On equitable near-proper coloring of some derived graph classes

Abstract

Jose S., Naduvath S. An equitable near-proper coloring of a graph G is a defective coloring in which the number of vertices in any two color classes differ by at most one and the bad edges obtained is minimized by restricting the number of color classes that can have adjacency among their own elements. This paper investigates the equitable near-proper coloring of some derived graph classes like Mycielski graphs, splitting graphs and shadow graphs.

Key words and phrases: equitable near-proper coloring, Mycielski graph, splitting graph, shadow graph.

Department of Mathematics, CHRIST (Deemed to be University), Bangalore, Karnataka, India
E-mail: sabitha.jose@res.christuniversity.in(Jose S.), sudev.nk@christuniversity.in (Naduvath S.)

Introduction

For general concepts and notations in graphs, we refer to $[6,18]$. Unless stated otherwise, we consider connected, simple, finite and undirected graphs in this paper.

The notion of equitable coloring of graphs was introduced in [10]. An equitable coloring of a graph G is a proper vertex coloring in which the cardinalities of the color classes are either equal or differ by 1. Equitable coloring of graphs has many applications real-life situations, especially in scheduling and distribution problems. Allowing conflict to a certain level gives rise to defective equitable coloring problems. An improper coloring or a defective coloring of a graph G is a vertex coloring of it, with respect to which adjacent vertices can have the same color if required and as a result of that, there may be some edges whose end vertices receive the same color. These edges are called bad edges. A near-proper coloring of G is a defective coloring in which the bad edges are minimised by implementing certain restrictions on the number of color classes that can have adjacency among their own elements. The number of bad edges resulting from a near-proper coloring of G is denoted by $b_{k}(G)$. Certain results on this direction can be viewed in $[1-4,9]$. In light of these studies, the idea of equitable near-proper coloring of graphs are introduced in [7] and as follows.

An equitable near-proper coloring (or ENP-coloring) of a graph G is a defective coloring in which the vertex set can be partitioned into k color classes $V_{1}, V_{2}, \ldots, V_{k}$ with cardinalities $n_{1}, n_{2}, \ldots, n_{k}$ respectively, such that $\left|n_{i}-n_{j}\right| \leq 1$ for any $1 \leq i \neq j \leq k$, and the number of bad edges is minimised by restricting the number of color classes that can have adjacency among their own elements. The minimum number of bad edges resulting from an ENP-coloring of G is defined as equitable defective number and is denoted by $b_{\chi_{e}}^{k}(G)$.

[^0]Motivated by the studies mentioned above, in this paper, we discuss the ENP-coloring of some derived graph classes. A derived graph is a construction of a graph from a given graph under certain conditions. This paper discusses the ENP-coloring of Mycielski graphs, splitting graphs and shadow graphs of certain graph classes. Throughout this paper, the set $c_{1}, c_{2}, \ldots, c_{k}$ represents the available k colors and $V_{1}, V_{2}, \ldots, V_{k}$ be the corresponding color classes. In an ENP-coloring, we consider the cases from $k=2$ to $k=\chi_{e}(G)-1$. In all diagrams in this paper, the bad edges are represented by dotted lines.

1 ENP-Coloring of Mycielski graphs

The Mycielski graph or the Mycielskian of a graph is defined (see [11]) as follows. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The Mycielski graph of a graph G, denoted by $\mu(G)$ is the graph with vertex set $V(\mu(G))=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, u_{1}, u_{2}, u_{3} \ldots, u_{n}, w\right\}$ such that

$$
\begin{aligned}
& v_{i} v_{j} \in E(\mu(G)) \Longleftrightarrow v_{i} v_{j} \in E(G) \\
& v_{i} u_{j} \in E(\mu(G)) \Longleftrightarrow v_{i} v_{j} \in E(G) \\
& u_{i} w \in E(\mu(G))
\end{aligned}
$$

for $i=1,2, \ldots, n$.
The coloring of Mycielskian of some fundamental graph classes was discussed in [5, 11, 17].
The ENP-coloring of Mycielskian of some graph classes was discussed in [8]. The equitable defective number of complete graphs was determined in [7], as follows.

Theorem 1 ([7]). For a complete graph K_{n}, the equitable defective number is given by

$$
b_{\chi_{e}}^{k}\left(K_{n}\right)=\frac{r\left\lceil\frac{n}{k}\right\rceil\left\lceil\frac{n}{k}-1\right\rceil}{2}+\frac{(k-r)\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{n}{k}-1\right\rfloor}{2},
$$

where $n \equiv r(\bmod k)$.
The following theorem discusses the ENP-coloring and the corresponding equitable defective number of Mycielski graph of complete graphs.

Theorem 2. The equitable defective number of Mycielski graph of complete graph $\mu\left(K_{n}\right)$ is given by
(i) if $k=2$, then $b_{\chi_{e}}^{k}\left(\mu\left(K_{n}\right)\right)=b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-1)}{2}$,
(ii) if $k=3$, then $b_{\chi_{e}}^{k}\left(\mu\left(K_{n}\right)\right)= \begin{cases}b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-2)}{3}, & \text { if } n \equiv 0(\bmod 3), \\ b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor^{2}, & \text { if } n \equiv 1(\bmod 3), \\ b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(3\left\lfloor\frac{n}{3}\right\rfloor+2\right), & \text { if } n \equiv 2(\bmod 3),\end{cases}$
(iii) if $k \geq 4$, then $b_{\chi_{e}}^{k}\left(\mu\left(K_{n}\right)\right)=b_{\chi_{e}}^{k}\left(K_{n}\right)+2(n-k)+\left\lfloor\frac{n}{k}\right\rfloor$.

Proof. Let $\mu\left(K_{n}\right)$ be the Mycielskian of complete graphs with $2 n+1$ vertices. Let $\left\{v_{1}, \cdots, v_{n}\right\}$ be the set of vertices of the complete graph K_{n} and $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be the set of vertices corresponding to the v_{i}^{\prime} s. According to the construction of Mycielski graph of complete graphs, each vertex v_{i} is adjacent to all $u_{j}, i \neq j$, and the vertex w is adjacent to all u_{i} 's where $1 \leq i \leq n$. We know that the equitable chromatic number of Mycielski graph of a complete graph is $n+1$.

