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Some remarks on spectrum of nonlinear continuous operators

Soltanov K.N.

In this article, the existence of the spectrum (the eigenvalues) for the nonlinear continuous op-
erators acting in the Banach spaces is investigated. For the study this question it is used a different
approach that allows the studying of all eigenvalues of a nonlinear operator relative to another non-
linear operator. Here we show that in nonlinear operators case it is necessary to seek the spectrum
of the given nonlinear operator relative to another nonlinear operator satisfying certain conditions.
The different examples, for which eigenvalues can be found, are provided. Moreover, the nonlinear
problems including parameters are studied.

Key words and phrases: nonlinear continuous operator, spectrum, Banach space, nonlinear differ-
ential operator, solvability.
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Introduction

Well-known that the spectral theory for linear operators is one of the most important topics
of linear functional analysis. In many cases for the study of a linear operator it is enough to
study its spectrum. It should be noted that the spectral theory of linear operators has essential
application in many topics of the natural sciences (moreover, the spectral theory is one of the
areas that plays a fundamental role in quantum mechanics). The many processes of physics,
mechanics, biology, etc. from mathematical point of view usually would be nonlinear prob-
lems, consequently, the operators generated by these processes are nonlinear operators acting
in Banach spaces.

It needs to be noted that there exist sufficiently many works, devoted to finding the first
eigenvalue of the nonlinear continuous operators. In these works, various definitions of the
spectra for the specific classes of nonlinear continuous operators were introduced. In many
works, the nonlinear equations of type f (x) — Ag(x) = 0 in the appropriate spaces were
considered, where f is the basic operator, g is the compact operator, and an infimum of the
parameter A was found, at which, in general, the existence of a solution of the considered
equation studied (see, e.g., [3,5,6,9-11,24,39]). In works [6-11, 16,23, 27] the Strum-Liouville
type problem for the perturbed by nonlinear operators of linear operators was investigated.
More exactly, the operator of the form F (A, x) = ALx + g (A, x) was considered, and the bifur-
cation of solutions to the examined problems was studied.
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It is well-known that the finding of eigenvalues of linear operators allows to study the
bifurcations of solutions, which appear under the investigation of the semilinear equations.
It should be noted that there are works, where the existence of the first eigenvalue for certain
nonlinear smooth operators was studied, and using it the bifurcations of solutions to nonlinear
equations with such operators were investigated (see, e.g., [12,16,25,36]).

In works [1,2,4,13-15,18-22,26,28,29], it has been introduced the definition of the spectra
(more exactly, first eigenvalue) using the equation in the form f (x) — A1Ix = 0, as in the linear
operators theory. And also it has been introduced the definition of the spectra for some classes
operators: the Frechet differentiable operators, operators that satisfy the Lipschitz condition,
operators from a special class of continuous operators, and linearly bounded operators. These
approaches supposed that the spectrum of an operator acting in a Banach space can be de-
fined as in the theory of linear operators. These approaches and obtained results in enough
form were explained in the book [1] (see also the survey [2]). In the above works, the study
used degree theory that requires the condition compactness, this condition in what follows
was generalized and used the Kuratowski measure of noncompactness. The definitions of the
spectrum introduced in these works, could not satisfy the next requirements since a found
parameter A will be a function of elements of the domain (see provided examples below).

It will be best if one can introduce such a definition of the spectrum of the continuous
nonlinear operator that satisfies some basic requirements, which were analogous to properties
of the spectrum, existing in the linear operators theory. Then one could be to seek also other
spectrums (i.e. eigenvalues and eigenvectors). So, from the explanation below will be seen
that in order for the spectrum can to characterize the nonlinear operator, we need to approach
another way to the definition of the spectrum of the nonlinear operator.

In this paper, it is proposed a new approach for the study of the spectrum of continuous
nonlinear operators in the Banach spaces. In reality, here we find the first eigenvalue of a
nonlinear continuous operator in Banach space, and in addition, this approach shows how one
can seek the other eigenvalues. Here it is shown that if to use the proposed definition of the
spectrum of nonlinear continuous operators in Banach spaces, then the spectra will satisfy the
certain properties that are similar to properties, having in the linear operator theory. Moreover,
here we investigate also the solvability of nonlinear equations in Banach spaces.

In this paper, we study the spectrum of nonlinear operators acting in Banach spaces, and
also the solvability of the nonlinear equations, dependent on parameters, using the general
solvability theorems and fixed-point theorems of the works [30-32, 34, 35].

Let X, Y be real Banach spaces over the field R and X*, Y* be of their dual spaces, let Y be
reflexive space. Let f : X — Y and g : X — Y be nonlinear continuous operators such that
f(0) =0, g(0) = 0. For investigation of the spectrum of the continuous nonlinear operators,
we will consider the following equation

f(x)=Ag(x), xeMCX,

where f, ¢ are continuous operators, in particular, g can be the identical operator. In addition,
we study the solvability of the equation

HEx)=f(x)—Agx)=y, yeY,

dependent on a parameter A, where A is an element of C, generally.
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The paper is organized as follows. In Section 1, the definition for the spectrum of the
nonlinear continuous operators in the Banach spaces is provided. Also some complementaries
to the definition, and examples are provided. Moreover, the general solvability theorems and
the fixed-point theorems are proved. Here we show how one can find the first eigenvalue
of nonlinear continuous operators relative to another nonlinear continuous operator. Section 2
provides some examples of nonlinear differential operators, for which first eigenvalues relative
to other nonlinear differential operators found. The relations between found first eigenvalues
and first eigenvalues of linear differential operators are showed. In Section 3, the existence
of the first eigenvalues of a fully nonlinear continuous operator relative to other nonlinear
continuous operator is studied and some examples are provided.

1 Spectral properties of nonlinear continuous operators

We will consider the nonlinear continuous operators, acting in Banach spaces, and will
introduce the concept for the spectrum of the nonlinear continuous operator relative to another
nonlinear continuous operator.

Let X and Y be the real Banach spaces, F : D(f) = X — Y, G: X C D(G) — Y
be nonlinear bounded continuous operators (for generality) and A € C be the number, and
F(0)=0,G(0)=0.

So, we will investigate the spectrum of operator F relative to operator G, for this, in the
beginning, we will study the solvability of the following equation with a parameter A

fa(x)=F(x) —AG(x) =0, or F(x)=AG(x), x € X. (1)
And also we will study the following equation

falx)=F(x)=AG(x)=y, yeY. (2)
Let us introduce concepts that are necessary for this paper.

