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Further investigations on a unique range set
under weight 0 and 1

Banerjee A., Maity S.

In this paper, we have found the most generalized form of the famous Frank-Reinders polyno-

mial. With the help of this, we have investigated the unique range set of a meromorphic function

under two smallest possible weights namely 0 and 1. Our results extend some existing results in the

literature.

Key words and phrases: meromorphic function, unique range set, weighted sharing.

Department of Mathematics, University of Kalyani, West Bengal, 741235, India

E-mail: abanerjeekal@gmail.com (Banerjee A.), sayantanmaity100@gmail.com (Maity S.)

1 Definitions and terminologies

First we would like to recall some basic terminologies of value distribution theory over C.

The details are available in the book [7]. Let p be the multiplicity of z such that z is a root

of f (z) − a = 0. Let M(C) denotes the collection of all meromorphic functions on C. For

f ∈ M(C) and a ∈ C ∪ {∞} we define

E f (a) = {(z, p) ∈ C × N : z is root of f (z)− a = 0} .

In the case of ignoring multiplicities we denote the set by E f (a). Let f , g ∈ M(C), we

say f and g share the value a counting multiplicity (CM for short) if E f (a) = Eg(a) and share

the value a ignoring multiplicity (IM for short) if E f (a) = Eg(a). Now for f ∈ M(C) and

S ⊂ C ∪ {∞}, we define

E f (S) = ∪a∈S {(z, p) ∈ C × N : z is root of f (z) − a = 0} .

If we do not take multiplicities into account then we denote the same set by E f (S). Two

functions f , g ∈ M(C) are said to share a set S CM (resp. IM), if E f (S) = Eg(S) (resp.

E f (S) = Eg(S)).

The notion of weighted sharing of sets was introduced in [8], defined as follows. The set

of all a-points of f with multiplicity m is counted m times if m ≤ k and counted k + 1 times

if m > k, is denoted by E f (a, k). For two functions f , g ∈ M(C) if E f (a, k) = Eg(a, k), then

we say f , g share the value a with weight k. We say f , g share the set S with weight k if

E f (S, k) = Eg(S, k) for a set S ⊂ C ∪ {∞}. We write f , g share (S, k) to mean that f , g share

the set S with weight k. In particular, if S = {a}, then we write f , g share (a, k). In view of the

above notion of weighted sharing the following definition is well known in the literature.
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Definition 1 ([2]). Let f , g be two meromorphic functions over C and S ⊂ C ∪ {∞}. If

E f (S, k) = Eg(S, k) implies f ≡ g then S is called a unique range set for meromorphic functions

with weight k or in brief URSMk.

The case k = ∞ and 0 corresponds to URSM and URSM-IM respectively.

Definition 2 ([10]). Let P(z) be a polynomial in C. If for any two non-constant meromorphic

functions f and g, the condition P( f ) ≡ P(g) implies f ≡ g, then P is called a uniqueness

polynomial for meromorphic functions. We say P(z) is UPM for short.

H. Fujimoto [5] introduced the following definition, which he called as “property H”. The

same definition latter characterized as “critical injection property”.

Definition 3 ([2]). Let P(z) be a polynomial such that P′(z) have l distinct zeros z1, z2, . . . , zl.

If P(zi) 6= P(zj) for i 6= j, i, j ∈ {1, 2, . . . , l}, then P(z) is said to satisfy the critical injection

property.

Definition 4. For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of simple

a-points of f . For k ∈ Z+ we denote by N(r, a; f |≤ k) (resp. N(r, a; f |≥ k)) the counting func-

tion of those a-points of f whose multiplicities are not greater (resp. less) than k, where each

a-point is counted according to its multiplicity. The functions N(r, a; f |≤ k) and N(r, a; f |≥ k)

are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Definition 5. Let a ∈ C ∪ {∞} and f and g be two non-constant meromorphic functions such

that f and g share the value a IM. Let z1 be an a-point of f with multiplicity s and an a-point

of g with multiplicity t.

By N
1)
E (r, a; f ) we mean the counting function of those a-points of f and g, where s = t = 1.

Note that N
1)
E (r, a; f ) = N

1)
E (r, a; f ).

For k ∈ Z+, N
(k
E (r, a; f ) denotes the reduced counting function of those a-points of f and

g, where s = t ≥ k.

