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On ∗-measure monads on the category of ultrametric spaces

Sukhorukova Kh.O., Zarichnyi M.M.

The functor of ∗-measures of compact support on the category of ultrametric spaces and non-

expanding maps is introduced in the previous publication of the authors. In the present note, we

prove that this functor determines a monad on this category. The monad structure allows us to de-

fine the tensor product of ∗-measures. We consider some applications of this notion to equilibrium

theory.
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Introduction

In [6], the functors of ∗-measures on the category Ultr of ultrametric spaces and non-

expanding maps are defined and some of their fundamental properties are established.

The present note is devoted to the monad structure determined by these functors. In par-

ticular, this structure allows us to define the tensor product of the ∗-measures in the category

Ultr. In turn, we define the games in ∗-measure-valued strategies and prove the continuity of

the payoff functions for these games.

Finally, it is proved that any equilibrium for games in ∗-measure-valued strategies can be

approximated by almost equilibria consisting of ∗-measures of finite support.

1 Preliminaries

Recall that a metric d on a set X is called an ultrametric (a non-Archimedean metric) if d

satisfies the strong triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, x, y, z ∈ X.

By I we denote the unit segment [0, 1]. Recall that a triangular norm (a t-norm) is a contin-

uous function I × I ∋ (a, b) 7→ a ∗ b ∈ I satisfying the following conditions:

1) ∗ is associative;

2) ∗ is commutative;

3) ∗ is monotone, i.e. a ≤ a′ and b ≤ b′ both imply a ∗ b ≤ a′ ∗ b′ for all a, a′, b, b′ ∈ I;

4) 1 is a unit.

See, e.g., [3] for the details. The following are examples of t-norms: · (multiplication), min,

(a, b) 7→ max{a + b − 1, 0} (Łukasiewicz t-norm).
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Let us recall the notion of ∗-measure (see [5] for the details). Given topological spaces

X, Y, by C(X, Y) we denote the set of continuous functions from X to Y. By ∨ we denote the

operation of maximum of numbers as well as pointwise maximum of real-valued functions.

Definition 1. Let ∗ be a t-norm. A functional µ : C(X, I) → I is called a ∗-measure on a

compact Hausdorff space X if the following conditions hold:

1) µ(cX) = c, where cX denotes the constant function on X taking value c;

2) µ(λ ∗ ϕ) = λ ∗ µ(ϕ);

3) µ(ϕ ∨ ψ) = µ(ϕ) ∨ µ(ψ).

The notion of ∗-measure can be also formulated for Tychonov spaces X. We additionally

require that there exists a compact subset A in X satisfying the condition: for every ϕ, ψ ∈

C(X, I), if ϕ|A = ψ|A, then µ(ϕ) = µ(ψ). The minimal (with respect to inclusion) set A

satisfying such a condition is called the support of µ and is denoted by supp(µ).

By M∗(X) we denote the set of all ∗-measures of compact support on a Tychonov space X.

Let x1, . . . , xn ∈ X and let α1, . . . , αn ∈ I be such that ∨n
i=1αi = 1. The following is an

example of ∗-measure: µ = ∨n
i=1αi ∗ δxi

. One can easily see that supp(µ) = {xi : αi > 0}.

If f : X → Y is a continuous map of Tychonov spaces, then one can define a map M∗(X) →

M∗(Y) by the condition

M∗( f )(µ)(ϕ) = µ(ϕ f ), µ ∈ M∗(X), ϕ ∈ C(X, I).

Given an ultrametric space X, by Fr(X) we denote the set of functions from C(X, I) that

are constant on all balls of radius r in X.

Let X be an ultrametric space and M∗(X) is a set of all ∗-measures with compact support

on X. Recall that the distance d̃(µ, ν) between µ, ν ∈ M∗(X) is defined by the formula

d̃(µ, ν) = inf{r > 0 : µ(ϕ) = ν(ϕ) for all ϕ ∈ Fr(X)}.

One can provide an alternative description of the ultrametric d̃ as follows. Given r > 0,

denote by Xr the quotient space of X with respect to decomposition of X whose elements are

the balls of radius r. Let qr : X → Xr denote the quotient map. Clearly, the quotient metric on

Xr is an ultrametric. Then it is not difficult to show that

d̃(µ, ν) = inf{r > 0 : M∗(qr)(µ) = M∗(qr)(ν)}.

