module M has a bounded order if there exists 0 # A € A such that AM = 0.

) will denote the set of all nonzero prime ideals of a ring A. If P € €2, then Mp will be a
localization of a module M over P.
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Theorem 5. Let A be Dedekind domain and M be a left A-module. Then M is elementarily
equivalent to a module ®pcqMp & My, where

Mp = @, (A/ PP @ AVP) and My = ®pea(A/P)P & KO
Here K is a field of fractions of a domain and

U*(P,n—1; M) if it is finite,
>k =CardA+1YX, in other case.

apn = aP,n(M) - {

Tf*(P; M) if it is finite,

>k in other case.

Bp = Bp(M) :{

D*(P; M) if it is finite,

>k in other case.

vp = vp(M) = {

0 if M have bounded order,

>k in other case.

d=06(M)= {
According to the fact that a direct sum and a direct product are elementarily equivalent

this theorem can be formulated as follows

Theorem 6. Let A be a Dedekind domain. Then every left A-module M is elementarily
equivalent to a module

(@n(A/PM)P)) @ ALY @ (@pea(A/P)7™) @ KO,
where ap,,, Bp,vp,d are the same as in the previous theorem.

Theorem 7. Modules M and N over a Dedekind domain are elementarily equivalent if and
only if

U™(P,n; M) = U(P,n; N), Tf*(P; M) =Tf"(P;N), D*(P; M) = D*(P;N),

where modules M and N have a bounded or unbounded order in the same time.

2 LEMMAS

Lemma 2.1. Let A be a noncommutative Dedekind duo-domain and let r be a nontrivial
radical for which the radical class T, is axiomatisable. If the class T, contains a module
A/ P, where P is some nonzero prime ideal of A, then it also contains such modules:

1) the localization Ap of A at a prime ideal P;

2) the field of fractions 4K of a ring A that is considered as a left A-module;

3) fT/?’, where P’ is an arbitrary nonzero ideal of a ring A.
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Proof. The class T, is closed under extensions, therefore A/P™ € T, for arbitrary n € N.
Let D be a countably-incomplet ultrafilter over the set of natural numbers N. Then,
according to the fact that 7, is axiomatisable, we obtain that

M= (]]a/P"/D
belong to T,.. A module M has an unbounded order, and so
d(M) > CardA + Xy.

By the Eklof-Fisher Theorem (see Theorem 2) the class 7). contains a module for which
module 4K is a direct summand. Thus K is contained in 7, as an epimorphic image.
Similarly, K/A € T,.. But K/A= @p; A/P, hence A/P € T, for every P € Q.

Consider the case when A/P is a finite module. Then

where ¢(M) is the periodic part of a module M. Now we show that Sp(M) # 0. For this,
we have to check that ¢(M)+ PM # M. Let us denote by 1, the coset in A/P"™ with
representative 1. We have to prove that the element (11,15, ...1,,...) of a module M do not
belongs to the submodule ¢(M) + PM. By Theorem 2.1, P = p; A + p2 A, where py,ps € A.
Thus = = t + p1a; + peag, where t € t(M), ay,as € M. Since the annihilator of an element ¢
is power of an ideal P, for some k € N we obtain that P*t = 0. Consequently,

Prx C Pk“al + PkHaQ.

Let

a; = (a_ll, E, ")y g = (a_’l” a_;/” 2,

where a/,a! € A for i € N. Therefore from previous inclusion for some set of indexes U € D

1)

is true that
PR C PRl 4 PP+ PP C P

Hence from P* C P* we obtain that P! = P* ¢ > k + 1. But in a Dedekind ring a
decomposition into a product of prime ideals is unique, so we obtain contradiction. Thus
Bp(M) # 0. Then, from Theorem 2, T, contains a module with Ap as a direct summand
and, using previous thoughts, Ap lies in T,.

Next if A/P is an infinite module, then, according to definition of 7% f (P, M), the equality

p = 0 is true only if
limp—oodimP"M/P" + 1M =0

for all k, and therefore P*M/P* M = 0. From the last equality we obtain
P* = PP M = PP M

for some k. This equation is false for a module M and arbitrary k£ € N. Verifying of this
fact is similar to those we have done early in this proof. Therefore A/P € T,. O
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Let IT be some set of prime ideals in a ring A. A module M is II—divisible if IM = M
for every ideal I from II. For every II, a class of all II-divisible modules is a radical class for
some radical of the category A — Mod. This radical we will denote by 7.

