Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 1, 103–108

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

Taras Goy

Department of Mathematics and Informatics Vasyl Stefanyk Precarpathian National University 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine e-mail: tarasqoy@yahoo.com

Received: 12 June 2016 Accepted: 31 January 2018

Abstract: Applying the apparatus of triangular matrices, we proved new recurrence formulas for the Fibonacci and Lucas numbers with even (odd) indices by tridiagonal determinants.

Keywords: Fibonacci numbers, Lucas numbers, Horadam sequence, Triangular matrix, Parapermanent of triangular matrix.

AMS Classification: 11B39, 11C20.

1 Triangular matrix and parapermanents of triangular matrix

The functions of triangular matrices are widely used in algebra, combinatorics, number theory and other branches of mathematics [9, 11, 12].

Definition 1.1. [11]. A triangular number table

$$A_{n} = \begin{pmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 (1)

is called a nth-order triangular matrix.

Note that a matrix (1) is not a triangular matrix in the usual sense of this term as it is not a square matrix.

103

The product $a_{ij} a_{i,j+1} \cdots a_{ii}$ is denoted by $\{a_{ij}\}$ and is called a factorial product of the element a_{ij} .

Definition 1.2. [11]. The parapermanent $pper(A_n)$ of a triangular matrix (1) is the number

$$\operatorname{pper}(A_n) \equiv \begin{bmatrix} a_{11} \\ a_{21} & a_{22} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}_n = \sum_{r=1}^n \sum_{p_1 + \dots + p_r = n} \prod_{s=1}^r \{a_{p_1 + \dots + p_s, p_1 + \dots + p_{s-1} + 1}\}, \quad (2)$$

where p_1, p_2, \ldots, p_r are positive integers, $\{a_{ij}\}$ is the factorial product of the element a_{ij} .

Example 1.3. *The parapermanent of a 4-th order matrix:*

$$\operatorname{pper}(A_4) = \begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ a_{31} & a_{32} & a_{33} & \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} =$$

$$= a_{41}a_{42}a_{43}a_{44} + a_{31}a_{32}a_{33}a_{44} + a_{21}a_{22}a_{43}a_{44} + a_{21}a_{22}a_{33}a_{44} + a_{11}a_{42}a_{43}a_{44} + a_{11}a_{32}a_{33}a_{44} + a_{11}a_{22}a_{43}a_{44} + a_{11}a_{22}a_{33}a_{44}.$$

To each element a_{ij} of a matrix (1) we associate the triangular table of elements of matrix A_n that has a_{ij} in the bottom left corner. We call this table a corner of the matrix and denote it by $R_{ij}(A_n)$. Corner $R_{ij}(A_n)$ is a triangular matrix of order (i-j+1), and it contains only elements a_{rs} of matrix (1) whose indices satisfy the inequalities $j \leqslant s \leqslant r \leqslant i$.

Theorem 1.4. [11] (Decomposition of a parapermanent $pper(A_n)$ by elements of the last row). *The following formula are valid:*

$$pper(A_n) = \sum_{s=1}^{n} \{a_{ns}\} pper(R_{s-1,1}(A_n)),$$
(3)

where $\operatorname{pper}(R_{0,1}(A_n)) \equiv 1$.

Example 1.5. Decomposition of a parapermanent $pper(A_4)$ by elements of the last row:

$$\operatorname{pper}(A_4) = a_{44}\operatorname{pper}(A_3) + a_{43}a_{44}\operatorname{pper}(A_2) + a_{42}a_{43}a_{44}\operatorname{pper}(A_1) + a_{41}a_{42}a_{43}a_{44}\operatorname{pper}(A_0),$$
 where
$$\operatorname{pper}(A_1) = a_{11}, \operatorname{pper}A_0 \equiv 1.$$

