Labachuk O.V., Zagorodnyuk A.V.

MULTIPLICATIVE POLYNOMIAL MAPPINGS ON COMMUTATIVE BANACH ALGEBRAS

Labachuk O.V., Zagorodnyuk A.V. Multiplicative polynomial mappings on commutative Banach algebras, Carpathian Mathematical Publications, 4, 2 (2012), 284-288.

We consider the multiplicative polynomial mappings on commutative algebras in this work. We call a multiplicative polynomial trivial, if it can be represented as a product of characters. In the paper we investigate the following question: does there exists a nontrivial multiplicative polynomial functional on a commutative algebra?

Introduction and definitions

Let X and Y be linear spaces. A map $P_{n}: X \rightarrow Y$ is an n degree homogeneous polynomial (n-homogeneous polynomial) if there is an n-linear mapping $B_{n}: \underbrace{X \times X \times \ldots \times X}_{n} \rightarrow Y$ such that $P_{n}(x)=B_{n}(x, x, \ldots, x)$.

Note that according to the polarization formula (see [5]), for every n-homogeneous polynomial P_{n} there exists a unique symmetric n-linear mapping B_{n}, associated with P_{n}.

The polynomial mapping P between algebras X and Y is called multiplicative, if $P\left(x_{1}\right.$. $\left.x_{2}\right)=P\left(x_{1}\right) \cdot P\left(x_{2}\right)$ for every $x_{1}, x_{2} \in X$. It is known that every multiplicative polynomial functional is homogeneous ([7]).

Let us denote by $M(X)$ the set of characters (linear multiplicative functionals) on the algebra X. It is clear that the product of characters $\varphi_{1} \cdot \varphi_{2} \cdot \ldots \cdot \varphi_{n}, \varphi_{k} \in M(X), k=1, \ldots, n$ is a multiplicative polynomial functional.

We call a multiplicative polynomial trivial, if it can be represented as a product of characters.

There is an example of nontrivial multiplicative polynomial on noncommutative algebra. Let us consider the algebra of square $n \times n$ matrixes M_{n}. The mapping $d(A)=\operatorname{det}(A)$ is a multiplicative polynomial functional, but $d(A)$ is not a product of characters because M_{n} has no nonzero characters. So, it is interesting to know: Does there exists a nontrivial multiplicative polynomial functional on a commutative algebra?

2010 Mathematics Subject Classification: 15A69, 46J20, 46G20.
Key words and phrases: multiplicative polynomial functional, characters, commutative algebras.

1 Main Results

Proposition 1.1. If a commutative semi-simple Banach algebra A without nilpotent elements admits a nontrivial multiplicative polynomial, then the algebra $P\left(\mathbb{C}^{m}\right)$ of polynomials of m variables admits a nontrivial multiplicative polynomial for some m.

Proof. Let P be a nontrivial multiplicative polynomial map. Without loss of the generality we can assume that P is irreducible. Then there exists a finite dimensional subspace V in A such that the restriction of P onto V is irreducible [8].

Let us consider a subalgebra A_{0} generated by elements in V and the unity of A. This subalgebra is finitely generated and has no nilpotent elements. It is well known in Algebraic Geometry that such algebra is isomorphic to a ring of all polynomials on an algebraic variety. That is, A_{0} is isomorphic to $P\left(\mathbb{C}^{m}\right) / I$ for some m where I is an ideal in $P\left(\mathbb{C}^{m}\right)$. Let T : $P\left(\mathbb{C}^{m}\right) \rightarrow P\left(\mathbb{C}^{m}\right) / I$ be the factor map and P_{0} be the restriction of P onto A_{0}. Then $P_{0} \circ T$ is a required irreducible nontrivial multiplicative polynomial on $P\left(\mathbb{C}^{m}\right)$.

So, it can be useful to investigate the algebra $P\left(\mathbb{C}^{m}\right)$ of polynomials of m variables.
Theorem 1. Every multiplicative n degree polynomial functional can be represented as a product of characters on the algebra $P(\mathbb{C})$ of polynomials of one complex variable.