Definition 1. The operator f : D (f) C X — Y is called bounded if there is a continuous
function p : R, — R such that

IfF@ly < p(lxllx), ¥ xeD).

We denote the class of such operators by ‘B and the class of bounded continuous operators
by BC°.

Let us introduce the order of relationships in the class of the bounded continuous operators
acting in Banach spaces.

Definition 2. Let Xy, Yy be Banach spaces, and F : D (f) C Xo — Yy, G: D (G) C Xo — Yp
be continuous operators. Denote by Fr (Z), F (Z) the following sets

Fr(z)={xeXo: [F@)|, < oo} £2, Fo(Z)= {x € Xo: [|G(x)|, < oo} + 2,

which are subsets of Xy for each Banach space Z C Y satisfying conditions Im (F)NZ # &,
Im(G)NZ # @.

If the inclusion Fr (Z) C F¢ (Z) holds for each Banach space Z C Y, then we will say that
operator F is greater than operator G, and denote itas F > G.
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Definition 3. LetF: X — Y, G: X C D(G) — YandF > G.

An element A € C is called a regular and belongs to the G-resolvent of the operator F if
fP=(F-AG) T F(X)NG(X) CY — Xexistsand f;' = (F—AG )" € BC. This
subset of C is denoted by p; (F) C C,i.e. A € pg (F), where f) () = F(-) —AG (-).

Consequently, an element A € C is called a spectrum if it belongs to the C — p¢ (F), which

is defined as the G-spectrum of the operator F, and is denoted by o (F), i.e. A € 05 (F) =
C —pc (F).
Remark 1. The above definition of the spectrum is not suitable for all pairs of operators, which
are chosen in the independent way, which will be shown below. We will call A the first eigen-
value of the examined operator relative to another operator as in Definition 3, which is inde-
pendent of elements from the domain of the examined operators.

Then the definition will allow seeking, in the above sense, the following eigenvalues of the
examined operator relative to another operator.

So, for simplicity, we start to consider the case when F - G and when one of these operators
has the inverse operator from the class BCC. If we assume that operator F is invertible, i.e.
operator F -1.F (X) €Y — X exists, then, using F -1 we get the equation

y—AG(F’%y)) =0, y=F(x),x€X 3)

that needs to study on the subset F (X) C Y. Thus, we will derive an equation that is equiv-
alent to the examined equation, for which the existence of the first eigenvalue in many works
was investigated (see, e.g., [1-4, 6,9, 13, 18-20, 22, 23, 26, 29] and the references given there).
Unlike the usual case, here the operator G o F~! is defined on the subset F (X) and acts as
GoF ':F(X) — G(X) C Y. If the operator G is invertible then in the same way as above,
we get the equation

F(G‘l(y))—)\yza y=G(x), xe€X,

where G~ is the inverse operator to G. Consequently, in this case, the obtained equation will
need to investigate on the subset G (X) of Y.
Thus, if we assume that the operator F (or G) is invertible, then we obtain the equation

A =2"y-G(F'y) =0, fi:D(R)cY—Y )
consequently. The finding of a first eigenvalue of the operator F relative to operator G is trans-
formed into the finding of a first eigenvalue of the operator Go F~1 (or Fo G™1).

It is clear if assume the operator F is the linear continuous operator having the inverse
operator F~1, then the equation (3) is equivalent to the equation

AMlx—F1loG(x) =0,
consequently, the finding of a first eigenvalue of the operator F relative to operator G is trans-
formed into the finding of a first eigenvalue of the operator F~! o G . Problems of such types
were studied in many articles (see, e.g., [9-11,17,27,38]). We would like to study the problem (1)
in the general case. Section 3 will be given explanations relative to the previous cases.

Before starting the investigation of the spectrum of the nonlinear operator relative to other
nonlinear operators in the general case, it is necessary to investigate the solvability of the
nonlinear equation (2). We will use the general existence and fixed-point theorems of arti-
cles [30, 32] to investigate the main equations. At the beginning, we will lead the mentioned
results from these articles.
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1.1 General solvability results

Let X, Y be real Banach spaces such as above, f : D(f) € X — Y be an operator, and
BX (0) € D (f) is the closed ball with a center at 0 € X.
Consider the following conditions.

(i) f:D(f) € X — Y is a nonlinear bounded continuous operator.

(i) There is a mapping g : X € D (g) — Y* such that the conditions g (BX (0)) = B (0)

and
(f (x),8 () = v(llxllx) = v(r), VxeS5K(0),
hold!, where g (x) = é 8”, v : Rl — R!is a continuous nondecreasing on [1, 7]

function and v (r9) > &y > 0.

(iii) Almost each xy € Int Bfg (0) possesses a neighborhood V; (xg), € > €9 > 0, such that the
following inequality

Hf(x2> —f(x) Hy > c1>(||x2 - leX,xo,S) (5)

holds for any x1,x, € Ve (x0) N B} (0), where ® (T, xg,€) > 0is a continuous function of T and
®(1,%,¢) =0 < 7 =0 (in particular, it may be xg = 0, ¢ = 9 = rg and V; (xo) = V;, (0) =
BX (0), consequently ® (7, xo, &) = P (T, x0,79) on BX (0)).

Theorem 1. Let X, Y be real Banach spaces such as above, f : D (f) C X — Y be an operator,
and B (0) C D (f) is the closed ball centered at0 € D (f). Assume conditions (i) and (ii) are
fulfilled. Then the image f (BX (0)) of the ball BX (0) is contained in an absorbing subset Y
and contains an everywhere dense subset of M, which is defined as follows

M={yeY](12() < (f(x),8(x), VxesX(0)}.

Furthermore, if the condition (iii) also is fulfilled then the image f (BX (0)) of the ball
BX (0) is a bodily subset of Y, moreover B}; (0) C M.

The proof of this theorem, and also its generalization was provided in [30] (see also
[32,34,35]). We note that Theorem 2 below is the generalization of such type theorem from [33].
The condition (iii) can be generalized, for example, as in the following assertion.

