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On the index of special perfect polynomials

Gallardo L.H.

We give a lower bound of the degree and the number of distinct prime divisors of the index of
special perfect polynomials. More precisely, we prove that ω(d) ≥ 9, and deg(d) ≥ 258, where
d := gcd(Q2, σ(Q2)) is the index of the special perfect polynomial A := p2

1Q2, in which p1 is
irreducible and has minimal degree. This means that σ(A) = A in the polynomial ring F2[x]. The
function σ is a natural analogue of the usual sums of divisors function over the integers. The index
considered is an analogue of the index of an odd perfect number, for which a lower bound of 135
is known. Our work use elementary properties of the polynomials as well as results of the paper
[J. Théor. Nombres Bordeaux 2007, 19 (1), 165–174].
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torization.
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Introduction

A perfect number is a positive integer n that the sum of all its divisors, say σ(n), equals 2n.
More generally, a multiperfect number is a positive integer m such that the quotient of σ(m)

by m is still a positive integer. Namely

σ(m)

m
∈ Z. (1)

It is known that all perfect numbers n, even or odd, have the following form

n = PkQ2, (2)

where P is a prime number, and k, Q are positive integers such that P ∤ Q. More precisely, if

n is even, k = 1, P = 2p − 1, with p an odd prime number, and Q = 2
p−1

2 , while if n is odd,
k ≡ 1 (mod 4) and also P ≡ 1 (mod 4). Besides n = 1 no other odd multiperfect number is
known.

Let n be a perfect number. Using (2), by the multiplicative property of σ, one has

2PkQ2 = σ

(

Pk
)

σ

(

Q2).

One sees that this equality can be also written as

σ

(

Q2
)

Q2
=

Pk

σ

(

Pk
)

/2
, (3)
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and that the right hand side fraction in (3) is in lowest terms, i.e. gcd
(

Pk, σ

(

Pk
)

/2
)

= 1.

It is then natural to define the index d of n as

d := gcd
(

Q2, σ

(

Q2)), (4)

so that from (3) one has

σ

(

Q2) = d · Pk and Q2 = d · σ

(

Pk
)

/2.

In 1937, R. Steuerwald [9] proved that there is no odd perfect numbers n of the form
n := Pk p2

1 · · · p2
m, where P ≡ 1 (mod 4) and the pj are distinct odd prime numbers, and

k = 1 (mod 4). In other words, when Q is square-free.

In this paper, we deal with an analogue of the index d in (4) for special perfect polynomials
in F2[x], that has exactly the same form. More precisely, A in F2[x] is special perfect if it is a
product of squares of irreducible (prime) polynomials, such that

σ(A)

A
∈ F2[x] (5)

the natural analogue of (1) in Z.

Since deg(A) = deg
(

σ(A)
)

in F2[x], (5) just says that A satisfies

σ(A) = A.

Thus, a special perfect polynomial in F2[x] is just a product of squares of prime polynomials
that is fixed by the function σ : F2[x] 7→ F2[x], the mutatis mutandi analogue, of the usual sums
of divisors function σ.

The index d of a special perfect polynomial A ∈ F2[x], written as

A = p2
1 · Q2, (6)

where p1 is a prime divisor of minimal degree of A, is defined by

d := gcd
(

Q2, σ

(

Q2)). (7)

We have no analogue on F2[x] of the result of R. Steuerwald (see, however, [3]). This shows
that the particular problem of characterizing the special perfect polynomials appears (contrary
to R. Steuerwald’s result over the integers) difficult to resolve.

More details about the index follow.

First of all, we describe the binary perfect polynomials in F2[x]. This ring is the polynomial
ring close to the ring of integers Z. In other words, we can do arithmetic in it, and generally,
the translated arithmetic problems in F2[x], that come from Z, are easier to work, since there
are more tools available for polynomials than for integers. For example, the formal derivation
(P 7→ P′), whose kernel in F2[x] are the squares, is a really useful tool, not available in Z.

