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We consider quasilinear elliptic boundary-value problem in a two-level thick junction Ωε

of type 3 : 2 : 2, which is the union of a cylinder Ω0 and a large number of ε-periodically

situated thin discs with varying thickness. Different Robin boundary conditions with perturbed

parameters are given on the surfaces of the thin discs. The leading terms of the asymptotic

expansion are constructed and the corresponding estimate in Sobolev space is obtained.

Introduction

A thick junction of type m : k : d is a union of some domain, which is called the junction’s
body, and a large number of ε-periodically alternating thin domains, which are attached to
some manifold (the joint zone) on the boundary of the junction’s body. The small parameter
ε characterizes distance between neighboring thin domains and their thickness. The type
m : k : d of a thick junction refers, respectively, to the limiting dimensions (as ε→ 0) of the
junction’s body, the joint zone and each of the attached thin domains.

The subject of the investigation of boundary-value problems in thick junctions is the
asymptotic behavior of solutions to such problems as ε → 0, i.e. when the number of the
attached thin domains infinitely increases and their thickness tends to zero.

The first researches in this direction were carried out in [9, 10, 14], where the convergence
theorems for Green function of the Neumann problem for the Helmholz equation in the
junction’s body were proved. In these papers either the assumption about the convergence
of certain components of the boundary-value problem was made, or explicit representations of
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Figure 1: Heat radiator that has form of a thick junction of type 3 : 2 : 2.

certain quantities were used, which was possible under certain configurations of the junction’s
body (the half-space). In [21]–[17], [23] thick junctions were classified, asymptotic methods
for the investigation of main boundary-value problems of mathematical physics in thick
junctions of different types were developed, the convergence theorems were proved, the first
terms of asymptotic expansions were constructed, and the corresponding estimates were
proved. It was shown that qualitative properties of solutions essentially depend on the
junction’s type and the conditions given on the boundaries of the attached thin domains
(see also [2, 1, 18]).

As an extension of the investigation, in papers [5, 7, 22] thick junctions of more compli-
cated geometric structure were considered, namely multi-level thick junctions. A multi-level
thick junction is a thick junction, in which thin domains are divided into finitely many levels
depending on their geometric structure and boundary conditions imposed on their surfaces.
Besides, thin domains from each level ε-periodically alternate along the joint zone. In these
papers linear boundary-value problems in thick junctions of types 2 : 1 : 1 and 3 : 2 : 1

were considered. Moreover, there a new qualitative difference in the asymptotic behavior
of solutions to boundary-value problems in multi-level thick junctions was noticed, namely
the "multi-phase" effect in the domain that is filled up simultaneously by the thin domains
from different levels.

The successful applying in nanotechnology and microelectronics of constructions, which
have form of thick junctions (see Fig. 1 and [11]–[13]), has lead to effective studying of
boundary-value problems in thick junctions of various types and more complicated structure
(see also [2]–[4], [16, 18]).

In the present paper we consider quasilinear parabolic boundary-value problem in a two-
level thick junction of type 3 : 2 : 2, which consists of a cylinder Ω0 and a large number of
thin annular discs with varying thickness, which are ε-periodically attached to Ω0. Different
nonhomogeneous Robin boundary conditions are given on the surfaces of the thin discs from
various levels. The leading terms of the asymptotic expansion for a solution to this problem
are constructed and the asymptotic estimate in Sobolev space is proved.

The outline of the paper is as follows. In Section 1 thick junction Ωε is described and
quasilinear elliptic boundary-value problem in this thick junction is stated. In Section 2
outer and inner asymptotic expansions for the solution uε are constructed and homogenized
boundary-value problem is obtained. In Section 3 approximation function Rε for solution
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uε is constructed and asymptotic estimate is proved. In Section 4 the obtained results are
discussed.

1 Statement of Problem

Let 0 < d0 < d2 ≤ d1 and 0 < b2 < b1 < 1; hi : [d0, di] → (0, 1), i = 1, 2, are piecewise
smooth functions. Suppose that functions hi satisfy the following conditions:

0 < bi−
hi(s)

2
, bi+

hi(s)

2
< 1 ∀s ∈ [d0, di], i = 1, 2, b2+

h2(s)

2
< b1−

h1(s)

2
∀s ∈ [d0, d2].

These inequalities imply that for all s ∈ [d0, di] the intervals

Ii(s) :=

(
bi −

hi(s)

2
, bi +

hi(s)

2

)
, i = 1, 2,

belong to interval (0, 1), don’t have common points and don’t adjoin.
We additionally assume that functions h1, h2 are constant in some neighborhood of d0,

i.e. there exists δ > 0 such that hi(s) = hi(d0) for all s ∈ [d0, d0 + δ], i = 1, 2.
Consider a model thick junction Ωε of type 3 : 2 : 2 (see Fig. 2) that consists of cylinder

Ω0 = {x = (x1, x2, x3) ∈ R3 : 0 < x2 < l, r :=
√
x21 + x23 < d0}

and 2N thin annular discs

G(1)
ε (j) = {x ∈ R3 : |x2 − ε(j + b1)| <

εh1(r)

2
, d0 ≤ r < d1},

G(2)
ε (j) = {x ∈ R3 : |x2 − ε(j + b2)| <

εh2(r)

2
, d0 ≤ r < d2},

where j = 0, N − 1, ε = l/N, i.e.

Ωε = Ω0 ∪Gε, Gε = G(1)
ε ∪G(2)

ε , G(1)
ε = ∪N−1

j=0 G
(1)
ε (j), G(2)

ε = ∪N−1
j=0 G

(2)
ε (j).

Here N is a large integer. Therefore, ε is a small parameter, which characterizes distance
between neighboring thin discs and their thickness.

Denote by S(1)
ε and S

(2)
ε the union of the lateral surfaces of the thin discs from the first

and the second level, respectively, and by S± the bases of cylinder Ω0, i.e.

S(i)
ε := {x ∈ ∂G(i)

ε : |x2 − ε(j + bi)| = εhi(r)/2, j = 0, N − 1, r ∈ (d0, di)}, i = 1, 2,

S− = {x ∈ ∂Ω0 : x2 = 0}, S+ = {x ∈ ∂Ω0 : x2 = l}, S± = S+ ∪ S−.

Also we introduce the following notations:

Ωi = Ω0 ∪Di, Di = {x ∈ R3 : 0 < x2 < l, d0 < r < di}, i = 1, 2,

Q
(i)
0 = {x ∈ ∂Ωi : r = di}, i = 0, 2, Q(i)

ε = {x ∈ ∂G(i)
ε : r = di}, i = 1, 2,

Υ(i)
ε = S(i)

ε ∪Q(i)
ε , Θ(i)

ε = G(i)
ε ∩ ∂Ω0, i = 1, 2, Θε = Θ(1)

ε ∪Θ(2)
ε , Q(0)

ε = Q
(0)
0 \Θε.
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Figure 2: The cross-section of thick junction Ωε of type 3 : 2 : 2 (N = 8).