By NL(r, a; f ) (resp. NL(r, a; g)) we mean the reduced counting function of those a-points

of f and g, where s > t (resp. t > s).

We denote by N∗(r, a; f , g) the reduced counting function of those a-points of f whose

multiplicities differ from the multiplicities of the corresponding a-points of g. Note that

N∗(r, a; f , g) = N∗(r, a; g, f ) and N∗(r, a; f , g) = NL(r, a; f ) + NL(r, a; g).

2 Background and motivations

To find the minimum cardinality of a URSM-IM, in 1999, S. Bartels [3] considered a set

whose elements are the roots of famous [4] Frank-Reinders polynomial and obtained the fol-

lowing result.

Theorem A ([3]). Let n ≥ 17 be an integer and c 6= 0, 1 be a complex number. Then the

polynomial PFR(z) defined by

PFR(z) =
(n − 1)(n − 2)

2
zn − n(n − 2)zn−1 +

n(n − 1)

2
zn−2 − c (1)

have only simple zeros and S = {z ∈ C : PFR(z) = 0} is a URSM-IM.
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Next an interesting question is whether the lower bound of the cardinality of a URSM-IM

can further be reduced? In this respect, till date no such fruitful results were obtained and it

seemed that the problem of reducing the cardinality of URSM-IM is hard nut to crack. Thus

the only way to reduce the cardinality is to increase the weight gradually.

In 2016, the first author of this paper [1] proved that the set S defined in Theorem A is a

URSM1 with cardinality ≥ 12 (see [1, Remark, p. 205], which follows from [1, Theorem 1.1] by

putting k = 2). So from the above discussion it is evident that over C, the least cardinalities

of URSM-IM and URSM1 are 17 and 12 respectively and hence the only way to improve the

existing results is to generalize the results so that all the results can be accommodated under a

single umbrella.

3 Main results

We are going to define a new polynomial of degree m + n + 1 in the following manner,

which accommodates all polynomial of Frank-Reinders types [4]. Set

P(z) =
n

∑
j=0

(
n

j

)
(−1)j

m + n + 1 − j
zm+n+1−jaj

+
m

∑
i=1

n

∑
j=0

(
m

i

)(
n

j

)
(−1)i+j

m + n + 1 − i − j
zm+n+1−i−jajbi − c = Q(z)− c,

(2)

where a and b be distinct such that a ∈ C \ {0}, b ∈ C, c 6= 0, Q(a), Q(b). It is easy to verify

that

P′(z) = (z − a)n(z − b)m.

As the only two zeros of P′(z) are a, b and c 6= Q(a), Q(b), so P(z) have only simple zeros.

Remark 1. Notice that P(z)− P(b) = (z − b)m+1W1(z), where W1(b) 6= 0. Now let us assume

W1(z) has a zero with multiplicity ≥ 2. As the only zeros of P′(z) are a and b, so the only

possible multiple zero of W1(z) is a and it should be of multiplicity n + 1. Thus the degree

of P(z) − P(b) is at least m + n + 2, which is a contradiction. Hence W1(z) has no multiple

zero. Similarly, P(z)− P(a) = (z − a)n+1W2(z), where W2(a) 6= 0 and W2(z) has no multiple

zero. If possible let P(a) = P(b), then this implies (z − a)n+1W2(z) = (z − b)m+1W1(z). As

a 6= b, so W2(z) has a factor (z − b)m+1, hence the degree of P(z) is at least m + n + 2, which is

a contradiction. Thus P(a) 6= P(b). Therefore P(z) is a critically injective polynomial.

Remark 2. For a = 1, b = 0 and n = 2 the polynomial (2) reduces to

zm+3

m + 3
− 2

zm+2

m + 2
+

zm+1

m + 1
− c.

Multiplying this by (m+1)(m+2)(m+3)
2 and put m + 3 = t, actually we get PFR(z). Thus P(z) is a

generalization of PFR(z).

In our first theorem, considering the set of all zeros of P(z), we investigate the sufficient

conditions under which the set becomes a URSM-IM.

