ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2022, 14 (2), 388–394 doi:10.15330/cmp.14.2.388-394



# On generalized double almost statistical convergence of weight *g*

#### Savaş E.

The purpose of this paper is to introduce the concept of  $\lambda$ -double almost statistical convergence of weight *g*, which emerges naturally from the concept of the double almost convergence and  $\lambda$ -statistical convergence. Some interesting inclusion relations have been considered.

*Key words and phrases:* weight function *g*, double statistical convergence, double almost convergence, modulus function.

Department of Mathematics, Uşak University, Uşak, Turkey E-mail: ekremsavas@yahoo.com

## Introduction

An extension of the usual concept of sequential limits, which is called statistical convergence, was first recognized by H. Fast [6] as follows.

A sequence  $(x_k)$  of real numbers is said to be statistically convergent to *L* if for an arbitrary  $\varepsilon > 0$  we have

$$\lim_{n\to\infty}\frac{1}{n}\big|\{k\leq n:|x_k-L|\geq\varepsilon\}\big|=0.$$

Statistical convergence turned out to be one of the most active areas of research in summability theory after the works of J.A. Fridy [7], T. Šalát [18], J.S. Connor [5] and some others.

M. Mursaleen [13] defined  $\lambda$ -statistical convergence which is more general than statistical convergence as follows.

A sequence  $(x_k)$  is said to be  $\lambda$ -statistically convergent if there is a complex number *L* such that

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\big|\{k\in I_n:|x_k-L|\geq\varepsilon\}\big|=0.$$

Later on E. Savaş [19] continued the study of the concept of  $\lambda$ -almost statistical convergence by using almost convergence. Recently,  $\lambda$ -statistical convergence of order  $\alpha$ ,  $0 < \alpha \leq 1$ , was introduced and studied by R. Çolak and Ç.A. Bektaş [3]. This is a generalization of  $\lambda$ -statistical convergence.

In this paper, as new and more general approach, we introduce and study the concept of  $\lambda$ -double almost statistical convergence of weight g, where  $g : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ ,  $g(x_{nm}) \rightarrow \infty$  for any sequence  $(x_{nm})$  in  $[0, \infty) \times [0, \infty)$  with  $x_{nm} \rightarrow \infty$ . Throughout the paper, the class of all such functions will be denoted by **G**.

УДК 517.521.7

<sup>2020</sup> Mathematics Subject Classification: 40H05, 40C05.

#### **1** Basic facts and definitions

Let  $w_2$  be the class of all real or complex double sequences. By the convergence of a double sequence we mean the convergence in Pringsheim's sense, that is, double sequence  $x = (x_{kl})$  has a Pringsheim limit *L* denoted by *P*-lim *x* provided that for a given  $\epsilon > 0$  there exists  $N \in \mathbb{N}$  such that  $|x_{kl} - L| < \epsilon$  whenever  $k, l \ge N$ . We call such an *x* more briefly as "P-convergent" (see [15]). Also double sequences were introduced and studied by R.F. Patterson (see [16], [17]) and many others.

We use symbol  $c_2$  to denote the class of P-convergent sequences. A double sequence  $x = (x_{kl})$  is bounded if  $||x|| = \sup_{k,l \ge 0} |x_{kl}| < \infty$ . Let  $l_2^{\infty}$  and  $c_2^{\infty}$  be the set of all real or complex bounded double sequences and the set of bounded and convergent double sequences, respectively.

Set

$$x_{kl} = \begin{cases} \max(k, l), & \text{if } \min(k, l) = 0, \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to find that  $\lim_{k,l} x_{kl} = 0$  but  $\sup_{k,l} |x_{kl}| = \infty$ . This shows that the convergence of a double sequence in Pringsheim's sense does not imply the boundedness of its terms. Further J.D. Hill [8] studied the double sequences certain results obtained by G.G. Lorentz [9] for single sequences.

Following S. Banach [1] we can easily define the following.

