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On the Dirac-like equation in 7-component space-time and
generalized Clifford-Dirac algebra

Simulik V.M.

The generalized Dirac equation related to 7-component space-time with one time coordinate

and six space coordinates has been introduced. Three 8-component Dirac equations have been de-

rived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac

algebra is considered in the Pauli-Dirac representation of 8 × 8 gamma matrices. It is proved that

this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic

to geometric CℓR(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional

SO(1, 9) algebra is derived and the way of its generalization to the SO(m, n) algebra is demon-

strated. The Klein-Gordon equation in 7-component space-time is considered as well. The way

of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is

indicated.
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Introduction

The main result of this article is as follows. Here we consider three different Dirac equa-

tions on the basis of the same 256-dimensional gamma matrix Clifford-Dirac algebra. Two of

them are defined in ordinary Minkowski space-time and are isomorphic to each other. The

third one is related to 7-component space-time with one time and six space coordinates and is

suggested for the first time, see Section 3 below. This new equation may have new applications

in contemporary theoretical physics. Probably, for the consideration of dark matter and dark

energy as well.

Contemporary theoretical physics is now one step from the centenary of quantum me-

chanics, Dirac equation [6] and corresponding formalism. We can observe the wide-

range applications of the gamma matrix Clifford-Dirac algebra [1, 16], which was introduced

in [6] as well. Thirteen times the “International Conference on Clifford Algebras and

Their Applications” has been held. The important step is the relationship between the

gamma matrix and some from the set of the Lie algebras SO(m, n) representations [13, 17, 23].

The role of the Lie algebra SO(m, n) in quantum field theory is also well-known (see, e.g.

[5, 7, 10, 12, 28]).

Nevertheless, even slight generalization of the gamma matrix algebra enabled us to

prove the existence of bosonic symmetries, solutions and conservation laws for the standard
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Dirac equation (see, e.g., [21–23, 25, 26]). We call this the Fermi-Bose duality property of

the Dirac equation. The found algebra is not a pure matrix, it contains additional operators

of complex conjugation. In the papers [21–23, 25, 26], it is proved that this matrix algebra

over the field of real numbers has 64-dimensional basis and it is isomorphic to CℓR(0,6)

algebra.

The usefulness of the Clifford algebraic approach to the relativistic quantum mecha-

nics recently was demonstrated in [18], where the spin of electron was derived on the

basis of start from the Fock space and Clifford algebra, generated by creation-annihilation

operators.

Here and in [21–23, 25, 26] we use the following idea. We work not only with matrices

but with matrices and operators acting on matrices, and use these operators together with

the matrices to generate the higher dimensional gamma matrix algebras being isomorphic to

Clifford algebras. As soon as it is the operator of complex conjugation, we deal with algebras

over the field of real numbers. An example of how fruitful this idea might be was provided

not only in [21–23, 25, 26], but in the article [30] as well.

In our investigations we essentially used the ideas, methods and main notations of [4, 8, 15,

29,31,34]. In the proof of relationship between the Clifford and SO(1, 9) algebra the results and

methods of [8, 13, 17, 21–26] were applied. Our local goal is to find for the 8-component Dirac

equation much more interesting algebras as were introduced in [21–23, 25, 26] for the ordinary

4-component Dirac equation.

The ordinary 8-component Dirac equations are considered here in the rigged Hilbert

space S3,8 ⊂ H3,8 ⊂ S∗3,8, where the solutions of such Dirac equations are well-defined.

Here the Schwartz test function space S3,8 is dense in the Schwartz generalized

function space S∗3,8 and H3,8 is the quantum-mechanical Hilbert space of 8-component func-

tions over R3 ⊂ M(1, 3). The space of coordinates R3 is the subset of the Minkowski space-

time M(1, 3).

It is well known that the Dirac equation possesses the solutions from the class of gene-

ralized functions, which do not belong to the quantum mechanical Hilbert space. Includ-

ing these solutions into the formalism leads to the application of the rigged Hilbert space

S3,8 ⊂ H3,8 ⊂ S∗3,8. For the square-root operator equation in the proof of Theorem 2 the situa-

tion is similar and similar rigged Hilbert space S6,8 ⊂ H6,8 ⊂ S∗6,8 is applied. The details on the

rigged Hilbert space and its application in field theory were presented in many monographs

(see, e.g., [3, 32]).

