Algebra in superextensions of groups, I: zeros and commutativity

T. Banakh, V. Gavrylkiv, O. Nykyforchyn

Communicated by M. Ya. Komarnytskyi

Abstract. Given a group X we study the algebraic structure of its superextension $\lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation

$$
\mathcal{A} \circ \mathcal{B}=\left\{C \subset X:\left\{x \in X: x^{-1} C \in \mathcal{B}\right\} \in \mathcal{A}\right\}
$$

that extends the group operation of X. We characterize right zeros of $\lambda(X)$ as invariant maximal linked systems on X and prove that $\lambda(X)$ has a right zero if and only if each element of X has odd order. On the other hand, the semigroup $\lambda(X)$ contains a left zero if and only if it contains a zero if and only if X has odd order $|X| \leq 5$. The semigroup $\lambda(X)$ is commutative if and only if $|X| \leq 4$. We finish the paper with a complete description of the algebraic structure of the semigroups $\lambda(X)$ for all groups X of cardinality $|X| \leq 5$.

Introduction

After the topological proof of the Hindman theorem $\left[\mathrm{H}_{1}\right]$ given by Galvin and Glazer ${ }^{1}$, topological methods become a standard tool in the modern combinatorics of numbers, see $[\mathrm{HS}],[\mathrm{P}]$. The crucial point is that any semigroup operation $*$ defined on a discrete space X can be extended to a right-topological semigroup operation on $\beta(X)$, the Stone-Čech compactification of X. The extension of the operation from X to $\beta(X)$ can

[^0]be defined by the simple formula:
\[

$$
\begin{equation*}
\mathcal{U} \circ \mathcal{V}=\left\{A \subset X:\left\{x \in X: x^{-1} A \in \mathcal{V}\right\} \in \mathcal{U}\right\} \tag{1}
\end{equation*}
$$

\]

where \mathcal{U}, \mathcal{V} are ultrafilters on X and $x^{-1} A=\{y \in X: x y \in A\}$. Endowed with the so-extended operation, the Stone-Čech compactification $\beta(X)$ becomes a compact right-topological semigroup. The algebraic properties of this semigroup (for example, the existence of idempotents or minimal left ideals) have important consequences in combinatorics of numbers, see [HS], [P].

The Stone-Čech compactification $\beta(X)$ of X is the subspace of the double power-set $\mathcal{P}(\mathcal{P}(X))$, which is a complete lattice with respect to the operations of union and intersection. In $\left[\mathrm{G}_{2}\right]$ it was observed that the semigroup operation extends not only to $\beta(X)$ but also to the complete sublattice $G(X)$ of $\mathcal{P}(\mathcal{P}(X))$ generated by $\beta(X)$. This complete sublattice consists of all inclusion hyperspaces over X.

By definition, a family \mathcal{F} of non-empty subsets of a discrete space X is called an inclusion hyperspace if \mathcal{F} is monotone in the sense that a subset $A \subset X$ belongs to \mathcal{F} provided A contains some set $B \in \mathcal{F}$. On the set $G(X)$ there is an important transversality operation assigning to each inclusion hyperspace $\mathcal{F} \in G(X)$ the inclusion hyperspace

$$
\mathcal{F}^{\perp}=\{A \subset X: \forall F \in \mathcal{F}(A \cap F \neq \emptyset)\}
$$

This operation is involutive in the sense that $\left(\mathcal{F}^{\perp}\right)^{\perp}=\mathcal{F}$.
It is known that the family $G(X)$ of inclusion hyperspaces on X is closed in the double power-set $\mathcal{P}(\mathcal{P}(X))=\{0,1\}^{\mathcal{P}(X)}$ endowed with the natural product topology. The induced topology on $G(X)$ can be described directly: it is generated by the sub-base consisting of the sets

$$
U^{+}=\{\mathcal{F} \in G(X): U \in \mathcal{F}\} \text { and } U^{-}=\left\{\mathcal{F} \in G(X): U \in \mathcal{F}^{\perp}\right\}
$$

where U runs over subsets of X. Endowed with this topology, $G(X)$ becomes a Hausdorff supercompact space. The latter means that each cover of $G(X)$ by the sub-basic sets has a 2-element subcover.

The extension of a binary operation $*$ from X to $G(X)$ can be defined in the same way as for ultrafilters, i.e., by the formula (1) applied to any two inclusion hyperspaces $\mathcal{U}, \mathcal{V} \in G(X)$. In $\left[\mathrm{G}_{2}\right]$ it was shown that for an associative binary operation $*$ on X the space $G(X)$ endowed with the extended operation becomes a compact right-topological semigroup. The algebraic properties of this semigroups were studied in details in $\left[\mathrm{G}_{2}\right]$.

Besides the Stone-Čech compactification $\beta(X)$, the semigroup $G(X)$ contains many important spaces as closed subsemigroups. In particular, the space

$$
\lambda(X)=\left\{\mathcal{F} \in G(X): \mathcal{F}=\mathcal{F}^{\perp}\right\}
$$

of maximal linked systems on X is a closed subsemigroup of $G(X)$. The space $\lambda(X)$ is well-known in General and Categorial Topology as the superextension of X, see [vM], [TZ]. Endowed with the extended binary operation, the superextension $\lambda(X)$ of a semigroup X is a supercompact right-topological semigroup containing $\beta(X)$ as a subsemigroup.

The space $\lambda(X)$ consists of maximal linked systems on X. We recall that a system of subsets \mathcal{L} of X is linked if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{L}$. An inclusion hyperspace $\mathcal{A} \in G(X)$ is linked if and only if $\mathcal{A} \subset \mathcal{A}^{\perp}$. The family of all linked inclusion hyperspace on X is denoted by $N_{2}(X)$. It is a closed subset in $G(X)$. Moreover, if X is a semigroup, then $N_{2}(X)$ is a closed subsemigroup of $G(X)$. The superextension $\lambda(X)$ consists of all maximal elements of $N_{2}(X)$, see [G $\left.\mathrm{G}_{1}\right],\left[\mathrm{G}_{2}\right]$.

In this paper we start a systematic investigation of the algebraic structure of the semigroup $\lambda(X)$. This program will be continued in the forthcoming papers $\left[\mathrm{BG}_{2}\right]-\left[\mathrm{BG}_{4}\right]$. The interest to studying the semigroup $\lambda(X)$ was motivated by the fact that for each maximal linked system \mathcal{L} on X and each partition $X=A \cup B$ of X into two sets A, B either A or B belongs to \mathcal{L}. This makes possible to apply maximal linked systems to Combinatorics and Ramsey Theory.

In this paper we concentrate on describing zeros and commutativity of the semigroup $\lambda(X)$. In Proposition 3.1 we shall show that a maximal linked system $\mathcal{L} \in \lambda(X)$ is a right zero of $\lambda(X)$ if and only if \mathcal{L} is invariant in the sense that $x L \in \mathcal{L}$ for all $L \in \mathcal{L}$ and all $x \in X$. In Theorem 3.2 we shall prove that a group X admits an invariant maximal linked system (equivalently, $\lambda(X)$ contains a right zero) if and only if each element of X has odd order. The situation with (left) zeros is a bit different: a maximal linked system $\mathcal{L} \in \lambda(X)$ is a left zero in $\lambda(X)$ if and only if \mathcal{L} is a zero in $\lambda(X)$ if and only if \mathcal{L} is a unique invariant maximal linked system on X. The semigroup $\lambda(X)$ has a (left) zero if and only if X is a finite group of odd order $|X| \leq 5$ (equivalently, X is isomorphic to the cyclic group C_{1}, C_{3} or $\left.C_{5}\right)$. The semigroup $\lambda(X)$ rarely is commutative: this holds if and only if the group X has finite order $|X| \leq 4$.

We start the paper studying self-linked subsets of groups. By definition, a subset A of a group X is called self-linked if $A \cap x A \neq \emptyset$ for all $x \in X$. In Proposition 1.1 we shall give lower and upper bounds for the smallest cardinality $\operatorname{sl}(X)$ of a self-linked subset of X. We use those bounds to characterize groups X with $s l(X) \geq|X| / 2$ in Theorem 1.2.

In Section 2 we apply self-linked sets to evaluating the cardinality of the (rectangular) semigroup $\overleftrightarrow{\lambda}(X)$ of maximal invariant linked systems on a group X. In Theorem 2.2 we show that for an infinite group X the cardinality of $\overleftrightarrow{\lambda}(X)$ equals $2^{2^{|X|}}$. In Proposition 2.3 and Theorem 2.6 we
calculate the cardinality of $\overleftrightarrow{\lambda}(X)$ for all finite groups X of order $|X| \leq 8$ and also detect groups X with $|\overleftrightarrow{\lambda}(X)|=1$. In Sections 4 and 5 these results are applied for characterizing groups X whose superextensions have zeros or are commutative.

We finish the paper with a description of the algebraic structure of the superextensions of groups X of order $|X| \leq 5$.

Now a couple of words about notations. Following the algebraic tradition, by C_{n} we denote the cyclic group of order n and by $D_{2 n}$ the dihedral group of cardinality $2 n$, that is, the isometry group of the regular n-gon. For a group X by e we denote the neutral element of X. For a real number x we put

$$
\lceil x\rceil=\min \{n \in \mathbb{Z}: n \geq x\} \text { and }\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\}
$$

1. Self-linked sets in groups

In this section we study self-linked subsets in groups. By definition, a subset A of a group G is self-linked if $A \cap x A \neq \emptyset$ for each $x \in G$. In fact, this notion can be defined in the more general context of G-spaces.

By a G-space we understand a set X endowed with a left action $G \times$ $X \rightarrow X$ of a group G. Each group G will be considered as a G-space endowed with the left action of G. An important example of a G-space is the homogeneous space $G / H=\{x H: x \in G\}$ of a group G by a subgroup $H \subset G$.

A subset $A \subset X$ of a G-space X defined to be self-linked if $A \cap g A \neq \emptyset$ for all $g \in G$. Let us observe that a subset $A \subset G$ of a group G is selflinked if and only if $A A^{-1}=G$.

For a G-space X by $\operatorname{sl}(X)$ we denote the smallest cardinality $|A|$ of a self-linked subset $A \subset X$. Some lower and upper bounds for $s l(G)$ are established in the following proposition.

Proposition 1.1. Let G be a finite group and H be a subgroup of G. Then

1) $\operatorname{sl}(G) \geq(1+\sqrt{4|G|-3}) / 2$;
2) $\operatorname{sl}(G) \leq s l(H) \cdot s l(G / H) \leq s l(H) \cdot\lceil(|G / H|+1) / 2\rceil$.
3) $\operatorname{sl}(G)<|H|+|G / H|$.

Proof. 1. Take any self-linked set $A \subset G$ of cardinality $|A|=\operatorname{sl}(G)$ and consider the surjective map $f: A \times A \rightarrow G, f:(x, y) \mapsto x y^{-1}$. Since $f(x, y)=x y^{-1}=e$ for all $(x, y) \in \Delta_{A}=\left\{(x, y) \in A^{2}: x=y\right\}$, we get
$|G|=|G \backslash\{e\}|+1 \leq\left|A^{2} \backslash \Delta_{A}\right|+1=\operatorname{sl}(G)^{2}-\operatorname{sl}(G)+1$, which just implies that $s l(G) \geq(1+\sqrt{4|G|-3}) / 2$.

