Artemovych O.D., Skaskiv L.V.

GROUPS ASSOCIATED WITH BRACES

Artemovych O.D., Skaskiv L.V. Groups associated with braces, Carpathian Mathematical Publications, 3, 1 (2011), 4-14.

We construct the group $H(A)$ associated with a brace A and investigate the properties of $H(A)$.

Introduction

Let $(A,+)$ be an abelian group with a multiplication ".". As in [5] we call A a brace if A is right distributive, i.e.
i) $(a+b) \cdot c=(a \cdot c)+(b \cdot c)$ for all $a, b, c \in A$, and
ii) A is a group with respect to circle operation "०" defined by the rule

$$
a \circ b=a+b+a \cdot b
$$

A group (A, \circ) is called the adjoint group of a brace A and denoted by A°. It is easy to see that

$$
a \circ 0=0=0 \circ a
$$

and so 0 is the neutral element of A°. The inverse of $a \in A$ will be denoted by $a^{(-1)}$.
An abelian group $(M,+)$ is called a module [6] (with the neutral element e) over a brace A if there exists a mapping

$$
M \times A \ni(x, a) \mapsto x a \in M
$$

such that the following hold for any elements $x, y \in M$ and $a, b \in A$:

$$
\begin{aligned}
& \left.m_{1}\right)(x+y) a=x a+y a, \\
& \left.m_{2}\right) x(a \circ b)=(x a) b+x a+x b, \\
& \left.m_{3}\right) x 0=e .
\end{aligned}
$$

2000 Mathematics Subject Classification: 16W35.
Key words and phrases: brace, nilpotent group.

Since

$$
e a=(e+e) a=e a+e a,
$$

we conclude that

$$
e a=e
$$

for any $a \in A$. In view of $x+(-x)=e$ we also obtain that

$$
0=e a=(x+(-x)) a=x a+(-x) a
$$

and therefore

$$
(-x) a=-(x a)=-x a
$$

A non-empty set $L \subseteq M$ is called a submodule of a module M if the following two conditions hold:
$\left.s_{1}\right) L$ is a subgroup of $(M,+)$,
$\left.s_{2}\right) l a \in L$ for any $l \in L$ and $a \in A$.
Let A be a brace, L a submodule of an A-module M, T a subgroup of A°. On the set of pairs

$$
H(L, T)=\{(l, t) \mid l \in L, t \in T\}
$$

we define a multiplication by the rule

$$
\begin{equation*}
(x, y)(u, v)=(x v+x+u, y \circ v) \tag{1}
\end{equation*}
$$

for $x, u \in L$ and $y, v \in T$. Then $H(L, T)$ is a group (see Lemma 1). We prove the following
Theorem 1. Let M be a module over a brace A, L a non-zero submodule of M, T a non-zero subgroup of A°. Then

$$
H=H(L, T)=E \rtimes F
$$

is a Frobenius group with a kernel E and a complement F, where E is isomorphic to the additive group L^{+}of L and F is isomorphic to a subgroup T, if and only if the following hold:
(i) $L=L h$ for every non-zero element $h \in T$,
(ii) $\operatorname{ann}_{T} l=\{t \in T \mid l t=e\}=\{0\}$ for every non-zero element $l \in L$.

Recall [5] that

$$
A^{n+1}=A\left(A^{n}\right)
$$

and

$$
A^{(n+1)}=\left(A^{(n)}\right) A
$$

for any positive integer n. Then A^{n} is a right ideal and $A^{(n)}$ is a two-sided ideal in A. A brace A is called right nilpotent (respectively left nilpotent) if $A^{(n)}=\{0\}$ for some positive integer n. A minimal positive integer n with this property is called an index of right (respectively left) nilpotency. In this way we obtain the following

Theorem 2. (1) If A is a non-zero left nilpotent brace, then
(i) $H(A)$ is a nilpotent group;
(ii) ann $A \neq\{0\}$.
(2) If A is a right nilpotent brace, then $H(A)$ is a solvable group.