By exp X we denote the hyperspace of X, i.e. the set of all nonempty compact subsets of

X endowed with the Hausdorff metric. Actually, in the ultrametric case, the Hausdorff metric

can be defined by the condition

dH(A1, A2) = inf{r > 0 : for every x ∈ X, Br(x) ∩ A1 6= ∅ ⇐⇒ Br(x) ∩ A2 6= ∅}.

In [6], it is proved that the map supp : M∗(X) → exp X is non-expanding.

Proposition 1. Let µ ∈ M∗(X). The map µ : C(X, I) → I is uniformly continuous.

Proof. Actually, this is a part of the proof of [6, Theorem 2.9].
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Given a function ϕ ∈ C(X, [0, 1]), define ϕ̄ : M∗(X) −→ [0, 1] by the formula ϕ̄(µ) = µ(ϕ).

Proposition 2. The map ϕ̄ is continuous.

Proof. We first assume that X is compact. Let µ0 ∈ M∗(X). Given ε > 0, by Proposition 1 there

exists η > 0 such that, for every χ, ψ ∈ C(X, I), ‖χ − ψ‖ < η implies |µ0(χ)− µ0(ψ)| < ε.

There exists δ > 0 such that the oscillation of ϕ on every ball of radius δ intersecting

supp(µ0) does not exceed η. There is a finite cover {Bδ(x1), . . . , Bδ(xn)} of supp(µ0).

Suppose that d̃(µ, µ0) < δ. Then clearly supp(µ) ⊂ ∪n
i=1Bδ(xi). There exist ψ1, ψ2 ∈ Fδ(X)

such that ψ1 ≤ ϕ ≤ ψ2 and ‖ψ1 − ψ2‖ < η.

It follows that

µ0(ψ1) = µ(ψ1) ≤ µ0(ϕ) ≤ µ0(ψ2) = µ(ψ2)

and

µ0(ψ1) = µ(ψ1) ≤ µ(ϕ) ≤ µ0(ψ2) = µ(ψ2).

By the choice of η, |µ0(ϕ)− µ(ϕ)| < ε and therefore |ϕ̄(µ0)− ϕ̄(µ)| < ε.

Let us now pass to the general case, i.e. of arbitrary ultrametric space X. Suppose that a

sequence (µi)
∞

i=1 converges to µ0 in M∗(X). Since the map supp is non-expanding, without

loss of generality one may assume that

X = supp(µ0) ∪ ∪∞

i=1supp(µi),

i.e. X is compact.

Given an ultrametric space X, we define a map ζX : M∗2(X) → M∗(X) by the formula

ζX(M)(ϕ) = M(ϕ̄).

We are going to show that M(ϕ̄) ∈ M∗(X). Clearly, M ¯(cX) = c, because cX = cM∗(X).

Given ϕ ∈ C(X, I) and c ∈ I, we obtain

ζX(M)(c ∗ ϕ) = M(c ∗ ϕ) = M(c ∗ ϕ̄) = c ∗M(ϕ̄) = c ∗ ζX(M)

(we used the equality c ∗ ϕ = c ∗ ϕ̄: indeed, for any µ ∈ M∗(X), c ∗ ϕ(µ) = µ(c ∗ ϕ) =

c ∗ µ(ϕ) = c ∗ ϕ̄(µ)).

Next, for any ϕ, ψ ∈ C(X, I), we see that, clearly, ϕ ∨ ψ = ϕ̄ ∨ ψ̄, therefore

ζX(M)(ϕ ∨ ψ) = M(ϕ ∨ ψ) = M(ϕ̄) ∨M(ψ̄) = ζX(M)(ϕ) = ζX(M)(ψ).

We are going to show that the support of ζX(M) is compact. Note that, since the map

supp(µ) is non-expanding, the set A =
⋃

{supp(µ) : µ ∈ supp(M)} is compact. Given

ϕ, ψ ∈ C(X, [0, 1]) such that ϕ|A = ψ|A, we see that µ(ϕ) = µ(ψ) for every µ ∈ supp(M). We

conclude that ϕ̄|supp(M) ≡ ψ̄|supp(M) and therefore

ζX(M)(ϕ) = M(ϕ̄) = M(ψ̄) = ζX(M)(ψ).