Theorem 1. Let f , g be two non-constant meromorphic functions and m, n be two positive

integers such that n ≥ 2, m ≥ n + 3 and m + n ≥ 16. Consider the polynomial (2) and

S̃ = {z ∈ C : P(z) = 0}. Then S̃ is URSM-IM.
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Corollary 1. (i) Let m ≥ 14. Consider the polynomial

P1(z) =
zm+3

m + 3
− 2

zm+2

m + 2
+

zm+1

m + 1
− c,

where c 6= 0, 2
(m+1)(m+2)(m+3)

. Then the set S̃1 = {z ∈ C : P1(z) = 0} is URSM-IM.

(ii) Let t ≥ 17. Consider the polynomial

P2(z) =
(t − 1)(t − 2)

2
zt − t(t − 2)zt−1 +

t(t − 1)

2
zt−2 − d,

where d 6= 0, 1. Then the set S̃2 = {z ∈ C : P2(z) = 0} is URSM-IM.

Note that, (ii) of Corollary 1 is actually Theorem A, so Theorem 1 generalizes Theorem A

and the result of A. Banerjee (see [1, Remark, p. 205]) at a large extent.

Next, we increase to weight by 1 to investigate its effect on the cardinality of the range set

in Theorem 1.

Theorem 2. Let f , g be two non-constant meromorphic functions and m, n be two positive

integers such that n ≥ 2, m ≥ n + 3 and m + n ≥ 11. Consider the polynomial (2) and

S̃ = {z ∈ C : P(z) = 0}. Then S̃ is URSM1.

From Theorem 2, it is seen that the cardinality of URSM1 is ≥ 12.

Corollary 2. (i) Let m ≥ 9. Consider the polynomial P1(z) as in Corollary 1. Then the set

S̃1 = {z ∈ C : P1(z) = 0} is URSM1.

(ii) Let t ≥ 12. Consider the polynomial P2(z) as in Corollary 1. Then the set

S̃2 = {z ∈ C : P2(z) = 0} is URSM1.

Thus Theorem 2 is an extension of the result of A. Banerjee (see [1, Remark, p. 205]).

4 Lemmas

Lemma 1 ([5]). Let P(z) be a polynomial of degree ≥ 5 without multiple zeros, whose

first derivative have mutually k-distinct zeros, given by d1, d2, . . . , dk with multiplicities

q1, q2, . . . , qk, respectively. Assume that P(z) satisfies the critical injection property and there

are two distinct non-constant meromorphic functions f and g such that

1

P( f )
=

c0

P(g)
+ c1,

for some constant c0 6= 0 and c1. If k ≥ 3, or if k = 2 and min{q1, q2} ≥ 2, then c1 = 0.

Lemma 2 ([6]). Let P(z) be a monic polynomial without multiple zero whose first derivative

have mutually k-distinct zeros, given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk, respec-

tively. Suppose that P(z) satisfy the critical injection property. Then P(z) will be a UPM if and

only if

∑
1≤l<m≤k

qlqm >

k

∑
l=1

ql.

In particular, the above inequality is always satisfied whenever k ≥ 4. When k = 3 and

max{q1, q2, q3} ≥ 2 or when k = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5 then also the above

inequality holds.
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Lemma 3 ([9]). Let N(r, 0; f (k) | f 6= 0) denotes the counting function of zeros of f (k), which

are not the zeros of f , then

N(r, 0; f (k) | f 6= 0) ≤ kN(r, ∞; f ) + N(r, 0; f |< k) + kN(r, 0; f ≥ k) + S(r, f ).

In particular, for k = 1 we have N(r, 0; f ′ | f 6= 0) ≤ N(r, ∞; f ) + N(r, 0; f ) + S(r, f ).

Now let us consider two non-constant meromorphic functions F and G such that

F :=
Q( f )

c
=

P( f ) + c

c
and G :=

Q(g)

c
=

P(g) + c

c
, (3)

where P(z) is defined as in (2). Besides this we also consider a function H as follows

H =

(
F ′′

F ′
−

2F ′

F − 1

)
−

(
G ′′

G ′
−

2G ′

G − 1

)
. (4)

Lemma 4. Let H 6≡ 0 and F , G share (1, 0), then

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r, ∞;H) + S(r),

where S(r) = S(r, f ) + S(r, g).

Proof. As F and G share (1, 0), so each simple 1-point of F is also simple 1-point of G and

vice versa. Now each simple 1-point of F (i.e. simple 1-point of G) is a zero of H. Note that

m(r,H) = S(r). Hence

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r, 0;H) ≤ T(r,H) ≤ N(r, ∞;H) + S(r).

