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On the approximation of fixed points for the class of mappings
satisfying (CSC)-condition in Hadamard spaces
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In this paper, we consider the class of mappings satisfying (CSC)-condition. Further, we prove

the strong and △-convergence theorems of the JF-iteration process for this class of mappings in

Hadamard spaces. In the end, we provide a numerical example to show that the JF-iteration process

is faster than some well known iterative processes. Our results improve and extend the correspond-

ing recent results of the current literature.
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1 Introduction

Let (X, d) be a metric space, Y be a non-empty subset of X, and T : Y → Y be a mapping.

A point p ∈ Y is called a fixed point of T if Tp = p. We denote by F(T) the set of all fixed

points of T. The mapping T is called nonexpansive if d(Tu, Tv) ≤ d(u, v) for all u, v ∈ Y, and

quasi-nonexpansive if d(Tu, p) ≤ d(u, p) for all u ∈ Y and for each p ∈ F(T).

In 1973, G.E. Hardy and T.D. Rogers [1] introduced the concept of generalized nonexpansive

mappings which is defined as follows.

Definition 1. Let T be a self mapping on a non-empty subset Y of a metric space (X, d). Then

T is called generalized nonexpansive mapping if for all u, v ∈ Y we have

d(Tu, Tv) ≤ ad(u, v) + b
[

d(u, Tu) + d(v, Tv)
]

+ c
[

d(u, Tv) + d(v, Tu)
]

, (1)

where a, b, c are non-negative real numbers such that a + 2b + 2c ≤ 1.

In 2008, T. Suzuki [2] introduced a new condition on the mappings, called (C)-condition.

Such mappings are also known Suzuki generalized nonexpansive mappings.

Definition 2. A self mapping T on a non-empty subset Y of a metric space (X, d) is said to

satisfy (C)-condition if

1

2
d(u, Tu) ≤ d(u, v) implies d(Tu, Tv) ≤ d(u, v)

for all u, v ∈ Y.
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Now we list some properties of generalized nonexpansive mappings due to G.E. Hardy,

T.D. Rogers and T. Suzuki which can be found in [3].

Proposition 1. (i) The classes of generalized nonexpansive mappings satisfying (1) and

Suzuki generalized nonexpansive mappings are independent.

(ii) If T is a generalized nonexpansive mapping satisfying (1) and it has a fixed point, then

T is quasi-nonexpansive.

(iii) If T is a generalized nonexpansive mapping satisfying (1), then

d(u, Tv) ≤ d(u, v) +
1 + b + c

1 − b − c
d(u, Tu)

holds for all u, v ∈ Y.

In 2011, E. Karapınar and K. Taş [4] suggested (CSC)-condition which is a modification of

Suzuki’s (C)-condition.

Definition 3. Let (X, d) be a metric space and Y be a non-empty subset of X. Then a mapping

T : Y → Y is said to satisfy (CSC)-condition if

1

2
d(u, Tu) ≤ d(u, v) implies d(Tu, Tv) ≤

1

2

[

d(Tu, v) + d(u, Tv)
]

for all u, v ∈ Y.

Moreover, E. Karapınar and K. Taş [4] gave some basic properties for a mapping satisfying

(CSC)-condition as follows.

Proposition 2. (i) If a mapping T satisfies (CSC)-condition and has a fixed point, then it is

a quasi-nonexpansive mapping.

(ii) If T is a mapping satisfying (CSC)-condition, then

d(u, Tv) ≤ 5d(u, Tu) + d(u, v)

holds for all u, v ∈ Y.

(iii) If T is a mapping satisfying (CSC)-condition, then the set F(T) is closed.