The new Dirac equation from Section 3 is considered in the rigged Hilbert space

S6,8 ⊂ H6,8 ⊂ S∗6,8. This equation is determined in 7-component space-time M(1, 6), where

R6 = R3 ⊗ R∗3. The possible interpretations of the space R∗3 are briefly considered in the

Section 4.

Here for the first time the Pauli-Dirac representation of the 256-dimensional gamma

matrix algebra (constructed with the help of additional operators) is suggested (see Section 2

below). It is the Pauli-Dirac representation, which allows us to observe the three Dirac

equations on the basis of the same Clifford-Dirac algebra. Such matrix algebra is proved to

be 256-dimensional and is shown to be isomorphic to the geometric Clifford algebra CℓR(1,7)

over the field of real numbers. Corresponding representation of SO(1, 9) algebra over the

field of real numbers is considered and the way of its generalization to the SO(m, n) form

is suggested.
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1 Matrix representation of the 256-dimensional Clifford algebra CℓR(1,7)

in the Pauli-Dirac representation

The system of units h̄ = c = 1 is chosen, the metric tensor in Minkowski space-time M(1, 3)

is given by

gµν = gµν = g
µ
ν ,

(
g

µ
ν

)
= diag (1,−1,−1,−1) , xµ = gµνxµ,

and summation over the twice repeated indices is implied.

The ordinary Dirac equation (see, e.g., [4, 22, 29]) for a free non-interacting spinor field is

given by (
iγµ∂µ − m

)
ψ(x) = 0,

where x ∈ M(1, 3), ∂µ ≡ ∂/∂xµ, µ = 0, 3, j = 1, 2, 3, and

M(1, 3) =
{

x ≡
(
xµ

)
=

(
x0 = t, −→x ≡

(
xj
))}

is the Minkowski space-time.

However, ordinary Dirac formalism is not the subject of our consideration. Here we con-

sider the 8-component representations of the Dirac equation. For our purposes the 8 × 8

gamma matrices should be involved. Note that in the Pauli-Dirac representation the set of

gamma matrices below is suggested for the first time.

Consider a set of the following nine 8 × 8 gamma matrices

Γ0 =

∣∣∣∣
I4 0

0 −I4

∣∣∣∣ , Γ1 = iΣ1
8 = i

∣∣∣∣
0 I4

I4 0

∣∣∣∣ , Γ2 =

∣∣∣∣
0 Σ2

4

−Σ2
4 0

∣∣∣∣ , Γ3 =

∣∣∣∣
0 Σ3

4

−Σ3
4 0

∣∣∣∣ ,

Γ4 =

∣∣∣∣∣∣∣∣∣

0 0 0 σ1

0 0 σ1 0

0 −σ1 0 0

−σ1 0 0 0

∣∣∣∣∣∣∣∣∣
, Γ5 =

∣∣∣∣∣∣∣∣∣

0 0 0 σ2

0 0 σ2 0

0 −σ2 0 0

−σ2 0 0 0

∣∣∣∣∣∣∣∣∣
, Γ6=

∣∣∣∣∣∣∣∣∣

0 0 0 σ3

0 0 σ3 0

0 −σ3 0 0

−σ3 0 0 0

∣∣∣∣∣∣∣∣∣
,

Γ7 =

∣∣∣∣∣∣∣∣∣

0 0 σ2Ĉ 0

0 0 0 −σ2Ĉ

σ2Ĉ 0 0 0

0 −σ2Ĉ 0 0

∣∣∣∣∣∣∣∣∣
, Γ8 =

∣∣∣∣∣∣∣∣∣

0 0 −iσ2Ĉ 0

0 0 0 iσ2Ĉ

−iσ2Ĉ 0 0 0

0 iσ2Ĉ 0 0

∣∣∣∣∣∣∣∣∣
,

(1)

where the 4 × 4 Pauli matrices are given by

Σ2
4 = i

∣∣∣∣
0 −I2

I2 0

∣∣∣∣ , Σ3
4 =

∣∣∣∣
I2 0

0 −I2

∣∣∣∣ ,

and the explicit form of Σ1
8 is evident from the first row in (1). The 2 × 2 Pauli matrices σj are

taken in the standard form. Further, here Ĉ is the operator of complex conjugation. Symbol

I4 denotes 4 × 4 unit matrix. Note that all Pauli matrices, which for different dimensions are

denoted here as Σ8, Σ4 and σ, satisfy the corresponding anti-commutation relations of the

Pauli algebra generators.