Thus, ζX(M) ∈ M∗(X).
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Lemma 1. If ϕ ∈ Fr(X), then ϕ̄ ∈ Fr(M∗(X)).

Proof. For µ, µ′ ∈ M∗(X) we have that d̃(µ, µ0) < r if and only if µ(ϕ) = µ′(ϕ) for all ϕ ∈

Fr(X). By the definition ϕ̄(µ) = ϕ̄(µ′) and it follows that ϕ̄ ∈ Fr(M∗(X)).

Proposition 3. The map ζX is nonexpanding.

Proof. Suppose that M,M′ ∈ M∗2(X). Let ˜̃d(M,M′) < r and ϕ ∈ Fr(X) for some r > 0. By

the definition,

ζX(M)(ϕ) = M(ϕ̄) = M′(ϕ̄) = ζX(M
′)(ϕ)

and we see that d̃(ζX(M), ζX(M
′)) < r.

2 Monads

Proposition 4. ζ = (ζ(X)) is a natural transformation of the functor M∗2 to the functor M∗.

Proof. Let f : X −→ Y be a nonexpanding map. We need to show that the diagram

M∗2(X)
M∗2( f )

//

ζX
��

”M∗2(X)

ζY
��

M∗(X)
M∗( f )

// ”M∗(Y)

is commutative.

Let M ∈ M∗2(X) and ϕ ∈ C(X, [0, 1]). First remark that ϕ f = ϕ̄M∗( f ). Using this we

obtain

M∗( f )(ζX(M))(ϕ) = ζX(M)(ϕ f ) = M(ϕ f ) = M(ϕ̄M∗( f ))

= M∗2( f )(M)(ϕ̄) = ζY M∗2( f )(M)(ϕ).

Recall that a monad on a category C is a triple T = (T, η, µ), where T : C → C is an

endofunctor, η : 1C → T, µ : T2 → T are natural transformations such that µTη = µηT = 1T

and µµT = µTµ (see, e.g., [1] for the details).

Given monads Ti = (Ti, ηi, µi), i = 1, 2, on a category C , we say that a natural transforma-

tion γ : T1 → T2 is a morphism of T1 to T2 if γη1 = η2 and µ2γT2
T1(γ) = γµ1.

Let H = (exp, s, u) be the hyperspace monad on the category Ultr. Recall that the singleton

map sX acts as follows: sX(x) = {x}, x ∈ X. Also, uX : exp2 X → exp X is the union map.

Theorem 1. The triple M
∗ is a monad on the category Ultr.

Proof. Let us first prove that the diagram

M∗(X)
δM∗(X)

// M∗2(X)

ζX

��

M∗(X)
M∗(δX)

oo

M∗(X)

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈

✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈
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is commutative.

First note that ψ̄δX(x) = ψ̄δx = δx(ψ) = ψ(x), for any ψ ∈ C(X, [0, 1]).

Let µ ∈ M∗(X), then

ζX M∗(δX)(µ)(ψ) = M∗(δX)(µ)(ψ̄) = µ(ψ̄δX) = µ(ψ),

i.e. ζX M∗(δX) = 1M∗(X).

Also,

ζXδM∗(X)(µ)(ψ) = δM∗(X)(µ)(ψ̄) = ψ̄(µ) = µ(ψ),

i.e. ζXδM∗(X) = 1M∗(X).

Let us prove now that the diagram

M∗3(X)
M∗(ζX)

//

ζM∗
X
��

M∗2(X)

ζX
��

M∗2(X)
ζX

// M∗(X)

is commutative.

Let M ∈ M∗3(X), then

ζXζM∗
X
(M)(ϕ) = ζM∗

X
(M)(ϕ̄) = M( ¯̄ϕ).

On the other hand,

ζX M∗(ζX)(M)(ϕ) = M∗(ζX)(M)(ϕ̄) = M(ϕ̄ · ζX).