Recently, F. Ali et al. [3] introduced a new iteration process, called JF-iteration process, in

Banach spaces, defined as follows















wn = T
(

(1 − sn)pn + snTpn

)

,

qn = Twn,

pn+1 = T
(

(1 − rn)qn + rnTqn

)

, ∀ n ∈ N,

(2)

where {rn} and {sn} are real sequences in [0, 1]. They showed numerically that this iteration

process is faster than the Mann, Ishikawa, Noor, S, Picard-S and Thakur-New iteration pro-

cesses (see [5–10]) for generalized nonexpansive mappings due to G.E. Hardy and T.D. Rogers,

and proved some convergence results of JF-iteration process (2) for this class of mappings
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in uniformly convex Banach spaces. Very recently, M. Jubair et al. [11] proved some conver-

gence results for Suzuki generalized nonexpansive mappings via JF-iteration process (2) in

uniformly convex Banach spaces.

Motivated by the above results, we modify the JF-iteration process into CAT(0) spaces as

follows














wn = T
(

(1 − sn)pn ⊕ snTpn

)

,

qn = Twn,

pn+1 = T
(

(1 − rn)qn ⊕ rnTqn

)

, ∀ n ∈ N,

(3)

where Y is a non-empty convex subset of a CAT(0) space, p1 ∈ Y, {rn} and {sn} are real

sequences in [0, 1].

In this paper, we study the convergence of the JF-iteration process (3) to a fixed point for

the class of mappings satisfying (CSC)-condition in a CAT(0) space. Moreover, we provide a

numerical example to support our main results. This example also shows that the JF-iteration

process is faster than the Mann, Ishikawa, Noor, S, Picard-S, Thakur-New iteration processes

for the mappings satisfying (CSC)-condition. Our results can be viewed as a refinement and

generalization of some results in F. Ali et al. [3] and M. Jubair et al. [11].

2 Preliminaries and lemmas

Let (X, d) be a metric space and u, v ∈ X with d(u, v) = l. A geodesic path from u to v is

an isometry c : [0, l] → X such that c(0) = u and c(l) = v. The image of c is called a geodesic

segment joining u and v, which is denoted by [u, v] whenever it is unique. The space (X, d) is

said to be a geodesic space if every two points of X are joined by a geodesic path. Furthermore,

X is said to be a uniquely geodesic space if there is exactly one geodesic segment joining u and v

for each u, v ∈ X. A subset Y of X is called convex if Y includes every geodesic segment joining

any two of its points. Let u, v ∈ X and t ∈ [0, 1], we write (1 − t)u ⊕ tv for the unique point w

in [u, v] such that d (w, u) = td(u, v) and d (w, v) = (1 − t)d(u, v).

A geodesic triangle △(u1, u2, u3) in a geodesic metric space (X, d) consists of three points

u1, u2, u3 in X (called the vertices of △) and a geodesic segment between each pair of ver-

tices (called the edges of △). For any geodesic triangle, there is a comparison triangle △ in the

Euclidean plane R
2 such that d(ui, uj) = d

R2(ui, uj) for i, j ∈ {1, 2, 3}.

Let △ be a geodesic triangle in X and △ be a comparison triangle for △, then △ is said to

satisfy the CAT(0) inequality if

d(u, v) ≤ d
R2(u, v)

for all u, v ∈ △ and u, v ∈ △.

If u, v1, v2 are points in X and v0 is the midpoint of the segment [v1, v2], then the CAT(0)

inequality implies

d2 (u, v0) ≤
1

2
d2(u, v1) +

1

2
d2(u, v2)−

1

4
d2(v1, v2),

which is known as the (CN) inequality of F. Bruhat and J. Tits [12].

Definition 4 ([13]). A geodesic space X is called a CAT(0) space if all geodesic triangles satisfy

the CAT(0) inequality. Equivalently, X is called a CAT(0) space if and only if it satisfies the

(CN) inequality.
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A complete CAT(0) space is called a Hadamard space. The class of Hadamard spaces

comprises Hilbert spaces, complete simply connected Riemannian manifolds of non-positive

sectional curvature (for instance classic hyperbolic spaces and the manifold of positive definite

matrices), Euclidean buildings, CAT(0) complexes, non-linear Lebesgue spaces, the Hilbert

ball and many other spaces.