Corollary 1. Let all conditions of Theorem 1 be fulfilled except for the inequality (5) of condi-
tion (iii) instead that the following inequality

| f(x2) = f(x1)||y = @(llx2 — x1llx, X0, €) + ¢ ([Jx1 — x2]|2, X0, €) (6)

holds, where Z is Banach space and X C Z is compact, { (-, xp, €) : ]RiL —— R! is a continuous
function relatively T € Rl and 1 (0, xo, &) = 0. Then the statement of Theorem 1 is true.

! In particular, the mapping g can be a linear bounded operator ¢ = L : X — Y* satisfying the conditions (ii).
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From Theorem 1 the next result immediately follows.

Theorem 2 (Fixed-Point Theorem). Let X be a real reflexive separable Banach space and
fi : D(fi) € X — X be a bounded continuous operator. Moreover, let on closed ball
BX (0) C D(f1), centered at 0 € D (f1), operators f1 and f = Id — fi satisfy the following
conditions:

¢ the next inequalities

1A <ullixlx),  (f(x),8x) = v(llxlx), V¥ xeB(0),

hold, where fy (BX(0)) € BX(0), ¢ : D(g) € X — X*, D(f1) € D(g) and the
condition (ii) of Theorem 1 is satistied (in particular, g = | : X & X*, i.e. g is a duality
mapping), 4 and v are such functions as in Theorem 1;

* almost each x¢ € Int B,)g (0) possesses a neighborhood V; (xp), € > €9 > 0, such that the
following inequality

1 f(x2) = f(x1)][ = @(llx2 — x1[lx, X0, €)

holds for any x1, x; € Ve (x) N BX (0), where the function ¢ (7, xo, €) satisfies the similar condi-

tions such as functions from the right hand side of (6). Then operator f; possesses a fixed-point
in the closed ball B} (0).

Now we introduce the following concept.

Definition 4. An operator f : D (f) C X — Y is said to possess the P-property if each pre-
compact subset M C Im f of Y contains (maybe generalized) subsequence My C M such that
f~1(My) C Gand My C f(GND(f)), where G is a precompact subset of X.

Notation 1. It is easy to see that the condition (iii) of Theorem 1 one can replace by the condi-
tion: f possesses the P-property.

It should be noted that if f 1 is the lower or upper semi-continuous mapping then operator
f:D(f) € X — Y possesses the P-property.

In the above results, condition (iii) is required for the completeness of the image of con-
sidered operator f. One can bring also other sufficient conditions on f, at which 9 (f) will be
the closed subset (see, e.g. [32,34,35]). In particular, the following results are true.

Lemma 1. Let X,Y be Banach spaces such as above, f : D(f) C X — Y be a bounded
continuous operator, and D (f) is a weakly closed subset of the reflexive space X. Let f has a
weakly closed graph and for each bounded subset M C Y the subset f ~! (M) is a bounded
subset of X. Then f is a weakly closed operator.

Note that the graph of operator f is weakly closed if and only if from x,, X xp € D (f) and
f (xm) X Yo € Y the equality f (x0) = yo € R (f) C Y follows (for the general case see [32,34]).
For the proof it is enough to note that if {yn},,_; C R (f) C Y is a weakly convergent se-
quence of Y then f~! ({ym }2_,) is a bounded subset of X. Consequently, it has a subsequence

{xm}o_q such that x,, € £ (ym) and x, XxeD (f) for some element xg € D (f) by virtue
of the reflexivity of X.
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Lemma 2. Let X, Y be reflexive Banach spaces, f : D (f) C X — Y be a bounded continuous
mapping that satisfies the condition: if G C D (f) is a closed convex subset of X then f (G) is
a weakly closed subset of Y. Then if G C D (f) is a bounded closed convex subset of X then
f (G) is a closed subset of Y.

For the proof it is enough to use the reflexivity of the space X and properties of a bounded
closed convex subset of X (see, e.g., [30,32]).

Lemma 3. Let X be a Banach space such as above, f : X — X* be a monotone operator
satisfying conditions of Theorem 1, and r > 7 be some number. Then f (G) is a bounded
closed subset containing a ball Bfi* (f(0)) for every bounded closed convex body G C X such
that BX (0) C G, wherer| = r{ (r) > &, > 0.

1.2 Investigation of equations (1), (2) and existence of spectra

We start with the study of the equation (2), in order to understand the role of the para-
meter A. Let X,Y be real reflexive Banach spaces, F : X — Y, G : X C D(G) — Y be
nonlinear operators and Bfg (0), ro > 0, be a closed ball, centered at 0 € X, that belongs to
D (F). Since in this work we will consider only operators acting in real spaces, we will seek
real numbers Ay, under which the considered equation may be solvable.

Assume that on the ball Bfg (0) the following conditions are fulfilled:

1) let F: BX (0) — Y, G : B (0) — Y be bounded continuous operators, i.e. there exist
continuous functions pi:Ry — R4, j=1,2, such that inequalities

[F@y < m(llxllx), 1G]y < m2(llxlx),
hold for any x € B (0), in addition F > G;

2) let fA = F — AG be the operator from (2); assume there exists a parameter Ay € R such
that for each (y*,7,A) there exists x € SX (0) such that the following inequality

(fax),y) Zzua(llxlix), 3x€570), gx) =y,

holds, where (y*,7,|A|) € SI” (0) x (0,7] x (0, A¢] and v, : Ry — R is the continuous
function satisfying condition (ii) of Theorem 1, in this case, dp = dpx \( 0if [A| 7 |Agl;

3) assume for almost every point xg from Bfg (0) there exist numbers ¢ > g9 > 0 and contin-
uous on T functions ¢, (T, xp,€) > 0, P, (T, xo, €) such that the following inequality

[fr (x1) = fa (x2) ||y = @a(llx1r = x2llx, %0, €) + ¥a(l[x1 — x2llz, %0, €)

holds for any x1,x, € BX (x0), where ¢ (T,x0,¢) =0 & 7 =0, (-, x0,¢) : Rt — R,
(0, x9, &) = 0 for any (xp, €) and Z is the Banach space such that X C Z is compact.

Theorem 3. Let the conditions 1), 2) and 3) be fulfilled on the closed ball Bfg (0) C X. Then
equation (2) is solvable for all y € V) C Y and each A, 0 < |A| < Ay, moreover, the condition 2)
implies the inclusion B§ (0) C f, (B (0)) holds for &y = éy (A) > 0, where V,, is defined as
follows

vi={ieYl F8) < (filx),gx), vresko)}.
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For the proof it is sufficient to note that all conditions of Theorem 1 are fulfilled for each
fixed A, |A| < Ag, due to conditions of Theorem 3. Therefore, applying Theorem 1, we get the
correctness of Theorem 3.

