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Some remarks on spectrum of nonlinear continuous operators

Soltanov K.N.

In this article, the existence of the spectrum (the eigenvalues) for the nonlinear continuous op-

erators acting in the Banach spaces is investigated. For the study this question it is used a different

approach that allows the studying of all eigenvalues of a nonlinear operator relative to another non-

linear operator. Here we show that in nonlinear operators case it is necessary to seek the spectrum

of the given nonlinear operator relative to another nonlinear operator satisfying certain conditions.

The different examples, for which eigenvalues can be found, are provided. Moreover, the nonlinear

problems including parameters are studied.
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Introduction

Well-known that the spectral theory for linear operators is one of the most important topics

of linear functional analysis. In many cases for the study of a linear operator it is enough to

study its spectrum. It should be noted that the spectral theory of linear operators has essential

application in many topics of the natural sciences (moreover, the spectral theory is one of the

areas that plays a fundamental role in quantum mechanics). The many processes of physics,

mechanics, biology, etc. from mathematical point of view usually would be nonlinear prob-

lems, consequently, the operators generated by these processes are nonlinear operators acting

in Banach spaces.

It needs to be noted that there exist sufficiently many works, devoted to finding the first

eigenvalue of the nonlinear continuous operators. In these works, various definitions of the

spectra for the specific classes of nonlinear continuous operators were introduced. In many

works, the nonlinear equations of type f (x) − λg (x) = 0 in the appropriate spaces were

considered, where f is the basic operator, g is the compact operator, and an infimum of the

parameter λ was found, at which, in general, the existence of a solution of the considered

equation studied (see, e.g., [3, 5, 6, 9–11, 24, 39]). In works [6–11, 16, 23, 27] the Strum-Liouville

type problem for the perturbed by nonlinear operators of linear operators was investigated.

More exactly, the operator of the form F (λ, x) = λLx + g (λ, x) was considered, and the bifur-

cation of solutions to the examined problems was studied.
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It is well-known that the finding of eigenvalues of linear operators allows to study the

bifurcations of solutions, which appear under the investigation of the semilinear equations.

It should be noted that there are works, where the existence of the first eigenvalue for certain

nonlinear smooth operators was studied, and using it the bifurcations of solutions to nonlinear

equations with such operators were investigated (see, e.g., [12, 16, 25, 36]).

In works [1, 2, 4, 13–15, 18–22, 26, 28, 29], it has been introduced the definition of the spectra

(more exactly, first eigenvalue) using the equation in the form f (x)− λ1 Ix = 0, as in the linear

operators theory. And also it has been introduced the definition of the spectra for some classes

operators: the Frechet differentiable operators, operators that satisfy the Lipschitz condition,

operators from a special class of continuous operators, and linearly bounded operators. These

approaches supposed that the spectrum of an operator acting in a Banach space can be de-

fined as in the theory of linear operators. These approaches and obtained results in enough

form were explained in the book [1] (see also the survey [2]). In the above works, the study

used degree theory that requires the condition compactness, this condition in what follows

was generalized and used the Kuratowski measure of noncompactness. The definitions of the

spectrum introduced in these works, could not satisfy the next requirements since a found

parameter λ will be a function of elements of the domain (see provided examples below).

It will be best if one can introduce such a definition of the spectrum of the continuous

nonlinear operator that satisfies some basic requirements, which were analogous to properties

of the spectrum, existing in the linear operators theory. Then one could be to seek also other

spectrums (i.e. eigenvalues and eigenvectors). So, from the explanation below will be seen

that in order for the spectrum can to characterize the nonlinear operator, we need to approach

another way to the definition of the spectrum of the nonlinear operator.

In this paper, it is proposed a new approach for the study of the spectrum of continuous

nonlinear operators in the Banach spaces. In reality, here we find the first eigenvalue of a

nonlinear continuous operator in Banach space, and in addition, this approach shows how one

can seek the other eigenvalues. Here it is shown that if to use the proposed definition of the

spectrum of nonlinear continuous operators in Banach spaces, then the spectra will satisfy the

certain properties that are similar to properties, having in the linear operator theory. Moreover,

here we investigate also the solvability of nonlinear equations in Banach spaces.

In this paper, we study the spectrum of nonlinear operators acting in Banach spaces, and

also the solvability of the nonlinear equations, dependent on parameters, using the general

solvability theorems and fixed-point theorems of the works [30–32, 34, 35].

Let X, Y be real Banach spaces over the field R and X∗, Y∗ be of their dual spaces, let Y be

reflexive space. Let f : X −→ Y and g : X −→ Y be nonlinear continuous operators such that

f (0) = 0, g (0) = 0. For investigation of the spectrum of the continuous nonlinear operators,

we will consider the following equation

f (x) = λg (x) , x ∈ M ⊆ X,

where f , g are continuous operators, in particular, g can be the identical operator. In addition,

we study the solvability of the equation

fλ (x) ≡ f (x)− λg (x) = y, y ∈ Y,

dependent on a parameter λ, where λ is an element of C, generally.
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The paper is organized as follows. In Section 1, the definition for the spectrum of the

nonlinear continuous operators in the Banach spaces is provided. Also some complementaries

to the definition, and examples are provided. Moreover, the general solvability theorems and

the fixed-point theorems are proved. Here we show how one can find the first eigenvalue

of nonlinear continuous operators relative to another nonlinear continuous operator. Section 2

provides some examples of nonlinear differential operators, for which first eigenvalues relative

to other nonlinear differential operators found. The relations between found first eigenvalues

and first eigenvalues of linear differential operators are showed. In Section 3, the existence

of the first eigenvalues of a fully nonlinear continuous operator relative to other nonlinear

continuous operator is studied and some examples are provided.

1 Spectral properties of nonlinear continuous operators

We will consider the nonlinear continuous operators, acting in Banach spaces, and will

introduce the concept for the spectrum of the nonlinear continuous operator relative to another

nonlinear continuous operator.

Let X and Y be the real Banach spaces, F : D ( f ) = X −→ Y, G : X ⊆ D (G) −→ Y

be nonlinear bounded continuous operators (for generality) and λ ∈ C be the number, and

F (0) = 0, G (0) = 0.

So, we will investigate the spectrum of operator F relative to operator G, for this, in the

beginning, we will study the solvability of the following equation with a parameter λ

fλ (x) ≡ F (x)− λG (x) = 0, or F (x) = λG (x) , x ∈ X. (1)

And also we will study the following equation

fλ (x) ≡ F (x)− λG (x) = y, y ∈ Y. (2)

Let us introduce concepts that are necessary for this paper.

Definition 1. The operator f : D ( f ) ⊆ X −→ Y is called bounded if there is a continuous

function µ : R1
+ −→ R1

+ such that

∥∥ f (x)
∥∥

Y
≤ µ

(
‖x‖X

)
, ∀ x ∈ D( f ).

We denote the class of such operators by B and the class of bounded continuous operators

by BC0.

Let us introduce the order of relationships in the class of the bounded continuous operators

acting in Banach spaces.

Definition 2. Let X0, Y0 be Banach spaces, and F : D ( f ) ⊆ X0 −→ Y0 , G : D (G) ⊆ X0 −→ Y0

be continuous operators. Denote by FF (Z), FG (Z) the following sets

FF (Z) ≡
{

x ∈ X0 :
∥∥F(x)

∥∥
Z
< ∞

}
6= ∅, FG (Z) ≡

{
x ∈ X0 :

∥∥G(x)
∥∥

Z
< ∞

}
6= ∅,

which are subsets of X0 for each Banach space Z ⊆ Y0 satisfying conditions Im (F) ∩ Z 6= ∅,

Im (G) ∩ Z 6= ∅.

If the inclusion FF (Z) ⊂ FG (Z) holds for each Banach space Z ⊆ Y0, then we will say that

operator F is greater than operator G, and denote it as F ≻ G.
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Definition 3. Let F : X −→ Y, G : X ⊆ D (G) −→ Y and F ≻ G.