We now collect some elementary facts about CAT(0) spaces which will be used in

the sequel.

Lemma 1 ([14, Lemma 2.4]). Let X be a CAT(0) space. For u, v, w ∈ X and t ∈ [0, 1], one has

d
(

(1 − t)u ⊕ tv, w
)

≤ (1 − t)d(u, w) + td(v, w).

Lemma 2 ([15, Lemma 3.2]). Let X be a CAT(0) space, u ∈ X be a given point and {tn} be a

sequence in [a, b] with a, b ∈ (0, 1) and 0 < a(1 − b) ≤ 1
2 . Let {pn} and {qn} be any sequences

in X such that

lim sup
n→∞

d (pn, u) ≤ c, lim sup
n→∞

d (qn, u) ≤ c, lim
n→∞

d
(

(1 − tn)pn ⊕ tnqn, u
)

= c

for some c ≥ 0. Then lim
n→∞

d (pn, qn) = 0.

We now give the concept of △-convergence. Let {pn} be a bounded sequence in a CAT(0)

space X. Then the asymptotic center A
(

{pn}
)

of {pn} is the set

A
(

{pn}
)

=
{

u ∈ X : lim sup
n→∞

d(u, pn) = inf
u∈X

lim sup
n→∞

d(u, pn)
}

.

It is known (see, e.g., [16, Proposition 7]) that in a Hadamard space, A
(

{pn}
)

consists of

exactly one point.

Definition 5 ([17, 18]). A sequence {pn} in a CAT(0) space X is said to be △-convergent to

u ∈ X if u is the unique asymptotic center of {xn} for every subsequence {xn} of {pn}. In this

case, we write △- lim
n→∞

pn = u and call u the △-limit of {pn} .

The concept of △-convergence in metric spaces was first introduced and studied by

T.C. Lim [17]. Later, W.A. Kirk and B.A. Panyanak [18] introduced and studied this concept

in CAT(0) spaces and proved that it is very similar to the weak convergence in Banach space

setting.

The following lemma is very useful for proving our △-convergence theorem.

Lemma 3. Let X be a Hadamard space.

(i) Every bounded sequence in X has a △-convergent subsequence (see [18, p. 3690]).

(ii) If Y is a closed convex subset of X and {pn} is a bounded sequence in Y, then the asymp-

totic center of {pn} is in Y (see [19, Proposition 2.1]).

(iii) If {pn} is a bounded sequence in X with A
(

{pn}
)

= {u} and {xn} is a subsequence of

{pn} with A
(

{xn}
)

= {v} and the sequence
{

d(pn, v)
}

converges, then u = v (see [14,

Lemma 2.8]).
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3 Main results

Now we prove two key lemmas which will play very fruitful roles throughout in

the sequel.

Lemma 4. Let Y be a non-empty convex subset of a CAT(0) space X and T : Y → Y be a

mapping satisfying (CSC)-condition such that F(T) 6= ∅. Let {pn} be an iterative sequence

generated by (3) with real sequences {rn} and {sn} in [0, 1]. Then lim
n→∞

d(pn , p) exists for all

p ∈ F(T).

Proof. Let p ∈ F(T). By the item (i) of Proposition 2 and Lemma 1, we have

d(pn+1, p) = d
(

T
(

(1 − rn)qn ⊕ rnTqn

)

, p
)

≤ d
(

(1 − rn)qn ⊕ rnTqn, p
)

≤ (1 − rn)d(qn, p) + rnd(Tqn, p)

≤ (1 − rn)d(qn, p) + rnd(qn, p) = d(qn, p),

(4)

d(qn, p) = d(Twn, p) ≤ d(wn, p) (5)

and

d(wn, p) = d
(

T
(

(1 − sn)pn ⊕ snTpn

)

, p
)

≤ d
(

(1 − sn)pn ⊕ snTpn, p
)

≤ (1 − sn)d(pn , p) + snd(Tpn , p)

≤ (1 − sn)d(pn , p) + snd(pn, p) = d(pn, p).