We consider $2 \leq k \leq n$ for an ENP-coloring. The equitable defective number of complete graphs have already been investigated in [7]. Thus, we need to further count only the bad edges between $v_{i}{ }^{\prime}$ s and u_{i} 's and between u_{i}^{\prime} s and w.

Case 1. When $k=2$, we have to look in to the following subcases.
Subcase 1.1. Let n be even. Assign the two available colors c_{1} and c_{2} to the v_{i} 's in a clockwise manner and the corresponding u_{i} 's can be assigned with the same colors as received by v_{i}. Here, each u_{i} is adjacent to $\frac{n}{2}-1$ number of same colored vertices and since there are n number of $u_{i}{ }^{\prime} \mathrm{s}$, the total number of bad edges obtained is $n\left[\frac{n}{2}-1\right]$. And assign the vertex w with either c_{1} or c_{2}, we obtain $\frac{n}{2}$ bad edges which are incident with w. Along with that we have the bad edges resulting from the ENP-coloring of a complete graph K_{n} and thus the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-1)}{2}$.

Subcase 1.2. When n is odd, repeat the coloring procedure as in Subcase 1.1 for all $v_{i}{ }^{\prime}$ s and u_{i}^{\prime} 's. It can be observed that there are $\left\lfloor\frac{n}{2}\right\rfloor$ number of c_{1} colored u_{i} 's and each of these vertices is adjacent to $\left\lfloor\frac{n}{2}\right\rfloor$ number of c_{1} colored $v_{i}{ }^{\prime}$ s. Also, among the $\left\lceil\frac{n}{2}\right\rceil$ number of c_{2} colored $u_{i}{ }^{\prime} \mathrm{s}$, $\left\lfloor\frac{n}{2}\right\rfloor$ number of u_{i} 's are adjacent to $\left\lfloor\frac{n}{2}\right\rfloor-1$ number of c_{2} colored vertices and one u_{i} is adjacent to $\left\lfloor\frac{n}{2}\right\rfloor$ vertices. Assign the vertex w with color c_{2} to satisfy the equitability condition, we obtain $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with w. Along with the bad edges resulting from the adjacency within v_{i}^{\prime} s, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-1)}{2}$.

Case 2. Let $k=3$. In this case, we have to consider the following subcases.
Subcase 2.1. When $n \equiv 0(\bmod 3)$, start assigning the v_{i} 's with the three available colors c_{1}, c_{2} and c_{3} in a cyclic order. Now, assign the corresponding $u_{i}{ }^{\prime}$ s with the same colors as assigned to v_{i} and vertex w can be assigned with any of the three colors. Here, it can be observed that each u_{i} is adjacent to $\frac{n}{3}-1$ number of same colored v_{i} 's and since there are $\frac{n}{3}$ number of u_{i} 's we obtain $\frac{n}{3}\left[\frac{n}{3}-1\right]$ bad edges between the v_{i} 's and u_{i} 's. Since the vertex w is adjacent to all $u_{i}^{\prime} \mathrm{s}(1 \leq i \leq n)$ we obtain $\frac{n}{3}$ bad edges which are incident with w. Along with the bad edges obtained from the complete graph, we get the equitable defective number as $b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-2)}{3}$.

Subcase 2.2. When $n \equiv 1(\bmod 3)$, repeat the coloring pattern as in Subcase 2.1 for all v_{i} 's and $u_{i}{ }^{\prime} \mathrm{s}(1 \leq i \leq n-1)$ and the remaining vertices v_{n}, u_{n} and w can be colored with c_{1}, c_{2} and c_{3} respectively to satisfy the equitability condition. Here, we observe that among the $u_{i}{ }^{\prime} \mathrm{s}$, color c_{1} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{1} colored v_{i} 's. Also, color c_{2} is repeated $\left\lceil\frac{n}{3}\right\rceil$ times and among those vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{2} colored $u_{i}{ }^{\prime}$ s are adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ same colored v_{i} 's and one c_{2} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ vertices. Again, color c_{3} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each c_{3} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ number of c_{3} colored v_{i} 's. Further, we obtain $\left\lfloor\frac{n}{3}\right\rfloor$ bad edges which are incident with w. Along with the bad edges obtained from the complete graph, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+3\left\lfloor\frac{n}{3}\right\rfloor^{2}$.

Subcase 2.3. When $n \equiv 2(\bmod 3)$, assign the v_{i}^{\prime} s and u_{i} 's as in Subcase 2.1 and assign the vertex w with color c_{3} to satisfy the equitability condition. Now, it can be observed that among the $u_{i}{ }^{\prime}$ s, the colors c_{1} and c_{2} are repeated $\left\lceil\frac{n}{3}\right\rceil$ times and adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of same colored v_{i} 's. Furthermore, color c_{3} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each c_{3} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ number of c_{3} colored v_{i} 's. Since, $\left\lfloor\frac{n}{3}\right\rfloor$ number of $u_{i}{ }^{\prime}$ s receive color c_{3}, we obtain $\left\lfloor\frac{n}{3}\right\rfloor$ bad edges incident with w. Therefore, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(2\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{n}{3}\right\rfloor\right)$.

Case 3. When $k \geq 4$, assign the vertices as in the previous cases considering the equitability condition we obtain the equitable defective number as $b_{\chi_{e}}^{k}\left(K_{n}\right)+2(n-k)+\left\lfloor\frac{n}{k}\right\rfloor$.

Figure 1 depicts a 3-ENP-coloring of Mycielskian of complete graphs.

Figure 1 Mycielskian of complete graphs with 3-ENP-coloring.

The following theorem discusses the ENP-coloring and the corresponding equitable defective number of Mycielski graph of star graphs.

Theorem 3. The equitable defective number of Mycielski graph of star graphs $\mu\left(K_{1, n}\right)$ is given by

$$
b_{\chi_{e}}^{k}\left(\mu\left(K_{1, n}\right)\right)= \begin{cases}n, & \text { if } k=2 \\ \left\lfloor\frac{n}{3}\right\rfloor-2, & \text { if } k \geq 3 .\end{cases}
$$

Proof. Let v_{0} be the central vertex of the star graph $K_{1, n}$ and $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be the set of vertices which are adjacent to v_{0}. Let $\left\{u_{0}, u_{1}, u_{2}, \cdots, u_{n}\right\}$ be the set of vertices corresponding to v_{i}^{\prime} 's and w be the vertex which is adjacent to all $u_{i}{ }^{\prime} s, 0 \leq i \leq n$. Thus, the Mycielski graph of star graph consists of $2 n+3$ vertices. Let $\left\{c_{1}, c_{2}, \cdots, c_{k}\right\}$ be the set of available colors in an ENP-coloring and let $\left\{V_{1}, V_{2}, \cdots, V_{n}\right\}$ be the collection of corresponding color classes. Here, we consider the following cases.