An element λ ∈ C is called a regular and belongs to the G-resolvent of the operator F if

f−1
λ ≡ (F − λG )−1 : F (X) ∩ G (X) ⊆ Y −→ X exists and f−1

λ ≡ (F − λG )−1 ∈ BC0. This

subset of C is denoted by ρG (F) ⊆ C, i.e. λ ∈ ρG (F), where fλ (·) ≡ F (·)− λG (·).

Consequently, an element λ ∈ C is called a spectrum if it belongs to the C − ρG (F), which

is defined as the G-spectrum of the operator F, and is denoted by σG (F), i.e. λ ∈ σG (F) ≡

C − ρG (F).

Remark 1. The above definition of the spectrum is not suitable for all pairs of operators, which

are chosen in the independent way, which will be shown below. We will call λ the first eigen-

value of the examined operator relative to another operator as in Definition 3, which is inde-

pendent of elements from the domain of the examined operators.

Then the definition will allow seeking, in the above sense, the following eigenvalues of the

examined operator relative to another operator.

So, for simplicity, we start to consider the case when F ≻ G and when one of these operators

has the inverse operator from the class BC0. If we assume that operator F is invertible, i.e.

operator F−1 : F (X) ⊆ Y −→ X exists, then, using F−1, we get the equation

y − λG
(

F−1(y)
)
= 0, y = F (x) , x ∈ X, (3)

that needs to study on the subset F (X) ⊆ Y. Thus, we will derive an equation that is equiv-

alent to the examined equation, for which the existence of the first eigenvalue in many works

was investigated (see, e.g., [1–4, 6, 9, 13, 18–20, 22, 23, 26, 29] and the references given there).

Unlike the usual case, here the operator G ◦ F−1 is defined on the subset F (X) and acts as

G ◦ F−1 : F (X) −→ G (X) ⊆ Y. If the operator G is invertible then in the same way as above,

we get the equation

F
(

G−1 (y)
)
− λy = 0, y = G (x) , x ∈ X,

where G−1 is the inverse operator to G. Consequently, in this case, the obtained equation will

need to investigate on the subset G (X) of Y.

Thus, if we assume that the operator F (or G) is invertible, then we obtain the equation

f̃λ (y) ≡ λ−1 Iy − G
(

F−1 (y)
)
= 0, f̃λ : D

(
f̃λ

)
⊆ Y −→ Y (4)

consequently. The finding of a first eigenvalue of the operator F relative to operator G is trans-

formed into the finding of a first eigenvalue of the operator G ◦ F−1
(
or F ◦ G−1

)
.

It is clear if assume the operator F is the linear continuous operator having the inverse

operator F−1, then the equation (3) is equivalent to the equation

λ−1x − F−1 ◦ G (x) = 0,

consequently, the finding of a first eigenvalue of the operator F relative to operator G is trans-

formed into the finding of a first eigenvalue of the operator F−1 ◦ G . Problems of such types

were studied in many articles (see, e.g., [9–11,17,27,38]). We would like to study the problem (1)

in the general case. Section 3 will be given explanations relative to the previous cases.

Before starting the investigation of the spectrum of the nonlinear operator relative to other

nonlinear operators in the general case, it is necessary to investigate the solvability of the

nonlinear equation (2). We will use the general existence and fixed-point theorems of arti-

cles [30, 32] to investigate the main equations. At the beginning, we will lead the mentioned

results from these articles.
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1.1 General solvability results

Let X, Y be real Banach spaces such as above, f : D ( f ) ⊆ X −→ Y be an operator, and

BX
r0
(0) ⊆ D ( f ) is the closed ball with a center at 0 ∈ X.

Consider the following conditions.

(i) f : D ( f ) ⊆ X −→ Y is a nonlinear bounded continuous operator.

(ii) There is a mapping g : X ⊆ D (g) −→ Y∗ such that the conditions g
(
BX

r0
(0)
)
= BY∗

r1
(0)

and

〈 f (x) , g̃ (x)〉 ≥ ν
(
‖x‖X

)
= ν(r), ∀ x ∈ SX

r (0) ,

hold1, where g̃ (x) ≡ g(x)
‖g(x)‖

, ν : R1
+ −→ R1 is a continuous nondecreasing on [τ0, r0]

function and ν (r0) ≥ δ0 > 0.

(iii) Almost each x0 ∈ Int BX
r0
(0) possesses a neighborhood Vε (x0), ε ≥ ε0 > 0, such that the

following inequality

∥∥ f (x2)− f (x1)
∥∥

Y
≥ Φ

(
‖x2 − x1‖X, x0, ε

)
(5)

holds for any x1, x2 ∈ Vε (x0) ∩ BX
r0
(0), where Φ (τ, x0, ε) ≥ 0 is a continuous function of τ and

Φ (τ, x̃, ε) = 0 ⇔ τ = 0
(
in particular, it may be x0 = 0, ε = ε0 = r0 and Vε (x0) = Vr0 (0) ≡

BX
r0
(0), consequently Φ (τ, x0, ε) ≡ Φ (τ, x0, r0) on BX

r0
(0)
)
.

Theorem 1. Let X, Y be real Banach spaces such as above, f : D ( f ) ⊆ X −→ Y be an operator,

and BX
r0
(0) ⊆ D ( f ) is the closed ball centered at 0 ∈ D ( f ). Assume conditions (i) and (ii) are

fulfilled. Then the image f
(
BX

r0
(0)
)

of the ball BX
r0
(0) is contained in an absorbing subset Y

and contains an everywhere dense subset of M, which is defined as follows

M ≡
{

y ∈ Y
∣∣ 〈y, g̃(x)

〉
≤
〈

f (x), g̃(x)
〉

, ∀ x ∈ SX
r0
(0)
}

.

Furthermore, if the condition (iii) also is fulfilled then the image f
(

BX
r0
(0)
)

of the ball

BX
r0
(0) is a bodily subset of Y, moreover BY

δ0
(0) ⊆ M.

The proof of this theorem, and also its generalization was provided in [30] (see also

[32,34,35]). We note that Theorem 2 below is the generalization of such type theorem from [33].

The condition (iii) can be generalized, for example, as in the following assertion.

Corollary 1. Let all conditions of Theorem 1 be fulfilled except for the inequality (5) of condi-

tion (iii) instead that the following inequality

∥∥ f (x2)− f (x1)
∥∥

Y
≥ Φ

(
‖x2 − x1‖X , x0, ε

)
+ ψ

(
‖x1 − x2‖Z, x0, ε

)
(6)

holds, where Z is Banach space and X ⊂ Z is compact, ψ (·, x0, ε) : R1
+ −→ R1 is a continuous

function relatively τ ∈ R1
+ and ψ (0, x0, ε) = 0. Then the statement of Theorem 1 is true.

1 In particular, the mapping g can be a linear bounded operator g ≡ L : X −→ Y∗ satisfying the conditions (ii).



Some remarks on spectrum of nonlinear continuous operators 361

From Theorem 1 the next result immediately follows.

Theorem 2 (Fixed-Point Theorem). Let X be a real reflexive separable Banach space and

f1 : D ( f1) ⊆ X −→ X be a bounded continuous operator. Moreover, let on closed ball

BX
r0
(0) ⊆ D ( f1), centered at 0 ∈ D ( f1), operators f1 and f ≡ Id − f1 satisfy the following

conditions:

• the next inequalities

∥∥ f1(x)
∥∥

X
≤ µ

(
‖x‖X

)
,

〈
f (x), g̃(x)

〉
≥ ν

(
‖x‖X

)
, ∀ x ∈ BX

r0
(0) ,

hold, where f1

(
BX

r0
(0)
)
⊆ BX

r0
(0), g : D (g) ⊆ X −→ X∗, D ( f1) ⊆ D (g) and the

condition (ii) of Theorem 1 is satisfied (in particular, g ≡ J : X ⇄ X∗, i.e. g is a duality

mapping), µ and ν are such functions as in Theorem 1;

• almost each x0 ∈ Int BX
r0
(0) possesses a neighborhood Vε (x0), ε ≥ ε0 > 0, such that the

following inequality

∥∥ f (x2)− f (x1)
∥∥

X
≥ ϕ

(
‖x2 − x1‖X, x0, ε

)

holds for any x1, x2 ∈ Vε (x0)∩ BX
r0
(0), where the function ϕ (τ, x0, ε) satisfies the similar condi-

tions such as functions from the right hand side of (6). Then operator f1 possesses a fixed-point

in the closed ball BX
r0
(0).

