
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2022, 14 (2), 543–563 Карпатськi матем. публ. 2022, Т.14, №2, С.543–563

doi:10.15330/cmp.14.2.543-563

On the Kantor product, II
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We describe the Kantor square (and Kantor product) of multiplications, extending the classifica-

tion proposed in [J. Algebra Appl. 2017, 16 (9), 1750167]. Besides, we explicitly describe the Kantor

square of some low dimensional algebras and give constructive methods for obtaining new trans-

posed Poisson algebras and Poisson-Novikov algebras; and for classifying Poisson structures and

commutative post-Lie structures on a given algebra.

Key words and phrases: Kantor product, Kantor square, non-associative algebra.

1 Federal University of Espı́rito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória - ES, Brazil
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Introduction

The idea of obtaining new objects from old ones by using derivative operations has long

been known in algebra [1]. In its most general form, the idea was realized by A. Malcev [19].

Let Mn be an associative algebra of matrices of order n over a field F. Assume that some finite

collection Λ = (aij, bij, cij) of matrices in Mn is given. Denote by M
(Λ)
n an algebra defined

on a space of matrices in Mn with respect to new multiplication x ·Λ y = ∑i,j aijxbijycij. It

was proved that every n-dimensional algebra over F is isomorphic to a subalgebra of M
(Λ)
n

[19]. Other interesting ways to derive the initial multiplication are isotopes, homotopes and

mutations [2,7,9,20]. The concept of an isotope was introduced by A.A. Albert [1]. Let algebras

A and A0 have a common linear space on which right multiplication operators Rx and R
(0)
x

are defined (for A and A0, resp.). We say that A0 and A are isotopic if there exist invertible

linear operators φ, ψ, ξ such that R
(0)
x = φRxψξ. We call A0 an isotope of A. Let A be an

arbitrary associative algebra, and let p, q be two fixed elements of A. Then a new algebra is

derived from A by using the same vector space structure of A but defining a new multiplication

x ∗ y = xpy − yqx. The resulting algebra is called the (p, q)-mutation of the algebra A.

The definition of the Kantor product of multiplications comes from the study of certain

class of algebras. In 1972, I.L. Kantor introduced the class of conservative algebras [12], that

contains many important classes of algebras (see [15]), for example, associative, Lie, Jordan

and Leibniz algebras. To define what will be called Kantor product, we need to introduce the

algebras U(n) (see, for more details, [13, 15]). Consider the space U(n) of all bilinear multipli-

cations on the n-dimensional vector space Vn. Now, fix a vector u ∈ Vn. For A, B ∈ U(n) (two
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multiplications) and x, y ∈ Vn, we set

x ∗ y = JA, BK(x, y) := A(u, B(x, y))− B(A(u, x), y) − B(x, A(u, y)).

This new multiplication is called the (left) Kantor product of the multiplications A and B

(it is possible to define the right Kantor product). The Kantor product of a multiplication “·”

by itself will be the Kantor square of “·”:

x ∗ y := u · (x · y)− (u · x) · y − x · (u · y).

It is easy to see that the Kantor square of a multiplication is a particular case of the Malcev

construction in non-associative sense. On the other side,

1) in commutative associative case it coincides with a mutation,

2) in left commutative and left symmetric cases it coincides with an isotope.

As in [14], we will assume that the Kantor product is always the left Kantor product. In [14], it

was studied the Kantor product and Kantor square of many well known algebras, for example,

associative, (anti)-commutative, Lie, Leibniz, Novikov, dialgebras, Poisson, and obtained some

results about derivations, automorphisms, ideals and nilpotent algebras.

In this paper, we will continue studying the Kantor product of multiplications for some

other algebras. Besides, we compute the Kantor square of some finite dimensional algebras and

we relate some cases with the ones studied in [14]. In the last section, we give a constructive

method for classifying Poisson structures on a given algebra. Throughout this manuscript,

algebras with product “·” will have always the product written as x · y := xy.

If we are considering an algebra A with product “•”, we will use the following notations:

As(x, y, z)• = (x • y) • z − x • (y • z),

J(x, y, z)• = (x • y) • z + (z • x) • y + (y • z) • x,

x ◦ y = x • y + y • x.

Also, for an algebra A we will write w ≈ v if w − v ∈ Ann A, where Ann A is the annihilator

of A. To avoid some discussion during this manuscript, we consider that all algebras are

over a field F of characteristic zero. We highlight that many of this results hold in positive

characteristic.

1 Kantor square

In this section we will consider variety of algebras with a single multiplication and we will

study the Kantor square in this cases.

1.1 Middle-commutative algebras

The variety of middle-commutative algebras (or reverse algebras) is defined by the identity

(xy)z = z(yx). This nomenclature appeared in [17] (see also [21]), in counterpart to the def-

inition of left and right commutative algebras. Note that the variety of middle-commutative

algebras contains the variety of (anti)-commutative algebras and it is contained in the variety

of flexible algebras.
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Proposition 1. Let (A, ·) be a middle-commutative algebra. Then (A, ∗) is a middle-commu-

tative algebra.

Proof. We have

(x ∗ y) ∗ z = u((u(xy))z) − u(((ux)y)z) − u((x(uy))z) (L1)

− (u(u(xy)))z + (u((ux)y))z + (u(x(uy)))z (L2)

− (u(xy))(uz) + ((ux)y)(uz) + (x(uy))(uz), (L3)

z ∗ (y ∗ x) = u(z(u(yx))) − u(z((uy)x)) − u(z(y(ux))) (l1)

− (uz)(u(yx)) + (uz)((uy)x) + (uz)(y(ux)) (l2)

− z(u(u(yx))) + z(u((uy)x)) + z(u(y(ux))). (l3)

Computing (x ∗ y) ∗ z − z ∗ (y ∗ x), we can see the following cancelations: (L1) with (l1),

(L2) with (l3) and (L3) with (l2). Therefore, (A, ∗) is a middle-commutative algebra.

1.2 Pseudo-flexible algebras

The variety of pseudo-flexible algebras is defined by

x(xy) = (yx)x

(see [17]). Note that the variety of pseudo-flexible algebras contains the variety of middle-

commutative algebras.

Proposition 2. Let (A, ·) be a pseudo-flexible algebra. Then (A, ∗) is a pseudo-flexible algebra.

Proof. The proof follows the ideas in Proposition 1.

1.3 Weakly associative algebras

The variety of weakly associative algebras is defined by

As(x, y, z) + As(y, z, x) = As(y, x, z)

(see, for example, [22]). It contains commutative algebras, associative algebras, Lie algebras

and symmetric Leibniz algebras as subvarieties. A direct computation shows that the follow-

ing assertion is valid.

Proposition 3. Let (A, ·) be a weakly associative algebra. Then (A, ∗) is a commutative algebra

if and only if (xu)y = y(ux) for all x, y ∈ A. In particular, (A, ∗) is a commutative algebra if

(A, ·) is middle-commutative. Besides, (A, ∗) is an anticommutative algebra if and only if

As(x, y, u) + As(y, x, u) = (xu)y + (yu)x for all x, y ∈ A.

