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We show that for any discrete semigroup X the semigroup operation can be extended to
a right-topological semigroup operation on the space G(X) of inclusion hyperspaces on X.
We detect some important subsemigroups of G(X), study the minimal ideal, the (topological)
center, left and right cancelable elements of G(X).

Â. Ãàâðûëêèâ. Ïðàâî-òîïîëîãè÷åñêèå ïîëóãðóïïîâûå îïåðàöèè íà ãèïåðïðîñòðàíñòâàõ
âêëþ÷åíèÿ // Ìàòåìàòè÷íi Ñòóäi¨. � 2008. � Ò.29, �1. � C.18�34.

Äîêàçàíî, ÷òî êàæäóþ ïîëóãðóïïîâóþ îïåðàöèþ íà äèñêðåòíîì ïðîñòðàíñòâå X ìîæ-
íî ïðîäîëæèòü äî ïðàâî-òîïîëîãè÷åñêîé ïîëóãðóïïîâîé îïåðàöèè íà ïðîñòðàíñòâå G(X)
ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ íà X. Èçó÷àþòñÿ íåêîòîðûå âàæíûå ïîäïîëóãðóïïû â G(X),
îïèñûâàåòñÿ ìèíèìàëüíûé èäåàë, (òîïîëîãè÷åñêèé) öåíòð, ñîêðàòèìûå ýëåìåíòû G(X).

Introduction. After the topological proof of Hindman theorem [6] given by Galvin and
Glazer (unpublished, see [8, p.102], [7]) topological methods become a standard tool in the
modern combinatorics of numbers, see [8], [11]. The crucial point is that the semigroup
operation ∗ defined on any discrete space S can be extended to a right-topological semigroup
operation on βS, the Stone-�Cech compactification of S. The product of two ultrafilters
U ,V ∈ βS can be found in two steps: firstly for every element a ∈ S of the semigroup we
extend the left shift La : S → S, La : x 7→ a∗x, to a continuous map βLa : βS → βS. In such
a way, for every a ∈ S we define the product a ∗ V = βLa(V). Then, extending the function
RV : S → βS, RV : a 7→ a ∗ V , to a continuous map βRV : βS → βS, we define the product
U ◦ V = βRV(U). This product can be also defined directly: this is an ultrafilter with the
base

⋃
x∈U x ∗ Vx where U ∈ U and {Vx}x∈U ⊂ V . Endowed with so-extended operation the

Stone-�Cech compactification βS becomes a compact Hausdorff right-topological semigroup.
Because of the compactness the semigroup βS has idempotents, minimal (left) ideals, etc.,
whose existence has many important combinatorial consequences.

The Stone-�Cech compactification βS can be considered as a subset of the double power-
set P(P(S)). The power-set P(X) of any set X (in particular, X = P(S)) carries a natural
compact Hausdorff topology inherited from the Cantor cube {0, 1}X after identification of
each subset A ⊂ X with its characteristic function. The power-set P(X) is a complete
distributive lattice with respect to the operations of union and intersection.

The smallest complete sublattice of P(P(S)) containing βS coincides with the space
G(S) of inclusion hyperspaces, a well-studied object in Categorial Topology. By definition,
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a family A ⊂ P(S) of non-empty subsets of S is called an inclusion hyperspace if together
with each set A ∈ A the family A contains all supersets of A in S. In [4] it is shown that
G(S) is a compact Hausdorff lattice with respect to the operations of intersection and union.

Our principal observation is that the algebraic operation of the semigroups S can be
extended not only to βS but also to the complete lattice hull G(S) of βS in P(P(S)).
Endowed with the so-extended operation, the space of inclusion hyperspaces G(S) becomes
a compact Hausdorff right-topological semigroup containing βS as a closed subsemigroup.
Besides βS, the semigroup G(S) contains many other important spaces as closed subsemi-
groups: the superextension λS of S, the space Nk(S) of k-linked inclusion hyperspaces, the
space Fil(S) of filters on S (which contains an isomorphic copy of the global semigroup Γ(S)
of S), etc.

We shall study some properties of the semigroup operation on G(S) and its interplay
with the lattice structure of G(S). We expect that studying the algebraic structure of G(S)
will have some combinatorial consequences that cannot be obtained with help of ultrafilters,
see [2] for further development of this subject.

1. Inclusion hyperspaces. In this section we recall some basic information about inclusion
hyperspaces. More detail information can be found in the paper [4].
1.1. General definition and reduction to the compact case. For a topological space
X by exp(X) we denote the space of all non-empty closed subspaces of X endowed with
the Vietoris topology. By an inclusion hyperspace we mean a closed subfamily F ⊂ exp(X)
that is monotone in the sense that together with each set A ∈ F the family F contains all
closed subsets B ⊂ X that contain A. By [4], the closure of each monotone family in exp(X)
is an inclusion hyperspace. Consequently, each family B ⊂ exp(X) generates an inclusion
hyperspace

clexp(X){A ∈ exp(X) : ∃B ∈ B with B ⊂ A}
denoted by 〈B〉.1 In this case B is called a base of F = 〈B〉. An inclusion hyperspace 〈x〉
generated by a singleton {x}, x ∈ X, is called principal.

If X is discrete, then each monotone family in exp(X) is an inclusion hyperspace, see [4].
Denote by G(X) the space of all inclusion hyperspaces with the topology generated by

the subbase
U+ = {A ∈ G(X) : ∃B ∈ A with B ⊂ U}, U− = {A ∈ G(X) : ∀B ∈ A B ∩ U 6= ∅},

where U is open in X.
For a T1-space X the map ηX : X → G(X), ηX(x) = {F ⊂

cl
X : x ∈ F}, is an embedding

(see [4]), so we can identify principal inclusion hyperspaces with elements of the space X.
For a T1-space X the space G(X) is Hausdorff if and only if the space X is normal, see

[4], [9]. In the latter case the map
h : G(X) → G(βX), h(F) = clexp(βX){clβX F |F ∈ F},

is a homeomorphism, so we can identify the space G(X) with the space G(βX) of inclusion
hyperspaces over the Stone-�Cech compactification βX of the normal space X, see [9]. Thus
we reduce the study of inclusion hyperspaces over normal topological spaces to the compact
case where this construction is well-studied.

For a (discrete) T1-space X the space G(X) contains a (discrete and) dense subspace
G•(X) consisting of inclusion hyperspaces with finite support. An inclusion hyperspace A ∈
G(X) is defined to have finite support in X if A = 〈F〉 for some finite family F of finite
subsets of X.

1In [4] the inclusion hyperspace 〈B〉 generated by a base B is denoted by ↑B.
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An inclusion hyperspace F ∈ G(X) on a non-compact space X is called free if for each
compact subset K ⊂ X and any element F ∈ F there is another element E ∈ F such
that E ⊂ F \K. By G◦(X) we shall denote the subset of G(X) consisting of free inclusion
hyperspaces. By [4], for a normal locally compact space X the subset G◦(X) is closed in
G(X). In the simplest case of a countable discrete space X = N free inclusion hyperspaces
(called semifilters) on X = N have been introduced and intensively studied in [1].

1.2. Inclusion hyperspaces in the category of compacta. The construction of the
space of inclusion hyperspaces is functorial and monadic in the category Comp of compact
Hausdorff spaces and their continuous map, see [13]. To complete G to a functor on Comp
observe that each continuous map f : X → Y between compact Hausdorff spaces induces a
continuous map Gf : G(X) → G(Y ) defined by

Gf(A) = 〈f(A)〉 = {B ⊂
cl

Y : B ⊃ f(A) for some A ∈ A}
forA ∈ G(X). The map Gf is well-defined and continuous, and G is a functor in the category
Comp of compact Hausdorff spaces and their continuous maps, see [13]. By Proposition
2.3.2 [13], this functor is weakly normal in the sense that it is continuous, monomorphic,
epimorphic and preserves intersections, singletons, the empty set and weight of infinite
compacta.

