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Nagy type inequalities in metric measure spaces and some
applications

Babenko V.F.1, Babenko V.V.2, Kovalenko O.V.1, Parfinovych N.V.1

We obtain a sharp Nagy type inequality in a metric space (X, ρ) with measure µ that estimates

the uniform norm of a function using its ‖ · ‖Hω-norm determined by a modulus of continuity ω,

and a seminorm that is defined on a space of locally integrable functions. We consider charges ν that

are defined on the set of µ-measurable subsets of X and are absolutely continuous with respect to

µ. Using the obtained Nagy type inequality, we prove a sharp Landau-Kolmogorov type inequality

that estimates the uniform norm of a Radon-Nikodym derivative of a charge via a ‖ · ‖Hω-norm

of this derivative, and a seminorm defined on the space of such charges. We also prove a sharp

inequality for a hypersingular integral operator. In the case X = R
m
+ × R

d−m, 0 ≤ m ≤ d, we obtain

inequalities that estimate the uniform norm of a mixed derivative of a function using the uniform

norm of the function and the ‖ · ‖Hω -norm of its mixed derivative.
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1 Introduction

Inequalities that estimate norms of the intermediate derivatives of univariate or multivari-

ate functions using the norms of the functions and their derivatives of higher order play an

important role in many branches of mathematics, including analysis, approximation theory,

differential equations, theory of ill-posed problems, numeric methods and many others. It

appears that the richest applications are obtained from sharp inequalities of this kind, which

attracts much interest to the inequalities with the smallest possible constants. For univariate

functions, the results by E. Landau [23], A.N. Kolmogorov [19] and B.Sz. Nagy [29] are among

the brightest ones in this topic. A survey on the results for univariate and multivariate func-

tions for the case of derivatives of integer and fractional order, discussions about applications

and relations to other extremal problems, and further references can be found in [2,7,8,13]. The

article [12] (see also [13, Chapter 2]) contains a periodic analogue of Nagy’s inequality, some

recent results on the Nagy type inequalities are contained in [18]. Some inequalities of Landau-

Kolmogorov type for Radon-Nikodym derivative of charges defined on Lebesgue measurable

subsets of an open cone C ⊂ R
d that are absolutely continuous with respect to the Lebesgue

measure were obtained in [10].
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In this article, we study functional classes that are defined in terms of a majorant for mod-

ulus of continuity of the functions. The moduli of continuity as independent functions and

classes of functions with given majorants of moduli of continuity of functions or of their

derivatives were introduced by S.M. Nikol’skii in [26]. Such classes were studied by many

authors (see, e.g., [20, Chapter 7]). Extremal problems for such classes of non-real valued func-

tions were considered in [3–6, 9, 21, 22]. Extremal problems for various hyper-singular integral

operators on classes of univariate and multivariate functions defined by a majorant on their

modulus of continuity were considered in [11, 14, 15, 27].

Let X, Y, and Z be linear spaces equipped with seminorm ‖ · ‖X , norm ‖ · ‖Y , and seminorm

‖ · ‖Z, respectively. A linear operator S : X → Y is called bounded, if

‖S‖ = ‖S‖X→Y = sup
‖x‖X≤1

‖Sx‖Y < ∞.

Otherwise the operator S is called unbounded. By L(X, Y) we denote the space of all linear

bounded operators S : X → Y.

Let A : X → Y, B : X → Z be homogeneous operators (not necessarily linear) with the

domains DA, DB ⊂ X, DB ⊂ DA. Let also M =
{

x ∈ DB : ‖Bx‖Z ≤ 1
}

. For the operator A

and an operator S ∈ L(X, Y) we set

U(A, S;M) = sup
{

‖Ax − Sx‖Y : x ∈ M
}

.

Note that for each x ∈ DB one has

‖Ax − Sx‖Y ≤ U (A, S;M) ‖Bx‖Z .

The Stechkin problem of approximation of a generally speaking unbounded operator by

linear bounded operators on the class M is formulated as follows. For a given number N find

the quantity

EN (A,M) = inf
{

U (A, S;M) : S ∈ L(X, Y), ‖S‖ ≤ N
}

. (1)

The statement of a somewhat more general problem, first important results, and solutions to

this problem for differential operators of small orders were presented in [28]. For a survey

of further results on this problem see [2]. The Stechkin problem, in turn, is intimately con-

nected to Landau-Kolmogorov type inequalities. The following well-known theorem (which

we formulate in a convenient for us form) describes this connection.