A linear functional  $\varphi$  on  $l_2^{\infty}$  is said to be Banach limit if it has the following properties:

- 1)  $\varphi(x) \ge 0$  if  $x \ge 0$ , i.e.  $x_{kl} \ge 0$  for all k, l;
- 2)  $\varphi(e) = 1$ , where  $e = (e_{kl})$  with  $e_{kl} = 1$  for all k, l;
- 3)  $\varphi(x) = \varphi(S_{10}x) = \varphi(S_{01}x) = \varphi(S_{11}x)$ , where the shift operators  $S_{10}x$ ,  $S_{01}x$ ,  $S_{11}x$  are defined by  $S_{10}x = (x_{k+1,l})$ ,  $S_{01}x = (x_{k,l+1})$ ,  $S_{11}x = (x_{k+1,l+1})$ .

Let  $B_2$  be the set of all Banach limits on  $l_2^{\infty}$ . A double sequence  $x = (x_{kl})$  is said to be almost convergent to a number *L* if  $\varphi(x) = L$  for all  $\varphi \in B_2$  (see [8]).

F. Móricz and B.E. Rhoades [11] defined the almost convergence of double sequence as follows.

A double sequence  $x = (x_{kl})$  is said to be almost convergent to a number *L* if

$$P-\lim_{p,q\to\infty}\sup_{m,n\geq 0}\left|\frac{1}{(p+1)(q+1)}\sum_{k=m}^{m+p}\sum_{l=n}^{n+q}x_{kl}-L\right|=0,$$

that is, the average value of  $(x_{ij})$  taken over any rectangle

$$D = \{(i, j) : m \le i \le m + p, n \le j \le n + q\}$$

tends to *L* as both *p* and *q* tend to  $\infty$  and this convergence is uniform in *m* and *n*. We denote the space of double almost convergent sequences by  $\hat{c}_2$ , namely

$$\hat{c}_{2} = \left\{ x = (x_{kl}) : \lim_{kl \to \infty} \left| t_{klpq} \left( x \right) - L \right| = 0 \text{ uniformly in } p, q \right\},$$

where

$$t_{klpq}(x) = \frac{1}{(k+1)(l+1)} \sum_{k=p}^{k+p} \sum_{l=q}^{l+q} x_{kl}.$$

M. Mursaleen and O.H. Edely [14] presented the notion of statistical convergence for double sequence  $x = (x_{kl})$  as follows.

A real double sequence  $x = (x_{kl})$  is said to be statistically convergent to *L*, provided that for each  $\varepsilon > 0$ 

$$P-\lim_{m,n}\frac{1}{mn}\big|\{(k,l):k\leq m \text{ and } l\leq n, |x_{kl}-L|\geq \varepsilon\}\big|=0.$$

More recent developments on double sequences can be found in [2, 4, 10, 12] and some others, where some more references can be found.

**Definition 1.** Let  $\lambda = (\lambda_n)$  and  $\mu = (\mu_m)$  be two non-decreasing sequences of positive real numbers both tending to  $\infty$  as n and m approach  $\infty$ , respectively. Also let  $\lambda_{n+1} \leq \lambda_n + 1$ ,  $\lambda_1 = 1$  and  $\mu_{m+1} \leq \mu_m + 1$ ,  $\mu_1 = 1$ . We write the generalized double de la Valèe-Poussin mean by

$$t_{nm}(x) = rac{1}{\lambda_n \mu_m} \sum_{i \in I_n, j \in I_m} x_{kl}.$$

A sequence  $x = (x_{kl})$  is said to be  $(V^2, \lambda, \mu)$ -summable to a number *L* if  $t_{nm}(x) \to L$  as  $n, m \to \infty$  in Pringsheim's sense.

Throughout this paper, we shall denote  $\lambda_n \mu_m$  by  $\overline{\lambda}_{nm}$ , and  $i \in I_n$ ,  $j \in I_m$  by  $(i, j) \in I_{nm}$ .

#### 2 Main Results

We now introduce our fundamental definition. Throughout this paper, for typographical convenience we shall use the notation  $x_{klpq}$  to denote  $x_{k+p,l+q}$ .

**Definition 2.** Let the sequence  $\lambda = (\lambda_{nm})$  of real numbers be defined as above and let  $g \in G$ . A sequence  $x = (x_{kl})$  is said to be  $\lambda$ -double almost statistically convergent of weight g if there is a complex number L such that

$$P-\lim_{mn\to\infty}\frac{1}{g(\bar{\lambda}_{nm})}\left|\{(k,l)\in I_{nm}: |x_{klpq}-L|\geq\varepsilon\}\right|=0$$

uniformly in *p*, *q*. In this case we write  $\hat{S}^{g}_{\lambda}$ -lim  $x_{kl} = L$ .