Lemma 5. Let S̃ = {z ∈ C : P(z) = 0}, where P(z) is defined as in (2). Let H 6≡ 0 and f , g be

any two non-constant meromorphic functions on C such that E f (S̃, 0) = Eg(S̃, 0), then

N(r, ∞;H) ≤ N(r, ∞; f ) + N(r, ∞; g) + N(r, a; f ) + N(r, a; g) + N(r, b; f )

+ N(r, b; g) + N∗(r, 1;F ,G) + N0

(
r, 0; f ′

)
+ N0(r, 0; g′),

where N0 (r, 0; f ′) denotes reduced counting function of those zeros of f ′, which are not zeros

of (F − 1)( f − a)( f − b), and N0 (r, 0; g′) denotes similar counting function.

Proof. Note that F ′ = P′( f )
c = 1

c ( f − a)n( f − b)m f ′. The lemma directly follows by calculating

all the possible poles of H and observe that all poles of H are simple.

5 Proofs of the theorems

Proof of Theorem 1. Let S̃ = {z ∈ C : P(z) = 0}. Consider functions F , G and H as defined in

(3) and (4).

Case 1. First assume H ≡ 0. Integrating (4) two times we obtain

1

F − 1
≡

A

G − 1
+ B (where A, B are constants such that A 6= 0)

=⇒
c

P( f )
≡

cA

P(g)
+ B =⇒

1

P( f )
≡

A

P(g)
+

B

c
(as c 6= 0).

(5)
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As n ≥ 2 and m ≥ n+ 3, so obviously min{m, n} ≥ 2 and degree of the polynomial is ≥ 17.

Now applying Lemma 1 for the equation (5) and we get B
c = 0. Consider a constant A1 = 1

A .

Sub-case 1.1. Let us assume A1 6= 1. Now from (5) we obtain

P( f ) ≡ A1P(g)

=⇒ P( f ) + c ≡ A1(P(g) + c)− c(A1 − 1)

=⇒ Q( f ) ≡ A1Q(g) + c(1 − A1)

=⇒ Q( f ) − Q(b) ≡ A1Q(g)− (Q(b)− c(1 − A1)) .

(6)

Note that T(r, f ) = T(r, g) +O(1) since P( f ) ≡ A1P(g). Recall that the only zeros of Q′(z) are

a and b. So only possible multiple zeros of ψ(z) := A1Q(z)− (Q(b)− c(1 − A1)) are a and b.

First assume b is the multiple zero of ψ(z). Thus ψ(b) = 0, i.e.

A1Q(b) = Q(b)− c(1 − A1) =⇒ (1 − A1)(Q(b)− c) = 0 =⇒ c = Q(b),

a contradiction as we have c 6= Q(b). Next assume a is the multiple zero of ψ(z). It is easy to

see that ψ(z) = (z − a)n+1W1(z), where W1(a) 6= 0 and all zeros of W1(z) are simple, namely

αj, j = 1, 2, . . . , m. Notice that Q(z)− Q(b) = (z − b)m+1W2(z), where W2(b) 6= 0 and all zeros

of W2(z) are simple, namely βj, j = 1, 2, . . . , n. Hence from (6)

N(r, b; f ) +
n

∑
j=1

N(r, βj; f ) = N(r, a; g) +
m

∑
j=1

N(r, αj; g).

Next using the Second Fundamental Theorem, the above equation and the fact T(r, f ) =

T(r, g) + O(1) we get

(m − 1)T(r, g) ≤ N(r, a; g) +
m

∑
j=1

N(r, αj; g) + S(r, g)

= N(r, b; f ) +
n

∑
j=1

N(r, βj; f ) + S(r, g) ≤ (n + 1)T(r, g) + S(r, f ).

Thus we have (m − n − 2)T(r, g) ≤ S(r, g), this contradicts the given condition m ≥ n + 3.

Hence we see neither a nor b are the multiple zeros of ψ(z), and hence all the zeros of ψ(z) are

simple, say γj, j = 1, 2, . . . , m + n + 1. From (6) we have

N(r, b; f ) +
n

∑
j=1

N(r, βj; f ) =
m+n+1

∑
j=1

N(r, γj; g).

