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Abstract

We derive expressions for several binomials sums involving a generalized tribonacci sequence. We also study double binomial
sums involving this sequence. Several explicit examples involving tribonacci and tribonacci—Lucas numbers are stated to
highlight the results.
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1. Introduction

There is a dearth of tribonacci summation identities including binomial coefficients. Our goal in this paper is to derive
several new binomial tribonacci sums such as
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and double binomial tribonacci summation identities such as
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In the above identities, n denotes a non-negative integer, s and p are arbitrary integers and G,, is a generalized tribonacci
number.
The generalized tribonacci sequence G,, = G, (co, ¢1,¢2), n > 0, is defined recursively by

Gn=Gp_1+Gn o+ Gy_3, n >3,

with initial values Gy = ¢y, G1 = ¢1, G2 = c3 not all being zero. Extension of the definition of G,, to negative subscripts is
provided by writing the recurrence relation as

an = G—(n—S) - G—(n—2) - G—(n—l)a

so that G,, is defined for all integers n.

The most prominent representatives of G,, and widely studied in the literature are G, (0,1,1) = T,, the sequence of
tribonacci numbers and G, (3,1,3) = K,, the sequence of tribonacci-Lucas numbers (sequences A000073 and A001644
in [19], respectively).

The first few tribonacci numbers and tribonacci-Lucas numbers with positive and negative subscripts are given in
Table 1.
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[ n ol 1 [ 2[3]4a[5s5[6 ] 7 [8 ]9 10 [11]12] 13 [14]
T, O] 1 [ 1 [ 2] 47 1324 [447] 81 [ 149 [274[ 504 [ 927 [1705
T, [[o]Jo[1[-1Jo]2][-3[1 4 ]85 [7[-2] 18109
K, 3] 1 [ 3 [ 7 11 [21[39[ 71 [131][241 | 443 [815[ 1499 | 2757 | 5071
K.,|3][-1]-1]5 [-s5]-1[11]-15] 3 [ 23 [—41[21 ] 43 [-105] 83

Table 1: Tribonacci and tribonacci—Lucas numbers.

Properties of (generalized) tribonacci sequences were investigated in the recent articles [1-4, 7, 8, 10, 12-18, 20, 21],
among others. For instance, Janji¢ [16] found the remarkable combinatorial identity

A generalized tribonacci number G, (¢, ¢1, ¢2) is given by the Binet formula
Gnl(co,c1,¢2) = Aa™ + BB™ + Cy", o)

where o, 8 and v are the distinct roots of the equation 23 — 22 — z — 1 = 0. The coefficients 4, B and C depend on the initial
values and are determined by the system
A + B + C = Co,

Aa+ BB+ Cvy =cq,
Aa? + BB%? 4+ Cy? = co.
The Binet formulas for 7,, and K,, are
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where
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1+ w?V/19+3v33 + wy/19 — 3V/33
v = 3 ;

and w = _1%‘/5 is a primitive cube root of unity.

Tribonacci and tribonacci-Lucas numbers with negative indices can be accessed directly, using the following result.

Lemma 1.1. For integer n,
T ,=T? | =T, 2Ty, (2)

2 _
K—n:ni- (3)

For a proof of (2), see, for example, [8, Theorem 2.2]. The proof of (3) one can find in [6, Formula (9)].

In this article, we study binomial and double binomial sums with terms being a generalized tribonacci sequence. We
derive closed forms for several such sums. We also prove a general binomial identity characterizing G, for a > 1 and b
an arbitrary integer.