Lemma 1. The operators (1) satisfy the anti-commutation relations

ΓAΓB + ΓBΓA = 2gAB, g = (+−−−−−−−−), A, B = 0, 8, (2)

of matrix representation of the Clifford algebra generators.
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Proof. The above asserion is proved by the direct calculation of the relationship (2). Note that

here Ĉ is the operator of complex conjugation, Ĉψ = ψ∗ (the operator of involution in the

Hilbert spaces H3,2 and H6,2). Thus, in the space of real numbers the assertion is proved.

Theorem 1. The matrix algebra (1), (2) is 256-dimensional
(
28 = 256

)
and it is isomorphic to

Clifford algebra CℓR(1,7) over the field of real numbers.

Proof. Lemma 1 is the first necessary step. Further, it is useful to observe that all matrices

from (1) are traceless. Furthermore, one can easy calculate that

Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8 = I8,

but the verification of relation

Γ6 = iΓ0Γ1Γ2Γ3Γ4Γ5 (3)

is necessary for further consideration. Note that formula (3) is the analogy of the relation

γ4 = γ0γ1γ2γ3, which is well-known from the gamma matrix representation of the Clif-

ford algebra CℓC(1,3). Therefore, our steps below can be similar to the corresponding proof

for CℓC(1,3).

The next step is to prove that all matrices in the set (1) are linearly independent. Indeed,

the equation

∑ xAΓA = 0

yields if and only if the condition x0 = x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 is fulfilled. It

may seem that the dimension of this gamma matrix algebra is equal to 29 = 512. Nevertheless,

the dimension is 28 = 256. Here the relation (3) (not a matter of fact that Γ6 is a linearly

independent element of the set (1)) plays the decisive role.

In order to prove that the dimension is 28 = 256, let us once more recall the similar situation

with ordinary Clifford-Dirac algebra, which is well-known from [4, 11].

For the basic step it is enough to consider the subalgebra, which is determined by the first

seven generators from the matrix algebra (1). Let us recalculate the basis of this subalgebra.

The solution follows after taking into account the equality (3). Indeed, the candidates for the

additional elements of the basis like Γ6, Γ0Γ6 = iΓ1Γ2Γ3Γ4Γ5, Γ0Γ1Γ6 = −iΓ0Γ2Γ3Γ4Γ5, etc., are

already among the 64-dimensional set under consideration and do not contribute to the basis

of the algebra. Therefore, we deal here with the 64-dimensional subalgebra.

It means that we have only 8 generators for the matrix algebra determined by formulas (1)

and (2). After that, it is evident that the dimension of the matrix algebra determined by the

formulas (1), (2) is 256. The anti-commutation relations for such algebra should be given as

ΓĀΓB̄ + ΓB̄ΓĀ = 2gĀ,B̄, g = diag(+1 − 1 − 1 − 1 − 1 − 1 − 1 − 1), (4)

where Ā, B̄ = 0, 7.

It is easy to understand that this algebra, which in the set (1) includes two additional matrix

operators Γ7 and Γ8, is defined only over the field of real numbers.

Finally, according to the formalism from papers [2, 15], this matrix algebra is isomorphic to

the geometric Clifford algebra CℓR(1,7). The designations 1 and 7 are related to the number of

+1 and −1 on the diagonal in (4). Thus, the theorem is proved.

Similarly, the 64-dimensional subalgebra, which is determined by the first seven generators

from the matrix algebra (1), is isomorphic to geometric algebra CℓC(1,5).
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2 Three Dirac equations from one and the same Clifford-Dirac algebra

After the above given consideration it is evident that in (1) we have two linearly indepen-

dent sets of the gamma matrices Γ1, Γ2, Γ3. The first one is given by Γ1, Γ2, Γ3 and the second

has the form Γ4 → Γ1, Γ5 → Γ2, Γ6 → Γ3. Therefore, two equivalent formulations of the

8-component Dirac equation are evident. Who knows if each one will be more useful in

future?