In thick junction Ωε we consider the quasilinear elliptic boundary-value problem

−∆uε + ϑ0(uε) = fε in Ωε,

∂νuε + εϑ1(uε) = εβgε on S(1)
ε ,

∂νuε + ϑ1(uε) = 0 on Q(1)
ε ,

∂νuε + εαϑ2(uε) = εβgε on Υ
(2)
ε ,

∂νuε = 0 on Q(0)
ε ,

∂px2
uε|S− = ∂px2

uε|S+ , p = 0, 1,

[uε]|r=d0
= [∂ruε]|r=d0

= 0 on Θε.

(1)

Here ∂ν = ∂/∂ν is the outward normal derivative; α, β ≥ 1 are parameters; the square
brackets denote the jump of the enclosed quantities. For the right-hand sides of problem (1)
we assume that fε ∈ L2(Ωε), gε ∈ H1(D1) and

∃C0 > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) : ‖gε‖L2(D1) + ‖∂x2gε‖L2(D1) ≤ C0.

Functions ϑi are Lipschitz-continuous (which is equal to ϑi ∈ W 1,∞
loc (R)) and

∃c1, c2 > 0 : c1 ≤ ϑ′
i(s) ≤ c2 for a.e. s ∈ R, i = 0, 2. (2)

Consider spaces Hε = {ϕ ∈ H1(Ωε) : ϕ|S− = ϕ|S+}.
A function uε ∈ Hε is a weak solution to problem (1) if for any function ϕ ∈ Hε the

following integral identity holds:∫
Ωε

(∇uε · ∇ϕ+ ϑ0(uε)ϕ) dx+ ε

∫
S
(1)
ε

ϑ1(uε)ϕdσx +

∫
Q

(1)
ε

ϑ1(uε)ϕdσx

+ εα
∫
Υ

(2)
ε

ϑ2(uε)ϕdσx =

∫
Ωε

fε ϕdx+ εβ
∫
S
(1)
ε ∪Υ(2)

ε

gε ϕdσx. (3)

By the same arguments as in [16] we can prove that for any fixed ε > 0 there exists a
unique weak solution to problem (1).

The aim is to study the asymptotic behavior of the solution to problem (1) as ε → 0, i.e.
when the number of the attached thin discs infinitely increases and their thickness tends to zero.
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2 Formal Asymptotic Expansions for the Solution

Only in this Section for formal calculations we assume that functions fε, gε do not depend
on ε, i.e. fε = f0 in Ω1 and gε = g0 in D1, and they are smooth in Ω1 and D1, respectively.

2.1 Outer Expansions

We seek the leading terms of the asymptotic expansion for solution uε, restricted to Ω0, in
the form

uε(x) ≈ u+0 (x) +
∑
k≥1

εku+k (x), x ∈ Ω0, (4)

and, restricted to the thin discs G(i)
ε (j), j = 0, N − 1, in the form

uε(x) ≈ ui,−0 (x) +
∑
k≥1

εkui,−k (x, ξ2 − j), x ∈ G(i)
ε (j), i = 1, 2, (5)

where ξ2 = x2/ε.
Expansions (4) and (5) are usually called outer expansions.
With the help of Taylor’s formula we get

ϑ0(uε(x)) = ϑ0(u
+
0 (x)) + ϑ′

0( · )
∑
k≥1

εku+k (x), x ∈ Ω0. (6)

Plugging the series (4) into the first equation of problem (1) and the boundary conditions
on S±, using (6) and collecting coefficients of the same powers of ε, we get the following
relations for function u+0 :{

−∆u+0 + ϑ0(u
+
0 ) = f0 in Ω0,

∂px2
u+0 |S− = ∂px2

u+0 |S+ , p = 0, 1.

Now let us find the limit relations in domains Di, i = 1, 2, which are filled up by the
thin discs from i-th level as ε tends to zero. Assuming for a moment that functions ui,−k are
smooth, we write their Taylor series with respect to x2 at the point ε(j+ bi) and pass to the
"rapid" variable ξ2 = x2/ε. Then (5) takes the form

uε(x) ≈ ui,−0 (x1, ε(j + bi), x3) +
∑
k≥1

εkV i,j
k (x̃, ξ2), x ∈ G(i)

ε (j), (7)

where x̃ := (x1, x3), and

V i,j
k (x̃, ξ2) =

k−1∑
m=0

(ξ2 − j − bi)
m

m!

∂mui,−k−m

∂xm2
(x1, ε(j + bi), x3, ξ2 − j)

+
(ξ2 − j − bi)

k

k!

∂kui,−0
∂xk2

(x1, ε(j + bi), x3). (8)

Further we will indicate arguments of functions only if their absence may cause confusion.
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The outward unit normal to the lateral surfaces of the thin discs except a set of zero
measure is as follows:

νε(x) =
1√

1 + 4−1ε2|h′i(r)|2

(
−εh

′
i(r)x1
2r

, ±1, −εh
′
i(r)x3
2r

)
, x ∈ S(i)

ε , i = 1, 2, (9)

where "+" and "−" refer, respectively, to the left and the right parts of the lateral surface
of each thin disc. Obviously, (1 + ε24−1|h′i(r)|2)−

1
2 = 1 +O(ε2), ε→ 0.

Again with the help of Taylor’s formula we obtain

ϑ0(uε(x)) = ϑ0(u
i,−
0 (x1, ε(j + bi), x3)) + ϑ′

0( · )
∑
k≥1

εkV i,j
k (x̃, ξ2, t), x ∈ G(i)

ε . (10)

Let us put (7) into (1) instead of uε. Taking into account (9), (10) and that the Laplace
operator in the variables (x̃, ξ2) has the form ∆x = ∆x̃ + ε−2 ∂2

∂ξ22
and collecting coefficients

of the same powers of ε, we arrive at one-dimensional boundary-value problems with respect
to ξ2 for functions V i,j

k .
Problems for V i,j

1 read{
∂2ξ2ξ2V

i,j
1 = 0, ξ2 ∈ Ihi(r)(j) := (−hi(r)

2
+ j + bi,

hi(r)
2

+ j + bi),

∂ξ2V
i,j
1 = 0, ξ2 = ±hi(r)

2
+ j + bi,

(i = 1, 2) (11)

where ∂ξ2 =
∂
∂ξ2
, ∂2ξ2ξ2 =

∂2

∂ξ22
. Here the variables x̃ are regarded as parameters.