Henceforth, $H \triangleleft G$ means that H is a normal subgroup of a group G and $E \rtimes F$ is a semidirect product of groups E, F with a normal subgroup E.

Any unexplaned terminology is standard as in [4].

1. The group associated with a brace. It is not difficult to prove the following

Lemma 1. Let M be a module over a brace A. If L is a submodule of M and T is a subgroup of A°, then

$$
H=H(L, T)=E \rtimes F
$$

is a group with the identity element $(e, 0)$ under the operation (1) and, moreover, $E=\{(l, 0) \mid$ $l \in L\}$ is isomorphic to the additive group of L and $F=\{(e, t) \mid t \in T\}$ is isomorphic to T. Proof. It is easily verified that $H(L, T)$ is a group, for any $a, l \in L, b \in T$

$$
(a, b)^{-1}=\left(-a-a b^{(-1)}, b^{(-1)}\right) \in H
$$

and

$$
\begin{gathered}
(a, b)=(e, b)(a, 0) \in E F \\
(l, 0)^{(a, b)}=(a, b)^{-1}(l, 0)(a, b)=\left(-a-a b^{(-1)}, b^{(-1)}\right)(l, 0)(a, b)=(l b+l, 0) \in E
\end{gathered}
$$

so E is a normal subgroup of H,

$$
E \cap F=\{(e, 0)\} .
$$

Hence $H=E \rtimes F$ is a semidirect product. Finally, the maps

$$
\varphi: L \ni l \mapsto(l, 0) \in E \text { and } \psi: T \ni t \mapsto(e, t) \in F
$$

are group isomorphisms.
Corollary 1. A group $H(L, T)$ is abelian if and only if $L T=\{e\}$ and T is an abelian group.
A non-empty set S is called a subbrace of of a brace A (see [6]) if the following hold:
$\left.s_{1}\right)(S,+)$ is a subgroup of $(A,+)$,
$\left.s_{2}\right) u v \in S$ for any $u, v \in S$.
It is obviously that $\{0\}$ and A are trivial subbraces in A. Since A can be regarded as A module, every submodule I of A-module A is called a right ideal of $A[5]$ (there is no similar concept of a left ideal). Therefore I is a right ideal of A if and only if the following hold:
$\left.i_{1}\right)(I,+)$ is a subgroup of $(A,+)$,
$\left.i_{2}\right) i a \in I$ for any $i \in I$ and $a \in A$.
If, moreover, I satisfies the condition
$\left.i_{3}\right) a i \in I$ for any $i \in I$ and $a \in A$,
then I is called a two-sided ideal (for short an ideal) of A. Any (right or two-sided) ideal of A is a subbrace in A. For any brace A

- the left annihilator

$$
\operatorname{ann}_{l} A=\{u \in A \mid u A=\{0\}\}
$$

is a right ideal of A,

- the right annihilator

$$
\operatorname{ann}_{r} A=\{v \in A \mid A v=\{0\}\}
$$

is a two-sided ideal of A. In [5] $\operatorname{ann}_{r} A$ is denoted by $\operatorname{Soc}(A)$. Obviously that ann $A=$ $\operatorname{ann}_{r} A \cap \operatorname{ann}_{l} A$ is a two-sided ideal in A. Element $a \in A$ is called a left (respectively right) zero divisor if it satisfies the following two conditions:

$$
\left.z_{1}\right) \quad a \neq 0,
$$

$\left.z_{2}\right) a b=0$ (respectively $c a=0$) for some non-zero element $b \in A$ (respectively $c \in A$).
Element $a \in A$ that is a left and a right zero divisor is called a zero divisor of A.
Remark 1. If a brace A is left distributive, then A becomes a radical ring (i.e., an associative ring which is a group with respect to the circle operation " \circ "). The group $H\left(A^{+}, A^{\circ}\right)$, where A is a radical ring, was constructed by Ya.P.Sysak [1] and called the associated group of a radical ring A. Similarly, we will say that the group $H(A)=H\left(A^{+}, A^{\circ}\right)$ is associated with a brace A.