Using the Second Fundamental Theorem and the above equation, we deduce

(m + n − 1)T(r, g) ≤
m+n+1

∑
j=1

N(r, γj; g) + S(r, g)

= N(r, b; f ) +
n

∑
j=1

N(r, βj; f ) + S(r, g) ≤ (n + 1)T(r, g) + S(r, f ).

Hence we get (m − 2)T(r, g) ≤ S(r, g), a contradiction as n ≥ 2 and m ≥ n + 3.
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Sub-case 1.2. Next assume A1 = 1. Thus P( f ) ≡ P(g). Now by Lemma 2 we conclude P(z)

is a UPM. Therefore f ≡ g.

Case 2. Next assume H 6≡ 0. As E f (S̃, 0) = Eg(S̃, 0), thus F and G share (1, 0). By the

Second Fundamental Theorem and Lemmas 4, 5, we get

(m + n + 2)T(r, f ) ≤ N(r, ∞; f )+ N(r, 1;F )+ N(r, a; f )+ N(r, b; f )− N0

(
r, 0; f ′

)
+ S(r, f )

≤ N(r, ∞; f ) + N(r, ∞;H) + NL(r, 1;F ) + NL(r, 1;G) + N
(2
E (r, 1;F )

+ N(r, a; f ) + N(r, b; f )− N0

(
r, 0; f ′

)
+ S(r, f )

≤ 2N(r, ∞; f ) + N(r, ∞; g) + 2N(r, a; f ) + 2N(r, b; f )

+ N(r, a; g) + N(r, b; g) + N0

(
r, 0; g′

)
+ N

(2
E (r, 1;F )

+ N∗(r, 1;F ,G) + NL(r, 1;F ) + NL(r, 1;G) + S(r, f )

≤ 2N(r, ∞; f ) + N(r, ∞; g) + 2N(r, a; f ) + 2N(r, b; f )

+ N(r, a; g) + N(r, b; g) + N0

(
r, 0; g′

)
+ N

(2
E (r, 1;F )

+ 2NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f ).

(7)

Now we deduce

N0

(
r, 0; g′

)
+ N

(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

≤ N0

(
r, 0; g′

)
+ N

(2
E (r, 1;G) + 2NL(r, 1;F ) + 2NL(r, 1;G)

≤ N0

(
r, 0; g′

)
+ N(r, 1;G |≥ 2) + NL(r, 1;G) + 2NL(r, 1;F )

≤ N(r, 0; g′ | g 6= 0) + NL(r, 1;G) + 2NL(r, 1;F ).

(8)

In view of Lemma 3 we get

NL(r, 1;G) ≤ N(r, 1;G |≥ 2) ≤ N(r, 0; g′ | g 6= 0) ≤ N(r, ∞; g) + N(r, 0; g) + S(r, g),

and similarly NL(r, 1;F ) ≤ N(r, ∞; f ) + N(r, 0; f ) + S(r, f ) holds. Thus from (8) we have

N0

(
r, 0; g′

)
+ N

(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

≤ 2{N(r, ∞; g) + N(r, 0; g) + N(r, ∞; f ) + N(r, 0; f )}+ S(r),
(9)

where S(r) := S(r, f ) + S(r, g). Combining (7) and (9), we obtain

(m + n + 2)T(r, f ) ≤ 4N(r, ∞; f ) + 3N(r, ∞; g) + 2N(r, a; f ) + 2N(r, b; f )

+ N(r, a; g) + N(r, b; g) + 2N(r, 0; f ) + 2N(r, 0; g) + S(r)

≤ 10T(r, f ) + 7T(r, g) + S(r).

(10)

Similarly we can get

(m + n + 2)T(r, g) ≤ 10T(r, g) + 7T(r, f ) + S(r). (11)

Thus adding (10) and (11), we get

(m + n − 15)(T(r, f ) + T(r, g)) ≤ S(r),

which is a contradiction as m + n ≥ 16.

Therefore combining Case 1 and 2 we get, for n ≥ 2, m ≥ n + 3 and m + n ≥ 16 the set S̃ is

URSM-IM.
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Proof of Corollary 1. (i) Putting a = 1, b = 0 and n = 2, the polynomial (2) reduces to

P1(z) =
zm+3

m + 3
− 2

zm+2

m + 2
+

zm+1

m + 1
− c,

where c 6= 0, 2
(m+1)(m+2)(m+3)

. By Theorem 1, we get that the set S̃1 with m ≥ 14 is URSM-IM.