It follows from (11) that V i,j
1 do not depend on ξ2. Therefore, V i,j

1 are equal to some
functions ϕ(i)

1 (x1, ε(j + bi), x3), x ∈ G
(i)
ε (j), which will be defined later. Then, due to (8)

we have

ui,−1 (x1, ε(j + bi), x3, ξ2 − j) = ϕ
(i)
1 (x1, ε(j + bi), x3)

− (ξ2 − j − bi)∂x2u
i,−
0 (x1, ε(j + bi), x3), x ∈ G(i)

ε (j). (12)

Boundary-value problems for V 1,j
2 and V 2,j

2 have the view{
−∂2ξ2ξ2V

1,j
2 = (∆x̃u

1,−
0 − ϑ0(u

1,−
0 ) + f0)|x2=ε(j+b1), ξ2 ∈ Ih1(r)(j),

±∂ξ2V
1,j
2 = (2−1∇x̃h1 · ∇x̃u

1,−
0 − ϑ1(u

1,−
0 ) + δβ,1g0)|x2=ε(j+b1), ξ2 = ±h1(r)

2
+ j + b1,

(13)
and{

−∂2ξ2ξ2V
2,j
2 = (∆x̃u

2,−
0 − ϑ0(u

2,−
0 ) + f0)|x2=ε(j+b2), ξ2 ∈ Ih2(r)(j),

±∂ξ2V
2,j
2 = (2−1∇x̃h2 · ∇x̃u

2,−
0 − δα,1ϑ2(u

2,−
0 ) + δβ,1g0)|x2=ε(j+b2), ξ2 = ±h2(r)

2
+ j + b2,

(14)
respectively, where δα,1, δβ,1 are Kronecker’s symbols.

The solvability conditions for problems (13) and (14) read

− divx̃(h1∇x̃u
1,−
0 ) + h1ϑ0(u

1,−
0 ) + 2ϑ1(u

1,−
0 ) = h1f0 + 2δβ,1g0,

x2 = ε(j + b1), r ∈ (d0, d1), (15)
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− divx̃(h2∇x̃u
2,−
0 ) + h2ϑ0(u

2,−
0 ) + 2δα,1ϑ2(u

2,−
0 ) = h2f0 + 2δβ,1g0,

x2 = ε(j + b2), r ∈ (d0, d2), (16)

respectively.
Putting (7) into the Robin boundary conditions on Q(i)

ε , we get

∂ru
1,−
0 + ϑ1(u

1,−
0 ) = 0, x ∈ Q(1)

ε , x2 = ε(j + b1), (17)

∂ru
2,−
0 = 0, x ∈ Q(2)

ε , x2 = ε(j + b2). (18)

In order to find conditions in joint zone Q(0)
0 we use the method of matched asymptotic

expansions for outer expansions (4), (7) and an inner expansion which will be constructed
in the next subsection.

2.2 Inner Expansion

In a neighborhood of joint zone Q(0)
0 we introduce the "rapid" coordinates ξ = (ξ1, ξ2),

where ξ1 = −(r − d0)/ε and ξ2 = x2/ε. Here (r, x2, θ) ∈ R3 are cylindric coordinates:
r =

√
x21 + x23, tan(θ) = x3/x1. The Laplace operator in the coordinates (ξ1, ξ2, θ) has the

form
∆x = ε−2∆ξ − ε−1 1

d0 − εξ1

∂

∂ξ1
+

1

(d0 − εξ1)2
∂2

∂θ2
. (19)

We seek the leading terms of the inner expansion in a neighborhood of Q(0)
0 in the form

uε(x) ≈ u+0 (x)|r=d0 + ε
(
Z1(ξ)∂x2u

+
0 (x)|r=d0

−
(
η(x2)Ξ1(ξ) + (1− η(x2))Ξ2(ξ)

)
∂ru

+
0 (x)|r=d0

)
+ . . . , (20)

where Z1, Ξ1, Ξ2 are some functions, which are 1-periodic with respect to ξ2 and defined in
the union Π := Π+ ∪ Π−

1 ∪ Π−
2 of semiinfinite strips

Π+ = {ξ ∈ R2 : ξ1 > 0, ξ2 ∈ (0, 1)}, Π−
i = {ξ ∈ R2 : ξ1 ≤ 0, ξ2 ∈ Ii(d0)}, i = 1, 2,

(see definition of Ii(d0) in Section 1), η is some function, which will be defined from matching
conditions.

Putting (20) into the differential equation of problem (1) with regard to (19) and into the
corresponding boundary conditions and collecting coefficients of the same powers of ε, we
get the junction-layer problems for functions Z1, Ξ1, Ξ2. Functions Ξ1 and Ξ2 are solutions
to the following homogeneous problem:

−∆ξΞ = 0 in Π,

∂ξ2Ξ = 0 on (∂Π−
1 ∪ ∂Π−

2 ) ∩ {ξ ∈ R2 : ξ1 < 0},

∂ξ1Ξ = 0 on ∂Π ∩ {ξ ∈ R2 : ξ1 = 0},

∂pξ2Ξ|ξ2=0 = ∂pξ2Ξ|ξ2=1, p = 0, 1, ξ1 > 0.

(21)

Main asymptotic relations for functions Ξ1, Ξ2 can be obtained from general results on
the asymptotic behavior of solutions to elliptic problems in domains with different exits
to infinity (see, for instance, [25]). However, for domain Π, we can define more exactly the
asymptotic relations for junction-layer solutions Ξ1, Ξ2 in the same way as in papers [20, 15].
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Proposition 2.1. There exist two solutions Ξ1, Ξ2 ∈ H1
],loc(Π) to problem (21), which have

the following differentiable asymptotics:

Ξ1 =


ξ1 +O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

α
(1)
1 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
1 ,

h−1
2 (d0)ξ1 + α

(2)
1 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
2 ,

(22)

Ξ2 =


ξ1 +O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

h−1
1 (d0)ξ1 + α

(1)
2 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
1 ,

α
(2)
2 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
2 .

(23)

Here H1
],loc(Π) = {u : Π → R : u(ξ1, 0) = u(ξ1, 1) for any ξ1 > 0, u ∈ H1(ΠR) for any

R > 0}, ΠR = {ξ ∈ Π : −R < ξ1 < R}; α(i)
1 , α

(i)
2 , i = 1, 2, are some fixed constants.

Any other solution to problem (21), which has a polynomial growth at infinity, can be
represented as a linear combination c0 + c1Ξ1 + c2Ξ2.

Function Z1 is a solution to the following problem:

−∆ξZ = 0 in Π,

∂ξ2Z = −1 on (∂Π−
1 ∪ ∂Π−

2 ) ∩ {ξ ∈ R2 : ξ1 < 0},

∂ξ1Z = 0 on ∂Π ∩ {ξ ∈ R2 : ξ1 = 0},

∂pξ2Z|ξ2=0 = ∂pξ2Z|ξ2=1, p = 0, 1, ξ1 > 0.