Since the functor G preserves monomorphisms, for each closed subspace A of a compact
Hausdorff space X the inclusion map i : A → X induces a topological embedding
Gi : G(A) → G(X). So we can identify G(A) with a subspace of G(X). Now for each
inclusion hyperspace A ∈ G(X) we can consider the support of A

supp A =
⋂
{A ⊂

cl
X : A ∈ G(A)}

and conclude that A ∈ G(supp A) because G preserves intersections, see [13, �2.4].

Next, we consider the monadic properties of the functor G. We recall that a functor
T : Comp → Comp is monadic if it can be completed to a monad T = (T, η, µ) where
η : Id → T and µ : T 2 → T are natural transformations (called the unit and multiplication)
such that µ ◦ T (µX) = µ ◦ µTX : T 3X → TX and µ ◦ ηTX = µ ◦ T (ηX) = IdTX for each
compact Hausdorff space X, see [13].

For the functor G the unit η : Id → G has been defined above while the multiplication
µ = {µX : G2X → G(X)} is defined by the formula

µX(Θ) =
⋃
{
⋂
M |M ∈ Θ}, Θ ∈ G2X.

By Proposition 3.2.9 of [13], the triple G = (G, η, µ) is a monad in Comp.

1.3. Some important subspaces of G(X).The space G(X) of inclusion hyperspaces
contains many interesting subspaces. Let X be a topological space and k ≥ 2 be a natural
number. An inclusion hyperspace A ∈ G(X) is defined to be

• k-linked if ∩F 6= ∅ for any subfamily F ⊂ A with |F| ≤ k;

• centered if ∩F 6= ∅ for any finite subfamily F ⊂ A;

• a filter if A1 ∩ A2 ∈ A for all sets A1, A2 ∈ A;

• an ultrafilter if A = A′ for any filter A′ ∈ G(X) containing A;

• maximal k-linked if A = A′ for any k-linked inclusion hyperspace A′ ∈ G(X) con-
taining A.

By Nk(X), N<ω(X), and Fil(X) we denote the subsets of G(X) consisting of k-linked,
centered, and filter inclusion hyperspaces, respectively. Also by β(X) and λk(X) we denote
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the subsets of G(X) consisting of ultrafilters and maximal k-linked inclusion hyperspaces,
respectively. The space λ(X) = λ2(X) is called the superextension of X.

The following diagram describes the inclusion relations between the subspaces NkX,
N<ωX, Fil(X), λX and βX of G(X) (an arrow A → B means that A is a subset of B).

Fil(X) → N<ωX → NkX → N2X → G(X)

βX

6

- λX

6

For a normal space X all the subspaces from this diagram are closed in G(X), see [4].
For a non-compact space X we can also consider the intersections

Fil◦(X) =Fil(X) ∩G◦(X), N◦
<ω(X) = N<ω(X) ∩G◦(X),

N◦
k (X) =Nk(X) ∩G◦(X), λ◦k(X) = λk(X) ∩G◦(X), and

β◦(X) =βX ∩G◦(X) = βX \X.

Elements of those sets will be called free filters, free centered inclusion hyperspaces, free k-
linked inclusion hyperspaces, etc. For a normal locally compact space X the subsets Fil◦(X),
N◦

<ω(X), N◦
k (X), λ◦(X) = λ◦2(X), and β◦(X) are closed in G(X), see [4]. In contrast, λ◦k(N)

is not closed in G(N) for k ≥ 3, see [5].
1.4. The inner algebraic structure of G(X). In this subsection we discuss the algebraic
structure of the space of inclusion hyperspaces G(X) over a topological space X. The space of
inclusion hyperspaces G(X) possesses two binary operations ∪, ∩, and one unary operation

⊥ : G(X) → G(X), ⊥ : F 7→ F⊥ = {E ⊂
cl

X : ∀F ∈ F E ∩ F 6= ∅}
called the transversality map. These three operations are continuous and turn G(X) into a
symmetric lattice, see [4].

Definition 1. A symmetric lattice is a complete distributive lattice (L,∨,∧) endowed with
an additional unary operation ⊥ : L → L, ⊥ : x 7→ x⊥, that is an involutive anti-isomorphism
in the sense that: (i) x⊥⊥ = x for all x ∈ L; (ii) (x∨ y)⊥ = x⊥∧ y⊥; (iii) (x∧ y)⊥ = x⊥∨ y⊥.

The smallest element of the lattice G(X) is the inclusion hyperspace {X} while the
largest is exp(X).

For a discrete space X the set G(X) of all inclusion hyperspaces on X is a subset of the
double power-set P(P(X)) (which is a complete distributive lattice) and is closed under the
operations of union and intersection (of arbitrary families of inclusion hyperspaces).

Since each inclusion hyperspace is a union of filters and each filter is an intersection of
ultrafilters, we obtain the following proposition showing that the lattice G(X) is a rather
natural object.

Proposition 1. For a discrete space X the lattice G(X) coincides with the smallest complete
sublattice of P(P(X)) containing all ultrafilters.

2. Extending algebraic operations to inclusion hyperspaces. In this section, given
a binary (associative) operation ∗ : X × X → X on a discrete space X we extend this
operation to a right-topological (associative) operation on G(X). This can be done in two
steps by analogy with the extension of the operation to the Stone-�Cech compactification βX
of X.
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First, for each element a ∈ X consider the left shift La : X → X, La(x) = a∗x and extend
it to a continuous map La : βX → βX between the Stone-�Cech compactifications of X. Next,
apply to this extension the functor G to obtain the continuous map GLa : G(βX) → G(βX).
Clearly, for every inclusion hyperspace F ∈ G(βX) the inclusion hyperspace GLa(F) has a
base {a ∗ F | F ∈ F}. Thus, we have defined the product a ∗ F = GLa(F) of the element
a ∈ X and the inclusion hyperspace F .

Further, for each inclusion hyperspace F ∈ G(βX) = G(X) we can consider the map
RF : X → G(βX) defined by the formula RF(x) = x ∗ F for every x ∈ X. Extend the
map RF to a continuous map RF : βX → G(βX) and apply to this extension the functor
G to obtain a map GRF : G(βX) → G2(βX). Finally, compose the map GRF with the
multiplication µX = µGX : G2X → G(X) of the monad G = (G, η, µ) and obtain a map
µX ◦ GRF : G(βX) → G(βX). For an inclusion hyperspace U ∈ G(βX), the image µGX ◦
GRF(U) is called the product of the inclusion hyperspaces U and F and is denoted by U ◦F .

It follows from the continuity of the maps GRF that the extended binary operation on
G(X) is continuous with respect to the first argument with the second argument fixed. We
are going to show that the operation ◦ on G(X) nicely agrees with the lattice structure of
G(X) and is associative if so is the operation ∗. Also we shall establish an easy formula

U ◦ F =
〈⋃

x∈U

x ∗ Fx : U ∈ U , {Fx}x∈U ⊂ F
〉

for calculating the product U ◦F of two inclusion hyperspaces U ,F . We start with necessary
definitions.

Definition 2. Let ? : G(X)×G(X) → G(X) be a binary operation on G(X). We shall say
that ? respects the lattice structure of G(X) if for any U ,V ,W ∈ G(X) and a ∈ X

1. (U ∪ V) ?W = (U ?W) ∪ (V ?W); 2. (U ∩ V) ?W = (U ?W) ∩ (V ?W);
3. a ? (V ∪W) = (a ? V) ∪ (a ?W); 4. a ? (V ∩W) = (a ? V) ∩ (a ?W).