The set of all  $\lambda$ -double almost statistically convergent sequences of weight *g* will be denoted by  $\hat{S}^{g}_{\lambda}$ . For example, the sequence  $x = (x_{kl})$  defined by

$$x_{klpq} = \begin{cases} klpq, & klpq = (nm)^2, \\ 0, & klpq \neq (nm)^2, \end{cases} \quad n, m = 1, 2, \dots,$$

is  $\lambda$ -double almost statistically convergent of weight g to 0 for any  $g \in \mathbf{G}$ , for which there exist  $M_1, M_2 > 0$  and  $(r, s) \in \mathbb{N} \times \mathbb{N}$  such that

$$M_1 \leq \frac{(nm)^{lpha}}{g(nm)} \leq M_2 ext{ for all } n \geq r ext{ and } m \geq s,$$

where  $\frac{1}{2} < \alpha \leq 1$  and  $\lambda = (nm)$ .

**Remark 1.** *In the above definition, if we consider*  $g(\lambda_{nm}) = (nm)$ ,  $\alpha = 1$ , we have the notion of double almost statistical convergence [8]. The set of all double almost statistically convergent sequences will be denoted by  $\hat{S}$ .

This definition led to the following theorem.

**Theorem 1.** Let  $g \in G$  and  $x = (x_{kl})$ ,  $y = (y_{kl})$  be sequences of complex numbers.

(i) If 
$$\hat{S}^g_{\lambda}$$
-lim  $x_{kl} = x_0$  and  $c \in \mathbb{C}$ , then  $\hat{S}^g_{\lambda}$ -lim  $cx_{kl} = cx_0$ .

(*ii*) If  $\hat{S}^{g}_{\lambda}$ -lim  $x_{kl} = x_0$  and  $\hat{S}^{g}_{\lambda}$ -lim  $y_{kl} = y_0$ , then  $\hat{S}^{g}_{\lambda}$ -lim $(x_{kl} + y_{kl}) = x_0 + y_0$ .

*Proof.* (*i*) For c = 0 the result is clear. Let  $c \neq 0$ . We find that

$$\frac{1}{g(\bar{\lambda}_{nm})}\left|\left\{(k,l)\in I_{nm}: \left|cx_{klpq}-cx_{0}\right|\geq\varepsilon\right\}\right|=\frac{1}{g(\bar{\lambda}_{nm})}\left|\left\{(k,l)\in I_{nm}: \left|x_{klpq}-x_{0}\right|\geq\frac{\varepsilon}{|c|}\right\}\right|$$

and the result follows.

(ii) The result follows from the fact that

$$\frac{1}{g(\bar{\lambda}_{nm})} \left| \{ (k,l) \in I_{nm} : |x_{klpq} + y_{klpq} - (x_0 + y_0)| \ge \varepsilon \} \right|$$

$$\leq \frac{1}{g(\bar{\lambda}_{nm})} \left| \left\{ (k,l) \in I_{nm} : |x_{klpq} - x_0| \ge \frac{\varepsilon}{2} \right\} \right|$$

$$+ \frac{1}{g(\bar{\lambda}_{nm})} \left| \left\{ (k,l) \in I_{nm} : |y_{klpq} - y_0| \ge \frac{\varepsilon}{2} \right\} \right|.$$

**Definition 3.** Let  $\lambda = (\lambda_{nm})$  be as above and let  $g \in G$ . Let t be a positive real number. A sequence  $x = (x_{kl})$  is said to be strongly  $(\hat{V}, \lambda)$ -double almost summable of weight g if there is a complex number L such that

$$\lim_{n,m\to\infty}\frac{1}{g(\bar{\lambda}_{nm})}\sum_{(k,l)\in I_{nm}}|x_{klpq}-L|^t=0$$

uniformly in *p*, *q*. The set of all strongly  $(\hat{V}, \lambda)$ -double almost summable sequences of weight g will be denoted by  $[\hat{V}_t^g, \lambda]$ .

**Remark 2.** For  $g(n) = (nm)^{\alpha}$ ,  $0 < \alpha \leq 1$ , this notion coincides with the notion of strong  $(\hat{V}, \lambda)$ -double almost summability of order  $\alpha$ .