(24)

Similarly to [20, 15, 24] it is easy to verify that there exists a unique solution Z1 ∈
H1

],loc(Π) with the following asymptotics:

Z =


O(exp(−2πξ1)), ξ1 → +∞, ξ ∈ Π+,

−ξ2 + b1 + α
(1)
3 +O(exp(πh−1

1 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
1 ,

−ξ2 + b2 + α
(2)
3 +O(exp(πh−1

2 (d0)ξ1)), ξ1 → −∞, ξ ∈ Π−
2 .

(25)

Now let us verify matching conditions for outer expansions (4), (5) and inner expansion
(20), namely, the leading terms of the asymptotics of the outer expansions as ξ1 → ±0 must
coincide with the leading terms of the asymptotics of the inner expansion as ξ1 → ±∞. Near
the point (x1, ε(j + bi), x3) ∈ Q

(0)
0 function u+0 has the following asymptotics:

u+0 (x) ≈ u+0 (x1, ε(j + bi), x3)|r=d0 + ε(ξ2 − j − bi)∂x2u
+
0 (x1, ε(j + bi), x3)|r=d0

− εξ1∂ru
+
0 (x1, ε(j + bi), x3)|r=d0 + . . . as ξ1 → 0+, (x) ∈ Ω0.

Taking into account the asymptotics of Z1, Ξ1 and Ξ2 as ξ1 → +∞, we see that the matching
conditions are satisfied for expansions (4) and (20).

The asymptotics of (5) in the neighborhood of (x1, ε(j + bi), x3) ∈ Q
(0)
0 are equal to

ui,−0 (x1, ε(j + bi), x3)|r=d0 + ε
(
ϕ
(i)
1 (x1, ε(j + bi), x3)|r=d0

− ξ1∂ru
i,−
0 (x1, ε(j + bi), x3)|r=d0

)
+ . . . as ξ1 → 0−, x ∈ G(i)

ε (j), i = 1, 2. (26)
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It follows from (22), (23) and (25) that the first terms of the asymptotics of (20) in the
neighborhood of (x1, ε(j + bi), x3) ∈ Q

(0)
0 are

u+0 (x1, ε(j + b1), x3)|r=d0 + ε
(
α
(1)
3 ∂x2u

+
0 (x1, ε(j + b1), x3)|r=d0

−
(
α
(1)
1 η(ε(j + b1)) + (h−1

1 (d0)ξ1 + α
(1)
2 )(1− η(ε(j + b1)))

)
∂ru

+
0 (x1, ε(j + b1), x3)|r=d0

)
as ξ1 → −∞, x ∈ G(1)

ε (j), (27)

and

u+0 (x1, ε(j + b2), x3)|r=d0 + ε
(
α
(2)
3 ∂x2u

+
0 (x1, ε(j + b2), x3)|r=d0

−
(
(h−1

2 (d0)ξ1 + α
(2)
1 )η(ε(j + b2)) + α

(2)
2 (1− η(ε(j + b2)))

)
∂ru

+
0 (x1, ε(j + b2), x3)|r=d0

)
as ξ1 → −∞, x ∈ G(2)

ε (j). (28)

Comparing the first terms of (26), (27) and (28), we get

u+0 (x) = ui,−0 (x), x ∈ Q
(0)
0 , x2 = ε(j + bi), i = 1, 2. (29)

Comparing the second terms of (26), (27) and (28), we find that

ϕ
(i)
1 (x) = α

(i)
3 ∂x2u

+
0 (x), x ∈ Q

(0)
0 , x2 = ε(j + bi), i = 1, 2, (30)

and
(1− η)h−1

1 (d0)∂ru
+
0 (x) = ∂ru

1,−
0 (x), x ∈ Q

(0)
0 , x2 = ε(j + b1)

ηh−1
2 (d0)∂ru

+
0 (x) = ∂ru

2,−
0 (x), x ∈ Q

(0)
0 , x2 = ε(j + b2).

(31)

Since the points {ε(j + bi) : j = 0, N − 1}, i = 1, 2, make up the ε-net of the segment
[0, l], we can extend equalities (12), (15), (16) in domains Di, equalities (17), (18) in Q

(1)
0

and Q(2)
0 , respectively, and equalities (29), (30) and (31) in Q(0)

0 . As a result, from equalities
(31) we derive the relation

η(x2) =
h2(d0)∂ru

2,−
0 |r=d0

h1(d0)∂ru
1,−
0 |r=d0 + h2(d0)∂ru

2,−
0 |r=d0

, x2 ∈ (0, l),

and obtain
∂ru

+
0 = h1(d0)∂ru

1,−
0 + h2(d0)∂ru

2,−
0 , x ∈ Q

(0)
0 .

By virtue of (29) and (30) we can define ϕ(i)
1 as follows:

ϕ
(i)
1 (x) = α

(i)
3 ∂x2u

i,−
0 (x), x ∈ Di, i = 1, 2.

2.3 The Homogenized Problem

With the help of the first terms u+0 , u1,−0 and u2,−0 of asymptotic expansions (4) and (5) we
define multi-sheeted function

U0(x) =


u+0 (x), x ∈ Ω0,

u1,−0 (x), x ∈ D1,

u2,−0 (x), x ∈ D2,
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or in a short form U0 = (u+0 , u
1,−
0 , u2,−0 ). It follows from the foregoing that the components

of function U0 must satisfy the relations

−∆u+0 + ϑ0(u
+
0 ) = f0 in Ω0,

∂px2
u+0 |S− = ∂px2

u+0 |S+ , p = 0, 1,

−divx̃(h1(r)∇x̃u
1,−
0 ) + h1(r)ϑ0(u

1,−
0 )

+2ϑ1(u
1,−
0 ) = h1(r)f0 + 2δβ,1g0 in D1,

∂νu
1,−
0 + ϑ1(u

1,−
0 ) = 0 on Q(1)

0 ,

−divx̃
(
h2(r)∇x̃u

2,−
0

)
+ h2(r)ϑ0(u

2,−
0 )

+2δα,1ϑ2(u
2,−
0 ) = h2(r)f0 + 2δβ,1g0 in D2,

∂νu
2,−
0 = 0 on Q(2)

0 ,

u+0 |Q(0)
0

= u1,−0 |
Q

(0)
0

= u2,−0 |
Q

(0)
0
,

∂ru
+
0 = h1(d0)∂ru

1,−
0 + h2(d0)∂ru

2,−
0 on Q(0)

0 .