Definition 3. We will say that a binary operation ? : G(X) × G(X) → G(X) is right-
topological if

• for any U ∈ G(X) the right shift RU : G(X) → G(X), RU : F 7→ F ? U , is continuous;
• for any a ∈ X the left shift La : G(X) → G(X), La : F 7→ a ? F , is continuous.

The following uniqueness theorem will be used to find an equivalent description of the
induced operation on G(X).

Theorem 1. Let ?, ◦ : G(X) × G(X) → G(X) be two right-topological binary operations
that respect the lattice structure of G(X). These operations coincide if and only if they
coincide on the product X ×X ⊂ G(X)×G(X).

Proof. It is clear that if these operations coincide on G(X) × G(X), then they coincide on
the product X × X identified with a subset of G(X) × G(X). We recall that each point
x ∈ X is identified with the ultrafilter 〈x〉 generated by x.

Now assume conversely that x ? y = x ◦ y for any two points x, y ∈ X ⊂ G(X). First we
check that a ?F = a ◦ F for any a ∈ X and F ∈ G(X). Since the left shifts F 7→ a ?F and
F 7→ a ◦ F are continuous, it suffices to establish the equality a ? F = a ◦ F for inclusion
hyperspaces F having finite support in X (because the set G•(X) of all such inclusion
hyperspaces is dense in G(X), see [4]). Any such a hyperspace F is generated by a finite
family of finite subsets of X.
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If F = 〈F 〉 is generated by a single finite subset F = {a1, . . . , an} ⊂ X, then F =
⋂n

i=1〈ai〉
is the finite intersection of principal ultrafilters, and hence

〈a〉 ? F = 〈a〉 ?
n⋂

i=1

〈ai〉 =
n⋂

i=1

〈a〉 ? 〈ai〉 =
n⋂

i=1

〈a〉 ◦ 〈ai〉 = 〈a〉 ◦
n⋂

i=1

〈ai〉 = 〈a〉 ◦ F .

If F = 〈F1, . . . , Fn〉 is generated by finite family of finite sets, then F =
⋃n

i=1〈Fi〉 and
we can use the preceding case to prove that

〈a〉 ? F = 〈a〉 ?

n⋃
i=1

〈Fi〉 =
n⋃

i=1

〈a〉 ? 〈Fi〉 =
n⋃

i=1

〈a〉 ◦ 〈Fi〉 = 〈a〉 ◦
n⋃

i=1

〈Fi〉 = 〈a〉 ◦ F .

Now fixing any inclusion hyperspace U ∈ G(X) by a similar argument one can prove the
equality F ?U = F ◦U for all inclusion hyperspaces F ∈ G•(X) having finite support in X.
Finally, using the density of G•(X) in G(X) and the continuity of right shifts F 7→ F ◦ U
and F 7→ F ? U one can establish the equality F ? U = F ◦ U for all inclusion hyperspaces
F ∈ G(X).

The above theorem will be applied to show that the operation ◦ : G(X)×G(X) → G(X)
induced by the operation ∗ : X ×X → X coincides with the operation ? : G(X)×G(X) →
G(X) defined by the formula

U ? V = 〈
⋃

x∈U

x ∗ Vx : U ∈ U , {Vx}x∈U ⊂ V〉

for U ,V ∈ G(X).
First we establish some properties of the operation ?.

Proposition 2. The operation ? commutes with the transversality operation in the sense
that (U ? V)⊥ = U⊥ ? V⊥ for any U ,V ∈ G(X).

Proof. To prove that U⊥ ?V⊥ ⊂ (U ?V)⊥, take any element A ∈ U⊥ ?V⊥. We should check
that A intersects each set B ∈ U ?V . Without loss of generality, the sets A and B are of the
basic form:

A =
⋃

x∈F x ∗Gx for some sets F ∈ U⊥ and {Gx}x∈F ⊂ V⊥
and

B =
⋃

x∈U x ∗ Vx for some sets U ∈ U and {Vx}x∈U ⊂ V.
Since U ∈ U and F ∈ U⊥, the intersection F ∩U contains some point x. For this point x

the sets Vx ∈ V and Gx ∈ V⊥ are well-defined and their intersection Vx ∩Gx contains some
point y. Then the intersection A∩B contains the point x ∗ y and hence is not empty, which
proves that A ∈ (U ? V)⊥.

To prove that (U ? V)⊥ ⊂ U⊥ ? V⊥, fix a set A ∈ (U ? V)⊥. We claim that the set
F = {x ∈ X : x−1A ∈ V⊥}

belongs to U⊥ (here x−1A = {y ∈ X : x ∗ y ∈ A}). Assuming conversely that F /∈ U⊥, we
would find a set U ∈ U with F ∩ U = ∅. By the definition of F , for each x ∈ U the set
x−1A /∈ V⊥ and thus we can find a set Vx ∈ V with empty intersection Vx ∩ x−1A. By the
definition of the product U ?V , the set B =

⋃
x∈U x∗Vx belongs to U ?V and hence intersects

the set A. Consequently, x ∗ y ∈ A for some x ∈ U and y ∈ Vx. The inclusion x ∗ y ∈ A
implies that y ∈ x−1A ⊂ X \ Vx, which is a contradiction proving that F ∈ U⊥. Then the
sets A ⊃

⋃
x∈F x ∗ x−1A belong to U⊥ ? V⊥.

Proposition 3. The equality (U∩V)?W = (U ?W)∩(V?W) holds for any U ,V ,W ∈ G(X).

Proof. It is easy to show that (U ∩ V) ?W ⊂ (U ?W) ∩ (V ?W).
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To prove the reverse inclusion, fix a set F ∈ (U ?W) ∩ (V ?W). Then

F ⊃
⋃
x∈U

x ∗W ′
x and F ⊃

⋃
y∈V

y ∗W ′′
y

for some U ∈ U , {W ′
x}x∈U ⊂ W , and V ∈ V , {W ′′

y }y∈V ⊂ W . Since U ,V are inclusion
hyperspaces, U ∪ V ∈ U ∩ V . For each z ∈ U ∪ V let Wz = W ′

z if z ∈ U and Wz = W ′′
z if

z /∈ U . It follows that F ⊃
⋃

z∈U∪V z ∗Wz and hence F ∈ (U ∩ V) ?W .

By analogy one can prove

Proposition 4. For any U ,V ,W ∈ G(X) and a ∈ X
a ? (V ∪W) = (a ? V) ∪ (a ?W) and a ? (V ∩W) = (a ? V) ∩ (a ?W).

Combining Propositions 2 and 3 we get

Corollary 1. For any U ,V ,W ∈ G(X) we get (U ∪ V) ?W = (U ?W) ∪ (V ?W).

Proof. Indeed, (U∪V)?W =
(
((U∪V)?W)⊥

)⊥
= ((U∪V)⊥?W⊥)⊥ = ((U⊥∩V⊥)?W⊥)⊥ =

= ((U⊥ ?W⊥) ∩ (V⊥ ?W⊥))⊥ = (U⊥ ?W⊥)⊥ ∪ (V⊥ ?W⊥)⊥ = (U ?W) ∪ (V ?W).

Proposition 5. The operation ? : G(X) × G(X) → G(X), U ? V = 〈
⋃

x∈U x ∗ Vx : U ∈
U , {Vx}x∈U ⊂ V〉, respects the lattice structure of G(X) and is right-topological.

Proof. Propositions 3, 4 and Corollary 1 imply that the operation ? respects the lattice
structure of G(X).

So it remains to check that the operation ? is right-topological. First we check that for
any U ∈ G(X) the right shift RU : G(X) → G(X), RU : F 7→ F ? U , is continuous.