Consequently, the equation (4) also is solvable in BX (0) under the conditions on f;t of the
above type that depends on Ay, e.g.

l6 (B ) — 6 (B ) |, < € xo.e) s —vally + (12—l 0 ),

where C (xg,¢) Ap < 1 and the inclusion Y C Z is compact.

Whence, using Theorem 2, one can obtain the solvability of the equation (2). Indeed, let
Y = X* and closed ball BX (xg) (ro > 0) belongs to D (F). Let condition 1) is fulfilled on ball
BX (x0). Assume the following conditions are fulfilled:

2’) there exists a parameter A; € R such that A;G (F‘l (F (B (x0))) > C BJX(xo) and for

each x* € SX (0) there exists an x € SX (xo) for each r € (0, 7] such that the following
inequality

(P @),2") = (Ix = wollx) = va, (1), x € S¥(x0) € B (x0),

holds, where v,, : Ry — R is the continuous function that satisfies the condition (ii)
of Theorem 1;

3’) for almost every X € By (xo) there are numbers ¢ > & > 0 and continuous functions
D), (%) : Ry — Ry, ¢r(-,%,¢) : Ry — R for each (¥, ) such that the following
inequality

[F () = Fs (x2)| = @, (= 2l Bre) + o, (I = a7, 2, )

holds for any x1,x, € U (X) N B (x0), where @, (7,%,€) > 0and ®,, (1,%,¢) =0 &
T=0,¢,, (0,X,¢) =0, and Z is the Banach space such that X C Z is compact.

Whence this implies that for defined above A; all conditions of Theorem 1 are fulfilled
for the operator fj\l on the closed ball B (xo). Consequently, ]?)\1 (BX (x0)) contains a closed
absorbing subset of X (at least, 0 € X) by virtue of the Theorem 1. In the other words,
0 € fv)q (BX (x0)) and therefore there exists an element X € B} (xq) for which f, (¥) = 0
holds, i.e. F (X) = MG (X).

The obtained result one can formulate as follows.

Corollary 2. Let F, G be above determined operators, F >~ G, D (F) C D (G), and there exists
a number A that conditions 1), 2’), 3’) are fulfilled on the closed ball BX (xg) € D (F) C X.
Then there exists an element X € BX (xq) such that F (X) = A1G (¥) or ;G (F~1 (+)) has fixed
point.

Let X, Y be Banach spaces, and B} (0) C D (F) C X, 79 >0, F = G, F(0) =0, G (0) = 0 be
bounded operators. Assume that there are continuous functions vr, vg : Ry — R satisfying
condition (ii) of Theorem 1 such that for each y* € S} (0) there exists x € SX (0), for which
the inequalities

(F(x),y) 2 ve(llxllx), (G (x),y") > va(llxlx, )
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hold, where X; is the Banach space such that X C X; (we will denote the relation between x
and y* € S{" (0) by g : SX(0) — S (0),0 < r < rg, so that g (x) = y*). Then according to
condition 2’), one may expect that spectrum of the operator F : D (F) C X — Y relative to
operator G : D (G) € X — Y can be defined in the following way

A:inf{%:xeB%(O)\{O}}, ro > 0. 7)

Now we will clarify when the determined by (7) A is the spectrum of operator G o F~! or
the spectrum of operator F relative to operator G. Generally speaking, one cannot name it since
the composition G o F ~1 can be nonlinear and A may be a function Ay = Aq (x7), unlike the
linear case, where x; is the element on which the relation (7) attains the infimum. Moreover,
if we define the subspace I'y, = {ax; : « € R} C X then for ax; € D (F), generally, we have
aAix; # Go F~1 (ax;) since G o F~! is the nonlinear operator.

Indeed, if the power of nonlinearity of the operator F is greater than the power of nonlin-
earity of operator G, or the inverse of its, then obviously, it will be the case A; = Aq (x7). For
example, let operators F and G be defined in the following way

F(u):-Vo(quO*zw), Gu)=|u"2u, Y=w1(Q),

where X = Wol’p *(Q)NLM(Q), QO C R, n > 1, with sufficiently smooth boundary 9Q) and
p = max{po,p1}, po,p1 >2,9=p = %. Assume py # p1and F : D (F) = WP (Q) —
W~ (Q), G : D (G) = L (QQ) — L7 (Q). Then using (7) we get

A :inf{% Tu € BE{(} (0)\{0}} :inf{% U € Bf(‘]’ol'r’omm(n) (O)\{O}} .

L
Whence we have if py > p1, then

- Vu P - wyPoNLPL (O
A= mf{ (7””1"”!550) IVl Po P s ue B Y (0) {0}}

and if pp < pj, then

: Vu Po - WePonLp (O
A:mf{<7”|’u””§p°> Juf o7 e Bo )(0)\{0}}.
LF1

Consequently, A will be a function A = A (u;), where 17 € X is the element of the domain,
on which the above-mentioned expression attained the infimum (see examples in Section 3).

Remark 2. It follows that in order to Ay could not be a function of x, the main parts of operators
F and G must have a common degree of nonlinearity. Theorem 1 follows that the defined
number A is the number assumed to exist in the conditions of this theorem. Moreover, the
tinding number allows us in mentioned theorem to state the existence of solutions for each A,
0 < |A] < Ay, if the element on the right hand side is from the determined subset.

The spectrum of an operator usually must characterize the examined operator, but the
found A does not satisfy this. Therefore, another way is used here, different from the above-
mentioned works.
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Due to the above explanations, we get that in order to the found A not be a function on x, it
is necessary the existence of some relations between the operators F and G.

So, we assume one of the following conditions are fulfilled: F and G are homogeneous with
common exponent p > 0 or a common function ¢ (-), i.e. F (ux) = uPF (x), G (ux) = u’G (x)
or F(ux) = ¢ (u) F (x), G (ux) = ¢ (1) G (x) for any p > 0.

Let us investigate the problem locally, i.e. we study the problem on the closed ball B (0) C
D (f)) for selected r > 0 and seek A in the form A = A (7).