Case 1. When $k=2$, we have two available colors c_{1} and c_{2} and let us partition the vertex set as follows: $V_{1}=\left\{v_{0}, u_{0}, u_{1}, u_{2}, \cdots, u_{n}\right\}, V_{2}=\left\{v_{1}, v_{2}, \cdots, v_{n}, w\right\}$.

Assign the vertices in V_{1} with color c_{1} and the vertices in V_{2} with color c_{2}. Since v_{0} is adjacent to $u_{1}, u_{2}, \cdots, u_{n}$, we obtain n bad edges which are incident with v_{0}. All other vertices are colored properly and $\left|\left|V_{1}\right|-\left|V_{2}\right|\right|=1$. Hence, we conclude that the equitable defective number is n.

Case 2 . When $k \geq 3$, let us partition the vertex set into k color classes and consider the vertex set with minimum cardinality, $\left\lfloor\frac{2 n+3}{k}\right\rfloor$ vertices. Let us restrict the bad edges into this particular color class so as to minimise the number of bad edges. Place the vertex u_{0} in this color class and the remaining vertices of this color class are considered to be $v_{0}, v_{1}, v_{2}, \cdots, v_{\left\lfloor\frac{2 n+3}{k}\right\rfloor-2}$. All the remaining vertices can be colored properly using the other two available colors (see Figure 2 for illustration). Since u_{0} is adjacent to $\left\lfloor\frac{2 n+3}{k}\right\rfloor-2$ number of same colored vertices, the equitable defective number is $\left\lfloor\frac{2 n+3}{3}\right\rfloor-2$.

Figure 2 depicts a 3-ENP-coloring of Mycielskian of stars.

Figure 2 Mycielskian of star graphs with 3-ENP-coloring.

2 ENP-coloring of splitting graphs

A splitting graph denoted by $S(G)$ has been introduced in [16]. For each vertex v_{i} of a graph G, take a new vertex u_{i} and join u_{i} to the neighbouring vertices of v_{i}. The graph $S(G)$ thus obtained is called the splitting graph of G.

In the following theorem, we discuss the ENP-coloring and the corresponding equitable defective number of splitting graph of paths.

Theorem 4. The equitable defective number of splitting graph of paths $S\left(P_{n}\right)$ when n is odd is 1 .

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices of the path P_{n} and let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices corresponding to the vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that each vertex v_{i} (where $2 \leq i \leq n-1$) is adjacent to u_{i-1} and u_{i+1}, v_{1} is adjacent to u_{2} and v_{n} is adjacent to u_{n-1}. The equitable chromatic number of splitting graph of paths $S\left(P_{n}\right)$ is 2 when n is even and 3 when n is odd. Thus, in an ENP-coloring of splitting graph of paths, we consider only one case $k=2$ when n is odd. When $k=2$, assign the path P_{n} with the available colors c_{1} and c_{2} and we can properly color the path with these two colors. Now, assign the u_{i} 's where $1 \leq i \leq n-1$ with c_{1} and c_{2} such that both v_{i} and the corresponding vertex u_{i} receive the same color. Also, assign u_{n} with color c_{2} to satisfy the equitability condition, we obtain only one $v_{n-1} u_{n}$ bad edge and thus the equitable defective number is 1 .

Figure 3 depicts a 2-ENP-coloring of splitting graph of paths.

Figure 3 Splitting graph of paths with 2-ENP-coloring.

The following result discusses the ENP-coloring and hence determine the corresponding equitable defective number of splitting graph of cycles.

Theorem 5. For a cycle $C_{n}, b_{\chi_{e}}^{k}\left(S\left(C_{n}\right)\right)=3$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and let $u_{1}, u_{2}, \ldots, u_{n}$ be the set of corresponding vertices. Here, each v_{i} (where $2 \leq i \leq n-1$) is adjacent to u_{i-1} and u_{i+1}, v_{1} is adjacent to u_{2} and u_{n}, v_{n} is adjacent to u_{1} and u_{n}. The equitable chromatic number of splitting graph of cycles $S\left(C_{n}\right)$ is 2 when n is even and 3 when n is odd. Thus, in the ENP-coloring, we consider only one case $k=2$ for n is odd. When $k=2$, assign the cycle C_{n} with the available colors c_{1} and c_{2}, we obtain one $v_{1} v_{n}$ bad edge. Further, assign the u_{i} 's as in Theorem 4, we obtain two more bad edges $u_{1} v_{n}$ and $v_{n-1} u_{n}$. Hence, the equitable defective number is 3 .

Figure 4 illustrates a 2-ENP-coloring of the splitting graph of a cycle.

Figure 4 Splitting graph of cycles with 2-ENP-coloring.
The following theorem determines the equitable defective number of splitting graph of complete graphs.

Theorem 6. The equitable defective number of splitting graph of complete graph $S\left(K_{n}\right)$ is given by
(i) if $k=2$, then $b_{\chi_{e}}^{k}\left(S\left(K_{n}\right)\right)= \begin{cases}b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-2)}{2}, & \text { if } n \text { is even, } \\ b_{\chi_{e}}^{k}\left(K_{n}\right)+2\left\lfloor\frac{n}{2}\right\rfloor^{2}, & \text { if } n \text { is odd, }\end{cases}$
(ii) if $k=3$, then $b_{\chi_{e}}^{k}\left(S\left(K_{n}\right)\right)= \begin{cases}b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-3)}{3}, & \text { if } n \equiv 0(\bmod 3), \\ b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(3\left\lfloor\frac{n}{3}\right\rfloor-1\right), & \text { if } n \equiv 1(\bmod 3), \\ b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(3\left\lfloor\frac{n}{3}\right\rfloor+1\right), & \text { if } n \equiv 2(\bmod 3),\end{cases}$
(iii) if $k \geq 4$, then $b_{\chi_{e}}^{k}\left(S\left(K_{n}\right)\right)=b_{\chi_{e}}^{k}\left(K_{n}\right)+2(n-k)$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the complete graph and $u_{1}, u_{2}, \ldots, u_{n}$ be the corresponding vertices. The equitable chromatic number of splitting graph of complete graphs is n. Hence, in an ENP-coloring, we need to consider all the cases from $k=2,3, \ldots, n-1$ as below. The equitable defective number of complete graphs have been investigated in [7]. Thus, we consider only the bad edges between v_{i} 's and u_{i} 's.