Lemma 2. Let A be a brace with the associated group $H(A)=E \rtimes F$. If S is a subbrace of A with the associated group $H(S)=U \rtimes W$, then the following conditions hold:
(1) $H(S) \leq H(A), U \leq E$ and $W \leq F$,
(2) if S is a right ideal of A, then $U \triangleleft H(A)$,
(3) if S is an ideal of A, then $U \triangleleft H(A)$ and $H(S) \triangleleft H(A)$,
(4) if $U \triangleleft H(A)$, then $S A \subseteq S$,
(5) if $H(S) \triangleleft E \rtimes W$, then $A S \subseteq S$,
(6) the centralizers

$$
C_{E}(F)=\left\{(a, 0) \in E \mid a \in \operatorname{ann}_{l} A\right\} \text { and } C_{F}(E)=\left\{(0, u) \in F \mid u \in \operatorname{ann}_{r} A\right\} ;
$$

in particular, is A not contains left and right zero divisors, then

$$
C_{F}(E)=C_{E}(F)=\{(0,0)\} .
$$

Proof. (1) follows from definition of $H(A)$.
(2) Let S be a right ideal of A. Then $s a \in S$ for any $s \in S, a \in A$ and so

$$
\begin{equation*}
(s, 0)^{(a, b)}=\left(-a-a b^{(-1)}, b^{(-1)}\right)(s, 0)(a, b)=(s b+s, 0) \in U \tag{2}
\end{equation*}
$$

for any elements $(a, b) \in H(A)$ and $(s, 0) \in U$. This means that U is a normal subgroup of $H(A)$.
(3) Assume that S is an ideal of $A,(a, b) \in H(A)$ and $(s, t) \in H(S)$. Then

$$
\begin{aligned}
(s, t)^{(a, b)}= & \left(-(a t) b-a t-\left(\left(a b^{(-1)}\right) t\right) b+s b+s-\left(a b^{(-1)}\right) t\right. \\
& \left.t+t b+\left(b^{(-1)} t\right) b+b^{(-1)} t\right) \in H(S)
\end{aligned}
$$

and hence $H(S)$ is normal in $H(A)$.
(4) Since $U \triangleleft H(A)$, from (2) it follows that $s b+s \in S$ for any $s \in S, b \in A$ and therefore $s b \in S$.
(5) Let us $H(S) \triangleleft E \rtimes W$. Then for any $a \in A$ and $u, v, w \in S$ we deduce that

$$
\begin{gathered}
H(S) \ni(u, v)^{(a, w)}= \\
\left(-(a v) w-\left(\left(a w^{(-1)}\right) v\right) w-a w-\left(a w^{(-1)}\right) w+u w-a v-\right. \\
\left.\left(a w^{(-1)}\right) v-a w^{(-1)}+u, w^{(-1)} \circ v \circ w\right)= \\
\left(-(a v) w-\left(\left(a w^{(-1)}\right) v\right) w+u w-a v-\left(a w^{(-1)}\right) v+u, v+v w+\left(w^{(-1)} v\right) w+w^{(-1)} v\right) .
\end{gathered}
$$

If $w=0$, then we obtain that $(-a v+u, v) \in H(S)$, and so $A S \subseteq S$.
(6) Assume that $(a, 0) \in C_{E}(F)$. Then $(a, 0)(0, b)=(0, b)(a, 0)$ for every $b \in A$ and consequently $a b=0$. If $(0, u) \in C_{F}(E)$, then

$$
(0 \cdot 0+0+b, u \circ 0)=(0, u)(b, 0)=(b, 0)(0, u)=(b u+b+0,0 \circ u)
$$

and therefore $b u=0$.
Lemma 3. If A is a brace and $a, b \in A$, then $(a, b) \in Z(H(A))$ if and only if $a A=\{0\}$ and $A b=\{0\}=b A$.

