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On expand-contract plasticity in quasi-metric spaces

Zavarzina O.O.

It is known that if any function acting from precompact metric space to itself increases the dis-

tance between some pair of points then it must decrease distance between some other pair of points.

We show that this is not the case for quasi-metric spaces. After that, we present some sufficient

conditions under which the previous property holds true for hereditarily precompact quasi-metric

spaces.
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Introduction

Let X be a nonempty set. By a quasi-metric on X, we mean a nonnegative real-valued

function d on X × X such that for x, y, z ∈ X we have

(a) d(x, x) = 0,

(b) d(x, z) ≤ d(x, y) + d(y, z),

(c) d(x, y) = 0 ⇒ x = y.

The set X with a fixed quasi-metric is called a quasi-metric space.

The concept of quasi-metric is a generalization of the concept of metric. The difference

consists in the absence of condition d(x, y) = d(y, x), that is why a quasi-metric is informally

called an “asymmetric metric”. The natural question what theorems involving metric spaces

remain valid for quasi-metric ones is a natural and popular line of research. An important

for us example is [7], where some questions of convergence and precompactness are regarded

from this point of view. More about the theory of quasi-metric spaces, especially about the

asymmetric version of normed spaces and adaptation of functional analysis to the asymmetric

case one can find in the monograph [3].

УДК 515.122
2020 Mathematics Subject Classification: 54E99.

The author is grateful to Vladimir Kadets for constant help with this project. The research was partially sup-

ported by the National Research Foundation of Ukraine funded by Ukrainian State budget in frames of project

2020.02/0096 “Operators in infinite-dimensional spaces: the interplay between geometry, algebra and topology”.

The author was also partially supported by the Volkswagen Foundation grant within the frameworks of the

international project “From Modeling and Analysis to Approximation” and Universities for Ukraine (U4U) Non-

Residential Fellowship Program.

© Zavarzina O.O., 2023



On expand-contract plasticity in quasi-metric spaces 525

The conjugate of a quasi-metric d on X, denoted by d−1, is a quasimetric on X, defined by

d−1(x, y) = d(y, x) for x, y ∈ X. The set

B(x, ε) =
{

y ∈ X : d(x, y) < ε
}

is the d-ball with center x and radius ε. A map F : M → M is called non-expansive, if

d
(

F(x), F(y)
)

≤ d(x, y) for all x, y ∈ M.

Definition 1. The quasi-metric space M is called expand-contract plastic (or simply, an

EC-space) if every non-expansive bijection from M onto itself is an isometry.

For metric spaces, S.A. Naimpally, Z. Piotrowski, and E.J. Wingler proved the following

theorem.

Theorem 1 ([8, Theorem 1.1]). Let (X, d) be a totally bounded metric space, and let f : X → X

be a function. If there exist points p, q ∈ X such that d
(

f (p), f (q)
)

> d(p, q), then there exist

points r, s ∈ X such that d
(

f (r), f (s)
)

< d(r, s).

This theorem immediately implies that every precompact metric space is expand-contract

plastic.

Although the definition might seem simple, in many concrete metric spaces that are not

totally bounded the problem of establishing their plasticity is unexpectedly difficult. For ex-

ample, it is unknown whether the unit ball of every Banach space is expand-contract plastic,

moreover the question remains open for such basic spaces as c0, C[0, 1] or L1[0, 1], more about

this problem and partial positive results one can find in recent articles [1, 2, 4–6, 9, 10]. In [1],

some generalizations of Theorem 1 to uniform spaces were considered. Unfortunately, these

generalizations are not applicable to quasi-metric spaces because uniform spaces do not gen-

eralize quasi-metric ones. The corresponding generalization of quasi-metric spaces are quasi-

uniform spaces, which differ from the uniform ones by absence of the symmetry axiom (i.e. in

a quasi-uniform space (X,U) the condition U ∈ U does not necessarily imply U−1 ∈ U).

The aim of this article is to study the possibility of generalizing Theorem 1 to quasi-metric

spaces. We demonstrate that the direct generalization does not work, but the theorem is valid

under mild additional conditions.

