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We construct the group H(A) associated with a brace A and investigate the properties of

H(A).

Introduction

Let (A,+) be an abelian group with a multiplication “·”. As in [5] we call A a brace if A
is right distributive, i.e.

i) (a+ b) · c=(a · c) + (b · c) for all a, b, c ∈ A, and

ii) A is a group with respect to circle operation “◦” defined by the rule

a ◦ b = a+ b+ a · b.

A group (A, ◦) is called the adjoint group of a brace A and denoted by A◦. It is easy to
see that

a ◦ 0 = 0 = 0 ◦ a

and so 0 is the neutral element of A◦. The inverse of a ∈ A will be denoted by a(−1).
An abelian group (M,+) is called a module [6] (with the neutral element e) over a brace

A if there exists a mapping
M × A 3 (x, a) 7→ xa ∈M

such that the following hold for any elements x, y ∈M and a, b ∈ A:

m1) (x+ y)a = xa+ ya,

m2) x(a ◦ b) = (xa)b+ xa+ xb,

m3) x0 = e.
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Since
ea = (e+ e)a = ea+ ea,

we conclude that
ea = e

for any a ∈ A. In view of x+ (−x) = e we also obtain that

0 = ea = (x+ (−x))a = xa+ (−x)a

and therefore
(−x)a = −(xa) = −xa.

A non-empty set L ⊆ M is called a submodule of a module M if the following two
conditions hold:

s1) L is a subgroup of (M,+),

s2) la ∈ L for any l ∈ L and a ∈ A.

Let A be a brace, L a submodule of an A-module M , T a subgroup of A◦. On the set of
pairs

H(L, T ) = {(l, t) | l ∈ L, t ∈ T}

we define a multiplication by the rule

(x, y)(u, v) = (xv + x+ u, y ◦ v) (1)

for x, u ∈ L and y, v ∈ T . Then H(L, T ) is a group (see Lemma 1). We prove the following

Theorem 1. Let M be a module over a brace A, L a non-zero submodule of M , T a non-zero
subgroup of A◦. Then

H = H(L, T ) = E o F

is a Frobenius group with a kernel E and a complement F , where E is isomorphic to the
additive group L+ of L and F is isomorphic to a subgroup T , if and only if the following
hold:

(i) L = Lh for every non-zero element h ∈ T ,

(ii) annT l = {t ∈ T | lt = e} = {0} for every non-zero element l ∈ L.

Recall [5] that
An+1 = A(An)

and
A(n+1) = (A(n))A

for any positive integer n. Then An is a right ideal and A(n) is a two-sided ideal in A. A brace
A is called right nilpotent (respectively left nilpotent) if A(n) = {0} for some positive integer
n. A minimal positive integer n with this property is called an index of right (respectively
left) nilpotency. In this way we obtain the following
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Theorem 2. (1) If A is a non-zero left nilpotent brace, then

(i) H(A) is a nilpotent group;

(ii) annA 6= {0}.

(2) If A is a right nilpotent brace, then H(A) is a solvable group.

Henceforth, H � G means that H is a normal subgroup of a group G and E o F is a
semidirect product of groups E,F with a normal subgroup E.

Any unexplaned terminology is standard as in [4].

1. The group associated with a brace. It is not difficult to prove the following

Lemma 1. Let M be a module over a brace A. If L is a submodule of M and T is a
subgroup of A◦, then

H = H(L, T ) = E o F

is a group with the identity element (e, 0) under the operation (1) and, moreover, E = {(l, 0) |
l ∈ L} is isomorphic to the additive group of L and F = {(e, t) | t ∈ T} is isomorphic to T .

Proof. It is easily verified that H(L, T ) is a group, for any a, l ∈ L, b ∈ T

(a, b)−1 = (−a− ab(−1), b(−1)) ∈ H

and
(a, b) = (e, b)(a, 0) ∈ EF,

(l, 0)(a,b) = (a, b)−1(l, 0)(a, b) = (−a− ab(−1), b(−1))(l, 0)(a, b) = (lb+ l, 0) ∈ E,

so E is a normal subgroup of H,

E ∩ F = {(e, 0)}.