Besides, note that if (A, ·) is a weakly associative algebra, it holds that

x ∗ y = u(xy)− (ux)y − x(uy) = (xy)u − x(yu)− (xu)y,

that is, the weakly associative algebras are the algebras that the left Kantor square is equal to

the right Kantor square. A consequence of this is the following theorem, that will give us the

analogous results of some algebras considered in [14, Lemmas 5, 6, 8 and 9].
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Proposition 4. Let (A, ·) be a weakly associative algebra.

(a) If (A, ·) is a right commutative algebra, then (A, ∗) is a right-commutative algebra.

(b) If (A, ·) is a right Leibniz algebra, then ∗ = 0.

(c) If (A, ·) is a right Zinbiel algebra, then (A, ∗) is a right Zinbiel algebra.

(d) If (A, ·) is a right Novikov algebra, then (A, ∗) is a right Novikov algebra.

A direct consequence of [22], Proposition 1, is the following result.

Proposition 5. Let (A, ·) be an algebra such that (A, ∗) is a weakly associative algebra. Then,

Lxu − Rux is a derivation of (A, ·) for all u, x ∈ A.

1.4 Anti-associative algebra

The variety of anti-associative algebras (see, for example, [23]) is defined by

(xy)z = −x(yz).

Note that an anti-associative algebra is a nilpotent algebra of nilpotency index 4. A direct

computation (or using [14], Lemma 25) shows that the next proposition is valid.

Proposition 6. Let (A, ·) be an anti-associative algebra. Then (A, ∗) is a nilpotent algebra of

nilpotency index at most 3, and therefore, is anti-associative.

1.5 Quasi-commutative associative algebras

The variety of quasi-commutative associative algebras is defined by the relations

(xy)z = z(yx) and As(x, y, z) = 0.

Based on the work of M. Rais Khan (see [21]) these algebras were considered in [17] as a gen-

eralization of associative-commutative algebras.

Proposition 7. Let (A, ·) be a quasi-commutative associative algebra. Then (A, ∗) is an associ-

ative-commutative algebra.

Proof. First, by [14, Lemma 1], we know that As(x, y, z)∗ = 0. Besides, note that by associativity

and middle-commutativity we obtain

x ∗ y = −x(uy) = −(yu)x = −y(ux) = y ∗ x.
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1.6 Quasi-commutative alternative algebras

The variety of quasi-commutative alternative algebras is defined by the identities

(xy)z = z(yx), (x, y, z) = −(y, x, z) = (y, z, x).

The variety of quasi-commutative Jordan algebras is defined by the identities

(xy)z = z(yx), x2(yx) = (x2y)x.

This class of algebras appeared, for example, in [21]. The variety of quasi-commutative Jordan

algebras contains (properly) the variety of Jordan algebras and it is contained properly in the

variety of noncommutative Jordan algebras (see [21]).

Proposition 8. Let (A, ·) be a quasi-commutative alternative algebra. Then (A, ∗) is a quasi-

commutative Jordan algebra.

Proof. First, by Proposition 1, we have (x ∗ y) ∗ z = z ∗ (y ∗ x). It was already computed the

Jordan property for alternative algebras in [14, Theorem 10]. Since middle-commutativity is

stronger than the flexible property, we obtain

(x ∗ x) ∗ (y ∗ x)− ((x ∗ x) ∗ y) ∗ x = 2(((xuxu)y)(ux) − (xuxu)(y(ux))).

By middle-commutativity, xuxu = uxux. Since each 2-generated alternative algebra is

associative, we have

(x ∗ x) ∗ (y ∗ x)− ((x ∗ x) ∗ y) ∗ x = 2As((xu)2 , y, ux) = 2As((ux)2, y, ux) = 0.

1.7 Mock-Lie algebras

The variety of mock-Lie algebras (or Jacobi-Jordan algebras; see [25]) is defined by the rela-

tions xy = yx and J(x, y, z) = 0. Note that a mock-Lie algebra is a Jordan algebra.

Proposition 9. Let (A, ·) be a mock-Lie algebra. Then:

(a) (A, ∗) is a commutative algebra such that holds Ann-equality (2);

(b) (A, ∗) is a mock-Lie algebra if, and only if, (((xy)u)z) + (((zx)u)z) + (((yz)u)x) ≈ 0;

(c) (A, ∗) is a Jordan algebra if, and only if, (((x2u)y)u)x ≈ (x2u)((xy)u).

Proof. By direct computation we obtain x ∗ y = 2(xy)u, and thus (x ∗ y) ∗ z = 4(((xy)u)z)u.

Therefore

J(x, y, z)∗ = 4[(((xy)u)z) + (((zx)u)y) + (((yz)u)x)]u (1)

and we obtain (b). Since J(x, y, z) = 0, we can apply it in each term of equation (1) to obtain

J(x, y, z)∗ = 4[(xy)(uz) + (zx)(uz) + (yz)(ux)]u. Therefore,

(((xy)u)z) + (((zx)u)y) + (((yz)u)x) ≈ (xy)(uz) + (zx)(uy) + (yz)(ux). (2)

A direct computation shows item (c).
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1.8 Almost-Lie algebras-1

The variety of almost-Lie algebras is defined (see [17]) by the identities

(xy)z = z(yx), J(x, y, z) = 0.

Since (anti)-commutativity implies in the first property, the variety of almost-Lie algebras

contains the variety of Lie and Mock-Lie algebras.

Proposition 10. Let (A, ·) be an almost-Lie algebra. Then (A, ∗) is a commutative algebra.

Besides, (A, ∗) is a Mock-Lie algebra (see Section 1.7) if and only if

(u(x ◦ y))z + (u(x ◦ z))y + (u(y ◦ z))x ≈ 0.

Proof. We have that

x ∗ y = u(xy)− (ux)y − x(uy) = u(xy) + (xy)u = u(xy + yx) = y ∗ x.

To complete the proof, note that the last equality implies that

J∗(x, y, z) = 2u[(u(xy + yx))z + (u(xz + zx))y + (u(yz + zy))x].

1.9 Almost-Lie algebras-2

The variety of almost-Lie algebras is defined (see [16]) by the identities

xy = −yx, J(x, y, z)t = 0.

The variety of almost-Lie algebras is formed by anticommutative central extensions of Lie al-

gebras. The most interesting subvariety of the variety of almost-Lie algebras is the variety of

anticommutative CD-algebras, which is defined by a common property of Lie and Jordan alge-

bras: every commutator for two right multiplications gives a derivation [16]. For an anticommutative

algebra L we denote the set of all anticommutative k-dimensional central extensions as cent(L).

Proposition 11. Let (A, ·) be an almost-Lie algebra. Then (A, ∗) is a 2-step nilpotent anticom-

mutative algebra. In particular, for each Lie algebra L, we have

(centk(L), ∗) ⊆ centk(L, ∗).

Proof. We have that

(x ∗ y) ∗ z = (u(xy)− (ux)y − x(uy)) ∗ z = −J(x, y, u) ∗ z =

− (u(J(x, y, u)z)− (uJ(x, y, u))z − J(x, y, u)(uz)) = 0.