Proof. (\Rightarrow) Let us $(a, b) \in Z(H(A))$. Then for any elements $u, v \in A$ we see that

$$
\begin{equation*}
(a v+a+u, b \circ v)=(a, b)(u, v)=(u, v)(a, b)=(u b+u+a, v \circ b) \tag{3}
\end{equation*}
$$

if and only if

$$
\begin{aligned}
b \circ v & =v \circ b, \\
a v & =u b .
\end{aligned}
$$

Hence $b v=v b$. If $u=0$, then $a v=0$ (and we obtain that $a A=\{0\}$). In the case $v=0$ it follows that $u b=0$ (and consequently $A b=\{0\}$).
(\Leftarrow) Since $u b=0=a v$ for any $u, v \in A$, we conclude that $(u, v) \in Z(H(A))$.

Remark 2. (1) For any element a of a brace A the centralizers

$$
C_{A^{\circ}}(a)=\left\{z \in A^{\circ} \mid z \circ a=a \circ z\right\} \text { and } C_{A}(a)=\{z \in A \mid z a=a z\}
$$

are equal.
(2) If

$$
Z(A)=\{z \in A \mid z a=a z \quad \text { for every } \quad a \in A\}
$$

and

$$
Z_{1}\left(A^{\circ}\right)=\left\{z \in A^{\circ} \mid z \circ a=a \circ z \quad \text { for every } \quad a \in A^{\circ}\right\}
$$

then $Z(A)=Z_{1}\left(A^{\circ}\right)$ is a normal subgroup in A°.
Let S be a two-sided ideal of a brace A. On the set

$$
A / S=\{a+S \mid a \in S\}
$$

we have two operations " + " and "." (see [6]) given by the rules:

- $\left(a_{1}+S\right)+\left(a_{2}+S\right)=\left(a_{1}+a_{2}\right)+S$,
- $\left(a_{1}+S\right) \cdot\left(a_{2}+S\right)=\left(a_{1} a_{2}\right)+S$ for $a_{1}, a_{2} \in A$. Then $(A / S,+, \cdot)$ is a brace (and A / S is called the quotient brace of A with respect to an ideal S).

Lemma 4. If S is an ideal of a brace A, then the groups $(A / S)^{\circ}$ and A° / S° are isomorphic. Proof. In fact, the rule

$$
\varphi:(A / S)^{\circ} \ni a+S \mapsto a \circ S^{\circ} \in A^{\circ} / S^{\circ}
$$

is a group isomorphism.
Lemma 5. If S is a two-sided ideal of a brace A, then the groups $H(A) / H(S)$ and $H(A / S)$ are isomorphic.

Proof. Assume that $H(A)=E \rtimes F, H(S)=U \rtimes W$ and $H(A / S)=Q \rtimes R$. Then, by Lemma 2, we have that $U \leq E, W \leq F$ and so

$$
\begin{aligned}
& H(A) / H(S)=(E \rtimes F) / H(S) \cong(E H(S) / H(S)) \rtimes(F H(S) / H(S))= \\
& \quad=(E U W / U W) \rtimes(F U W / U W) \cong(E W / U W) \rtimes(F W / U W)
\end{aligned}
$$

Furthermore, we have the group isomorphisms

$$
Q \cong(A / S)^{+} \cong A^{+} / S^{+} \cong E / U \cong E W / U W
$$

and, by Lemma 4,

$$
R \cong(A / S)^{\circ} \cong A^{\circ} / S^{\circ} \cong F / W \cong F U / W U .
$$

The lemma is prowed.
2. Frobenius groups. Recall that a group $H=E \rtimes F$ is called a Frobenius group with a kernel E and a complement F if

$$
F \cap F^{g}=\{1\}
$$

for all $g \in H \backslash F$ and

$$
E \backslash\{1\}=H \backslash \bigcup_{h \in H} F^{h} .
$$

Proof of Theorem 1. Assume that $H=E \rtimes F$ is a Frobenius group with $E \cong L^{+}$and $F \cong T$. By Lemma 1.1 of [3], for any elements $h \in T$ and $l \in L$ there exists $l_{1} \in L$ such that $(l, 0)=\left[\left(l_{1}, 0\right),(e, h)\right]$ and consequently $(l, 0)=\left(l_{1}, 0\right)^{-1}(e, h)^{-1}\left(l_{1}, 0\right)(e, h)=\left(l_{1} h, 0\right)$. Then $l=l_{1} h$ and we conclude that $L=L h$ for any $0 \neq h \in T$.