Now we introduce the following concept.

Definition 4. An operator f : D ( f ) ⊆ X −→ Y is said to possess the P-property if each pre-

compact subset M ⊆ Im f of Y contains (maybe generalized) subsequence M0 ⊆ M such that

f−1 (M0) ⊆ G and M0 ⊆ f
(

G ∩ D( f )
)
, where G is a precompact subset of X.

Notation 1. It is easy to see that the condition (iii) of Theorem 1 one can replace by the condi-

tion: f possesses the P-property.

It should be noted that if f−1 is the lower or upper semi-continuous mapping then operator

f : D ( f ) ⊆ X −→ Y possesses the P-property.

In the above results, condition (iii) is required for the completeness of the image of con-

sidered operator f . One can bring also other sufficient conditions on f , at which R ( f ) will be

the closed subset (see, e.g. [32, 34, 35]). In particular, the following results are true.

Lemma 1. Let X, Y be Banach spaces such as above, f : D ( f ) ⊆ X −→ Y be a bounded

continuous operator, and D ( f ) is a weakly closed subset of the reflexive space X. Let f has a

weakly closed graph and for each bounded subset M ⊂ Y the subset f −1 (M) is a bounded

subset of X. Then f is a weakly closed operator.

Note that the graph of operator f is weakly closed if and only if from xm
X
⇀ x0 ∈ D ( f ) and

f (xm)
Y
⇀ y0 ∈ Y the equality f (x0) ≡ y0 ∈ R ( f ) ⊂ Y follows (for the general case see [32,34]).

For the proof it is enough to note that if {ym}
∞
m=1 ⊂ R ( f ) ⊂ Y is a weakly convergent se-

quence of Y then f−1 ({ym}∞
m=1) is a bounded subset of X. Consequently, it has a subsequence

{xm}
∞
m=1 such that xm ∈ f−1 (ym) and xm

X
⇀ x0 ∈ D ( f ) for some element x0 ∈ D ( f ) by virtue

of the reflexivity of X.
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Lemma 2. Let X, Y be reflexive Banach spaces, f : D ( f ) ⊆ X −→ Y be a bounded continuous

mapping that satisfies the condition: if G ⊆ D ( f ) is a closed convex subset of X then f (G) is

a weakly closed subset of Y. Then if G ⊆ D ( f ) is a bounded closed convex subset of X then

f (G) is a closed subset of Y.

For the proof it is enough to use the reflexivity of the space X and properties of a bounded

closed convex subset of X (see, e.g., [30, 32]).

Lemma 3. Let X be a Banach space such as above, f : X −→ X∗ be a monotone operator

satisfying conditions of Theorem 1, and r ≥ τ1 be some number. Then f (G) is a bounded

closed subset containing a ball BX∗

r1

(
f (0)

)
for every bounded closed convex body G ⊂ X such

that BX
r (0) ⊂ G, where r1 = r1 (r) ≥ δ1 > 0.

1.2 Investigation of equations (1), (2) and existence of spectra

We start with the study of the equation (2), in order to understand the role of the para-

meter λ. Let X, Y be real reflexive Banach spaces, F : X −→ Y , G : X ⊆ D (G) −→ Y be

nonlinear operators and BX
r0
(0), r0 > 0, be a closed ball, centered at 0 ∈ X, that belongs to

D (F). Since in this work we will consider only operators acting in real spaces, we will seek

real numbers λ0, under which the considered equation may be solvable.

Assume that on the ball BX
r0
(0) the following conditions are fulfilled:

1) let F : BX
r0
(0) −→ Y , G : BX

r0
(0) −→ Y be bounded continuous operators, i.e. there exist

continuous functions µj : R+ −→ R+, j = 1, 2, such that inequalities

∥∥F(x)
∥∥

Y
≤ µ1

(
‖x‖X

)
,
∥∥G(x)

∥∥
Y
≤ µ2

(
‖x‖X

)
,

hold for any x ∈ BX
r0
(0), in addition F ≻ G;

2) let fλ ≡ F − λG be the operator from (2); assume there exists a parameter λ0 ∈ R+ such

that for each (y∗, r, λ) there exists x ∈ SX
r (0) such that the following inequality

〈
fλ(x), y∗

〉
≥ νλ

(
‖x‖X

)
, ∃ x ∈ SX

r (0), g(x) = y∗,

holds, where
(
y∗, r, |λ|

)
∈ SY∗

1 (0)× (0, r0]× (0, λ0] and νλ : R+ −→ R is the continuous

function satisfying condition (ii) of Theorem 1, in this case, δ0 = δ0λ ց 0 if |λ| ր |λ0|;

3) assume for almost every point x0 from BX
r0
(0) there exist numbers ε ≥ ε0 > 0 and contin-

uous on τ functions ϕλ (τ, x0, ε) ≥ 0, ψλ(τ, x0, ε) such that the following inequality

∥∥ fλ (x1)− fλ (x2)
∥∥

Y
≥ ϕλ

(
‖x1 − x2‖X , x0, ε

)
+ ψλ

(
‖x1 − x2‖Z, x0, ε

)

holds for any x1, x2 ∈ BX
ε (x0), where ϕ (τ, x0, ε) = 0 ⇔ τ = 0, ψλ(·, x0, ε) : R+ −→ R,

ψλ(0, x0, ε) = 0 for any (x0, ε) and Z is the Banach space such that X ⊂ Z is compact.

Theorem 3. Let the conditions 1), 2) and 3) be fulfilled on the closed ball BX
r0
(0) ⊂ X. Then

equation (2) is solvable for all ỹ ∈ Vλ ⊂ Y and each λ, 0 ≤ |λ| ≤ λ0, moreover, the condition 2)

implies the inclusion BY
δ0
(0) ⊆ fλ

(
BX

r0
(0)
)

holds for δ0 ≡ δ0 (λ) > 0, where Vλ is defined as

follows

Vλ ≡
{

ỹ ∈ Y|
〈
ỹ, g(x)

〉
≤
〈

fλ(x), g(x)
〉

, ∀ x ∈ SX
r0
(0)
}

.
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For the proof it is sufficient to note that all conditions of Theorem 1 are fulfilled for each

fixed λ, |λ| < λ0, due to conditions of Theorem 3. Therefore, applying Theorem 1, we get the

correctness of Theorem 3.

Consequently, the equation (4) also is solvable in BX
r (0) under the conditions on f̃λ of the

above type that depends on λ0, e.g.
∥∥∥G
(

F−1 (y1)
)
− G

(
F−1 (y2)

)∥∥∥
Y
≤ C (x0, ε) ‖y1 − y2‖Y + ψλ

(
‖y1 − y2‖Z , y0, ε

)
,

where C (x0, ε) λ0 < 1 and the inclusion Y ⊂ Z is compact.