We need to show that ¯̄ϕ = ϕ̄ · ζX . Indeed,

¯̄ϕ(M) = M(ϕ̄) = ζX(M)(ϕ) = ϕ̄ζX(M).

We say that a t-norm ∗ does not have zero divisors, if a ∗ b = 0 implies a ∧ b = 0.

Theorem 2. Suppose that a t-norm ∗ does not have zero divisors. Then the natural transfor-

mation supp is a morphism of the monad M
∗ to the monad H.

Proof. Clearly, supp(δx) = {x} = sX(x), x ∈ X. We therefore have to show that the diagram

M∗2(X)
suppM∗(X)

//

ζX
��

exp M∗(X)
exp(suppX) // exp2 X

uX

��

M∗
supp

// exp X

(1)

is commutative.

Let M ∈ M∗2(X), M = ∨n
i=1αi ∗ δµi

, where µi = ∨mi
j=1βij ∗ δxij

, xij ∈ X. Without loss of

generality, one may assume that αi > 0, βij > 0 for all i, j. Then

suppM∗(X)(M) = {µ1, . . . , µn}, suppX(µi) = {xi1, . . . , ximi
},

where i = 1, . . . , n.

Then ζX(M) = ∨n
i=1 ∨

mi
j=1 αi ∗ βij ∗ δxij

and, since ∗ has no zero divisors,

supp(ζX(M)) = {xij : i = 1, . . . , n, j = 1, . . . , mj}.

This shows that the diagram (1) is commutative for M as above. Since, by [6, Proposition 2.7],

such measures are dense in M∗2(X), we conclude that diagram (1) is commutative.
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The following example shows that the requirement of absence of zero divisors is essential.

Suppose that ∗ is the Łukasiewicz t-norm. Let X = {a, b}, a 6= b, µ = δa, ν = δa ∨
1
2 ∗ δb, and

M = δµ ∨
1
2 ∗ δν. Then

ζX(M) = δa ∨
1

2
∗ δb ∨

1

2
∗

1

2
∗ δb = δa

and

supp(ζX(M)) = {a} 6= {a, b} =
⋃

τ∈supp(M)

supp(τ).

3 Tensor products

Let X, Y be ultrametric spaces, µ ∈ M∗(X), ν ∈ M∗(Y). We recall the definition of tensor

product (see, e.g., [7] for the general case).

In the sequel, we consider the max ultrametric on the product of ultrametric spaces. Given

x ∈ X, define the map ix : Y → X × Y by the formula ix(y) = (x, y), y ∈ Y. Clearly, ix is an

isometric embedding.

Given ν ∈ M∗(Y), define the map jν : X → M∗(X × Y) by the formula: jν(x) = M∗(ix)(ν),

x ∈ X.

Lemma 2. The map jν is an isometric embedding.

Proof. Suppose that x, y ∈ X and d(x, y) < r. Note that, for any s ≥ r,

i−1
x (BX×Y

s (a, b)) = i−1
x (BX×Y

s (a, b)) = BY
s (b).

Therefore, for any ϕ ∈ Fs(X × Y), we have ϕix = ϕiy. Thus, for any ϕ ∈ Fs(X × Y),

jν(x)(ϕ) = ν(ϕix) = ν(ϕiy) = jν(y)(ϕ)

and consequently d̃(jν(x), jν(y)) < r. We conclude that jν is a non-expanding map.

Now, assume that d(x, y) ≥ r. Then clearly, dH

(

supp(jν(x)), supp(jν(y))
)

≥ r and there-

fore, by [6, Proposition 2.5], d̃(jν(x), jν(y)) ≥ r.

Finally, define the tensor product of µ and ν as follows:

µ ⊗ ν = ζX×Y M∗(jν)(µ) ∈ M∗(X × Y).

Proposition 5. The map

⊗ : M∗(X)× M∗(Y) → M∗(X × Y)

is non-expanding.

Proof. Let µ, µ′ ∈ M∗(X), ν, ν′ ∈ M∗(Y). First note that clearly d̃(jν, jν′) ≤ d̃(ν, ν′), and, since

the functor M∗ is locally non-expanding, d̃(M∗(jν), M∗(jν′)) ≤ d̃(ν, ν′).