2. Some auxiliary results
In this section we present some results that we will use in the sequel.
Lemma 2.1. Let ¢ € {«,3,7}. Then, for all n > 0, we have
" = Ty + ¢(To1 + Toa) + Tor. (4)

For a proof of (4), see [7, Formula (6)].
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Lemma 2.2. We have

(a—1)3=2a72 5)
(a4 1)% =204, (6)
(a® +1)% = 405, (7
(@®—1) =247, (8)
at+1 =22, 9)
with identical relations for 5 and 7.
Proof. Since
1+a+a?=a, (10)
we have )
a‘+1
- 11
a2 —1 a ( )
and )
arl_ (12)
a—1
Addition of (11) and (12) gives
(a+1)2*(a—1) =22, (13)
while their subtraction produces
(a—1)*(a+1)=2. (14)
Eliminating o + 1 between (13) and (14) gives identity (5), while the elimination of o — 1 yields (6).
Cubing identity o + 1 = 2% and making use of (5) gives (7). Subtracting (10) from « + o + o® = o' produces
identity (8). Identity (9) follows from o* + 1 = o* + a® + a® + a = (a? + 1)(« + 1) with the help of (6) and (7). O

Lemma 2.3. Let a, b, c and d be rational numbers and \ an irrational number. Then

a+Xb=c+Ad <<= a=c¢ b=d.

3. Identities from the binomial theorem and binomial transform

The next lemma will be the key ingredient to derive many results in this paper. For a proof and some applications to
Horadam numbers, see [11].

Lemma 3.1. Let n and j be integers with 0 < j < n. Then, for each z,y € C, we have

- k=i (F\ (7, k. n—k ny g n—j
S (T (4 )pran = () @y
P J)\k J

We also mention the standard fact about sequences and their binomial transforms [5]: Let (a,),>0 be a sequence of
numbers and (b,,),>0 be its binomial transform. Then we have the following relations:

b, = Z <Z) ag <~ A, = Z (Z) (_1>n—kbk. (15)
k=0 k=0

Furthermore, if ag = 0 (so that by = 0 too) the binomial pair exhibits the following properties:
Z R Xn: b (16)
k) k m

and

" /n ag 1 -
> () rtT = e an

Theorem 3.1. Let j and s be integers such that s is arbitrary and j > 0. Then

Z (k> (n> G4k:+s = (n) 2n_jG3n+j+s- (18)
J) \k J

k=j
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Proof. Use identity (9) in Lemma 3.1 with z = 1 and y = o*, taking note of Lemma 2.3. O

Corollary 3.1. For n a non-negative integer and s any integer,
n
n n
Z (k) G4k+s =2 G3n+sa (19)
k=0

> V¥ Garys = (—1)"Ganys, (20)

0

k=
i ( >G4k+s _ i 2mG3mn-;s - Gs (21)

N
> 3
v

k=1 m=1
and
. G4k+9 o 1 n m B
Zl < ) K+l n+l (;2 Games ”Gs> : (22)
Proof. To obtain (19) set j = 0 in (18). Identities (20), (21) and (22) follow form (15), (16) and (17), respectively. 0

From (19) and (20) we immediately obtain the following binomial tribonacci and tribonacci—Lucas relations.

Corollary 3.2. Forn > 0,

n n

3 (Z) Typ = 2" Ty, 3 < )m = 2" Ky,

k=0 k=0

" /n n
E Tak—3n+1 =27, Kip—3pn+1 =27,
k k
=0 k=0

Z (Z) Tap—3n =0, Z Z) Kyp—3, =3-2".

k=0 k=0

3 I

Theorem 3.2. For non-negative integer n, any integer s, we have

3n n
Z 5k ( k >ka+5 = 5n2qnGrn+s7

k=0

where the values of 0, p, q and r as given in each column in Table 2.

0 -1 (1|1 -1
»p Il 1 |1]2] 3
q 1 1] 2 1
r -2 4|5 7

Table 2: Values of 4, p, ¢ and r from Theorem 3.2.
Proof. Each of the identities (5)—(8) can be written as (a” +§)® = 29a", where the values of 6, p, ¢ and r in each case are as
given in each column in Table 2. The identity of the theorem then follows from the binomial theorem and Lemma 2.3. O

Lemma 3.2. For non-negative integer n and real or complex z,

[3n/2]

2 ) ( ) =142 41 -2z)5"

k=0

[3n/2]
2 Z (2;’_ 1) = (1+2)% —(1-2)%.