Whence, using Theorem 2, one can obtain the solvability of the equation (2). Indeed, let

Y = X∗ and closed ball BX
r0
(x0) (r0 > 0) belongs to D (F). Let condition 1) is fulfilled on ball

BX
r0
(x0). Assume the following conditions are fulfilled:

2’) there exists a parameter λ1 ∈ R such that λ1G

(
F−1

(
F
(
BX

r0
(x0)

)) )
⊆ BX

r0
(x0) and for

each x∗ ∈ SX∗

1 (0) there exists an x ∈ SX
r (x0) for each r ∈ (0, r0] such that the following

inequality
〈

f̃λ1
(x) , x∗

〉
≥ νλ1

(
‖x − x0‖X

)
= νλ1

(r) , x ∈ SX
r (x0) ⊂ BX

r0
(x0) ,

holds, where νλ1
: R+ −→ R is the continuous function that satisfies the condition (ii)

of Theorem 1;

3’) for almost every x̂ ∈ BX
r0
(x0) there are numbers ε ≥ ε0 > 0 and continuous functions

Φλ1
(·, x̂, ε) : R+ −→ R+, ϕλ(·, x̂, ε) : R+ −→ R for each (x̂, ε) such that the following

inequality
∥∥∥ f̃λ1

(x1)− f̃λ1
(x2)

∥∥∥
X
≥ Φλ1

(
‖x1 − x2‖X , x̂, ε

)
+ ϕλ1

(
‖x1 − x2‖Z , x̂, ε

)

holds for any x1, x2 ∈ Uε (x̂) ∩ BX
r0
(x0), where Φλ1

(τ, x̂, ε) ≥ 0 and Φλ1
(τ, x̂, ε) = 0 ⇔

τ = 0, ϕλ1
(0, x̂, ε) = 0, and Z is the Banach space such that X ⊂ Z is compact.

Whence this implies that for defined above λ1 all conditions of Theorem 1 are fulfilled

for the operator f̃λ1
on the closed ball BX

r0
(x0). Consequently, f̃λ1

(
BX

r0
(x0)

)
contains a closed

absorbing subset of X (at least, 0 ∈ X) by virtue of the Theorem 1. In the other words,

0 ∈ f̃λ1

(
BX

r0
(x0)

)
and therefore there exists an element x̃ ∈ BX

r0
(x0) for which fλ1

(x̃) = 0

holds, i.e. F (x̃) = λ1G (x̃).

The obtained result one can formulate as follows.

Corollary 2. Let F, G be above determined operators, F ≻ G, D (F) ⊆ D (G), and there exists

a number λ1 that conditions 1), 2’), 3’) are fulfilled on the closed ball BX
r (x0) ⊆ D (F) ⊆ X.

Then there exists an element x̃ ∈ BX
r (x0) such that F (x̃) = λ1G (x̃) or λ1G

(
F−1 (·)

)
has fixed

point.

Let X, Y be Banach spaces, and BX
r0
(0) ⊆ D (F) ⊂ X, r0 > 0, F ≻ G, F (0) = 0, G (0) = 0 be

bounded operators. Assume that there are continuous functions νF, νG : R+ −→ R satisfying

condition (ii) of Theorem 1 such that for each y∗ ∈ SY∗

1 (0) there exists x ∈ SX
r (0), for which

the inequalities 〈
F (x) , y∗

〉
≥ νF

(
‖x‖X

)
,
〈

G (x) , y∗
〉
≥ νG

(
‖x‖X1

)
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hold, where X1 is the Banach space such that X ⊆ X1 (we will denote the relation between x

and y∗ ∈ SY∗

1 (0) by g : SX
r (0) −→ SY∗

1 (0), 0 < r ≤ r0, so that g (x) = y∗). Then according to

condition 2’), one may expect that spectrum of the operator F : D (F) ⊂ X −→ Y relative to

operator G : D (G) ⊆ X −→ Y can be defined in the following way

λ = inf

{ 〈
F (x) , g (x)

〉
〈

G (x) , g (x)
〉 : x ∈ BX

r0
(0) \ {0}

}
, r0 > 0. (7)

Now we will clarify when the determined by (7) λ is the spectrum of operator G ◦ F−1 or

the spectrum of operator F relative to operator G. Generally speaking, one cannot name it since

the composition G ◦ F−1 can be nonlinear and λ1 may be a function λ1 = λ1 (x1), unlike the

linear case, where x1 is the element on which the relation (7) attains the infimum. Moreover,

if we define the subspace Γλ1
= {αx1 : α ∈ R} ⊂ X then for αx1 ∈ D (F), generally, we have

αλ1x1 6= G ◦ F−1 (αx1) since G ◦ F−1 is the nonlinear operator.

Indeed, if the power of nonlinearity of the operator F is greater than the power of nonlin-

earity of operator G, or the inverse of its, then obviously, it will be the case λ1 = λ1 (x1). For

example, let operators F and G be defined in the following way

F (u) = −∇ ◦
(
|∇u|p0−2 ∇u

)
, G (u) = |u|p1−2 u, Y = W−1,q (Ω) ,

where X = W
1,p0
0 (Ω) ∩ Lp1 (Ω), Ω ⊂ Rn, n ≥ 1, with sufficiently smooth boundary ∂Ω and

p = max {p0, p1}, p0, p1 > 2, q = p‘ = p
p−1 . Assume p0 6= p1 and F : D (F) = W1,p0 (Ω) −→

W−1,q0 (Ω), G : D (G) = Lp1 (Ω) −→ Lq1 (Ω). Then using (7) we get

λ = inf

{ 〈
F (u) , u

〉
〈

G (u) , u
〉 : u ∈ BX

r0
(0) \ {0}

}
= inf

{
‖∇u‖

p0

Lp0

‖u‖
p1

Lp1

: u ∈ B
W

1,p0
0 ∩Lp1(Ω)

r0
(0) \ {0}

}
.

Whence we have if p0 > p1, then

λ = inf

{(
‖∇u‖Lp0

‖u‖Lp1

)p1

‖∇u‖
p0−p1

Lp0 : u ∈ B
W

1,p0
0 ∩Lp1(Ω)

r0
(0) \ {0}

}

and if p0 < p1, then

λ = inf

{(
‖∇u‖Lp0

‖u‖Lp1

)p0

‖u‖
p0−p1

Lp1
: u ∈ B

W
1,p0
0 ∩Lp1(Ω)

r0
(0) \ {0}

}
.

Consequently, λ will be a function λ = λ (u1), where u1 ∈ X is the element of the domain,

on which the above-mentioned expression attained the infimum (see examples in Section 3).

Remark 2. It follows that in order to λ0 could not be a function of x, the main parts of operators

F and G must have a common degree of nonlinearity. Theorem 1 follows that the defined

number λ0 is the number assumed to exist in the conditions of this theorem. Moreover, the

finding number allows us in mentioned theorem to state the existence of solutions for each λ,

0 ≤ |λ| ≤ λ0, if the element on the right hand side is from the determined subset.

The spectrum of an operator usually must characterize the examined operator, but the

found λ does not satisfy this. Therefore, another way is used here, different from the above-

mentioned works.
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Due to the above explanations, we get that in order to the found λ not be a function on x, it

is necessary the existence of some relations between the operators F and G.

So, we assume one of the following conditions are fulfilled: F and G are homogeneous with

common exponent p > 0 or a common function φ (·), i.e. F (µx) ≡ µpF (x), G (µx) ≡ µpG (x)

or F (µx) ≡ φ (µ) F (x), G (µx) ≡ φ (µ) G (x) for any µ > 0.

Let us investigate the problem locally, i.e. we study the problem on the closed ball BX
r (0) ⊆

D ( fλ) for selected r > 0 and seek λ in the form λ ≡ λ (r).

We start to study the first case, i.e. when F and G are homogeneous with exponent p > 0.

It follows that (7) defines the number λ independent of x. Hence, if we denote this minimum

by λ1 and the element, at which the minimum is attained, by x1, then (7) will be fulfilled for

all x ∈ Γλ1
∩ D (F). Consequently, in this case, one can define x1 as the first eigenvector and

λ1 as the first eigenvalue of the operator F relative to the operator G (as in the linear case). In

other words, y1 = F (x1) is the fixed point of operator λG ◦ F−1.

Consider the second case. If the orders of homogeneity of F and G are different, i.e. given

by different functions, e.g. by polynomial functions with exponents pF 6= pG, then there are

possible two subcases: (a) pF > pG and (b) pF < pG.

Consider the subcase (a). If any x ∈ X0 we write as x ≡ rx̃, where ‖x‖X0
≡ r and x̃ = x

r ∈

SX0
1 (0) ⊂ X0, then F (x) = rpF F (x̃) and G (x) = rpG G (x̃). Hence due to Theorem 3, we get

that G can be the perturbation of operator F, therefore this case not is essential.

