Kapnarceki maremaTudsi Carpathian Mathematical
nyomaikamii. T.4, Ne2 Publications. V.4, N2

VIK 517.956

SApovyJ D.Yu.

ASYMPTOTIC APPROXIMATION OF SOLUTION TO QUASILINEAR
ELLIPTIC BOUNDARY-VALUE PROBLEM IN A TWO-LEVEL THICK
JUNCTION OF TYPE 3:2:2

Sadovyj D.Yu. Asymptotic approximation of solution to quasilinear elliptic boundary-value
problem in a two-level thick junction of type 3:2:2, Carpathian Mathematical Publications, 4,
2 (2012), 297-315.

We consider quasilinear elliptic boundary-value problem in a two-level thick junction 2.
of type 3 : 2 : 2, which is the union of a cylinder 2y and a large number of e-periodically
situated thin discs with varying thickness. Different Robin boundary conditions with perturbed
parameters are given on the surfaces of the thin discs. The leading terms of the asymptotic
expansion are constructed and the corresponding estimate in Sobolev space is obtained.

INTRODUCTION

A thick junction of type m : k : d is a union of some domain, which is called the junction’s
body, and a large number of e-periodically alternating thin domains, which are attached to
some manifold (the joint zone) on the boundary of the junction’s body. The small parameter
¢ characterizes distance between neighboring thin domains and their thickness. The type
m : k : d of a thick junction refers, respectively, to the limiting dimensions (as ¢ — 0) of the
junction’s body, the joint zone and each of the attached thin domains.

The subject of the investigation of boundary-value problems in thick junctions is the
asymptotic behavior of solutions to such problems as ¢ — 0, i.e. when the number of the
attached thin domains infinitely increases and their thickness tends to zero.

The first researches in this direction were carried out in |9, 10, 14|, where the convergence
theorems for Green function of the Neumann problem for the Helmholz equation in the
junction’s body were proved. In these papers either the assumption about the convergence
of certain components of the boundary-value problem was made, or explicit representations of
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Figure 1: Heat radiator that has form of a thick junction of type 3 :2: 2.

certain quantities were used, which was possible under certain configurations of the junction’s
body (the half-space). In [21]-[17], [23] thick junctions were classified, asymptotic methods
for the investigation of main boundary-value problems of mathematical physics in thick
junctions of different types were developed, the convergence theorems were proved, the first
terms of asymptotic expansions were constructed, and the corresponding estimates were
proved. It was shown that qualitative properties of solutions essentially depend on the
junction’s type and the conditions given on the boundaries of the attached thin domains
(see also [2, 1, 18]).

As an extension of the investigation, in papers [5, 7, 22| thick junctions of more compli-
cated geometric structure were considered, namely multi-level thick junctions. A multi-level
thick junction is a thick junction, in which thin domains are divided into finitely many levels
depending on their geometric structure and boundary conditions imposed on their surfaces.
Besides, thin domains from each level e-periodically alternate along the joint zone. In these
papers linear boundary-value problems in thick junctions of types 2 : 1 : 1 and 3 : 2 : 1
were considered. Moreover, there a new qualitative difference in the asymptotic behavior
of solutions to boundary-value problems in multi-level thick junctions was noticed, namely
the "multi-phase" effect in the domain that is filled up simultaneously by the thin domains
from different levels.

The successful applying in nanotechnology and microelectronics of constructions, which
have form of thick junctions (see Fig. 1 and [11]-[13]), has lead to effective studying of
boundary-value problems in thick junctions of various types and more complicated structure
(see also [2]-[4], [16, 18]).

In the present paper we consider quasilinear parabolic boundary-value problem in a two-
level thick junction of type 3 : 2 : 2, which consists of a cylinder €y and a large number of
thin annular discs with varying thickness, which are e-periodically attached to 2y. Different
nonhomogeneous Robin boundary conditions are given on the surfaces of the thin discs from
various levels. The leading terms of the asymptotic expansion for a solution to this problem
are constructed and the asymptotic estimate in Sobolev space is proved.

The outline of the paper is as follows. In Section 1 thick junction €. is described and
quasilinear elliptic boundary-value problem in this thick junction is stated. In Section 2
outer and inner asymptotic expansions for the solution u. are constructed and homogenized
boundary-value problem is obtained. In Section 3 approximation function R. for solution
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ue is constructed and asymptotic estimate is proved. In Section 4 the obtained results are
discussed.

1 STATEMENT OF PROBLEM

Let 0 < dy < dy <djand 0 < by < by <1; h;:[dy, d;] — (0,1), i =1, 2, are piecewise
smooth functions. Suppose that functions h; satisfy the following conditions:

hi(s) hi(s) fa(s) < bl—hl(s) Vs € [do, do]
2 o

0<bi—
= 2 2

, bi+ <1l Vse [do, dl], 1=1,2, by+

These inequalities imply that for all s € [dy, d;] the intervals

Ii(s) = (bi . hés), bi + h’és)> L i=1,2,

belong to interval (0, 1), don’t have common points and don’t adjoin.

We additionally assume that functions hy, he are constant in some neighborhood of dj,
i.e. there exists § > 0 such that h;(s) = h;(dp) for all s € [dy, dy + 0], i =1, 2.