Fix any inclusion hyperspaces F ,U ∈ G(X) and let W+ be a sub-basic neighborhood of
their product F ? U . Find sets F ∈ F and {Ux}x∈F ⊂ U such that

⋃
x∈F x ∗ Ux ⊂ W . Then

F+ is a neighborhood of F with F+ ? U ⊂ W+.
Now assume that F?U ∈ W− for some W ⊂ X. Observe that for any inclusion hyperspace

V ∈ G(X) we get the equivalences V ∈ W− ⇔ W ∈ V⊥ ⇔ V⊥ ∈ W+. Consequently,
F ? U ∈ W− is equivalent to F⊥ ? U⊥ = (F ? U)⊥ ∈ W+. The preceding case yields a
neighborhood O(F⊥) such that O(F⊥)?U⊥ ∈ W+. Now the continuity of the transversality
operation implies that O(F⊥)⊥ is a neighborhood of F with O(F⊥)⊥ ? U ∈ W−.

Finally, we prove that for every a ∈ X the left shift La : G(X) → G(X), La : F 7→ a ?F ,
is continuous. Given a sub-basic open set W+ ⊂ G(X) note that L−1

a (W+) is open because
L−1

a (W+) = (a−1W )+ where a−1W = {x ∈ X : a ∗ x ∈ W}. On the other hand, a ?F ∈ W−

is equivalent to a ? F⊥ = (a ? F)⊥ ∈ (W−)⊥ = W+ which implies that the preimage
L−1

a (W−) = (La(W
+))⊥ is also open.

The operation ◦ has the same properties.

Proposition 6. The operation ◦ : G(X)×G(X) → G(X), U ◦V = µGX ◦GRF(U) respects
the lattice structure of G(X) and is right-topological.

Proof. For any U ∈ G(X) the right shift RU = µG(X)◦GRU : G(X) → G(X), RU : F 7→ F◦U
is continuous being the composition of continuous maps. Next for any a ∈ X and F ∈ G(X)
we have La(F) = a ◦ F = µGX(〈a〉 ∗ F) = µGX(〈a ∗ F〉) = a ∗ F = GLa(F) and the map
La ≡ GLa is continuous.

It is known (and easy to verify) that the multiplication µG(X) : G2(X) → G(X) is a lattice
homomorphism in the sense that µG(X)(U ∪ V) = µG(X)(U) ∪ µGX(V) and µG(X)(U ∩ V) =
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= µG(X)(U) ∩ µG(X)(V) for any U ,V ∈ G(X). Then for any U ,V ,W ∈ G(X) and a ∈ X we
get (U ∪ V) ◦W = µG(X) ◦GRW(U ∪ V) = µG(X)(GRW(U)∪GRW(V)) = µG(X) ◦GRW(U)∪
∪µG(X) ◦GRW(V) = (U ◦W) ∪ (U ◦W) and similarly (U ∩ V) ◦W = (U ◦W) ∩ (U ◦W).

Note that a ◦ W = µG(X)(GRW(〈a〉) = 〈RW({a})〉 = 〈RW(a)〉 = a ∗ W for any a ∈ X.
Consequently, a◦ (V ∪W) = a∗ (V ∪W) = (a∗V)∪ (a∗W) = (a◦V)∪ (a◦W) and similarly
a ◦ (V ∩W) = (a ◦ V) ∩ (a ◦W).

Since both operations ◦ and ? are right-topological and respect the lattice structure of
G(X) we may apply Theorem 1 to get

Corollary 2. For any binary operation ∗ : X × X → X the operations ◦ and ? on G(X)
coincide. Consequently, for any inclusion hyperspaces U ,V ∈ G(X) their product U ◦ V is
the inclusion hyperspace

〈
⋃
x∈U

x ∗ Vx : U ∈ U , {Vx}x∈U ⊂ V〉 =
{
A ⊂ X : {x ∈ X : x−1A ∈ V} ∈ U

}
.

Having the apparent description of the operation ◦ we can establish its associativity.

Proposition 7. If the operation ∗ on X is associative, then so is the induced operation ◦
on G(X).

Proof. It is necessary to show that (U ◦V) ◦W = U ◦ (V ◦W) for any inclusion hyperspaces
U ,V ,W . Take any subset A ∈ (U ◦ V) ◦ W and choose a set B ∈ U ◦ V such that A ⊃⋃

z∈B z ∗Wz for some family {Wz}z∈B ⊂ W . Next, for the set B ∈ U ◦ V choose a set
U ∈ U such that B ⊃

⋃
x∈U x ∗ Vx for some family {Vx}x∈U ⊂ V . It is clear that for each

x ∈ U and y ∈ Vx the product x ∗ y is in B and hence Wx∗y is defined. Consequently,⋃
y∈Vx

y ∗Wx∗y ∈ V ◦ W for all x ∈ U and hence
⋃

x∈U x ∗ (
⋃

y∈Vx
y ∗Wx∗y) ∈ U ◦ (V ◦ W).

Since
⋃

x∈U

⋃
y∈Vx

x ∗ y ∗Wx∗y ⊂ A, we get A ∈ U ◦ (V ◦ W). This proves the inclusion
(U ◦ V) ◦W ⊂ U ◦ (V ◦W).

To prove the reverse inclusion, fix a set A ∈ U ◦ (V ◦ W) and choose a set U ∈ U
such that A ⊃

⋃
x∈U x ∗Bx for some family {Bx}x∈U ⊂ V ◦ W . Next, for each x ∈ U

find a set Vx ∈ V such that Bx ⊃
⋃

y∈Vx
y ∗Wx,y for some family {Wx,y}y∈Vx ⊂ W . Let

Z =
⋃

x∈U x ∗ Vx. For each z ∈ Z we can find x ∈ U and y ∈ Vx such that z = x ∗ y and
put Wz = Wx,y. Then Z ∈ U ◦ V and

⋃
z∈Z z ∗Wz ∈ (U ◦ V) ◦ W . Taking into account⋃

z∈Z z ∗Wz ⊂
⋃

x∈U

⋃
y∈Vx

x ∗ y ∗Wx,y ⊂ A, we conclude A ∈ (U ◦ V) ◦W .

3. Homomorphisms of semigroups of inclusion hyperspaces. Let us observe that our
construction of extension of a binary operation for X to G(X) works well both for associative
and non-associative operations. Let us recall that a set S endowed with a binary operation
∗ : X × X → X is called a groupoid. If the operation is associative, then X is called a
semigroup. In the preceding section we have shown that for each groupoid (semigroup) X
the space G(X) is a groupoid (semigroup) with respect to the extended operation.
A map h : X1 → X2 between two groupoids (X1, ∗1) and (X2, ∗2) is called a homomorphism
if h(x ∗1 y) = h(x) ∗2 h(y) for all x, y ∈ X1.

Proposition 8. For any homomorphism h : X1 → X2 between groupoids (X1, ∗1) and
(X2, ∗2) the induced map Gh : G(X1) → G(X2) is a homomorphism of the groupoids G(X1),
G(X2).
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Proof. Given two inclusion hyperspaces U ,V ∈ G(X1) observe that
Gh(U ◦1 V) = Gh(〈

⋃
x∈U x ∗1 Vx : U ∈ U , {Vx}x∈U ⊂ V〉) =

= 〈h(
⋃

x∈U x ∗1 Vx) : U ∈ U , {Vx}x∈U ⊂ V〉) = 〈
⋃

x∈U h(x) ∗2 h(Vx) : U ∈ U , {Vx}x∈U ⊂ V〉 =
〈
⋃

x∈h(U) x ∗2 h(Vx) : U ∈ U , {h(Vx)}x∈U ⊂ Gh(V)〉 =

= 〈h(U) : U ∈ U〉 ◦2 〈h(V ) : V ∈ V〉 = Gh(U) ◦2 Gh(V).

Reformulating Proposition 2 in terms of homomorphisms, we obtain

Proposition 9. For any groupoid X the transversality map ⊥ : G(X) → G(X) is a homo-
morphism of the groupoid G(X).