In the subcase (b), if there exist λ0 and x0 such that F (x0) = λ0G (x0), then implications

F (x0) = r
pF

0 F (x̃0) , G (x) = r
pG

0 G (x̃0) =⇒ r
pF

0 F (x̃0) = λ0r
pF

0 G (x̃0)

=⇒ F (x̃0) = λ (λ0, r0) G (x̃0) =⇒ λ (λ0, r0) = λ0r
p

G
−p

F
0

hold. Hence, if we change x0 ≡ r0 x̃0 to x1 ≡ r1 x̃0, then λ will be changed to λ = λ0r
p

G
−p

F
1 .

In other words, if pF 6= pG, then any existing number λ will depend on element x ∈ X, i.e.

λ = λ (r) on the line {x ∈ X : x = r x̃0, r ∈ R}. The previous discussion shows, that there are

two variants: either pF = pG or λ0 = λ0 (x0), and investigating these cases will be sufficient.

So, here we will study the posed question mainly in the case when condition pF = pG

holds.

Consequently, the concept defined in the articles [1–3,11,13,18,19,22,26,28,29] of the semi-

linear spectral set is special case of the Definition 3 by virtue of (3) and (4).

2 Some application of general results

Consider the following problems

−∇ ◦
(∣∣∇u

∣∣p−2
∇u
)
− λ |u|p0−2 u

∣∣∇u
∣∣p1 = 0, u | ∂Ω = 0, λ ∈ C, (8)

−∇ ◦
(
|u|p−2 ∇u

)
− λ |u|p0−2 u = 0, u | ∂Ω = 0, λ ∈ C, (9)

where Ω ⊂ R
n is an open bounded domain with sufficiently smooth boundary ∂Ω, n ≥ 1,

p0 + p1 = p and ∇ ≡ (D1, . . . , Dn). Denote by f0 the operator generated by (8) which acts

from W
1,p
0 (Ω) to W−1,q (Ω). It is easy to see that f0 : W

1,p
0 (Ω) −→ W−1,q (Ω) is a continuous

operator, and

0 =
〈

f0 (u) , u
〉
≡
〈
−∇ ◦

(∣∣∇u
∣∣p−2

∇u
)
− λ |u|p0−2 u

∣∣∇u
∣∣p1 , u

〉

=
∥∥∇u

∥∥p

p
−
∫

Ω
λ |u|p0

∣∣∇u
∣∣p1 dx =⇒

∥∥∇u
∥∥p

p
= λ

∫

Ω
|u|p0

∣∣∇u
∣∣p1 dx
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holds for any u ∈ W
1,p
0 (Ω). It follows that λ ≥ 0, because both of these expressions are

positive.

(1) We will investigate the problem (8) by using the Theorem 1 or Theorem 3. But we interest

to study the question on the spectrum, therefore here we will use Corollary 2. According

to the previous section, we can introduce the following denotations

F (u) = −∇
(∣∣∇u

∣∣p−2
∇u
)

, F : W
1,p
0 (Ω) −→ W−1,q (Ω) ,

G (u) = |u|p0−2 u
∣∣∇u

∣∣p1 , G : W
1,p
0 (Ω) −→ W−1,q (Ω) .

So, we need to seek the minimal value of λ and a function uλ (x) (if it exists) for which

the equality
∥∥∇u

∥∥p

p
= λ

∫

Ω
|u|p0

∣∣∇u
∣∣p1 dx, u ∈ B

W
1,p
0 (Ω)

1 (0)

or

λ =

∥∥∇u
∥∥p

p∫
Ω
|u|p0

∣∣∇u
∣∣p1 dx

=
∫

Ω

(
‖∇u‖p

|u|

)p0
(
‖∇u‖p

|∇u|

)p1

dx

holds. Consequently, we need to find the following number

λ1 = inf

{
‖∇u‖

p
p∫

Ω
|u|p0 |∇u|p1 dx

: u ∈ B
W

1,p
0 (Ω)

1 (0)

}
.

It is clear that λ1 exists and λ1 > 0. It follows that

λ1 ≥

(
‖∇u‖p

‖u‖p

)p0

=⇒ λ
1

p0
1 ≥

‖∇u‖p

‖u‖p
(10)

for any u ∈ W
1,p
0 (Ω), u (x) 6= 0, that is assumed and in what follows.

We denote by λp0 ,p1 the first spectrum of the posed problem that one can define as

λp0,p1 = inf

{
‖∇u‖p

[∫

Ω
|u|p0 |∇u|p1 dx

]− 1
p

: u ∈ S
W

1,p
0 (Ω)

1 (0)

}
. (11)

From (10) we obtain

λp0,p1 ≥ λ
1

p0
1 = inf

{
‖∇u‖p

‖u‖p
: u ∈ W

1,p
0 (Ω)

}

that is well-known, λ
1

p0
1 = λ1

(
−∆p

)
was defined as the first spectrum of p-Laplacian

(see, e.g., [23]) that is

λ1(−∆p) = inf

{
‖∇u‖p

‖u‖p
: u ∈ W

1,p
0 (Ω)

}
,

consequently, that inequality shows that λp0,p1 is comparable with the spectrum λ1(−∆p)

of the p-Laplacian, i.e. λp0,p1 satisfy the inequality λp0,p1 ≥ λ1

(
−∆p

)
.
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(2) Now we will consider the problem (9). Then we get

∫

Ω
|u|p−2 |∇u|2 dx = λ

∫

Ω
|u|p0 dx or

4

p2

∥∥∥∥∇
(
|u|

p−2
2 u
)∥∥∥∥

2

2

= λ
∥∥∥|u|

p0−2
2 u

∥∥∥
2

2
,

here if we assume p0 = p and |u|
p−2

2 u ≡ v, then we get

4

p2

∥∥∇v
∥∥2

2
=

4

p2

∥∥∥∇
(
|u|

p−2
2 u
)∥∥∥

2

2
= λ

∥∥∥|u|
p−2

2 u
∥∥∥

2

2
= λ ‖v‖2

2 .

It follows that the first eigenvalue λ1(p) of the operator −∇ ·
(
|u|p−2 ∇u

)
relative to the

operator |u|p−2 u can be defined using the first eigenvalue λ1 (−∆) of the Laplacian, that is it

can be defined by expression

λ1 (−∆) = inf

{
‖∇v‖2

‖v‖2
: v ∈ W1.2

0 (Ω)

}
.

Consequently, the first eigenvalue λ1 (p) of the operator −∇ ·
(
|u|p−2 ∇u

)
relative to

the operator |u|p−2 u (with respect to the problem (9)) one can define by the equality

λ1 (p) =
(

2
p λ1 (−∆)

)2
.

Thus we get the following result.

Proposition 1. (1) Let ∆p be the p-Laplacian operator with homogeneous boundary con-

ditions on the bounded domain of Rn with smooth boundary ∂Ω and p0 + p1 = p.

Then the first eigenvalue λp0 p1 of the operator −∆p relative to the operator G : G (u) ≡

|u|p0−2 u
∣∣∇u

∣∣p1 exists and it can be defined by the equality (11).

(2) If F and G are operators, generated by the problem (9), and p0 = p, then the first eigen-

value of the operator F relative to the operator G is determined as λ1 (p) =
(

2
p λ1 (L)

)2
,

where λ1 (−∆) is the first eigenvalue of the Laplacian.

Remark 3. It should be noted that by the same way one can define the spectrum of opera-

tor ∆p

(
and also of the operator F : F(u) ≡

n

∑
i=1

Di

(
|Diu|

p−2 Diu
))

relative to the operator

G0 : G0 (u) ≡
n

∑
i=1

|u|p0−2u |Diu|
p1 .

Now, using the previous results we will investigate the solvability of the problem on the

open bounded domain Ω ⊂ Rn with smooth boundary ∂Ω with the following homogeneous

boundary condition

fλ (u) ≡ −∇
(∣∣∇u

∣∣p−2
∇u
)
− λ |u|p0−2 u

∣∣∇u
∣∣p1 = h (x) . (12)

For this problem the following result holds.