Theorem 1. For any x ∈ DB and arbitrary S ∈ L(X, Y) the following Landau-Kolmogorov-

Nagy type inequality holds

‖Ax‖Y ≤ ‖Ax − Sx‖Y + ‖S‖‖x‖X ≤ U(A, S;M)‖Bx‖Z + ‖S‖ · ‖x‖X , (2)

and, therefore,

∀ x ∈ DA, ∀ N > 0, ‖Ax‖Y ≤ EN(A,M)‖Bx‖Z + N‖x‖X .

If in addition there exist S ∈ L(X, Y) and x ∈ M such that

‖Ax‖Y =
∥

∥Ax − Sx
∥

∥

Y
+
∥

∥S
∥

∥ ‖x‖X = U
(

A, S;M
)

+
∥

∥S
∥

∥ · ‖x‖X ,

then

E‖S‖(A,M) = U(A, S;M) = ‖Ax‖ −
∥

∥S
∥

∥ ‖x‖X ,

and the operator S is optimal for problem (1).
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Remark 1. In S.B. Stechkin’s article [28] it is assumed that X and Y are Banach spaces. How-

ever, as it is easy to see, completeness and even presence of a norm in X is not necessary. It is

sufficient to have a seminorm in X. Completeness of Y is also not necessary.

In Section 2, we give necessary notations and definitions. In Section 3, we obtain a sharp

Nagy type inequality in a metric space (X, ρ) with measure µ that estimates the uniform norm

of a function using its ‖ · ‖Hω -norm determined by a modulus of continuity ω, and a semi-

norm that is defined on a space of locally integrable functions. In Section 4, we prove a sharp

inequality of Nagy type in the context of metric Sobolev spaces. Using the inequality from

Section 3, in Section 5 we prove a sharp Landau-Kolmogorov type inequality that estimates the

uniform norm of a Radon-Nikodym derivative of a charge from a particular class of charges

via a ‖ · ‖Hω-norm of this derivative, and a seminorm defined on the space of charges. In Sec-

tion 6, we obtain a sharp Landau-Kolmogorov type inequality for generalized hypersingular

operators. Finally, in Section 7, we suppose that X = R
m
+ × R

d−m, 0 ≤ m ≤ d, and obtain in-

equalities that estimate the uniform norm of a mixed derivative of a function f : X → R using

the uniform norm of the function and the norm of its mixed derivative which is defined with

the help of some modulus of continuity.

We use the following scheme to obtain the main results of the article. We define an ap-

propriate bounded operator S, give an estimate for the quantity U(A, S,M), and plugging it

into (2), we obtain a Nagy or Landau-Kolmogorov type inequality. Then we prove its sharp-

ness. Theorem 1 shows that we simultaneously obtain a solution to the corresponding Stechkin

problem.

2 Notations and definitions

Let (X, ρ) be a metric space with a Borel measure µ. Assume that X is a commutative

monoid (i.e. an associative and commutative binary operation + is defined on X, and there

exists an element θ ∈ X such that x + θ = θ + x = x for all x ∈ X) such that for each

measurable set Q ⊂ X and each x ∈ X one has

µ(x + Q) = µ(Q).

Suppose that for all x, y ∈ X,

ρ(x + y, x) ≤ ρ(y, θ).

Everywhere below Bh = Bh(θ) is an open ball of radius h > 0 with center θ. We suppose that

0 < µ(Bh) < ∞ and Bh 6= {θ} for all h > 0.

An invariant Haar measure on a locally compact group with metrical topology (see, e.g.,

[25]) is an important example.

For a measurable set Q ⊂ X by L1(Q)
(

respectively L∞(Q)
)

we denote the space of func-

tions f : Q → R integrable (respectively essentially bounded) on Q with the corresponding

norm. By Lloc(X) we denote the space of all functions f : X → R that are integrable on each

open ball of X. In the space Lloc(X) we introduce a family of seminorms

⌋ f ⌈h= sup
x∈X

∣

∣

∣

∣

∫

x+Bh

f (u)dµ(u)

∣

∣

∣

∣

, h > 0,

and a seminorm

⌋ f ⌈= sup
h>0

⌋ f ⌈h .
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By L⌋·⌈h
(X)

(

respectively L⌋·⌈(X)
)

we denote the family of functions f ∈ Lloc(X) with a finite

seminorm ⌋ · ⌈h

(

respectively ⌋ · ⌈
)

. It is clear that the space L1(X) is contained in each of these

sets.