Case 1. Let $k=2$ and consider the following subcases.
Subcase 1.1. When $k=2$ and n is even, assign the v_{i} 's (where $1 \leq i \leq n$) with the two available colors c_{1} and c_{2} in a cyclic order and assign the corresponding $u_{i}{ }^{\prime}$ s with the same colors such that both v_{i} and u_{i} receive the same color. Here, it can be observed that each u_{i} is adjacent to $\frac{n}{2}-1$ number of same colored vertices and since there are n number of u_{i}^{\prime} 's, the total number of bad edges obtained is $\frac{n^{2}}{2}-n$. Along with that, we have the bad edges resulting from the ENP-coloring of a complete graph K_{n} and thus the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-2)}{2}$.

Subcase 1.2. When $k=2$ and n is odd, assign the $v_{i}^{\prime} \mathrm{s}(1 \leq i \leq n)$ and $u_{i}^{\prime} \mathrm{s}(1 \leq i \leq n-1)$ as in Subcase 1.1 and assign u_{n} with color c_{2} to satisfy the equitability condition. We observe that there are $\left\lfloor\frac{n}{2}\right\rfloor$ number of c_{1} colored u_{i}^{\prime} s and each of these vertices is adjacent to $\left\lfloor\frac{n}{2}\right\rfloor$ number of c_{1} colored v_{i} 's. Also, among the $\left\lceil\frac{n}{2}\right\rceil$ number of c_{2} colored $u_{i}{ }^{\prime}$ s, $\left\lfloor\frac{n}{2}\right\rfloor$ number of $u_{i}{ }^{\prime}$'s are adjacent to $\left\lfloor\frac{n}{2}\right\rfloor-1$ number of c_{2} colored vertices and one u_{i} is adjacent to $\left\lfloor\frac{n}{2}\right\rfloor$ vertices. Hence, the equitable defective number is $2\left\lfloor\frac{n}{2}\right\rfloor^{2}$. Along with the bad edges resulting from the adjacency within v_{i} 's, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+2\left\lfloor\frac{n}{2}\right\rfloor^{2}$.

Case 2. Assume that $k=3$. Here, we consider the following three subcases.
Subcase 2.1. When $k=3$ and $n \equiv 0(\bmod 3)$, assign the v_{i}^{\prime} s with the three available colors c_{1}, c_{2} and c_{3} alternatively and assign the corresponding u_{i} 's with the same colors assigned to v_{i}. Here, when we consider the $u_{i}{ }^{\prime} \mathrm{s}$, each u_{i} repeats $\frac{n}{3}$ times and adjacent to $\frac{n}{3}-1$ number of same colored v_{i} 's. Along with the bad edges obtained from the complete graph, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\frac{n(n-3)}{3}$.

Subcase 2.2. When $k=3$ and $n \equiv 1(\bmod 3)$, assign the v_{i} 's and $u_{i}{ }^{\prime}$ s where $1 \leq i \leq n-1$ as in Subcase 2.1 and assign the vertices v_{n} and u_{n} with c_{1} and c_{2} respectively. When we consider the $u_{i}{ }^{\prime}$ s, it can be observed that, color c_{1} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each c_{1} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{1} colored v_{i} 's. On the other hand, color c_{2} is repeated $\left\lceil\frac{n}{3}\right\rceil$ times and among those vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{2} colored $u_{i}{ }^{\prime}$ s are adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ same colored $v_{i}{ }^{\prime}$ s and one c_{2} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ vertices. Moreover, color c_{3} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each c_{3} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ number of c_{3} colored v_{i} 's. Along with that we have the bad edges resulting from the ENP-coloring of complete graphs and hence the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(3\left\lfloor\frac{n}{3}\right\rfloor-1\right)$.

Subcase 2.3. When $k=3$ and $n \equiv 2(\bmod 3)$, assign the v_{i} 's and u_{i} 's where $1 \leq i \leq n-2$ as in the previous subcases and assign v_{n-1} and u_{n-1} with color c_{1}. To maintain the equitability condition, assign the vertex v_{n} with color c_{2} and u_{n} with color c_{3}. Here, we have the following observations. Considering the colors assigned to $u_{i}{ }^{\prime}$ s, color c_{1} is repeated $\left\lceil\frac{n}{3}\right\rceil$ times and each c_{1} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{1} colored v_{i} 's. And color c_{2} is repeated $\left\lfloor\frac{n}{3}\right\rfloor$ times and each c_{2} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{2} colored v_{i} 's. Also color c_{3} is repeated $\left\lceil\frac{n}{3}\right\rceil$ times and among those vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ number of c_{3} colored u_{i} 's are adjacent to $\left\lfloor\frac{n}{3}\right\rfloor-1$ number of c_{3} colored v_{i} 's and one c_{3} colored u_{i} is adjacent to $\left\lfloor\frac{n}{3}\right\rfloor$ number of same colored vertices. Along with the bad edges resulting from the complete graph, the equitable defective number is, $b_{\chi_{e}}^{k}\left(K_{n}\right)+\left\lfloor\frac{n}{3}\right\rfloor\left(3\left\lfloor\frac{n}{3}\right\rfloor+1\right)$.

Case 3. When $k \geq 4$, assign the vertices $v_{1}, v_{2}, \ldots, v_{k\left\lfloor\frac{n}{k}\right\rfloor}$ with the available k colors in a cyclic order and assign the corresponding u_{i} 's with the same colors. Further, assign the remaining vertices with the available colors in an equitable manner and along with the bad edges obtained from the complete graph, the equitable defective number is $b_{\chi_{e}}^{k}\left(K_{n}\right)+2(n-k)$. This
completes the proof.
Figure 5 depicts a 5 equitable coloring and 3-ENP-coloring of splitting graph of complete graphs.