(6)

Using (4), (5) and (6), we obtain

d(pn+1, p) ≤ d(pn, p).

This implies that the sequence
{

d(xn, p)
}

is non-increasing and bounded below. Hence the

limit lim
n→∞

d(pn, p) exists for all p ∈ F(T).

Lemma 5. Let Y be a non-empty closed convex subset of a Hadamard space X and T : Y → Y

be a mapping satisfying (CSC)-condition. Let {pn} be the iterative sequence (3) such that

{rn} is a real sequence in [0, 1] and {sn} is a real sequence in [a, b] for some a, b ∈ (0, 1) with

0 < a(1 − b) ≤ 1
2 . Then F(T) 6= ∅ if and only if {pn} is bounded and lim

n→∞

d(pn, Tpn) = 0.

Proof. First, we assume that F(T) 6= ∅. Let p ∈ F(T). Then, by Lemma 4, lim
n→∞

d(pn, p) exists

and {pn} is bounded. Let

lim
n→∞

d(pn, p) = c ≥ 0. (7)

By the item (i) of Proposition 2, we have

lim sup
n→∞

d(Tpn , p) ≤ lim sup
n→∞

d(pn, p) = c. (8)

On the other hand, it follows from (6) that

lim sup
n→∞

d(wn, p) ≤ c. (9)
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By using (4) and (5), we get d(pn+1, p) ≤ d(wn, p), which yields that

c ≤ lim inf
n→∞

d(wn, p). (10)

Combining (9) and (10), we obtain lim
n→∞

d(wn, p) = c. Now using the latter, we have

c = lim
n→∞

d(wn, p) = lim
n→∞

d
(

T
(

(1 − sn)pn ⊕ snTpn

)

, p
)

≤ lim
n→∞

d
(

(1 − sn)pn ⊕ snTpn, p
)

≤ lim
n→∞

[

(1 − sn)d(pn , p) + snd(Tpn , p)
]

≤ lim
n→∞

[

(1 − sn)d(pn , p) + snd(pn , p)
]

= lim
n→∞

d(pn , p) = c.

This implies that

lim
n→∞

d
(

(1 − sn)pn ⊕ snTpn, p
)

= c. (11)

From (7), (8), (11) and Lemma 2, we get lim
n→∞

d(pn, Tpn) = 0.

Conversely, we assume that {pn} is bounded and lim
n→∞

d(pn, Tpn) = 0. Let u ∈ A
(

{pn}
)

.

By the item (ii) of Proposition 2, we have

r
(

Tu, {pn}
)

= lim sup
n→∞

d(Tu, pn) ≤ lim sup
n→∞

[

5d(pn, Tpn) + d(pn, u)
]

≤ lim sup
n→∞

d(u, pn) = r
(

u, {pn}
)

.

It follows that Tu ∈ A
(

{pn}
)

. Since A
(

{pn}
)

is singleton set, we get Tu = u. Thus, we obtain

F(T) 6= ∅.

We prove the △-convergence theorem of the JF-iteration process for a mapping satisfying

(CSC)-condition in a Hadamard space.

Theorem 1. Let Y be a non-empty closed convex subset of a Hadamard space X and

T : Y → Y be a mapping satisfying (CSC)-condition such that F(T) 6= ∅. Let {pn} be the

iterative sequence (3) such that {rn} is a real sequence in [0, 1] and {sn} is a real sequence in

[a, b] for some a, b ∈ (0, 1) with 0 < a(1 − b) ≤ 1
2 . Then the sequence {pn} is △-convergent to

a fixed point of T.