2a. Let H be a subgroup of G. Take self-linked sets $A \subset H$ and $\mathcal{B} \subset G / H=\{x H: x \in G\}$ having sizes $|A|=s l(H)$ and $|\mathcal{B}|=s l(G / H)$. Fix any subset $B \subset G$ such that $|B|=|\mathcal{B}|$ and $\{x H: x \in B\}=\mathcal{B}$. We claim that the set $C=B A$ is self-linked. Given arbitrary $x \in G$ we should prove that the intersection $C \cap x C$ is not empty. Since \mathcal{B} is self-linked, the intersection $\mathcal{B} \cap x \mathcal{B}$ contains the coset $b H=x b^{\prime} H$ for some $b, b^{\prime} \in B$. It follows that $b^{-1} x b^{\prime} \in H=A A^{-1}$. The latter equality follows from the fact that the set $A \subset H$ is self-linked in H. Consequently, $b^{-1} x b^{\prime}=a^{\prime} a^{-1}$ for some $a, a^{\prime} \in A$. Then $x C \ni x b^{\prime} a=b a^{\prime} \in C$ and thus $C \cap x C \neq \emptyset$. The self-linkedness of C implies the desired upper bound

$$
s l(G) \leq|C| \leq|A| \cdot|B|=\operatorname{sl}(H) \cdot \operatorname{sl}(G / H) .
$$

2b. Next, we show that $s l(G / H) \leq\lceil(|G / H|+1) / 2\rceil$. Take any subset $A \subset G / H$ of size $|A|=\lceil(|G / H|+1) / 2\rceil$ and note that $|A|>|G / H| / 2$. Then for each $x \in G$ the shift $x A$ has size $|x A|=|A|>|G / H| / 2$. Since $|A|+|x A|>|G / H|$, the sets A and $x A$ meet each other. Consequently, A is self-linked and $s l(G / H) \leq|A|=\lceil(|G / H|+1) / 2\rceil$.
3. Pick a subset $B \subset G$ of size $|B|=|G / H|$ such that $B H=G$ and observe that the set $A=H \cup B$ is self-linked and has size $|A| \leq$ $|H|+|B|-1$ (because $B \cap H$ is a singleton).

Theorem 1.2. For a finite group G
(i) $\operatorname{sl}(G)=\lceil(|G|+1) / 2\rceil>|G| / 2$ if and only if G is isomorphic to one of the groups: $C_{1}, C_{2}, C_{3}, C_{4}, C_{2} \times C_{2}, C_{5}, D_{6},\left(C_{2}\right)^{3}$;
(ii) sl $(G)=|G| / 2$ if and only if G is isomorphic to one of the groups: $C_{6}, C_{8}, C_{4} \times C_{2}, D_{8}, Q_{8}$.
Proof. I. First we establish the inequality $s l(G)<|G| / 2$ for all groups G not isomorphic to the groups appearing in the items (i), (ii). Given such a group G we should find a self-linked subset $A \subset G$ with $|A|<|G| / 2$.

We consider 8 cases.

1) G contains a subgroup H of order $|H|=3$ and index $|G / H|=3$. Then $s l(H)=2$ and we can apply Proposition 1.1(2) to conclude that

$$
s l(G) \leq \operatorname{sl}(H) \cdot s l(G / H) \leq 2 \cdot 2<9 / 2=|G| / 2 .
$$

2) $|G| \notin\{9,12,15\}$ and G contains a subgroup H of order $n=|H| \geq 3$ and index $m=|G / H| \geq 3$. It this case $n+m-1<n m / 2$ and $s l(G) \leq$ $|H|+|G / H|-1=n+m-1<n m / 2$ by Proposition 1.1(3).
3) G is cyclic of order $n=|G| \geq 9$. Given a generator a of G, construct a sequence $\left(x_{i}\right)_{2 \leq i \leq n / 2}$ letting $x_{2}=a^{0}, x_{3}=a, x_{4}=a^{3}, x_{5}=a^{5}$, and $x_{i}=x_{i-1} a^{i}$ for $5<i \leq n / 2$. Then the set $A=\left\{x_{i}: 2 \leq i \leq n / 2\right\}$ has size $|A|<n / 2$ and is self-linked.
4) G is cyclic of order $|G|=7$. Given a generator a of G observe that $A=\left\{e, a, a^{3}\right\}$ is a 3-element self-linked subset and thus $\operatorname{sl}(G) \leq 3<$ $|G| / 2$.
5) G contains a cyclic subgroup $H \subset G$ of prime order $|H| \geq 7$. By the preceding two cases, $s l(H)<|H| / 2$ and then $s l(G) \leq \operatorname{sl}(H) \cdot s l(G / H)<$ $\frac{|H|}{2} \cdot \frac{|G|}{|H|}=|G| / 2$.
6) $|G|>6$ and $|G| \notin\{8,10,12\}$. If $|G|$ is prime or $|G|=15$, then G is cyclic of order $|G| \geq 7$ and thus has $\operatorname{sl}(G)<|G| / 2$ by the items (3), (4). If $|G|=2 p$ for some prime number p, then G contains a cyclic subgroup of order $p \geq 7$ and thus has $\operatorname{sl}(G)<|G| / 2$ by the item (5). If $|G|=4 n$ for some $n \geq 4$, then by Sylow's Theorem (see [OA, p.74]), G contains a subgroup $H \subset G$ of order $|H|=4$ and index $|G / H| \geq 4$. Then $\operatorname{sl}(G)<|G| / 2$ by the item (2). If the above conditions do not hold, then $|G|=n m \neq 15$ for some odd numbers $n, m \geq 3$ and we can apply the items (1) and (2) to conclude that $\operatorname{sl}(G)<|G| / 2$.
7) If $|G|=8$, then G is isomorphic to one of the groups: $C_{8}, C_{2} \times C_{4}$, $\left(C_{2}\right)^{3}, D_{8}, Q_{8}$. All those groups appear in the items (i), (ii) and thus are excluded from our consideration.
8) If $|G|=10$, then G is isomorphic to C_{10} or D_{10}. If G is isomorphic to C_{10}, then $\operatorname{sl}(G)<|G| / 2$ by the item (3). If G is isomorphic to D_{10}, then G contains an element a of order 5 and an element b of order 2 such that $b a b^{-1}=a^{-1}$. Now it is easy to check that the 4 -element set $A=\left\{e, a, b, b a^{2}\right\}$ is self-linked and hence $s l(G) \leq 4<|G| / 2$.
9) In this item we consider groups G with $|G|=12$. It is well-known that there are five non-isomorphic groups of order 12: the cyclic group C_{12}, the direct sum of two cyclic groups $C_{6} \oplus C_{2}$, the dihedral group D_{12}, the alternating group A_{4}, and the semidirect product $C_{3} \rtimes C_{4}$ with presentation $\left\langle a, b \mid a^{4}=b^{3}=1, a b a^{-1}=b^{-1}\right\rangle$.

If G is isomorphic to $C_{12}, C_{6} \oplus C_{2}$ or A_{4}, then G contains a normal 4-element subgroup H. By Sylow's Theorem, G contains also an element a of order 3. Taking into account that $a^{2} \notin H$ and $H a^{-1}=a^{-1} H$, we conclude that the 5 -element set $A=\{a\} \cup H$ is self-linked and hence $s l(G) \leq 5<|G| / 2$.

If G is isomorphic to $C_{3} \rtimes C_{4}$, then G contains a normal subgroup H of order 3 and an element $a \in G$ such that $a^{2} \notin H$. Observe that the 5-element set $A=H \cup\left\{a, a^{2}\right\}$ is self-linked. Indeed, $A A^{-1} \supset H \cup a H \cup$ $a^{2} H \cup H a^{-1}=G$. Consequently, $\operatorname{sl}(G) \leq 5<|G| / 2$.

Finally, consider the case of the dihedral group D_{12}. It contains an element a generating a cyclic subgroup of order 6 and an element b of order 2 such that $b a b^{-1}=a^{-1}$. Consider the 5 -element set $A=\left\{e, a, a^{3}, b, b a\right\}$ and note that $A A^{-1}=\left\{e, a, a^{3}, b, b a\right\} \cdot\left\{e, a^{5}, a^{3}, b, b a\right\}=G$. This yields the desired inequality $\operatorname{sl}(G) \leq 5<6=|G| / 2$.

Therefore we have completed the proof of the inequality $\operatorname{sl}(G)<|G| / 2$ for all groups not appearing in the items (i),(ii) of the theorem.
II. Now we shall prove the item (i).

The lower bound from Proposition 1.1(1) implies that $s l(G)=\lceil(|G|+$ 1) $/ 2\rceil>|G| / 2$ for all groups G with $|G| \leq 5$.

It remains to check that $\operatorname{sl}(G)>|G| / 2$ if G is isomorphic to D_{6} or C_{2}^{3}. First we consider the case $G=D_{6}$. In this case G contains a normal 3element subgroup T. Assuming that $s l(G) \leq|G| / 2=3$, find a self-linked 3 -element subset A. Without loss of generality we can assume that the neutral element e of G belongs to A (otherwise replace A by a suitable shift $x A$). Taking into account that $A A^{-1}=G$, we conclude that $A \not \subset T$ and thus we can find an element $a \in A \backslash T$. This element has order 2. Then

$$
A A^{-1}=\{e, a, b\} \cdot\left\{e, a, b^{-1}\right\}=\left\{e, a, b, a, e, b a, b^{-1}, b a, e\right\} \neq G
$$

which is a contradiction.
Now assume that G is isomorphic to C_{2}^{3}. In this case G is the 3dimensional linear space over the field C_{2}. Assuming that $\operatorname{sl}(A) \leq 4=$ $|G| / 2$, find a 4-element self-linked subset $A \subset G$. Replacing A by a suitable shift, we can assume that A contains a neutral element e of G. Since $A A^{-1}=G$, the set A contains three linearly independent points a, b, c. Then

$$
A A^{-1}=\{e, a, b, c\} \cdot\{e, a, b, c\}=\{e, a, b, c, a b, a c, b c\} \neq G
$$

which contradicts the choice of A.
III. Finally, we prove the equality $\operatorname{sl}(G)=|G| / 2$ for the groups appearing in the item (ii).

If $G=C_{6}$, then $\operatorname{sl}(G) \geq 3$ by Proposition 1.1(1). On the other hand, we can check that for any generator a of G the 3-element subset $A=\left\{e, a, a^{3}\right\}$ is self-linked in G, which yields $s l(G)=3=|G| / 2$.

If $|G|=8$, then $s l(G) \geq 4$ by Proposition 1.1(1).
If G is cyclic of order 8 and a is a generator of G, then the set $A=$ $\left\{e, a, a^{3}, a^{4}\right\}$ is self-linked and thus $\operatorname{sl}\left(C_{8}\right)=4$.

If G is isomorphic to $C_{4} \oplus C_{2}$, then G has two commuting generators a, b such that $a^{4}=b^{2}=1$. One can check that the set $A=\left\{e, a, a^{2}, b\right\}$ is self-linked and thus $\operatorname{sl}\left(C_{4} \oplus C_{2}\right)=4$.

If G is isomorphic to the dihedral group D_{8}, then G has two generators a, b connected by the relations $a^{4}=b^{2}=1$ and $b a b^{-1}=a^{-1}$. One can check that the 4-element subset $A=\left\{e, a, b, b a^{2}\right\}$ is self-linked.

If G is isomorphic to the group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ of quaternion units, then we can check that the 4 -element subset $A=\{-1,1, i, j\}$ is self-linked and thus $s l\left(Q_{8}\right)=4$.

In the following proposition we complete Theorem 1.2 calculating the values of the cardinal $\operatorname{sl}(G)$ for all groups G of cardinality $|G| \leq 13$.

Proposition 1.3. The number $\operatorname{sl}(G)$ for a group G of size $|G| \leq 13$ can be found from the table:

G	C_{2}	C_{3}	C_{5}	C_{4}	$C_{2} \oplus C_{2}$	C_{6}	D_{6}	C_{8}	$C_{2} \oplus C_{4}$	D_{8}	Q_{8}	C_{2}^{3}
$s l(G)$	2	2	3	3	3	3	4	4	4	4	4	5
G	C_{7}	C_{11}	C_{13}	C_{9}	$C_{3} \oplus C_{3}$	C_{10}	D_{10}	C_{12}	$C_{2} \oplus C_{6}$	D_{12}	A_{4}	$C_{3} \rtimes C_{4}$
$s l(G)$	3	4	4	4	4	4	4	4	5	5	5	5

Proof. For groups G of order $|G| \leq 10$ the value of $\operatorname{sl}(G)$ is uniquely determined by the lower bound $s l(G) \geq \frac{1+\sqrt{4|G|-3}}{2}$ from Proposition 1.1(1) and the upper bound from Theorem 1.2. It remains to consider the groups G of order $11 \leq|G| \leq 13$.