Lemma 2.2. A module M is Il-divisible if and only if it is elementarily equivalent to the
module of the form

O(pemmnen (A/P")P") @ (Dpeadl’) © (Grea(A/P)P) @ K, (1)

where ap,,, Bp,d,vp are some cardinal numbers.

Proof. We consider a set of sentences of the language 4L

C = {(Vx)(3y1)(Ty2)(x = p1yr + p2y2)P1 A + p2 A = P € 11}

It is obvious that M is Il-divisible if and only if M is a model of a system of formulas C'.
Therefore the class of Il-divisible modules is axiomatisable and, consequently, this class is
elementarily closed. Since A/P", Ap, A/P are Il-divisible for P € 1T and K is Q-divisible,
using the fact that class of II-divisible groups is closed under direct sums we obtain that
modules of the form 1 are Il-divisible. If ap, # 0 or Bp # 0 for some P € II, then a
module is not II-divisible. Hence all modules which are elementarily equivalent to it are not
I1-divisible too. O

3 MAIN RESULT

Theorem 8. The radical class of a nontrivial radical r in the category of left modules over
a noncommutative Dedekind duo-ring A is axiomatisable if and only if r = rp for some
nonempty subset 11 of the set of nonzero prime ideals in a ring A.

Proof. 1t is well known that for every prime ideal P € 2 the module A/P is r-radical or
r-radical-free. So we have in ) two subsets:

M={PecQ|A/P¢F < APcT)

and
Q\II={PeQ|A/PeT,}.

We have to show that if the class 7, is axiomatisable, then it contains all II-divisible modules.
It is obvious that A/P’ is II-divisible for some P’ € Q if and only if P’ € Q\ II. Thus every
[I-divisible module of the form A/P belongs to T,. In view Lemma 1, the class 7T, contains
all modules of the form: Ap, A/Q, P € Q\1I, @ € 2 and a module K. The class T, is
closed under extensions, and so therefore A/P", for P € Q\ II, n € N, belongs to the class
T,.. Hence the class T} contains every module of the form 1. The class 7, is axiomatisable,
and so it contains all modules that are elementarily equivalent to the module of such form.
Therefore T, contains all II-divisible modules. Let M be any module from the class 7,. We
have to prove that M is Il-divisible. If we suppose that this is not true, then, by the Eklof-
Fisher Theorem and Lemma 1, there exists P € II such that one of the invariants opq)(M),
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Bp(M) of some module M from the class T, is nonzero. As a consequence, A/P or Ap
belongs to the class T,., where P € II. Since Ap/PAp = A/P, we deduce that A/P € T, a
contradiction with the definition of the set II. Thus r = r. O
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SHalIeHO JesIKi JIOCTAaTHI yMOBU aKCIOMAaTU30BHOCTI PAJMKAJIBLHOIO KJIACY 11€MIIOTEHTHOIO
pajuKaay B KarTeropil MOIyJIiB HaJ JeIeKiHJIOBOIO JIBOIO JIyOo-O0JIACTIO. ¥ BHIIAJKY KiJIbIls
[JIMX 9uCceI el pe3yJibTaT Mae HaCHiaKoM Teopemy lopbadyka-KomapHauipkoro mpo akcioma-
TH30BHICTH PAJUKAJIBHIX KJIACIB abeeBux rpyi.

Bunax FO.T., Komapuunguii H.f. Axcuomamusupyemocmsd padukasvhoix xaacco8 modyset
Had HexomMmymamushumu dedexundosumu dyo-obaacmsamu // Kapnarckue mMareMarndeckue
nyomukarum. — 2012, — T4, Ne2. — C. 197-203.

Haiinenbl HEKOTOPDBIE JIOCTATOYHBIE YCJIOBHUS aKCHMOMATU3UPYEMOCTH PAIMKAJILHOTO KJI1acca
MJIEMIIOTEHTHOI'O PaJMKaJjia B KATEropuy MOJLyJIell HaJI JIeJIeKUHJIOBOM JieBoii jpyo-obiactio. B
clydae KOJIBI[A TIEJIBIX UUCENI 3TOT PEe3yJIbTAT UMEET CJieJIcTBreM Teopemy lopbadyka-Komap-
HUIIKOTO O aKCHOMATH30BHOCTU PAIUKAJILHBIX KJIACCOB abeIeBbIX IPYIII.