We start to study the first case, i.e. when F and G are homogeneous with exponent p > 0.
It follows that (7) defines the number A independent of x. Hence, if we denote this minimum
by A1 and the element, at which the minimum is attained, by x;, then (7) will be fulfilled for
all x € Ty, N D (F). Consequently, in this case, one can define x; as the first eigenvector and
Aq as the first eigenvalue of the operator F relative to the operator G (as in the linear case). In
other words, y; = F (x1) is the fixed point of operator AG o F~ 1.

Consider the second case. If the orders of homogeneity of F and G are different, i.e. given
by different functions, e.g. by polynomial functions with exponents pr # pg, then there are
possible two subcases: (a) pr > pg and (b) pr < pg.

Consider the subcase (a). If any x € X we write as x = rX, where ||x||y =rand X = 7 €
Si(o (0) C Xo, then F (x) = rPFF (X) and G (x) = rP6G (X). Hence due to Theorem 3, we get
that G can be the perturbation of operator F, therefore this case not is essential.

In the subcase (b), if there exist Ag and xp such that F (xo) = AoG (xp), then implications
F (XO) = T’SFF (370) , G (x) = T’SGG (J?()) - T’SFF (J?()) = Aoi’gFG (fo)

= F (%) = A (ho,70) G (%) = A (Ao, 7o) = dorg® "
hold. Hence, if we change xo = r9 Xy to x; = r1 Xp, then A will be changed to A = )\Orf ¢ P,
In other words, if pr # pg, then any existing number A will depend on element x € X, i.e.
A = A(r)ontheline {x € X: x =r Xp,r € R}. The previous discussion shows, that there are
two variants: either pr = pg or Ag = Ag (xp), and investigating these cases will be sufficient.

So, here we will study the posed question mainly in the case when condition pr = pg
holds.

Consequently, the concept defined in the articles [1-3,11,13,18,19,22,26,28,29] of the semi-
linear spectral set is special case of the Definition 3 by virtue of (3) and (4).

2 Some application of general results

Consider the following problems

—Vo (‘Vu}p_ZVu) —Mu]po_zu‘Vu‘pl =0, ulyn=0 AeC, (8)
Vo (\uv’—zw) A uP2u=0, ulsn=0 AeC, )

where () C R" is an open bounded domain with sufficiently smooth boundary 0Q2, n > 1,
po+p1 = pand V = (Dy,...,D;,). Denote by f; the operator generated by (8) which acts
from Wé’p (Q) to W= (Q). Tt is easy to see that fj : Wé’p (Q) — W1 (Q) is a continuous
operator, and

0= (fo(u),u)= <—Vo (‘Vu}%zVu) —A ]u\po*zu}Vu‘pl,u>

= ||Vul|l — [ Au|P | Vu|" dx = ||[Vu|" =7 [ |ulP° |Vu|" dx
P Q p Q
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holds for any u € W&’p (Q)). It follows that A > 0, because both of these expressions are
positive.

(1) We will investigate the problem (8) by using the Theorem 1 or Theorem 3. But we interest
to study the question on the spectrum, therefore here we will use Corollary 2. According
to the previous section, we can introduce the following denotations

F(u)= -V (}w\”‘zw) , WP (Q) — WM (Q),

G (u) = [ul*2u|Vul”, G:Wy"(Q) — WM (Q).

So, we need to seek the minimal value of A and a function u, (x) (if it exists) for which

the equality

()

p Po pi wy"
HVqu:A/Q|u| (VulPdy, ue B ()

p
o vl - <|rw|rp>m<uwup>mdx
Joy [l [ Vu|" dx o) ] |Vu|

holds. Consequently, we need to find the following number

or

[V ul|} W ()

A = inf ‘u € By 0) ».
Jo [ulPo|VulPrdx

It is clear that A exists and A; > 0. It follows that

Po 1
[l p Tl

for any u € Wé’p (Q), u (x) # 0, that is assumed and in what follows.

We denote by A, ,, the first spectrum of the posed problem that one can define as

==

B y
Aoy :inf{HVqu [/Q|u|p0|Vu|p1 dx} Ly e Sy “’)(0)}. (11)

From (10) we obtain

Vullp |
[l

1
Apopr = A0 = inf{ S w(}'”(ﬂ)}

1
that is well-known, A;® = Ay (—A,) was defined as the first spectrum of p-Laplacian

(see, e.g., [23]) that is

[Vull,
”””P

M(=4y) = inf{ c WS’”(Q)},

consequently, that inequality shows that A, ,, is comparable with the spectrum A (—A)
of the p-Laplacian, i.e. Ay, ,, satisfy the inequality Ay, p, > A1 (—Ap).
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(2) Now we will consider the problem (9). Then we get

— 2 -2 2
/’”VPZW”’Z”:)‘/ wpde  or - V(!u!p—zzu) :)»H\u\poTu ,
Q Q )

p2

. p2
here if we assume pg = p and |u| = u = v, then we get

2
= Allo)l3.
|, =lell

Vel = 5 ¥ () [ =

It follows that the first eigenvalue A (p) of the operator —V - <|u|p -2 Vu) relative to the

operator |u|’~? 1 can be defined using the first eigenvalue A1 (—A) of the Laplacian, that is it
can be defined by expression

Vol :
[EIE

A (=A) = inf{ vE wg-z(Q)}.

Consequently, the first eigenvalue A (p) of the operator —V - <|u|p —2 Vu) relative to
the operator |u|” “2u (with respect to the problem (9)) one can define by the equality

2
M (p) = (321 (-8))
Thus we get the following result.

Proposition1. (1) Let A, be the p-Laplacian operator with homogeneous boundary con-
ditions on the bounded domain of R" with smooth boundary dQ) and py + p1 = p.
Then the first eigenvalue Ay, of the operator —A, relative to the operator G : G (u) =
|u|P°~%u|Vu|P" exists and it can be defined by the equality (11).

(2) If F and G are operators, generated by the problem (9), and py = p, then the first eigen-

2

value of the operator F relative to the operator G is determined as A1 (p) = <%)\1 (L)) ,
where A1 (—A) is the first eigenvalue of the Laplacian.

Remark 3. It should be noted that by the same way one can define the spectrum of opera-

n
tor A, (and also of the operator F : F(u) = Y. D;(|Du|"~>Du)) relative to the operator
i=1
n
Go:Go(u) =Y |ulPo=2u |Du|P.
i=1

Now, using the previous results we will investigate the solvability of the problem on the
open bounded domain (3 C R" with smooth boundary dQ) with the following homogeneous
boundary condition

fr(u) = -V (\w}p*w) — AMulP 2| Vul™ = h(x) . (12)
For this problem the following result holds.