1.10 Two-sided Leibniz algebras

The variety of two-sided Leibniz algebras [6] is defined by the identities

(xy)z = z(yx), J(x, y, z) = 0, (xy + yx)z = 0.

Since a two-sided Leibniz algebra is an almost-Lie algebra, we have the following result.

Proposition 12. Let (A, ·) be a two-sided Leibniz algebra. Then ∗ = 0.
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1.11 CL- and CB-algebras

Remember that the centralizer of an element x in an algebra A is the set

CA(x) = {y ∈ A : xy = yx = 0}.

An algebra A is a CL-algebra if every centralizer in A is an ideal of A (see, for example, [23]).

Note that an associative-commutative algebra is a CL-algebra.

Proposition 13. (a) Let (A, ·) be an associative-commutative algebra. Then, (A, ∗) is an

associative-commutative algebra and therefore a CL-algebra.

(b) Let (A, ·) be a CL-algebra. If y ∈ CA(x) then yu ∈ CA(x). Moreover, if y ∈ CA(ux) or

x ∈ CA(x) then y ∈ (CA(x), ∗).

Now, let us consider CB-algebras.

Definition 1. Let A be an algebra. We say that elements x, y ∈ A (or the pair (x, y)) have

commutative bonding (CB) if xy = 0 implies that (xz)y = 0 for all z ∈ A.

An algebra A is a CB-algebra if every pair of elements of A have commutative bonding (see,

for example, [23]). Note that, for example, right-commutative algebras are CB-algebras. In [23],

it was proven that if A is an anticommutative algebra, than A is a CB-algebra if and only if it is

an anti-associative algebra. Besides, by [23, Theorem 3.9], if A is an anticommutative algebra,

then A is a CL-algebra if and only if A is a CB-algebra.

Proposition 14. Let (A, ·) be an anticommutative CB-algebra (CL-algebra). Then (A, ∗) is an

anticommutative CB-algebra (CL-algebra).

Besides, we have the following result.

Proposition 15. (a) (A, ∗) is a CB-algebra for any algebra (A, ·) such that (A, ∗) is right-

commutative. In particular, if (A, ·) is a weak-associative and right-commutative algebra,

then (A, ∗) is a right-commutative and, therefore, (A, ∗) is a CB-algebra.

(b) Let (A, ·) be an associative CB-algebra (CL-algebra). Then (A, ∗) is an associative CB-

algebra (CL-algebra).

Proof. Item (a) is a consequence of Proposition 4. To prove item (b), first note that associative

property implies that if x ∗ y = 0 then xuy = 0 for all u ∈ A. Therefore, if x ∗ y = 0, we have

(x ∗ y) ∗ z = xuzuy = 0 for all u, z ∈ A. In the case of CL-algebras, we need to show that

CA(x)∗ = {a ∈ A; a ∗ x = x ∗ a = 0} is an ideal of (A, ∗). But the proof follows the same

arguments.

1.12 Left-symmetric algebras

The variety of left-symmetric algebras (or left pre-Lie algebras) is defined (see [17]) by

As(x, y, z) = As(y, x, z). It contains, for example, the variety of right Novikov algebras.

Proposition 16. Let (A, ·) be a left-symmetric algebra. Then (A, ∗) is a left-symmetric algebra

if and only if As(y, xu, u) ≈ As(x, yu, u).
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Proof. Note that

x ∗ y = u(xy)− (ux)y − x(uy) = x(uy)− (xu)y − x(uy) = −(xu)y.

Then,

As(x, y, z)∗ = (x ∗ y) ∗ z − x ∗ (y ∗ z)

= (−(xu)y) ∗ z − x ∗ (−(yu)z) = (((xu)y)u)z − (xu)((yu)z).

Now, we have

As(x, y, z)∗ − As(y, x, z)∗ = (((xu)y)u)z − (xu)((yu)z) − (((yu)x)u)z + (yu)((xu)z)

= (((xu)y − (yu)x)u)z + ((yu)(xu) − (xu)(yu))z

= (((xu)y)u − ((yu)x)u + (yu)(xu) − (xu)(yu))z

= (As(xu, y, u)− As(yu, x, u))z = (As(y, xu, u)− As(x, yu, u))z.

The result follows.

1.13 Poisson algebras

A Poisson algebra (A, ·, {, }) is an algebra with two multiplications such that (A, ·) is an

associative-commutative algebra, (A, {, }) is a Lie algebra and they satisfy the following com-

patibility condition

{x, yz} = {x, y}z + y{x, z} (Leibniz rule).

Let (A, ·, {, }) be a Poisson algebra. If we consider the Kantor product of this two mul-

tiplications, it was proven in [14] that J{, }, ·K = 0 and (A, J·, {, }K) is a Lie algebra. On the

other hand, it is known that if we define the new multiplication ◦ = ·+ {, } then (A, ◦) is a

noncommutative Jordan algebra.

Proposition 17. Let (A, ◦) be as before. Then (A, ∗) is a noncommutative Jordan algebra.

Proof. First of all, let us compute x ∗ y for any x, y ∈ A. Using all the properties of (A, ·, {, })

(except commutativity of ·) we obtain

x ∗ y = u ◦ (x ◦ y)− (u ◦ x) ◦ y − x ◦ (u ◦ y)

= u(xy + {x, y}) + {u, xy + {x, y}} − (ux + {u, x})y

− {ux + {u, x}, y} − x(uy + {u, y})− {x, uy + {u, y}}

= u{x, y} − {ux, y} − x(uy)− {x, uy} = {y, u}x + u{y, x} − {x, u}y − xuy.

By the last equation, we see that (A, ∗), in general, is neither an (anti)-commutative algebra

nor middle-commutative.

Let us now verify that ∗ is flexible. Note that

x ∗ y + y ∗ x = −xuy − yux = −2xyu. (3)

Then,

(x ∗ y) ∗ x − x ∗ (y ∗ x) = −x ∗ (x ∗ y)− 2xu(x ∗ y)− x ∗ (−x ∗ y − 2xuy)

= −2xu(x ∗ y) + 2x ∗ (xuy)

= −2xu({y, u}x + u{y, x} − {x, u}y − xuy)

+ 2({xuy, u}x + u{xuy, x} − {x, u}xuy − xuxuy)

= −2xu({y, u}x + u{y, x}) + 2({xuy, u}x + u{xuy, x})

= −2(xy{u, xu} + uy{x, xu}) = 0.
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Now, let us check that ∗ satisfy the Jordan identity. By (3) we have x ∗ x = −x2u. Therefore

(x ∗ x)∗(y ∗ x)−((x ∗ x)∗ y)∗ x = −(x2u) ∗ (y ∗ x) + (x2u ∗ y) ∗ x

= −{y ∗ x, u}x2u − u{y ∗ x, x2u}+ {x2u, u}y ∗ x +x2u2(y ∗ x)

+ ({y, u}x2u + u{y, x2u} − {x2u, u}y − x2u2y) ∗ x

= −2x2u{y ∗ x, u}−2xu2{y ∗ x, x}+{x2u, u}y ∗ x+x2u2(y ∗ x)

+ (2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y) ∗ x.