By C(X) we denote the space of all continuous functions f : X → R, by Cb(X) the space of

functions f ∈ C(X) with a finite norm

‖ f‖C(X) = sup
x∈X

∣

∣ f (x)
∣

∣,

by B(X) we denote the space of bounded functions f : X → R with a norm

‖ f‖B(X) = sup
x∈X

∣

∣ f (x)
∣

∣.

Everywhere below we assume that the measure µ is such that C(X) ⊂ Lloc(X).

Let ω be a modulus of continuity, i.e. a non-negative, non-decreasing, semi-additive func-

tion ω : [0, ∞) → [0, ∞) such that ω(0) = 0. By Hω(X) we denote the space of functions

f : X → R such that

‖ f‖Hω (X) := sup
x,y∈X,x 6=y

∣

∣ f (x) − f (y)
∣

∣

ω
(

ρ(x, y)
) < ∞.

3 A Nagy type inequality

For each h > 0 we define an operator Sh : L⌋·⌈h
(X) → B(X) by the following rule

Sh f (x) =
1

µ(Bh)

∫

Bh

f (x + u) dµ(u).

It is clear that this operator is bounded and

‖Sh‖L⌋·⌈h
(X)→B(X) =

1

µ(Bh)
. (3)

We need the following result, which is sometimes called an Ostrowski type inequality. A

rather general version of such kind of results is contained in [6, Theorem 2].

Lemma 1. If f ∈ Hω(X), then for each h > 0 one has

∥

∥ f (·) − Sh f (·)
∥

∥

B(X)
≤

‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u). (4)

Inequality (4) is sharp and becomes equality for all functions

fω(x) = c ± ω
(

ρ(u, θ)
)

, c ∈ R.

Proof. For each x ∈ X we have

∣

∣ f (x)− Sh f (x)
∣

∣ =

∣

∣

∣

∣

f (x)−
1

µ(Bh)

∫

Bh

f (x + u) dµ(u)

∣

∣

∣

∣

≤
1

µ(Bh)

∫

Bh

∣

∣ f (x)− f (x + u)
∣

∣ dµ(u)

≤
‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(x + u, x)
)

dµ(u) ≤
‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u)
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and inequality (4) is proved. For the function fω one has

‖ fω‖Hω(X) = 1. (5)

Indeed, for all x, y ∈ X, we obtain

∣

∣ fω(x)− fω(y)
∣

∣ =
∣

∣ω
(

ρ(x, θ)
)

− ω
(

ρ(y, θ)
)∣

∣ ≤ ω
(

|ρ(x, θ)− ρ(y, θ)|
)

≤ ω
(

ρ(x, y)
)

,

hence ‖ fω‖Hω(X) ≤ 1. Since there exists y ∈ Bh \ {θ}, we obtain

sup
x∈X, x 6=θ

∣

∣ fω(x)− fω(θ)
∣

∣ ≥
∣

∣ fω(y)− fω(θ)
∣

∣ = ω
(

ρ(y, θ)
)

,

which implies ‖ fω‖Hω(X) ≥ 1, and hence (5) holds. Moreover,

∥

∥ f (·) − Sh f (·)
∥

∥

B(X)
≥
∣

∣ f (θ) − Sh f (θ)
∣

∣ =
1

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u),

which together with (5) implies that inequality (4) is sharp.

The following theorem contains a variant of the Nagy type inequality. For α ∈ R we set

α+ := max{α, 0}.

Theorem 2. If h > 0 and f ∈ Hω(X) ∩ L⌋·⌈h
(X), then

‖ f‖B(X) ≤ ‖ f − Sh f‖B(X) + ‖Sh‖L⌋·⌈h
(X)→B(X)‖ f‖L⌋·⌈h

(X)

≤
‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u) +
⌋ f ⌈h

µ(Bh)
.

(6)

The inequality is sharp and turns into equality for the function

fe,h(x) =
(

ω(h)− ω(ρ(x, θ))
)

+
. (7)

Moreover, fe,h ∈ Hω(X) ∩ L⌋·⌈(X), ⌋ fe,h⌈=⌋ fe,h⌈h, and hence for each h > 0 the inequality

‖ f‖B(X) ≤
‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u) +
⌋ f ⌈

µ(Bh)
(8)

holds and it is sharp on the class Hω(X) ∩ L⌋·⌈(X).