Proof. Let $D_{n}: P(\mathbb{C}) \rightarrow \mathbb{C}$ be a multiplicative n degree polynomial functional. D_{n} is a homogeneous polynomial map. According to [7] there is a character d_{n} on the symmetric tensor product $\underbrace{P(\mathbb{C}) \otimes_{s} \ldots \otimes_{s} P(\mathbb{C})}_{n}=\otimes_{s}^{n} P(\mathbb{C})$ such that $D_{n}(p)=d_{n}\left(\otimes^{n} p\right)$ for every $p \in$ $P(\mathbb{C})$.

Let us describe the algebra $\otimes_{s}^{n} P(\mathbb{C})$. Every element of this algebra can be presented by

$$
\sum_{i} \underbrace{p_{i} \otimes \ldots \otimes p_{i}}_{n},
$$

where $p_{i} \in P(\mathbb{C})$. Every element like $\otimes^{n} p_{i}$ is a polynomial of n variables $p_{i}\left(x_{1}\right) \cdot \ldots \cdot p_{i}\left(x_{n}\right)$. So, algebra $\otimes_{s}^{n} P(\mathbb{C})$ is isomorphic to the algebra of polynomials of n variables, that are symmetric about the permutation of this variables. Let us denote it by $P_{s}\left(\mathbb{C}^{n}\right)$.

It is well known that for every symmetric polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ there exists a polynomial q, such that

$$
p\left(x_{1}, \ldots, x_{n}\right)=q\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where

$$
\begin{aligned}
& G_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\ldots+x_{n}, \\
& G_{2}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n}, \\
& G_{n}=x_{1} x_{2} \cdot \ldots \cdot x_{n},
\end{aligned}
$$

that is $G_{i}, i=1, \ldots, n$ are the elementary symmetric polynomials. The mapping $p \mapsto q$ is an isomorphism from the algebra $P_{s}\left(\mathbb{C}^{n}\right)$ of symmetric polynomials onto the algebra of all
polynomials $P\left(\mathbb{C}^{n}\right)$. Every character of algebra $P\left(\mathbb{C}^{n}\right)$ is an evaluation of some point \mathbb{C}^{n}. So, there is a correspondence between characters d_{n} on $\otimes^{n} P(\mathbb{C})$ and some characters φ on $P\left(\mathbb{C}^{n}\right)$, which is an evaluation of polynomial q at some point $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}$. That is,

$$
d_{n}\left(\otimes^{n} p\right)=d_{n}\left(p\left(x_{1}\right) \cdot \ldots \cdot p\left(x_{n}\right)\right)=\varphi\left(q\left(x_{1}, \ldots, x_{n}\right)\right)=q\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

where $p\left(x_{1}\right) \cdot \ldots \cdot p\left(x_{n}\right)=q\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$. Let $x_{1}^{0}, \ldots, x_{n}^{0}$ be the solutions of system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\ldots+x_{n}=\alpha_{1} \\
x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n}=\alpha_{2} \\
\ldots \ldots \ldots \ldots \\
x_{1} x_{2} \cdot \ldots \cdot x_{n}=\alpha_{n}
\end{array}\right.
$$

According to the Viet theorem, $x_{1}^{0}, \ldots, x_{n}^{0}$ are the solutions of the equation

$$
x^{n}-\alpha_{1} x^{n-1}+\alpha_{2} x^{n-2}+\ldots+(-1)^{n} \alpha_{n}=0 .
$$

Then $D_{n}(p)=q\left(\alpha_{1}, \ldots, \alpha_{n}\right)=p\left(x_{1}^{0}\right) \cdot \ldots \cdot p\left(x_{n}^{0}\right)$, that was needed to show.
To prove of this theorem we use the existence of a homomorphism from $\otimes^{n} P(\mathbb{C})=P\left({ }^{n} \mathbb{C}\right)$ onto $\otimes_{s}^{n} P(\mathbb{C})$. It is easy to show that this condition is sufficient in the general case.
Theorem 2. If there exists a surjective homomorphism $\varphi: \otimes^{n} A \rightarrow \otimes_{s}^{n} A$, then every n homogeneous multiplicative polynomial on algebra A can be represented as a product of characters.