Expanding the last expression we obtain the following

− 2x2u{{x, u}y + u{x, y} − {y, u}x − xuy, u}

− 2xu2{{x, u}y + u{x, y} − {y, u}x − xuy, x}

+ {x2u, u}({x, u}y + u{x, y} − {y, u}x − xuy)

+ x2u2({x, u}y + u{x, y} − {y, u}x − xuy)

+ {x, u}(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y)

+ u{x, 2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y}

− {2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y, u}x

− xu(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y).

(4)

Now, let us compute separately the terms of the form {, } (and without {, }), {}{} and

{, {}}, since they have no relation in A. In each case, we will show that these respective sums

must be zero.

• Terms of the form {, } and without {, }.

Collecting the respective terms in the last expression we obtain

− 2x2u{u, xuy} − 2xu2{x, xuy}+ xuy{u, x2u}

+ x2u2({x, u}y + u{x, y} − {y, u}x − xuy)

+ {x, u}(−x2u2y)− u{x, x2u2y} − {u, x2u2y}x

− xu(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x} − x2u2y)

= −2x2u2(y{u, x}+ x{u, y})− 2x2u2(y{x, u}+ u{x, y})

+ 2x2u2y{u, x}+ x2u2y{x, u}+ x2u3{x, y} − x3u2{y, u}

− x3u3y − x2u2y{x, u} − ux2(2uy{x, u}+ u2{x, y})

− u2x(2xy{u, x}+ x2{u, y})− 2x3u2{y, u}

− 2u3x2{y, x} − 2x2yu2{u, x}+ x3u3y = 0.

Now, we consider the remaining terms in (4), that are

2x2u({u, {x, u}y} + {u, u{x, y}} − {u, {y, u}x})

+ 2xu2({x, {x, u}y} + {x, u{x, y}} − {x, {y, u}x})

− 2xu{u, x}({x, u}y + u{x, y} − {y, u}x)

+ {x, u}(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x})

+ u({x, 2{y, u}x2u}+ {x, 2u2x{y, x}}+ {x, 2xyu{u, x}})

+ x({u, 2{y, u}x2u}+ {u, 2u2x{y, x}}+ {u, 2xyu{u, x}}).
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Since (A, {, }) is a Lie algebra and using Leibniz rule, we obtain

2x2u(y{u, {x, u}}+ {x, u}{u, y}+ u{u, {x, y}} − x{u, {y, u}} − {y, u}{u, x})

+ 2xu2(y{x, {x, u}}+ {x, u}{x, y}+ u{x, {x, y}} + {x, y}{x, u} − x{x, {y, u}})

− 2xu{u, x}({x, u}y + u{x, y} − {y, u}x) + {x, u}(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x})

+ 2x2u2{x, {y, u}}+ 2u{y, u}{x, x2u}+ 2u3x{x, {y, x}}+ 2u{y, x}{x, u2x}

+ 2xyu2{x, {u, x}}+ 2u{u, x}{x, xyu}2x3u{u, {y, u}}+ 2x{y, u}{u, x2u}+ 2u2x2{u, {y, x}}

+ 2x{y, x}{u, u2x}+ 2x2yu{u, {u, x}}+ 2x{u, x}{u, xyu}.

• Terms of the form {}{}.

2x2u({x, u}{u, y} − {y, u}{u, x}) + 2xu2({x, u}{x, y}+ {x, y}{x, u})

− 2xu{u, x}({x, u}y + u{x, y} − {y, u}x)

+ {x, u}(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x})

+ 2u{y, u}{x, x2u}+ 2u{y, x}{x, u2x}+ 2u{u, x}{x, xyu} + 2x{y, u}{u, x2u}

+ 2x{y, x}{u, u2x}+ 2x{u, x}{u, xyu}

= 4xu2{x, u}{x, y} − 2xu{u, x}({x, u}y + u{x, y} − {y, u}x)

+ {x, u}(2{y, u}x2u + 2u2x{y, x}+ 2xyu{u, x}) + 2ux2{y, u}{x, u}

+ 4u2x{y, x}{x, u} + 2ux{u, x}(y{x, u} + u{x, y}) + 4x2u{y, u}{u, x}

+ 2xu2{y, x}{u, x}+ 2xu{u, x}(x{u, y} + y{u, x}) = 0.

• Terms of the form {, {}}.

2x2u(y{u, {x, u}} + u{u, {x, y}} − x{u, {y, u}})

+ 2xu2(y{x, {x, u}} + u{x, {x, y}} − x{x, {y, u}}) + 2x2u2{x, {y, u}}+ 2u3x{x, {y, x}}

+ 2xyu2{x, {u, x}}+ 2x3u{u, {y, u}}+ 2u2x2{u, {y, x}}+ 2x2yu{u, {u, x}} = 0.

Therefore, (A, ∗) is a noncommutative Jordan algebra.

1.14 On solvable algebras

Let (A, ·) be a solvable algebra of solvability index s > 0. For example, a metabelian algebra

is a solvable algebra of solvability index 2. We have:

Proposition 18. (A, ∗) is a solvable algebra of solvability index at most s.

Proof. Since x ∗ y = u(xy) − (ux)y − x(uy), the result follows direct from an induction argu-

ment.

1.15 On the nucleus of an algebra

The nucleus of an algebra (A, ·), that we will denote by N(A, ·), is the set of elements

n ∈ (A, ·) such that

As(n, a, b) = As(a, n, b) = As(a, b, n) = 0

for all a, b ∈ (A, ·).

We refer the reader to [4].
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Proposition 19. Let (A, ·) be an algebra. Then we have:

(a) if n, u ∈ N(A, ·), then n ∈ N(A, ∗),

(b) if n, nu, un ∈ N(A, ·), then n ∈ N(A, ∗).

Proof. First note that item (b) will follows the same ideas as item (a), but with less steps. For

item (a), since u ∈ N(A, ·), it follows that x ∗ y = −(xu)y for all x, y ∈ A. Therefore,

(n ∗ y) ∗ z − n ∗ (y ∗ z) = (((nu)y)u)z − (nu)((yu)z) = ((nu)y)(uz) − (nu)(y(uz))

= (n(uy))(uz) − (nu)(y(uz)) = n((uy)(uz)) − n(u(y(uz))) = 0.

The other cases are treated in the same way. This ends the proof.

1.16 On algebras with involution

Let (A, ·, ⋆) an algebra with involution ⋆. Then, we have the following result.

Proposition 20. If u is self-adjoint (that is, u⋆ = u) and is in the center of (A, ·), then ⋆ is an

involution of (A, ∗).

2 Kantor square of low dimensional algebras

In this section, we will study the Kantor square of some low dimensional algebras, com-

puting explicitly them.

Remark 1. Since all algebras (A, ·) considered in this section are commutative or anticommu-

tative, we have that (A, ∗) will be also a commutative or anticommutative algebra, respectively.

When we describe the multiplication from the basis of an algebra, the zero products will be

omitted. Besides, since all computations in this section are standard, all of them will be omit-

ted. The notation of algebras will be the same as in the cited papers.