(a) $S\left(K_{5}\right)$ with 5 -equitable coloring

(b) 3-ENP-coloring of $S\left(K_{5}\right)$

Figure 5 Splitting graph of complete graphs with 5 equitable coloring and 3 ENP-coloring.

Theorem 7. For a star graph $K_{1, n}, b_{\chi_{e}}^{k}\left(S\left(K_{1, n}\right)\right)= \begin{cases}n-1, & \text { if } k=2, \\ \left\lfloor\frac{2 n+2}{k}\right\rfloor-2, & \text { if } k \geq 3 .\end{cases}$
Proof. Splitting graph of star graph consists of $2 n+2$ vertices. Let v_{0} be the central vertex of the star graph $K_{1, n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ be the set of vertices which are adjacent to v_{0} and let $u_{0}, u_{1}, u_{2}, \cdots, u_{n}$ be the vertices corresponding to these vertices. Let $c_{1}, c_{2}, \cdots, c_{k}$ be the available colors in an ENP-coloring and let $V_{1}, V_{2}, \cdots, V_{n}$ be the corresponding color classes. Here, we consider the following cases.

Case 1. When $k=2$, we have the two available colors c_{1} and c_{2} and both color classes contain $n+1$ vertices. Assign the vertices in such a way that both v_{0} and u_{0} receive the same color and other vertices can be colored in an equitable manner. Here, the equitable defective number is $n-1$.

Case 2 . When $k \geq 3$, assign the available colors by considering the equitability condition we obtain $\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ bad edges.

The following result describes the ENP-coloring and the corresponding equitable defective number of splitting graph of wheel graphs.

Theorem 8. The equitable defective number of splitting graph of wheels $S\left(W_{1, n}\right)$ is given by $b_{\chi_{e}}^{k}\left(S\left(W_{1, n}\right)\right)= \begin{cases}\frac{3 n}{2}, & \text { if } k=2, n \text { is even, } \\ \frac{3(n+1)}{2}, & \text { if } k=2, n \text { is odd, } \\ \left\lfloor\frac{2 n+2}{k}\right\rfloor-2, & \text { if } k \geq 3 .\end{cases}$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the rim of the wheel graph and let v_{0} be the central vertex. Let $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ be the corresponding vertices of v_{i} 's. In an ENP-coloring of splitting graph of wheels, we consider the following cases.

Case 1. When $k=2$ and n is even, assign the vertices of the rim of the wheel with the two available colors c_{1} and c_{2}. Assign the central vertex v_{0} with color c_{2} which results in $\frac{n}{2}$ bad edges. Now, assign the vertices u_{i} 's with the same colors which are assigned to v_{i} 's, where
$1 \leq i \leq n$. Further, assign u_{0} with color c_{1} to satisfy the equitability condition. We observe that there are $\frac{n}{2}$ bad edges which are incident with u_{0} and $\frac{n}{2}$ bad edges which are incident with v_{0}. Hence, the equitable defective number is $\frac{3 n}{2}$.

Case 2. When $k=2$ and n is odd, assign the vertices $v_{1}, v_{2}, \ldots, v_{n}$ as in Case 1 and assign the central vertex v_{0} with color c_{2}, we obtain $\left\lceil\frac{n}{2}\right\rceil$ bad edges. Now, assign the u_{i} 's with the same colors which are assigned to v_{i} 's where $0 \leq i \leq n$. We observe that there are $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with v_{0} and $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with u_{0}. Also there are two more bad edges that is $v_{1} u_{n}$ and $u_{1} v_{n}$. Hence, the equitable defective number in this case is $\frac{3(n+1)}{2}$.

Case 3. When $k \geq 3$, assign v_{0} and u_{0} with color c_{1} and assign other v_{i} 's with the remaining available colors alternatively. In an ENP-coloring, each color class should contain either $\left\lceil\frac{2 n+2}{k}\right\rceil$ vertices or $\left\lfloor\frac{2 n+2}{k}\right\rfloor$ vertices. Assume that the central vertex v_{0} lies in the color class with minimum cardinality $\left\lfloor\frac{2 n+2}{k}\right\rfloor$ and since only one v_{i} received color $c_{1},\left\lfloor\frac{2 n+2}{k}\right\rfloor-1$ number of u_{i}^{\prime} s should receive color c_{1}. Since u_{0} is colored with color $c_{1},\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ number of u_{i} 's other than u_{0} should receive color c_{1} and since v_{0} is adjacent to all u_{i} 's except u_{0}, we get $\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ bad edges. Thus, the equitable defective number is $\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$.

The following theorem discusses the ENP-coloring of splitting graph of helm graphs.
Theorem 9. The equitable defective number of splitting graph of helm $S\left(H_{1, n}\right)$ is given by

$$
b_{\chi_{e}}^{k}\left(S\left(H_{1, n}\right)\right)= \begin{cases}\frac{3 n}{2}, & \text { if } k=2, n \text { is even, } \\ \frac{3 n+5}{2}, & \text { if } k=2, n \text { is odd } \\ 3, & \text { if } k=3, n \text { is odd }\end{cases}
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the rim of the wheel graph and let v_{0} be the central vertex. Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the pendent vertices such that each v_{i} is adjacent to v_{i}^{\prime} for $i=$ $1,2, \ldots, n$. Let $u_{0}, u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ be the vertices corresponding to all v_{i}^{\prime} 's. In an ENP-coloring, we consider the following cases.

Case 1. When $k=2$ and n is even, assign the rim vertices $v_{1}, v_{2}, \ldots, v_{n}$ with colors c_{1} and c_{2} alternatively. Now, assign the pendent vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ such that if v_{i} is assigned with color $c_{1}\left(\right.$ or $\left.c_{2}\right)$, then assign v_{i}^{\prime} with color $c_{2}\left(\right.$ or $\left.c_{1}\right)$. Also, assign the central vertex v_{0} with color c_{1}, so that we obtain $\frac{n}{2}$ bad edges among the spokes. Further, for $i=1,2, \ldots, n, 1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$, assigning the $u_{i}{ }^{\prime}$ s with the same colors assigned to v_{i} 's and assign u_{0} with color c_{2} to satisfy the equitability condition. Thus, we obtain $\frac{n}{2}$ bad edges which are incident with v_{0} and $\frac{n}{2}$ bad edges which are incident with u_{0}. Hence, in this case the equitable defective number is $\frac{3 n}{2}$.