Proof. In order to show that the sequence {pn} is △-convergent to a fixed point of T, we prove

that

W△(pn) = ∪
{xn}⊂{pn}

A
(

{xn}
)

⊆ F(T)

and W△(pn) consists of exactly one point. Let u ∈ W△(pn). Then there exists a subsequence

{xn} of {pn} such that A
(

{xn}
)

= {u}. By the items (i) and (ii) of Lemma 3, there exists a

subsequence {yn} of {xn} such that △- lim
n→∞

yn = v ∈ Y. By Lemma 5, we have

lim
n→∞

d(yn, Tyn) = 0.

It follows similarly from the proof of Lemma 5 that v is a fixed point of T. By Lemma 4,

lim
n→∞

d(pn, v) exists. Hence, by the item (iii) of Lemma 3, we have u = v. This implies that

W△(pn) ⊆ F(T).

Now, we prove that W△(pn) consists of exactly one point. Let {xn} be a subsequence of

{pn} with A
(

{xn}
)

= {u} and let A
(

{pn}
)

= {p}. We have already seen that u = v and

v ∈ F(T). From Lemma 4, we know that
{

d(pn, u)
}

is convergent. In view of the item (iii) of

Lemma 3, we have p = u ∈ F(T). This shows that W△(pn) = {p}.
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Next we prove the following strong convergence theorems.

Theorem 2. Under the same assumptions of Theorem 1, if Y is a compact subset of X, then

{pn} converges strongly to a fixed point of T.

Proof. By Lemma 5, we have lim
n→∞

d(pn, Tpn) = 0. By the compactness of Y, we can find a

subsequence {pnk
} of {pn} such that {pnk

} converges strongly to p for some p ∈ Y. By the

item (ii) of Proposition 2, we have

d(pnk
, Tp) ≤ 5d(pnk

, Tpnk
) + d(pnk

, p). (12)

Letting k → ∞, we get pnk
→ Tp, which implies Tp = p. By Lemma 4, lim

n→∞

d(pn, p) exists.

Hence the sequence {pn} converges strongly to p which is the element of F(T).

Theorem 3. Let X, Y, T and {pn} be the same as in Theorem 1. Then the sequence {pn} con-

verges strongly to a fixed point of T if and only if

lim inf
n→∞

d
(

pn, F(T)
)

= 0 or lim sup
n→∞

d
(

pn, F(T)
)

= 0,

where d
(

pn, F(T)
)

= inf
{

d(pn , p) : p ∈ F(T)
}

.

Proof. First part is trivial. So, we prove the converse part. Suppose that lim inf
n→∞

d
(

pn, F(T)
)

= 0.

It follows from Lemma 4 that lim
n→∞

d
(

pn, F(T)
)

exists and hence lim
n→∞

d
(

pn, F(T)
)

= 0. There-

fore, for a given λ > 0, there exists n0 ∈ N such that for all n ≥ n0 we have

d
(

pn, F(T)
)

= inf
{

d(pn, p) : p ∈ F(T)
}

<
λ

2
.

In particular, inf
{

d(pn0 , p) : p ∈ F(T)
}

<
λ
2 . Hence, there exists p ∈ F(T) such that

d(pn0 , p) < λ
2 . Now, for m, n ≥ n0 we have

d(pn+m, pn) ≤ d(pn+m, p) + d(p, pn) ≤ d(pn0 , p) + d(pn0 , p) = 2d(pn0 , p) < λ.

Thus {pn} is a Cauchy sequence in Y. Since Y is a closed subset of complete space X, then there

exists a point q ∈ Y such that lim
n→∞

pn = q. Now lim
n→∞

d
(

pn, F(T)
)

= 0 implies d
(

q, F(T)
)

= 0,

hence we get q ∈ F(T).

Now we prove a strong convergence theorem of the JF-iteration process under the condi-

tion (I). Before this, we give the complete definition of condition (I).