Finally,

d̃(µ ⊗ ν, µ′ ⊗ ν′) = d̃(ζX×Y M∗(jν)(µ), ζX×Y M∗(jν′)(µ
′))

≤ d̃(M∗(jν)(µ), M∗(jν′)(µ
′))

≤ max{d̃(M∗(jν)(µ), M∗(jν)(µ
′)), d̃(M∗(jν)(µ

′), M∗(jν′)(µ
′))}

≤ max{d̃(µ, µ′), d̃(ν, ν′)}

= d̃((µ, ν), (µ′ , ν′)).
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Proposition 6. Let µ = ∨n
i=1αi ∗ δxi

∈ M∗(X), ν = ∨m
j=1βj ∗ δyj

∈ M∗(Y). Then

µ ⊗ ν = ∨n
i=1 ∨

m
j=1 αi ∗ βj ∗ δ(xi,yj)

∈ M∗(X × Y).

Proof. Note that

M∗(jν)(µ) = ∨n
i=1αi ∗ δ(jν(xi)) = ∨n

i=1αi ∗ δ(∨m
j=1βj ∗ δ(xi, yj))

and therefore

µ ⊗ ν = ζX×Y(∨
n
i=1αi ∗ δ(∨m

j=1βj ∗ δ(xi, yj)))

whence the statement follows.

4 Applications

We will consider a two-person game on ultrametric spaces of strategies Xi, i = 1, 2. The

payoff functions are denoted by ui : X1 × X2 → [0, 1], i = 1, 2. A ∗-measure-valued strategy of

player i is an element of the space M∗(Xi), i = 1, 2.

Define Ui : M∗(X1)× M∗(X2) → [0, 1] as follows:

Ui(µ1, µ2) = (µ1 ⊗ µ2)(ui), i = 1, 2.

Proposition 7. The map Ui, i = 1, 2, is continuous.

Proof. Since (µ1 ⊗ µ2)(ui) = ūi(µ1 ⊗ µ2), i = 1, 2, this is a combination of Propositions 5

and 2.

We say that (µ0
1, µ0

2) ∈ M∗(X1)× M∗(X2) is an equilibrium in ∗-measure-valued strategies

if U2(µ
0
1, µ2) ≤ U2(µ

0
1, µ0

2) for every µ2 ∈ M∗(X2), and U1(µ1, µ0
2) ≤ U2(µ

0
1, µ0

2) for every

µ1 ∈ M∗(X1).

One can also define the notion of ε-equilibrium for games in ∗-measure-valued strategies.

Given ε > 0, we say that (µ0
1, µ0

2) ∈ M∗(X1)× M∗(X2) is an equilibrium in ∗-measure-valued

strategies if

U2(µ
0
1, µ2) ≤ U2(µ

0
1, µ0

2) + ε

for every µ2 ∈ M∗(X2), and

U1(µ1, µ0
2) ≤ U2(µ

0
1, µ0

2) + ε

for every µ1 ∈ M∗(X1).

Proposition 8. For every equilibrium (µ0
1, µ0

2) ∈ M∗(X1)× M∗(X2) and every ε > 0 there exists

an ε-equilibrium in M∗
ω(X).

Proof. This follows from Proposition 7 and the fact that the set of ∗-measures of finite support

is dense in the space M∗(X).

Note that an approximation theorem for games in mixed strategies is considered in [2].

The question of existence of equilibrium for games in ∗-measure-valued strategies remains

open. The main problem consists in the lack of convex structure in the spaces of the form

M∗(X) in the ultrametric case (see [4] for the case of compact metric spaces).
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У попереднiй публiкацiї авторiв введено функтор ∗-мiр з компактним носiєм у категорiї

ультраметричних просторiв i нерозтягуючих вiдображень. У цiй публiкацiї ми доведемо, що

цей функтор визначає монаду у цiй категорiї. Монадна структура дозволяє визначити тензор-

ний добуток ∗-мiр. Розглянемо деякi застосування цього поняття до теорiї рiвноваги.

Ключовi слова i фрази: ультраметричний простiр, нерозтягуюче вiдображення, ∗-мiра, мо-

нада, рiвновага.