**Theorem 2.** Let  $g_1, g_2 \in G$ . If there exist M > 0 and  $(r, s) \in \mathbb{N} \times \mathbb{N}$  such that  $g_1(\lambda_{nm})/g_2(\bar{\lambda}_{nm}) \leq M$  for all  $n \geq r$  and  $m \geq s$ , then  $\hat{S}_{\lambda}^{g_1} \subseteq \hat{S}_{\lambda}^{g_2}$ .

Proof. Write that,

$$\begin{aligned} \frac{1}{g_2(\bar{\lambda}_{nm})} \left| \{ (k,l) \in I_{nm} : |x_{klpq} - L| \ge \varepsilon \} \right| &= \frac{g_1(\bar{\lambda}_{nm})}{g_2(\bar{\lambda}_{nm})} \cdot \frac{1}{g_1(\bar{\lambda}_{nm})} \left| \{ (k,l) \in I_{nm} : |x_{klpq} - L| \ge \varepsilon \} \right| \\ &\le M \cdot \frac{1}{g_1(\bar{\lambda}_{nm})} \left| \{ (k,l) \in I_{nm} : |x_{klpq} - L| \ge \varepsilon \} \right| \end{aligned}$$

for all  $n \ge r$  and  $m \ge s$ . If  $x = (x_{kl}) \in \hat{S}_{\lambda}^{g_1}$ , then the right hand side tends to zero uniformly in p, q for every  $\varepsilon > 0$  and in this case

$$\frac{1}{g_2(\bar{\lambda}_{nm})}\left|\{(k,l)\in I_{nm}: |x_{klpq}-L|\geq \varepsilon\}\right|=0$$

uniformly in p, q and finally  $x \in \hat{S}_{\lambda}^{g_2}$ . Hence  $\hat{S}_{\lambda}^{g_1} \subseteq \hat{S}_{\lambda}^{g_2}$ .

**Corollary 1.** In particular, let  $g \in G$  and if there exist M > 0 and  $(r,s) \in \mathbb{N} \times \mathbb{N}$  such that  $(nm)/g(\overline{\lambda}_{nm}) \leq M$  for all  $n \geq r$  and  $m \geq s$ , then  $\hat{S}^g_{\lambda} \subseteq \hat{S}_{\lambda}$ .

**Theorem 3.**  $\hat{S} \subseteq \hat{S}^g_{\lambda}$  if  $\liminf_{nm\to\infty} \frac{g(\bar{\lambda}_{nm})}{(nm)} > 0.$ 

*Proof.* For any  $\varepsilon > 0$ , we write

$$\{k \leq n \text{ and } l \leq m : |x_{klpq} - L| \geq \varepsilon\} \supseteq \{(k, l) \in I_{nm} : |x_{klpq} - L| \geq \varepsilon\}.$$

Hence, it follows that for  $p, q \in \mathbb{N}$ 

$$\frac{1}{nm} \left| \left\{ k \le n \text{ and } l \le m : \left| x_{klpq} - L \right| \ge \varepsilon \right\} \right| \ge \frac{1}{nm} \left| \left\{ (k,l) \in I_{nm} : \left| x_{klpq} - L \right| \ge \varepsilon \right\} \right|$$
$$\ge \frac{g(\bar{\lambda}_{nm})}{nm} \cdot \frac{1}{g(\bar{\lambda}_{nm})} \left| \left\{ (k,l) \in I_{nm} : \left| x_{klpq} - L \right| \ge \varepsilon \right\} \right|.$$

If  $x \to L(\hat{S})$ , then  $\frac{1}{nm} |\{k \le n \text{ and } l \le m : |x_{klpq} - L| \ge \varepsilon\}| \to 0$  as  $n, m \to \infty$  and consequently we find

$$\frac{1}{nm} \left| \left\{ k \le n \text{ and } l \le m : \left| x_{klpq} - L \right| \ge \varepsilon \right\} \right| \to 0$$

and so

$$\frac{1}{g(\bar{\lambda}_{nm})}\left|\left\{(k,l)\in I_{nm}: \left|x_{klpq}-L\right|\geq\varepsilon\right\}\right|\to 0$$

as  $n, m \to \infty$ . It is clear that  $x \to L(\hat{S}^g_{\lambda})$ .