The first possible Dirac equation is given by

(
iΓµ∂µ − m

)
ψ(x) = 0, (5)

where ψ(x) is the 8-component wave function and the matrices Γµ are given as the first four

from the set (1).

The second possible Dirac equation is given by

(iΓα∂α − m)ψ(x) = 0, (6)

where the matrices Γα follows from the set (1) after the substitution Γ4 → Γ1, Γ5 → Γ2, Γ6 → Γ3.

Therefore, here we have the same Γ0 but another Γj. Of course, the equations (5) and (6) are

equivalent.

Nevertheless, now we can introduce the third Dirac-like equation, which follows from the

formulas (1), (2) and visually is another one

(
iΓÃ∂Ã − m

)
ψ(X) = 0, Ã = 0, 6. (7)

Here we have first seven gamma matrices from (1), X ∈ M(1, 6), where

M(1, 6) =
{

X ≡
(
XÃ

)
=

(
X0 = t,

−→
X ≡ (X j̃) ∈ R6

)}
, j̃ = 1, 6,

is the corresponding Minkowski type space-time. Therefore, here the 8-component function

ψ(X) in equation (7) belongs to the rigged Hilbert space S6,8 ⊂ H6,8 ⊂ S6,8∗. Equation (7)

essentially differs from the ordinary 8-component Dirac equations (5), (6). Nevertheless, the

Hamiltonian H = Γ0−→Γ
−→
P + Γ0m in equation (7) has all mathematical properties of the Dirac

Hamiltonian.

Consider the general solutions of the equations (5), (6), (7). The general solution of the

equation (5) is given by

ψ(x) =
1

(2π)
3
2

∫
d3k

[
e−ikxcr(

−→
k )v−

r (
−→
k ) + eikxc∗r̃(

−→
k )v+

r̃ (
−→
k )

]
, (8)

where

kx = ω̃t −
−→
k −→x , ω̃ =

√
−→
k 2 + m2, r = 1, 4, r̃ = 5, 8, (9)

cr(
−→
k ), c∗r̃(

−→
k ) are the amplitudes of the particle and antiparticle, respectively, which relation

to the quantum-mechanical momentum-spin amplitudes is considered in [18] in details, and

the 8-component spinors
(

v−
r (

−→
k ), v+

r̃ (
−→
k )

)
are given by
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v−
1 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̃ + m

0

0

0

−ik1 + k3

0

ik2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−
2 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̃ + m

0

0

0

−ik1 + k3

0

ik2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−
3 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̃ + m

0

−ik2

0

−ik1 − k3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−
4 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̃ + m

0

−ik2

0

−ik1 − k3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
5 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ik1 + k3

0

ik2

0

ω̃ + m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
6 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ik1 + k3

0

ik2

0

ω̃ + m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v+
7 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ik2

0

ik1 − k3

0

0

0

ω̃ + m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
8 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ik2

0

ik1 − k3

0

0

0

ω̃ + m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(10)

where

N ≡
1√

2ω̃(ω̃ + m)
, ω̃ ≡

√
−→
k 2 + m2. (11)

The spinors (10) satisfy the relations of the orthonormalization and completeness similar to

the corresponding relations for the standard 4-component Dirac spinors.

The general solution of the equation (6) has the form

ψ(x) =
1

(2π)
3
2

∫
d3k

[
e−ikxcr(

−→
k )v̄−

r (
−→
k ) + eikxc∗r̃(

−→
k )v̄+

r̃ (
−→
k )

]
. (12)

The principal difference between (8) and (12) is only in the explicit form of 8-component Dirac

spinors, which here are given by
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v̄−
1 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̃ + m

0

0

0

0

0

k3

k1 + ik2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̄−
2 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̃ + m

0

0

0

0

k1 − ik2

−k3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̄−
3 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̃ + m

0

k3

k1 + ik2

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v̄−
4 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̃ + m

k1 − ik2

−k3

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̄+
5 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k3

k1 + ik2

ω̃ + m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̄+
6 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k1 − ik2

−k3

0

ω̃ + m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v̄+
7 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k3

k1 + ik2

0

0

0

0

ω̃ + m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̄+
8 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 − ik2

−k3

0

0

0

0

0

ω̃ + m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the solution (12) the interpretation of amplitudes is the same as in the solution (8), other

notations are already explained in formulas (9) and (11).