Remark 2. In the case, when ω(t) = tα, 0 < α ≤ 1, and the space (X, ρ, µ) satisfies the

following s-regularity type condition

∃ b > 0, ∃ s > 0, ∀ h > 0, µ(Bh) ≥ bhs,

inequality (8) can be written in a multiplicative form. We do not adduce the details.

Proof. For each x ∈ X, due to Lemma 1, the definition of the operator Sh, and the equality (3),

we have
∣

∣ f (x)
∣

∣ ≤
∣

∣ f (x)− Sh f (x)
∣

∣ +
∣

∣Sh f (x)
∣

∣ ≤
∥

∥ f (x) − Sh f (x)
∥

∥

B(X)
+ ‖Sh‖L⌋·⌈h

(X)→B(X)⌋ f ⌈h

≤
‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u) +
⌋ f ⌈h

µ(Bh)
,
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which implies inequality (6). Inequality (8) is a consequence of inequality (6).

For the function fe,h we have ‖ fe,h‖B(X) = fe,h(θ) = ω(h), ‖ fe,h‖Hω(X) = 1, and

⌋ fe,h⌈h= ω(h)µ(Bh)−
∫

Bh

ω
(

ρ(u, θ)
)

dµ(u).

Indeed, on the one hand,

⌋ fe,h⌈h≥
∫

θ+Bh

fe,h(u) dµ(u) = ω(h)µ(Bh)−
∫

Bh

ω
(

ρ(u, θ)
)

dµ(u),

and on the other hand, for each x ∈ X, due to monotonicity of ω,
∫

x+Bh

fe,h(u) dµ(u) =
∫

(x+Bh)∩Bh

fe,h(u) dµ(u)

≤
∫

Bh

fe,h(u) dµ(u) = ω(h)µ(Bh)−
∫

Bh

ω
(

ρ(u, θ)
)

dµ(u).

Direct computations now show that inequality (6) becomes equality on the function fe,h.

Finally, the same arguments as during computation of the quantity ⌋ fe,h⌈h show that

⌋ fe,h⌈=⌋ fe,h⌈h, and hence inequality (8) is also sharp.

Corollary 1. If h > 0 and f ∈ Hω(X) ∩ L1(X), then

∥

∥ f (x)
∥

∥

B(X)
≤

‖ f‖Hω (X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u) +
1

µ(Bh)
‖ f‖L1(X) .

The inequality is sharp. It becomes equality on the function fe,h defined by (7).

Proof. Since L1(X) ⊂ L⌋·⌈h
(X) and ‖ fe,h‖L1(X) =⌋ fe,h⌈h, the statement of the corollary follows

from Theorem 2.

4 Nagy type inequalities in metric Sobolev spaces

In this section, we consider metric Sobolev spaces with essentially bounded upper gradi-

ents, which are defined as follows. Let (X, ρX) and (Y, ρY) be metric spaces such as in the pre-

vious sections. For a modulus of continuity ω we define the space W1,ω(X, Y) as the space of

all functions f : X → Y with the following property (cf. [1, Chapter 5] and [17, Chapter 10.2]).

There exists a non-negative function G = G f ∈ L∞(X) and a set N = N f ⊂ X such that

µ(N) = 0 and

ρY

(

f (x), f (y)
)

≤
(

G(x) + G(y)
)

· ω
(

ρX(x, y)
)

for all x, y ∈ X \ N. (9)

We call G an upper gradient of f .

Let (Y, ρY) be the space of reals with the usual metric. The technique developed in the

proof of the previous theorem allows to prove the following result, which thus can be in some

sense considered as a corollary of Theorem 2.

Theorem 3. Let f ∈ W1,ω(X, R) ∩ L⌋·⌈h
(X) and G f be an upper gradient of f . Then for any

h > 0 the following inequality holds

‖ f‖L∞ (X) ≤
2‖G f ‖L∞(X)

µ(Bh)

∫

Bh

ω
(

ρX(θ, u)
)

dµ(u) +
⌋ f ⌈h

µ(Bh)
. (10)

Inequality (10) is sharp in the sense that there exists a function f and its upper gradient G f for

which the inequality becomes equality.
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Proof. For almost all x ∈ X, we have

∣

∣ f (x)
∣

∣ ≤

∣

∣

∣

∣

f (x) −
1

µ(Bh)

∫

x+Bh

f (y) dµ(y)