2.1 3-dimensional Jordan algebras

The Kantor square of an associative-commutative algebra is an associative-commutative

(in this case, x ∗ y = −uxy). In the case of non-associative Jordan algebras we do not have the

same behaviour. For this purpose, consider the 3-dimensional Jordan algebra T
US
02 given in [10]

(using the same notation) by

e2
1 = e1, e2

2 = e2, e2
3 = e1 + e2, e1e3 = e2e3 =

1

2
e3.

Write u = u1e1 + u2e2 + u3e3, where {e1, e2, e3} is a basis of TUS
02 . Then, (TUS

02 , ∗) is given by

e1 ∗ e1 = −u1e1, e2 ∗ e2 = −u2e2, e3 ∗ e3 = −u2e1 − u1e2 − u3e3,

e1 ∗ e3 = −
u1

2
e3 − u3e1, e2 ∗ e3 = −

u2

2
e3 − u3e2.

A standard computation shows that (TUS
02 , ∗) is a Jordan algebra if and only if u1 = u2 = 0

or u3 = 0.
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In this case, we have:

1) if u1 = u2 = 0 and u3 6= 0, then (TUS
02 , ∗) ∼= (TAU

08 , ·),

2) if u1 = 0, u2 6= 0 (or u1 6= 0, u2 = 0) and u3 = 0, then (TUS
02 , ∗) ∼= (T13, ·),

3) if u1 6= 0, u2 6= 0 and u3 = 0, then (TUS
02 , ∗) ∼= (TUS

02 , ·).

On the other hand, if u3 6= 0 and u1, u2 are not both zero, (TUS
02 , ∗) will be a non-Jordan

commutative algebra, which does not satisfy almost-Jordan identity

2((yx)x)x + yx3 = 3(yx2)x,

generalizing Jordan identity.

The Jordan algebras T13 and T14 from [10], for example, give us Jordan algebras indepen-

dent from the choice of u. In fact, since

(T13, ·) : e2
1 = e1, e1e2 = 1

2 e2, e2
2 = e3,

(T14, ·) : e2
1 = e1, e1e2 = 1

2 e2,

a standard computation shows that

(T13, ∗) : e1 ∗ e1 = −u1e1, e1 ∗ e2 = −u1(
1
2 e2), e2 ∗ e2 = −u1e3,

(T14, ∗) : e1 ∗ e1 = −u1e1, e1 ∗ e2 = −u1(
1
2 e2).

Therefore, if u1 6= 0, then (T13, ∗) ∼= (T13, ·) and (T14, ∗) ∼= (T14, ·).

2.2 3-dimensional anticommutative algebras

Let us remember that the Kantor square of a Lie algebra is zero. It is known, that each

3-dimensional binary-Lie (and Malcev) algebra is Lie. Hence, we are interested in considering

only non-Lie algebras. By [11], we have the following 3-dimensional non-Lie anticommutative

algebras over C:

Aα
1 : e1e2 = e3, e1e3 = e1 + e3, e2e3 = αe2,

A2 : e1e2 = e1, e2e3 = e2,

A3 : e1e2 = e3, e1e3 = e1, e2e3 = e2.

Write u = u1e1 + u2e2 + u3e3. Therefore, we have (using notation from [11, Table A.1]) the

following.

Proposition 21. Let A be a 3-dimensional non-Lie anticommutative algebra, then (A, ∗) is a

metabelian Lie algebra. Namely,

(a) (Aα
1 , ∗) is defined by

e1 ∗ e2 = u3((1+ α)e3 − αe2), e1 ∗ e3 = −u2((1+ α)e3 − αe2), e2 ∗ e3 = u1((1+ α)e3 − αe2).

(b) (A2, ∗) is a Lie algebra defined by

e1 ∗ e2 = u3e1, e1 ∗ e3 = −u2e1, e2 ∗ e3 = u1e1.
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(c) (A3, ∗) is a Lie algebra defined by

e1 ∗ e2 = 2u3e3, e1 ∗ e3 = −2u2e3, e2 ∗ e3 = 2u1e3.

(d) The sets of algebras {(A0
1, ∗)}u∈V3

, {(A−1
1 , ∗)}u∈V3

, {(A2, ∗)}u∈V3
, and {(A3, ∗)}u∈V3

are

coincident. It includes algebras isomorphic to the nilpotent 3-dimensional Lie algebra

and the metabelian non-nilpotent 3-dimensional Lie algebra with 1-dimensional square.

The set {(Aα 6=0,−1
1 , ∗)}u∈V3

includes only one non-isomorphic algebra, that is the metabe-

lian non-nilpotent 3-dimensional Lie algebra with 1-dimensional square.

2.3 4-dimensional binary Lie algebras

The variety of binary Lie algebras (see [18]) is defined by the relations xy = −yx and

J(xy, x, y) = 0. Note that every Malcev algebra and anticommutative CD-algebra is a binary

Lie algebra. From [18], we have the following non-Lie binary Lie algebras of dimension 4:

A0 : e1e2 = e3, e3e4 = e3,

Aα 6=2 : e1e2 = e3, e1e4 = e1, e2e4 = e2, e3e4 = αe3,

where A2 is a Lie algebra, A−1 is a Malcev (non-Lie) algebra, and A0 is an anticommutative

(non-Lie) CD-algebra. Write u = u1e1 + u2e2 + u3e3 + u4e4.

Proposition 22. Let A be a 4-dimensional binary Lie (non-Lie) algebra, then (A, ∗) is a nilpo-

tent Lie algebra, which is isomophic to the algebra with multiplication table e1e2 = e3.

Proof. It is easy to see that:

1) (A0, ∗) is a Lie algebra defined by

e1 ∗ e2 = −u4e3, e1 ∗ e4 = u2e3, e2 ∗ e4 = −u1e3,

2) (Aα, ∗) is a Lie algebra defined by

e1 ∗ e2 = (2 − α)u4e3, e1 ∗ e4 = −(2 − α)u2e3, e2 ∗ e4 = (2 − α)u1e3,

for α 6= 0, 2. We have (Aα, ∗) ∼= (A0, ∗).

Hence, (Aα, ∗) and (A0, ∗) are 4-dimensional 2-step nilpotent anticommutative algebras. It is

know that there is only one algebra with this property and it is isomorphic to an algebra with

multiplication table e1e2 = e3.

3 Kantor product

3.1 Generic Poisson structures

Let (A, ·) be an algebra, then an anticommutative bilinear mapping {, } is called a generic

Poisson structure if it satisfies the following compatibility condition:

{x, y · z} = {x, y} · z + y · {x, z} (Leibniz rule).

Note that Poisson, non-commutative Poisson, non-associative Poisson, Poisson-Malcev,

Malcev-Poisson-Jordan, etc. algebras are particular cases of generic Poisson structures with

its underlying algebra.

Proposition 23. Let {, } be a generic Poisson structure on (A, ·). Then J{, }, ·K = 0 and

(A, J·, {, }K) is an anticommutative algebra.