1. If G is cyclic of order 11 or 13 , then take a generator a of G and check that the 4 -element set $A=\left\{e, a^{4}, a^{5}, a^{7}\right\}$ is self-linked, witnessing that $\operatorname{sl}\left(C_{12}\right)=4$.
2. If G is cyclic of order 12 , then take a generator a for G and check that the 4 -element subset $A=\left\{e, a, a^{3}, a^{7}\right\}$ is self-linked witnessing that $s l(G)=4$.

It remains to consider all other groups of order 12. Theorem 1.2 gives us an upper bound $\operatorname{sl}(G) \leq 5$. So, we need to show that $\operatorname{sl}(G)>4$ for all non-cyclic groups G with $|G|=12$.
3. If G is isomorphic to $C_{6} \oplus C_{2}$ or A_{4}, then G contains a normal subgroup H isomorphic to $C_{2} \oplus C_{2}$. Assuming that $\operatorname{sl}(G)=4$, we can find a 4-element self-linked subset $A \subset G$. Since $A A^{-1}=G$, we can find a suitable shift $x A$ such that $x A \cap H$ contains the neutral element e of G and some other element a of H. Replacing A by $x A$, we can assume that $e, a \in A$. Since $A \not \subset H$, there is a point $b \in A \backslash H$. Since the quotient group G / H has order $3, b H \cap H b^{-1}=\emptyset$.

Concerning the forth element $c \in A \backslash\{e, a, b\}$ there are three possibilities: $c \in H, c \in b^{-1} H$, and $c \in b H$. If $c \in H$, then $b H=$ $b H \cap A A^{-1}=b(A \cap H)^{-1}$ consists of 3 elements which is a contradiction. If $c \in b^{-1} H$, then $H=H \cap A A^{-1}=\{e, a\}$, which is absurd. So, $c \in b H$ and thus $c=b h$ for some $h \in H$. Since $h=h^{-1}$, we get $c b^{-1}=b h b^{-1}=$
$b h^{-1} b^{-1}=b c^{-1}$. Then $H=H \cap A A^{-1}=\left\{e, a, c b^{-1}, b c^{-1}\right\}$ has cardinality $|H|=\left|\left\{e, a, c b^{-1}=b c^{-1}\right\}\right| \leq 3$, which is not true. This contradiction completes the proof of the inequality $\operatorname{sl}(G)>4$ for the groups $C_{6} \oplus C_{2}$ and A_{4}.
4. Assume that G is isomorphic to the dihedral group D_{12}. Then G contains a normal cyclic subgroup H of order 6 , and for each $b \in G \backslash H$ and $a \in H$ we get $b^{2}=e$ and $b a b^{-1}=a^{-1}$. Assuming that $s l\left(D_{12}\right)=4$, we can find a 4-element self-linked subset $A \subset G$. Let a be a generator of the group H. Since $a \in A A^{-1}=G$, we can find two element $x, y \in A$ such that $a=x y^{-1}$. Then the shift $A y^{-1}$ contains e and a. Replacing A by $A y^{-1}$, if necessary, we can assume that $e, a \in A$. Since $A \not \subset H$, there is an element $b \in A \backslash H$. Concerning the forth element $c \in A \backslash\{e, a, b\}$ there are two possibilities: $c \in H$ and $c \notin H$. If $c \in H$, then the set $A_{H}=A \cap H=\{e, a, c\}$ contains three elements and is equal to $b A_{H}^{-1} b^{-1}$, which implies $b A_{H}^{-1}=A_{H} b^{-1}=b A_{H}^{-1} \cup A_{H} b^{-1}=A A^{-1} \cap b H=b H$. This is a contradiction, because $|H|=4>3=\left|b A_{H}^{-1}\right|$. Then $c \in b H$ and hence $H=H \cap A A^{-1}=\left\{e, a, a^{-1}, b c^{-1}, c b^{-1}\right\}$ which is not true because $|H|=6>5$.
5. Assume that G is isomorphic to the semidirect product $C_{3} \rtimes C_{4}$ and hence has a presentation $\left\langle a, b \mid a^{4}=b^{3}=1, a b a^{-1}=b^{-1}\right\rangle$. Then the cyclic subgroup H generated by b is normal in G and the quotient G / H is cyclic of order 4. Assuming that $\operatorname{sl}(G)=4$, take any 4-element self-linked subset $A \subset G$.

After a suitable shift of A, we can assume that $e, b \in A$. Since $A \not \subset$ H, there is an element $c \in A \backslash H$. We claim that the fourth element $d \in A \backslash\{e, b, c\}$ does not belong to $H \cup c H \cup c^{-1} H$. Otherwise, $A A^{-1} \subset$ $H \cup c H \cup c^{-1} H \neq G$. This implies that one of the elements, say c belongs to the coset $a^{2} H$ and the other to $a H$ or $a^{-1} H$. We lose no generality assuming that $d \in a H$. Then $c=a^{2} b^{i}, d=a b^{j}$ for some $i, j \in\{-1,0,1\}$. It follows that

$$
\begin{aligned}
a H & =a H \cap A A^{-1}=\left\{d, d b^{-1}, c d^{-1}\right\}= \\
& =\left\{a b^{j}, a b^{j-1}, a^{2} b^{i-j} a^{-1}\right\}=\left\{a b^{j}, a b^{j-1}, a b^{j-i}\right\}
\end{aligned}
$$

which implies that $i=-1$ and thus $c=a^{2} b^{-1}$. In this case we arrive to a contradiction looking at

$$
a^{2} H \cap A A^{-1}=\left\{c, c b^{-1}, c^{-1}, b c^{-1}\right\}=\left\{a^{2} b^{-1}, a^{2} b^{-2}, b a^{2}, b^{2} a^{2}\right\} \not \supset a^{2}
$$

Problem 1.4. What is the value of $\operatorname{sl}(G)$ for other groups G of small cardinality? Is sl $(G)=\lceil(1+\sqrt{4|G|-3}) / 2\rceil$ for all finite cyclic groups G ?

2. Maximal invariant linked systems

In this section we study (maximal) invariant linked systems on groups. An inclusion hyperspace \mathcal{A} on a group X is called invariant if $x \mathcal{A}=\mathcal{A}$ for all $x \in X$. The set of all invariant inclusion hyperspaces on X is denoted by $\overleftrightarrow{G}(X)$. By $\left[\mathrm{G}_{2}\right], \overleftrightarrow{G}(X)$ is a closed rectangular subsemigroup of $G(X)$ coinciding with the minimal ideal of $G(X)$. The rectangularity of $\overleftrightarrow{G}(X)$ means that $\mathcal{A} \circ \mathcal{B}=\mathcal{B}$ for all $\mathcal{A}, \mathcal{B} \in \overleftrightarrow{G}(X)$.

Let $\stackrel{\leftrightarrow}{N}_{2}(X)=N_{2}(X) \cap \overleftrightarrow{G}(X)$ denote the set of all invariant linked systems on X and $\overleftrightarrow{\lambda}(X)=\max \stackrel{\leftrightarrow}{N}_{2}(X)$ be the family of all maximal elements of $\overleftrightarrow{N}_{2}(X)$. Elements of $\overleftrightarrow{\lambda}(X)$ are called maximal invariant linked systems. The reader should be conscious of the fact that maximal invariant linked systems need not be maximal linked!
Theorem 2.1. For every group X the set $\overleftrightarrow{\lambda}(X)$ is a non-empty closed rectangular subsemigroup of $G(X)$.

Proof. The rectangularity of $\overleftrightarrow{\lambda}(X)$ implies from the rectangularity of $\overleftrightarrow{G}(X)$ established in $\left[\mathrm{G}_{2}, \S 5\right]$ and the inclusion $\overleftrightarrow{\lambda}(X) \subset \overleftrightarrow{G}(X)$.

The Zorn Lemma implies that each invariant linked system on X (in particular, $\{X\}$) can be enlarged to a maximal invariant linked system on X. This observation implies the set $\overleftrightarrow{\lambda}(X)$ is not empty. Next, we show that the subsemigroup $\overleftrightarrow{\lambda}(X)$ is closed in $G(X)$. Since the set $\overleftrightarrow{N}_{2}(X)=$ $N_{2}(X) \cap \overleftrightarrow{G}(X)$ is closed in $G(X)$, it suffices to show that $\overleftrightarrow{\lambda}(X)$ is closed in $\overleftrightarrow{N}_{2}(X)$. Take any invariant linked system $\mathcal{L} \in \overleftrightarrow{N}_{2}(X) \backslash \overleftrightarrow{\lambda}(X)$. Being not maximal invariant, the linked system \mathcal{L} can be enlarged to a maximal invariant linked system \mathcal{M} that contains a subset $B \in \mathcal{M} \backslash \mathcal{L}$. Since $\mathcal{M} \ni B$ is invariant, the system $\{x B: x \in X\} \subset \mathcal{M}$ is linked. Observe that $B \notin \mathcal{L}$ and $B \in \mathcal{M} \supset \mathcal{L}$ implies $X \backslash B \in \mathcal{L}^{\perp}$ and $B \in \mathcal{L}^{\perp}$. We claim that $O(\mathcal{L})=B^{-} \cap(X \backslash B)^{-} \cap \stackrel{\leftrightarrow}{N}_{2}(X)$ is a neighborhood of \mathcal{L} in $\stackrel{\leftrightarrow}{N}_{2}(X)$ that misses the set $\overleftrightarrow{\lambda}(X)$. Indeed, for any $\mathcal{A} \in O(\mathcal{L})$, we get that \mathcal{A} is an invariant linked system such that $B \in \mathcal{A}^{\perp}$. Observe that for every $x \in X$ and $A \in \mathcal{A}$ we get $x^{-1} A \in \mathcal{A}$ by the invariantness of \mathcal{A} and hence the set $B \cap x^{-1} A$ and its shift $x B \cap A$ both are not empty. This witnesses that $x B \in \mathcal{A}^{\perp}$ for every $x \in X$. Then the maximal invariant linked system generated by $\mathcal{A} \cup\{x B: x \in X\}$ is an invariant linked enlargement of \mathcal{A}, which shows that \mathcal{A} is not maximal invariant linked.

Next, we shall evaluate the cardinality of $\overleftrightarrow{\lambda}(X)$.

Theorem 2.2. For any infinite group X the semigroup $\overleftrightarrow{\lambda}(X)$ has cardinality $|\overleftrightarrow{\lambda}(X)|=2^{2|X|}$.

Proof. The upper bound $|\overleftrightarrow{\lambda}(X)| \leq 2^{2^{|X|}}$ follows from the chain of inclusions:

$$
\overleftrightarrow{\lambda}(X) \subset G(X) \subset \mathcal{P}(\mathcal{P}(X))
$$

Now we prove that $|\overleftrightarrow{\lambda}(X)| \geq 2^{2^{|X|}}$. Let $|X|=\kappa$ and $X=\left\{x_{\alpha}: \alpha<\right.$ $\kappa\}$ be an injective enumeration of X by ordinals $<\kappa$ such that x_{0} is the neutral element of X. For every $\alpha<\kappa$ let $B_{\alpha}=\left\{x_{\beta}, x_{\beta}^{-1}: \beta<\alpha\right\}$. By transfinite induction, choose a transfinite sequence $\left(a_{\alpha}\right)_{\alpha<\kappa}$ such that $a_{0}=x_{0}$ and

$$
a_{\alpha} \notin B_{\alpha}^{-1} B_{\alpha} A_{<\alpha}
$$

where $A_{<\alpha}=\left\{a_{\beta}: \beta<\alpha\right\}$.
Consider the set $A=\left\{a_{\alpha}: \alpha<\kappa\right\}$. By [HS, 3.58], the set $U_{\kappa}(A)$ of κ-uniform ultrafilters on A has cardinality $\left|U_{\kappa}(A)\right|=2^{2^{\kappa}}$. We recall that an ultrafilter \mathcal{U} is κ-uniform if for every set $U \in \mathcal{U}$ and any subset $K \subset U$ of size $|K|<\kappa$ the set $U \backslash K$ still belongs to \mathcal{U}.