Theorem 2. The general solution of the equation (7) is given by

ψ(X) =
1

(2π)
3
2

∫
d6K

[
e−iKXcr(

−→
K )ṽ−

r (
−→
K ) + eiKXc∗r̃(

−→
K )ṽ+

r̃ (
−→
K )

]
,

where K ≡ (
−→
K ) =

(
k1, k2, k3, k4, k5, k6

)
, d6K ≡ d1kd2kd3kd4kd5kd6k,

KX = ω̂t −
−→
K
−→
X , ω̂ =

√
−→
K 2 + m2, r = 1, 4, r̃ = 5, 8,

cr(
−→
K ), c∗r̃(

−→
K ) are the amplitudes of the particle and antiparticle, respectively, which relation

to the quantum-mechanical momentum-spin amplitudes can be considered in complete anal-

ogy with the consideration in [22], and the 8-component spinors
(

ṽ−
r (

−→
K ), ṽ+

r̃ (
−→
K )

)
are given

just below after the Corollary 2.

Proof. The original very simple and very useful procedure of solving of the equation (7) is

completely similar to the presented in the monograph [22]. Here below we apply it to the
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equation (7). Indeed, in [22, Chapter 5] the corresponding solutions are, without any doubt,

evidently being postulated on the level of relativistic canonical quantum mechanics and the

any-dimensional set of equations of the following type

∂t f (X) = i
√

m2 − ∆6 f (X), f ≡ column
(

f 1, f 2, . . . , f 8
)

, (13)

where ∆6 is given in R6. The solution of this equation have the form

f (X) =

∣∣∣∣∣
fparticle

fantiparticle

∣∣∣∣∣ =
1

(2π)
3
2

∫
d6Ke−iKXbA(

−→
K )dA, A = 1, 8,

where bA(
−→
K ) are the corresponding quantum-mechanical momentum-spin amplitudes (first

four of a particle, next of an antiparticle) and dA are the vectors of 8-component Cartesian basis

dA = {δAḂ} , AḂ = 1, 8, d1 = column(1, 0, 0, 0, 0, 0, 0, 0), etc.

For reasons already mentioned in the Introduction we consider equation (13) in the rigged

Hilbert space S6,8 ⊂ H6,8 ⊂ S∗6,8.

The essence of the second step in the Chapter 6 was given by the help of very simple but

very useful operator known from [20], which in the space of 8-component functions has the

form

v8 =

∣∣∣∣
I4 0

0 CI4

∣∣∣∣ , v−1
8 = v†

8 = v8, v8v8 = I8.

Here CI4 is the 4 × 4 operator of complex conjugation, which already is determined in the text

above exactly. The canonical Foldy-Wouthuysen type classical field formalism was obtained

on the basis of this operator. Indeed, operator v8 translates the quantum-mechanical Hamilto-

nian into the Foldy-Wouthuysen Hamiltonian and the quantum-mechanical solution into the

solution of canonical field theory.

Thus, after the application of the operator v8, we have

(
∂0 + iΓ0

8

√
m2 − ∆6

)
φ(X) = 0, φ ≡ column

(
φ1, φ2, . . . , φ8

)
,

φ(X) =
1

(2π)
3
2

∫
d6K

[
e−ikxbA(

−→
K )dA + eikxb∗B(

−→
K )dB

]
,

where A = 1, 4, B = 5, 8, and the vectors of the 8-component Cartesian basis are already given

above.

Note that this transition with the help of operator v8 is valid only for the anti-Hermitian

form of the Hamiltonians, spin operators, etc. (see the explanations in [8, 20, 22, 34]).

The final step in [22, Chapter 7] applies the well-known inverse Foldy-Wouthuysen type

operator (here being considered in R6), which leads to the equation (7) and its solution. In

this step the result is independent of the choice of Hermitian or anti-Hermitian form of corre-

sponding operators of field theory.

