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1 Triangular matrix and parapermanents

of triangular matrix

The functions of triangular matrices are widely used in algebra, combinatorics, number theory
and other branches of mathematics [9, 11, 12].

Definition 1.1. [11]. A triangular number table

a1
Q21 A22

Ap=1 . . (D
Anp1 Ap2 - Ann

is called a nth-order triangular matrix.

Note that a matrix (1) is not a triangular matrix in the usual sense of this term as it is not a
square matrix.
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The product a;; a; j+1 - - - a;; is denoted by {a;; } and is called a factorial product of the element
Qjj.
Definition 1.2. [11]. The parapermanent pper(A,,) of a triangular matrix (1) is the number

a1

g1 (22 - -
pper(An) = . . .. - Z Z H{am-‘r...—kps,P1+...+ps—1+1}7 (2)

r=1 p1+...4+pr=n s=1

Qp1 Qp2 " Qpn n

where py, pa, . .., p, are positive integers, {a;;} is the factorial product of the element a;;.

Example 1.3. The parapermanent of a 4-th order matrix:

pper(A,) = 1 =
asy asz2 Gss
A41 Q42 A43 Q44
= (41042043044 + Q31032033044 + 021022043044 + Q21022033044
+011042043044 + 111032033044 + Q11022043044 F A11022033044.

To each element a;; of a matrix (1) we associate the triangular table of elements of matrix A,
that has a,; in the bottom left corner. We call this table a corner of the matrix and denote it by
R;;(A,). Corner R;;(A,) is a triangular matrix of order (i — j + 1), and it contains only elements
a,s of matrix (1) whose indices satisfy the inequalities j < s < 7 < ¢.

Theorem 1.4. [11] (Decomposition of a parapermanent pper(A,) by elements of the last row).

The following formula are valid:

pper(A,) = Y {ans} pper(Ry-1,1(An)), (€)
s=1

where pper(Ry 1(A,)) = 1.

Example 1.5. Decomposition of a parapermanent pper(Ay) by elements of the last row:

pper(Ay) = agspper(As) + ayggaypper(As) + aspaszagapper(Ar) + agagpaszagspper(Ay),
where pper(A;) = ay, pperdo = 1.

R. Zatorsky and I. Lishchynskyy [10, 13] established connection between the paradeterminats
and the lower Hessenberg determinants by formula

{a11} 1 0 - 0 0
—{as } {azn} 1 . 0 0

—{CL31} —{&32} {CL33} c. 0 0

pper(A,) = , “4)

_{ar;fl,l} _{ar;fl,2} —{07;71,3} {anfl.,nfl} 1
—{an1} —{an2} —{ans} ... _{an,nfl} {ann}

where {a;;} is factorial product of the element a;;.
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2 A connection between the Horadam numbers

with even (odd) indices and parapermanents

In [5] A. Horadam considered the sequence

h1:p7 h2:q, hn:hnfl_khnf% 7123,

where p and ¢ are arbitrary integer numbers. This sequence generalized the Fibonacci sequence:

Fr=1, F=1 F,=F,_ 1+ F, 5, n>3,
and the Lucas sequence:
L1 = 2, L2 = 1, Ln = Ln—l + Ln—27 n 2 3.

Proposition 2.1. The following formula is valid:

w )
h
G|
0 M1
0 0 ks 1
h2n—1: . h.3
0 0 0 1
hon—
0 0 pat
0 0 0 --- 0 Z— 1

Proof. Expanding the parapermanent (5) by elements of the last raw (see (3)), we have

hopn—
hop—1 =1"hg,_3+ % hon—5 = hop—3 + hop_o.
2n—5

Obtained equality holds by definition of the sequence {%,, },,>1.

Proposition 2.2. The following formula is valid:

q
h
to ]
h
0 2 1
0 0 h 1
hon=| . . ™M
0 1
hon—
0 el
2n—1
i 0 0 _h2n74 1_

Proof. Using (3), we have

hop—
hon =1+ hop_o + 2nl

3 “hop—q = hop—o + hop_1.
2n—4
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3 Main results

In this section we proved two recurrence formulas expressing the Horadam numbers h,, by the

determinant of tridiagonal matrix. As a consequence we received the corresponding formulas for

the Fibonacci and Lucas numbers.

Proposition 3.1. The following formulas are valid:

P 1 0 0 0 0 0 0
—hy 1 10 0 0 0 0
0 —hs hit hy O 0 0 0
1
hopg=—————| 0 0 —hg hs h 0 0 0 7
" Dy haas o -0
0 _h2nf4 h2n77 h2n77
0 0 _hQn—Z h2n—5
q 1 0O 0 0 0 0 0
—hy 1 10 0 0 0 0
0 —hs hy hy O 0 0 0
1
hypy=-———1 0 0 —hy hy I 0 0 0 8
= Dol s A ()
0 0 0 0 0 —hon—3  hon—6 hon_s
0 0 0 0 0 0 —hon—1 hon—q
Proof. We prove the formula (7). From (5) using (4), we have
D 1 0 00 0 0 0
—2o1 1 000 0 0 0
0 - 1 10 0 0 0
hgn1=| 0 0 =k 11 0 0 0
0 0 0 00 e S U
2n—7
0 0 0 00 0 =2
After obvious simple transformations, we get (7).
Formula (8) can be proved similarly. ]
Example 3.2. Fibonacci numbers with odd indices:
1 1 0 0 0 0 0 0
—F 1 1 0 0 0 0 0
0O —-F, F F 0 0 0 0
1
Fyp1=————1| 0 0 —Fy F5 F 0 0 0
P T FiFy Py o
_F2n74 F2n77 F2n77
0 —Fo 2 Foys
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Example 3.3. The Fibonacci numbers with even indices:

1 1 0 0 O 0 0 0
—-F; 1 1 0 O 0 0 0
0 —-F F, F, 0 0 0 0
Fon = ! 0 0 —F F, F 0 0 0
FoFy - Foyy ) ) ) .
0 0 0 0 O —Fon_3  Fon¢  Fous
0 0 0O 0 O 0 —Fo 1 Foyy
Example 3.4. The Lucas numbers with odd indices:
2 1 0 0 O 0 0 0
—Ly 1 1 0 O 0 0 0
0 —-Ly Ly Ly O 0 0 0
1
Loy 1 = 0 0 —Lg¢ L3 L 0 0 0
T DLy Lags . ’ .3 .3
0 0 —Lop—y  Lon-7 Lo
0 0 0 0 0 0 —Lop_o Lopy_s
Example 3.5. The Lucas numbers with even indices:
1 1 0 0 0 0 0 0
—Ls 1 1 0 0 0 0 0
0 —Ls Ly Ly O 0 0 0
1
Lo, = 0 0 —-L; Ly L 0 0 0
= ToLy Lons o
0 0 0 _L2n73 LLn76 L2n76
o 0 0 - 0 —Lap-1 Lon—4

Note, that determinants of matrices, elements of which are classical or generalized Fibonacci
numbers, in particular, studied in [1, 2, 3, 4, 6, 7, 8].
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