Case 2. When $k=2$ and n is odd, assign the v_{i}^{\prime} 's and u_{i} 's with the available colors as in Case 1 except for v_{0} and u_{0}. Now, assign the central vertex v_{0} with color c_{2} we obtain $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges among the spokes and one bad edge on the rim. Further, assign u_{0} with color c_{1}, we obtain $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with v_{0} and $\left\lceil\frac{n}{2}\right\rceil$ bad edges which are incident with u_{0}. Along with those, we get two more bad edges which are $u_{1} v_{n}$ and $v_{1} u_{n}$. Hence, the equitable defective number is $\frac{3 n+5}{2}$.

Case 3. For even n, the equitable chromatic number of splitting graph of helm is 3 . Therefore, in an ENP-coloring, we consider only one case, $k=3$ and n is odd. Assign the rim vertices of the helm $v_{1}, v_{2}, \ldots, v_{n-1}$ with colors c_{1} and c_{2} alternatively and assign v_{n} with color c_{3}. Now, assign the vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}$ such that if v_{i} is assigned with color c_{1} or c_{2}, then
assign v_{i}^{\prime} with color c_{2} or c_{3} and assign v_{n}^{\prime} with color c_{1}. Further, assign the central vertex v_{0} with color c_{3} which results in only one bad edge among the spokes. Then, assign the u_{i} 's where $i=0,1,2, \ldots, n$ with the same colors assigned to v_{i} 's, where $0 \leq i \leq n$. Also, assign the remaining u_{i} 's where $i=1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$ with the available three colors by satisfying the equitability condition, we obtain two bad edges ($v_{0} u_{n}$ and $u_{0} v_{n}$). Hence, the equitable defective number in this case is 3 .

3 ENP-Coloring of Shadow Graphs

The shadow graph of a graph G denoted by $\operatorname{Sh}(G)$, is the graph obtained by taking two copies of G say G^{\prime} and $G^{\prime \prime}$, and join each vertex v^{\prime} in G^{\prime} to the neighbours of the corresponding vertex $v^{\prime \prime}$ in $G^{\prime \prime}$.

The next result discusses the ENP-coloring of shadow graph of paths. The shadow graph of a path is obtained by taking two copies of paths and by joining each vertex of the first copy of the path to the neighbours of the corresponding vertex of the second copy of the path.
Theorem 10. For a path $P_{n}, b_{\chi_{e}}^{k}\left(\operatorname{Sh}\left(P_{n}\right)\right)=2$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the first copy of the path P_{n}^{\prime} and let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the corresponding path $P_{n}^{\prime \prime}$. According to the definition of shadow graph of paths, the neighbours of v_{i} should be adjacent to $u_{i} \forall i$. We observe that the equitable chromatic number of shadow graph of paths is 2 when n is even and 3 when n is odd. Thus, in an ENPcoloring, we consider only one case as $k=2$ and n is odd. Here, we assign the vertices v_{i} 's with the available colors c_{1} and c_{2} alternatively. Now, assign the corresponding u_{i} 's where $1 \leq i \leq n-1$ with the same colors as assigned to v_{i} 's. Further, assign u_{n} with color c_{2} to satisfy the equitability condition, we obtain only two bad edges $u_{n-1} u_{n}$ and $v_{n-1} u_{n}$. Thus, the equitable defective number is 2 .

Figure 6 depicts a 2-ENP-coloring of shadow graph of paths.

Figure 6 Shadow graph of paths with 2-ENP-coloring.
The following theorem investigates the ENP-coloring of shadow graph of cycles.
Theorem 11. For a cycle $C_{n}, b_{\chi_{e}}^{k}\left(S h\left(C_{n}\right)\right)=4$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the first copy of the cycle C_{n}^{\prime} and let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the second copy of the cycle $C_{n}^{\prime \prime}$. Here, each $v_{i}, 1 \leq i \leq v_{n-1}$, in C_{n}^{\prime} is adjacent to u_{i-1} and u_{i+1} in $C_{n}^{\prime \prime}, v_{n}$ is adjacent to u_{n-1} and u_{1}, v_{1} is adjacent to u_{n} and u_{1}. The equitable chromatic number of shadow graph of cycles is 2 when n is even and 3 when n is odd. Thus, in an ENP-coloring we consider only one case as $k=2$ when n is odd. Now, assign the vertices with the available colors as in Theorem 10 we obtain four bad edges such as $v_{1} v_{n}, u_{1} v_{n}, u_{n-1} u_{n}$ and $v_{n-1} u_{n}$. Hence, the equitable defective number is 4 .

Figure 7 depicts a 2-ENP-coloring of shadow graph of a cycle.

Figure 7 Shadow graph of cycles with 2-ENP-coloring.
The following theorem discusses the ENP-coloring of shadow graph of complete graphs. A shadow graph of a complete graph is obtained by taking two copies of complete graphs and by joining the vertices depending on the adjacency in the original graph. Thus, we see that the following theorem is an immediate consequence of Theorem 2.

Theorem 12. The equitable defective number of shadow graph of complete graphs $\operatorname{Sh}\left(K_{n}\right)$ is $b_{\chi_{e}}^{k}\left(S h\left(K_{n}\right)\right)=b_{\chi_{e}}^{k}\left(K_{n}\right)+b_{\chi_{e}}^{k}\left(S\left(K_{n}\right)\right)$.

Proof. The proof follows from Theorem 2 and by the rule of shadow graph construction.
Theorem 13. For a star graph $K_{1, n}$,

$$
b_{\chi_{e}}^{k}\left(\operatorname{Sh}\left(K_{1, n}\right)\right)= \begin{cases}2(n-1), & \text { if } k=2 \\ 2\left[\left\lfloor\frac{2 n+2}{k}\right\rfloor-2\right], & \text { if } k \geq 3\end{cases}
$$

Proof. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the first copy of the shadow graph of star graph and $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the second copy. Here, we consider the following cases.

Case 1. When $k=2$, among the two color classes, each color class contains $n+1$ vertices. Assign v_{0} and u_{0} with the same color and assign the remaining vertices in an equitable manner, we obtain $n-1$ bad edges among the v_{i}^{\prime} s and $u_{i}^{\prime} s$ and $n-1$ bad edges between the v_{i}^{\prime} 's and u_{i} 's. Thus, the equitable defective number is $2(n-1)$.