To each κ-uniform ultrafilter $\mathcal{U} \in U_{\kappa}(A)$ assign the invariant filter $\mathcal{F}_{\mathcal{U}}=\bigcap_{x \in X} x \mathcal{U}$. This filter can be extended to a maximal invariant linked system $\mathcal{L}_{\mathcal{U}}$. We claim that $\mathcal{L}_{\mathcal{U}} \neq \mathcal{L}_{\mathcal{V}}$ for two different κ-uniform ultrafilters \mathcal{U}, \mathcal{V} on A. Indeed, $\mathcal{U} \neq \mathcal{V}$ yields a subset $U \subset A$ such that $U \in \mathcal{U}$ and $U \notin \mathcal{V}$. Let $V=A \backslash U$. Since \mathcal{U}, \mathcal{V} are κ-uniform, $|U|=|V|=\kappa$.

For every $\alpha<\kappa$ consider the sets $U_{\alpha}=\left\{a_{\beta} \in U: \beta>\alpha\right\} \in \mathcal{U}$ and $V_{\alpha}=\left\{a_{\beta} \in V: \beta>\alpha\right\} \in \mathcal{V}$.

It is clear that

$$
F_{U}=\bigcup_{\alpha<\kappa} x_{\alpha} U_{\alpha} \in \mathcal{F}_{\mathcal{U}} \text { and } F_{V}=\bigcup_{\alpha<\kappa} x_{\alpha} V_{\alpha} \in \mathcal{F}_{\mathcal{V}}
$$

Let us show that $F_{U} \cap F_{V}=\emptyset$. Otherwise there would exist two ordinals α, β and points $u \in U_{\alpha}, v \in V_{\beta}$ such that $x_{\alpha} u=x_{\beta} v$. It follows from $u \neq v$ that $\alpha \neq \beta$. Write the points u, v as $u=a_{\gamma}$ and $v=a_{\delta}$ for some $\gamma>\alpha$ and $\delta>\beta$. Then we have the equality $x_{\alpha} a_{\gamma}=x_{\beta} a_{\delta}$. The inequality $u \neq v$ implies that $\gamma \neq \delta$. We lose no generality assuming that $\delta>\gamma$. Then

$$
a_{\delta}=x_{\beta}^{-1} x_{\alpha} a_{\gamma} \in B_{\delta}^{-1} B_{\delta} A_{<\delta}
$$

which contradicts the choice of a_{δ}.
Therefore, $F_{U} \cap F_{V}=\emptyset$. Taking into account that the linked systems $\mathcal{L}_{\mathcal{U}} \supset \mathcal{F}_{\mathcal{U}} \ni F_{U}$ and $\mathcal{L}_{\mathcal{V}} \supset \mathcal{F}_{\mathcal{V}} \ni F_{V}$ contain disjoint sets F_{U}, F_{V}, we
conclude that $\mathcal{L}_{\mathcal{U}} \neq \mathcal{L}_{\mathcal{V}}$. Consequently,

$$
|\overleftrightarrow{\lambda}(X)| \geq\left|\left\{\mathcal{L}_{\mathcal{U}}: \mathcal{U} \in \mathcal{U}_{\kappa}(A)\right\}\right|=\left|U_{\kappa}(A)\right|=2^{2^{\kappa}}
$$

The preceding theorem implies that $|\overleftrightarrow{\lambda}(G)|=2^{\mathfrak{c}}$ for any countable group G. Next, we evaluate the cardinality of $\lambda(G)$ for finite groups G.

Given a finite group G consider the invariant linked system

$$
\mathcal{L}_{0}=\{A \subset X: 2|A|>|G|\}
$$

and the subset

$$
\uparrow \mathcal{L}_{0}=\left\{\mathcal{A} \in \stackrel{\leftrightarrow}{\lambda}(G): \mathcal{A} \supset \mathcal{L}_{0}\right\}
$$

of $\overleftrightarrow{\lambda}(G)$.
Proposition 2.3. Let G be a finite group. If $\operatorname{sl}(G) \geq|G| / 2$, then $\stackrel{\leftrightarrow}{\lambda}(G)=$ $\uparrow \mathcal{L}_{0}$.

Proof. We should prove that each maximal invariant linked system $\mathcal{A} \in$ $\overleftrightarrow{\lambda}(G)$ contains \mathcal{L}_{0}. Take any set $L \in \mathcal{L}_{0}$. Taking into account that $\operatorname{sl}(G) \geq|G| / 2$ and each set $A \in \mathcal{A}$ is self-linked, we conclude that $|A| \geq$ $|G| / 2$ and hence A intersects each shift $x L$ of L (because $|A|+|x L|>|G|$). Since the set L is self-linked, we get that the invariant linked system $\mathcal{A} \cup\{x L: x \in G\}$ is equal to \mathcal{A} by the maximality of \mathcal{A}. Consequently, $L \in \mathcal{A}$ and hence $\mathcal{L}_{0} \subset \mathcal{A}$.

In light of Proposition 2.3 it is important to evaluate the cardinality of the set $\uparrow \mathcal{L}_{0}$. In $|G|$ is odd, then the invariant linked system \mathcal{L}_{0} is maximal linked and thus $\uparrow \mathcal{L}_{0}$ is a singleton. The case of even $|G|$ is less trivial.

Given an group G of finite even order $|G|$, consider the family

$$
\mathcal{S}=\left\{A \subset G: A A^{-1}=G,|A|=|G| / 2\right\}
$$

of self-linked subsets $A \subset G$ of cardinality $|A|=|G| / 2$. On the family \mathcal{S} consider the equivalence relation \sim letting $A \sim B$ for $A, B \in \mathcal{S}$ if there is $x \in G$ such that $A=x B$ or $X \backslash A=x B$. Let \mathcal{S} / \sim the quotient set of \mathcal{S} by this equivalence relation and $s=|\mathcal{S} / \sim|$ stand for the cardinality of S / \sim.

Proposition 2.4. $|\overleftrightarrow{\lambda}(G)| \geq\left|\uparrow \mathcal{L}_{0}\right|=2^{s}$.

Proof. First we show that \sim indeed is an equivalence relation on \mathcal{S}. So, assume that $\mathcal{S} \neq \emptyset$. Let us show that $G \backslash A \in \mathcal{S}$ for every $A \in \mathcal{S}$. Let $B=G \backslash A$. Assuming that $B \notin \mathcal{S}$, we conclude that $B \cap x B=\emptyset$ for some $x \in G$. Since $|B|=|A|=|G| / 2$, we conclude that $x B=A$ and $G \backslash A=B=x^{-1} A$. The equality $A \cap x^{-1} A=\emptyset$ implies $x^{-1} \notin A A^{-1}=G$, which is a contradiction.

Taking into account that $A=e A$ for every $A \in \mathcal{S}$, we conclude that \sim is a reflexive relation on \mathcal{S}. If $A \sim B$, then there is $x \in X$ such that $A=x B$ or $G \backslash A=x B$. This implies that $B=x^{-1} A$ or $X \backslash B=x^{-1} A$, that is $B \sim A$ and \sim is symmetric. It remains to prove that the relation \sim is transitive on \mathcal{S}. So let $A \sim B \sim C$. This means that there exist $x, y \in G$ such that $A=x B$ or $G \backslash A=x B$ and $B=y C$ or $G \backslash B=y C$. It is easy to check that in these cases $A=x y C$ or $X \backslash A=x y C$.

Choose a subset \mathcal{T} of \mathcal{S} intersecting each equivalence class of \sim at a single point. Observe that $|\mathcal{T}|=|\mathcal{S} / \sim|=s$. Now for every function $f: \mathcal{T} \rightarrow 2=\{0,1\}$ consider the maximal invariant linked system $\mathcal{L}_{f}=\mathcal{L}_{0} \cup\left\{x T: x \in G, T \in f^{-1}(0)\right\} \cup\left\{x(G \backslash T): x \in G, T \in f^{-1}(1)\right\}$.

It can be shown that

$$
\left|\uparrow \mathcal{L}_{0}\right|=\left|\left\{\mathcal{L}_{f}: f \in 2^{\mathcal{T}}\right\}\right|=2^{|\mathcal{T}|}=2^{s}
$$

This proposition will help us to calculate the cardinality of the set $\overleftrightarrow{\lambda}(G)$ for all finite groups G of order $|G| \leq 8$:
Theorem 2.5. The cardinality of $\overleftrightarrow{\lambda}(G)$ for a group G of size $|G| \leq 8$ can be found from the table:

G	C_{2}	C_{3}	C_{4}	$C_{2} \oplus C_{2}$	C_{5}	D_{6}	C_{6}	C_{7}	C_{2}^{3}	D_{8}	$C_{4} \oplus C_{2}$	C_{8}	Q_{8}
$\stackrel{s l}{ }(G)$	2	2	3	3	3	4	3	3	5	4	4	4	4
$\overleftrightarrow{\lambda}(X)$	1	1	1	1	1	1	2	3	1	2	4	8	8

Proof. We divide the proof into 5 cases.

1. If $\operatorname{sl}(G)>|G| / 2$, then \mathcal{L}_{0} is a unique maximal invariant linked system and thus $|\overleftrightarrow{\lambda}(X)|=1$. By Theorem $1.2, \operatorname{sl}(G)>|G| / 2$ if and only if $|G| \leq 5$ or G is isomorphic to D_{6} or C_{2}^{3}.
2. If $\operatorname{sl}(G)=|G| / 2$, then $|\overleftrightarrow{\lambda}(G)|=2^{s}$ where $s=|\mathcal{S} / \sim|$. So it remains to calculate the number s for the groups $C_{6}, D_{8}, C_{4} \oplus C_{2}, C_{8}$, and Q_{8}.

2a. If G is cyclic of order 6 , then we can take any generator a on G and by routine calculations, check that

$$
\mathcal{S}=\{x T, x(G \backslash T): x \in G\}
$$

where $T=\left\{e, a, a^{3}\right\}$. It follows that $s=|\mathcal{S} / \sim|=1$ and thus

$$
|\overleftrightarrow{\lambda}(G)|=\left|\uparrow \mathcal{L}_{0}\right|=2^{s}=2
$$

2b. If G is cyclic of order 8 , then we can take any generator a on G and by routine verification check that

$$
\mathcal{S}=\{x A, G \backslash x A, x B, G \backslash x B, C, G \backslash x C: x \in G\}
$$

where $A=\left\{e, a, a^{2}, a^{4}\right\}, B=\left\{e, a, a^{2}, a^{5}\right\}$, and $C=\left\{e, a, a^{3}, a^{5}\right\}$. It follows that $s=|\mathcal{S} / \sim|=3$ and thus

$$
|\overleftrightarrow{\lambda}(G)|=\left|\uparrow \mathcal{L}_{0}\right|=2^{s}=8
$$

2c. Assume that the group G is isomorphic to $C_{4} \oplus C_{2}$ and let $G_{2}=$ $\{x \in G: x x=e\}$ be the Boolean subgroup of G. We claim that a 4-element subset $A \subset G$ is self-linked if and only if $\left|A \cap G_{2}\right|$ is odd.