(32)

These relations form the homogenized problem for problem (1).
We introduce space V0 := L2(Ω0)×L2(D1)×L2(D2) of multi-sheeted functions with the

scalar product

(u,v)V0 =

∫
Ω0

u0v0 dx+
2∑

i=1

∫
Di

uivi dx,

where

u(x) =


u0(x), x ∈ Ω0,

u1(x), x ∈ D1,

u2(x), x ∈ D2,

and v(x) =


v0(x), x ∈ Ω0,

v1(x), x ∈ D1,

v2(x), x ∈ D2,

or in a short form u = (u0, u1, u2) and v = (v0, v1, v2), belong to V0. Also we introduce
anisotropic Sobolev space of multi-sheeted functions

H0 := {u = (u0, u1, u2) ∈ V0 : u0 ∈ H1(Ω0), u0|S− = u0|S+ ;

∃ ∂xj
ui ∈ L2(Di), j = 1, 3, i = 1, 2; u0|Q(0)

0
= u1|Q(0)

0
= u2|Q(0)

0
}

with the inner product

(u,v)H0 =

∫
Ω0

(∇u0 · ∇v0 + u0v0) dx+
2∑

i=1

∫
Di

(∇x̃ui · ∇x̃vi + uivi) dx.

It is obvious that H0 is continuously embedded in V0.
A function U0 = (u+0 , u

1,−
0 , u1,−0 ) ∈ H0 is a weak solution to problem (32) if for any

function ϕ = (ϕ0, ϕ1, ϕ2) ∈ H0 the integral identity∫
Ω0

(∇u+0 · ∇ϕ0 + ϑ0(u
+
0 )ϕ0) dx+

2∑
i=1

∫
Di

hi(r)(∇x̃u
i,−
0 · ∇x̃ϕi + ϑ0(u

i,−
0 )ϕi) dx
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+2

∫
D1

ϑ1(u
1,−
0 )ϕ1 dx+ h1(d1)

∫
Q

(1)
0

ϑ1(u
1,−
0 )ϕ1 dσx + 2δα,1

∫
D2

ϑ2(u
2,−
0 )ϕ2 dx

=

∫
Ω0

f0ϕ0 dx+
2∑

i=1

∫
Di

(hif0 + 2δβ,1g0)ϕi dx

holds.
Using the properties of functions ϑi similarly as in [16] we can prove that there exists a

unique weak solution to problem (32).

3 Approximation and Asymptotic Estimates

Let U0 = (u+0 , u
1,−
0 , u2,−0 ) be the unique weak solution to problem (32). With the help

of U0 and solutions Z1, Ξ1, Ξ2 of junction-layer problems (21) and (24) we construct the
main terms of expansions (4), (5) and (20). Consider smooth cut-off function χ0(r), which
is equal to 1 as |r − d0| < δ0/2 and 0 as |r − d0| > δ0, where δ0 ∈ (0, δ) is some fixed
number. Matching the outer expansions with the inner expansion with the help of χ0, we
define approximation function Rε:

Rε(x) := R+
ε (x) = u+0 (x) + ε χ0(r)N+(ξ, x2, θ), x ∈ Ω0, (33)

Rε(x) := Ri,−
ε (x) = ui,−0 (x) + ε

(
Ỹi

(x2
ε

)
∂x2u

i,−
0 (x) + χ0(r)N i,−(ξ, x2, θ)

)
,

x ∈ G(i)
ε (j), i = 1, 2. (34)

Here

N+(ξ, x2, θ) = Z1(ξ)∂x2u
+
0 |r=d0 +

(
ξ1 − η(x2)Ξ1(ξ)− (1− η(x2))Ξ2(ξ)

)
∂ru

+
0 |r=d0 ,

N i,−(ξ, x2, θ) = (Z1(ξ)− Ỹi(ξ2))∂x2u
+
0 |r=d0

+
(
Yi(ξ1, x2)− η(x2)Ξ1(ξ)− (1− η(x2))Ξ2(ξ)

)
∂ru

+
0 |r=d0 ,

where Ỹi(s) := −s+ [s] + bi + α
(i)
3 , [s] is the integer part of s ∈ R, i = 1, 2, and

Y1(ξ1, x2) := h−1
1 (d0)ξ1(1− η(x2)),

Y2(ξ1, x2) := h−1
2 (d0)ξ1η(x2),

ξ1 ≤ 0, x2 ∈ (0, l).

Obviously, Rε ∈ Hε.

Theorem 1. Let f0 ∈ H3(Ω1), ∂
p
x2
f0|S− = ∂px2

f0|S+ , p = 0, 1, g0 ∈ H1(D1).
Then for any µ > 0 there exist positive constants ε0, c0 such that for all ε ∈ (0, ε0)

the difference between solution uε to problem (1) and approximation function Rε defined by
(33) and (34), where U0 = (u+0 , u

1,−
0 , u2,−0 ) is a weak solution to problem (32), satisfies the

inequality

‖uε −Rε‖H1(Ωε) ≤ c0 (‖fε − f0‖L2(Ωε) + ε1−µ + εδα,1(2−α)+α−1 + εβ−1‖gε − g0‖
δβ,1
L2(D1)

). (35)
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Proof. Discrepancies in domain Ω0. It follows from the first two relations in (32) and
from the theorem’s assumptions that ∂2x2x2

u+0 |S− = ∂2x2x2
u+0 |S+ . Then, according to the

properties of Z1, Ξ1, Ξ2 and u+0 , function R+
ε satisfies the boundary conditions of problem

(1) on ∂Ωε ∩ ∂Ω0.
Problems (21) and (24) imply

∆ξN+ = 0, ∆ξN i,− = 0 ξ ∈ Π, x2 ∈ (0, l), θ ∈ [0, 2π], i = 1, 2. (36)

Let us consider the obvious equality

∆x̃(χ0(r)N ) = divx̃(N∇x̃χ0(r))+∇x̃χ0(r) · ∇x̃N +χ0(r)∆x̃N , N = N (ξ, x2, θ). (37)

Using (19), (32), (36) and (37), we get

−∆R+
ε (x)− fε(x) = f0(x)− fε(x)− ϑ0(u

+
0 (x)) + χ0(r)(r

−1∂ξ1N+(ξ, x2, θ)

−2∂2ξ2x2
N+(ξ, x2, θ))− ε divx̃(N+|ξ1=−(r−d0)/ε∇x̃χ0(r)) + χ′

0(r)∂ξ1N+(ξ, x2, θ)

−εχ0(r)∂
2
x2x2

N+(ξ, x2, θ)− ε r−2χ0(r) ∂
2
θθN+(ξ, x2, θ), x ∈ Ω0. (38)

We multiply (38) by a test function ψ ∈ Hε, integrate by parts in Ω0 and take into account
the boundary conditions, satisfied by R+

ε . This yields∫
Ω0

(∇R+
ε ·∇ψ+ϑ0(R

+
ε )ψ) dx−

∫
Θε

∂rR
+
ε ψ dσx−

∫
Ω0

fεψ dx = I+0 (ε, ψ)+. . .+I
+
4 (ε, ψ), (39)

where
I+0 (ε, ψ) :=

∫
Ω0

(f0 − fε)ψ dx,

I+1 (ε, ψ) :=

∫
Ω0

(ϑ0(R
+
ε )− ϑ0(u

+
0 ))ψ dx,

I+2 (ε, ψ) :=

∫
Ω0

χ0(r
−1∂ξ1N+ − ∂2x2ξ2

N+)ψ dx,

I+3 (ε, ψ) := ε

∫
Ω0

N+∇x̃χ0 · ∇x̃ψ dx+

∫
Ω0

χ′
0∂ξ1N+ψ dx,

I+4 (ε, ψ) := ε

∫
Ω0

χ0∂x2N+∂x2ψ dx+ ε

∫
Ω0

r−2χ0∂θN+∂θψ dx.