Consider a model thick junction €. of type 3 : 2 :2 (see Fig. 2) that consists of cylinder

Qo= {2 = (21, 2o, 13) ER*: 0 <y <1, 7:=1/2? + 2% <do}

and 2N thin annular discs

G(l)(j) ={xcR®: |1y —c(j+b)| <

. ,d0§T<d1},

Z‘fhl(?")
2

5h2(7")

GO ={z €R”: |y —e(j+b)| < —

3

, do <r< dg},
where j =0, N —1, e =[/N, i.e.
Q. =QWUG., G.=GYUGY, GY=ul'cW(), GP=U @ ().

Here N is a large integer. Therefore, ¢ is a small parameter, which characterizes distance
between neighboring thin discs and their thickness.
Denote by S% and S the union of the lateral surfaces of the thin discs from the first
and the second level, respectively, and by ST the bases of cylinder €, i.e.
SO ={r € G : |zy—e(j +b)| =chi(r)/2, j=0,N—1, r € (do, d;)}, i=1,2,
ST={2€d: 25=0}, ST={r€dQ: =1}, SEt=8TUS".

Also we introduce the following notations:

Q=00UD;, Di={zeR’: 0<ay<l, dy<r<d}, i=1,2,

QV ={xecd: r=d}, i=02 QY={zecdG: r=d}, i=1,2,
YO =sOyuQY, v =aDno, i=1,2, 6.=00ue? Q=" e..
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Figure 2: The cross-section of thick junction 2. of type 3:2:2 (N = 8).

In thick junction 2. we consider the quasilinear elliptic boundary-value problem

/

—Au. +y(u:) = fe in Q,,
Ou. + ey (u.) = €Pg. on S,
Oue +01(u:) = 0 on QY
Oue + ey (u.) = €Pg. on T? (1)
ou. = 0 on Q§0)7
P uclg- = O ucs+, p=0,1,
L [Us”rzdo = [aruﬁ”r:do =0 on O..

Here 0, = 0/0v is the outward normal derivative; «, 8 > 1 are parameters; the square
brackets denote the jump of the enclosed quantities. For the right-hand sides of problem (1)
we assume that f. € L*(.), g. € H'(D;) and

HCO > 0 360 > 0 VFJ € (O, 80) . Hg€HL2(D1) + H@szEHLz(Dl) S Co.

Functions ¥; are Lipschitz-continuous (which is equal to ¢; € Wo™(R)) and

dey, >0 ¢ <0i(s) < ey forae seR, i=0,2. (2)

Consider spaces H. = {¢ € H' (%) : ¢ls- = ¢|s+}-
A function u. € H. is a weak solution to problem (1) if for any function ¢ € H. the
following integral identity holds:

/ (Vue - Vi + 0g(u.) @) doe + 8/( | W (ue) pdo, + /( ) V1 (ue) p do,
s QY

ce [ty edo = [ federe [ gpdon )
r® Q. sMurl®

By the same arguments as in [16] we can prove that for any fixed ¢ > 0 there exists a
unique weak solution to problem (1).

The aim is to study the asymptotic behavior of the solution to problem (1) as ¢ — 0, i.e.
when the number of the attached thin discs infinitely increases and their thickness tends to zero.



HOMOGENIZATION OF QUASILINEAR PROBLEM IN A THICK JUNCTION OF TYPE 3:2:2 301
2  FORMAL ASYMPTOTIC EXPANSIONS FOR THE SOLUTION

Only in this Section for formal calculations we assume that functions f., g. do not depend
one, ie f.=fyinQ and g. = go in Dy, and they are smooth in Q; and D, respectively.

2.1 Outer Expansions

We seek the leading terms of the asymptotic expansion for solution wu,, restricted to 2y, in
the form

ue(r) m g (2) + Y Fuf (), @€, (4)

k>1

and, restricted to the thin discs Gg)( ), 7 =0,N — 1, in the form

ue(a) mug”(0) + )ty (e, & — ), v €GO, i=12, (5)
k>1
where & = xa/¢.
Expansions (4) and (5) are usually called outer expansions.
With the help of Taylor’s formula we get

o(ua(x)) = do(ud (x)) +96(-) Y _*uf (x), x € Q. (6)

k>1

Plugging the series (4) into the first equation of problem (1) and the boundary conditions
on S*, using (6) and collecting coefficients of the same powers of ¢, we get the following

relations for function u

{—AUS_—FI?()(U(—)’—) = f() in Qo,
Pugls- = O ugls+, p=0,1

Now let us find the limit relations in domains D;, i = 1, 2, which are filled up by the
thin discs from i-th level as ¢ tends to zero. Assuming for a moment that functions u}~ are
smooth, we write their Taylor series with respect to xo at the point £(j + b;) and pass to the
"rapid" variable & = xg/c. Then (5) takes the form

ue(r) R ug (21, (j + i), 23) + Y VI(E, &), @€ GU()), (7)

k>1

where 7 := (xy, x3), and

R‘

(& —j = b)m O,

m! oxy

Vi (7, &) = (z1, €(j + bi), 3, §2 — J)

3
Il
)

(& — 7 — bi)F OFuy™

* k! dxk

(21, €(j + bi), x3). (8)