This formalism in [22] is presented in details.

After the obtaining of the solution presented in the formulation of the theorem everybody

can easy verified its validity by the direct substitution into the equation (7). Thus, the theorem

is proved.
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Corollary 1. All transitions presented here have their inverse operators. The inverse procedure

is valid as well. Therefore, the quantum-mechanical equation i∂t f (X) =
√

m2 − ∆6 f (X) can

be derived from the Dirac-like equation (7) as well.

Corollary 2. The Theorem 2 and its proof have the direct relation to the solutions (8), (12)

of the equations (5), (6) given above, where the situation is completely similar. The equation

(7) contrary to the equations (5) and (6) is new, while the equations (5), (6), are ordinary

8-component Dirac equations in the exotic representations of gamma matrices. Therefore, here

as the main object the equation (7) is chosen.

The 8-component Dirac-like spinors in the solution presented in the Theorem 2 have the

form

ṽ−
1 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̂ + m

0

0

0

−iK1 + K3

0

iK2 + K6

K4 + iK5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ṽ−
2 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̂ + m

0

0

0

−iK1 + K3

K4 − iK5

iK2 − K6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ṽ−
3 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̂ + m

0

−iK2 + K6

K4 + iK5

−iK1 − K3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

ṽ−
4 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̂ + m

K4 − iK5

−iK2 − K6

0

−iK1 − K3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ṽ+
5 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iK1 + K3

0

iK2 + K6

K4 + iK5

ω̂ + m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ṽ+
6 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

iK1 + K3

K4 − iK5

iK2 − K6

0

ω̂ + m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

ṽ+
7 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iK2 + K6

K4 + iK5

iK1 − K3

0

0

0

ω̂ + m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ṽ+
8 (

−→
K ) = N̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K4 − iK5

−iK2 − K6

0

iK1 − K3

0

0

0

ω̂ + m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

N̂ ≡
1√

2ω̂(ω̂ + m)
, ω̂ ≡

√
−→
K 2 + m2.

Thus, we have three Dirac equations from the same Clifford-Dirac algebra (1), (2). Note that

in order to derive three Dirac equations from the same Clifford-Dirac algebra it is sufficient to

consider the 64-dimensional subalgebra, which is determined by the first seven generators

from the matrix algebra (1).
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Remark. In the proof of the Theorem 2, so-called square-root operators as Hamiltonian

H =
√

m2 − ∆6 appeared. Note that the mathematical properties (self-adjointness, symmetri-

cal properties) of such nonlocal pseudo-differential operators are under consideration in liter-

ature on such subjects as the Salpeter equation, spinless Salpeter equation, Foldy-Wouthuysen

equation, equation for Levy flight [9]. A long list of corresponding references was given in

[22, Chapter 5] (see, e.g., the papers of R.A. Weder [33] or of I.W. Herbst [14]). All necessary

definitions were given in the formulas (5.3)–(5.7) of this Chapter 5. The details are not the

subject of this brief communication.

3 On the Dirac-like equation in 7-component space-time

The most interesting among the equations (5), (6), (7) is the 8-component Dirac-like equa-

tion (7) in 7-component space-time. This equation is completely different in comparison with

the ordinary Dirac equations (5), (6) and is introduced here for the first time. This special

place among the other investigations can be determined on the basis of the review of different

approaches to the Dirac formalism in [22, Chapter 2].

It is useful to note that other equations of elementary particle physics may be represented

in a similar way. Consider briefly the Klein-Gordon and the Maxwell equations.

The Klein-Gordon equation in 7-component space time is given by

(
∂A∂A + m2

)
ψ(X) = 0, A = 0, 6. (14)

It is easy to understand that equation (7) can be derived from the procedure of factorization of

the Klein-Gordon equation (14) as follows

−∂A∂A − m2 =
(
iΓA∂A − m

)(
iΓA∂A + m

)
, A, B = 0, 6.

Therefore, the ψ(X) is the scalar field here (real or complex). The detailed formalism and

corresponding solutions without our generalization are described in the monograph [4]. The

argument X in ψ(X) belongs to the 7-component M(1, 6) Minkowski space-time.