4. Subgroupoids of G(X). In this section we shall show that for a groupoid X endowed
with the discrete topology all (topologically) closed subspaces of G(X) introduced in Sec-
tion 1.3 are subgroupoids of G(X). A subset A of a groupoid (X, ∗) is called a subgroupoid
of X if A ∗ A ⊂ A, where A ∗ A = {a ∗ b : a, b ∈ A}.

We assume that ∗ : X×X → X is a binary operation on a discrete space X and ◦ : G(X)×
G(X) → G(X) is the extension of ∗ to G(X). Applying Proposition 9 we obtain

Proposition 10. If S is a subgroupoid of G(X), then S⊥ is a subgroupoid of G(X) too.

Our next propositions can be easily derived from Corollary 2.

Proposition 11. The sets Fil(X), N<ω(X) and Nk(X), k ≥ 2, are subgroupoids in G(X).

Proposition 12. The Stone- �Cech extension βX and the superextension λX both are closed
subgroupoids in G(X).

Proof. The superextension λX is a subgroupoid of G(X) being the intersection λ(X) =
N2(X) ∩ (N2(X))⊥ of two subgroupoids of G(X). By analogy, βX = Fil(X) ∩ λ(X) is a
subgroupoid of G(X).

Remark 1. In contrast to λX for k ≥ 3 the subset λk(X) need not be a subgroupoid
of G(X). For example, for the cyclic group Z5 = {0, 1, 2, 3, 4} the subset λ3(Z5) of G(Z5)
contains a maximal 3-linked system L = 〈{0, 1, 2}, {0, 1, 4}, {0, 2, 4}, {1, 2, 4}〉 whose square
L ∗ L = 〈{1, 2, 4, 5}, {0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}, {0, 1, 2, 3}〉 is not maximal 3-linked.

By a direct application of Corollary 2 we can also prove

Proposition 13. The set G•(X) of all inclusion hyperspaces with finite support is a sub-
groupoid in G(X).

Finally we find conditions on the operation ∗ guaranteeing that the subset G◦(X) of free
inclusion hyperspaces is a subgroupoid of G(X).

Proposition 14. Assume that for each b ∈ X there is a finite subset F ⊂ X such that for
each a ∈ X \ F the set a−1b = {x ∈ X : a ∗ x = b} is finite. Then the set G◦(X) is a closed
subgroupoid in G(X) and consequently, Fil◦(X), λ◦(X), β◦(X) all are closed subgroupoids
in G(X).
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Proof. Take two free inclusion hyperspaces A,B ∈ G(X) and a subset C ∈ A◦B. We should
prove that C \K ∈ A ◦ B for each compact subset K ⊂ X. Without loss of generality, the
set C is of basic form: C =

⋃
a∈A a ∗Ba for some set A ∈ A and some family {Ba}a∈A ⊂ B.

Since X is discrete, the set K is finite. It follows from our assumption that there is a finite
set F ⊂ X such that for every a ∈ X \ F the set a−1K = {x ∈ X : a ∗ x ∈ K} is finite. The
hyperspace A, being free, contains the set A′ = A \ F . By the same reason, for each a ∈ A′

the hyperspace B contains the set B′
a = Ba \ a−1K. Since C \K ⊃

⋃
a∈A′ a ∗B′

a ∈ A ◦B, we
conclude that C \K ∈ A ◦ B.

Remark 2. If X is a semigroup, then G(X) is a semigroup and all the subgroupoids consi-
dered above are closed subsemigroups in G(X). Some of them are well-known in Semigroup
Theory. In particular, so is the semigroup βX of ultrafilter and β◦(X) = βX \ X of free
ultrafilters. The semigroup Fil(X) contains an isomorphic copy of the global semigroup of X,
which is the hyperspace exp(X) endowed with the semigroup operation A ∗B = {a ∗ b : a ∈
A, b ∈ B}.

5. Ideals and zeros in G(X). A non-empty subset I of a groupoid (X, ∗) is called an ideal
(resp. right ideal, left ideal) if I ∗X ∪X ∗ I ⊂ I (resp. I ∗X ⊂ I, X ∗ I ⊂ I). An element O
of a groupoid (X, ∗) is called a zero (resp. left zero, right zero) in X if {O} is an ideal (resp.
right ideal, left ideal) in X. Each right or left zero z ∈ X is an idempotent in the sense that
z ∗ z = z.

For a groupoid (X, ∗) right zeros in G(X) admit a simple description. We define an
inclusion hyperspace A ∈ G(X) to be shift-invariant if for every A ∈ A and x ∈ X the sets
x ∗ A and x−1A = {y ∈ X : x ∗ y ∈ A} belong to A.

Proposition 15. An inclusion hyperspace A ∈ G(X) is a right zero in G(X) if and only if
A is shift-invariant.

Proof. Assuming that an inclusion hyperspace A ∈ G(X) is shift-invariant, we shall show
that B ◦ A = A for every B ∈ G(X). Take any set F ∈ B ◦ A and find a set B ∈ B
and a family {Ax}x∈B ⊂ A such that

⋃
x∈B x ∗ Ax ⊂ F . Since A ∈ G(X) is shift-invariant,⋃

x∈B x ∗ Ax ∈ A and thus F ∈ A. This proves the inclusion B ◦A ⊂ A. On the other hand,
for every F ∈ A and every x ∈ X we get x−1F ∈ A and thus F ⊃

⋃
x∈X x ∗ x−1F ∈ B ◦ A.

This shows that A is a right zero of the semigroup G(X).
Now assume that A is a right zero of G(X). Observe that for every x ∈ X the equality

〈x〉 ◦ A = A implies x ∗ A ∈ A for every A ∈ A.
One the other hand, the equality {X} ◦ A = A implies that for every A ∈ A there

is a family {Ax}x∈X ⊂ A such that
⋃

x∈X x ∗ Ax ⊂ A. Then for every x ∈ X the set
x−1A = {z ∈ X : x∗ z ∈ A} ⊃ Ax ∈ A belongs to A witnessing that A is shift-invariant.

By
↔
G(X) we denote the set of shift-invariant inclusion hyperspaces in G(X). Proposition 15

implies that A ◦ B = B for every A,B ∈
↔
G(X). This means that

↔
G(X) is a rectangular

semigroup.
We recall that a semigroup (S, ∗) is called rectangular (or else a semigroup of right zeros)

if x ∗ y = y for all x, y ∈ S.

Proposition 16. The set
↔
G(X) is closed in G(X), is a rectangular subsemigroup of the

groupoid G(X) and is closed complete sublattice of the lattice G(X) invariant under the
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transversality map. Moreover, if
↔
G(X) is non-empty, then it is a left ideal that lies in each

right ideal of G(X).

Proof. If A ∈ G(X) \
↔
G(X), then there exists x ∈ X and A ∈ A such that x ∗ A /∈ A or

x−1A /∈ A. Then
O(A) = {A′ ∈ G(X) : A ∈ A′ and (x ∗ A /∈ A′ or x−1A /∈ A)}

is an open neighborhood of A missing the set
↔
G(X) and witnessing that the set

↔
G(X) is

closed in G(X).

Since A ◦ B = B for every A,B ∈
↔
G(X), the set

↔
G(X) is a rectangular subsemigroup of

the groupoid G(X).

To show that
↔
G(X) is invariant under the transversality operation, note that for every

A ∈ G(X) and Z ∈
↔
G(X) we get A ◦ Z⊥ = (A⊥ ◦ Z)⊥ = Z⊥ which means that Z⊥ is a

right zero in G(X) and thus belongs to
↔
G(X) according to Proposition 15.