Further we will indicate arguments of functions only if their absence may cause confusion.
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The outward unit normal to the lateral surfaces of the thin discs except a set of zero
measure is as follows:

/ /
ve(w) = . (—ﬁN”HiL—gﬂ@@» res? i=1,2 (9
V14712 (R (r) 2 2r 2r

where "+" and "—" refer, respectively, to the left and the right parts of the lateral surface
of each thin disc. Obviously, (1 + 2471 |hi(r)|2)"2 = 1 + O(2), & — 0.
Again with the help of Taylor’s formula we obtain

Vo(ue(z)) = 9o(uf™ (z1, €(F + bi), x3)) + I( Zeka &, t), 1€ GY. (10)

k>1

Let us put (7) into (1) instead of u.. Taking into account (9), (10) and that the Laplace

operator in the variables (7, &) has the form A, = A; + 72 [;952 and collecting coeflicients

of the same powers of ¢, we arrive at one-dimensional boundary- value problems with respect
to & for functions V;™.
Problems for V;*/ read

2.V =0, &€ Lym() = (=" 45+, M g1,
{ €28 V1 2 h()() ( ) (2':1,2) (11)

an‘Gi’j = 07 52: h(T) +]+bl7

where 0g, = 862 052252 = 852 Here the variables z are regarded as parameters.

It follows from (11) that V{7 do not depend on &. Therefore, Vi are equal to some
functions " (z1, e(j + b;), #3), « € G¥(4), which will be defined later. Then, due to (8)
we have

u’f_(xl, e(j+b), x3, & —j) = <P§i)($17 e(j +b), z3)
— (& = § = b)Dyul (w1, (G + b)), w3), =€ GD(). (12)

Boundary-value problems for V, and sz’j have the view

{ _652252‘/217j = (Afu(l)’i - 190(”%)’7) + f0)|332:6(j+b1)7 £2 € [h1 (r) (])
06, V3 = (271Vzhy - Vaug ™ — 01(ug”) + 05.100)legeintn)s €2 = £ 1 + 5 + by,
(13)
and
{ —026, Vil = (Aquy™ — Do(uy ™) + fo)laame(i+b2)s &2 € I, r)( )
+0e, V7 = (27 Vzhy - Vaug ™ — 601092 (ud ™) + 08,190) |lwa=c(j+bs), &2 = T) + 7 + by,
(14)

respectively, where d,,1, 031 are Kronecker’s symbols.
The solvability conditions for problems (13) and (14) read

— divj(hlviu(l)’_) + hﬂ%(u(l)’_) + Qﬁl(ué’_) = hlfo + 2(557190,
To = 8(] + bl); re (do, d1)7 (15)
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— diVj(hQVjug’i> =+ hQﬂo(ug’i) =+ 2501’1192('&3’7) = hgfo + 2(553190,
T = 5(] + bQ)a e (d07 d2)7 (16>

respectively. .
Putting (7) into the Robin boundary conditions on QY we get
duy” +01(uy”) = 0, zeQW, zy=c(j+b), (17)
Oug” = 0, w€QP, @ =c(j+b). (18)

In order to find conditions in joint zone Q(()O) we use the method of matched asymptotic
expansions for outer expansions (4), (7) and an inner expansion which will be constructed
in the next subsection.

2.2 Inner Expansion

In a neighborhood of joint zone Qéo) we introduce the "rapid" coordinates £ = (&, &),
where & = —(r — dy)/e and & = wy/e. Here (r, x9, ) € R? are cylindric coordinates:
r = /a3 + 23, tan(d) = x3/x;. The Laplace operator in the coordinates (1, &, 6) has the
form

A S
do — 6&1 8§1 (do — 851)2 892 )

We seek the leading terms of the inner expansion in a neighborhood of Q(()O) in the form

Aw = 872A§ — 671 (19)

us(x) ~ U(J)r(l")h:do + 5(Zl(§>6x2u3_(x>|rzdo
= (n(22)21(6) + (1 = n(22))Z2(€)) Orug (2)]r=do) +-- -, (20)

where 7, =1, =5 are some functions, which are 1-periodic with respect to & and defined in
the union II := IT* UTI] UTII; of semiinfinite strips

M ={€ecR?: >0, &c(0,1)}, I ={cR: <0, Heli(d)}, i=1,2

(see definition of I;(dy) in Section 1),  is some function, which will be defined from matching
conditions.