Theorem 4. Let numbers p, po, p1 > 0 be such that pg + p1 = p > 2, and Ay p, be the number

defined in (11). Then if A < Ay, ,,, then the posed problem is solvable in Wé’p (Q)) for each
he W (Q).
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Proof. Let

fu(w) = =9 (|Vu]"29u) = Aul™ 2 u|Vul"
be the operator, generated by the posed problem for (12), acting as fy : X — Y, where
X = Wé’p (Q), Y = W~ (Q)) and fulfill the above conditions. We will use the Corollary 1 for

the proof of solvability of this problem.
It follows that the inequality

(fa(u),u) = HVqu —)\/Q |u| P |VulPdx > HVqu — A u|? HVuH?

_ p p _ A\ - p
= vl (1l =a ) = 1val (1~ Amlm) = Ao (porn =) [Vl

holds for any u € Wé’p (Q)) under conditions of Theorem 4.

Consequently, if A < Ay, ,,, then f, satisfies the condition (ii) of the Theorem 1, moreover
it is fulfilled for xp = 0 and g = Id. The realization of the condition (i) of Theorem 1 for f, is
obvious.

The following inequalities show the fulfillment of condition (7ii) of the Theorem 1 (Corol-
lary 1) for this problem. It is not difficult to see

(f (u) = f (@), u—20) = ((|Vu|"*Vu - \w}*"zw) 'V (u—0))
= A (Jul 2 [Vu "~ o2 Vol o) ,u —0)
> col|V (1 —=o) ||} = A {JulPo~ 2 (| Vu|" \vv}m),u — o)
- A<\w\’“ (|u|f’0*2u - |v|P0*2v) u —v>

hold for any u,v € W&’p (Q2). Here the second term of the right side one can estimate as

‘< P2y <}Vu‘p1 — }Vv‘m) LU — v>

< <|u|’7°*1 }Vﬁ}pl*l\Vu — Vo

,|u—v|>

< e[|V (u=o) [[p 4+ C &) lufl o7 | alf)" =},

where p’ = p—fl.
Thus we get that all of the conditions of Theorem 1 (the case of Corollary 1) are fulfilled for
the problem (12). Consequently, applying Theorem 1 we get the correctness of Theorem 4. [

3 Fully nonlinear operator

Now we will study the question on the existence of the spectrum of the fully nonlinear
operator. Let X, Y, Z are real Banach spaces, the inclusion Y C Z* is continuous and dense,
where Z* is the dual space of Z. Let L : D (L) € X — Y be the linear operator, where D (L) is
densein X. Let f : D(f) CY — Zand g: X C D (f) — Z be nonlinear operators. Assume

L(D(L)) €D ().
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We wish to define the spectrum of the operator foL : D (L) C X — Z with respect to
the operator g, where D (L) C D (g). We should note that the nonlinearity of the operator g
depends on the nature of the nonlinearity of the operator f.

Consider the problem

fux)=f(Lx)—Ag(x)=h, heZ, (13)
where A € R is a parameter and / is an element of Z.

We will investigate the existence of the spectrum of the operator f o L relative to the opera-
tor g, and also the solvability of the equation (13) with a parameter.

We will calla A € C the spectrum of the nonlinear operator if it characterizes the examined
operator similarly to the linear operator theory according to Definition 3. It follows that it
is necessary to assume the identical homogeneity of the nonlinearities of operators f and g
according to the above explanations.

So, we study the following particular case that can explain the general case. We use the
general results of articles [30,32] to investigate posed problems. Let B (0) C D (L), ry > 0.

Consider the following conditions.

1) There are constants cj,c, > 0 such that ¢q ||x]|x > ||[Lx||y > c2||x||x forany x € D (L) C
X, where X and Y are reflexive spaces and the inverse to L is a compact operator.

2) The operator f o L is greater than the operator g, i.e. foL > g; f and g are continuous
as the functions and satisfy the following conditions: f (t) -+ > 0 for all t € R\ {0};

f(0)=0,g(0)=0.

3) There is a number Ay > 0 such that for each z* € S¥* (0) there exist an x (z*) € SX (0),
0 < r < rp, such that the inequality

(fa(x),27) = (f (Lx) = Ag (x),z") Z v([|Lx]ly, A)
holds for all A, |A| < Ag, where v : Ry —— R is a continuous function, and there exists

do (A) > Osuch that v (t,A) > &y (A) for all t = ||Lx||y, when the variable x moves over
the sphere SX (0).

4) There exist an ¢p > 0 and a neighborhood U, (x) of a.e. x € Bfg (0) € X such that the
following inequalities
(f (Lx1) — f (Lxa), Lx; — Lxp) > 1 (x1,%2) || Ly — Lxa||3,

1§ (x1) =g (x2) ||, < I (x1,x2) [|l21 — 22 %
hold for all x1,xy € U, (x), where I (x1,x3) > 0, I; (x1,x2) > 0 are functionals that are
bounded in the sense, similar to the Definition 1.

Theorem 5. Let conditions 1)-4) be fulfilled, D (L) = X, and |A| < Ag. Then equation (13) is
solvable for allh € Z and satisfies the condition: for any z* € S¥* (0) there exists an x (z*) €
SX (0) such that the following relation

| (h,z") | < (fa(x),2%)
holds, in particular, B?O(A) (0) € M (A) or (13) is solvable for allh € M (A) C Z, where the
subset M (\) is determined as follows

M(A) = {z €Z:|(z2)| <v(||Lxlly,A), V2" € S (0) 3x () € ¥ (0)}.
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Proof. For the proof, it is sufficient to show that the examined operator satisfies all conditions
of the general result of Subsection 1.1. It is clear that the operator F) (x) = f (Lx) — Ag(x)
satisfies conditions (i), (ii) of the general results with xy = 0, according to conditions 1)—-4)
(since F) (0) = 0). Then it remains to show fulfillment of condition (iii), and for this it is
sufficient to investigate the following expression

[Fa (x1) = Fa (x2) ||, = || (f (Lx1) = Ag (x1) ) = (f (Lxa) — Ag (x2)) ||, -

Let us prove that this expression satisfies the following inequality

|Fa (x1) = Fa (x2) ||, > (l (x1,%2) [|x1 — szX,)\) —c1 (ll (x1,%2) [|Jx1 — szXO,)\)-
Set the following expression