∣

∣

∣

∣

+
1

µ(Bh)

∣

∣

∣

∣

∫

x+Bh

f (y) dµ(y)

∣

∣

∣

∣

≤
1

µ(Bh)

∫

x+Bh

∣

∣ f (x)− f (y)
∣

∣ dµ(y) +
⌋ f ⌈h

µ(Bh)

≤
1

µ(Bh)

∫

Bh

∣

∣G f (θ)− G f (u)
∣

∣ω
(

ρX(θ, u)
)

dµ(u) +
⌋ f ⌈h

µ(Bh)

≤
2‖G f ‖L∞(X)

µ(Bh)

∫

Bh

ω
(

ρX(θ, u)
)

dµ(u) +
⌋ f ⌈h

µ(Bh)
,

and inequality (10) is proved. The inequality becomes equality for the function f = fe,h defined

in (7) and its upper gradient G ≡ 1
2 . Indeed, the fact that inequality (10) becomes equality for

such functions f and G can be verified directly. The fact that G is indeed an upper gradient

for f (with N = ∅) can be proved as follows. Let x, y ∈ X, u = ρX(x, θ) and v = ρX(y, θ).

We can assume that u ≤ v. If h ≤ u ≤ v, then f (x) = f (y) = 0 and inequality (9) holds. If

0 ≤ u < h ≤ v, then

| f (x)− f (y)| = ω(h)−ω(u) ≤ ω(h− u) ≤ ω(v− u) = ω
(

ρX(y, θ)− ρX(x, θ)
)

≤ ω
(

ρX(x, y)
)

.

The case 0 ≤ u ≤ v ≤ h can be considered similarly.

Similarly to Corollary 1 one can prove the following result.

Corollary 2. Let f ∈ W1,ω(X, R)∩ L1(X) and G f be an upper gradient of f . Then for any h > 0

the following inequality holds

‖ f‖L∞ (X) ≤
2‖G f ‖L∞(X)

µ(Bh)

∫

Bh

ω
(

ρX(θ, u)
)

dµ(u) +
‖ f‖L1(X)

µ(Bh)
.

The inequality is sharp in the sense that there exists a function f and its upper gradient G f for

which the inequality becomes equality.

5 Landau-Kolmogorov type inequalities for charges

By N(X) we denote the family of charges ν defined on the family of all µ-measurable sub-

sets of X and that are absolutely continuous with respect to the measure µ (see, e.g., [16, Chap-

ter 5]). By the Radon-Nikodym theorem, for a charge ν ∈ N(X) there exists an integrable

function f : X → R such that for an arbitrary measurable set Q ⊂ X we have

ν(Q) =
∫

Q
f (x) dµ(x). (11)

This function f is called the Radon-Nikodym derivative of the charge ν with respect to the

measure µ and will be denoted by Dµν. The family N(X) is a linear space with respect to

the standard addition and multiplication by a real number. Define a family of seminorms
{

⌉ · ⌊h : h > 0
}

by

⌉ν⌊h=
∥

∥ν(·+ Bh)
∥

∥

B(X)
.

It is clear that if a charge ν and a function f are related via (11), then

⌉ν⌊h=⌋ f ⌈h .

For h > 0 by N⌉·⌊h
(X) we denote the set of charges ν ∈ N(X) with a finite seminorm ⌉ · ⌊h.
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Theorem 4. If h > 0 and ν ∈ N⌉·⌊h
(X) is such that Dµν ∈ Hω(X), then

∥

∥Dµν
∥

∥

B(X)
≤
∥

∥Dµν − Shν
∥

∥

B(X)
+ ‖Sh‖N⌉·⌊h

(X)→B(X)⌉ν⌊h

≤
‖Dµν‖Hω(X)

µ(Bh)

∫

Bh

ω
(

ρ(u, θ)
)

dµ(u) +
⌉ν⌊h

µ(Bh)
,

where the operator Sh : N⌉·⌊h
(X) → B(X) is defined by

Shν(x) =
ν(x + Bh)

µ(Bh)
.

The inequality is sharp, and becomes an equality for the charge νe,h such that Dµνe,h = fe,h,

where the function fe,h is defined by (7).

Remark 3. This theorem generalizes the result of [10, Theorem 3].

Proof. It is enough to apply Theorem 2 to the function f = Dµν and notice that after a change

of variables in the integral, we obtain Shν = Sh f .