Analogously to metric spaces, a quasi-metric space (X, d) is called precompact if for every

ε > 0 there is a finite subset Y ⊂ X such that X ⊆ ∪x∈YB(x, ε). Surprisingly, this definition

loses an important property of ordinary precompact spaces: a subspace of a precompact quasi-

metric space is not necessarily precompact. This motivates the following definition.

Definition 2. The quasi-metric space (X, d) is said to be hereditarily precompact if every sub-

space of (X, d) is precompact.

Obviously, hereditary precompactness implies precompactness. Recall also another impor-

tant definition.

Definition 3. A sequence {xn}n∈N in a quasi-metric space (X, d) is called a left (respectively,

a right) K-Cauchy sequence if for any given ε > 0, there is an integer N ∈ N such that

d(xn, xm) < ε
(

respectively, d(xm, xn) < ε
)

for all m ≥ n ≥ N.

Theorem 3 from [7] states that space (X, d) is hereditarily precompact if and only if every

infinite sequence of points in X has a left K-Cauchy infinite subsequence.
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1 Main results

First of all, the statement of Theorem 1 is false in quasi-metric spaces. In the further expo-

sition we will use the following notations: 2N = {2k : k ∈ N}, 2N − 1 = {2k − 1 : k ∈ N}.

Theorem 2. There exist a hereditarily precompact quasi-metric space (X, d) and a non-con-

tractive mapping F : X → X which is not an isometry.

Proof. Take X =
{

ein
}

∞

n=1 equipped with the following quasi-metric

d
(

ein, eim
)

=















∣

∣ein − eim
∣

∣ , if m, n ∈ 2N, m ≥ n, or m, n ∈ 2N − 1, m ≥ n,

2, if n = 1, m ∈ 2N,

3, otherwise.

Let us check the axioms of quasi-metric. Items (a) and (c) are obviously satisfied. It remains

to verify the triangle inequality

d
(

ein, eim
)

≤ d
(

ein, eik
)

+ d
(

eik, eim
)

(1)

in all possible cases. First of all, let us note that
∣

∣ein − eim
∣

∣ ≤
∣

∣ein
∣

∣+
∣

∣eim
∣

∣ = 2 and the triangle

inequality holds for any three points of the space.

Now we are going to show the precompactness of X. Observe that

X =
{

e2ki
}

∞

k=1

⋃

{

e(2k−1)i
}

∞

k=1
.

We will construct a finite ε-net for
{

e2ki
}

∞

k=1
. The procedure of constructing for

{

e(2k−1)i
}

∞

k=1
is

the same. The union of these two ε-nets will be a finite ε-net for X.

Obviously, the set
{

e2ki
}

∞

k=1 with the usual metric ρ(x, y) = |x − y| is precompact. So, in the

usual metric for every ε > 0 there is a finite ε-net
{

e2kn i
}N

n=1. Let us consider the usual metric

balls Bρ

(

e2kn i, ε
)

. There are points in Bρ

(

e2kni, ε
)

, which belong to the corresponding quasi-

metric balls B
(

e2kni, ε
)

and there are points which do not. Those points e2mi ∈ Bρ

(

e2kni, ε
)

that

do not belong to B
(

e2kni, ε
)

must satisfy the condition 2m < 2kn, so there are only finitely many

of them. Consequently, there are only finitely many points in

N
⋃

n=1

Bρ

(

e2kni, ε
)

\
N
⋃

n=1

B
(

e2kni, ε
)

.

All these points together with
{

e2kni
}N

n=1
will serve as a finite ε-net for

{

e2ki
}

∞

k=1
. In the same

way one may construct a finite ε-net for any subspace of X, so X is hereditarily precompact.

The required F : X → X will be the following shift mapping: F
(

ein
)

= F
(

ei(n+2)
)

. Let us

show that F is non-contractive. We will consider three cases.

1. If d
(

F(ein), F(eim)
)

= 3, there is nothing to check, since 3 is the biggest possible distance

in the space.

2. Due to definition of F there are no points in X such that d
(

F(ein), F(eim)
)

= 2.
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3. d
(

F(ein), F(eim)
)

=
∣

∣F(ein)− F(eim)
∣

∣ means that n, m ∈ 2N − 1 or n, m ∈ 2N, m > n.