Proof. By the Leibniz rule J{, }, ·K = 0 (see [14, Lemma 5]). On the other hand, J·, {, }K is anti-

commutative, by a direct computation using Leibniz rule and anti-commutativity of {, }.
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3.2 Transposed Poisson algebras

A transposed Poisson algebra (A, ·, [, ]) (see [3]) is an algebra with two bilinear operations

such that (A, ·) is an associative-commutative algebra and (A, [, ]) is a Lie algebra that satisfy

the following compatibility condition

2z[x, y] = [zx, y] + [x, zy] (dual Leibniz rule). (5)

Proposition 24. Let (A, ·, [, ]) be a transposed Poisson algebra. Then (A, J·, [, ]K) is a Lie algebra

and (A, J[, ], ·K) is a commutative algebra.

Proof. First, writing ∗ := J ·, [, ]K, we have x ∗ y = u[x, y] − [ux, y]− [x, uy] = −u[x, y]. There-

fore, (A, J·, [, ]K) is an anticommutative algebra. Since (x ∗ y) ∗ z = u[u[x, y], z], we have

J(x, y, z)∗ = u[u[x, y], z] + u[u[z, x], y] + u[u[y, z], x] = 0,

by [3, Theorem 2.5. (7)].

Note that commutativity of J[, ], ·K is direct from the definition of Kantor product.

Let us now consider a special example of transposed Poisson algebras constructed in

[8, Theorem 25]. The transposed Poisson algebra (W , ·, [, ]) is spanned by {Li, Ij}i,j∈Z. These

generators satisfy

[Lm, Ln] = (m − n)Lm+n, [Lm, In] = (m − n − a)Im+n, Lm · Ln = wLm+n, Lm · In = wIm+n,

where w is an fixed element from the vector space generated by {Li, Ij}i,j∈Z and the multipli-

cation given by juxtaposition satisfies LiLj = Li+j and Li Ij = Ii+j.

Proposition 25. Let ⋆ = J[, ], ·K and {, } = J ·, [, ]K be new multiplications defined on multi-

plications of the transposed Poisson algebra (W , ·, [, ]) defined above. Then (W , ⋆, {, }) is a

transposed Poisson algebra.

Proof. Let u = ∑k(u
1
k Lk + u2

k Ik) be the element to define the Kantor product and

w = ∑k(w
1
k Lk + w2

k Ik) be the element to define the multiplication “·” . Then by a straight-

ful calculation we have only the following nonzero multiplications:

Li ⋆ Lj = −∑
k,n

(

(k + n)u1
kw1

nLi+j+k+n + (k + n + a)(u1
kw2

n + u2
kw1

n)Ii+j+k+n

)

,

Li ⋆ Ij = −∑
k,n

(k + n)u1
kw1

n Ii+j+k+n,

{Li, Lj} = (j − i)∑
k,n

(

u1
kw1

nLi+j+k+n + (u1
kw2

n + u2
kw1

n)Ii+j+k+n

)

,

{Li, Ij} = (j − i)∑
k,n

u1
kw1

n Ii+j+k+n.

Now let us define Ω := i + j + m + k1 + n1 + k2 + n2. Hence,

(Li ⋆ Lj) ⋆ Lm = ∑
k1,n1,k2,n2

(k1 + n1)(k2 + n2)u
1
k1

w1
n1

u1
k2

w1
n2

LΩ

+ ∑
k1,n1,k2,n2

(k1 + n1)(k2 + n2 + a)u1
k1

w1
n1
(u1

k2
w2

n2
+ u2

k2
w1

n2
)IΩ

+ ∑
k1,n1,k2,n2

(k1 + n1 + a)(k2 + n2)u
1
k2

w1
n2
(u1

k1
w2

n1
+ u2

k1
w1

n1
)IΩ

=Li ⋆ (Lj ⋆ Lm)
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and
(Li ⋆ Lj) ⋆ Im = ∑

k1,n1,k2,n2

(k1 + n1)(k2 + n2)u
1
k1

w1
n1

u1
k2

w1
n2

IΩ = Li ⋆ (Lj ⋆ Im).

Then ⋆ is associative.

It is easy to see that

Li ⋆ {Lj, Lm} = (j − m)
(

∑
k1,n1,k2,n2

(k1 + n1)u
1
k1

w1
n1

u1
k2

w1
n2

LΩ

+ ∑
k1,n1,k2,n2

(k1 + k2 + n1 + n2 + a)u1
k1

w1
n1
(u1

k2
w2

n2
+ u2

k2
w1

n2
)IΩ

)

.

On the other hand,

{Li ⋆ Lj, Lm} = ∑
k1,n1,k2,n2

(i + j + k1 + n1 − m)(k1 + n1)u
1
k1

w1
n1

u1
k2

w1
n2

LΩ

+ ∑
k1,n1,k2,n2

(i + j + k1 + n1 − m)(k1 + n1)(u
1
k2

w2
n2
+ u2

k2
w1

n2
)u1

k1
w1

n1
IΩ

+ ∑
k1,n1,k2,n2

(i + j + k1 + n1 − m)(k1 + n1 + a)(u1
k1

w2
n1
+ u2

k1
w1

n1
)u1

k2
w1

n2
IΩ

and

{Lj, Li ⋆ Lm} = ∑
k1,n1,k2,n2

(j − i − m − k1 − n1)(k1 + n1)u
1
k1

w1
n1

u1
k2

w1
n2

LΩ

+ ∑
k1,n1,k2,n2

(j − i − m − k1 − n1)(k1 + n1)(u
1
k2

w2
n2
+ u2

k2
w1

n2
)u1

k1
w1

n1
IΩ

+ ∑
k1,n1,k2,n2

(j − i − m − k1 − n1)(k1 + n1 + a)(u1
k1

w2
n1
+ u2

k1
w1

n1
)u1

k2
w1

n2
IΩ,

which gives the dual Leibniz rule (5) for {Li, Lj, Lm}. By similar calculation, we have the dual

Leibniz rule (5) for {Li, Lj, Im}, which conclude the proof of the statement.

Another example of a transposed Poisson algebra can be constructed in the following way

(see [3, Proposition 2.2]). Let (A, ·) be an associative-commutative algebra and D be a deriva-

tion of A. Define the multiplication

[x, y] := xD(y)− D(x)y

for all x, y ∈ A. Therefore, (A, ·, [, ]) is a transposed Poisson algebra. Then, we have the follow-

ing result.

Proposition 26. Let ◦ = J[, ], ·K and {, } = J ·, [, ]K be new multiplications defined on mul-

tiplications of the transposed Poisson algebra (A, ·, [, ]) defined above. Then (A, ◦, {, }) is a

transposed Poisson algebra.