Theorem 4. Let numbers p, p0, p1 ≥ 0 be such that p0 + p1 = p ≥ 2, and λp0 ,p1 be the number

defined in (11). Then if λ < λp0 ,p1 , then the posed problem is solvable in W
1,p
0 (Ω) for each

h ∈ W−1,q (Ω).
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Proof. Let

fλ (u) ≡ −∇
(∣∣∇u

∣∣p−2
∇u
)
− λ |u|p0−2 u

∣∣∇u
∣∣p1

be the operator, generated by the posed problem for (12), acting as fλ : X −→ Y, where

X ≡ W
1,p
0 (Ω), Y ≡ W−1,q (Ω) and fulfill the above conditions. We will use the Corollary 1 for

the proof of solvability of this problem.

It follows that the inequality

〈
fλ (u) , u

〉
≡
∥∥∇u

∥∥p

p
− λ

∫

Ω
|u|p0

∣∣∇u
∣∣p1 dx ≥

∥∥∇u
∥∥p

p
− λ ‖u‖p0

p

∥∥∇u
∥∥p1

p

=
∥∥∇u

∥∥p1

p

(∥∥∇u
∥∥p0

p
−λ ‖u‖p0

p

)
= ‖∇u‖p

p

(
1 −

λ

λp0,p1

)
= λ−1

p0,p1

(
λp0,p1−λ

) ∥∥∇u
∥∥p

p

holds for any u ∈ W
1,p
0 (Ω) under conditions of Theorem 4.

Consequently, if λ < λp0,p1 , then fλ satisfies the condition (ii) of the Theorem 1, moreover

it is fulfilled for x0 = 0 and g ≡ Id. The realization of the condition (i) of Theorem 1 for fλ is

obvious.

The following inequalities show the fulfillment of condition (iii) of the Theorem 1 (Corol-

lary 1) for this problem. It is not difficult to see

〈
f (u)− f (v) , u − v

〉
≡
〈(∣∣∇u

∣∣p−2
∇u −

∣∣∇v
∣∣p−2

∇v
)

,∇ (u − v)
〉

− λ
〈(

|u|p0−2 ∣∣∇u
∣∣p1 u − |v|p0−2 ∣∣∇v

∣∣p1 v
)

, u − v
〉

≥ c0

∥∥∇ (u − v)
∥∥p

p
− λ

〈
|u|p0−2 u

(∣∣∇u
∣∣p1 −

∣∣∇v
∣∣p1
)

, u − v
〉

− λ
〈∣∣∇v

∣∣p1
(
|u|p0−2 u − |v|p0−2 v

)
, u − v

〉

hold for any u, v ∈ W
1,p
0 (Ω). Here the second term of the right side one can estimate as

∣∣∣∣
〈
|u|p0−2 u

(∣∣∇u
∣∣p1 −

∣∣∇v
∣∣p1
)

, u − v
〉∣∣∣∣

≤ c1

〈
|u|p0−1 ∣∣∇ũ

∣∣p1−1∣∣∇u −∇v
∣∣, |u − v|

〉

≤ ε
∥∥∇ (u − v)

∥∥p

p
+ C (ε) ‖u‖(p0−1)p′

p

∥∥∇ũ
∥∥(p1−1)p′

p
‖u − v‖p′

p ,

where p′ = p
p−1 .

Thus we get that all of the conditions of Theorem 1 (the case of Corollary 1) are fulfilled for

the problem (12). Consequently, applying Theorem 1 we get the correctness of Theorem 4.

3 Fully nonlinear operator

Now we will study the question on the existence of the spectrum of the fully nonlinear

operator. Let X, Y, Z are real Banach spaces, the inclusion Y ⊂ Z∗ is continuous and dense,

where Z∗ is the dual space of Z. Let L : D (L) ⊆ X −→ Y be the linear operator, where D (L) is

dense in X. Let f : D ( f ) ⊆ Y −→ Z and g : X ⊆ D ( f ) −→ Z be nonlinear operators. Assume

L
(

D (L)
)
⊆ D ( f ).
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We wish to define the spectrum of the operator f ◦ L : D (L) ⊆ X −→ Z with respect to

the operator g, where D (L) ⊆ D (g). We should note that the nonlinearity of the operator g

depends on the nature of the nonlinearity of the operator f .

Consider the problem

fλ (x) ≡ f (Lx)− λg (x) = h, h ∈ Z, (13)

where λ ∈ R is a parameter and h is an element of Z.

We will investigate the existence of the spectrum of the operator f ◦ L relative to the opera-

tor g, and also the solvability of the equation (13) with a parameter.

We will call a λ ∈ C the spectrum of the nonlinear operator if it characterizes the examined

operator similarly to the linear operator theory according to Definition 3. It follows that it

is necessary to assume the identical homogeneity of the nonlinearities of operators f and g

according to the above explanations.

So, we study the following particular case that can explain the general case. We use the

general results of articles [30, 32] to investigate posed problems. Let BX
r0
(0) ⊂ D (L), r0 > 0.

Consider the following conditions.

1) There are constants c1, c2 > 0 such that c1 ‖x‖X ≥ ‖Lx‖Y ≥ c2 ‖x‖X for any x ∈ D (L) ⊆

X, where X and Y are reflexive spaces and the inverse to L is a compact operator.

2) The operator f ◦ L is greater than the operator g, i.e. f ◦ L ≻ g; f and g are continuous

as the functions and satisfy the following conditions: f (t) · t > 0 for all t ∈ R \ {0};

f (0) = 0, g (0) = 0.

3) There is a number λ0 > 0 such that for each z∗ ∈ SZ∗

1 (0) there exist an x (z∗) ∈ SX
r (0),

0 ≤ r ≤ r0, such that the inequality
〈

fλ (x) , z∗
〉
≡
〈

f (Lx)− λg (x) , z∗
〉
≥ ν

(
‖Lx‖Y , λ

)

holds for all λ, |λ| < λ0, where ν : R+ 7−→ R is a continuous function, and there exists

δ0 (λ) > 0 such that ν (t, λ) ≥ δ0 (λ) for all t = ‖Lx‖Y, when the variable x moves over

the sphere SX
r0
(0).

4) There exist an ε0 > 0 and a neighborhood Uε(x) of a.e. x ∈ BX
r0
(0) ⊆ X such that the

following inequalities
〈

f (Lx1)− f (Lx2) , Lx1 − Lx2

〉
≥ l (x1, x2) ‖Lx1 − Lx2‖

2
Y ,

∥∥g (x1)− g (x2)
∥∥

Z
≤ l1 (x1, x2) ‖x1 − x2‖X

hold for all x1, x2 ∈ Uε (x), where l (x1, x2) > 0, l1 (x1, x2) > 0 are functionals that are

bounded in the sense, similar to the Definition 1.

Theorem 5. Let conditions 1) – 4) be fulfilled, D (L) = X, and |λ| ≤ λ0. Then equation (13) is

solvable for all h ∈ Z and satisfies the condition: for any z∗ ∈ SZ∗

1 (0) there exists an x (z∗) ∈

SX
r0
(0) such that the following relation

∣∣ 〈h, z∗〉
∣∣ ≤

〈
fλ (x) , z∗

〉

holds, in particular, BZ
δ0(λ)

(0) ⊆ M (λ) or (13) is solvable for all h ∈ M (λ) ⊆ Z, where the

subset M (λ) is determined as follows

M(λ) ≡
{

z ∈ Z :
∣∣ 〈z, z∗〉

∣∣ ≤ ν
(
‖Lx‖Y , λ

)
, ∀ z∗ ∈ SZ∗

1 (0) ∃ x (z∗) ∈ SX
r0
(0)
}

.
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Proof. For the proof, it is sufficient to show that the examined operator satisfies all conditions

of the general result of Subsection 1.1. It is clear that the operator Fλ (x) ≡ f (Lx) − λg (x)

satisfies conditions (i), (ii) of the general results with x0 = 0, according to conditions 1) – 4)

(since Fλ (0) = 0). Then it remains to show fulfillment of condition (iii), and for this it is

sufficient to investigate the following expression

∥∥Fλ (x1)− Fλ (x2)
∥∥

Z
=
∥∥( f (Lx1)− λg (x1)

)
−
(

f (Lx2)− λg (x2)
)∥∥

Z
.