**Theorem 4.** Let  $g_1, g_2 \in G$ . If there exist M > 0 and  $(r, s) \in \mathbb{N} \times \mathbb{N}$  such that

$$g_1(\bar{\lambda}_{nm})/g_2(\bar{\lambda}_{nm}) \leq M$$

for all  $n \ge r$  and  $m \ge s$ , then  $[\hat{V}_t^{g_1}, \lambda] \subseteq [\hat{V}_t^{g_2}, \lambda]$ .

*Proof.* The proof is similar to the proof of Theorem 3.6 and so is omitted.

**Corollary 2.** Let  $g \in G$ . If there exist M > 0 and  $(r,s) \in \mathbb{N} \times \mathbb{N}$  such that  $(nm)/g(\lambda_{nm}) \leq M$  for all  $n \geq r$  and  $m \geq s$ , then  $\hat{S}^g_{\lambda} \subseteq \hat{S}_{\lambda}$ .

**Theorem 5.** If  $0 < t < u < \infty$  and  $g \in G$ , then  $[\hat{V}_{u}^{g}, \lambda] \subset [\hat{V}_{t}^{g}, \lambda]$ .

The proof follows from Hölder's inequality.

**Theorem 6.** Let  $g_1, g_2 \in G$  and there exist M > 0 and  $(r, s) \in \mathbb{N} \times \mathbb{N}$  such that  $g_1(\bar{\lambda}_{nm})/g_2(\bar{\lambda}_{nm}) \leq M$  for all  $n \geq r$  and  $m \geq s$  and let  $0 . If a sequence <math>x = (x_{kl})$  is strongly  $(\hat{V}, \lambda)$ -almost double summable of weight  $g_1$  to L, then it is  $\lambda$ -almost double statistically convergent of weight  $g_2$  to L, i.e  $[\hat{V}_t^{g_1}, \lambda] \subset \hat{S}_{\lambda}^{g_2}$ .

*Proof.* Let  $x = (x_{kl}) \in [\hat{V}_p^{g_1}, \lambda]$  and let  $\varepsilon > 0$  be given. Consider

$$\sum_{\substack{(k,l)\in I_{nm}}} |x_{klpq} - L|^t = \sum_{\substack{(k,l)\in I_{nm}\\|x_{klpq}-L|\geq\varepsilon}} |x_{klpq} - L|^t + \sum_{\substack{(k,l)\in I_{nm}\\|x_{klpq}-L|<\varepsilon}} |x_{klpq} - L|^t$$

$$\geq \sum_{\substack{k\in I_n\\|x_{klpq}-L|\geq\varepsilon}} |x_{klpq} - L|^p \geq |\{(k,l)\in I_{nm}: |x_{klpq} - L|\geq\varepsilon\}|\cdot\varepsilon^t.$$

Now it follows that

$$\frac{1}{g_1(\bar{\lambda}_{nm})} \sum_{(k,l)\in I_{nm}} |x_{klpq} - L|^t \ge \frac{1}{g_1(\bar{\lambda}_{nm})} |\{(k,l)\in I_{nm}: |x_{klpq} - L|\ge \varepsilon\}| \cdot \varepsilon^t$$
$$= \frac{g_2(\bar{\lambda}_{nm})}{g_1(\bar{\lambda}_{nm})} \cdot \frac{1}{g_2(\bar{\lambda}_{nm})} |\{(k,l)\in I_{nm}: |x_{klpq} - L|\ge \varepsilon\}| \cdot \varepsilon^t$$
$$\ge \frac{1}{M} \cdot \frac{1}{g_2(\bar{\lambda}_{nm})} |\{(k,l)\in I_{nm}: |x_{klpq} - L|\ge \varepsilon\}| \cdot \varepsilon^t$$

for all  $n \ge r$  and  $m \ge s$ . If  $x \to L([\hat{V}_t^{g_1}, \lambda])$  then the left hand side tends to zero and consequently the right hand side also tends to zero uniformly in p, q. Hence  $x \to L(\hat{S}_{\lambda}^{g_2})$ .