Hence H = E o F is a semidirect product. Finally, the maps

ϕ : L 3 l 7→ (l, 0) ∈ E and ψ : T 3 t 7→ (e, t) ∈ F

are group isomorphisms.

Corollary 1. A group H(L, T ) is abelian if and only if LT = {e} and T is an abelian group.

A non-empty set S is called a subbrace of of a brace A (see [6]) if the following hold:

s1) (S,+) is a subgroup of (A,+),

s2) uv ∈ S for any u, v ∈ S.

It is obviously that {0} and A are trivial subbraces in A. Since A can be regarded as A-
module, every submodule I of A-module A is called a right ideal of A [5] (there is no similar
concept of a left ideal). Therefore I is a right ideal of A if and only if the following hold:
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i1) (I,+) is a subgroup of (A,+),

i2) ia ∈ I for any i ∈ I and a ∈ A.

If, moreover, I satisfies the condition

i3) ai ∈ I for any i ∈ I and a ∈ A,

then I is called a two-sided ideal (for short an ideal) of A. Any (right or two-sided) ideal of
A is a subbrace in A. For any brace A

• the left annihilator
annlA = {u ∈ A | uA = {0}}

is a right ideal of A,

• the right annihilator
annr A = {v ∈ A | Av = {0}}

is a two-sided ideal of A. In [5] annr A is denoted by Soc(A). Obviously that annA =

annr A ∩ annlA is a two-sided ideal in A. Element a ∈ A is called a left (respectively right)
zero divisor if it satisfies the following two conditions:

z1) a 6= 0,

z2) ab = 0 (respectively ca = 0) for some non-zero element b ∈ A (respectively c ∈ A).

Element a ∈ A that is a left and a right zero divisor is called a zero divisor of A.

Remark 1. If a brace A is left distributive, then A becomes a radical ring (i.e., an associative
ring which is a group with respect to the circle operation “◦”). The group H(A+, A◦), where
A is a radical ring, was constructed by Ya.P.Sysak [1] and called the associated group of a
radical ring A. Similarly, we will say that the group H(A) = H(A+, A◦) is associated with
a brace A.

Lemma 2. Let A be a brace with the associated group H(A) = E o F . If S is a subbrace
of A with the associated group H(S) = U oW , then the following conditions hold:

(1) H(S) ≤ H(A), U ≤ E and W ≤ F ,

(2) if S is a right ideal of A, then U �H(A),

(3) if S is an ideal of A, then U �H(A) and H(S)�H(A),

(4) if U �H(A), then SA ⊆ S,

(5) if H(S)� E oW , then AS ⊆ S,
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(6) the centralizers

CE(F ) = {(a, 0) ∈ E | a ∈ annlA} and CF (E) = {(0, u) ∈ F | u ∈ annr A};

in particular, is A not contains left and right zero divisors, then

CF (E) = CE(F ) = {(0, 0)}.

Proof. (1) follows from definition of H(A).
(2) Let S be a right ideal of A. Then sa ∈ S for any s ∈ S, a ∈ A and so

(s, 0)(a,b) = (−a− ab(−1), b(−1))(s, 0)(a, b) = (sb+ s, 0) ∈ U (2)

for any elements (a, b) ∈ H(A) and (s, 0) ∈ U . This means that U is a normal subgroup of
H(A).

(3) Assume that S is an ideal of A, (a, b) ∈ H(A) and (s, t) ∈ H(S). Then

(s, t)(a,b) = (−(at)b− at− ((ab(−1))t)b+ sb+ s− (ab(−1))t,

t+ tb+ (b(−1)t)b+ b(−1)t) ∈ H(S),

and hence H(S) is normal in H(A).
(4) Since U�H(A), from (2) it follows that sb+s ∈ S for any s ∈ S, b ∈ A and therefore

sb ∈ S.
(5) Let us H(S)� E oW . Then for any a ∈ A and u, v, w ∈ S we deduce that

H(S) 3 (u, v)(a,w) =

(−(av)w − ((aw(−1))v)w − aw − (aw(−1))w + uw − av−
(aw(−1))v − aw(−1) + u,w(−1) ◦ v ◦ w) =

(−(av)w − ((aw(−1))v)w + uw − av − (aw(−1))v + u, v + vw + (w(−1)v)w + w(−1)v).