Case 2. When $k \geq 3$, assign the available colors by considering the equitability condition, we obtain $\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ bad edges among the u_{i}^{\prime} s and v_{i}^{\prime} 's and $\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ bad edges between the $u_{i}^{\prime} \mathrm{s}$ and $v_{i}^{\prime} \mathrm{s}$. Thus, the equitable defective number is $2\left[\left\lfloor\frac{2 n+2}{k}\right\rfloor-2\right]$.

In view of Theorem 7, we can restate Theorem 13 as follows.
Theorem 14. For a star graph $K_{1, n}, b_{\chi_{e}}^{k}\left(S h\left(K_{1, n}\right)\right)=2 b_{\chi_{e}}^{k}\left(S\left(K_{1, n}\right)\right)$.
Figure 8 depicts a 3-ENP-coloring of the shadow graphs of star graphs.

Figure 8 Shadow graph of star graphs with 3-ENP-coloring.

In the next theorem, we examine the ENP-coloring of shadow graph of wheel graphs.
Theorem 15. The equitable defective number of shadow graph of wheels $\operatorname{Sh}\left(W_{1, n}\right)$ is

$$
b_{\chi_{e}}^{k}\left(\operatorname{Sh}\left(W_{1, n}\right)\right)= \begin{cases}2 n, & \text { if } k=2, n \text { is even, } \\ 2(n+1), & \text { if } k=2, n \text { is odd } \\ 2\left\lfloor\frac{2 n+2}{3}\right\rfloor-4, & \text { if } k \geq 3 .\end{cases}
$$

Proof. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the first copy of the wheel graph and let $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ be the corresponding vertices in the second copy of wheel graph. In an ENP-coloring, we consider the following cases.

Case 1. When $k=2$ and n is even, assign the v_{i}^{\prime} 's with the available colors c_{1} and c_{2} alternatively and assign the central vertex v_{0} with color c_{2}, we obtain $\frac{n}{2}$ bad edges among the spokes. Now, assign the u_{i}^{\prime} 's, $1 \leq i \leq n$, with the same colors assigned to v_{i} 's and assign u_{0} with color c_{1} to satisfy the equitability condition. Here, we obtain $\frac{n}{2}$ bad edges which are incident with v_{0} and $\frac{n}{2}$ bad edges which are incident with u_{0}. Along with that we obtain $\frac{n}{2}$ bad edges among the spokes of the second copy of the wheel. Hence, the equitable defective number is $2 n$.

Case 2. When $k=2$ and n is odd, assign all the v_{i} 's as in Case 1 , we obtain $\left\lfloor\frac{n}{2}\right\rfloor$ spokes bad edges and one bad edge on the rim of the wheel. Now, assign the u_{i} 's where $0 \leq i \leq n$ with the same colors assigned to v_{i} 's we obtain $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with v_{0} and $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with u_{0}. Also, there are two more bad edges $v_{1} u_{n}$ and $u_{1} v_{n}$. Now, the second copy of the wheel also result in $\left\lceil\frac{n}{2}\right\rceil$ bad edges and hence the equitable defective number is $2(n+1)$.

Case 3. When $k \geq 3$, assign v_{0}, u_{0}, v_{n} and u_{n} with color c_{1}. Assign the remaining v_{i} 's using all available colors except c_{1}. Thus, we get a $v_{0} v_{n}$ bad edge and $u_{0} v_{n}$ bad edge. In an ENP-coloring, each color class should contain either $\left\lceil\frac{2 n+2}{k}\right\rceil$ vertices or $\left\lfloor\frac{2 n+2}{k}\right\rfloor$ vertices. Considering the color class containing color c_{1} with minimum cardinality, c_{1} has to be repeated $\left\lfloor\frac{2 n+2}{k}\right\rfloor$ times. Since two v_{i}^{\prime} 's receive color $c_{1},\left\lfloor\frac{2 n+2}{k}\right\rfloor-2$ number of u_{i}^{\prime} s should receive color c_{1}. Thus, assign the $u_{i}{ }^{\prime} \mathrm{s}, 1 \leq i \leq n-1$, using the available colors and c_{1} alternatively considering the equitability condition. Since v_{0} is adjacent to all u_{i} 's where $1 \leq i \leq n$, we obtain $\left\lfloor\frac{2 n+2}{k}\right\rfloor-3$ bad edges which are incident with v_{0}. Since u_{0} is the central vertex, $\left\lfloor\frac{2 n+2}{k}\right\rfloor-3$ bad edges are there among the spokes of the second copy of the wheel. Hence, the equitable defective number is $2\left\lfloor\frac{2 n+2}{k}\right\rfloor-4$.

In the following result, we discuss the ENP-coloring of shadow graph of helm graphs.
Theorem 16. The equitable defective number of shadow graph of helm $\operatorname{Sh}\left(H_{1, n}\right)$ is given by

$$
b_{\chi_{e}}^{k}\left(\operatorname{Sh}\left(H_{1, n}\right)\right)= \begin{cases}2 n, & \text { if } k=2, n \text { is even, } \\ 2(n+2), & \text { if } k=2, n \text { is odd } \\ 4, & \text { if } k=3, n \text { is odd } .\end{cases}
$$

Proof. Let the labelling of vertices be given in Theorem 9 and consider the following cases.
Case 1. When $k=2$ and n is even, assign the vertices $v_{1}, v_{2}, \ldots, v_{n}$ with the available colors c_{1} and c_{2} alternatively and assign $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ in such a way that if v_{i} is assigned with color c_{1} (or c_{2}) assign the corresponding u_{i} with color $c_{2}\left(\right.$ or $\left.c_{1}\right)$. Now, assign v_{0} with color c_{1} and u_{0} with color c_{2} we observe that we obtain $\frac{n}{2}$ bad edges resulting from the first copy of the helm, $\frac{n}{2}$ bad edges which are incident with $v_{0}, \frac{n}{2}$ bad edges which are incident with u_{0} and $\frac{n}{2}$ bad edges from the second copy of the helm. Hence, the equitable defective number is $2 n$.