(Fr(x1) = Fx(x2), Lx1 — Lxp) = ((f(Lx1) — f(Lx2)), Lx; — Lxp) — A{g(x1) — g(x2), Lx1 — Lx2),

that is defined correctly, since F : D (L) € X — Zand L: D(L) € X — Y C Z*. Hence,
by carrying out certain necessary operations and considering the conditions of this section, we

get

(Fy (x1) — Fy (x2), Lx; — Lxz)
= (f (Lx1) — f (Lxa) , Lx1 — Lxa) — (Ag (x1) — Ag (x2), Lx1 — Lx2)

(14)
> 1 (x1,%2) ||Lx1 — Lxa || = [A] [|g (1) — & (x2) || || L (1 = x2) [
> 1 (x1, %) || (v = 22) [y = 1] g () = g (x2) [ ]I (e = x2) |
according to condition 1). Now, again taking into account the condition 1), we get
|(Fx (x1) = Fx (x2), Lx; — Lxg)| < ||Fa (x1) = Fy (x2) ||, - [|ILx1 — Loy - (15)

Thus, using inequalities (14) and (15) and condition 4), we obtain the following estimate

[Ex (1) = Fa (x2) [l = 1 (e, 32) (|1 (e = 22) [y = [AT][g (1) = g (%2) |

> 1 (x1,%2) || L (x1 = x2) ||y — [A] 1 (31, x2) 21 — 22| -

So, conditions (i) — (iii) of the general theorem are fulfilled under conditions of this theorem.
From the above inequality it follows the fulfillment of condition (iv), that ensures the closed-
ness of the image of F (BX (0)). Consequently, the correctness of Theorem 5 follows from the
general theorem. O

Remark 4. It should be noted that the defined in Theorem 5 subset M (A) decreases by increas-
ing the number |A| /* Ag. Moreover, the above-mentioned articles actually sought numbers of
the type A the existence assumed in the previous theorem.

Here we investigate the discovery of such numbers that are independent of elements of the
domain. Then, the founded number in such a way can be called the first eigenvalue of the
examined operator relative to another operators as in Definition 3.

In what follows we use some results from the article M.S. Berger [6] (see, also [37]), therefore
here we provide these results.
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Definition 5 ([6]). Let A : X — X* be a variational operator. Then A is of class I if:
(i) A isbounded, i.e. ||A(x)| < u(]x||);
(ii) A is continuous from the strong topology of X to the weak topology of X*;
(iii) Aisodd, ie. A(—x) = —A(x);

1
iv) /0 (A (sx),x)ds /tooas||x||y /oo
(v) (A(x1) —A(x2),x1 —x2) > 0 forany x;,x; € X.

Lemma 4 ([6]). Let A be a variational operator of class I, then

AR = {x eX: /01 (A(sx),x)ds = R}

is a closed and bounded set in X. Furthermore, ||x|[x > k(R) > 0 and dAg is a weakly closed
and bounded convex set, where k(R) is a constant independent of x € dAg.

So, consider the homogeneous equation (13) in order to investigate the existence of the
necessary number Ag.

Proposition 2. Let X C Y and itis denseinY, Z = Y*. Let conditions 1), 2), 4) of Theorem 5
are fulfilled for this case and operators f, g as the functions are monotone odd functions. Then

X
there exista Ay > 0 and an x,, € 9E%%® = X such that Fy, (xp,) = f (Lxp,) — Aog (xx,) =0

holds for some number Ry > 1, where 8EB1}§0 ©) is defined as follows

BX (0) _ X e _
OE™M™ = dx € B (0) C X: [ (f(sLx),Lx)ds=Ro¢,
0

B, (0) X !
EPRo :{xEBRO(O)CX:/ <f(sLx),Lx>ds§R0}.
0

Moreover, the condition similar to condition 3) of the above Theorem 5 is satisfied.

Proof. 1t is clear that L(Bfgo (0)) is convex due to the linearity of the operator L. From above

X
Lemma 4 it follows that E%%(©) is a weakly closed, bounded convex set and ||x||yx > k(rp) > 0,

(0)

where k(7)) is a constant independent of x € EPR
tions of Lemma 4. N K
Consequently, Lemma 4 implies that E 5% and 9E®% are weakly closed bounded con-
vex sets. Consequently, these are closed convex sets due to Mazur Theorem.
Now, consider the expression (g (x), Lx) and note that there exists a constant M such that

0 < sup { g (x) | ye (X E 9ERo (O)} = M < oo, according to the conditions 1), 2) and bound-

edness of the norm ||Lx||y,i.e. 0 < |[|[Lx||y. < M; < o0, x € BﬁO(O).
Consequently, there exist a constant Ay = Ag(M), where 0 < Ay < oo, and appriopreate x,,
such that Fy, (x;,) = 0. O

, as the operator f o L satisfies all condi-

So, we provide the result on the spectrum of the operator f o L relative to the operator g.
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Theorem 6. Let f and g be homogeneous functions with equal order of nonlinearity, which is
the continuous function ¢, i.e. for any T € Ry equalities f (T-y) = ¢ (1) f(y), g(T-y) =
¢ (1) - g (v) hold. Assume all conditions of the above Proposition 2 are fulfilled. Then operator
f o L has a spectrum relative to operator g, which is a function of the spectrum of operator L.

Proof. From Proposition 2 it follows the existence of a A € R} and an element x € X such
that the equation F) (¥)) = f (LX)) — Ag (X)) = 0 is solvable. Then using the well-known
approach it is necessary to seek elements Ap € R} and xp € X, which satisfy the following

equality
A:inf{%:xe}(}. (16)

Due to the conditions of this theorem, it is enough to study the above question only for
x € S¥(0). We can take into account that f is an N-function and the expression (f (Lx), Lx)
generates a functional @ (Lx) according to the condition on f. Note that in the case when L is
the differential operator, (f (Lx), Lx) is a function of the norm ||Lx||;  on some Lebesgue or
Orlicz space, where & is an N-function.

It follows that it is enough to seek the number A in the following way

I LT P }
A= f{Hg(x)HZ. € 57(0) p.

From the above expression it follows the existence of number A > 0.