Putting (20) into the differential equation of problem (1) with regard to (19) and into the
corresponding boundary conditions and collecting coefficients of the same powers of ¢, we
get the junction-layer problems for functions Z;, =, Zs. Functions =; and =, are solutions
to the following homogeneous problem:

[ —AE =0 in I,
0,2 = 0 on (OII; UOIL; ) N{ e R*: & < 0}, 1)
Jg= = 0 on JIIN{¢ e R?: & =0},

{ 05,Ele=0 = 04Ele=1, p=0,1, & >0,

Main asymptotic relations for functions Z;, =, can be obtained from general results on
the asymptotic behavior of solutions to elliptic problems in domains with different exits
to infinity (see, for instance, [25]). However, for domain II, we can define more exactly the
asymptotic relations for junction-layer solutions =1, =, in the same way as in papers |20, 15].
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Proposition 2.1. There exist two solutions =y, Zy € H},,.(IT) to problem (21), which have
the following differentiable asymptotics:

& + O(exp(—27&)), & — +oo, £ I,

21 =1 ol + O(exp(rh; (do)&1)), & — —o0, £y, (22)
hy'(do)& + of? + Oexp(rhy (o)1), & — —oo, € €113,
&1+ O(exp(—27€1)), & = +o0, € €I,

== hi'(do)ér + 0 + Olexp(rhi ! (do)&r)), & — —o0, £ €TIy, (23)
al? + O(exp(rhy (do)&1)), & — —o0, £ €1l

Here Hy, (1) = {u : I = R : u(&y, 0) = u(éy, 1) for any & > 0, uw € H'(Ilg) for any
R>0}TIg={(€ll: —R<& < R}; ozgi), aéi), 1 =1, 2, are some fixed constants.

Any other solution to problem (21), which has a polynomial growth at infinity, can be
represented as a linear combination ¢y + c1=q + ca=s.

Function Z; is a solution to the following problem:

([ —AZ = 0 in I,
O, Z = —1 on (O] UJIL; ) N{€ e R?: & < 0}, (24)
0 Z = 0 on AIIN{¢ e R?: & =0},

L 3§2Z|52:0 = 3§QZ|§2:1, p=20,1, & >0.

Similarly to [20, 15, 24| it is easy to verify that there exists a unique solution Z; €
Hj,.(IT) with the following asymptotics:

O(exp(—27&1)), &1 — +o0, £ €Il
Z =9 —&+b+ sz(gl) + O(eXp(thl(do)fl))a § — —oo, { ell, (25)
—& + by + o + Olexp(rhy (do)&1)), & — —o0, & €115

Now let us verify matching conditions for outer expansions (4), (5) and inner expansion
(20), namely, the leading terms of the asymptotics of the outer expansions as & — +0 must
coincide with the leading terms of the asymptotics of the inner expansion as £, — +o00. Near
the point (z1, e(j + b;), x3) € Q(()O) function ug has the following asymptotics:

ug (x) = ug (21, €(G + b))y 3)|r=dy + (&2 — J — i) Ouyud (21, €(j + bi), 3)|r=d,
—e&10pug (21, €(F + i), @3)lp=dy + - as & — 0+, (x) € Q.

Taking into account the asymptotics of Z;, =; and =5 as & — +00, we see that the matching
conditions are satisfied for expansions (4) and (20).

The asymptotics of (5) in the neighborhood of (x1, (j + b;), x3) € Q(()O) are equal to

™ (21, €(G + i), 23)rmdo + (01 (w1, €0 + b), 73)|rmdg
- glarué_(xla 5(] + b1)7 x3)|7‘:d0) +.. as 51 — 0_7 VS GS)(])’ L= ]-7 2. (26)
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It follows from (22), (23) and (25) that the first terms of the asymptotics of (20) in the
neighborhood of (z1, £(j + bi), 23) € Q) are

U+($1, (] +bl) $3)|T do +€<a3 amuo (x17 (j+b1)7 x3)’7”=d0

— ("G + b)) + (b7 (do)&r + o) (1 = n(e(j + b)) Druf (w1, €(j + br), 23)|r—ao)
as & — —oo0, T € Ggl)(j), (27)

and

ug (21, €0 + ba), 23)|rmay + € (57 Dy (21, £(J + ba), 3) =,

— ((h3"(do)&1 + (e + b2)) + a2 (1 = n(e(j + b2)))) Druf (w1, £(j + ba), 23)|r—ao)
as & — —oo, = € G (5). (28)

Comparing the first terms of (26), (27) and (28), we get
ul(z) =us(x), 2€QV, za=c(j+b), i=1,2. (29)

Comparing the second terms of (26), (27) and (28), we find that

(@) = 0,,uf (z), 2€QV, za=c(j+b), i=1,2, (30)
and
(1- > Ydo)oug (z) = Oy (x), € QY mo=c(j+b) a1
2 (do)dud () = Oy (x), z€QY, w2=c(j+by).

Since the points {s(j +b): j=0,N—1},4=1,2 make up the e-net of the segment
0, {], we can extend equalities (12), (15), (16) in domains Dz, equalities (17), (18) in QO
and Q(()Q), respectively, and equalities (29), (30) and (31) in QO As a result, from equalities

(31) we derive the relation

ha(do)0,ug ™ | r—ao

n(x2) = = -
hl<dO)a7“u(1)7 ’r:do +h2(d0)07“u(2)7 ’r:do

) T € (07 l)a

and obtain

Brug = h(do)dyul™ + ho(do)dpud™, z € QY
By virtue of (29) and (30) we can define gogi) as follows:

gpgi)(x) = a3 8z2u0 (), ze€D; i=1,2.