Proof. A direct computation shows that x ◦ y = xyD(u) (that is, associative) and

{x, y} = −u[x, y]. By Theorem 24, we need only to check the dual Leibniz rule. For this

purpose, we have

{z ◦ x, y}+ {x, z ◦ y} = −u([zxD(u), y] + [x, zyD(u)])

= −u(zxD(u)D(y) − D(zxD(u))y + xD(zyD(u)− zyD(u)D(x)))

= −u(zxD(u)D(y) − zyD(u)D(x) − y(xD(zD(u))

+ D(x)zD(u))) − ux(yD(zD(u)) + D(y)zD(u))

= −2uzD(u)(xD(y) − yD(x)) = −2uzD(u)[x, y] = 2z ◦ {x, y}.
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3.3 Pre-Lie Poisson algebras

A pre-Lie Poisson algebra (A, ·, ◦) (see [3]) is an algebra with two bilinear operations such

that (A, ·) is an associative-commutative algebra, (A, ◦) is a left pre-Lie algebra and the follow-

ing conditions hold:

(xy) ◦ z = x(y ◦ z), (x ◦ y)z − (y ◦ x)z = x ◦ (yz)− y ◦ (xz).

Here, by a pre-Lie Poisson algebra we mean a right pre-Lie Poisson algebra, using an anal-

ogous nomenclature as left and right Novikov-Poisson algebras (see [14]). For the definition

of left pre-Lie Poisson algebra, see [14] for the analogous properties (see section of Novikov-

Poisson algebras). Note that a Novikov-Poisson algebra is a pre-Lie Poisson algebra.

Proposition 27. Let (A, ·, ◦) be a right pre-Lie Poisson algebra. Then (A, J◦, ·K) is a commuta-

tive algebra and (A, J·, ◦K) is a left pre-Lie algebra.

Proof. (A, J◦, ·K) is a commutative algebra direct from definition of the product. Now, writing

∗ := J·, ◦K, we have that x ∗ y = −x ◦ (uy). Therefore

(x ∗ y) ∗ z − (y ∗ x) ∗ z = (x ◦ (uy)) ◦ (uz)− (y ◦ (ux)) ◦ (uz)

= ((x ◦ y)u) ◦ (uz)− ((y ◦ x)u) ◦ (uz)

= x ◦ (y(u ◦ (uz)))− y ◦ (x(u ◦ (uz)))

= x ◦ ((uy) ◦ (uz))) − y ◦ ((ux) ◦ (uz)))

= x ◦ (u(y ◦ (uz)))− y ◦ (u(x ◦ (uz))) = x ∗ (y ∗ z)− y ∗ (x ∗ z),

and the result follows.

By the same computations as in the case of left Novikov-Poisson algebras (in [14]), we obtain

the following result.

Proposition 28. Let (A, ·, ◦) be a left pre-Lie Poisson algebra. Then (A, J◦, ·K) is an associative-

commutative algebra and (A, J·, ◦K) is a right pre-Lie algebra.

3.4 On Novikov-Poisson algebras

A (left) Novikov-Poisson algebra (A, ·, ◦) (see [14]) is an algebra with two bilinear opera-

tions such that (A, .) is an associative-commutative algebra, (A, ◦) is a left Novikov algebra

and the following conditions hold:

x ◦ (yz) = (x ◦ y)z (6)

and

(xy) ◦ z − x(y ◦ z) = (xz) ◦ y − x(z ◦ y). (7)

In [14], it was proved that (A, J·, ◦K) is a left Novikov algebra and (A, J◦, ·K) is an associati-

ve-commutative algebra. With this we can obtain the following assertion.
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Corollary 1. Let (A, ·, ◦) be a left Novikov-Poisson algebra. Then (A, J◦, ·K, J·, ◦K) is a left

Novikov-Poisson algebra.

Proof. We need only to proof the remaining properties (6) and (7). For this purpose, write

⋆ = J◦, ·K and • = J·, ◦K. First, observe that x ⋆ y = −u ◦ (xy) and x • y = −(ux) ◦ y. Thus

x • (y ⋆ z) = (ux) ◦ (u ◦ (yz)) = u ◦ ((ux) ◦ (yz)) = u ◦ (((ux) ◦ y)z) = (x • y) ⋆ z.

For the second property we have

(x ⋆ y) • z − x ⋆ (y • z)− ((x ⋆ z) • y − x ⋆ (z • y))

= (u(u ◦ (xy))) ◦ z − u ◦ (x((uy) ◦ z))− (u(u ◦ (xz))) ◦ y + u ◦ (x((uz) ◦ y))

= (u(u ◦ (xy))) ◦ z − (u(u ◦ (xz))) ◦ y − u ◦ (x((uy) ◦ z − (uz) ◦ y))

= ((u(u ◦ x))y) ◦ z − ((u(u ◦ x))z) ◦ y − u ◦ (x(u(y ◦ z)− u(z ◦ y)))

= (u(u ◦ x))(y ◦ z)− (u(u ◦ x))(z ◦ y)− u ◦ ((xu)(y ◦ z − z ◦ y)) = 0.

Remark 2. Since we do not use the left-commutativity of ◦ in the above computation, we obtain

an analogous result in the case of left pre-Lie Poisson algebra (see Section 3.3).

In [14, Theorem 29], it was proved that if (A, ·) is a finite dimensional associative algebra,

then (A, ·) and (A, ∗) are isomorphic if and only if A is a skew field. By the above corollary,

we can formulate the following question: are (A, ·, ◦) and (A, J◦, ·K, J ·, ◦K) isomorphic?

In general, this is not true. For this purpose, we will use the classification of 3-dimensional

(right) Novikov-Poisson algebras given in [24, Theorem 3]. If we consider the left Novikov-

Poisson algebras given in this theorem (after considering in the Novikov product the opposite

product) given by the left Novikov algebras A5, A6 and A7 (notation from [24]), all of them

results in J◦, ·K = 0 and J·, ◦K = 0.

On the other hand, we will show that, in the next example, (A, ·, ◦) and (A, J◦, ·K, J·, ◦K) are

isomorphic. Consider the following algebra (given by C8 in [24, Theorem 3]).

Left Novikov product is given by:

e3 ◦ e1 = e1, e3 ◦ e2 = e2, e3 ◦ e3 = e3.

Associative-commutative product is given by:

e1e3 = ae1 + be2, e2
2 = ce2, e2e3 = ae2, e2

3 = de1 + f e2 + ae3,

where f c = ab = bc = 0.

In the base {e1, e2, e3}, write u = u1e1 + u2e2 + u3e3. We will suppose that u3 6= 0 and a 6= 0.

Computing the Kantor product, we obtain:

• left Novikov product J·, ◦K

J·, ◦K(e3, e1) = −u3ae1, J·, ◦K(e3, e2) = −u3ae2, J·, ◦K(e3, e3) = −u3ae3;

• associative-commutative product J◦, ·K

J◦, ·K(e1, e3) = −u3(ae1 + be2), J◦, ·K(e2, e2) = −u3ce2,

J◦, ·K(e2, e3) = −u3ae2, J◦, ·K(e3, e3) = −u3(de1 + f e2 + ae3).
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4 A method for classifying Poisson structures and commutative post-Lie

structures with a given algebra

4.1 A method for classifying Poisson structures with a given algebra

Let (A, ·) be an algebra of dimension n. We say that the multiplication [, ], defined on the

underlying space of the algebra A, gives a Poisson structure, if (A, [, ]) is a Lie algebra and

multiplications · and [, ] are satisfying the Leibniz rule

[x · y, z] = [x, z] · y + x · [y, z].