To prove the "if" part of this claim, assume that $\left|A \cap G_{2}\right|=3$. We claim that A is self-linked. Let $A_{2}=A \cap G_{2}$ and note that $G_{2}=A_{2} A_{2}^{-1} \subset A A^{-1}$ because $\left|A_{2}\right|=3>2=\left|G_{2}\right| / 2$. Now take any element $a \in A \backslash G_{2}$ and note that $A A^{-1} \supset a A_{2}^{-1} \cup A_{2} a^{-1}$. Observe that both $a A_{2}^{-1}=a A_{2}$ and $A_{2} a^{-1}=a^{-1} A_{2}$ are 3-element subsets in the 4-element coset $a G_{2}$. Those 3-element sets are different. Indeed, assuming that $a A_{2}^{-1}=A_{2} a^{-1}$ we would obtain that $a^{2} A_{2}=A_{2}$ which implies that $\left|A_{2}\right|=3$ is even. Consequently, $a G_{2}=a A_{2}^{-1} \cup A_{2} a^{-1} \subset A A^{-1}$ and finally $G=A A^{-1}$.

If $\left|A \cap G_{2}\right|=1$, then we can take any $a \in A \backslash G_{2}$ and consider the shift $A a^{-1}$ which has $\left|A a^{-1} \cap G_{2}\right|=3$. Then the preceding case implies that $A a^{-1}$ is self-linked and so is A.

To prove the "only if" part of the claim assume that $\left|A \cap G_{2}\right|$ is even. If $\left|A \cap G_{2}\right|=4$, then $A=G_{2}$ and $A A^{-1}=G_{2} G_{2}^{-1}=G_{2} \neq G$. If $\left|A \cap G_{2}\right|=$ 0 , then $A=G_{2} a$ for any $a \in A$ and hence $A A^{-1}=G_{2} a a^{-1} G_{2}^{-1}=G_{2} \neq$ G. If $\left|A \cap G_{2}\right|=2$, then $\left|G_{2} \cap A A^{-1}\right| \leq 3$ and again $A A^{-1} \neq G$.

Thus

$$
\mathcal{S}=\left\{A \subset G:|A|=4 \text { and }\left|A \cap G_{2}\right| \text { is odd }\right\}
$$

Each set $A \in \mathcal{S}$ has a unique shift $a A$ with $a A \cap G_{2}=\{e\}$. There are exactly four subsets $A \in \mathcal{S}$ with $A \cap G_{2}=\{e\}$ forming two equivalence classes with respect to the relation \sim. Therefore $s=2$ and

$$
|\overleftrightarrow{\lambda}(G)|=\left|\uparrow \mathcal{L}_{0}\right|=2^{s}=4
$$

2 d . Assume that G is isomorphic to the dihedral group D_{8} of isometries of the square. Then G contains an element a of order 4 generating
a normal cyclic subgroup H. The element a^{2} commutes with all the elements of the group G.

We claim that for each self-linked 4 -element subset $A \subset G$ we get $|A \cap H|=2$. Indeed, if $|A \cap H|$ equals 0 or 4 , then $A=H b$ for some $b \in G$ and then $A A^{-1}=A b b^{-1} A^{-1}=H \neq G$. If $|A \cap H|$ equals 1 or 3, then replacing A by a suitable shift, we can assume that $A \cap H=\{e\}$ and hence $A=\{e\} \cup B$ for some 3-element subset $B \subset G \backslash H$. It follows that $G \backslash H=A A^{-1} \backslash H=\left(B \cup B^{-1}\right)=B \neq G \backslash H$. This contradiction shows that $|A \cap H|=2$. Without loss of generality, we can assume that $A \cap H=\left\{e, a^{2}\right\}$ (if it is not the case, replace A by its shift $A x^{-1}$ where $x, y \in A$ are such that $y x^{-1}=a^{2}$). Now take any element $b \in A \backslash H$. Since G is not commutative, we get $a b=b a^{3}$. Observe that $b a^{2} \notin A$ (otherwise $A=\left\{e, b, a^{2}, b a^{2}\right\}$ would be a subgroup of G with $\left.A A^{-1}=A \neq G\right)$. Consequently, the 4-th element $c \in A \backslash\left\{e, a^{2}, b\right\}$ of A should be of the form $c=b a$ or $c=b a^{3}=a b$. Observe that both the sets $A_{1}=\left\{e, a^{2}, b, b a\right\}$ and $A_{2}=\left\{e, a^{2}, b, a b\right\}$ are self-linked. Observe also that

$$
a^{3}\left(G \backslash A_{1}\right)=a^{3} \cdot\left\{a, a^{3}, b a^{2}, b a^{3}\right\}=\left\{e, a^{2}, a b, b\right\}=A_{2}
$$

Consequently, $s=|\mathcal{S} / \sim|=1$ and $|\overleftrightarrow{\lambda}(G)|=2^{s}=2$.
2e. Finally assume that G is isomorphic to the group

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

of quaternion units. The two-element subset $H=\{-1,1\}$ is a normal subgroup in X. Let $\mathcal{S}_{ \pm}=\{A \in S: H \subset A\}$ and observe that each set $A \in \mathcal{S}$ has a left shift in \mathcal{S}. Take any set $A \in \mathcal{S}_{ \pm}$and pick a point $a \in A \backslash\{1,-1\}$. Observe that the 4 -th element $b \in A \backslash\{1,-1, a\}$ of A is not equal to $-a$ (otherwise, A is a subgroup of G).

Conversely, one can easily check that each set $A=\{1,-1, a, b\}$ with $a, b \in G \backslash H$ and $a \neq-b$ is self-linked. This means that

$$
\mathcal{S}_{ \pm}=\{\{-1,1, a, b\}: a \neq-b \text { and } a, b \in G \backslash H\}
$$

and thus $\left|\mathcal{S}_{ \pm}\right|=C_{6}^{2}-3=12$. Observe that for each $A \in \mathcal{S}_{2}$ the set $-A \in \mathcal{S}_{2}$ and there axactly two shifts of $X \backslash A$ that belong to \mathcal{S}_{2}. This means that the equivalence class $[A]_{\sim}$ of any set $A \in \mathcal{S}$ intersects \mathcal{S}_{2} in four sets. Consequently, $s=|\mathcal{S} / \sim|=\left|\mathcal{S}_{ \pm}\right| / 4=12 / 4=3$ and

$$
|\overleftrightarrow{\lambda}(G)|=\left|\uparrow \mathcal{L}_{0}\right|=2^{s}=8
$$

3. If $|G|=7$, then \mathcal{L}_{0} is one of three elements of $\overleftrightarrow{\lambda}(G)$. The other two elements can be found as follows. Consider the invariant linked system

$$
\mathcal{L}_{1}=\{A \subset G:|A| \geq 5\}
$$

and observe that $\mathcal{L}_{1} \subset \mathcal{A}$ for each $\mathcal{A} \in \overleftrightarrow{\lambda}(G)$. Indeed, assuming that some $A \in \mathcal{L}_{1}$ does not belong to \mathcal{A}, we would conclude that $B=G \backslash A \in \mathcal{A}$ by the maximality of \mathcal{A}. Since $|G \backslash B| \leq 2$ we can find $x \in G \backslash B B^{-1}$. It follows that $B, x B$ are two disjoint sets in \mathcal{A} which is not possible. Thus $\mathcal{L}_{1} \subset \mathcal{A}$.

Observe that $\mathcal{L}_{1} \subset \mathcal{A} \subset \mathcal{L}_{0} \cup \mathcal{L}_{3}$, where

$$
\mathcal{L}_{3}=\left\{A \subset G:|A|=3, A A^{-1}=G\right\}
$$

Given a generator a of the cyclic group G, consider the 3 -element set $T=\left\{a, a^{2}, a^{4}\right\}$ and note that $T T^{-1}=G$ and $T^{-1} \cap T=\emptyset$. By a routine calculation, one can check that

$$
\mathcal{L}_{3}=\left\{x T, x T^{-1}: x \in G\right\} .
$$

Since T and T^{-1} are disjoint, the invariant linked system \mathcal{A} cannot contain both the sets T and T^{-1}. If \mathcal{A} contains none of the sets T, T^{-1}, then $\mathcal{A}=\mathcal{L}_{0}$. If \mathcal{A} contains T, then

$$
\mathcal{A}=\left(\mathcal{L}_{0} \cup\{x T: x \in G\}\right) \backslash\{y(G \backslash T): y \in G\}
$$

If $T^{-1} \in \mathcal{A}$, then

$$
\mathcal{A}=\left(\mathcal{L}_{0} \cup\left\{x T^{-1}: x \in G\right\}\right) \backslash\left\{y\left(G \backslash T^{-1}\right): y \in G\right\} .
$$

And those are the unique 3 maximal invariant systems in $\overleftrightarrow{\lambda}(G)$.
In the following theorem we characterize groups possessing a unique maximal invariant linked system.

Theorem 2.6. For a finite group G the following conditions are equivalent:

1) $|\stackrel{\leftrightarrow}{\lambda}(G)|=1 ;$
2) $\operatorname{sl}(G)>|G| / 2$;
3) $|G| \leq 5$ or else G is isomorphic to D_{6} or C_{2}^{3}.

Proof. (2) $\Rightarrow(1)$. If $\operatorname{sl}(G)>|G| / 2$, then $\mathcal{L}_{0}=\{A \subset G:|A|>|G| / 2\}$ is a unique maximal invariant linked system on G (because invariant linked systems compose of self-linked sets).
$(1) \Rightarrow(2)$ Assume that $s l(G) \leq|G| / 2$ and take a self-linked subset $A \subset G$ with $|A| \leq|G| / 2$. If $|G|$ is odd, then \mathcal{L}_{0} is maximal linked and
then any maximal invariant linked system \mathcal{A} containing the self-linked set A is distinct from \mathcal{L}_{0}, witnessing that $|\stackrel{\leftrightarrow}{\lambda}(G)|>1$.

If G is even, then we can enlarge A, if necessary, and assume that $|A|=|G| / 2$. We claim that the complement $B=G \backslash A$ of A is selflinked too. Assuming the converse, we would find some $x \notin B B^{-1}$ and conclude that $B \cap x B=\emptyset$, which implies that $A=G \backslash B=x B$ and hence $x^{-1} A=B$. Then the sets A and $x^{-1} A$ are disjoint which contradicts $x^{-1} \in A A^{-1}=G$. Thus $B B^{-1}=G$ which implies that $\{x B: x \in G\}$ is an invariant linked system. Since $|G|=2|A|$ is even, the unions $\mathcal{A}=$ $\{x A: x \in G\} \cup \mathcal{L}_{0}$ and $\mathcal{B}=\{x B: x \in G\} \cup \mathcal{L}_{0}$ are invariant linked systems that can be enlarged to maximal linked systems $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{B}}$, respectively. Since the sets $A \in \mathcal{A} \subset \tilde{\mathcal{A}}$ and $B \in \mathcal{B} \subset \tilde{\mathcal{B}}$ are disjoint, $\tilde{\mathcal{A}} \neq \tilde{\mathcal{B}}$ are two distinct maximal invariant systems on G and thus $|\overleftrightarrow{\lambda}(G)| \geq 2$.

The equivalence $(2) \Leftrightarrow(3)$ follows from Theorem 1.2(i).

3. Right zeros in $\lambda(X)$

In this section we return to studying the superextensions of groups and shall detect groups X whose superextensions $\lambda(X)$ have right zeros. We shall show that for every group X the right zeros of $\lambda(X)$ coincide with invariant maximal linked systems.

We recall that an element z of a semigroup S is called a right (resp. left) zero in S if $x z=z$ (resp. $z x=z$) for every $x \in S$. This is equivalent to saying that the singleton $\{x\}$ is a left (resp. right) ideal of S.

By $\left[\mathrm{G}_{2}, 5.1\right]$ an inclusion hyperspace $\mathcal{A} \in G(X)$ is a right zero in $G(X)$ if and only if \mathcal{A} is invariant. This implies that the minimal ideal of the semigroup $G(X)$ coincides with the set $\overleftrightarrow{G}(X)$ of invariant inclusion hyperspaces and is a compact rectangular topological semigroup. We recall that a semigroup S is called rectangular if $x y=y$ for all $x, y \in S$.