Theorem 3.3. For non-negative integer n and any integer s,

[30/2) g
Z <2k‘) G2k+s = 27171 (G4n+s + (*l)nGs—Qn%
k=0

[3n/21 o
G s—1 = 27171 G nts — (—1 nGs— n)-
S (o) orees =2 @anse = (1o
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Proof. Set z = ain Lemma 3.2, make use of identities (5) and (6), noting Lemma 2.3 with A = a. O
Setting s = 0 in Theorem 3.3, we immediately obtain the following.
Corollary 3.3. For non-negative integer n,
W3n/2) g
<2k> GQk = 2n—1 (G4n + (_1)HG—27L)7
k=0
[3n/21 /o,
n—1 n
(% B 1) Gok—1=2"""(Gan — (—1)"G_2s).
k=1
As special cases of formulas above we have:
[3n/2] a0
Z (2k> Topp = 2" (Tay + (=1)" (T35, — Ton—2T2n)),
k=0
[3n/2] 3n
Z Top—1 = 2" (Tun, — (—1)"(T5,_1 — Ton—2T2n))
— 2k —1
and
W3n/2) g,
> <2k) Koy = 2772 (2K + (—1)" (K3, — Kun)),
k=0
[3r/2] /a0
> (Qk 1) Ko = 2""2(2Kan — (=1)" (K3, = Kun))-
k=1 o
Theorem 3.4. For non-negative integer n and any integer s,
13n/2] /g
n 2n—1 n
Z <2k‘) G4k+s =2 (G5n+s + (*1) G2n+s)7
k=0
[3n/2]
( 3n >G4k - 22n—1(G5 o (_l)nGQ )
k:1 2% — 1 +s— n—+s n+s
Proof. Combining (5) with (6) yields
(@® — 1) = 4a?. (23)
Now set z = o? in Lemma 3.2 and make use of identities (7) and (23), noting Lemma 2.3 with A = a. O
Theorem 3.5. For non-negative integer n and any integer s,
13n/2] /g
n 3n—1 n
Z <2k‘) G8k’+s =2 (G9n+s + (72) G7n+s)7
k=0
[3n/2]
< 3n >G8k~ 4= 23n71(G9 _ (_2)nG7 )
s 2% — 1 +s— n—+s n+s
Proof. Combining (7) and (23) we have
(a* —1)% = 16a’. (24)
Set 2z = o* in Lemma 3.2 and make use of identities (9) and (24), noting Lemma 2.3 with X = a. O
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4. Identities from the Waring formulas

Our next result provides two combinatorial identities for generalized tribonacci numbers involving binomial coefficients.

Lemma 4.1. The following identities hold for n > 0 and real or complex x and y:

n/2] B
> (" Yt -

k=0

mn+1 _ ynJrl
r—=y
and

[n/2] n—k n
S (") etk =
k=0

(25)

(26)

Formulas (25) and (26) are well-known in combinatorics and called Waring (sometimes Girard-Waring) formulas. The

proof of these formulas can be found, for example, in [9].

Theorem 4.1. Let n be a non-negative integer and s any integer. Then

/2] 1 k n—=k G4n+s+4 - GS
Z ~21 i (G3n—2ktsta — Gan—okts) = — on

k=0
L"z/éj 1 Fin—k Gan—2kts _ Ganys + G
4 k n—k — 2m

k=0

and

Proof. Set (z,y) = (1,a%) in (25) and (26), respectively, Lemma 4.1 and use identity (8) and Lemma 2.3.