Then for algebras (A, ·) and (A, [, ]) we can associate two elements a and l from our “big”

algebra U(n) (constructed by the Kantor way). It is easy to see that

Jl, aK = 0 and Jl, lK = 0.

Moreover, if the basis in U(n) will be chosen by a similar way of [15, Section 3], l is anti-

symmetric on lower indices. Hence, we have a constructive method for description of all Pois-

son structures on a given algebra. We will illustrate it for a basic example below.

Example 1. There are no nontrivial Poisson structures defined on a 2-dimensional Jordan al-

gebra A with multiplication table given by

e1 · e1 = e1, e1 · e2 =
1

2
e2, e2 · e1 =

1

2
e2.

Proof. Let l be the element from U(2), which is associated to a Poisson structure defined on

A. Thanks to [15], the multiplication of U(2) is given in terms of “elementary” multiplications

αk
i,j (i, j, k = 1, 2), such that αk

i,j(vt, vl) = δitδjlvk for all t, l = 1, 2, (where vk are basis vectors of

2-dimensional space) and presented below.

Jα1
11, α1

11K = −α1
11 Jα1

12, α1
11K = −α1

12 − α1
21 Jα2

11, α1
11K = α2

11 Jα2
12, α1

11K = 0

Jα1
11, α1

12K = 0 Jα1
12, α1

12K = −α1
22 Jα2

11, α1
12K = −α1

11 + α2
12 Jα2

12, α1
12K = −α1

12

Jα1
11, α1

21K = 0 Jα1
12, α1

21K = −α1
22 Jα2

11, α1
21K = −α1

11 + α2
21 Jα2

12, α1
21K = −α1

21

Jα1
11, α1

22K = α1
22 Jα1

12, α1
22K = 0 Jα2

11, α1
22K = −α1

12 − α1
21 + α2

22 Jα2
12, α1

22K = −2α1
22

Jα1
11, α2

11K = −2α2
11 Jα1

12, α2
11K = α1

11 − α2
21 − α2

12 Jα2
11, α2

11K = 0 Jα2
12, α2

11K = α2
11

Jα1
11, α2

12K = −α2
12 Jα1

12, α2
12K = α1

12 − α2
22 Jα2

11, α2
12K = −α2

11 Jα2
12, α2

12K = 0

Jα1
11, α2

21K = −α2
21 Jα1

12, α2
21K = α1

21 − α2
22 Jα2

11, α2
21K = −α2

11 Jα2
12, α2

21K = 0

Jα1
11, α2

22K = 0 Jα1
12, α2

22K = α1
22 Jα2

11, α2
22K = −α2

12 − α2
21 Jα2

12, α2
22K = −α2

22

Hence, a = α1
11 +

1
2(α

2
12 + α2

21) and l = γ1(α
1
12 − α1

21) + γ2(α
2
12 − α2

21). From Jl, aK = 0, we

conclude that γ1 = γ2 = 0 and it follows that all Poisson structures on a are trivial.

4.2 A method for classifying commutative post-Lie structures on a given Lie algebra

A commutative post-Lie structure on a Lie algebra (A, [, ]) is a bilinear product x · y that

satisfy (see [5])

x · y = y · x, [x, y] · z = x · (y · z)− y · (x · z) and x · [y, z] = [x · y, z] + [y, x · z].
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A direct consequence is the following proposition.

Proposition 29. Let (A, ·) be a commutative post-Lie structure on a Lie algebra (A, [, ]). Then

(a) J ·, [, ]K = 0,

(b) (A, J [, ], ·K) is a commutative algebra.

Let (A, [, ]) be a Lie algebra of dimension n with a given commutative post-Lie structure

(A, ·). Then for algebras (A, ·) and (A, [, ]) we can associate two elements a and l from our

“big” algebra U(n) (constructed by the Kantor way). It is easy to see that

Ja, lK = 0.

Moreover, if the basis in U(n) will be chosen by a similar way of [15, Section 3], a is symmetric

on lower indices. If there are some non-zero elements a satisfying the relation indicated above,

we choose only such commutative multiplications which satisfies the second post-Lie identity

[x, y] · z = x · (y · z)− y · (x · z).

Hence, we have a constructive method for description of all commutative post-Lie struc-

tures on a given Lie algebra. The present method can be inverted to find commutative post-Lie

algebra structures for a given commutative algebra. We will illustrate it for the following basic

example.

Example 2. Let S2 be the solvable 2-dimensional Lie algebra with the multiplication table

given by [e1, e2] = e2, [e2, e1] = −e2. Then a nonzero commutative post-Lie structure on S2 is

given (after a changing of the bases in S2) by one of the following commutative multiplica-

tions:

(I) e1 · e1 = e2,

(II) e1 · e2 = e2,

(III) e1 · e1 = e2, e1 · e2 = e2.

Proof. Let l be the element from U(2), which is associated to a commutative post-Lie structure

defined on S2. Thanks to [15], the multiplication of U(2) is given in the Example 1. Hence,

l = α2
12 − α2

21 and a =
2

∑
j=1

(γ
j
1α

j
11 + γ

j
2(α

j
12 + α

j
21) + γ

j
3α

j
22).

From Ja, lK = 0, we conclude that

a = γ1
3α1

22 + γ2
1α2

11 + γ2
2(α

2
21 + α2

12) + γ2
3α2

22.

Hence,

e1 · e1 = γ2
1e2, e1 · e2 = γ2

2e2, e2 · e2 = γ1
3e1 + γ2

3e2.
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It follows that “·”, for each z = z1e1 + z2e2, satisfies only the following additional relation

e2 · z = e1 · (e2 · z)− e2 · (e1 · z).

Hence,

z2γ1
3 = −z1γ2

1γ1
3 − z2γ2

2γ1
3, z1γ2

2 + z2γ2
3 = z1(γ

2
2)

2 + z2γ2
1γ1

3 − z1γ2
1γ2

3,

which gives us that γ2
1 is an arbitrary element, γ1

3 = γ2
3 = 0, and γ2

2 = 0 or γ2
2 = 1. Then we

have only two types of commutative post-Lie structures defined on S2:

(1) e1 · e1 = γ2
1e2,

(2) e1 · e1 = γ2
1e2, e1 · e2 = e2.

Hence, if γ2
1 6= 0, then by a changing of bases e∗1 = e1, e∗2 = γ2

1e2, we have the statement of

our example.
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— Т.14, №2. — C. 543–563.

Ми описуємо квадрат Кантора (i добуток Кантора) множень, розширюючи класифiкацiю,

запропоновану в [J. Algebra Appl. 2017, 16 (9), 1750167]. Крiм того, ми явно описуємо квадрат

Кантора деяких алгебр малої розмiрностi i наводимо конструктивнi методи для отримання

нових транспонованих алгебр Пуассона i алгебр Пуассона-Новiкова; а також для класифiкацiї

пуассонiвських структур i комутативних постлiєвських структур на заданiй алгебрi.

Ключовi слова i фрази: добуток Кантора, квадрат Кантора, неасоцiативна алгебра.