Let us prove that this expression satisfies the following inequality

∥∥Fλ (x1)− Fλ (x2)
∥∥

Z
≥ c
(

l (x1, x2) ‖x1 − x2‖X , λ
)
− c1

(
l1 (x1, x2) ‖x1 − x2‖X0

, λ
)

.

Set the following expression

〈
Fλ(x1)− Fλ(x2), Lx1 − Lx2

〉
=
〈
( f (Lx1)− f (Lx2)), Lx1 − Lx2

〉
− λ

〈
g(x1)− g(x2), Lx1 − Lx2

〉
,

that is defined correctly, since F : D (L) ⊆ X −→ Z and L : D (L) ⊆ X −→ Y ⊂ Z∗. Hence,

by carrying out certain necessary operations and considering the conditions of this section, we

get

〈
Fλ (x1)− Fλ (x2) , Lx1 − Lx2

〉

=
〈

f (Lx1)− f (Lx2) , Lx1 − Lx2

〉
−
〈
λg (x1)− λg (x2) , Lx1 − Lx2

〉

≥ l (x1, x2) ‖Lx1 − Lx2‖
2
Y − |λ|

∥∥g (x1)− g (x2)
∥∥

Z

∥∥L (x1 − x2)
∥∥

Y

≥ l (x1, x2)
∥∥L (x1 − x2)

∥∥2

Y
− |λ|

∥∥g (x1)− g (x2)
∥∥

Z

∥∥L (x1 − x2)
∥∥

Y

(14)

according to condition 1). Now, again taking into account the condition 1), we get

∣∣〈Fλ (x1)− Fλ (x2) , Lx1 − Lx2

〉∣∣ ≤
∥∥Fλ (x1)− Fλ (x2)

∥∥
Z
· ‖Lx1 − Lx2‖Y . (15)

Thus, using inequalities (14) and (15) and condition 4), we obtain the following estimate

∥∥Fλ (x1)− Fλ (x2)
∥∥

Z
≥ l (x1, x2)

∥∥L (x1 − x2)
∥∥

Y
− |λ|

∥∥g (x1)− g (x2)
∥∥

Z

≥ l (x1, x2)
∥∥L (x1 − x2)

∥∥
Y
− |λ| l1 (x1, x2) ‖x1 − x2‖X .

So, conditions (i) – (iii) of the general theorem are fulfilled under conditions of this theorem.

From the above inequality it follows the fulfillment of condition (iv), that ensures the closed-

ness of the image of F
(
BX

r0
(0)
)
. Consequently, the correctness of Theorem 5 follows from the

general theorem.

Remark 4. It should be noted that the defined in Theorem 5 subset M (λ) decreases by increas-

ing the number |λ| ր λ0. Moreover, the above-mentioned articles actually sought numbers of

the type λ0 the existence assumed in the previous theorem.

Here we investigate the discovery of such numbers that are independent of elements of the

domain. Then, the founded number in such a way can be called the first eigenvalue of the

examined operator relative to another operators as in Definition 3.

In what follows we use some results from the article M.S. Berger [6] (see, also [37]), therefore

here we provide these results.



Some remarks on spectrum of nonlinear continuous operators 371

Definition 5 ([6]). Let A : X −→ X∗ be a variational operator. Then A is of class I if:

(i) A is bounded, i.e. ‖A(x)‖ ≤ µ(‖x‖);

(ii) A is continuous from the strong topology of X to the weak topology of X∗;

(iii) A is odd, i.e. A(−x) = −A(x);

iv)
∫ 1

0

〈
A (sx) , x

〉
ds ր ∞ as ‖x‖X ր ∞;

(v)
〈

A (x1)− A (x2) , x1 − x2

〉
> 0 for any x1, x2 ∈ X.

Lemma 4 ([6]). Let A be a variational operator of class I, then

∂AR =

{
x ∈ X :

∫ 1

0

〈
A(sx), x

〉
ds = R

}

is a closed and bounded set in X. Furthermore, ‖x‖X ≥ k(R) > 0 and ∂AR is a weakly closed

and bounded convex set, where k(R) is a constant independent of x ∈ ∂AR.

So, consider the homogeneous equation (13) in order to investigate the existence of the

necessary number λ0.

Proposition 2. Let X ⊂ Y and it is dense in Y, Z = Y∗. Let conditions 1), 2), 4) of Theorem 5

are fulfilled for this case and operators f , g as the functions are monotone odd functions. Then

there exist a λ0 > 0 and an xλ0
∈ ∂E

BX
R0

(0)
⊂ X such that Fλ0

(
xλ0

)
≡ f

(
Lxλ0

)
− λ0g

(
xλ0

)
= 0

holds for some number R0 ≫ 1, where ∂E
BX

R0
(0)

is defined as follows

∂E
BX

R0
(0)

=

{
x ∈ BX

R0
(0) ⊂ X :

∫ 1

0

〈
f (sLx) , Lx

〉
ds = R0

}
,

E
BX

R0
(0)

=

{
x ∈ BX

R0
(0) ⊂ X :

∫ 1

0

〈
f (sLx) , Lx

〉
ds ≤ R0

}
.

Moreover, the condition similar to condition 3) of the above Theorem 5 is satisfied.

Proof. It is clear that L
(

BX
R0
(0)
)

is convex due to the linearity of the operator L. From above

Lemma 4 it follows that E
BX

R0
(0)

is a weakly closed, bounded convex set and ‖x‖X ≥ k(r0) > 0,

where k(r0) is a constant independent of x ∈ E
BX

R0
(0)

, as the operator f ◦ L satisfies all condi-

tions of Lemma 4.

Consequently, Lemma 4 implies that E
BX

R0
(0)

and ∂E
BX

R0
(0)

are weakly closed bounded con-

vex sets. Consequently, these are closed convex sets due to Mazur Theorem.

Now, consider the expression
〈

g (x) , Lx
〉

and note that there exists a constant M such that

0 < sup
{∥∥g (x)

∥∥
Y∗ : x ∈ ∂E

BX
R0

(0)
}
= M < ∞, according to the conditions 1), 2) and bound-

edness of the norm ‖Lx‖Y, i.e. 0 < ‖Lx‖Y∗ < M1 < ∞, x ∈ BX
R0
(0).

Consequently, there exist a constant λ0 = λ0(M), where 0 < λ0 < ∞, and appriopreate xλ0

such that Fλ0

(
xλ0

)
= 0.

So, we provide the result on the spectrum of the operator f ◦ L relative to the operator g.
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Theorem 6. Let f and g be homogeneous functions with equal order of nonlinearity, which is

the continuous function ϕ, i.e. for any τ ∈ R+ equalities f (τ · y) = ϕ (τ) · f (y), g (τ · y) =

ϕ (τ) · g (y) hold. Assume all conditions of the above Proposition 2 are fulfilled. Then operator

f ◦ L has a spectrum relative to operator g, which is a function of the spectrum of operator L.

Proof. From Proposition 2 it follows the existence of a λ ∈ R+ and an element x ∈ X such

that the equation Fλ (x̃λ) ≡ f (Lx̃λ) − λg (x̃λ) = 0 is solvable. Then using the well-known

approach it is necessary to seek elements λ0 ∈ R+ and x0 ∈ X, which satisfy the following

equality

λ = inf

{〈
f (Lx) , Lx

〉
〈

g (x) , Lx
〉 : x ∈ X

}
. (16)

Due to the conditions of this theorem, it is enough to study the above question only for

x ∈ SX
1 (0). We can take into account that f is an N-function and the expression

〈
f (Lx) , Lx

〉

generates a functional Φ (Lx) according to the condition on f . Note that in the case when L is

the differential operator, 〈 f (Lx) , Lx〉 is a function of the norm ‖Lx‖LΦ
on some Lebesgue or

Orlicz space, where Φ is an N-function.