In addition to the possible derivation of equation (7) from the equation (14) the procedure

of Lagrange approach suggestion may be constructed here similarly to the consideration in the

book [4]. The specification will be minimal. Many variants of derivation of the ordinary Dirac

equation reviewed in the monograph [22] may be used for the derivation of the equation (7) as

well.

For the application to the higher spin models we may represent the Klein-Gordon

operator in the matrix-differential form. In the case of 8-component function ψ(X) it will be

the 8× 8 matrix with operator ∂A∂A + m2 in diagonal (all other elements are equal to zero) act-

ing on 8-component column ψ(X). The 8-component Dirac-like wave equation without redun-

dant components for the particle having spin 3/2 was discussed briefly in the papers [20, 27].

The details were presented in the monograph [22]. The 8-component Klein-Gordon equation

is related to that case of 8-component Dirac equation.

Relationships between the massless Dirac and the Maxwell equations were discussed im-

mediately after the appearance of P.A.M. Dirac’s paper [6]. The author was C.G. Darwin

(see [24] and references therein). Today on the basis of papers [19, 20, 23, 24] we were able

to suggest the Maxwell equations in the 7-component Minkowski space-time M(1, 6) as well.
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Note that Dirac Hamiltonian is a very specific one, which differs essentially from other

Hamiltonians in quantum mechanics and quantum field theory. On the other hand, least ac-

tion variational principles for the Maxwell equation immediately differ between each other in

the terms of potentials and in the terms of electromagnetic field strengths. This brief article is

not the place of the long discussion which follows.

The formalism suggested briefly in the article [20] and in details in the monograph [22] for

the equations in ordinary 4-component Minkowski space-time is the method for the consider-

ation of arbitrary spin equations in Minkowski space time M(1, 6) as well.

Let us return to the equation (7) and its interpretation.

Equation (7) under consideration couples together two different coordinate spaces with the

same time in the form R6 = R3 ⊗ R∗3. They can be similar to each other as two duplications

of R3 ⊂ M(1, 3), but, of course, can be completely different fragments as R3 ⊂ M(1, 3) and

R∗3 ⊂ M∗(1, 3) corresponding to the different physical reality.

Not only the equation (7), but suggested here representations of Clifford and SO(m, n)

algebras as well, may be useful for the supersymmetry (SUSY) approaches. Furthermore, the

interpretation of R∗3 ⊂ M∗(1, 3) as the space for dark matter – dark energy and of R3 ⊂ M(1, 3)

as our well-known living space is not senseless as well. Note that the time axis in M∗(1, 3) and

in M(1, 3) is the same. Therefore, here the Dirac-like equation (7) coupled together these two

possibly different space-time manifolds. It will be better to consider the consequences not in

the framework of this brief communication, which, in general, is about mathematical aspects

of the problem.

Indeed, the popular assertions of many authors that such elementary particles as hypo-

thetical even in Standard model “axions” are the carriers of the dark matter cannot inspire any

clearly thinking scientist.

Briefly, the simple question “Why is the Dirac equation one of the general equations of

the Universe?” appears. Without any hope to the final conclusion our tiny answer is under

consideration. The Dirac equation directly follows from the Clifford algebra. The Clifford

algebras follow from the geometry of space-time. Recently, in the paper [18] this chain of ideas

has been recalled in the author’s original approach.

4 Generalization of the algebra SO(1, 9) for an arbitrary dimensions

Another application of the Clifford-Dirac gamma matrix algebra (1), (2) is as follows. The

transition according to [13, 17, 21, 23, 25, 26] from (1), (2) to the corresponding Lie algebra leads

to the gamma matrix representation of the SO(1, 9) algebra over the field of real numbers. The

corresponding generators have the form

sÂB̂ =

{
sAB = −

1

4

[
ΓA, ΓB

]
, sA9 = −s9A =

1

2
ΓA

}
, (15)

where Â, B̂ = 0, 9, A, B = 0, 8.

The commutation relations for the 45 generators of (15) are given by
[
sÂB̂, sĈD̂

]
= −gÂĈsB̂D̂ − gĈB̂sD̂Â − gB̂D̂sÂĈ − gD̂ÂsĈB̂,

where the metric tensor g is given as

g = diag(+1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1).
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Here the anti-Hermitian realization of the SO(1, 9) operators is chosen. The necessity of

an anti-Hermitian form of generators was explained in [25, 26]. We used the formalism from

[8, 34].