Discrepancies in the thin discs. One can readily check that

∂rR
1,−
ε = −ϑ1(u

1,−
0 )− εỸ1

(x2
ε

)
∂x2ϑ1(u

1,−
0 ), x ∈ Q

(1)
ε ,

∂rR
2,−
ε = 0, x ∈ Q

(2)
ε ,

(40)

∂rR
i,−
ε = εỸi

(x2
ε

)
∂2rx2

ui,−0 + ∂rR
+
ε , x ∈ Θ(i)

ε , i = 1, 2. (41)

Taking into account (9) and that functions hi are constant in a neighborhood of d0, we derive
that

∂νR
i,−
ε =

ε√
1 + 4−1ε2|h′i(r)|2

(
±Ỹi

(x2
ε

)
∂2x2x2

ui,−0 ± χ0
∂

∂x2
(N i,−|ξ2=x2/ε)

−1

2
∇x̃hi · ∇x̃(u

i,−
0 + εỸi

(x2
ε

)
∂x2u

i,−
0 )

)
, x ∈ S(i)

ε , i = 1, 2, (42)
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where "+" and "−" refer to the left and the right parts of the lateral surfaces of the thin
discs, respectively.

Relations (19), (32), (36) and (37) yield

−∆Ri,−
ε (x)− fε(x) = f0(x)− fε(x)− ϑ0(u

i,−
0 )

+χ0(r)(r
−1∂ξ1N i,−(ξ, x2, θ)− 2∂2ξ2x2

N i,−(ξ, x2, θ))− εdivx̃(N i,−|ξ1=−(r−d0)/ε∇x̃χ0(r))

+χ′
0(r)∂ξ1N i,−(ξ, x2, θ)− εχ0(r)∂

2
x2x2

N i,−(ξ, x2, θ)− εχ0(r)r
−2∂2θθN i,−(ξ, x2, θ)

+∇x̃(lnhi(r)) · ∇x̃u
i,−
0 − εdiv

(
Ỹi

(x2
ε

)
∇(∂x2u

i,−
0 )
)

−2(1− δi,2(1− δα,1))h
−1
i (r)ϑi(u

i,−
0 ) + 2δβ,1h

−1
i (r)g0(x), x ∈ G(i)

ε . (43)

Consider the integral identity∫
S
(i)
ε

εhi(r)

2
√

1 + 4−1ε2|h′i(r)|2
ϕdσx =

∫
G

(i)
ε

ϕdx− ε

∫
G

(i)
ε

Yi

(x2
ε

)
∂x2ϕdx, i = 1, 2, (44)

where Yi(s) = −s + [s] + bi and [s] is the integer part of s, ϕ ∈ H1(G
(i)
ε ) is an arbitrary

function. We multiply (43) by a test function ψ ∈ Hε and integrate by parts in G
(i)
ε , using

(44) and taking into account relations (40), (41), (42). This yields∫
G

(1)
ε

(∇R1,−
ε · ∇ψ + ϑ0(R

1,−
ε )ψ) dx+ ε

∫
S
(1)
ε

ϑ1(R
1,−
ε )ψ dσx +

∫
Q

(1)
ε

ϑ1(R
1,−
ε )ψ dσx

+

∫
Θ

(1)
ε

∂rR
+
ε ψ dσx −

∫
G

(1)
ε

fεψ dx− εβ
∫
S
(1)
ε

gεψ dσx = I1,−0 (ε, ψ) + . . .+ I1,−7 (ε, ψ) (45)

and∫
G

(2)
ε

(∇R2,−
ε · ∇ψ + ϑ0(R

1,−
ε )ψ) dx+ εα

∫
Υ

(2)
ε

ϑ2(R
2,−
ε )ψ dσx +

∫
Θ

(2)
ε

∂rR
+
ε ψ dσx

−
∫
G

(2)
ε

fεψ dx− εβ
∫
Υ

(2)
ε

gεψ dσx = I2,−0 (ε, ψ) + . . .+ I2,−7 (ε, ψ) (46)

for all ψ ∈ Hε, where

I i,−0 (ε, ψ) :=

∫
G

(i)
ε

(f0 − fε)ψ dx,

I i,−1 (ε, ψ) :=

∫
G

(i)
ε

(ϑ0(R
i,−
ε )− ϑ0(u

i,−
0 ))ψ dx,

I i,−2 (ε, ψ) :=

∫
G

(i)
ε

χ0(r
−1∂ξ1N i,− − ∂2x2ξ2

N i,−)ψ dx,

I i,−3 (ε, ψ) := ε

∫
G

(i)
ε

N i,−∇x̃χ0 · ∇x̃ψ dx+

∫
G

(i)
ε

χ′
0∂ξ1N i,−ψ dx,

I i,−4 (ε, ψ) := ε

∫
G

(i)
ε

χ0∂x2N i,−∂x2ψ dx+ ε

∫
G

(i)
ε

r−2χ0∂θN i,−∂θψ dx,

I i,−5 (ε, ψ) := ε

∫
G

(i)
ε

Yi

(x2
ε

)
∂x2(ψ∇x̃u

i,−
0 · ∇x̃ lnhi) dx

+ε

∫
G

(i)
ε

Ỹi

(x2
ε

)
∇(∂x2u

i,−
0 ) · ∇ψ dx, i = 1, 2,
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I1,−6 (ε, ψ) := −ε
∫
S
(1)
ε