In order to better understand the notion of index translated to F2[x] (see (7)) we introduce
some definitions and a notation.
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A binary polynomial B is odd if B(0) = B(1) = 1, otherwise B is even. A minimal prime
of an odd polynomial A is a prime divisor P of A that has minimal degree. Analogously, a
maximal prime of an odd polynomial A is a prime divisor P of A that has maximal degree. A
prime divisor of A that is neither minimal, nor maximal is a medium prime [3]. We let ω(A)

denote the number of distinct prime factors of A over F2.

Consider the function σ : F2[x] 7→ F2[x] defined over a polynomial A ∈ F2[x] by
σ(A) = ∑D|A D ∈ F2[x], i.e. by the sum of all divisors of A, including 1 and A. The func-
tion σ is multiplicative, i.e. for coprime binary polynomials X, Y one has, as over the integers Z,
σ(XY) = σ(X)σ(Y). This function σ is more natural, but also more complex, than the usual
sum of divisor function σ1(A) = ∑D|A 2deg(A). We consider this function σ as the natural ana-
logue on F2[x] of the usual sum of divisors function over the integers Z. For instance, some
divisors D of A can sum up to 0, while a sum over D of 2deg D is always greater than 0. We recall
that a binary perfect polynomial A is defined by the equality σ(A) = A, i.e. σ(A)/A belongs to
the ring F2[x]. We can also say that A is a fixed point of the function σ (see [1–7]). By our anal-
ogy between F2[x] and Z, this corresponds to a multiperfect number n in the ring of integers,
i.e. a positive integer n with the property that σ(n)/n belong to the ring Z (a slightly more
general property than the study of the perfect numbers, i.e. the usual case when σ(n)/n = 2).
E.F. Canaday, the first PhD student of Leonard Carlitz, started the work [1] on binary perfect
polynomials in 1941. His paper resumes most of his PhD dissertation.

We know that a perfect polynomial A must have an even number of minimal primes (see
[3, Lemma 2.3]). No analogue result is known for the parity of the number of medium or
maximal primes dividing a perfect polynomial. No odd perfect polynomial A is known besides
the trivial perfect A = 1. The only general result known about odd perfect polynomials A is
that A must be a square [1] (this explains why the divisor Pk of n in (2) has no analogue in
(6)). More generally, R. Lidl and H. Niederreiter [8], and R.G. Swan [10], give the most classic
results about polynomials over finite fields. We recall that the third cyclotomic polynomial is
defined by

Φ3(x) = x2 + x + 1.

Our main result is as follows.

Theorem 1. Let A = p2
1 · · · p2

m ∈ F2[x] be a special perfect polynomial, i.e. σ(A) = A,
with ω(A) = m, dk := deg(pk) for all k = 1, . . . , m and d1 ≤ · · · ≤ dm. In particular, p1 is
minimal, and pm is maximal. Put Q := p2

2 · · · p2
m, and let d := gcd

(

Q2, σ

(

Q2
))

be the index of
A. Let m1, m2 and m3 be the number of minimal, medium and maximal prime divisors of A,
respectively.

Then the following hold.

(a) We have that d is not a square in F2[x].

(b) We have that d is not square-free.

(c) There exist two divisors a, b of A such that gcd(a, b) = 1, Q = ab, and d = a2b. Moreover,
a = gcd

(

σ

(

Q2
)

/Q, Q
)

, a 6= 1 and b 6= 1.

(d) We have ω(d) ≥ 9 and deg(d) ≥ 258.
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1 Tools

The following lemma is useful.

Lemma 1 ([3, Lemma 2.3]). Let q be a power of 2. Let A ∈ Fq[x] be a perfect polynomial. Let
p1, . . . , pr be the list of all monic minimal primes of A. Then the integer r is even.

Parts (a) and (b) of the following lemma follow from [3, Lemma 4.2], while part (c) is
[3, Corollary 4.4].