Corollary 3. If h > 0, ν ∈ N⌉·⌊h
(X) is such that Dµν ∈ W1,ω(X, R), and Gν is an arbitrary

upper gradient of Dµν, then the following inequality holds

‖Dµν‖L∞(X) ≤
2‖Gν‖L∞(X)

µ(Bh)

∫

Bh

ω
(

ρX(θ, u)
)

dµ(u) +
⌋ν⌈h

µ(Bh)
.

The inequality is sharp in the sense that there exists a charge ν and an upper gradient Gν for

which the inequality becomes equality.

Proof. The theorem follows from Theorem 3.

6 Inequalities for generalized hypersingular integrals

Let P : R+ → R+ be a locally integrable function such that

∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u) < ∞ for some h > 0.

Define the following operator

DP f (x) =
∫

X

(

f (x) − f (x + u)
)

P
(

ρ(u, θ)
)

dµ(u),

which can be considered as a hypersingular integral. We also consider the following truncated

hypersingular integral

DP,h f (x) =
∫

X\Bh

(

f (x) − f (x + u)
)

P
(

ρ(u, θ)
)

dµ(u).

It is easy to see that

‖DP,h‖Cb(X)→Cb(X) = 2
∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u).



Nagy type inequalities in metric measure spaces and some applications 571

Theorem 5. Let f ∈ Hω(X) ∩ Cb(X). If for some h > 0
∫

Bh

ω
(

ρ(u, θ)
)

P
(

ρ(u, θ)
)

dµ(u) < ∞ and
∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u) < ∞,

then

‖DP f‖B(X) ≤ ‖DP f −DP,h f‖B(X) + ‖DP,h‖Cb(X)→Cb(X)‖ f‖Cb(X)

≤ ‖ f‖Hω (X)

∫

Bh

ω
(

ρ(u, θ)
)

P
(

ρ(u, θ)
)

dµ(u)+2‖ f‖Cb (X)

∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u).
(12)

The inequality is sharp and turns into equality for the function

fe,ω(u) =

{

ω
(

ρ(u, θ)
)

− 1
2 ω(h), ρ(u, θ) ≤ h,

1
2 ω(h), ρ(u, θ) ≥ h.

Proof. We have

‖DP f −DP,h f‖B(X) = sup
x∈X

∣

∣

∣

∣

∫

Bh

(

f (x) − f (x + u)
)

P
(

ρ(u, θ)
)

dµ(u)

∣

∣

∣

∣

≤ sup
x∈X

‖ f‖Hω (X)

∫

Bh

ω
(

ρ(x, x + u)
)

P
(

ρ(u, θ)
)

dµ(u)

≤ ‖ f‖Hω (X)

∫

Bh

ω
(

ρ(u, θ)
)

P
(

ρ(u, θ)
)

dµ(u).

Thus
∥

∥DP f (x)
∥

∥

B(X)
≤ ‖DP f −DP,h f‖B(X) + ‖DP,h‖Cb(X)→Cb(X)‖ f‖Cb(X)

≤ ‖ f‖Hω (X)

∫

Bh

ω
(

ρ(u, θ)
)

P
(

ρ(u, θ)
)

dµ(u) + 2‖ f‖Cb(X)

∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u),

and the inequality (12) is proved. For the function fe,ω, it is clear that ‖ fe,ω‖Cb(X) = 1
2 ω(h),

‖ fe,ω‖Hω(X) = 1, and

‖DP fe,ω‖B(X) = −DP fe,ω(θ) =
∫

Bh

ω
(

ρ(u, θ)
)

P
(

ρ(u, θ)
)

dµ(u) + ω(h)
∫

X\Bh

P
(

ρ(u, θ)
)

dµ(u),

thus the inequality becomes equality for the function fe,ω .

7 Inequalities for mixed derivatives

Assume that X = R
d
m,+ := R

m
+ × R

d−m, 0 ≤ m ≤ d, µ is the Lebesgue measure in R
d
m,+,

ρ(x, y) = max
i=1,...,d

|xi − yi|, so that Bh = (0, h)m × (−h, h)d−m. In this section, for brevity we write

dx instead of dµ(x). For a locally integrable function f : X → R set I = (1, . . . , 1) ∈ R
d and

∂I f =
∂d f

∂x1 . . . ∂xd
,

where the derivatives are understood in the distributional sense.