(ii) From (i), assuming m + 3 = t we get

P1(z) =
2

t(t − 1)(t − 2)

[
(t − 1)(t − 2)

2
zt − t(t − 2)zt−1 +

t(t − 1)

2
zt−2 − d

]

=
2

t(t − 1)(t − 2)
P2(z),

where d = c t(t−1)(t−2)
2 . Note that as m ≥ 14, so t ≥ 17. From (i), we have c 6= 0, 2

t(t−1)(t−2)
, so

d 6= 0, 1. Therefore for t ≥ 17 and d 6= 0, 1, the set S̃2 is URSM-IM.

Proof of Theorem 2. Let S̃ = {z ∈ C : P(z) = 0}. Consider two function F , G and H as in

Theorem 1.

Case 1. First assume H ≡ 0. Proceeding same steps as Case 1 of Theorem 1 we get f ≡ g.

Case 2. Next assume H 6≡ 0. As E f (S̃, 1) = Eg(S̃, 1), thus F and G share (1, 1), this implies

N
1)
E (r, 1;F ) = N(r, 1;F |= 1). By Second Fundamental Theorem and Lemmas 4, 5, we get

(m + n +2)T(r, f )≤ N(r, ∞; f )+ N(r, 1;F )+ N(r, a; f )+ N(r, b; f )− N0

(
r, 0; f ′

)
+ S(r, f )

≤ N(r, ∞; f ) + N(r, 1;F |= 1) + N(r, 1;F |≥ 2)

+ N(r, a; f ) + N(r, b; f )− N0

(
r, 0; f ′

)
+ S(r, f )

≤ N(r, ∞; f ) + N(r, ∞;H) + N(r, 1;G |≥ 2)

+ N(r, a; f ) + N(r, b; f )− N0

(
r, 0; f ′

)
+ S(r, f )

≤ 2N(r, ∞; f ) + N(r, ∞; g) + 2N(r, a; f ) + 2N(r, b; f ) + N(r, a; g)

+ N(r, b; g)+ N0

(
r, 0; g′

)
+ N(r, 1;G |≥ 2)+ N∗(r, 1;F ,G)+ S(r, f ).

(12)

Now using Lemma 3, we deduce

N0

(
r, 0; g′

)
+ N(r, 1;G |≥ 2) + N∗(r, 1;F ,G)

≤ N0

(
r, 0; g′

)
+ N(r, 1;G |≥ 2) + N(r, 1;G |≥ 3) + N(r, 1;F |≥ 3)

≤ N(r, 0; g′ | g 6= 0) +
1

2
N(r, 0; f ′ | f 6= 0)

≤ N(r, ∞; g) + N(r, 0; g) +
1

2
{N(r, ∞; f ) + N(r, 0; f )}+ S(r).

(13)

Combining (12) and (13), we get

(m + n + 2)T(r, f ) ≤
5

2
N(r, ∞; f ) + 2N(r, ∞; g) + 2N(r, a; f ) + 2N(r, b; f )

+ N(r, a; g) + N(r, b; g) +
1

2
N(r, 0; f ) + N(r, 0; g) + S(r)

≤ 7T(r, f ) + 5T(r, g) + S(r).

(14)

Similarly we can obtain

(m + n + 2)T(r, g) ≤ 7T(r, g) + 5T(r, f ) + S(r). (15)
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Adding (14) and (15), we obtain (m + n − 10)(T(r, f ) + T(r, g)) ≤ S(r), this is a contradiction

as m + n ≥ 11.

Therefore combining Cases 1 and 2 we get, for n ≥ 2, m ≥ n + 3 and m + n ≥ 11 the set S̃

is URSM1.

Proof of Corollary 2. We left the proof since it is same as the proof of Corollary 1.
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У цiй статтi ми знайшли найбiльш загальну форму вiдомого полiнома Франка-Рейндерса.

За допомогою цього ми дослiдили множину єдиностi образу мероморфної функцiї при двох

найменших можливих вагах, а саме 0 i 1. Нашi результати узагальнюють деякi вiдомi резуль-

тати в лiтературi.

Ключовi слова i фрази: мероморфна функцiя, множина єдиностi образу, зважений обмiн.