To show that
↔
G(X) is a complete sublattice of G(X) it is necessary to check that

↔
G(X) is

closed under arbitrary unions and intersections. It is trivial to check that arbitrary union of

shift-invariant inclusion hyperspaces is shift-invariant, which means that
⋃

α∈AZα ∈
↔
G(X)

for any family {Zα}α∈A ⊂
↔
G(X). Since

↔
G(X) is closed under the transversality operation

we also get ⋂
α∈A

Zα =
( ⋃

α∈A

Z⊥
α )⊥ ∈

↔
G(X)⊥ =

↔
G(X).

If
↔
G(X) is not empty, then it is a left ideal in G(X) because it consists of right zeros.

Now take any right ideal I in G(X) and fix any element R ∈ I. Then for every Z ∈
↔
G(X)

we get Z = R ◦ Z ∈ I which yields
↔
G(X) ⊂ I.

Proposition 17. If X is a semigroup and
↔
G(X) is not empty, then

↔
G(X) is the minimal

ideal of G(X).

Proof. In light of the preceding proposition, it suffices to check that
↔
G(X) is a right ideal.

Take any inclusion hyperspaces A ∈
↔
G(X) and B ∈ G(X) and take any set F ∈ A ◦ B. We

need to show that the sets x ∗F and x−1F belong to A◦B. Without loss of generality, F is
of the basic form:

F =
⋃
a∈A

a ∗Ba

for some set A ∈ A and some family {Ba}a∈A ⊂ B. The associativity of the semigroup
operation on S implies that

x ∗ F =
⋃
a∈A

x ∗ a ∗Ba =
⋃

z∈x∗A

z ∗Ba(z) ∈ A ◦ B

where a(z) ∈ {a ∈ A : x ∗ a = z} for z ∈ x ∗ A. To see that x−1F ∈ A observe that the set
A′ =

⋃
z∈x−1A z ∗Bxz belongs to A and each point a′ ∈ A′ belongs to the set z ∗Bxz for some

z ∈ x−1A. Then x ∗ a′ ∈ x ∗ z ∗Bxz ⊂ F and hence A 3 A′ ⊂ x−1F , which yields the desired
inclusion x−1F ∈ A.

Now we find conditions on the binary operation ∗ : X ×X → X guaranteeing that the

set
↔
G(X) is not empty. By min GX = {X} and max GX = {A ⊂ X : A 6= ∅} we denote the

minimal and maximal elements of the lattice G(X).
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Proposition 18. For a groupoid (X, ∗) the following conditions are equivalent:

1) min GX ∈
↔
G(X); 2) max GX ∈

↔
G(X); 3) for each a, b ∈ X the equation a ∗ x = b has

a solution x ∈ X.

Proof. (1) ⇒ (3) Assuming that min GX ∈
↔
G(X) and applying Proposition 15 observe that

for every a ∈ X the equation 〈a〉 ◦ {X} = {X} implies that for every b ∈ X the equation
a ∗ x = b has a solution.

(3) ⇒ (1) If for every a, b ∈ X the equation a ∗x = b has a solution, then a ∗X = X and
hence F ◦ {X} = {X} for all F ∈ G(X). This means that {X} = min G(X) is a right zero

in G(X) and hence belongs to
↔
G(X) according to Proposition 15.

(2) ⇒ (3) Assume that max G(X) ∈
↔
G(X) and take any points a, b ∈ X. Since 〈a〉 ◦

max G(X) = max G(X) 3 {b}, there is a non-empty set Xa ∈ max G(X) with a ∗Xa ⊂ {b}.
Then any x ∈ Xa is a solution of a ∗ x = b.

(3) ⇒ (2) Assume that for every a, b ∈ X the equation a ∗ x = b has a solution. To show
that F ◦max G(X) = max G(X) it suffices to check that max G(X) ⊂ F ◦max G(X). Take
any set B ∈ max G(X) and any set F ∈ F . For every a ∈ F find a point xa ∈ X with
a ∗ xa ∈ B. Then the sets

⋃
a∈F a ∗ {xa} ⊂ B belong to F ◦ max G(X), which yields the

desired inclusion max G(X) ⊂ F ◦max G(X).

By analogy we can establish a similar description of zeros and the minimal ideal in the
semigroup G◦(X) of free inclusion hyperspaces.

Proposition 19. Assume that (X, ∗) is an infinite groupoid such that for each b ∈ X there is
a finite subset F ⊂ X such that for each a ∈ X \F the set a−1b = {x ∈ X : a∗x = b} is finite
and not empty. Then: 1) G◦(X) is a closed subgroupoid of G(X); 2) G◦(X) is a left ideal in

G(X) provided if for each a, b ∈ X the set a−1b is finite; 3) the set
↔
G◦(X) =

↔
G(X)∩G◦(X)

of shift-invariant free inclusion hyperspaces is the minimal ideal in G◦(X); 4) the set
↔
G◦(X)

is a rectangular subsemigroup of the groupoid G(X) and is closed complete sublattice of the
lattice G(X) invariant under the transversality map.

Remark 3. It follows from Propositions 16 and 19 that the minimal ideals of the semigroups
G(Z) and G◦(X) are closed. In contrast, the minimal ideals of the semigroups βZ and
β◦Z = βZ \ Z are not closed, see [8, �4.4].

Minimal left ideals of the semigroup β◦(Z) play an important role in Combinatorics
of Numbers, see [8]. We believe that the same will happen for the semigroup λ◦(Z). The
following proposition implies that minimal left ideals of λ◦(Z) contain no ultrafilter!

Proposition 20. If a groupoid X admits a homomorphism h : X → Z3 such that for every
y ∈ Z3 the preimage h−1(y) is not empty (is infinite) then each minimal left ideal I of λ(X)
(of λ◦(X)) is disjoint from β(X) .

Proof. It follows that the induced map λh : λ(X) → λ(Z3) is a surjective homomorphism.
Consequently, λh(I) is a minimal left ideal in λ(Z3). Now observe that λ(Z3) consists of four
maximal linked inclusion hyperspaces. Besides three ultrafilters there is a maximal linked
inclusion hyperspace LM = 〈{0, 1}, {0, 2}, {1, 2}〉 where Z3 = {0, 1, 2}. One can check that
{LM} is a zero of the semigroup λ(Z3). Consequently, λ(h)(I) = {LM}, which implies that
I ∩ β(X) = ∅.
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Now assume that for every y ∈ Z3 the preimage h−1(y) is infinite. We claim that
λh(λ◦(X)) = λ(Z3). Take any maximal linked inclusion hyperspace L ∈ λ(Z3). If L is
an ultrafilter supported by a point y ∈ Z3, then we can take any free ultrafilter U on X
containing the infinite set h−1(y) and observe that λh(U) = L. It remains to consider the
case L = LM. Fix free ultrafilters U0,U1,U2 on X containing the sets h−1(0), h−1(1), h−1(2),
respectively. Then L = (U0 ∩ U1) ∪ (U0 ∩ U2) ∪ (U1 ∩ U2) is a free maximal linked inclusion
hyperspace whose image λh(LX) = LM.

Given any minimal left ideal I ⊂ λ◦(X) we obtain that the image λh(I), being a minimal
left ideal of λ(Z3) coincides with {L4} and is disjoint from β(Z3). Consequently, I is disjoint
from β(X).

6. The center of G(X). In this section we describe the structure of the center of the
groupoid G(X) for each (quasi)group X. By definition, the center of a groupoid X is the set

C = {x ∈ X : ∀y ∈ X xy = yx}.
A groupoid X is called a quasigroup if for every a, b ∈ X the system of equations a∗x = b

and y∗a = b has a unique solution (x, y) ∈ X×X. It is clear that each group is a quasigroup.
On the other hand, there are many examples of quasigroups, not isomorphic to groups, see
[10], [3].

Theorem 2. Let X be a quasigroup. If an inclusion hyperspace C ∈ G(X) commutes with
the extremal elements max G(X) and min G(X) of G(X), then C is a principal ultrafilter.