Definition 6 ([20, p. 375]). A mapping T : Y → Y is said to satisfy condition (I) if there exists a

non-decreasing function f : [0, ∞) → [0, ∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0, ∞) such

that

f
(

d(u, F(T))
)

≤ d(u, Tu) (13)

for all u ∈ Y.
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Theorem 4. Under the same assumptions of Theorem 1, if T satisfies the condition (I), then

{pn} converges strongly to a fixed point of T.

Proof. By Lemma 5, we have lim
n→∞

d(pn, Tpn) = 0. Thus, from (13) we get

0 ≤ lim
n→∞

f
(

d(pn, F(T))
)

≤ lim
n→∞

d(pn, Tpn) = 0.

This implies that lim
n→∞

f
(

d(pn, F(T))
)

= 0. Since the function f is non-decreasing and satisfies

f (0) = 0 and f (r) > 0 for all r ∈ (0, ∞), then we have lim
n→∞

d
(

pn, F(T)
)

= 0. The conclusion

now follows from the proof of Theorem 3.

Since the calculations in the following result are similar those in the above theorems with

the help of the items (ii) and (iii) of Proposition 1, we omit its proof.

Theorem 5. Let Y be a non-empty closed convex subset of a Hadamard space X and T : Y → Y

be a generalized nonexpansive mapping satisfying (1) such that F(T) 6= ∅. Let {pn} be the

iterative sequence (3) such that {rn} is a real sequence in [0, 1] and {sn} is a real sequence in

[a, b] for some a, b ∈ (0, 1) with 0 < a(1 − b) ≤ 1
2 . Then the followings hold.

(i) The sequence {pn} is △-convergent to a fixed point of T.

(ii) If Y is a compact subset of X or T satisfies the condition (I), then {pn} converges strongly

to a fixed point of T.

(iii) The sequence {pn} converges strongly to a fixed point of T if and only if

lim inf
n→∞

d
(

pn, F(T)
)

= 0 or lim sup
n→∞

d
(

pn, F(T)
)

= 0.

4 An illuminate numerical example

In this section, we present a numerical example to compare the rate of convergence for a

mapping satisfying (CSC)-condition.

Example 1. Let X =
(

R
2, ‖ · ‖2

)

and Y = [0, 2]× [0, 2] ⊂ X. A mapping T : Y → Y is defined

by

T(x, y) =











( x

4
,

y

4

)

(x, y) ∈ [0, 2)× [0, 2),

(1

4
,

1

2

)

(x, y) ∈ {2} × {2}.

Now, for all x = (x1, y1), y = (x2, y2) in Y, we consider the following cases.

Case 1. If 0 ≤ x1, x2, y1, y2 < 2, then

1

2
‖x − Tx‖2 =

1

2

∥

∥

∥
(x1, y1)−

( x1

4
,

y1

4

)
∥

∥

∥

2
=

1

2

√

9

16
x2

1 +
9

16
y2

1

=
3

8

√

x2
1 + y2

1 ≤
√

(x1 − x2)2 + (y1 − y2)2 = ‖x − y‖2
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holds when x1 <
16

11
and y1 <

16

11
. This implies that

1

2

(

‖Tx − y‖2 + ‖x − Ty‖2

)

=
1

2

(

∥

∥

∥

(x1

4
,

y1

4

)

− (x2, y2)
∥

∥

∥

2
+
∥

∥

∥
(x1, y1)−

(x2

4
,

y2

4

)
∥

∥

∥

2

)

≥
1

2

∥

∥

∥

∥

(

5x1

4
,

5y1

4

)

−

(

5x2

4
,

5y2

4

)∥

∥

∥

∥

≥
1

2

√

25

16
(x1 − x2)2 +

25

16
(y1 − y2)2

=
5

2
·

1

4

√

(x1 − x2)2 + (y1 − y2)2 ≥
1

4

√

(x1 − x2)2 + (y1 − y2)2

=
∥

∥

∥

(x1

4
,

y1

4
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Case 2. If 0 ≤ x1, y1 < 2 and x2 = y2 = 2, then
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∥
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Case 3. If x1 = y1 = x2 = y2 = 2, then we have

1

2
‖x − Tx‖2 =
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Therefore, the mapping T satisfies (CSC)-condition. The point (0, 0) is the unique fixed

point of T. In the below table and graphics, it can be easily seen that the JF-iteration pro-

cess converges faster than the leading iteration processes. We choose the control sequences as

rn = 0.25, βn = 0.45 and sn = 0.25, n ∈ N.