2.3 The Homogenized Problem

With the help of the first terms ug, uy~ and uy ™~ of asymptotic expansions (4) and (5) we
define multi-sheeted function

ug (z), € Q,
Ug(z) =< uy (z), x€ Dy,
uy~(z), x € Dy,
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or in a short form Uy = (ug, ug ™, ug”™ ). It follows from the foregoing that the components
of function Uy must satisfy the relations

—Aug +9(ug) = fo in €,
P ougls- = OB uglsr, p=0,1,
_diVj(hl (T’)V@Uéﬁ) -+ hl (7’)190(11,(1) 7)
+201(ug”™) = ha(r)fo+ 205190 in Dy,
(9l,u[1)’7 + 191(u(1)’7) = 0 on Qél),
(32)
—dngz (hg (T’)Vg’ug’_) + hz (7’)190 (U?)’_)
+2(5a71192(u(2)’_) = hg(T’)fo + 2557190 n DQ,
8,/’&07_ =0 on Q(()2)7
ug oo = ué’7|Qg)> = U§’7|Qg»7

Oug = hl(do)ﬁrué’f+h2(d0)8rug’f on Qéo).

\

These relations form the homogenized problem for problem (1).
We introduce space Vy := L*(Q) x L*(D;) x L*(D5) of multi-sheeted functions with the

scalar product
2
(u,v)y, :/ uovodm+2/ u;v; dx,
Qo — Jb;

where
Uo(l’), T € Qo, Uo(x), T € Qo,
u(z) =< wui(z), =€ Dy, and v(z) =< wvi(z), =€ Dy,
us(x), x € Do, vo(x), x € Do,

or in a short form u = (ug, u1, uz) and v = (vg, v1, v2), belong to Vy. Also we introduce
anisotropic Sobolev space of multi-sheeted functions

/H() = {u = (UO, Uy, UQ> c VO Do Ug € Hl(Qo>, Uo‘g— = UQ|S+;
Ela:rjui € LQ(D’L>7 J= 1,3, i=1,2 uO‘Q(()O) = ul‘Q(()O) = UQ‘Q(()O)}

with the inner product

2
(W, v)y, = / (Vug - Vg + ugug) de + Z/ (Vzu; - Vzu; + wv;) do.
Q — Jb,

It is obvious that H, is continuously embedded in V.
A function Uy = (ul, ug™, ug~) € Ho is a weak solution to problem (32) if for any

function ¢ = (vo, ¥1, p2) € Ho the integral identity

2
/ (Vg - Vipo + Do) o) do + 3 / he(r) (V™ - Vags + do(ul™) 1) da
Qo i=1 D;
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+2/ ﬂl(ué’f) w1 dx + hy(dy) /(1> o (u(l)’f) w1 doy + 2041 / ﬂg(ugﬁ) ©o dx:
Dy Q()

Do

2
:/ foSOOdI-FZ/ (hifo + 205190)p: dx
o i=1 /D

holds.
Using the properties of functions ¢; similarly as in [16] we can prove that there exists a
unique weak solution to problem (32).

3  APPROXIMATION AND ASYMPTOTIC ESTIMATES

Let Uy = (ug, u(l)’_, ug’_) be the unique weak solution to problem (32). With the help
of Uy and solutions Z;, =;, =, of junction-layer problems (21) and (24) we construct the
main terms of expansions (4), (5) and (20). Consider smooth cut-off function xo(r), which
is equal to 1 as |[r — dy| < 6o/2 and 0 as |r — dy| > dp, where dp € (0, §) is some fixed
number. Matching the outer expansions with the inner expansion with the help of yo, we
define approximation function R.:

R.(x) := RY(x) = ud (z) + e xo(r)NT(E, 12, 0), € Qy, (33)

Re(w) = R (2) = u (2) +& (Vi (2) oatip™ (@) + XN (€, 22, 6))
reGW(), i=1,2 (34)

Here

NT(E, w2, 0) = Z1(€)0n,ug |r=ay + (&1 — n(22)Z1(E) — (1 — 0(22))Z2(8)) Orug |r—ao.

N, w2, 8) = (Z21(6) — Yi(2))0ra 5 |r=a
+ (Vil&rs @) = n(22)Z1(€) — (1 = n(22))Za(€)) Drtig |r=ao

where Y;(s) := —s + [s] + b; + ), [s] is the integer part of s € R, i =1, 2, and

Vi, z2) = hfl(do)gl(l_n(l’?))’
Yoy, x2) = hy ' (do)érn(xs),

Obviously, R. € H..

51 S 0, To € (O, l)

Theorem 1. Let fo € H*(Q), 9%, fols- = 02, fols+, p =0, 1, go € H'(Dy).

Then for any p > 0 there exist positive constants €y, ¢y such that for all € € (0, )
the difference between solution u. to problem (1) and approximation function R. defined by
(33) and (34), where Uy = (uf, uy™, ut™) is a weak solution to problem (32), satisfies the
inequality

_ —a)ta— _ 5
lue = Rell oy < co (1 fe = follraan) + 74 4 Pt Bmrat e g, — gl ip,)- - (35)
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Proof. Discrepancies in domain ). It follows from the first two relations in (32) and

from the theorem’s assumptions that 92, ug|s- = 02,,,ug|s+. Then, according to the

properties of Z;, =y, Z5 and ug, function Rj satisfies the boundary conditions of problem
(1) on 9. N INy.
Problems (21) and (24) imply
ANT =0, AN =0 ¢€ll, 5,€(0,1), €10, 2n], i=1,2. (36)
Let us consider the obvious equality
Az (xo(r)N) = diva(NVaxo(r)) + Vaxo(r) - VaN + xo(r) AN, N =N (€, zo, 0). (37)
Using (19), (32), (36) and (37), we get