Proof. Suppose that there exists the surjective homomorphism φ from $\otimes^{n} A$ onto $\otimes_{s}^{n} A$. For a given n-homogeneous multiplicative polynomial $D(x), x \in A$, it is defined a character d on $\otimes_{s}^{n} A$ such that

$$
d\left(\otimes^{n} p\right)=D(x)
$$

Thus

$$
\otimes^{n} A \rightarrow \otimes_{s}^{n} A \rightarrow \mathbb{C}
$$

Let $p \in \otimes_{s}^{n} A$ and $u \in \varphi^{-1}(p), u \in \otimes^{n} A$. Then $d \circ \varphi$ is a character on $\otimes^{n} A$ and $d \circ \varphi(u)=$ $d(p)$. According to [4], every character of $\otimes^{n} A$ is of the form

$$
d \circ \varphi(a \otimes \ldots \otimes a)=\psi_{1}(a) \ldots \psi_{n}(a),
$$

$a \in A$ for some characters $\psi_{1}, \ldots, \psi_{n}$ on A. So if $p=a \otimes \ldots \otimes a$, then

$$
D(a)=d(p)=d \circ \varphi(u)=\psi_{1}(a) \ldots \psi_{n}(a)
$$

that is, D is trivial.
Corollary 1.1. Let A be the completion of algebra $P(\mathbb{C})$ in some locally convex metrizabled topology τ, such that (A, τ) is a topology algebra. Then every multiplicative polynomial by n degree on A can be presented as a product of characters.

Theorem 3. Every multiplicative polynomial of second degree is trivial on the algebra $P\left(\mathbb{C}^{2}\right)$ of polynomials of two variables.

Proof. We use a similar idea that in proof of Theorem 1. Let $D_{2}: P\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}$ be a homogeneous multiplicative polynomial by second degree. Due to [7], there exists the character d on the symmetric tensor product $P\left(\mathbb{C}^{2}\right) \otimes_{s} P\left(\mathbb{C}^{2}\right)$ such that $D_{2}(p)=d_{2}(p \otimes p)$ for any $p \in P\left(\mathbb{C}^{2}\right)$.

The algebra $P\left(\mathbb{C}^{2}\right) \otimes_{s} P\left(\mathbb{C}^{2}\right)$ is isomorphic to an algebra of four variables polynomials generated by $p\left(x_{1}, y_{1}\right) p\left(x_{2}, y_{2}\right)$, which are symmetric about the permutations of pairs x_{1}, y_{1} and x_{2}, y_{2} simultaneously. These polynomials are called block-symmetric polynomials.

A polynomial wich is symmetric with respect to the permutation of pairs x_{1}, y_{1} and x_{2}, y_{2}, can be presented by polynomials $R_{1}=x_{1}+x_{2}, R_{2}=x_{1} x_{2}, R_{3}=y_{1}+y_{2}, R_{4}=y_{1} y_{2}$, $R_{5}=x_{1} y_{2}+x_{2} y_{1}$, that is $p\left(x_{1}, y_{1}\right) p\left(x_{2}, y_{2}\right)=q\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right)$. But the polynomials $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ are algebraically depending and this dependence can be wrote by the following formula:

$$
\begin{equation*}
R_{5}^{2}-R_{1} R_{3} R_{5}+R_{1}^{2} R_{4}-4 R_{2} R_{4}+R_{3}^{2} R_{2}=0 \tag{1}
\end{equation*}
$$