Corollary 4.1. For n > 0,

[n/2] k
1 —k Gonta — G_2op
Z <_4) (n k ) (Gn72k+4 - Gn72k) - %a

[n/2] _1 k n—k Gn72k_G2n+G*2”
4 k )n—k n2"

k=0
In particular,
w2l o\ E T T2, | + Ton_oT:
Z 1 n—k (T 7 ): onta — L5, 1 +Ton21Ton
4 k n—2k+4 n—2k on )
k=0
w2l INE =k 9 Kopia — K2, + Kan
> ~1 i (Kpn—2k4a — Kn—2i) = il
k=0
and

LHZ/QJ ! "=k T ok T+ Ton(1 — Tons)
k=0 4 E )Jn—k n2n ’
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5. Double binomial tribonacci sums

Theorem 5.1. Let n, j and s be integers with s arbitrary and j > 0. Then,

S5 () (B () B (o

k=j p=0 p=0

Proof. The identity can be derived from Lemma 3.1 using 3¢> = ¢% — ¢° + 1.

Corollary 5.1. Let n and s be integers. Then,

n k n k
Z Z(_l)k_p (k) (p) G5k+p+s = 3nG3n+s;
n k n k
Z Z(*l)kip (]C) (p> kG5k+p+s = nsnil(G3n,+s + G3n+s+1)-

(27
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Proof. Set j =0and j =1 in (27), respectively. O

Theorem 5.2. Let j and s be integers with s arbitrary and j > 0. Then

zn: > ( ) ( ) <p) % =22 (T;) zj_:o (;) Gsn—2j+am+s (28)

k=3 p=0 m
>y Sy D S CA o @
L n Z 3n—2j4+5m+s
kwo()()(? 3 3n \Jj/) S \m
Proof. Use Lemma 3.1 in conjunction with 4¢3 = ¢° + ¢ + 2 and 7¢3 = ¢°® + ¢ + 3, respectively. O

Corollary 5.2. Let n and s be integers. Then,

n k
SEQe o

k=0 p=0
n k
A\ P\ EGrsprs g
SN SRS o2 (Gappstz + Gangs—2)
k) \p 9ok
k=1 p=0
and )
S (0% () o
k - n+s,
oy \F/\p 3 3
n k n
n\ (k\ kG s 7
72 Z: <k) <p) % = (3) n(G3n+3+3 + G3n+s—2)-
k=1p=0
Proof. Set j =0and j =1 in (28) and (29), respectively. -

6. A general binomial sum identity

Theorem 6.1. Let j, s and v be integers with j,v > 0, v # 0, v # 1. Then,

()ZZ (L)) (E5) G

m=0 g=0

i EN/n\/ k \/k— T, \"/ T, \?
: v ()G () (55) G
. ;ﬂ;}; G J\k)\k—p w Ty—2 Ty—1

Proof. For v > 1 and ¢ = « write (4) in the form

o’ = Oé(TU + Tv_l(a — 1)) + Tv_g.
Now, identify z = a(T,, +Ty_1(a — 1)) and a = T,,_, and use Lemma 3.1 and the binomial theorem to get

i <k) <Z>(—1)kT32kpZ: (ﬁ) TPT- 1” 3 <k;p> (—1)wtpghtw

J

k=j w=0
J .
n m j—
=1. Tvad_ ( ) (m+q) on—j(v— 1)+q
(J) mZ::O (m) ! Z
Multiply both sides by a® and combine the similar results for 8 and v according to the Binet formula (1). 0

Corollary 6.1. We have

n k k—p k
SEE ()0 () (B e
P w Ty 2 Ty T3y

k=0 p=0 w=0

For v = 1 the left-hand side collapses and we end with G, s on both sides of the equality sign. The special values for
v =2 and v = 3 are given by

> Z ”*p< )(”wp ) Grswts = (—1)"Ganys

p=0 w=0

LN n k k—p
Z Z(il)w+p+k <k‘) <k‘ _ p> ( w >2ka+w+s = G3n+s-

k=0 p=0 w=0

and
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