Proof. By Proposition 18, the inclusion hyperspaces max G(X) and min G(X) are right
zeros in G(X) and thus max G(X) ◦ C = C ◦ max G(X) = max G(X) and min G(X) ◦ C =
C ◦ min G(X) = min G(X). It follows that for every b ∈ X we get {b} ∈ max G(X) =
max G(X) ◦ C, which means that a ∗ C ⊂ {b} for some C ∈ C and some a ∈ X. Since the
equation a ∗ y = b has a unique solution y ∈ X, the set C is a singleton, say C = {c}. It
remains to prove that C coincides with the principal ultrafilter 〈c〉 generated by c. Assuming
the converse, we would conclude that X \ {c} ∈ C. By our hypothesis, the equation y ∗ c = c
has a unique solution y0 ∈ X. Since the equation y0 ∗ x = c has a unique solution x = c,
y0 ∗ (X \ {c}) ⊂ X \ {c}. Letting Cx = {c} for all x ∈ X \ {y0} and Cx = X \ {c} for x = y0,
we conclude that X \{c} ⊃

⋃
x∈X x∗Cx ∈ min G(X)◦C = C ◦min G(X) = min G(X), which

is not possible.

Corollary 3. For any quasigroup X the center of the groupoid G(X) coincides with the
center of X.

Proof. If an inclusion hyperspace C belongs to the center of the groupoid G(X), then C is a
principal ultrafilter generated by some point c ∈ X. Since C commutes with all the principal
ultrafilters, c commutes with all elements of X and thus c belongs to the center of X.

Conversely, if c ∈ X belongs to the center of X, then for every inclusion hyperspace
F ∈ G(X) we get

c ◦ F = {c ∗ F : F ∈ F} = {F ∗ c : F ∈ F} = F ◦ c,
which means that (the principal ultrafilter generated by) c belongs to the center of the
groupoid G(X).

Remark 4. It is interesting to note that for any group X the center of the semigroup βX
also coincides with the center of the group X, see Theorem 6.54 of [8].
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Problem 1. Given a group X describe the centers of the subsemigroups λ(X), Fil(X),
N<ω(X), Nk(X), k ≥ 2 of the semigroup G(X).

Problem 2. Given an infinite group X describe the centers of the semigroups G◦(X), λ◦(X),
Fil◦(X), N◦

<ω(X), and N◦
k (X), k ≥ 2. (By Theorem 6.54 of [8], the center of the semigroup

of free ultrafilters β◦(X) is empty).

7. The topological center of G(X). In this section we describe the topological center of
G(X). By the topological center of a groupoid X endowed with a topology we understand
the set Λ(X) consisting of all points x ∈ X such that the left and right shifts

lx : X → X, lx : z 7→ xz, and rx : X → X, rx : z 7→ zx
both are continuous.

Since all right shifts on G(X) are continuous, the topological center of the groupoid G(X)
consists of all inclusion hyperspaces F with continuous left shifts lF .

We recall that G•(X) stands for the set of inclusion hyperpsaces with finite support.

Theorem 3. For a quasigroup X the topological center of the groupoid G(X) coincides
with G•(X).

Proof. By Proposition 5, the topological center Λ(GX) of G(X) contains all principal ultrafi-
lters and is a sublattice of G(X). Consequently, Λ(GX) contains the sublatttice G•(X) of
G(X) generated by X.

Next, we show that each inclusion hyperspace F ∈ Λ(GX) has finite support and hence
belongs to G•(X). By Theorem 9.1 of [4], this will follow as soon as we check that both F
and F⊥ have bases consisting of finite sets.

Take any set F ∈ F , choose any point e ∈ X, and consider the inclusion hyperspace
U = {U ⊂ X : e ∈ F ∗ U}. Since for every f ∈ F the equation f ∗ u = e has a solution in
X, we conclude that {e} ∈ F ◦ U and by the continuity of the left shift lF , there is an open
neighborhood O(U) of U such that {e} ∈ F ◦A for all A ∈ O(U). Without loss of generality,
the neighborhood O(U) is of basic form

O(U) = U+
1 ∩ · · · ∩ U+

n ∩ V −
1 ∩ · · · ∩ V −

m

for some sets U1, . . . , Un ∈ U and V1, . . . , Vm ∈ U⊥. Take any finite set A ⊂ F−1e =
{x ∈ X : e ∈ F ∗ x} intersecting each set Ui, i ≤ n, and consider the inclusion hyperspace
A = 〈A〉⊥. It is clear that A ⊂ U+

1 ∩ · · · ∩ U+
n . Since each set Vj, j ≤ m, contains the set

F−1e ⊃ A, we get also that A ∈ V −
1 ∩ · · · ∩ V −

m . Then F ◦ A 3 {e} and hence there is
a set E ∈ F and a family {Ax}x∈E ⊂ A with

⋃
x∈E x ∗ Ax ⊂ {e}. It follows that the set

E ⊂ eA−1 = {x ∈ X : ∃a ∈ A with xa = e} is finite. We claim that E ⊂ F . Indeed, take
any point x ∈ E and find a point a ∈ A with x ∗ a = e. Since A ⊂ F−1e, there is a point
y ∈ F with e = y ∗ a. Hence xa = ya and the right cancellativity of X yields x = y ∈ F .
Therefore, using the continuity of the left shift lF , for every F ∈ F we have found a finite
subset E ∈ F with E ⊂ F . This means that F has a base of finite sets.

The continuity of the left shift lF and Proposition 2 imply the continuity of the left
shift lF⊥ . Repeating the preceding argument, we can prove that the inclusion hyperspace
F⊥ has a base of finite sets too. Finally, applying Theorem 9.1 of [4], we conclude that
F ∈ G•(X).

Problem 3. Given an infinite group X describe the topological center of the subsemigroups
λ(X), Fil(X), N<ω(X), Nk(X), k ≥ 2, of the semigroup G(X). Is it true that the topological
center of any subsemigroup S ⊂ G(X) containing β(X) coincides with S ∩G•(X)? (This is
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true for the subsemigroups S = G(X) (see Theorem 3) and S = β(X), see Theorems 4.24
and 6.54 of [8]).

Problem 4. Given an infinite group X describe the topological centers of the semigroups
G◦(X), λ◦(X), Fil◦(X), N◦

<ω(X), and N◦
k (X), k ≥ 2. (It should be mentioned that the

topological center of the semigroup β◦(X) of free ultrafilters is empty [12]).

8. Left cancelable elements of G(X). An element a of a groupoid S is called left cancelable
(resp. right cancelable) if for any points x, y ∈ S the equation ax = ay (resp. xa = ya) implies
x = y. In this section we characterize left cancelable elements of the groupoid G(X) over a
quasigroup X.

Theorem 4. Let X be a quasigroup. An inclusion hyperspace F ∈ G(X) is left cancelable
in the groupoid G(X) if and only if F is a principal ultrafilter.

Proof. Assume that F is left cancelable in G(X). First we show that F contains some
singleton. Assuming the converse, take any point x0 ∈ X and note that F ∗ (X \ {x0}) = X
for any F ∈ F . To see that this equality holds, take any point a ∈ X, choose two distinct
points b, c ∈ F and find solutions x, y ∈ X of the equation b∗x = a and c∗ y = a. Since X is
right cancellative, x 6= y. Consequently, one of the points x or y is distinct from x0. If x 6= x0,
then a = b∗x ∈ F ∗(X\{x0}). If y 6= x0, then a = c∗y ∈ F ∗(X\{x0}). Now for the inclusion
hyperspace U = 〈X \ {x0}〉 6= min G(X), we get F ◦ U = min G(X) = F ◦min G(X), which
contradicts the choice of F as a left cancelable element of G(X).