**Corollary 3.** Let  $g \in G$ . If there exist M > 0 and  $(r, s) \in N \times N$  such that  $\frac{nm}{g(\lambda_n m)} \leq M$  for all  $n \geq r, m \geq s$  and  $0 , then <math>[\hat{V}_t^g, \lambda] \subseteq \hat{S}_{\lambda}$ .

### 3 Conclusion

Recently,  $\lambda$ -statistical convergence has been considered as a better option than statistically convergence. It is found very interesting that some results on sequences, series and summability can be proved by replacing the statistical convergence by  $\lambda$ -statistical convergence. This concept has also been defined and studied in different setups. In this paper, we study the concept of  $\lambda$ -double almost statistical convergence of weight g, which emerges naturally from the concepts of the double almost convergence and  $\lambda$ -double statistical convergence.

## References

- [1] Banach S. Théorie des Opérations lineaires. Chelsea Publ. Co., New York, 1955.
- [2] Çakalli H., Savaş E. Statistical convergence of double sequences in topological groups. J. Comput. Anal. Appl. 2010, 12 (2), 421–426.
- [3] Çolak R., Bektaş Ç.A. λ-statistical convergence of order α. Acta Math. Sci. Ser. B (Engl. Ed.) 2011, **31** (3), 953–959.
- [4] Çolak R., Altin Y. Statistical convergence of double sequences of order α. J. Funct. Spaces 2013, 2013, 1–5. doi:10.1155/2013/682823
- [5] Connor J.S. The statistical and strong p-Cesaro convergence of sequences. Analysis 1998, 8, 207–212. doi: 10.1524/anly.1988.8.12.47

- [6] Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3-4), 241-244.
- [7] Fridy J.A. On statistical convergence. Analysis 1985, 5, 301–313. doi:10.1524/anly.1985.5.4.301
- [8] Hill J.D. Almost convergent double sequences. Tohoku Math. J. (2) 1965, 17 (2), 105–116. doi: 10.2748/tmj/1178243576
- [9] Lorentz G.G. A contribution to the theory of divergent sequences. Acta Math. 1948, 80, 167–190. doi: 10.1007/BF02393648
- [10] Işik M., Altin Y. f (α, μ)-statistical convergence of order α for double sequences. J. Inequal. Appl. 2017, 246 (2017), 1–8. doi:10.1186/s13660-017-1512-y
- [11] Móricz F., Rhoades B.E. Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Cambridge Philos. Soc. 1988, 104, 283–294.
- [12] Mursaleen M., Çakan C., Mohiuddine S.A., Savaş E. Generalized statistical convergence and statistical core of double sequences. Acta Math. Sin. (Engl. Ser.) 2010, 26 (11), 2131–2144. doi:10.1007/s10114-010-9050-2
- [13] Mursaleen M.  $\lambda$ -statistical convergence. Math. Slovaca 2000, **50** (1), 111–115.
- [14] Mursaleen M., Edely O.H. Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288 (1), 223–231. doi:10.1016/j.jmaa.2003.08.004
- [15] Pringsheim A. Zur theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 1900, 53, 289–321. doi: 10.1007/BF01448977
- [16] Patterson R.F. Equivalence of methods for the summation of double sequences. Appl. Math. Lett. 2011, 24 (2), 107– 110. doi:10.1016/j.aml.2010.08.027
- [17] Patterson R.F. Rates of convergence for double Sequences. Southeast Asian Bull. Math. 2003, 26 (3), 469–478. doi:10.1007/s10012-002-0469-y
- [18] Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30 (2), 139–150.
- [19] Savaş E. Strong almost convergence and almost λ-statistical convergence. Hokkaido Math. J. 2000, 29 (3), 531–536. doi:10.14492/hokmj/1350912989

Received 02.08.2021 Revised 04.03.2022

Саваш Е. Про узагальнену подвійну майже статистичну збіжність з вагою g // Карпатські матем. публ. — 2022. — Т.14, №2. — С. 388–394.

Метою цієї статті є впровадити поняття  $\lambda$ -подвійної майже статистичної збіжності з вагою *g*, яка природним чином випливає з поняття подвійної майже збіжності та  $\lambda$ -статистичної збіжності. У статті розглянуто деякі цікаві відношення включення.

*Ключові слова і фрази:* вагова функція *g*, подвійна статистична збіжність, подвійна майже збіжність, модуль функції.