—AR! (2) — fe(z) = folw) = fo(x) = Do(ug () + Xo(r) (r 06, N (€, 22, 0)
—205,,, N7 (& 22, 0)) = £ diva(N ¥ ey = (- Vixo(7)) + X0(r) 0o N (€, 2, 0)
—SXO( ) x2x2N+(57 T2, ) - 57’_2)(0(’/”) 639N+(57 L2, 9)7 VIS Q0- (38)

We multiply (38) by a test function ¢ € H., integrate by parts in 0y and take into account
the boundary conditions, satisfied by RI. This yields

Qo O Qo
where

[0+(€7 w) = 0 fO_fE)wd*Ta

190<R5 ) 790(“0 )W da:
(

X
e ¥) = /QO<
/QOXO

If (e, v) = r O N — N dz,

xzfz

e o) = ¢ /Q N*Viaxo - Vatb dr + /Q e N d,

If(e,v) = E/Q X00x2N+8m2¢dx+5/9 "2 x00s N T0pt d.

Discrepancies in the thin discs. One can readily check that

8TR<51‘7_ = _191(’&(1)7_) - 51}1 ( ) axQﬁl(UO )a T e le)’ (40)
0,R*~ = 0, zeQ?,
O, R:™ =¢Y ( ) P ug” +ORE, ze0W i=1,2 (41)

Taking into account (9) and that functions h; are constant in a neighborhood of dy, we derive
that

aVR?_ - +Y; ai T == a_ NZ’_ o=x2/€
V1 +412h(r)? ( ( ) 222! Xoaw2< le2=22/¢)

1 . .
Vs Valul” +8Y( ) iy )), resY, i=1,2 (42)
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where "4+" and "—" refer to the left and the right parts of the lateral surfaces of the thin
discs, respectively.
Relations (19), (32), (36) and (37) yield

—ARY () = f(w) = fola) = fo(a) = Do(ug™)
+x0(r)(r 0 N (€, 2, 6) — 20Z,,, N7 (&, @2, 0)) — ediva(N™ |e,—(r—dg)/e VaXo (7))
+X0(1) 06 N7 (€, @2, 0) — exo(r) 02,5, N7 (&, w2, 0) — exo(r)r 205N (€, w2, 0)
+Vz(Inhi(r)) - Vaus ™ — 5div(§7} (%) V((’?mué’*))
—2(1 = 8;2(1 = 31 1) (uf ™) + 20510 () go(x), =€ GY. (43)
Consider the integral identity

Shi(T) / / i) .
do, = dx — ¢ Y (—) O,0dr, 1=1,2, (44
Jo T T P10 o P o T (T O (44

where Y;(s) = —s + [s] + b; and [s] is the integer part of s, ¢ € Hl(Gg)) is an arbitrary
function. We multiply (43) by a test function ¢ € H. and integrate by parts in GY . using
(44) and taking into account relations (40), (41), (42). This yields

/ (VRY™ - V4 + o (YY) i + = / (B Y do, + / 91(RY ) do,
att s QY

+/ 8Tijdax—/ fswd:ﬂ—eﬁ/ gebdoy = Iy (e, ) + ...+ L7 (e, ) (45)
@él) Gél) Sél)

and
/ (VR?’_ -V + 190(R;’_)w) dr + & / ?92(R§’_>1/1 do, + / &fijzﬁ do,
a® @) o®

Te

- fsw dr — 86 /‘;‘(2) gsw daz = [0277(87 ¢) T+ 17277<€7 1/1) (46)

a®
for all ¥ € H., where

i (e, ) = /G (fo = )0 do.

@)
e w)s= [ OulRE) = dofuy s,
[;’7(5, ¢) = /(- Xo(rila&/\/i’i - 85262/\/’1',*)1/161337
at
I (e, ) i=¢ o N*"Vixo - Vap do + /(.) XoOe N4 da,
Gt <3

Ij’_(s, ) = 6/“ X002, N~ 0,00 dv + 5/(.) 2 x00s N~ Ot dx,
Gl Gl

B w)ime [V (2) 0 0Va - V) do
G‘(;) g

o (L2 =Y C_
+€/G§">Y; <?> V(0p,ug™) - Vb dz, i=1, 2,
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_ Y (Ul’i)l/J T . _
I (e, ;:_/ L0 dx—2/ Vi (22 b0y, (01 (uy d
o (& 9) " s V1 4TIE2(R, ()2 T Jew ( 5> Ol ) de

+e / o Di(BET)Y dog + / L W(RET) = (™) = Vi (2) Duy (g )b dor,
Se Qe

<
B, ) = ety [
R Ol

s _
26601 /m Y, (_2> hy 0y, (92 (u> ")) dz + 5&/
a!