A similar characterization of right zeros holds also for the semigroup $\lambda(X)$.

Proposition 3.1. A maximal linked system \mathcal{L} is a right zero of the semigroup $\lambda(X)$ if and only if \mathcal{L} is invariant.

Proof. If \mathcal{L} is invariant, then by proposition 5.1 of $\left[\mathrm{G}_{2}\right], \mathcal{L}$ is a right zero in $G(X)$ and consequently, a right zero in $\lambda(X)$.

Assume conversely that \mathcal{L} is a right zero in $\lambda(X)$. Then for every $x \in X$ we get $x \mathcal{L}=\mathcal{L}$, which means that \mathcal{L} is invariant.

Unlike the semigroup $G(X)$ which always contains right zeros, the semigroup $\lambda(X)$ contains right zeros only for so-called odd groups. We
define a group X to be odd if each element $x \in X$ has odd order. We recall that the order of an element x is the smallest integer number $n \geq 1$ such that x^{n} coincides with the neutral element e of X.

Theorem 3.2. For a group X the following conditions are equivalent:

1) the semigroup $\lambda(X)$ has a right zero;
2) some maximal invariant linked system on X is maximal linked (which can be written as $\overleftrightarrow{\lambda}(X) \cap \lambda(X) \neq \emptyset)$;
3) each maximal invariant linked system is maximal linked (which can be written as $\overleftrightarrow{\lambda}(X) \subset \lambda(X))$;
4) for any partition $X=A \cup B$ either $A A^{-1}=X$ or $B B^{-1}=X$;
5) each element of X has odd order.

Proof. The equivalence (1) $\Leftrightarrow(2)$ follows from Proposition 3.1.
$(2) \Rightarrow(4)$ Assume that $\lambda(X)$ contains an invariant maximal linked system \mathcal{A}. Given any partition $X=A_{1} \cup A_{2}$, use the maximality of \mathcal{A} to find $i \in\{1,2\}$ with $A_{i} \in \mathcal{A}$. We claim that $A_{i} A_{i}^{-1}=X$. Indeed, for every $x \in X$ the invariantness of \mathcal{A} implies that $x A_{i} \in \mathcal{A}$ and hence $A_{i} \cap x A_{i} \neq \emptyset$, which implies $x \in A_{i} A_{i}^{-1}$.
(4) $\Rightarrow(3)$ Assume that for every partition $X=A \cup B$ either $A A^{-1}=$ X or $B B^{-1}=X$. We need to check that each maximal invariant linked system \mathcal{L} is maximal linked. In the other case, there would exist a set $A \in \mathcal{L}^{\perp} \backslash \mathcal{L}$. Since $\mathcal{L} \nexists A$ is maximal invariant linked system, some shift $x A$ of A does not intersect A and thus $x \notin A A^{-1}$. Then our assumption implies that $B=X \backslash A$ has property $B B^{-1}=X$, which means that the family $\{x B: x \in X\}$ is linked. We claim that $B \in \mathcal{L}^{\perp}$. Assuming the converse, we would find a set $L \in \mathcal{L}$ with $L \cap B=\emptyset$ and conclude that $A \in \mathcal{L}$ because $L \subset X \backslash B=A$. But this contradicts the choice of $A \in \mathcal{L}^{\perp} \backslash \mathcal{L}$. Therefore $B \in \mathcal{L}^{\perp}$ and

$$
\mathcal{L} \cup\{L \subset X: \exists x \in X(x B \subset L)\}
$$

is an invariant linked system that enlarges \mathcal{L}. Since \mathcal{L} is a maximal invariant linked system, we conclude that $B \in \mathcal{L}$, which is not possible because B does not intersect $A \in \mathcal{L}^{\perp}$. The obtained contradiction shows that $\mathcal{L}^{\perp} \backslash \mathcal{L}=\emptyset$, which means that \mathcal{L} belongs to $\lambda(X)$ and thus is an invariant maximal linked system.

The implication $(3) \Rightarrow(2)$ is trivial.
$\neg(5) \Rightarrow \neg(4)$ Assume that $X \backslash\{e\}$ contains a point a whose order is even or infinity. Then the cyclic subgroup $H=\left\{a^{n}: n \in \mathbb{Z}\right\}$ generated by a decomposes into two disjoint sets $H_{1}=\left\{a^{n}: n \in 2 \mathbb{Z}+1\right\}$ and $H_{2}=\left\{a^{n}: n \in 2 \mathbb{Z}\right\}$ such that $a H_{1}=H_{2}$. Take a subset $S \subset X$ meeting each coset $H x, x \in X$, in a single point. Consider the disjoint sets $A_{1}=H_{1} S$ and $A_{2}=H_{2} S$ and note that $a A_{1}=A_{2}=X \backslash A_{1}$ and $a A_{2}=X \backslash A_{2}$, which implies that $a \notin A_{i} A_{i}^{-1}$ for $i \in\{1,2\}$. Since $A_{1} \cup A_{2}=X$, we get a negation of (4).
$(5) \Rightarrow(4)$ Assume that each element of X has odd order and assume that X admits a partition $X=A \sqcup B$ such that $a \notin A A^{-1}$ and $b \notin B B^{-1}$ for some $a, b \in X$. Then $a A \subset X \backslash A=B$ and $b B \subset X \backslash B=A$. Observe that

$$
b a A \subset b B \subset A
$$

and by induction, $(b a)^{i} A \subset A$ for all $i>0$. Since all elements of X have finite order, $(b a)^{n}=e$ for some $n \in \mathbb{N}$. Then $(b a)^{n-1} A \subset A$ implies

$$
A=(b a)^{n} A \subset b a A \subset b B \subset A
$$

and hence $b B=A$. It follows from

$$
X=b A \sqcup b B=b A \sqcup A=B \sqcup A
$$

that $b A=B$. Thus $x \in A$ if and only if $b x \in B$.
Let $H=\left\{b^{n}: n \in \mathbb{Z}\right\} \subset X$ be the cyclic subgroup generated by b. By our assumption it is of odd order. On the other hand, the equality $b B=A=b^{-1} B$ implies that the intersections $H \cap A$ and $H \cap B$ have the same cardinality because $b(B \cap H)=A \cap H$. But this is not possible because of the odd cardinality of H.

4. (Left) zeros of the semigroup $\lambda(X)$

An element z of a semigroup S is called a zero in S if $x z=z=z x$ for all $x \in S$. This is equivalent to saying that z is both a left and right zero in S.

Proposition 4.1. Let X be a group. For a maximal linked system $\mathcal{L} \in$ $\lambda(X)$ the following conditions are equivalent:

1) \mathcal{L} is a left zero in $\lambda(X)$;
2) \mathcal{L} is a zero in $\lambda(X)$;
3) \mathcal{L} is a unique invariant maximal linked system on X.

Proof. (1) $\Rightarrow(3)$ Assume that \mathcal{Z} is a left zero in $\lambda(X)$. Then $\mathcal{Z} x=\mathcal{Z}$ for all $x \in X$ and thus

$$
\mathcal{Z}^{-1}=\left\{Z^{-1}: Z \in \mathcal{Z}\right\}
$$

is an invariant maximal linked system on X, which implies that the group X is odd according to Theorem 3.2. Note that for every right zero \mathcal{A} of $\lambda(X)$ we get

$$
\mathcal{Z}=\mathcal{Z} \circ \mathcal{A}=\mathcal{A}
$$

which implies that \mathcal{Z} is a unique right zero in $\lambda(X)$ and by Proposition 3.1 a unique invariant maximal linked system on X.
$(3) \Rightarrow(2)$ Assume that \mathcal{Z} is a unique invariant maximal linked system on X. We claim that \mathcal{Z} is a left zero of $\lambda(X)$. Indeed, for every $\mathcal{A} \in \mathcal{A}$ and $x \in X$ we get $x \mathcal{Z} \circ \mathcal{A}=\mathcal{Z} \circ \mathcal{A}$, which means that $\mathcal{Z} \circ \mathcal{A}$ is an invariant maximal linked system. By Proposition 3.1, $\mathcal{Z} \circ \mathcal{A}$ is a right zero and hence $\mathcal{Z} \circ \mathcal{A}=\mathcal{Z}$ because \mathcal{Z} is a unique right zero. This means that \mathcal{Z} is a left zero, and being a right zero, a zero in $\lambda(X)$.
$(2) \Rightarrow(1)$ is trivial.

Theorem 4.2. The superextension $\lambda(X)$ of a group X has a zero if and only if X is isomorphic to C_{1}, C_{3} or C_{5}.

Proof. If X is a group of odd order $|X| \leq 5$, then $\overleftrightarrow{\lambda}(X) \subset \lambda(X)$ because X is odd and $|\overleftrightarrow{\lambda}(X)|=1$ by Theorem 2.6. This means that $\lambda(X)$ contains a unique invariant maximal linked system, which is the zero of $\lambda(X)$ by Proposition 4.1.

Now assume conversely that the semigroup $\lambda(X)$ has a zero element \mathcal{Z}. By Proposition 3.1 and Theorem 3.2, X is odd and thus $\overleftrightarrow{\lambda}(X) \subset$ $\lambda(X)$. Since the zero \mathcal{Z} of $\lambda(X)$ is a unique invariant maximal linked system on X, we get $|\overleftrightarrow{\lambda}(X)| \leq 1$. By Theorem $2.6, X$ has order $|X| \leq 5$ or is isomorphic to D_{3} or C_{2}^{3}. Since X is odd, X must be isomorphic to C_{1}, C_{3} or C_{5}.

5. The commutativity of $\lambda(X)$

In this section we detect groups X with commutative superextension.
Theorem 5.1. The superextension $\lambda(X)$ of a group X is commutative if and only if $|X| \leq 4$.

Proof. The commutativity of the superextensions $\lambda(X)$ of groups X of order $|X| \leq 4$ will be established in Section 6.

Now assume that a group X has commutative superextension $\lambda(X)$. Then X is commutative. We need to show that $|X| \leq 4$. First we show that $|\overleftrightarrow{\lambda}(X)|=1$.

Assume that $\overleftrightarrow{\lambda}(X)$ contains two distinct maximal invariant linked systems \mathcal{A} and \mathcal{B}. Taking into account that $\mathcal{A}, \mathcal{B} \in \overleftrightarrow{\lambda}(X) \subset \overleftrightarrow{G}(X)$ and each element of $\overleftrightarrow{G}(X)$ is a right zero in $G(X)$ (see $\left[\mathrm{G}_{2}, 5.1\right]$) we conclude that

$$
\mathcal{A} \circ \mathcal{B}=\mathcal{B} \neq \mathcal{A}=\mathcal{B} \circ \mathcal{A}
$$

Extend the linked systems systems \mathcal{A}, \mathcal{B} to maximal linked systems $\tilde{\mathcal{A}} \supset$ \mathcal{A} and $\tilde{\mathcal{B}} \supset \mathcal{B}$. Because of the commutativity of $\lambda(X)$, we get

$$
\mathcal{A}=\mathcal{B} \circ \mathcal{A} \subset \tilde{\mathcal{B}} \circ \tilde{\mathcal{A}}=\tilde{\mathcal{A}} \circ \tilde{\mathcal{B}} \supset \mathcal{A} \circ \mathcal{B}=\mathcal{B}
$$

This implies that the union $\mathcal{A} \cup \mathcal{B} \neq \mathcal{A}$ is an invariant linked system extending \mathcal{A}, which is not possible because of the maximality of \mathcal{A}. This contradiction shows that $|\overleftrightarrow{\lambda}(X)|=1$. Applying Theorem 2.6, we conclude that $|X| \leq 5$ or X is isomorphic to C_{2}^{3}.

It remains to show that the semigroups $\lambda\left(C_{5}\right)$ and $\lambda\left(C_{2}^{3}\right)$ are not commutative. The non-commutativity of $\lambda\left(C_{5}\right)$ will be shown in Section 6.