If w = 0, then we obtain that (−av + u, v) ∈ H(S), and so AS ⊆ S.
(6) Assume that (a, 0) ∈ CE(F ). Then (a, 0)(0, b) = (0, b)(a, 0) for every b ∈ A and

consequently ab = 0. If (0, u) ∈ CF (E), then

(0 · 0 + 0 + b, u ◦ 0) = (0, u)(b, 0) = (b, 0)(0, u) = (bu+ b+ 0, 0 ◦ u)

and therefore bu = 0.

Lemma 3. If A is a brace and a, b ∈ A, then (a, b) ∈ Z(H(A)) if and only if aA = {0} and
Ab = {0} = bA.

Proof. (⇒) Let us (a, b) ∈ Z(H(A)). Then for any elements u, v ∈ A we see that

(av + a+ u, b ◦ v) = (a, b)(u, v) = (u, v)(a, b) = (ub+ u+ a, v ◦ b) (3)

if and only if
b ◦ v = v ◦ b,
av = ub.

Hence bv = vb. If u = 0, then av = 0 (and we obtain that aA = {0}). In the case v = 0 it
follows that ub = 0 ( and consequently Ab = {0}).

(⇐) Since ub = 0 = av for any u, v ∈ A, we conclude that (u, v) ∈ Z(H(A)).
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Remark 2. (1) For any element a of a brace A the centralizers

CA◦(a) = {z ∈ A◦ | z ◦ a = a ◦ z} and CA(a) = {z ∈ A | za = az}

are equal.
(2) If

Z(A) = {z ∈ A | za = az for every a ∈ A}

and
Z1(A

◦) = {z ∈ A◦ | z ◦ a = a ◦ z for every a ∈ A◦},

then Z(A) = Z1(A
◦) is a normal subgroup in A◦.

Let S be a two-sided ideal of a brace A. On the set

A/S = {a+ S | a ∈ S}

we have two operations “+” and “ ·” (see [6]) given by the rules:

• (a1 + S) + (a2 + S) = (a1 + a2) + S,

• (a1 + S) · (a2 + S) = (a1a2) + S for a1, a2 ∈ A. Then (A/S,+, ·) is a brace (and A/S

is called the quotient brace of A with respect to an ideal S).

Lemma 4. If S is an ideal of a brace A, then the groups (A/S)◦ and A◦/S◦ are isomorphic.

Proof. In fact, the rule

ϕ : (A/S)◦ 3 a+ S 7→ a ◦ S◦ ∈ A◦/S◦

is a group isomorphism.

Lemma 5. If S is a two-sided ideal of a brace A, then the groups H(A)/H(S) and H(A/S)

are isomorphic.

Proof. Assume that H(A) = E o F , H(S) = U o W and H(A/S) = Q o R. Then, by
Lemma 2, we have that U ≤ E, W ≤ F and so

H(A)/H(S) = (E o F )/H(S) ∼= (EH(S)/H(S))o (FH(S)/H(S)) =

= (EUW/UW )o (FUW/UW ) ∼= (EW/UW )o (FW/UW ).

Furthermore, we have the group isomorphisms

Q ∼= (A/S)+ ∼= A+/S+ ∼= E/U ∼= EW/UW

and, by Lemma 4,
R ∼= (A/S)◦ ∼= A◦/S◦ ∼= F/W ∼= FU/WU.

The lemma is prowed.
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2. Frobenius groups. Recall that a group H = E o F is called a Frobenius group with
a kernel E and a complement F if

F ∩ F g = {1}

for all g ∈ H \ F and
E \ {1} = H \

⋃
h∈H

F h.