2,—
- | PR do,

Ox

b g, =&d / Go¥
TS o I T

+2265, / Vi () b0 (g00) der — 7 / gt dor,
Ggl) g Sgl)

Oz

%~ g, =& / Go¥
TS e TP

42204, / Y, (ﬂ> hy10,, (go) do — & / gt do,.
a® £ 1@

Asymptotic estimates. After summing (39), (45) and (46) we see that function R.
defined by (33) and (34) satisfies the integral identity

/ (VR - Vi + Op(Re)y) da + ¢ / o DR do, + / L (R do,
Se Qe

€

+e° /T o Va(RY oz — | fopdo e /S gt do, = F.(¢) (47)

él)UTf)

for any ¢ € H., where F.(¢)) == IE 4+ ... +If +I; + I + I, I, =1 + 77, k =
0,7, I =1 +1-, m=0,4.
It follows from (3) and (47) that

| (VR =) V0 0ulB) — )0 o+ /S (R — 01 () do,

+ /le)(ﬂl(Ra) — V1 (ue))p dog + € /( (92(R.) — Oo(uc))tp do, = F.(1p) (48)

T

for all ¥ € H..
Now we are going to estimate F.(1)).
With the help of Cauchy-Schwartz-Bunyakovskii inequality we obtain

Iy (e, )] < |1 f- = foll 2o

Remark 3.1. Here and further all constants c¢;, C; in asymptotic estimates are independent

V|| 1.0y

of €.
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With the help of (2), Taylor’s formula and Cauchy-Schwartz-Bunyakovskii inequality we
derive that

I (e, )| =€

/Q I XN+ da| < ccoll o,
0

Similarly we estimate I;. Thus, |I; (g, ¢)| < eCi¥] g1 a.)-
Since functions 9, N'*, 02 N, 0, N, 92, N~ exponentially decrease as || — 0o

282

(see (22), (23) and (25)), then from Lemma 3.1 in [6] we derive that
V>0 3C,>0 Fego>0 Vee (0,g): |I(e, )| <7 Coll¥| e
The integrals in I3 (e, 1) are in fact over
supp(xo(r) N Qe ={z € Q.1 /2 < |r — do| < 0o},

where, according to (21) and (24), functions N, 9, N, 9¢, N~ are exponentially small,
and function N>~ can be estimated by some constant ¢;. Thus,

115 (e, )] < eCsll¥ )l )

The integrals in I are over {x € R® : |r — dy| < &} and they can be estimated,
extracting if necessary the exponentially decreasing part in the corresponding integrand and
then using Cauchy-Schwartz-Bunyakovskii inequality. Consider, for example, the integral

/(1) X000, N'H ™01 di
Ge

/G(l) XO <(Zl - ﬁ)a§2x2u8_|7":d0

—(hi M (do)é1 + 1 — Eo)n/'0ru | r=dy

+(hi N (do)er (L —n) — = — (1 — n)Ez)angru(T!r:do) Dyt da

T
< oll¢fme,) <\// /Gm Xo|Z1 — Yi|? dzdt
0 £

1 1 1 1
oy +a” (1 =) + (af” = a5 | 2 g0,

+\// o Xolh ! (do)r + (Br = o) = (5o — ag")| da
Ge

—_ —_ _ 2
+\/ /G L Xo[n(Er =)+ (1= n)(Ee = by (do)ér — b)) dx)

< ez [l 0. <\/27rld05||Z1 — 571||L2(H;) +1/|GY]
+/2mldoc |1 (do)éa + (B — 1) = (B> = o)l oy
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where |G£l)| is the measure of G Relations (22), (23) and (25) show that the norms in
the right-hand side of the last inequality are bounded in €. Similarly we can estimate the
rest of the integrals in I (g, ). As a result, we obtain

I (e, ¥)] < eCs |l o).

Remark 3.2. Constants C3 and Cy depend on

ol -
ug (z)|, lal=ar+ay+a3<2, >0, k=1,3.

sSup a1 a2 az 0
) 0x ' 0x5? 0

2@y, te(0,T

Extending homogenized problem (32) periodically in x5 through the planes {x € R? : zy =
0} and {x € R®: x5 = [} and taking into account the assumptions for fy and gy, by virtue
of classical results on the smoothness of solutions to boundary-value problems we conclude
that these quantities are bounded.

Since fy is smooth, then 812%’7 € HY(D;), i =1, 2. Consequently,

2
|15 (e )| < eea y(lug™ iy + 10eyug ™ o) [¥ ]l < eCslld ).

=1

In order to estimate I; we consider summand 162’_ when o = 1. Obviously, the second
integral in I;~ can be estimated by ecs||t)|| (.- Using Taylor’s formula and obvious
equality

a?—1

1
1-== 2 0
a a*+a (a”+a#0)

we derive that the sum of the first and the third integrals in [62 "~ is equal to

4153/ |h,2<7")‘2192(uc2)’_)¢ do

53 1+ 4-1e2|h(r)]? + \/1 + 4712 |l (r)]?

52/ () (V2 () By + xoN> Yo da + ¢ / Ja(R.) do,
Sf) I Qg)

= J1<€7 7/’) + J2(€> w> + ']3(67 w)
With the help of (2) and (44) we obtain |Ji(e, ¥) + Jao(e, ¥)| < eco||¥||mr(q.).- Taking

into account (2), properties of the trace operator and the fact that fy is smooth, we get
|J3(e, ¥)| < ecr||Y||ar o,y Thus, in case a@ = 1 we have

15 (e, ¥)| < ecs||¥) ]| o).