ϑ1(u
1,−
0 )ψ√

1 + 4−1ε2|h′1(r)|2
dσx − 2ε

∫
G

(1)
ε

Y1

(x2
ε

)
h−1
1 ∂x2(ϑ1(u

1,−
0 )ψ) dx

+ε

∫
S
(1)
ε

ϑ1(R
1,−
ε )ψ dσx +

∫
Q

(1)
ε

(ϑ1(R
1,−
ε )− ϑ1(u

1,−
0 )− εỸ1

(x2
ε

)
∂x2ϑ1(u

1,−
0 ))ψ dσx,

I2,−6 (ε, ψ) := −εδα,1
∫
S
(2)
ε

ϑ2(u
2,−
0 )ψ√

1 + 4−1ε2|h′2(r)|2
dσx

−2εδα,1

∫
G

(2)
ε

Y2

(x2
ε

)
h−1
2 ∂x2(ϑ2(u

2,−
0 )ψ) dx+ εα

∫
Υ

(2)
ε

ϑ2(R
2,−
ε )ψ dσx,

I1,−7 (ε, ψ) := εδβ,1

∫
S
(1)
ε

g0ψ√
1 + 4−1ε2|h′1(r)|2

dσx

+2εδβ,1

∫
G

(1)
ε

Y1

(x2
ε

)
h−1
1 ∂x2(g0ψ) dx− εβ

∫
S
(1)
ε

gεψ dσx,

I2,−7 (ε, ψ) := εδβ,1

∫
S
(2)
ε

g0ψ√
1 + 4−1ε2|h′2(r)|2

dσx

+2εδβ,1

∫
G

(2)
ε

Y2

(x2
ε

)
h−1
2 ∂x2(g0ψ) dx− εβ

∫
Υ

(2)
ε

gεψ dσx.

Asymptotic estimates. After summing (39), (45) and (46) we see that function Rε

defined by (33) and (34) satisfies the integral identity∫
Ωε

(∇Rε · ∇ψ + ϑ0(Rε)ψ) dx+ ε

∫
S
(1)
ε

ϑ1(Rε)ψ dσx +

∫
Q

(1)
ε

ϑ1(Rε)ψ dσx

+ εα
∫
Υ

(2)
ε

ϑ2(Rε)ψ dσx −
∫
Ωε

fεψ dx− εβ
∫
S
(1)
ε ∪Υ(2)

ε

gεψ dσx = Fε(ψ) (47)

for any ψ ∈ Hε, where Fε(ψ) := I±0 + . . . + I±4 + I−5 + I−6 + I−7 , I−k := I1,−k + I2,−k , k =

0, 7, I±m := I+m + I−m, m = 0, 4.
It follows from (3) and (47) that∫
Ωε

(∇(Rε − uε) · ∇ψ + (ϑ0(Rε)− ϑ0(uε))ψ) dx+ ε

∫
S
(1)
ε

(ϑ1(Rε)− ϑ1(uε))ψ dσx

+

∫
Q

(1)
ε

(ϑ1(Rε)− ϑ1(uε))ψ dσx + εα
∫
Υ

(2)
ε

(ϑ2(Rε)− ϑ2(uε))ψ dσx = Fε(ψ) (48)

for all ψ ∈ Hε.

Now we are going to estimate Fε(ψ).
With the help of Cauchy-Schwartz-Bunyakovskii inequality we obtain

|I±0 (ε, ψ)| ≤ ‖fε − f0‖L2(Ωε) ‖ψ‖H1(Ωε).

Remark 3.1. Here and further all constants ci, Ci in asymptotic estimates are independent
of ε.
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With the help of (2), Taylor’s formula and Cauchy-Schwartz-Bunyakovskii inequality we
derive that

|I+1 (ε, ψ)| = ε

∣∣∣∣∫
Ω0

ϑ′
0( · )χ0N+ψ dx

∣∣∣∣ ≤ εc0‖ψ‖H1(Ωε).

Similarly we estimate I−1 . Thus, |I±1 (ε, ψ)| ≤ εC1‖ψ‖H1(Ωε).

Since functions ∂ξ1N+, ∂2x2ξ2
N+, ∂ξ1N i,−, ∂2x2ξ2

N i,− exponentially decrease as |ξ1| → ∞
(see (22), (23) and (25)), then from Lemma 3.1 in [6] we derive that

∀µ > 0 ∃C2 > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) : |I±2 (ε, ψ)| ≤ ε1−µC2‖ψ‖H1(Ωε).

The integrals in I±3 (ε, ψ) are in fact over

supp(χ′
0(r)) ∩ Ωε = {x ∈ Ωε : δ0/2 < |r − d0| < δ0},

where, according to (21) and (24), functions N+, ∂ξ1N+, ∂ξ1N i,− are exponentially small,
and function N i,− can be estimated by some constant c1. Thus,

|I±3 (ε, ψ)| ≤ εC3‖ψ‖H1(Ωε).

The integrals in I±4 are over {x ∈ R3 : |r − d0| < δ0} and they can be estimated,
extracting if necessary the exponentially decreasing part in the corresponding integrand and
then using Cauchy-Schwartz-Bunyakovskii inequality. Consider, for example, the integral∣∣∣∣∫

G
(1)
ε

χ0∂x2N 1,−∂x2ψ dx

∣∣∣∣ = ∣∣∣∣∫
G

(1)
ε

χ0

(
(Z1 − Ỹ1)∂

2
x2x2

u+0 |r=d0

−(h−1
1 (d0)ξ1 + Ξ1 − Ξ2)η

′∂ru
+
0 |r=d0

+(h−1
1 (d0)ξ1(1− η)− ηΞ1 − (1− η)Ξ2)∂

2
x2r
u+0 |r=d0

)
∂x2ψ dx

∣∣∣∣
≤ c2‖ψ‖H1(Ωε)

(√∫ T

0

∫
G

(1)
ε

χ0|Z1 − Ỹ1|2 dxdt

+‖α(1)
1 η + α

(1)
2 (1− η) + (α

(1)
1 − α

(1)
2 )η′‖

L2(G
(1)
ε )

+

√∫
G

(1)
ε

χ0

∣∣h−1
1 (d0)ξ1 + (Ξ1 − α

(1)
1 )− (Ξ2 − α

(1)
2 )
∣∣2 dx

+

√∫
G

(1)
ε

χ0

∣∣η(Ξ1 − α
(1)
1 ) + (1− η)(Ξ2 − h−1

1 (d0)ξ1 − α
(1)
2 )
∣∣2 dx)

≤ c3 ‖ψ‖H1(Ωε)

(√
2πld0ε‖Z1 − Ỹ1‖L2(Π−

1 ) +

√
|G(1)

ε |

+
√

2πld0ε ‖h−1
1 (d0)ξ1 + (Ξ1 − α

(1)
1 )− (Ξ2 − α

(1)
2 )‖L2(Π−

1 )

+
√
2πld0ε ‖η(Ξ1 − α

(1)
1 ) + (1− η)(Ξ2 − h−1

1 (d0)ξ1 − α
(1)
2 )‖L2(Π−

1 )

)
,
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where |G(1)
ε | is the measure of G(1)

ε . Relations (22), (23) and (25) show that the norms in
the right-hand side of the last inequality are bounded in ε. Similarly we can estimate the
rest of the integrals in I±4 (ε, ψ). As a result, we obtain

|I±4 (ε, ψ)| ≤ εC5‖ψ‖H1(Ωε).