Let {ei} be the standard basis in R
d. For i = 1, . . . , d and h > 0 we set

∆+
i,h f (x) := f (x + hei)− f (x) and ∆i,h f (x) := f (x + hei)− f (x − hei).
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In virtue of the Fubini theorem, for almost all x ∈ R
d
m,+ one has

∫

x+Bh

∂I f (u) du = (∆+
1,h ◦ . . . ◦ ∆+

m,h ◦ ∆m+1,h ◦ . . . ◦ ∆d,h) f (x). (13)

Define an operator Sh : L∞(C) → L∞(C), setting

Sh f (x) =
1

2d−mhd

(

∆+
1,h ◦ . . . ◦ ∆+

m,h ◦ ∆m+1,h ◦ . . . ◦ ∆d,h

)

f (x), h > 0.

Theorem 6. If h > 0 and f ∈ B(Rd
m,+) is such that ∂I f ∈ Hω(Rd

m,+), then

‖∂I f‖B(Rd
m,+)

≤ ‖∂I f −Sh f‖B(Rd
m,+)

+ ‖Sh‖‖ f‖B(Rd
m,+)

≤
‖∂I f‖Hω(Rd

m,+)

2d−mhd

∫

Bh

ω
(

ρ(u, θ)
)

du +
2m

hd
‖ f‖B(Rd

m,+)
.

(14)

In the case, when ω(t) = tα, α ∈ (0, 1], the following multiplicative inequality

‖∂I f‖B(Rd
m,+)

≤ 2
mα

d+α

(

d + α

α

)
α

d+α

· ‖ f‖
α

d+α

B(Rd
m,+)

· ‖∂I f‖
d

d+α

Hω (Rd
m,+)

(15)

holds. For m = 0 and m = 1 these inequalities are sharp.

Remark 4. This theorem generalizes the result [10, Theorem 5].

Proof. Applying inequality (6) to ∂I f and taking into account that µ(Bh) = 2d−mhd, we obtain

‖∂I f‖B(Rd
m,+)

≤ ‖∂I f −Sh f‖B(Rd
m,+)

+ ‖Sh‖‖ f‖B(Rd
m,+)

≤
‖∂I f‖Hω (Rd

m,+)

2d−mhd

∫

Bh

ω
(

ρ(u, θ)
)

du +
1

2d−mhd
sup

x∈R
d
m,+

∣

∣

∣

∣

∫

x+Bh

∂I f (u)du

∣

∣

∣

∣

.

Representation (13) implies

1

2d−mhd
sup

x∈R
d
m,+

∣

∣

∣

∣

∫

x+Bh

∂I f (u) du

∣

∣

∣

∣

≤
2d

2d−mhd
‖ f‖B(Rd

m,+)
=

2m

hd
‖ f‖B(Rd

m,+)
,

which implies inequality (14).

In the case ω(t) = tα, using the layer cake representation (see, e.g., [24, Theorem 1.13]),

symmetry considerations, and writing |x|∞ instead of ρ(x, θ), we obtain

∫

Bh

ω
(

ρ(u, θ)
)

du = 2d−m
∫

(0,h)d
|u|α∞ du = 2d−m

∫ ∞

0
µ
{

v ∈ (0, h)d : |u|α∞ > t
}

dt

= 2d−m
∫ hα

0

(

hd − t
d
α

)

dt = 2d−mhd+α

(

1 −
α

d + α

)

=
d · 2d−m

d + α
hd+α.

So that the right-hand side of (14) becomes

d

d + α
‖∂I f‖Hω(Rd

m,+)
hα +

2m

hd
‖ f‖B(Rd

m,+)
.
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Minimizing this expression with respect to h > 0, i.e. choosing

h = 2
m

d+α

(

d + α

α
·

‖ f‖B(Rd
m,+)

‖∂I f‖Hω(Rd
m,+)

)

1
d+α

,

we obtain the right-hand side of (15).

Next we prove sharpness of inequality (14) for the case m = 0. Consider the function

ge,h(x) =
∫ x1

0
. . .
∫ xd

0
fe,h(u) du,

where fe,h is defined in (7). Then ∂Ige,h = fe,h, and hence

‖∂Ige,h‖B(Rd) = ω(h), ‖∂Ige,h‖Hω(Rd) = 1.