Proof of Theorem 1. Assume that H = E o F is a Frobenius group with E ∼= L+ and
F ∼= T . By Lemma 1.1 of [3], for any elements h ∈ T and l ∈ L there exists l1 ∈ L such that
(l, 0) = [(l1, 0), (e, h)] and consequently (l, 0) = (l1, 0)

−1(e, h)−1(l1, 0)(e, h) = (l1h, 0). Then
l = l1h and we conclude that L = Lh for any 0 6= h ∈ T .

Suppose that lt = e for some t ∈ T and 0 6= l ∈ L. Then

{(e, 0)} = F
⋂

F (l,0) 3 (e, t)(l,0) = (−lt, 0), (4)

which implies that t = 0 and annT l = {0}.
(⇐) Assume that a groupH = EoF satisfies the conditions (i) and (ii). If 0 6= v ∈ T and

k ∈ L, then k = k1v for some k1 ∈ L and the commutator [(k1, 0), (0, e)] = (k1v, 0) = (k, 0)

for any (e, 0) 6= (e, t) ∈ F . This means that E = [E, (e, t)]. Moreover, for any elements
(u, v) ∈ H and (e, t) ∈ F we see that

F (u,v) 3 (e, t)(u,v) = (−(ut)v − ut− ((uv(−1))t)v − (uv(−1))t, v(−1) ◦ t ◦ v).

If v = 0 and u 6= 0, then (−ut, t) = (e, t)(u,0) ∈ F (u,0). This gives that

H \
⋃

(u,v)∈H

F (u,v) = E \ {(e, 0)}.

Now we assume that (e, h)(u,v) ∈ F ∩ F (u,v) for some h, v ∈ T and 0 6= u ∈ L. Then

(e, h)(u,v) = (−u(v(−1) ◦ h ◦ v), v(−1) ◦ h ◦ v),

and therefore −u(v(−1) ◦ h ◦ v) = e. From this, in view of (ii), we have v(−1) ◦ h ◦ v = 0 and
consequently h = 0. Hence

F
⋂

F (u,v) = {(e, 0)}

and H is a Frobenius group with a kernel E and a complement F . �
Let R be an associative ring with 1, A be a right R-module. If µ : A → U(R) is an

additive map and
µ(aµ(b)) = µ(a)

for all a, b ∈ A, then (A,+, ·) is a brace (see Example 1 of [5]) with a multiplication “ ·” given
by the rule

ab = a(µ(b)− 1) (5)
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Example 1. As in Example 3 of [5], A = {0, 1, 2, 3, 4, 5}, A+ ∼= Z6 and µ : A → U(Z6) is
such that

µ(0) = µ(2) = µ(4) = 1,

µ(1) = µ(3) = µ(5) = 0.

Then (A,+, ·) is a brace with the multiplication given by (5) (and depicted by Table):

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 4 0 4 0 4
2 0 2 0 2 0 2
3 0 0 0 0 0 0
4 0 4 0 4 0 4
5 0 2 0 2 0 2

If L = {0, 2, 4}, then LA = L and so L is an A-module. Since T = {0, 5} is a subgroup
in A◦,

L · 5 = {0 · 5, 2 · 5, 4 · 5} = {0, 2, 4} = L

and
annT 2 = {0} = annT 4,

we conclude that H(L, T ) is a Frobenius group.

3. Nilpotent braces. In this section we investigate the properties of nilpotent braces.

Lemma 6. If A is a brace and k > 0, then A(k+1) is an ideal of A(k).

Proof. It is easy to seen that A(k+1) is a subgroup of A(k). Since

A(k+1)A(k) ⊆ A(k+1)A ⊆ A(k+2) ⊆ A(k+1)

and
A(k)A(k+1) ⊆ A(k)A ⊆ A(k+1),

we obtain the result.

Remark 3. Let A be a brace and p a prime. Then

(1) H(A) is a torsion group if and only if A+ and A◦ are torsion;

(2) H(A) is a p-group if and only if A+ and A◦ are p-groups.

As in Lemma 2.4 of [2] we can prove the next

Theorem 3. Let A be a right nilpotent (respectively left nilpotent) brace, p a prime. Then

(1) A+ is a p-group if and only if A◦ is a p-group;
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(2) A+ is a torsion-free group if and only if A◦ is a torsion-free group.