Lemma 2. Let P ∈ F2[x] be a maximal prime of a special perfect polynomial A = p2
1 · · · p2

m ∈

F2[x], with ω(A) = m, dk := deg(pk), for all k = 1, . . . , m, and d1 ≤ · · · ≤ dm. In particular,
p1 is minimal, and pm is maximal. Then there exists a unique pair (i, j), i, j ∈ {1, . . . , m}, such
that the following hold.

(a) We have pj 6= P, d1 < di < dj = deg(pj) = deg(P) = dm. In other words, pj is maximal
while pi is medium.

(b) We have P | p2
i + pi + 1 and P | p2

j + pj + 1, so that P = pi + pj + 1. In particular, P

cannot divide Φ3(Q1) and Φ3(Q2) for any two distinct maximal divisors Q1, Q2 of A.

(c) Let m2 be the number of medium primes that divide A, and m3 the number of maximal
primes that divide A. Then

m2 ≥ m3 ≥ 3.

The following lemma is useful for the proof of part (d) of the Theorem 1. It also appears,
without proof, in [1, Theorem 21].

Lemma 3 ([3, Lemma 5.3 (b)]). Let A ∈ F2[x] be a special perfect polynomial. Let P ∈ F2[x] be
a prime divisor of A. Then deg(P) is even.

The most important numerical result [3, Theorem 5.5], known about these special perfect
polynomials, follows.

Lemma 4. (a) Any special perfect polynomial A have ω(A) ≥ 10.

(b) For any prime divisor P of A we have deg(P) ≥ 30.

2 Proof of Theorem 1

Observe that A = p2
1Q2. Since A = σ(A) and σ is multiplicative, one has

p2
1Q2 = σ(A) =

(

p2
1 + p1 + 1

)

σ

(

Q2) = Φ3(p1)σ
(

Q2).

Thus
σ

(

Q2
)

Q2 =
p2

1

Φ3(p1)
.

Clearly, gcd(p2
1, Φ3(p1)) = 1, i.e. the fraction in the right hand side of the above equality is in

lower terms.
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By definition of the index d, we have

σ

(

Q2) = dp2
1,

and

Q2 = dΦ3(p1). (8)

Let us differentiate both sides of (8) relative to x, we obtain

0 = d′Φ3(p1) + dΦ′
3(p1) = d′Φ3(p1) + dp′1,

since both Q2 and p2
1 + 1 = (p1 + 1)2 are squares in F2[x].

In other words we have

d′Φ3(p1) = dp′1. (9)

In order to prove (a), it follows from (9), and from d′ = 0 that

0 = dp′1,

i.e. one has p′1 = 0. Thus, the prime p1 is also a square, what is impossible. This proves
part (a).

In order to prove (b), assume, to the contrary, that d is square-free. In other words,
we have

gcd
(

d, d′
)

= 1.

From (9) we obtain that

d | Φ3(p1). (10)

In particular deg(d) ≤ 2d1. This implies that ω(d) ≤ 2, since any possible prime divisor of d

has degree ≥ d1.
Therefore, either d = pk for some k or d = pi pj for some i 6= j.
If d = pk, put Φ3(p1) = dR. Putting this into equation (8), we get that R is a square, say,

R = S2. We have then

Φ3(p1) = pkS2. (11)

Taking degrees in (11), we obtain

2d1 = dk + 2 deg(S). (12)

We have dk ≥ d1. It follows then from (12) that deg(S) ≤ d1/2. This is impossible since the
degree of any divisor of A is ≥ d1. Thus d is not prime.

We consider now the other possible case, i.e. we take d = pi pj for some i 6= j. Since both di

and dj are at least equal to d1, we conclude that pj and pi are minimal primes. In particular,

deg(d) = 2d1 = deg
(

Φ3(p1)
)

.