To see that $\lambda\left(C_{2}^{3}\right)$ is not commutative, take any 3 generators a, b, c of C_{2}^{3} and consider the sets $A=\{e, a, b, a b c\}, H_{1}=\{e, a, b, a b\}, H_{2}=$ $\{e, a, b c, a b c\}$. Observe that H_{1}, H_{2} are subgroups in C_{2}^{3}. For every $i \in$ $\{1,2\}$ consider the linked system $\mathcal{A}_{i}=\left\langle\left\{H_{1}, H_{2}\right\} \cup\left\{x A: x \in H_{i}\right\}\right\rangle$ and extend it to a maximal linked system $\tilde{\mathcal{A}}_{i}$ on C_{2}^{3}.

We claim that the maximal linked systems $\tilde{\mathcal{A}}_{1}$ and $\tilde{\mathcal{A}}_{2}$ do not commute. Indeed,

$$
\begin{gathered}
\tilde{\mathcal{A}}_{2} \circ \tilde{\mathcal{A}}_{1} \ni \bigcup_{x \in H_{1}} x *\left(x^{-1} b A\right)=b A=\{e, b, b a, a c\}, \\
\tilde{\mathcal{A}}_{1} \circ \tilde{\mathcal{A}}_{2} \ni \bigcup_{x \in H_{2}} x *\left(x^{-1} b c A\right)=b c A=\{a, c, b c, a b c\} .
\end{gathered}
$$

It follows from $b A \cap b c A=\emptyset$ that $\tilde{\mathcal{A}}_{1} \circ \tilde{\mathcal{A}}_{2} \neq \tilde{\mathcal{A}}_{2} \circ \tilde{\mathcal{A}}_{1}$.

6. The superextensions of finite groups

In this section we shall describe the structure of the superextensions $\lambda(G)$ of finite groups G of small cardinality (more precisely, of cardinality $|G| \leq 5)$. It is known that the cardinality of $\lambda(G)$ growth very
quickly as $|G|$ tends to infinity. The calculation of the cardinality of $|\lambda(G)|$ seems to be a difficult combinatorial problem related to the still unsolved Dedekind's problem of calculation of the number $M(n)$ of inclusion hyperpspaces on an n-element subset, see [De]. We were able to calculate the cardinalities of $\lambda(G)$ only for groups G of cardinality $|G| \leq 6$. The results of (computer) calculations are presented in the following table:

$\|G\|$	1	2	3	4	5	6
$\|\lambda(G)\|$	1	2	4	12	81	2646
$\|\lambda(G) / G\|$	1	1	2	3	17	447

Before describing the structure of superextensions of finite groups, let us make some remarks concerning the structure of a semigroup S containing a group G. In this case S can be thought as a G-space endowed with the left action of the group G. So we can consider the orbit space $S / G=\{G s: s \in S\}$ and the projection $\pi: S \rightarrow S / G$. If G lies in the center of the semigroup S (which means that the elements of G commute with all the elements of S), then the orbit space S / G admits a unique semigroup operation turning S / G into a semigroup and the orbit projection $\pi: S \rightarrow S / G$ into a semigroup homomorphism. A subsemigroup $T \subset S$ will be called a transversal semigroup if the restriction $\pi: T \rightarrow S / G$ is an isomorphism of the semigroups. If S admits a transversal semigroup T, then it is a homomoprhic image of the product $G \times T$ under the semigroup homomorphism

$$
h: G \times T \rightarrow S, \quad h:(g, t) \mapsto g t .
$$

This helps to recover the algebraic structure of S from the structure of a transversal semigroup.

For a system \mathcal{B} of subsets of a set X by

$$
\langle\mathcal{B}\rangle=\{A \subset X: \exists B \in \mathcal{B}(B \subset A)\}
$$

we denote the inclusion hyperspace generated by \mathcal{B}.
Now we shall analyse the entries of the above table. First note that each group G of size $|G| \leq 5$ is abelian and is isomorphic to one of the groups: $C_{1}, C_{2}, C_{3}, C_{4}, C_{2} \oplus C_{2}, C_{5}$. It will be convenient to think of the cyclic group C_{n} as the multiplicative subgroups $\left\{z \in \mathbb{C}: z^{n}=1\right\}$ of the complex plane.

6.1. The semigroups $\lambda\left(C_{1}\right)$ and $\lambda\left(C_{2}\right)$

For the groups C_{n} with $n \in\{1,2\}$ the semigroup $\lambda\left(C_{n}\right)$ coincides with C_{n} while the orbit semigroup $\lambda\left(C_{n}\right) / C_{n}$ is trivial.

6.2. The semigroup $\lambda\left(C_{3}\right)$

For the group C_{3} the semigroup $\lambda\left(C_{3}\right)$ contains the three principal ultrafilters $1, z,-z$ where $z=e^{2 \pi i / 3}$ and the maximal linked inclusion hyperspace $\triangleright=\langle\{1, z\},\{1,-z\},\{z,-z\}\rangle$ which is the zero in $\lambda\left(C_{3}\right)$. The superextension $\lambda\left(C_{3}\right)$ is isomorphic to the multiplicative semigroup $C_{3}^{0}=\left\{z \in \mathbb{C}: z^{4}=z\right\}$ of the complex plane. The latter semigroup has zero 0 and unit 1 which are the unique idempotents.

The transversal semigroup $\lambda\left(C_{3}\right) / C_{3}$ is isomorphic to the semilattice $2=\{0,1\}$ endowed with the min-operation.

6.3. The semigroups $\lambda\left(C_{4}\right)$ and $\lambda\left(C_{2} \oplus C_{2}\right)$

The semigroup $\lambda\left(C_{4}\right)$ contains 12 elements while the orbit semigroup $\lambda\left(C_{4}\right) / C_{4}$ contains 3 elements. The semigroup $\lambda\left(C_{4}\right)$ contains a transversal semigroup

$$
\lambda_{T}(G)=\{1, \triangle, \square\}
$$

where 1 is the neutral element of $C_{4}=\{1,-1, i,-i\}$,

$$
\begin{aligned}
\triangle & =\langle\{1, i\},\{1,-i\},\{i,-i\}\rangle \text { and } \\
\square & =\langle\{1, i\},\{1,-i\},\{1,-1\},\{i,-i,-1\}\rangle
\end{aligned}
$$

The transversal semigroup is isomorphic to the extension $C_{2}^{1}=C_{2} \cup\{e\}$ of the cyclic group C_{2} by an external unit $e \notin C_{2}$ (such that $e x=x=x e$ for all $x \in C_{2}^{1}$). The action of the group C_{4} on $\lambda\left(C_{4}\right)$ is free so, $\lambda\left(C_{4}\right)$ is isomorphic to $\lambda_{T}\left(C_{4}\right) \oplus C_{4}$.

The semigroup $\lambda\left(C_{2} \oplus C_{2}\right)$ has a similar algebraic structure. It contains a transversal semigroup

$$
\lambda_{T}\left(C_{2} \oplus C_{2}\right)=\{e, \triangle, \square\} \subset \lambda\left(C_{2} \oplus C_{2}\right)
$$

where e is the principal ultrafilter supported by the neutral element $(1,1)$ of $C_{2} \oplus C_{2}$ and the maximal linked inclusion hyperspaces \triangle and \square are defined by analogy with the case of the group C_{4} :

$$
\begin{aligned}
\triangle & =\langle\{(1,1),(1,-1)\},\{(1,1),(-1,1)\},\{(1,-1),(-1,1)\}\rangle \text { and } \\
\square & =\langle\{(1,1),(1,-1)\},\{(1,1),(-1,1)\},\{(1,1),(-1,-1)\},\{(1,-1),(-1,1),(-1,-1)\}\rangle .
\end{aligned}
$$

The transversal semigroup $\lambda_{T}\left(C_{2} \oplus C_{2}\right)$ is isomorphic to C_{2}^{1} and $\lambda\left(C_{2} \oplus\right.$ C_{2}) is isomorphic to $C_{2}^{1} \oplus C_{2} \oplus C_{2}$.

We summarize the obtained results on the algebraic structure of the semigroups $\lambda\left(C_{4}\right)$ and $\lambda\left(C_{2} \oplus C_{2}\right)$ in the following proposition.

Proposition 6.1. Let G be a group of cardinality $|G|=4$.

1. The semigroup $\lambda(G)$ is isomorphic to $C_{2}^{1} \oplus G$ and thus is commutative;
2. $\lambda(G)$ contains two idempotents;
3. $\lambda(G)$ has a unique proper ideal $\lambda(G) \backslash G$ isomorphic to the group $C_{2} \oplus G$.

6.4. The semigroup $\lambda\left(C_{5}\right)$.

Unlike to $\lambda\left(C_{4}\right)$, the semigroup $\lambda\left(C_{5}\right)$ has complicated algebraic structure. It contains 81 elements. One of them is zero

$$
\mathcal{Z}=\left\{A \subset C_{5}:|A| \geq 3\right\}
$$

which is invariant under any bijection of C_{5}. All the other 80 elements have 5-element orbits under the action of C_{5}, which implies that the orbit semigroup $\lambda\left(C_{5}\right) / C_{5}$ consists of 17 elements. Let $\pi: \lambda\left(C_{5}\right) \rightarrow \lambda\left(C_{5}\right) / C_{5}$ denote the orbit projection.

It will be convenient to think of C_{5} as the field $\{0,1,2,3,4\}$ with the multiplicative subgroup $C_{5}^{*}=\{1,-1,2,-2\}$ of invertible elements (here -1 and -2 are identified with 4 and 3 , respectively). Also for elements $x, y, z \in C_{5}$ we shall write $x y z$ instead of $\{x, y, z\}$.

The semigroup $\lambda\left(C_{5}\right)$ contains 5 idempotents:

$$
\begin{aligned}
\mathcal{U} & =\langle 0\rangle, \mathcal{Z}, \\
\Lambda_{4} & =\langle 01,02,03,04,1234\rangle \\
\Lambda & =\langle 02,03,123,014,234\rangle \\
2 \Lambda & =\langle 04,01,124,023,143\rangle,
\end{aligned}
$$

which commute and thus form an abelian subsemigroup $E\left(\lambda\left(C_{5}\right)\right)$. Being a semilattice, $E\left(\lambda\left(C_{5}\right)\right)$ carries a natural partial order: $e \leq f$ iff $e \circ f=e$. The partial order

$$
\mathcal{Z} \leq \Lambda, 2 \Lambda \leq \Lambda_{4} \leq \mathcal{U}
$$

on the set $E\left(\lambda\left(C_{5}\right)\right)$ is designed at the picture:

The other distinguished subset of $\lambda\left(C_{5}\right)$ is

$$
\begin{aligned}
\sqrt{E\left(\lambda\left(C_{5}\right)\right)} & =\left\{\mathcal{L} \in \lambda\left(C_{5}\right): \mathcal{L} \circ \mathcal{L} \in E\left(\lambda\left(C_{5}\right)\right)\right\}= \\
& =\left\{\mathcal{L} \in \lambda\left(C_{5}\right): \mathcal{L} \circ \mathcal{L} \circ \mathcal{L} \circ \mathcal{L}=\mathcal{L} \circ \mathcal{L}\right\}
\end{aligned}
$$