Note the formal character of possible generalization of algebra SO(1, 9) for arbitrary di-

mensions. Indeed, above considered Lie algebra of the SO(1, 9) group can be generalized to

the SO(m, n) algebra of an arbitrary dimension in the form

s p̆q̆ =

{
spq =

1

4
[Γp, Γq] , sp n+1 = −sn+1 p = −

1

2
Γp

}
, (16)

where p̆, q̆ = 0, n + 1, p, q = 0, n.

Nevertheless, after this step the gamma matrices in the formulas (16) are no more of the

dimension of 8 × 8. Indeed, even for the next step SO(1, 10) the 12 × 12 gamma matrices are

necessary. Therefore, the gamma matrices in (16) are not identified at the moment and need

step by step identification.

Conclusions

The main goal of this brief communication is the generalization of the 8-component Dirac

equation for the 7-component Minkowski space-time M(1, 6). This specification of the Dirac

equation is considered for the first time. The interesting result is that here from the same 256-

dimensional gamma matrix Clifford-Dirac algebra three different 8-component Dirac equa-

tions have been derived.

Our next goal is the investigation of the corresponding Clifford-Dirac algebra, which is

presented in the terms of 8 × 8 gamma matrices. In the Pauli-Dirac representation this matrix

representation of the geometric Clifford algebra is considered for the first time. This matrix

algebra over the field of real numbers is proved to have 256 dimensional basis and to be iso-

morphic to geometric CℓR(1,7) algebra.

In our investigations [21–23,25,26], the matrix representations of the Clifford algebras were

only the step in the derivation of corresponding Lie algebras SO(8) and SO(1, 7). The gamma

matrix representations of these Lie algebras were the basis for the proof of Bose properties of

the Dirac equation. Here the corresponding gamma matrix representation of 45-dimensional

SO(1, 9) algebra is derived. Moreover, the way of its generalization to the SO(m, n) algebra is

demonstrated.

The first application of the introduced new equation (7) is its free putting into considera-

tion. Possible applications for theoretical physics are given at the end of the Section 4. In this

brief article the application to SUSY is not under consideration.

Another application of the new Dirac-like equation is the direct continuation of our inves-

tigations [21, 23, 26] for the case of 8-component Dirac equation and special spin 3/2 equa-

tions [20, 27], which can be considered in the form of 8-component Dirac equation as well.

Note that here corresponding to the Dirac-like equation (7) quantum-mechanical and

canonical field (of Foldy-Wouthuysen type) equations are already introduced. They are pre-

sented in the proof of the Theorem 2.
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Симулик В.М. Про дiракоподiбне рiвняння у 7-компонентному просторi-часi та узагальнену алгебру

Клiффорда-Дiрака // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 529–542.

Запропоновано узагальнене рiвняння Дiрака, що вiдноситься до 7-компонентного просто-

ру-часу з однiєю часовою координатою i шiстьма просторовими координатами. З однiєї й тiєї

самої 256-вимiрної матричної алгебри Клiффорда-Дiрака виведено три 8-компонентнi рiвня-

ння Дiрака. Така розширена алгебра Клiффорда-Дiрака вводиться в розгляд у представленнi

Паулi-Дiрака 8 × 8 гамма-матриць. Доведено, що ця матрична алгебра над полем дiйсних чи-

сел має 256-вимiрний базис i є iзоморфною геометричнiй алгебрi CℓR(1,7). Виведено вiдповiдне

гамма-матричне представлення 45-вимiрної алгебри SO(1, 9) та продемонстровано спосiб йо-

го узагальнення до SO(m, n) алгебри. У 7-вимiрному просторi-часi введено у розгляд також i

рiвняння Клейна-Гордона. Вказано шлях аналогiчного розгляду рiвнянь Максвела та рiвнянь

для довiльного спiну.

Ключовi слова i фрази: алгебра Клiффорда-Дiрака, алгебра SO(1, 9), 8-компонентне рiвнян-

ня Дiрака, дуалiзм Фермi-Бозе, узагальнений простiр-час Мiнковського.