But, as observed in (10), d divides Φ3(p1). It follows that d = Φ3(p1). Thus, (8) implies that

d = Q. (13)
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But ω(Q) = ω

(

Q2
)

= ω(A)− 1, since A = p2
1Q2. It is known [3], that ω(A) ≥ 10 (see also

Lemma 4). Therefore, it follows from (13) that

ω(d) ≥ 9.

But this is impossible since d = pi pj. This proves part (b).

In order to prove (c), write d = a2b with b square-free, or b = 1. Since d is not a square, we
have b 6= 1. Since d is not square-free, we have that a 6= 1. Since d divides A, the exponents of
the primes dividing d are in {1, 2}, thus gcd(a, b) = 1. Indeed if gcd(a, b) 6= 1 then we must
have p3

j ||A for some j, and this is impossible.

Observe that K := Φ3(p1) has degree 2d1, so that either K is a prime or K is a product of
two (minimal) primes. Write (8) as follows

(

Q

a

)2

= bK. (14)

Since b and K are square-free, it follows from (14) that K = b. Thus, we obtain Q = ab from
(14) again. From d = a2b and Q = ab we have then

d = aQ. (15)

But, by definition of d, and since Q divides d, we have

a2b = d = gcd
(

Q2, σ

(

Q2)) = Q gcd
(

Q, σ

(

Q2)/Q
)

= ab gcd
(

Q, σ

(

Q2)/Q
)

.

In other words, this means that a = gcd
(

Q, σ

(

Q2
)

/Q
)

. This finishes the proof of (c).

In order to prove (d), observe first that m1 ≥ 2, since by Lemma 1, m1 is even.

By Lemma 2 (c) we have that m2 ≥ m3 ≥ 3. By Lemma 4 (b) we have d1 ≥ 30. Since by
Lemma 3, all dj are even, by definition of medium prime, we have di ≥ 32 for any medium
prime pi, and dj ≥ 34 for any maximal prime pj. This implies that

deg(A) ≥ 2(m1d1 + m2d2 + m3d3) ≥ 2(2d1 + 3d2 + 3d3),

Thus

deg(A) ≥ 2(60 + 96 + 102) = 516.

Now, from A = p2
1Q2 we have deg(Q) = deg(A)/2 − deg(p1) ≥ 258 − d1. But by (15)

d = aQ and a, as a divisor of A, has degree deg(a) ≥ d1. Therefore

deg(d) = deg(a) + deg(Q) ≥ d1 + (258 − d1) = 258.

Still from A = p2
1Q2 we have ω(Q) = ω(A)− 1. From (15) d = aQ, so that ω(d) ≥ ω(Q).

But ω(A) ≥ 10 by Lemma 4 (a). Thus

ω(d) ≥ ω(Q) ≥ ω(A)− 1 ≥ 10 − 1 = 9.

This finishes the proof of the theorem.
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Ґаллардо Л.Х. Про iндекс спецiальних досконалих полiномiв // Карпатськi матем. публ. — 2023.
— Т.15, №2. — C. 507–513.

У статтi ми подаємо нижню оцiнку степеня та кiлькостi рiзних простих дiльникiв iндексу
спецiальних досконалих полiномiв. Точнiше, ми доводимо, що ω(d) ≥ 9 та deg(d) ≥ 258, де
d := gcd(Q2, σ(Q2)) є iндексом спецiального досконалого полiнома A := p2

1Q2, в якому p1

є незвiдним та має мiнiмальний степiнь. Це означає, що σ(A) = A у полiномiальному кiльцi
F2[x]. Функцiя σ є природним аналогом функцiї, що обчислює суму дiльникiв над полем цiлих
чисел. Розглянутий iндекс є аналогом iндекса непарного досконалого числа, для якого нижня
межа 135 є вiдомою. У нашiй роботi використано елементарнi властивостi полiномiв, а також
результати статтi [J. Théor. Nombres Bordeaux 2007, 19 (1), 165–174].

Ключовi слова i фрази: многочлен подiлу кола, характеристика 2, спецiальний досконалий
многочлен, факторизацiя.