Suppose that $l t=e$ for some $t \in T$ and $0 \neq l \in L$. Then

$$
\begin{equation*}
\{(e, 0)\}=F \bigcap F^{(l, 0)} \ni(e, t)^{(l, 0)}=(-l t, 0), \tag{4}
\end{equation*}
$$

which implies that $t=0$ and $\operatorname{ann}_{T} l=\{0\}$.
(\Leftarrow) Assume that a group $H=E \rtimes F$ satisfies the conditions (i) and (ii). If $0 \neq v \in T$ and $k \in L$, then $k=k_{1} v$ for some $k_{1} \in L$ and the commutator $\left[\left(k_{1}, 0\right),(0, e)\right]=\left(k_{1} v, 0\right)=(k, 0)$ for any $(e, 0) \neq(e, t) \in F$. This means that $E=[E,(e, t)]$. Moreover, for any elements $(u, v) \in H$ and $(e, t) \in F$ we see that

$$
F^{(u, v)} \ni(e, t)^{(u, v)}=\left(-(u t) v-u t-\left(\left(u v^{(-1)}\right) t\right) v-\left(u v^{(-1)}\right) t, v^{(-1)} \circ t \circ v\right) .
$$

If $v=0$ and $u \neq 0$, then $(-u t, t)=(e, t)^{(u, 0)} \in F^{(u, 0)}$. This gives that

$$
H \backslash \bigcup_{(u, v) \in H} F^{(u, v)}=E \backslash\{(e, 0)\} .
$$

Now we assume that $(e, h)^{(u, v)} \in F \cap F^{(u, v)}$ for some $h, v \in T$ and $0 \neq u \in L$. Then

$$
(e, h)^{(u, v)}=\left(-u\left(v^{(-1)} \circ h \circ v\right), v^{(-1)} \circ h \circ v\right),
$$

and therefore $-u\left(v^{(-1)} \circ h \circ v\right)=e$. From this, in view of $(i i)$, we have $v^{(-1)} \circ h \circ v=0$ and consequently $h=0$. Hence

$$
F \bigcap F^{(u, v)}=\{(e, 0)\}
$$

and H is a Frobenius group with a kernel E and a complement F.
Let R be an associative ring with $1, A$ be a right R-module. If $\mu: A \rightarrow U(R)$ is an additive map and

$$
\mu(a \mu(b))=\mu(a)
$$

for all $a, b \in A$, then $(A,+, \cdot)$ is a brace (see Example 1 of [5]) with a multiplication "." given by the rule

$$
\begin{equation*}
a b=a(\mu(b)-1) \tag{5}
\end{equation*}
$$

Example 1. As in Example 3 of [5], $A=\{0,1,2,3,4,5\}, A^{+} \cong \mathbb{Z}_{6}$ and $\mu: A \rightarrow U\left(\mathbb{Z}_{6}\right)$ is such that

$$
\begin{aligned}
& \mu(0)=\mu(2)=\mu(4)=1, \\
& \mu(1)=\mu(3)=\mu(5)=0 .
\end{aligned}
$$

Then $(A,+, \cdot)$ is a brace with the multiplication given by (5) (and depicted by Table):

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	4	0	4	0	4
2	0	2	0	2	0	2
3	0	0	0	0	0	0
4	0	4	0	4	0	4
5	0	2	0	2	0	2

If $L=\{0,2,4\}$, then $L A=L$ and so L is an A-module. Since $T=\{0,5\}$ is a subgroup in A°,

$$
L \cdot 5=\{0 \cdot 5,2 \cdot 5,4 \cdot 5\}=\{0,2,4\}=L
$$

and

$$
\operatorname{ann}_{T} 2=\{0\}=\operatorname{ann}_{T} 4,
$$

we conclude that $H(L, T)$ is a Frobenius group.
3. Nilpotent braces. In this section we investigate the properties of nilpotent braces.