In case o > 1 with the help of (44) we obtain |15 (¢, ¥)| < e eol[¥]| mr1(c)-
Similarly to Ig" (e, ), we estimate I, (e, 9) and I (g, ). As a result, we get

1157 (e, ¥)| < eCs|l¥llma.)
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and
(e+lgo — gs||L2(D1))||@/)||H1(QE)a g =1,

" MYl ., f>1

17 (e, ¥)] < 07{
Thus,

_ —a)+a— — 4 >
[Fe ()] < Cs (I1f: = follzagn + ' + el et 4 8 lg. — go| Gip )W, (49)

where g > 0 is an arbitrary number. Setting in (48) ¢ := R. —u. and using (49) and obvious
inequality

(9;(s1) — 0i(s2)) (51 — s2) > c1(s1 — 32)2 Vs, so €R, 1 =0,2,

which follows from (2), we obtain estimate (35). O

4  DISCUSSION OF THE OBTAINED RESULTS

As we can see from the obtained results, the homogenized problem (32) for problem (1) is
a nonstandard boundary-value problems for multi-sheeted function Uy in anisotropic Sobolev
space Ho (see Section 2.3). This problem consists of three boundary-value problems (in
domains Qy and D;, i = 1, 2), connected with each other by the conjugation conditions (on
Q).

The nonhomogeneous Robin boundary conditions on the lateral surfaces of the thin discs
in problem (1) are transformed as ¢ — 0 into new summands in the differential equations
in domains D;, i = 1, 2, in problem (32). These summands show us the influence of the
perturbed parameters o and 8. If @ > 1, then summand 20,79, (uy ") vanishes. From
physical point of view this means that the outer heat conduction coefficient is too small, and
we can neglect this heat exchange. If 8 > 1, then summands 2590 vanish, which means
that the temperature of the environment is too small, and we can consider it equal to zero.

Also functions h;, ¢ = 1, 2, which describe the relative thickness of the thin discs from the
i-th level, are transformed into the coefficients of the differential equations in domains D;,
respectively. The variable x5 is involved as a parameter in the boundary-value problems in
D;, i =1, 2, which shows us the influence of the type of thick junction €2, on the asymptotic
behavior of solution ..

From results proved in the present paper it follows that for applied problems in thick
junctions we can use the homogenized problem (32), which is simpler, instead of the initial
problem (1) with sufficient plausibility.
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Cagosuit JI.FO. Acumnmomuuna anpokcumanis pods’asky Kea3iAiHitiHol eainmuyHol Kpatiosoi
3adaui 6 deopisnesomy 2ycmomy 3’ ednanni muny 3:2:2 // Kapnarcbki maremarudani myOrikarii.
— 2012. — T4, Ne2. — C. 297-315.

Pozriisiiaerbest kBasininiiiia esinTrvana KpaifoBa 3a/1ata B JBOPIBHEBOMY T'YCTOMY 3’€IHAHHI
Ty 3 : 2 : 2, ske € 00’eqHaHAAM MUHHAPY ()¢ Ta BEJUKOI KIJIBKOCTI £-IIE€PIOUIHO PO3TAITOBA~
HUX TOHKHUX JUCKIB 3MIiHHOI TOBImHN. Ha MOBEpXHAX TOHKUX IWCKIB 3 000X pIBHIB 3ajaHi
pisHi KpaifioBi yMOBH TpPeTHOTO POy 3i 30ypeHuMHU mmapamMerpaMu. ByIyI0TbCs TOJOBHI WIeHN
ACUMITOTHKH Ta JOBOJINTHCS BijmmoBifHa oriaka B mpoctopi CobosieBa.

Canosoit [1.10. Acumnmomuueckas anpokcumauus peweHs K6a3usuHETHOT dIAIUNMUYECKOT
Kpaesoti 3adanu 6 08YTYPosHesom eycmom coeduneruu muna 3:2:2 // Kapnarckue maremaru-
geckue myosmkamun. — 2012, — T.4, Ne2. — C. 297-315.

PaccmarpuBaeTcs KBaswanmHeitnass JUTHOTHYECKAsT KpaeBas 3ajJada B JBYXYPOBHEBOM Ty-
croM coeHeHnn §. Tuna 3 : 2 : 2, KOTOpoe COCTOUT U3 IUJIUHIpa {2y U OOJIBIIOrO KOJUYECTBa
£-TIePUOUIECKU IIPUCOEIMHEHHBIX TOHKUX JIMCKOB II€peMeHHON ToJmuHbl. Ha rmoBepxHOCTSIX
TOHKUX JIUCKOB M3 0DOMX YPOBHEIl 3aJIal0TCs PA3HbIE KPAEBbIE YCJIOBUS TPETHETO POJA C BO3-
MymEHHBIMI Ko durmenTamu. CTposiTcs TIaBHBIE YIEHBI ACHMITOTHYIECKOTO PA3IOKEHUST 1
[TOKa3bIBAETCS COOTBETCTBYIONIAs OlleHKa B IpocTpancTee CoboJieBa.