We shall show that this set contains a point from each C_{5}-orbit in $\lambda\left(C_{5}\right)$.
First we show that this set has at most one-point intersection with each orbit. Indeed, if $\mathcal{L} \in \sqrt{E\left(\lambda\left(C_{5}\right)\right)}$ and $\mathcal{L} \circ \mathcal{L} \neq \mathcal{Z}$, then for every $a \in C_{5} \backslash\{0\}$, we get

$$
\begin{aligned}
(\mathcal{L}+a) \circ(\mathcal{L}+a) & \circ(\mathcal{L}+a) \circ(\mathcal{L}+a)=\mathcal{L} \circ \mathcal{L} \circ \mathcal{L} \circ \mathcal{L}+4 a= \\
= & \mathcal{L} \circ \mathcal{L}+4 a \neq \mathcal{L} \circ \mathcal{L}+2 a=(\mathcal{L}+a) \circ(\mathcal{L}+a)
\end{aligned}
$$

witnessing that $\mathcal{L}+a \notin \sqrt{\lambda_{T}\left(C_{5}\right)}$.
By a direct calculation one can check that the set $\lambda_{T}\left(C_{5}\right)$ contains the following four maximal linked systems:

$$
\begin{aligned}
\Delta & =\langle 02,03,23\rangle \\
\Lambda_{3} & =\langle 02,03,04,234\rangle \\
\Theta & =\langle 14,012,013,123,024,034,234\rangle \\
\Gamma & =\langle 02,04,013,124,234\rangle
\end{aligned}
$$

For those systems we get

$$
\begin{aligned}
& \Delta \circ \Delta=\Delta \circ \Delta \circ \Delta=\Lambda, \\
& \Lambda_{3} \circ \Lambda_{3}=\Lambda_{3} \circ \Lambda_{3} \circ \Lambda_{3}=\Lambda \\
& \mathcal{F} \circ \Theta=\mathcal{F} \circ \Gamma=\mathcal{Z} \text { for every } \mathcal{F} \in \lambda\left(C_{5}\right) \backslash C_{5} .
\end{aligned}
$$

All the other elements of $\lambda\left(C_{5}\right)$ can be found as images of $\Delta, \Theta, \Gamma, \Lambda_{3}$ under the affine transformations of the field C_{5}. Those are maps of the form

$$
f_{a, b}: x \mapsto a x+b \quad \bmod 5
$$

where $a \in\{1,-1,2,-2\}=C_{5}^{*}$ and $b \in C_{5}$. The image of a maximal linked system $\mathcal{L} \in \lambda\left(C_{5}\right)$ under such a transformation will be denoted by $a \mathcal{L}+b$.

One can check that $a \Lambda_{4}=\Lambda_{4}$ for each $a \in C_{5}^{*}$ while $\Lambda=-\Lambda$, and $\Theta=-\Theta$. Since the linear transformations of the form $f_{a, 0}: C_{5} \rightarrow C_{5}$, $a \in C_{5}^{*}$, are authomorphisms of the group C_{5} the induced transformations $\lambda f_{a, 0}: \lambda\left(C_{5}\right) \rightarrow \lambda\left(C_{5}\right)$ are authomorphisms of the semigroup $\lambda\left(C_{5}\right)$. This implies that those transformations do not move the subsets $E\left(\lambda\left(C_{5}\right)\right)$ and $\sqrt{E\left(\lambda\left(C_{5}\right)\right)}$. Consequently, the set $\sqrt{E\left(\lambda\left(C_{5}\right)\right.}$ contains the maximal linked systems:

$$
a \Delta, a \Theta, a \Lambda_{3}, a \Gamma, a \in \mathbb{Z}_{5}^{*}
$$

which together with the idempotents form a 17-element subset

$$
T_{17}=E\left(\lambda\left(C_{5}\right)\right) \cup\{a \Delta, a \Theta: a \in\{1,2\}\} \cup\left\{a \Lambda_{3}, a \Gamma: a \in \mathbb{Z}_{5}^{*}\right\}
$$

that projects bijectively onto the orbit semigroup $\lambda\left(C_{5}\right) / C_{5}$. The set T_{17} looks as follows (we connect an element $x \in T_{17}$ with an idempotent $e \in T_{17}$ by an arrow if $x \circ x=e$):

The set $\sqrt{E\left(\lambda\left(C_{5}\right)\right)}$ includes 24 elements more and coincides with the union $T_{17} \cup \sqrt{\mathcal{Z}}$ where

$$
\sqrt{\mathcal{Z}}=\left\{a \Theta+b, a \Gamma+b: a \in \mathbb{Z}_{5}^{*}, b \in C_{5}\right\}
$$

Since each element of $\lambda\left(C_{5}\right)$ can be uniquely written as the sum $\mathcal{L}+b$ for some $\mathcal{L} \in T_{17}$ and $b \in C_{5}$, the multiplication table for the semigroup $\lambda\left(C_{5}\right)$ can be recovered from the Cayley table for multiplication of the elements from T_{17} :

\circ	Λ_{4}	Λ	Δ	Λ_{3}	$-\Lambda_{3}$	2Λ	2Δ	$2 \Lambda_{3}$	$-2 \Lambda_{3}$	$a \Theta, a \Gamma$
Λ_{4}	Λ_{4}	Λ	Λ	Λ	Λ	2Λ	2Λ	2Λ	2Λ	\mathcal{Z}
Λ	Λ	Λ	Λ	Λ	Λ	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}
Δ	Δ	Λ	Λ	Λ	Λ	2Θ	2Θ	2Θ	2Θ	\mathcal{Z}
Λ_{3}	Λ_{3}	Λ	Λ	Λ	Λ	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	\mathcal{Z}
$-\Lambda_{3}$	$-\Lambda_{3}$	Λ	Λ	Λ	Λ	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	\mathcal{Z}
2Λ	2Λ	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	2Λ	2Λ	2Λ	2Λ	\mathcal{Z}
2Δ	2Δ	Θ	Θ	Θ	Θ	2Λ	2Λ	2Λ	2Λ	\mathcal{Z}
$2 \Lambda_{3}$	$2 \Lambda_{3}$	$\Theta-1$	$\Theta-1$	$\Theta-1$	$\Theta-1$	2Λ	2Λ	2Λ	2Λ	\mathcal{Z}
$-2 \Lambda_{3}$	$-2 \Lambda_{3}$	$\Theta+1$	$\Theta+1$	$\Theta+1$	$\Theta+1$	2Λ	2Λ	2Λ	2Λ	\mathcal{Z}
Θ	Θ	Θ	Θ	Θ	Θ	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}
2Θ	2Θ	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	2Θ	2Θ	2Θ	2Θ	\mathcal{Z}
Γ	Γ	$\Theta+1$	$\Theta+1$	$\Theta+1$	$\Theta+1$	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	\mathcal{Z}
$-\Gamma$	$-\Gamma$	$\Theta-1$	$\Theta-1$	$\Theta-1$	$\Theta-1$	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	\mathcal{Z}
2Γ	2Γ	$\Theta-1$	$\Theta-1$	$\Theta-1$	$\Theta-1$	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	$2 \Theta+2$	\mathcal{Z}
-2Γ	-2Γ	$\Theta+1$	$\Theta+1$	$\Theta+1$	$\Theta+1$	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	$2 \Theta-2$	\mathcal{Z}

Looking at this table we can see that T_{17} is not a subsemigroup of $\lambda\left(C_{5}\right)$ and hence is not a transversal semigroup for $\lambda\left(C_{5}\right)$. This is not occasional.

Proposition 6.2. The semigroup $\lambda\left(C_{5}\right)$ contains no transversal semigroup.

Proof. Assume conversely that $\lambda\left(C_{5}\right)$ contains a subsemigroup T that projects bijectively onto the orbit semigroup $\lambda\left(C_{5}\right) / C_{5}$. Then T must include the set $E\left(\lambda\left(C_{5}\right)\right)$ of idempotents and also the subset $\sqrt{E\left(\lambda\left(C_{5}\right)\right)} \backslash$ $\sqrt{\mathcal{Z}}$. Consequently,

$$
T \supset\left\{\mathcal{U}, \mathcal{Z}, \Lambda,-\Lambda, \Delta, 2 \Delta, \Lambda_{3},-\Lambda_{3}, 2 \Lambda_{3},-2 \Lambda_{3}\right\}
$$

Since $2 \Lambda_{3} \circ \Lambda=\Theta-1 \neq \Theta=2 \Delta \circ \Lambda$, then there are two different points in the intersection $T \cap\left(\Theta+C_{5}\right)$ which should be a singleton. This contradiction completes the proof.

Analysing the Cayley table for the set T_{17} we can establish the following properties of the semigroup $\lambda\left(C_{5}\right)$.

Proposition 6.3. 1. The maximal linked system \mathcal{Z} is the zero of $\lambda(\mathbb{Z})$.
2. $\lambda\left(C_{5}\right)$ contains 5 idempotents: $\mathcal{U}, \mathcal{Z}, \Lambda_{4}, \Lambda, 2 \Lambda$, which commute.
3. The set of central elements of $\lambda\left(C_{5}\right)$ coincides with $C_{5} \cup\{\mathcal{Z}\}$.
4. All non-trivial subgroups of $\lambda\left(C_{5}\right)$ are isomorphic to C_{5}.

6.5. Summary table

The obtained results on the superextensions of groups G with $|G| \leq 5$ are summed up in the following table in which $K(\lambda(G))$ stands for the minimal ideal of $\lambda(G)$.

$\|G\|$	$\|\lambda(G)\|$	$\lambda(G)$	$\|E(\lambda(G))\|$	$K(\lambda(G))$	maximal group
2	2	C_{2}	1	C_{2}	C_{2}
3	4	$C_{3} \cup\{\triangleright\}$	2	$\{\triangleright\}$	C_{3}
4	12	$C_{2}^{1} \times G$	2	$C_{2} \times G$	$C_{2} \times G$
5	81	$T_{17} \cdot C_{5}$	5	$\{\mathcal{Z}\}$	C_{5}

References

$\left[\mathrm{BG}_{2}\right]$ T. Banakh, V. Gavrylkiv. Algebra in superextension of groups, II: cancelativity and centers, Algebra Discrete Math.
$\left[\mathrm{BG}_{3}\right]$ T. Banakh, V. Gavrylkiv. Algebra in superextension of groups, III: the minimal ideal of $\lambda(G)$, preprint (arXiv:0805.1583).
$\left[\mathrm{BG}_{4}\right]$ T. Banakh, V. Gavrylkiv. Algebra in superextension of groups, IV: representation theory, preprint.
[De] R. Dedekind, Über Zerlegungen von Zahlen durch ihre grüssten gemeinsammen Teiler // In Gesammelte Werke, Bd. 1 (1897), 103-148.
[$\left.\mathrm{G}_{1}\right]$ V. Gavrylkiv. The spaces of inclusion hyperspaces over noncompact spaces, Matem. Studii. 28:1 (2007), 92-110.
[G_{2}] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces, Matem. Studii. 29:1 (2008), 18-34.
$\left[\mathrm{H}_{1}\right]$ N. Hindman, Finite sums from sequences within cells of partition of $\mathbb{N} / /$ J. Combin. Theory Ser. A 17 (1974), 1-11.
$\left[\mathrm{H}_{2}\right]$ N. Hindman, Ultrafilters and combinatorial number theory // Lecture Notes in Math. 751 (1979), 49-184.
[HS] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, New York, 1998.
[vM] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts. 85. Amsterdam: Math. Centrum., 1977.
[P] I. Protasov. Combinatorics of Numbers, VNTL, Lviv, 1997.
[OA] L.A. Skorniakov et al., General Algebra, Nauka, Moscow, 1990 (in Russian).
[TZ] A. Teleiko, M. Zarichnyi. Categorical Topology of Compact Hausdofff Spaces, VNTL, Lviv, 1999.

Contact information

Taras Banakh
Ivan Franko National University of Lviv, Universytetska 1, 79000, Ukraine
E-Mail: tbanakh@yahoo.com URL: www.franko.lviv.ua/faculty/mechmat/ Departments/Topology/bancv.html

V. Gavrylkiv, Vasyl Stefanyk Precarpathian National Uni-
O. Nykyforchyn versity, Ivano-Frankivsk, Ukraine E-Mail: vgavrylkiv@yahoo.com

Received by the editors: 14.02.2008 and in final form 14.10.2008.

[^0]: 2000 Mathematics Subject Classification: 20M99, 54B20.
 Key words and phrases: Superextension, right-topological semigroup.
 ${ }^{1}$ Unpublished, see [HS, p.102], [H_{2}]