Thus the polynomial q is an element of factor-algebra which is generated by polynomial (1) and it is determined by this polynomial zeros. The character d on $P\left(\mathbb{C}^{2}\right) \otimes_{s} P\left(\mathbb{C}^{2}\right)$ is a value of polynomial q at the point $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$, which is the solution of the equation (1), that is

$$
d(p \otimes p)=d\left(p\left(x_{1}, y_{1}\right) p\left(x_{2}, y_{2}\right)\right)=q\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right),
$$

where $p\left(x_{1}, y_{1}\right) p\left(x_{2}, y_{2}\right)=q\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right)$. Let $x_{1}^{0}, x_{2}^{0}, y_{1}^{0}, y_{2}^{0}$ be the solution of the equations system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=\alpha_{1} \\
x_{1} x_{2}=\alpha_{2} \\
y_{1}+y_{2}=\alpha_{3} \\
y_{1} y_{2}=\alpha_{4} \\
x_{1} y_{2}+x_{2} y_{1}=\alpha_{5}
\end{array}\right.
$$

According to the Viet theorem the pairs x_{1}^{0}, x_{2}^{0} and y_{1}^{0}, y_{2}^{0} are the solution of the equations

$$
\begin{aligned}
& x^{2}-\alpha_{1} x+\alpha_{2}=0, \\
& y^{2}-\alpha_{3} x+\alpha_{4}=0
\end{aligned}
$$

respectively. Now we need to put $\alpha_{5}=x_{1}^{0} y_{2}^{0}+x_{2}^{0} y_{1}^{0}$. Then $D_{2}(p)=q\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=$ $p\left(x_{1}^{0}, y_{1}^{0}\right) p\left(x_{2}^{0}, y_{2}^{0}\right)$, that was needed to show.

Using similar methods and recent results on block-symmetric polynomials [1] it is possible to prove an analogue of Theorem 3 for n degree multiplicative polynomials on $P\left(\mathbb{C}^{2}\right)$.

References

1. Загороднюк А.В., Кравців В.В. Симетричні поліноми на добутках банахових просторів // Карпат. мат. публ., - 2010. - Т.2, №1. - С. 59-71.
2. Колмогоров А., Фомин С. Елементы теории функций и функционального анализа. - М.: Наука, 1976. - 543 с.
3. Gamelin T.W. Analytic functions on Banach spaces in Complex Function Theory, Ed. Gauthier and Sabidussi, Kluwer Academic Publishers, Amsterdam, 1994.
4. Lamadrid J. G. Uniform cross norms and tensor products of Banach algebras, Bull. Amer. Math. Soc., 69, 6 (1963), 797-803.
5. Mujica J. Complex Analysis in Banach Spaces, North-Holland, Amsterdam, New York, Oxford, 1986.
6. Rudin W. Functional Analysis, McGraw-Hill, New York, 1973.
7. Zagorodnyuk A.V. Multiplicative polynomial operators on topological algebras, Contemporary Mathematics, 232 (1999), 357-361.
8. Zagorodnyuk A.V. On polynomial orthogonality on Banach spaces, Math. Studii, 14, 2 (2000), 189-192.

Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine

Received 03.09.2012

Лабачук О.В., Загороднюк А.В. Мультиплікативні поліноміальні відображення на комутативних банахових алгебрах // Карпатські математичні публікації. - 2012. - Т.4, №2. - C. 284-288.

У цій роботі ми розглядаємо мультиплікативні поліноміальні відображення на комутативних алгебрах. Мультиплікативний поліном, що розкладається в добуток характерів, називатимемо тривіальним. Досліджуємо питання: чи існує нетривіальний мультиплікативний поліном на комутативній алгебрі?

Лабачук О.В., Загороднюк А.В. Мультипликативные полиномиальные отображения на коммутативных банаховых алгебрах // Карпатские математические публикации. - 2012. - Т.4, №2. - С. 284-288.

В этой работе мы рассматриваем мультипликативные полиномиальные отображение на коммутативных алгебрах. Мультипликативный полином, которой можна записать произведением характеров, назовем тривиальным. Исследуем вопрос: существует ли нетривиальный мультипликативный полином на коммутативной алгебре?