Remark 3.2. Constants C3 and C4 depend on

sup
x∈Q(0)

0 , t∈(0, T )

∣∣∣∣ ∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

u+0 (x)

∣∣∣∣ , |α| = α1 + α2 + α3 ≤ 2, αk ≥ 0, k = 1, 3.

Extending homogenized problem (32) periodically in x2 through the planes {x ∈ R3 : x2 =

0} and {x ∈ R3 : x2 = l} and taking into account the assumptions for f0 and g0, by virtue
of classical results on the smoothness of solutions to boundary-value problems we conclude
that these quantities are bounded.

Since f0 is smooth, then ∂x2u
i,−
0 ∈ H1(Di), i = 1, 2. Consequently,

|I−5 (ε, ψ)| ≤ εc4

2∑
i=1

(‖ui,−0 ‖H1(Di) + ‖∂x2u
i,−
0 ‖H1(Di))‖ψ‖H1(Ωε) ≤ εC5‖ψ‖H1(Ωε).

In order to estimate I−6 we consider summand I2,−6 when α = 1. Obviously, the second
integral in I2,−6 can be estimated by εc5‖ψ‖H1(Ωε). Using Taylor’s formula and obvious
equality

1− 1

a
=
a2 − 1

a2 + a
(a2 + a 6= 0)

we derive that the sum of the first and the third integrals in I2,−6 is equal to

4−1ε3
∫
S
(2)
ε

|h′2(r)|2 ϑ2(u
2,−
0 )ψ

1 + 4−1ε2|h′2(r)|2 +
√
1 + 4−1ε2|h′2(r)|2

dσx

ε2
∫
S
(2)
ε

ϑ′
2( · )(Ỹ2

(x2
ε

)
∂x2u

2,−
0 + χ0N 2,−)ψ dx+ ε

∫
Q

(2)
ε

ϑ2(Rε)ψ dσx

=: J1(ε, ψ) + J2(ε, ψ) + J3(ε, ψ).

With the help of (2) and (44) we obtain |J1(ε, ψ) + J2(ε, ψ)| ≤ εc6‖ψ‖H1(Ωε). Taking
into account (2), properties of the trace operator and the fact that f0 is smooth, we get
|J3(ε, ψ)| ≤ εc7‖ψ‖H1(Ωε). Thus, in case α = 1 we have

|I2,−6 (ε, ψ)| ≤ εc8‖ψ‖H1(Ωε).

In case α > 1 with the help of (44) we obtain |I2,−6 (ε, ψ)| ≤ εα−1c9‖ψ‖H1(Ωε).
Similarly to I2,−6 (ε, ψ), we estimate I1,−6 (ε, ψ) and I−7 (ε, ψ). As a result, we get

|I1,−6 (ε, ψ)| ≤ εC6‖ψ‖H1(Ωε)
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and

|I−7 (ε, ψ)| ≤ C7

{
(ε+ ‖g0 − gε‖L2(D1))‖ψ‖H1(Ωε), β = 1,

εβ−1‖ψ‖H1(Ωε), β > 1.

Thus,

|Fε(ψ)| ≤ C8 (‖fε − f0‖L2(Ωε) + ε1−µ + εδα,1(2−α)+α−1 + εβ−1‖gε − g0‖
δβ,1
L2(D1)

)‖ψ‖H1(Ωε), (49)

where µ > 0 is an arbitrary number. Setting in (48) ψ := Rε−uε and using (49) and obvious
inequality

(ϑi(s1)− ϑi(s2))(s1 − s2) ≥ c1(s1 − s2)
2 ∀s1, s2 ∈ R, i = 0, 2,

which follows from (2), we obtain estimate (35).

4 Discussion of the Obtained Results

As we can see from the obtained results, the homogenized problem (32) for problem (1) is
a nonstandard boundary-value problems for multi-sheeted function U0 in anisotropic Sobolev
space H0 (see Section 2.3). This problem consists of three boundary-value problems (in
domains Ω0 and Di, i = 1, 2), connected with each other by the conjugation conditions (on
Q

(0)
0 ).

The nonhomogeneous Robin boundary conditions on the lateral surfaces of the thin discs
in problem (1) are transformed as ε → 0 into new summands in the differential equations
in domains Di, i = 1, 2, in problem (32). These summands show us the influence of the
perturbed parameters α and β. If α > 1, then summand 2δα,1ϑ1(u

2,−
0 ) vanishes. From

physical point of view this means that the outer heat conduction coefficient is too small, and
we can neglect this heat exchange. If β > 1, then summands 2δβ,1g0 vanish, which means
that the temperature of the environment is too small, and we can consider it equal to zero.

Also functions hi, i = 1, 2, which describe the relative thickness of the thin discs from the
i-th level, are transformed into the coefficients of the differential equations in domains Di,
respectively. The variable x2 is involved as a parameter in the boundary-value problems in
Di, i = 1, 2, which shows us the influence of the type of thick junction Ωε on the asymptotic
behavior of solution uε.

From results proved in the present paper it follows that for applied problems in thick
junctions we can use the homogenized problem (32), which is simpler, instead of the initial
problem (1) with sufficient plausibility.
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Садовий Д.Ю. Асимптотична апроксимацiя розв’язку квазiлiнiйної елiптичної крайової
задачi в дворiвневому густому з’єднаннi типу 3:2:2 // Карпатськi математичнi публiкацiї.
— 2012. — Т.4, №2. — C. 297–315.

Розглядається квазiлiнiйна елiптична крайова задача в дворiвневому густому з’єднаннi
типу 3 : 2 : 2, яке є об’єднанням цилiндру Ω0 та великої кiлькостi ε-перiодично розташова-
них тонких дискiв змiнної товщини. На поверхнях тонких дискiв з обох рiвнiв заданi
рiзнi крайовi умови третього роду зi збуреними параметрами. Будуються головнi члени
асимптотики та доводиться вiдповiдна оцiнка в просторi Соболєва.

Садовой Д.Ю. Асимптотическая апроксимация решения квазилинейной эллиптической
краевой задачи в двухуровневом густом соединении типа 3:2:2 // Карпатские математи-
ческие публикации. — 2012. — Т.4, №2. — C. 297–315.

Рассматривается квазилинейная эллиптическая краевая задача в двухуровневом гу-
стом соединении Ωε типа 3 : 2 : 2, которое состоит из цилиндра Ω0 и большого количества
ε-периодически присоединённых тонких дисков переменной толщины. На поверхностях
тонких дисков из обоих уровней задаются разные краевые условия третьего рода с воз-
мущёнными коэффициентами. Строятся главные члены асимптотического разложения и
показывается соответствующая оценка в пространстве Соболева.