Lemma 6. If A is a brace and $k>0$, then $A^{(k+1)}$ is an ideal of $A^{(k)}$.
Proof. It is easy to seen that $A^{(k+1)}$ is a subgroup of $A^{(k)}$. Since

$$
A^{(k+1)} A^{(k)} \subseteq A^{(k+1)} A \subseteq A^{(k+2)} \subseteq A^{(k+1)}
$$

and

$$
A^{(k)} A^{(k+1)} \subseteq A^{(k)} A \subseteq A^{(k+1)}
$$

we obtain the result.
Remark 3. Let A be a brace and p a prime. Then
(1) $H(A)$ is a torsion group if and only if A^{+}and A° are torsion;
(2) $H(A)$ is a p-group if and only if A^{+}and A° are p-groups.

As in Lemma 2.4 of [2] we can prove the next
Theorem 3. Let A be a right nilpotent (respectively left nilpotent) brace, p a prime. Then
(1) A^{+}is a p-group if and only if A° is a p-group;
(2) A^{+}is a torsion-free group if and only if A° is a torsion-free group.

Proof. (a) Asuume that A is a right nilpotent brace of index n. We prove by induction on n. Since

$$
A^{(n-1)} A^{(n-1)} \subseteq A^{(n-1)} A=\{0\},
$$

we conclude that $A^{(n-1)}$ is a commutative radical ring. Now we assume that the result is true for right nilpotent braces of index $<n$. Since

$$
\left(A / A^{(2)}\right)^{(2)} \subseteq\left(A / A^{(2)}\right) \cdot\left(A / A^{(2)}\right)=A^{(2)} / A^{(2)}=\{\overline{0}\}
$$

we have group isomorphisms

$$
\left(A / A^{(2)}\right)^{+} \cong\left(A / A^{(2)}\right)^{\circ} \cong A^{\circ} /\left(A^{(2)}\right)^{\circ}
$$

and the assertion follows.
(b) For arbitrary k, A^{k} is an ideal of A,

$$
\left(A^{k} / A^{k+1}\right)^{+} \cong\left(A^{k} / A^{k+1}\right)^{\circ}
$$

and for a left nilpotent brace A the assertion is also true.
Lemma 7. Let A be a brace. Then $Z(H(A)) \neq\{(0,0)\}$ if and only if $\operatorname{ann}_{l} A \neq\{0\}$.
Proof. (\Leftarrow) If $0 \neq a \in \operatorname{ann}_{l} A$, then, by Lemma 2, $(a, 0) \in C_{E}(F)$ and therefore

$$
(0,0) \neq(a, 0) \in Z(H(A)) .
$$

(\Rightarrow) If $(a, 0) \in Z(H(A))$ for some $0 \neq a \in A$, then for any elements $u, v \in A$ we obtain

$$
(a v+a+u, v)=(a, 0)(u, v)=(u, v)(a, 0)=(u+a, v) .
$$

This yields that $a v=0$ and so $a \in \operatorname{ann}_{l} A$.
Corollary 2. Let A be a brace. If $H(A)=E \rtimes F$ and $Z(H(A)) \nsubseteq E$, then

$$
Z(A) \cap \operatorname{ann}_{r} A \neq\{0\} .
$$

Proof. Assume that $(a, b) \in Z(H(A))$ and $b \neq 0$. Then for any $u \in A$ we have

$$
(a+u, b)=(a, b)(u, 0)=(u, 0)(a, b)=(u b+u+a, b)
$$

and

$$
(a u+a, b \circ u)=(a, b)(0, u)=(0, u)(a, b)=(a, u \circ b)
$$

and consequently $u b=0, a u=0$ and $b \circ u=u \circ b$. This yields that $b \in Z(A)$.
4. Proof of Theorem 2. (1) Let A be a non-zero left nilpotent brace of index n. Then $\left(A^{n-1}\right) A=\{0\}$ and $A^{n-1} \neq\{0\}$. This means that $A^{n-1} \subseteq \operatorname{ann}_{l} A$ and, by Lemma 7, $Z(H(A)) \neq\{(0,0)\}$. Since A^{n-1} is a two-sided ideal in A and