It follows that it is enough to seek the number λ in the following way

λ = inf

{∥∥ f (Lx)
∥∥

Z∥∥g (x)
∥∥

Z

: x ∈ SX
1 (0)

}
.

From the above expression it follows the existence of number λ > 0.

Thus one can state that there exists a number λ such that condition 3) of the Theorem 5

is fulfilled for Fλ (x̃λ) with the mentioned number λ. Since according to conditions of this

theorem other conditions of Theorem 5, i.e. conditions 1), 2), 4), are fulfilled. Consequently,

using Theorem 5, we get the existence of an element x0 ∈ SX
1 (0) and an appropriate number

λ0, that is the element on which the expression (16) attained the infimum λ0.

Notation 2. In particular, if we assume that x1 ∈ SX
1 (0) is the first eigenfunction and λ1 is the

first eigenvalue of the operator L, then we have

λ0 ≤
ϕ(λ1)‖ f (x1)‖Z

‖g(x1)‖Z
.

Now we provide some examples of operators related to the above theorems.

1. Let L : Wm,p (Ω) −→ Lp (Ω) be a linear differential operator with the spectrum

P (L) ⊂ R+, the operator f is the function f (τ) = |τ|p−2 τ and g ≡ f . So, it needs

to be defined the first eigenfunction and eigenvalue of the operator f (L◦) relative to

operator g (◦). Then using the expression (16) we get

λ f = inf

{
〈 f (Lu), Lu〉

〈g(u), Lu〉
: u ∈ Wm,p (Ω)

}
= inf

{
‖Lu‖

p
Lp∫

Ω
|u|p−2u Lu dx

: u ∈ Wm,p (Ω)

}

≥ inf




‖Lu‖

p−1
Lp

‖u‖
p−1
Lp

: u ∈ Wm,p(Ω)



 = inf





(
‖Lu‖Lp

‖u‖Lp

)p−1

: u ∈ S
Wm,p(Ω)
1 (0)



 .

Whence we arrive that λ f 1 ≥ λ
p−1
L1 , where λL1 is the first eigenvalue and the function

u1 ∈ S
Wm,p(Ω)
1 (0) is the first eigenfunction of the operator L.
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2. We study the spectral property of the fully nonlinear operator in the following two spe-

cial cases

− |∆u|p−2
∆u = λ

∣∣∇u
∣∣µ−2

u, x ∈ Ω, u
∣∣
∂Ω

= 0, (17)

− |∆u|p−2
∆u = λ |u|ν u, x ∈ Ω, u

∣∣
∂Ω

= 0, (18)

i.e. we seek the spectrum of the operator − |∆u|p−2
∆u relative to operators

∣∣∇u
∣∣µ−2

u

and |u|ν u separately.

2 (a). Consider the problem (17). We use the following equality
〈
− |∆u|p−2

∆u,−∆u
〉
=
〈

λ |∇u|µ−2 u,−∆u
〉

.

Then we get
∥∥∆u

∥∥p

p
= λ (µ − 1)−1 ∥∥∇u

∥∥µ

µ
. Hence,

λ1(p, µ)=(µ−1) inf

{
‖∆u‖

p
p

‖∇u‖
µ
µ

: u ∈ W2,p ∩ W
1,p
0

}
=(µ−1) inf

{
‖∆u‖p

‖∇u‖
µ/p
µ

: u ∈ W2,p ∩ W
1,p
0

}
.

It follows that to find λ, satisfying the assumed condition, we must select the corresponded

exponent µ.

Consequently, we need to assume µ = p, then we get

λ1 (p, p) = (p − 1) inf

{
‖∆u‖p

‖∇u‖p

: u ∈ W2,p (Ω) ∩ W
1,p
0 (Ω)

}
. (19)

It is well-known that
∥∥∇u

∥∥
p
≤ c (p, Ω) ‖∆u‖p under the condition u

∣∣
∂Ω

= 0, consequently,

λ1 (p, p) ≤ (p − 1) c (p, Ω).

Proposition 3. Let f0 : W2,p (Ω) ∩ W
1,p
0 (Ω) −→ Lq (Ω) has the form f0 (u) = − |∆u|p−2

∆u

and f1 : W
1,p
0 (Ω) −→ Lq (Ω) has the form f1 (u) = |∇u|p−2 u . Then the operator f0 has the

first eigenvalue relative to operator f1, which is defined by (19).

2 (b). Consider the problem (18) for ν = p − 2. Then we have that
〈
− |∆u|p−2

∆u,−∆u
〉
=
〈

λ |u|p−2 u,−∆u
〉

implies

∥∥∆u
∥∥p

p
= λ

4 (p − 1)

p2

∥∥∥∥∇
(
|u|

p−2
2 u

)∥∥∥∥
2

2

or
∥∥∆u

∥∥p

p
= λ (p − 1)

∥∥∥
(
|u|p−2 |∇u|2

)∥∥∥
1

.

Thus we get

λ̃1(p) =
1

p − 1
inf





‖∆u‖
p
p

∥∥∥|u|
p−2

2 |∇u|
∥∥∥

2

2

: u ∈ W2,p ∩ W
1,p
0





=
p

2(p − 1)
inf





∥∥∥|∆u|
p
2

∥∥∥
2∥∥∥∇

(
|u|

p−2
2 |u|

)∥∥∥
2

: u ∈ W2,p ∩ W
1,p
0





.

(20)
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Hence we obtain

λ̃1 (p) ≥
1

p − 1

‖∆u‖p
p

‖u‖p−2
p ‖∇u‖2

p

(21)

according to the following inequality
∥∥∥
(
|u|p−2 |∇u|2

)∥∥∥
1
≤ ‖u‖p−2

p ‖∇u‖2
p .

So, we arrive at the following result.

Proposition 4. Let f0 : W2,p (Ω) ∩ W
1,p
0 (Ω) −→ Lq (Ω) has the form f0 (u) = − |∆u|p−2

∆u

and f1 : Lp (Ω) −→ Lq (Ω) has the form f1 (u) = |u|p−2 u . Then the operator f0 has the first

eigenvalue relative to operator f1, which is defined by (20) and it satisfies the inequation (21).

Remark 5. In the previous case, it would be to use the following equality

−
∫

Ω
|∆u|p−2

∆u dx = λ
∫

Ω
|u|p−2 u dx.

It implies ‖∆u‖p−1 = λ ‖u‖p−1. Then we get

λ = inf

{
‖∆u‖p−1

‖u‖p−1

: u ∈ W2,p ∩ W
1,p
0

}
,

since in the conditions of this section the operator −∆ is positive.

4 Conclusions

To seek the eigenvalues of a nonlinear continuous operator in a Banach space it is necessary

to choose the other operator in such a way that the order of nonlinearity should be identical

with the order of nonlinearity of the examined operator. If one uses the proposed approach,

then it is possible to find the other eigenvalues of this operator. The importance of the knowl-

edge of the eigenvalues of the operators in the study of the bifurcation of solutions of nonlinear

equations is showed in many articles dedicated to studying the bifurcation of the solutions of

nonlinear equations (see Section 3 and, e.g., articles [12, 16, 36]).
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У цiй статтi дослiджено iснування спектру (власних значень) для нелiнiйних неперервних

операторiв, що дiють у банахових просторах. Для дослiдження цього питання використовує-

ться iнший пiдхiд, що дозволяє вивчення всiх власних значень нелiнiйного оператора вiдносно

iншого нелiнiйного оператора. Тут показано, що у випадку нелiнiйних операторiв необхiдно

шукати спектр даного нелiнiйного оператора вiдносно iншого нелiнiйного оператора, що за-

довольняє певнi умови. Наведено рiзнi приклади, для яких можна знайти власнi значення.

Бiльше того, у статтi дослiджуються нелiнiйнi задачi з параметрами.

Ключовi слова i фрази: нелiнiйний неперервний оператор, спектр, банаховий простiр, нелi-

нiйний диференцiальний оператор, розв’язнiсть.