Thus F contains some singleton {c}. We claim that F coincides with the principal
ultrafilter generated by c. Assuming the converse, we would conclude that X \ {c} ∈ F . Let
A = 〈X \ {c}〉⊥ be the inclusion hyperspace consisting of subsets that meet X \ {c}. It is
clear that A 6= max G(X). We claim that F ◦ A = max G(X) = F ◦max G(X) which will
contradict the left cancelability of F . Indeed, given any singleton {a} ∈ max G(X), consider
two cases: if a 6= c ∗ c, then we can find a unique x ∈ X with c ∗x = a. Since x 6= c, {x} ∈ A
and hence {a} = c ∗ {x} ∈ F ◦ A. If a = c ∗ c, then for every y ∈ X \ {c} we can find
ay ∈ X with y ∗ay = a and use the left cancelativity of X to conclude that ay 6= c and hence
{ay} ∈ A. Then {a} =

⋃
y∈X\{c} y ∗ {ay} ∈ F ◦ A.

Therefore F = 〈c〉 is a principal ultrafilter, which proves the �only if� part of the theorem.
To prove the �if� part, take any principal ultrafilter 〈x〉 generated by a point x ∈ X. We
claim that two inclusion hyperspaces F ,U ∈ G(X) are equal provided 〈x〉 ◦ F = 〈x〉 ◦ U .
Indeed, given any set F ∈ F observe that x ∗F ∈ 〈x〉 ◦F = 〈x〉 ◦ U and hence x ∗F = x ∗U
for some U ∈ U . The left cancelativity of X implies that F = U ∈ U , which yields F ⊂ U .
By the same argument we can also check that U ⊂ F .

Problem 5. Given an (infinite) group X describe left cancelable elements of the subsemi-
groups λ(X), Fil(X), N<ω(X), Nk(X), k ≥ 2 (and G◦(X), λ◦(X), Fil◦(X), N◦

<ω(X), N◦
k (X),

for k ≥ 2).

Remark 5. Theorem 4 implies that for a countable Abelian group X the set of left cancelable
elements in G(X) coincides with X. On the other hand, the set of (left) cancelable elements
of β(X) contains an open dense subset of β◦(X), see Theorem 8.34 of [8].

9. Right cancelable elements of G(X). As we saw in the preceding section, for any
quasigroup X the groupoid G(X) contains only trivial left cancelable elements. For right
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cancelable elements the situation is much more interesting. First note that the right cancela-
tivity of an inclusion hyperspace F ∈ G(X) is equivalent to the injectivity of the map µX ◦
GRF : G(X) → G(X) considered at the begining of Section 2. We recall that µX : G2(X) →
G(X) is the multiplication of the monad G = (G, µ, η) while RF : βX → G(X) is the Stone-
�Cech extension of the right shift RF : X → G(X), RF : x 7→ x ∗ F . The map RF certainly
is not injective if RF is not an embedding, which is equivalent to the discreteness of the
indexed set {x ∗ F : x ∈ X} in G(X). Therefore we have obtained the following necessary
condition for the right cancelability.

Proposition 21. Let X be a groupoid. If an inclusion hyperspace F ∈ G(X) is right
cancelable in G(X), then the indexed set {xF : x ∈ X} is discrete in G(X) in the sense that
each point xF has a neighborhood O(xF) containing no other points yF with y ∈ X \ {x}.

Next we give a sufficient condition of the right cancelability.

Proposition 22. Let X be a groupoid. An inclusion hyperspace F ∈ G(X) is right cance-
lable in G(X) provided there is a family of sets {Sx}x∈X ⊂ F ∩F⊥ such that xSx∩ ySy = ∅
for any distinct x, y ∈ X.

Proof. Assume that A ◦ F = B ◦ F for two inclusion hyperspaces A,B ∈ G(X). First we
show that A ⊂ B. Take any set A ∈ A and observe that the set

⋃
a∈A aSa belongs to

A ◦ F = B ◦ F . Consequently, there is a set B ∈ B and a family of sets {Fb}b∈B ⊂ F
such that

⋃
b∈B bFb ⊂

⋃
a∈A aSa. It follows from Sb ∈ F⊥ that Fb ∩ Sb is not empty for

every b ∈ B. Since the sets aSa and bSb are disjoint for different a, b ∈ X, the inclusion⋃
b∈B b(Fb ∩ Sb) ⊂

⋃
b∈B bFb ⊂

⋃
a∈A aSa implies B ⊂ A and hence A ∈ B.

By analogy we can prove that B ⊂ A.

Propositions 21 and 22 imply the following characterization of right cancelable ultrafilters
in G(X) generalizing a known characterization of right cancelable elements of the semigroups
βX, see [8, 8.11].

Corollary 4. Let X be a countable groupoid. For an ultrafilter U on X the following
conditions are equivalent: 1) U is right cancelable in G(X); 2) U is right cancelable in βX;
3) the indexed set {xU : x ∈ X} is discrete in βX; 4) there is an indexed family of sets
{Ux}x∈X ⊂ U such that for any distinct x, y ∈ X the shifts x Ux and y Uy are disjoint.

This characterization can be used to show that for any countable group X the semigroup
β◦(X) of free ultrafilters contains an open dense subset of right cancelable ultrafilters, see
[8, 8.10]. It turns out that a similar result can be proved for the semigroup G◦(X).

Proposition 23. For any countable quasigroup, the groupoid G◦(X) contains an open dense
subset of right cancelable free inclusion hyperspaces.

Proof. Let X = {xn : n ∈ ω} be an injective enumeration of the countable quasigroup X.
Given a free inclusion hyperspace F ∈ G◦(X) and a neighborhood O(F) of F in G◦(X), we
should find a non-empty open subset in O(F). Without loss of generality, the neighborhood
O(F) is of basic form O(F) = G◦(X) ∩ U+

0 ∩ · · · ∩ U+
n ∩ U−

n+1 ∩ · · · ∩ U−
m−1 for some sets

U1, . . . , Um−1 of X. Those sets are infinite because F is free. We are going to construct an
infinite set C = {cn : n ∈ ω} ⊂ X that has infinite intersection with the sets Ui, i < m,
and such that for any distinct x, y ∈ X the intersection xC ∩ yC is finite. The points ck,
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k ∈ ω, composing the set C will be chosen by induction to satisfy the following conditions:
• ck ∈ Uj where j = k mod m;
• ck does not belong to the finite set Fk = {z ∈ X : ∃i, j ≤ k ∃l < k (xiz = xjcl)}.
It is clear that the so-constructed set C = {ck : k ∈ ω} has infinite intersection with each set
Ui, i < m. Since X is right cancellative, for any i < j the set Zi,j = {z ∈ X : xiz = xjz} is
finite. Now the choice of the points ck for k > j implies that xiC∩xjC ⊂ xi(Zi,j∪{cl : l ≤ j})
is finite.

Now let C be the free inclusion hyperspace on X generated by the sets C and U0, . . . , Un.
It is clear that C ∈ O(F) and C ∈ C ∩ C⊥. Consider the open neighborhood of C in G◦(X)

O(C) = O(F) ∩ C+ ∩ (C+)⊥.
We claim that each inclusion hyperspace A ∈ O(C) is right cancelable in G(X). This

will follow from Proposition 22 as soon as we construct a family of sets {Ai}i∈ω ∈ A ∩ A⊥

such that xiAi ∩ xjAj = ∅ for any numbers i < j. The sets Ai, i ∈ ω, can be defined by the
formula Ak = C \ Fk where Fk = {c ∈ C : ∃i < k with xkc = xiC} is finite by the choice of
the set C.

Problem 6. Given an (infinite) group X describe right cancelable elements of the subsemi-
groups λ(X), Fil(X), N<ω(X), Nk(X), k ≥ 2 (λ◦(X), Fil◦(X), N◦

<ω(X), N◦
k (X), for k ≥ 2).
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