$$
\left(A / A^{n-1}\right)^{n-1}=\{\overline{0}\},
$$

by induction on n we can prove that $H(A)$ is a nilpotent group. Moreover, $Z\left(A^{\circ}\right) \triangleleft A^{\circ}$ and so

$$
\{0\} \neq\left(A^{n-1}\right)^{\circ} \bigcap Z\left(A^{\circ}\right) \subseteq \operatorname{ann} A
$$

(2) We have $A^{(n)}=\{0\}$ for some positive integer n and thus

$$
A^{(n-1)} \subseteq \operatorname{ann}_{r} A
$$

But $\operatorname{ann}_{r} A$ is a two-sided ideal in A and so $\left(\operatorname{ann}_{r} A\right)^{\circ}$ is an abelian normal subgroup of A°. By induction on n we obtain the result.

Example 2. Let $\left(\mathbb{F}_{2}\right)^{3}$ be a brace constructed in [5] (see Example 2) with the multiplication "." depicted by Table:

\cdot	000	111	100	011	010	101	001	111
000	000	000	000	000	000	000	000	000
111	000	000	000	000	000	000	000	000
100	000	110	000	001	111	110	111	001
011	000	110	000	001	111	110	111	001
010	000	110	111	110	000	001	111	001
101	000	110	111	110	000	001	111	001
001	000	000	111	111	111	111	000	000
111	000	000	111	111	111	111	000	000

This brace has a series

$$
A \supset A^{(2)}=\{000,111,001,100\} \supset A^{(3)}=\{000,111\} \supset A^{(4)}=\{000\}
$$

and

$$
A \supset A^{2}=\{000,111,001,100\}=A^{3} .
$$

This means that A is right nilpotent and A is not left nilpotent. Since

$$
111 \cdot 100=000 \neq 110=100 \cdot 111
$$

we conclude that $111 \notin Z(A)$ and so $A^{(3)} \cap Z(A)=\{000\}$. If $a=001, b=100$, then

$$
A^{\circ}=\langle a\rangle \rtimes\langle b\rangle
$$

is a dihedral group of order 8. Hence $H(A)$ is a 2-group of order 64 and it is nilpotent. If $H(A)=E \rtimes F$, then, by Corollary 2, we have $Z(H(A)) \subseteq E$.

References

1. Сысак Я.П. Произведения групп, связанные с радикальными кольиами. В: Произведения бесконечных груnn // Препринт 82.53: Институт математики АН УССР. - 1982. - С. 21-35.
2. Amberg B., Dickenschied O. On the adjoint group of a radical ring, Canad. Math. Bull., 38 (1995), 262-270.
3. Artemovych O.D. On Frobenius groups associated with modules, Demonstratio Math., 31 (1998), 875878.
4. Robinson D. J. S. A course in the theory of groups. Springer, 1982.
5. Rump W. Braces, radical rings, and quantum Yang-Baxter equations, J. Algebra, 307 (2007), 153-170.
6. Rump W. Modules over braces, Algebra and Discrete Math., 2 (2006), 127-137.

Institute of Mathematics, Cracow University of Technology,
Cracow, Poland
Precarpathian National University, Ivano-Frankivsk, Ukraine

Артемович О.Д., Скасків Л.В. Групи асоційовані з брейсами // Карпатські математичні публікації. - 2011. - Т.3, №1. - С. 4-14.

У даній статті побудовано групу $H(A)$, асоційовану з брейсом A, і досліджено її властивості.

Артемович О.Д., Скаскив Л.В. Группъ ассочиированные с брейсами // Карпатские математические публикации. - 2011. - Т.3, №1. - С. 4-14.

В этой роботе построено группу $H(A)$, ассоциированную с брейсом A, и исследовано её свойства.