Case 2. When $k=2$ and n is odd, assign the vertices as in Case 1 we obtain $\left\lceil\frac{n}{2}\right\rceil$ bad edges resulting from the first copy of helm, $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with v_{0} and $\left\lfloor\frac{n}{2}\right\rfloor$ bad edges which are incident with u_{0}. Along with that we obtain two more bad edges $v_{1} u_{n}$ and $u_{1} v_{n}$. Also, considering the $\left\lceil\frac{n}{2}\right\rceil+1$ bad edges from the second copy of the helm the equitable defective number is $2(n+2)$.

Case 3. When $k=3$ and n is odd, assign $v_{1}, v_{2}, \ldots, v_{n-1}$ with the colors c_{1} and c_{2} alternatively and assign the corresponding u_{i} 's with the same colors as assigned to v_{i} 's. And assign the vertices $v_{0}, v_{n}, u_{0}, u_{n}$ with color c_{3}, we obtain one bad edge among the spokes of each copy of helm. Now, all the remaining vertices can be assigned by the three available colors in an equitable manner we obtain two bad edges $v_{0} u_{n}$ and $u_{0} v_{n}$. Thus, the equitable defective number is 4 .

Conclusion

In this paper, we discussed the ENP-coloring of Mycielski graph of complete graphs and star graphs, splitting graph and shadow graph of paths, cycles, complete graphs, star graphs, wheel graphs and helm graphs. The equitable defective number of these graphs are also determined. This study can be extended to other derived graph classes, graph products and graph powers. Further investigation is possible for graph operations such as union, intersection, complement and join of fundamental graph classes.

Acknowledgements

The authors would like to gratefully acknowledge the critical and constructive comments of the anonymous referee(s) which helped in improving the content and style of presentation of the paper significantly.

References

[1] Ellumkalayil M.T., Naduvath S. A note on $\delta^{(k)}$-colouring of the Cartesian product of some graphs. Commun. Comb. Optim. 2022, 7 (1), 113-120. doi:10.22049/cco.2021.27114.1211
[2] Ellumkalayil M.T., Naduvath S. On $\delta^{(k)}$-colouring of Powers of Paths and Cycles. Theory Appl. Graphs 2021, 8 (2), 1-15. doi:10.20429/tag.2021.080203
[3] Ellumkalayil M.T., Naduvath S. On $\delta^{(k)}$-coloring of powers of helm and closed helm graphs. Discrete Math. Algorithms Appl. 2022, 14 (02), 2150116. doi:10.1142/S1793830921501160
[4] Ellumkalayil M.T., Naduvath S. On $\delta^{(k)}$-coloring of generalized Petersen graphs. Discrete Math. Algorithms Appl. 2022, 14 (01), 2150096. doi:10.1142/S1793830921500968
[5] Fornasiero F., Naduvath S. On J-colorability of certain derived graph classes. Acta Univ. Sapientiae Inform. 2019, 11 (2), 159-173. doi:10.2478/ausi-2019-0011
[6] Harary F. Graph theory. Narosa Publ. House, New Delhi, 1996.
[7] Jose S., Naduvath S. On Equitable Near Proper Coloring of graphs. Commun. Comb. Optim., to appear.
[8] Jose S., Naduvath S. On Equitable Near Proper Coloring of Mycielski Graph of Graphs. In: Shukla S., Unal A., Kureethara J.V., Mishra D.K., Han D.S. (Eds.) Data Science and Security. Lecture Notes in Networks and Systems, 290. Springer, Singapore, 20216 331-339. doi:10.1007/978-981-16-4486-3_37
[9] Kok J., Naduvath S. $\delta^{(k)}$ - Colouring of cycle related graphs. Adv. Stud. Contemp. Math. 2022, 32 (1), 113-120. doi:10.48550/arXiv.1807.01915
[10] Meyer W. Equitable coloring. Amer. Math. Monthly. 1973, 80 (8), 920-922. doi:10.1080/00029890.1973.11993408
[11] Naduvath S., Susanth C., Kalayathankal S.J. On the rainbow neighbourhood number of Mycielski type graphs. Int. J. Appl. Math. 2018, 31 (6), 797-803. doi:10.12732/ijam.v31i6.8
[12] Pirzada S., Rather B.A., Aijaz M., Chishti T.A. On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of \mathbb{Z}_{n}. Linear Multilinear Algebra 2020, 70 (17), 1-16. doi:10.1080/03081087.2020.1838425
[13] Pirzada S., Rather B.A., Shaban R.U.,Merajuddin S. On signless Laplacian spectrum of the zero divisor graphs of the ring \mathbb{Z}_{n}. Korean J. Math. 2021, 29 (1), 13-24. doi:10.11568/kjm.2021.29.1.13
[14] Rather B.A., Chishti T.A., Pirzada S. On distance Laplacian spectrum of zero divisor graphs of the ring \mathbb{Z}_{n}. Carpathian Math. Publ. 2021, 13 (1), 48-57. doi:10.15330/cmp.13.1.48-57
[15] Rather B.A., Pirzada S., Naikoo T.A., Shang Y. On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n. Mathematics 2021, 9 (5), 482. doi:10.3390/math9050482
[16] Sampathkumar E., Walikar H.B. On the splitting graph of a graph. Karnatak Univ J. Sci. 1980, 35 (36), 1981.
[17] Vivin V., Kaliraj K. Equitable Coloring of Mycielskian of Some graphs. J. Math. Ext. 2017, 11 (2), 1-18.
[18] West D.B. Introduction to graph theory. Prentice Hall of India, New Delhi, 2001.

Хосе С., Надуват С. Про рівномірне майже правильне розфарбування деяких похідних класів графів // Карпатські матем. публ. — 2022. — Т.14, №2. — С. 529-542.

Рівномірне майже правильне розфарбування графа G - це дефектне розфарбування, в якому кількість вершин у будь-яких двох колірних класах відрізняється більш ніж на одиницю, а отримані погані ребра мінімізуються шляхом обмеження кількості класів кольорів, які можуть мати суміжність серед власних елементів. У цій статті досліджується рівномірне майже правильне розфарбування деяких похідних класів графів, таких як графи Мичельського, розщеплювальні графи та тіньові графи.

Ключові слова і фрази: рівномірне майже правильне розфарбування, граф Мичельського, розщеплюваний граф, тіньовий граф.

[^0]: У $\Delta \mathrm{K} 519.17$
 2020 Mathematics Subject Classification: 05C15, 05C75.