Proof. (a) Asuume that A is a right nilpotent brace of index n. We prove by induction on
n. Since

A(n−1)A(n−1) ⊆ A(n−1)A = {0},

we conclude that A(n−1) is a commutative radical ring. Now we assume that the result is
true for right nilpotent braces of index < n. Since

(A/A(2))(2) ⊆ (A/A(2)) · (A/A(2)) = A(2)/A(2) = {0},

we have group isomorphisms

(A/A(2))+ ∼= (A/A(2))◦ ∼= A◦/(A(2))◦

and the assertion follows.
(b) For arbitrary k, Ak is an ideal of A,

(Ak/Ak+1)+ ∼= (Ak/Ak+1)◦

and for a left nilpotent brace A the assertion is also true.

Lemma 7. Let A be a brace. Then Z(H(A)) 6= {(0, 0)} if and only if annlA 6= {0}.

Proof. (⇐) If 0 6= a ∈ annlA, then, by Lemma 2, (a, 0) ∈ CE (F ) and therefore

(0, 0) 6= (a, 0) ∈ Z(H(A)).

(⇒) If (a, 0) ∈ Z(H(A)) for some 0 6= a ∈ A, then for any elements u, v ∈ A we obtain

(av + a+ u, v) = (a, 0)(u, v) = (u, v)(a, 0) = (u+ a, v).

This yields that av = 0 and so a ∈ annlA.

Corollary 2. Let A be a brace. If H(A) = E o F and Z(H(A)) 6⊆ E, then

Z(A) ∩ annr A 6= {0}.

Proof. Assume that (a, b) ∈ Z(H(A)) and b 6= 0. Then for any u ∈ A we have

(a+ u, b) = (a, b)(u, 0) = (u, 0)(a, b) = (ub+ u+ a, b)

and
(au+ a, b ◦ u) = (a, b)(0, u) = (0, u)(a, b) = (a, u ◦ b)

and consequently ub = 0, au = 0 and b ◦ u = u ◦ b. This yields that b ∈ Z(A).
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4. Proof of Theorem 2. (1) Let A be a non-zero left nilpotent brace of index n. Then
(An−1)A = {0} and An−1 6= {0}. This means that An−1 ⊆ annlA and, by Lemma 7,
Z(H(A)) 6= {(0, 0)}. Since An−1 is a two-sided ideal in A and

(A/An−1)n−1 = {0},

by induction on n we can prove that H(A) is a nilpotent group. Moreover, Z(A◦)�A◦ and
so

{0} 6= (An−1)◦
⋂

Z(A◦) ⊆ annA.

(2) We have A(n) = {0} for some positive integer n and thus

A(n−1) ⊆ annr A.

But annr A is a two-sided ideal in A and so (annr A)
◦ is an abelian normal subgroup of A◦.

By induction on n we obtain the result. �

Example 2. Let (F2)
3 be a brace constructed in [5] (see Example 2) with the multiplication

“·” depicted by Table:

· 000 111 100 011 010 101 001 111

000 000 000 000 000 000 000 000 000

111 000 000 000 000 000 000 000 000

100 000 110 000 001 111 110 111 001

011 000 110 000 001 111 110 111 001

010 000 110 111 110 000 001 111 001

101 000 110 111 110 000 001 111 001

001 000 000 111 111 111 111 000 000

111 000 000 111 111 111 111 000 000

This brace has a series

A ⊃ A(2) = {000, 111, 001, 100} ⊃ A(3) = {000, 111} ⊃ A(4) = {000}

and
A ⊃ A2 = {000, 111, 001, 100} = A3.

This means that A is right nilpotent and A is not left nilpotent. Since

111 · 100 = 000 6= 110 = 100 · 111,

we conclude that 111 6∈ Z(A) and so A(3) ∩ Z(A) = {000}. If a = 001, b = 100, then

A◦ = 〈a〉o 〈b〉

is a dihedral group of order 8. Hence H(A) is a 2-group of order 64 and it is nilpotent. If
H(A) = E o F , then, by Corollary 2, we have Z(H(A)) ⊆ E.
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