Now, we examine the step numbers at which the iteration processes converge to the fixed

point for some different initial points.

Initial Points Step number Mann Ishikawa Noor S Thakur-New Picard-S JF

(1.5,1.6) n 148 131 130 22 12 9 8

(2.0,2.0) n 149 132 131 23 12 9 8

(0.5,0.7) n 142 126 126 21 12 8 7

(0.1,1.9) n 159 132 131 22 12 9 8

Table 1. The step numbers of iterations converge to fixed point with different initial points

Figure 1. Rate of convergences according to the first coordinates of JF-iteration

and other known iterations with the initial point (2.0, 2.0)

Figure 2. Rate of convergences according to the second coordinates of JF-iteration

and other known iterations with the initial point (2.0, 2.0)
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5 Conclusions

In this paper, we prove some strong and △-convergence results of the JF-iteration process

introduced by F. Ali et al. [3] in Hadamard spaces.

Theorems 1, 2, 3, 4 extend some results of M. Jubair et al. [11] in two ways:

(1) from the class of Suzuki generalized nonexpansive mappings to the class of mappings

satisfying (CSC)-condition,

(2) from a uniformly convex Banach space to a Hadamard space.

Theorem 5 generalizes the corresponding results of F. Ali et al. [3] from a uniformly convex

Banach space to a Hadamard space.
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[4] Karapınar E., Taş K. Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 2011, 61

(11), 3370–3380. doi:10.1016/j.camwa.2011.04.035

[5] Mann W.R. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. doi:10.1090/S0002-9939-

1953-0054846-3

[6] Ishikawa S. Fixed points by a new iteration method. Proc. Amer. Math. Soc. 1974, 44 (1), 147–150. doi:

10.2307/2039245

[7] Noor M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251 (1),

217–229. doi:10.1006/jmaa.2000.7042

[8] Agarwal R.P., O’Regan D., Sahu D.R. Iterative construction of fixed points of nearly asymptotically non-expansive

mappings. J. Nonlinear Convex Anal. 2007, 8 (1), 61–79.

[9] Gürsoy F., Karakaya V. A Picard-S hybrid type iteration method for solving a differantial equation with retarded

argument. arXiv: Functional Analysis, 2014. doi:10.48550/arXiv.1403.2546

[10] Thakur B.S., Thakur D., Postolache M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s

generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. doi:10.1016/j.amc.2015.11.065

[11] Jubair M., Ali F., Ali J. Convergence and stability of an iteration process and solution of a fractional differential

equation. J. Inequal. Appl. 2021, 2021, article number 144. doi:10.1186/s13660-021-02677-w
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Шагiн А., Алагьоз О. Про апроксимацiю нерухомих точок для класу вiдображень, якi задовольняють

(CSC)-умову в просторах Адамара // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 495–506.

У цiй статтi ми розглядаємо вiдображення, що задовольняють (CSC)-умову. Ми доводимо

теореми про сильну та △-збiжнiсть JF-iтерацiйного процесу для цього класу вiдображень у

просторах Адамара. Наприкiнцi нами подано числовий приклад, який демонструє, що

JF-iтерацiйний процес є швидшим за деякi добре вiдомi iтерацiйнi процеси. Нашi результа-

ти покращують i розширюють вiдповiднi недавнi результати, що є у сучаснiй лiтературi.

Ключовi слова i фрази: △-збiжнiсть, сильна збiжнiсть, нерухома точка, CAT(0) простiр,

JF-iтерацiйний процес, (CSC)-умова.