Thus one can state that there exists a number A such that condition 3) of the Theorem 5
is fulfilled for F (X)) with the mentioned number A. Since according to conditions of this
theorem other conditions of Theorem 5, i.e. conditions 1), 2), 4), are fulfilled. Consequently,
using Theorem 5, we get the existence of an element xy € S (0) and an appropriate number
A, that is the element on which the expression (16) attained the infimum Ay. 0

Notation 2. In particular, if we assume that x; € S (0) is the first eigenfunction and A4 is the
tirst eigenvalue of the operator L, then we have

IENE
M= etz

Now we provide some examples of operators related to the above theorems.

1. Let L : W"P(Q)) — L, (Q) be a linear differential operator with the spectrum
P(L) C R,, the operator f is the function f (1) = |t|/"?T and ¢ = f. So, it needs
to be defined the first eigenfunction and eigenvalue of the operator f (Lo) relative to
operator g (o). Then using the expression (16) we get

u P
)\f:inf{M:uewm'p(Q)}:inf{ IE HL” :ueWm'p(Q)}

(g(u), Lu) oy |u[P~2u Ludx
-1 1
ILu]|7 Lu P m,
> in T ue WP(Q) § = inf MEull, A" e s ()
lullf, el

Whence we arrive that A 2 )\zl_l, where Aj; is the first eigenvalue and the function

Uy € Si/v ) (0) is the first eigenfunction of the operator L.
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2. We study the spectral property of the fully nonlinear operator in the following two spe-
cial cases

—\Au\p_zAu:A}Vu}’kzu, x e, 0, (17)

”}an =

— AP Au=A|ul'u, xeQ, 0, (18)

”‘aQ:

i.e. we seek the spectrum of the operator — |Aul|” 2 Au relative to operators ‘Vu‘y “u
and |u|" u separately.

2 (a). Consider the problem (17). We use the following equality
<— |Au|P~2 Au, —Au> = <)\ |Vul'2u, —Au> :
Then we get HAqu =A(p—1)" HVqu Hence,

1 Au]}
V73]

A
cu € WP WP =(u—1)inf m cue W AW
: [ vuf” °

M(p, )= (p—1)inf {

It follows that to find A, satisfying the assumed condition, we must select the corresponded
exponent y.
Consequently, we need to assume y = p, then we get

. HAu”p 2 1p
M(pp)=(p—1)inf { = :u € WP (Q)NW," (Q) ;. (19)
IVull,

It is well-known that || Vu Hp < ¢(p,Q) ||Aul|, under the condition u|,, = 0, consequently,
Mpp) = (p—1clpQ)

Proposition 3. Let fy : WP (Q) N Wé’p (Q) — L7(Q) has the form fy (1) = — |Au|P~? Au
and fi : Wé’p (QQ) — L7(Q) has the form f, (1) = |Vu|P~?u . Then the operator f has the
first eigenvalue relative to operator f1, which is defined by (19).

2 (b). Consider the problem (18) for v = p — 2. Then we have that
<— |Au|P~2 Au, —Au> = <A lulP "2 u, —Au>

implies

HAuugzvaiz—U HV (H) 2

o Jaullh = A=) || (jul" > 1vul?) |
Thus we get
~ _ 1 | Aullh _ ) 1y
1(p) p—lmf H|u|p_22|vu|Hi.ueW POW,
; (20)
p |1

"™ Hv(!u!”%\;\) I e WPy
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Hence we obtain

) s ! H_AuHﬁ "
P lullf = Vull,
according to the following inequality
| (1P~ 1vul) ||, <l vl
So, we arrive at the following result.
Proposition 4. Let fo : WP (Q) N Wé’p (Q) —> L7(Q) has the form fy (1) = — |Au|P~? Au

and f : L (Q)) — L7(Q) has the form f, () = |u|’"?u . Then the operator fy has the first
eigenvalue relative to operator f1, which is defined by (20) and it satisfies the inequation (21).

Remark 5. In the previous case, it would be to use the following equality
—/ |Au|P"2 Audx = A/ u|P~2 u dx.
Q Q

It implies ||Aul|,,_; = Al[u|[,_;. Then we get

Aull,
A = inf M:MEWZPHWM7 ,
”qu—l 0

since in the conditions of this section the operator —A is positive.

4 Conclusions

To seek the eigenvalues of a nonlinear continuous operator in a Banach space it is necessary
to choose the other operator in such a way that the order of nonlinearity should be identical
with the order of nonlinearity of the examined operator. If one uses the proposed approach,
then it is possible to find the other eigenvalues of this operator. The importance of the knowl-
edge of the eigenvalues of the operators in the study of the bifurcation of solutions of nonlinear
equations is showed in many articles dedicated to studying the bifurcation of the solutions of
nonlinear equations (see Section 3 and, e.g., articles [12, 16, 36]).
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Y 11iif cTaTTi AOCAIAXKEHO iCHYBaHHSI CIIEKTPY (BAACHMX 3HaUeHb) AAS HEAIHIHMX HellepepBHIX
oIepaTopis, IO AiIOTh y 6aHaXOBMX MPOCTOpaX. AASL AOCAIAKEHHSI IIbOTO IIMTaHHS BUKOPMCTOBY€-
THCST IHIIVIA i AXiA, IO AO3BOASIE BUBUEHHsI BCiX BAACHMX 3HaUeHb HEeAIHIITHOro ornepaTopa BiAHOCHO
iHIIOrO HeAiHilHOTO omeparopa. TyT mokasaHo, IO Y BUITAAKY HEAIHIIfHIX omepaTopiB HeOOXiAHO
LIyKaTU CIIeKTP AAHOTO HeAiHiHOTo omepaTopa BiAHOCHO iHILIOTO HeAiHifHOro omeparopa, IO 3a-
AOBOADBHsIE IeBHi yMoBu. HaBeaeHO pisHI MpMKAAAM, AASL SIKMX MOXKHA 3HAMTM BAACHI 3HAUEHHSI.
Biab1ie Toro, y cTaTTi AOCAIAXYIOThCSI HEAIHIVHI 3aAadi 3 MapaMeTpaMIL.

Kntouosi ciio8a i hpasu: HeAiHIVHVIT HellepepBHIMIA OIIEPATOp, CIEKTpP, 6aHAXOBMI IIPOCTIip, HeAi-
HiliHWIT AMdpepeHIIiaAbHIIE OTlepaTop, PO3B A3HICTh.



