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Introduction

Duality of rising and falling factorial powers
is a common feature in the combinatorial analysis.
In other words, if a problem leads to some combi-
natorial identity constructed with the help of falli-
ng factorial powers, then often there is a dual
combinatorial problem, which leads to a dual
combinatorial identity involving rising factorial
powers. One can find some examples of these dual
combinatorial identities in [1], [2].

The classic exponential e® is given by the
corresponding power series with factorials, which
can be written as the falling factorial power
n”. Replacing the falling factorial powers by the
corresponding rising factorial powers n™, we get
the function Exp(z) [3].

Now if in the Dawson’s integral [4]

we replace the exponentials by Exp(z), then we
get a new nonelementary function

D(z) = (Exp (a:Q))l/OxEXp(tQ)dt,

the basic properties of which are to be studied in
this article.
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The Dawson’s integral and its generalization
are widely applied in astrophysics, spectroscopy,
theory of electric oscillation, processes of heat
conduction, viscosity mechanics, finance, applied
mathematics [5]-[12].

1 Preliminaries and Notations

Definition 1. [13| For an arbitrary x € R and
m € N, the factorial power m with the step of
k € R s the expression

e™F = g4 k) (z +2k) ... (z+ (m—1)k).

By definition z0t%} .= 1.

If £k =0, then we have a simple power, i.e.
20} = gm,

Most often, there are rising factorial powers
with the step of 1 and falling factorial powers with
the step of —1, which we will denote by

e =™ =gz +1) - (x+m— 1),
e =g =gz —1)-...- (z—m+1),
respectively.

Let us assume 20 = 22 = 1. Tt is obvious that
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In analogy to the known power series

which can be treated as the series constructed with
the help of falling factorial powers (n!=n’). The
"dual" function Exp(z), constructed with the help
of rising factorial powers, it is studied in [3].

Definition 2. By Exp(z) we will denote the
function defined with the help of the power seri-
es

> n
Exp(z) = %:
n=0
—14+2 +m—2+ o+ " T
2.3 n-(n+1)-...-(2n—1)

It is obvious that

Exp(z) =1+ Z ((27;_1)' 2"
n=1

and the series in (1) converges on the real axis.

The graph of the function y = Exp(z) is
shown in Figure 1.
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Fig. 1. The graph of the function y = Exp(z)
The only zero of the function Exp(z) is
2o ~ —1,22041009,

and at x1~—9,02371883 it reaches its minimum.
In [3] it is proved that
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)n n+1
E —1
XP( +Z4”n' nZ: 2n+1)4”n'

= 1+m63®<\§>, (2)

where

Ba) =ertr = = [t
r)=€erixr = — e
VT Jo

is the probability function (error function). [4]

2 On operations with formal power series

< bs—r+1 >
bs—r /[ 1<r<s<

the paradeterminant of the triangular matrix of
Os—r41

) =12
ST/ 1<r<s<0

Let us formulate two theorems from [2], [14]
to be used hereafter.

Denote by

order j, assuming that <

Theorem 1. Let A(z), B(z), C(z) be the notati-
ons of the following formal power series

o o0 (o)
E anz", g b 2", E cn 2",
n=0 n=0 n=0

respective, where ag = bg = co =1 and

_A®)
C(z) = B(2)
Then
— j bs r+1
Cn = (-1) (anj br, ]) b )
=0 ST L 1Srssgy
foralln=1,2,...

Theorem 2. If

1
C(z) = ,
(2) A
then
ai
az a
e = (—=1)" @ ,
n An—
7(1:_1 T}_; e aq n

foralln=1,2,...
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3 Function of the Dawson’s integral type s i (j— 1) 2j+1

o . — (27— D25 +1)
Replacing in the Dawson’s integral J=1
[T, and -
F(z)=¢e" / e dt G-l 5

Ex =1+  armm el

the exponential with the function Exp(z), we )

obtain a nonelementary function, which we will To prove this we apply Theorems 1 and 2. If

we denote

denote by D(x), i.e. let

x — 1 i
1 (j 2j+1
D(z) := (Exp(z?)) /0 Exp(t?) dt. (3) Alw)=1+z+ Z 2 - D2 +1) xr
It is easy to verify that o .

/ Exp(t?)dt = —z +2\/me T (I><§> = (27 — 1)

0
then D S(x), wh
Thus from (2), (3) we obtain the formula en D(z) = R(z) — S(z), where

A(z) 1
D(x) = 2/Fe a(g) - D=6 * " B
12
1+mres (7) We denote the coeflicients of the above series

The graphs of the function y = D(z) (solid PY sma.ll Latin letters. o _
graph) and the Dawson’s integral y = F(x) (dotted Using Theorems 1 and 2, it is easy to verify
graph) are shown in Figure 2. that sor—1 = 0 and

ror = sor = (—1)F By,

where
bo
ba
ho 2
be ba
by b2 ba
By = . )
bog—2  bop—4 bok_s b
bok—a bak_g bop—s " 2
boy, bog—2  bap_4 by
bop—2  bag—s4  bop—¢ 77 b2 2 k
forall k=1,2,...
Thus dop, = 0 and for all k =1,2,...
dog—1 =Togp—1 =

= Q9k_1T0 + G2k—372 + ... + ai1rop—29.

Notice, that the parapermanent Bj can be
calculated with the help of the linear recurrent

equation
Fig. 2. The graphs of the functions
Y= D(JE) and y = F(.%') By=1, Bpr=0b0Bi_1—bsBr_o+...+
The function D(x) can also be represented as + (1) 2byr_o By + (—1)" by Bo.

the quotient of two power series

/x Exp(t?)dt =

0

Hence, performing necessary calculations, the
function D(z) is represented as the power series
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Let us note that the coefficients of the power
series (4) can also be found using the recurrence
formulas

(n—2)!

di =1, dony = -
P Tl T 0 28)(2n — 1)

4 Differential equation
of the function D(z)

The Dawson’s integral is a solution of the li-
near nonhomogeneous equation y' + 2zy = 1 [4].
Let us prove that the function D(z) is a solution
of the Riccati equation.

Theorem 3. The function y = D(x) is a solution
of the Cauchy problem

_ z%-2 z(z%+6)
Yy = 2212 y* — )Y T L, } (5)
y(0) = 0.

Proof. 1t follows from the formula (3) that the

integral curve y=D(x) passes through the origin.

Let us prove that the function y = D(x) is a

solution of the Riccati equation (5). Indeed, since
-2

1 22 X
y == <1 +/mre Td (2)> X

2
z2 X z2 x
X <2ﬁme4¢><2> + eTac3<I><§> + 222 —

_ dre’s 2 (f) + 2>,
2
excluding from this formula and from (3) the
expression /T e§(1>(%), we obtain the relation
z(2? +6)
Y =orr+2)Y T 2212
The Theorem 3 is proved.

2
/ T —2 2

y+ 1.
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