Moreover,

‖ge,h‖B(Rd) =
∫ h

0
. . .
∫ h

0

(

ω(h)− ω
(

|u|∞
)

)

du = hdω(h)−
∫ h

0
. . .
∫ h

0
ω
(

|u|∞
)

du

and due to symmetricity of [−h, h]d , we get

∫

Bh

ω (|u|∞) du = 2d
∫ h

0
. . .
∫ h

0
ω (|u|∞) du.

Direct computations now show that inequalities (14) and (15) become equality for the func-

tion ge,h.

Finally, we prove sharpness of inequality (14) in the case m = 1. In this case, we have

Bh = (0, h)× (−h, h)d−1. There exists 0 < a < h such that
∫

{x∈Bh : x1<a}

(

ω(h) − ω
(

|x|∞
)

)

dx =
∫

{x∈Bh : x1>a}

(

ω(h)− ω
(

|x|∞
)

)

dx

=
1

2

∫

Bh

(

ω(h) − ω
(

|x|∞
)

)

dx.

The set Bh consists of 2d−1 equal cubes with edge lengths equal to h; θ = θd is one of the vertices

for each of these cubes. The hyperplane x1 = a divides these cubes into pieces c−1 , . . . , c−
2d−1 that

have θ among vertices, and pieces c+1 , . . . , c+
2d−1 that have (a, θd−1) among their vertices.

It is clear that

∫

{x∈Bh : x1<a}

(

ω(h)− ω
(

|x|∞
)

)

dx =
2d−1

∑
i=1

∫

c−i

(

ω(h) − ω
(

|x|∞
)

)

dx

and
∫

{x∈Bh : x1>a}

(

ω(h) − ω
(

|x|∞
)

)

dx =
2d−1

∑
i=1

∫

c+i

(

ω(h) − ω
(

|x|∞
)

)

dx.

From the symmetry considerations it follows that each of 2d−1 summands in each of the right-

hand sides of these equalities are equal. Thus for each i, j = 1, . . . , 2d−1

∫

c−i

(

ω(h) − ω
(

|x|∞
)

)

dx =
∫

c+j

(

ω(h)− ω
(

|x|∞
)

)

dx =
1

2d

∫

Bh

(

ω(h) − ω
(

|x|∞
)

)

dx.
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An extremal function in this case we define as follows

Ge,h(x) =
∫ x1

a

∫ x2

0
. . .
∫ xd

0
∂I fe,h(u) dud . . . du1,

where fe,h is defined in (7). For this function we have

‖Ge,h‖B(Rd
1,+)

=
1

2d

∫

Bh

(

ω(h)− ω
(

|x|∞
)

)

dx =
hd

2
ω(h)−

1

2d

∫

Bh

ω
(

|x|∞
)

dx,

‖∂IGe,h‖B(Rd
1,+)

= ω(h), ‖∂IGe,h‖Hω(Rd
1,+)

= 1.

Direct computations now show that inequalities (14) and (15) with m = 1 become equalities

on the function Ge,h.

Remark 5. It is not clear, whether inequality (14) is sharp for m = 2, . . . , d, even in the case

d = 2 and ω(t) = t.
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Ми доводимо точну нерiвнiсть типу Надя у метричному просторi (X, ρ) з мiрою µ, яка

оцiнює рiвномiрну норму функцiї за допомогою її ‖ · ‖Hω-норми, що визначена модулем не-

перервностi ω, i напiвнормою, яка визначена у просторi локально iнтегровних функцiй. Для

зарядiв ν, визначених на множинi µ-вимiрних пiдмножин простору X, i якi є абсолютно не-

перервними по вiдношенню до мiри µ, використовуючи отриману нерiвнiсть типу Надя, ми

доводимо точну нерiвнiсть типу Ландау-Колмогорова, яка оцiнює рiвномiрну норму похiдної

Радона-Нiкодима заряду за допомогою ‖ · ‖Hω-норми цiєї похiдної i напiвнорми, що визначенi

на множинi таких зарядiв. Ми також доводимо точну нерiвнiсть для гiперсингулярних iнте-

гральних операторiв. У випадку X = R
m
+ × R

d−m, 0 ≤ m ≤ d, ми отримали нерiвнiсть, що

оцiнює рiвномiрну норму мiшаної похiдної функцiї за допомогою рiвномiрної норми функцiї

i ‖ · ‖Hω-норми її мiшаної похiдної.

Ключовi слова i фрази: нерiвнiсть типу Надя, нерiвнiсть типу Ландау-Колмогорова, задача

Стєчкiна, заряд, модуль неперервностi, мiшана похiдна.