Since addition of 2 does not change the parity, we have

d
(

F(ein), F(eim)
)

= d
(

ei(n+2), ei(m+2)
)

=
∣

∣ei(n+2) − ei(m+2)
∣

∣ =
∣

∣e2i
∣

∣

∣

∣ein − eim
∣

∣ =
∣

∣ein − eim
∣

∣ = d
(

ein, eim
)

.

Finally, let us demonstrate that F is not an isometry.

d
(

F(ei), F(e2i)
)

= d
(

e3i, e4i
)

= 3 > 2 = d
(

ei, e2i
)

.

Further we are going to present some additional conditions, which can save the quasi-

metric version of Theorem 1.

Theorem 3. Let (X, d) and
(

X, d−1
)

be hereditarily precompact quasi-metric spaces. Let

F : X → X be a function. If there are points p and q in X such that d
(

F(p), F(q)
)

> d(p, q),

then there are points r, s ∈ X such that d
(

F(r), F(s)
)

< d(r, s).

Proof. Let us argue by contradiction. Suppose d
(

F(x), F(y)
)

≥ d(x, y) for all x, y ∈ X. Let us

introduce the following auxiliary metric ds(x, y) = d(x, y) + d(y, x).

The corresponding metric space (X, ds) is precompact because for any sequence in (X, ds)

there is a Cauchy subsequence
(

due to item (c) of [7, Theorems 3] from any sequence in

(X, d) one may extract a left K-Cauchy subsequence and then extract a right K-Cauchy sub-

sequence from this left K-Cauchy subsequence using the same item of the same theorem but

for
(

X, d−1
))

. Our hypothesis together with [8, Corollary 1.2] imply that F is a ds-isometry, i.e.

ds

(

F(x), F(y)
)

= ds(x, y) for all x, y ∈ X. In particular, ds

(

F(p), F(q)
)

= ds(p, q). So, we have

two conditions: d
(

F(p), F(q)
)

+ d
(

F(q), F(p)
)

= d(p, q) + d(q, p) and d
(

F(p), F(q)
)

> d(p, q).

These conditions imply the inequality d
(

F(q), F(p)
)

< d(q, p), which contradicts our assump-

tion.

Corollary 1. Let (X, d) be a hereditarily precompact quasi-metric space satisfying the follow-

ing condition: for every ε > 0 there is δ > 0 such that

d(x, y) < δ ⇒ d(y, x) < ε (2)

for any x, y ∈ X. Let F : X → X be a function. Then the existence of points p, q ∈ X with

d
(

F(p), F(q)
)

> d(p, q) implies the existence of r, s ∈ X with d
(

F(r), F(s)
)

< d(r, s).

Proof. The existence of ε-net in (X, d) for every ε > 0 and condition (2) implies the existence of

ε-net in
(

X, d−1
)

for every ε > 0. So
(

X, d−1
)

is hereditarily precompact as well and it remains

to apply the previous theorem to finish the proof.

Corollary 2. Let (X, d) be a hereditarily precompact quasi-metric space. Let there is a constant

C > 0, such that d(x, y) ≤ Cd(y, x) for all x, y ∈ X. Let f : X → X be a function. If there

are points p and q such that d
(

f (p), f (q)
)

> d(p, q), then there are points r and s such that

d
(

f (r), f (s)
)

< d(r, s).
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Proof. For every ε > 0 there exists δ = ε
C such that

d(x, y) < δ ⇒ d(y, x) ≤ Cd(x, y) < Cδ = ε.

We tried to find an analogue of example from the proof of Theorem 2 with a bijective func-

tion F, but surprisingly failed. So, the following question remains open.

Question. Is it true that for every precompact quasi-metric space (X, d) every bijective non-

contractive mapping F : X → X is an isometry?
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Вiдомо, що якщо будь-яка функцiя, що дiє з передкомпактного метричного простору в

себе, збiльшує вiдстань мiж деякою парою точок, тодi ця функцiя повинна зменшувати вiд-

стань мiж деякою iншою парою точок. Ми доводимо, що цей результат втрачає силу у ква-

зiметричних просторах. Пiсля цього ми надаємо деякi достатнi умови, при яких попередня

властивiсть зберiгається для спадково передкомпактних квазiметричних просторiв.

Ключовi слова i фрази: нерозтягувальне вiдображення, пластичний простiр, квазiметричний

простiр.