R. Zatorsky and I. Lishchynskyy [10, 13] established connection between the paradeterminats and the lower Hessenberg determinants by formula

$$\operatorname{pper}(A_{n}) = \begin{vmatrix} \{a_{11}\} & 1 & 0 & \dots & 0 & 0 \\ -\{a_{21}\} & \{a_{22}\} & 1 & \dots & 0 & 0 \\ -\{a_{31}\} & -\{a_{32}\} & \{a_{33}\} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\{a_{n-1,1}\} & -\{a_{n-1,2}\} & -\{a_{n-1,3}\} & \dots & \{a_{n-1,n-1}\} & 1 \\ -\{a_{n1}\} & -\{a_{n2}\} & -\{a_{n3}\} & \dots & -\{a_{n,n-1}\} & \{a_{nn}\} \end{vmatrix}, \tag{4}$$

where $\{a_{ij}\}$ is factorial product of the element a_{ij}

2 A connection between the Horadam numbers with even (odd) indices and parapermanents

In [5] A. Horadam considered the sequence

$$h_1 = p, h_2 = q, h_n = h_{n-1} + h_{n-2}, n \ge 3,$$

where p and q are arbitrary integer numbers. This sequence generalized the Fibonacci sequence:

$$F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2}, n \ge 3,$$

and the Lucas sequence:

$$L_1 = 2, L_2 = 1, L_n = L_{n-1} + L_{n-2}, n \ge 3.$$

Proposition 2.1. *The following formula is valid:*

$$h_{2n-1} = \begin{bmatrix} p & & & & & \\ \frac{h_2}{1} & 1 & & & & \\ 0 & \frac{h_4}{h_1} & 1 & & & \\ 0 & 0 & \frac{h_6}{h_3} & 1 & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & & \\ 0 & 0 & 0 & 0 & \cdots & 1 & \\ 0 & 0 & 0 & 0 & \cdots & \frac{h_{2n-4}}{h_{2n-7}} & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \frac{h_{2n-2}}{h_{2n-5}} & 1 \end{bmatrix}.$$
 (5)

Proof. Expanding the parapermanent (5) by elements of the last raw (see (3)), we have

$$h_{2n-1} = 1 \cdot h_{2n-3} + \frac{h_{2n-2}}{h_{2n-5}} \cdot h_{2n-5} = h_{2n-3} + h_{2n-2}.$$

Obtained equality holds by definition of the sequence $\{h_n\}_{n\geq 1}$.

Proposition 2.2. *The following formula is valid:*

$$h_{2n} = \begin{bmatrix} q & & & & & & \\ \frac{h_3}{1} & 1 & & & & & \\ 0 & \frac{h_5}{h_2} & 1 & & & & \\ 0 & 0 & \frac{h_7}{h_4} & 1 & & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & & & \\ 0 & 0 & 0 & 0 & \cdots & 1 & & \\ 0 & 0 & 0 & 0 & \cdots & \frac{h_{2n-3}}{h_{2n-6}} & 1 & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & \frac{h_{2n-1}}{h_{2n-4}} & 1 \end{bmatrix}.$$
 (6)

Proof. Using (3), we have

$$h_{2n} = 1 \cdot h_{2n-2} + \frac{h_{2n-1}}{h_{2n-4}} \cdot h_{2n-4} = h_{2n-2} + h_{2n-1}.$$

3 Main results

In this section we proved two recurrence formulas expressing the Horadam numbers h_n by the determinant of tridiagonal matrix. As a consequence we received the corresponding formulas for the Fibonacci and Lucas numbers.

Proposition 3.1. The following formulas are valid:

$$h_{2n-1} = \frac{1}{h_1 h_3 \cdots h_{2n-5}} \begin{vmatrix} p & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -h_2 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_4 & h_1 & h_1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & -h_6 & h_3 & h_3 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -h_{2n-4} & h_{2n-7} & h_{2n-7} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -h_3 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_5 & h_2 & h_2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -h_7 & h_4 & h_4 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -h_{2n-3} & h_{2n-6} & h_{2n-6} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -h_{2n-1} & h_{2n-4} \end{vmatrix}$$

Proof. We prove the formula (7). From (5) using (4), we have

Proof. We prove the formula (7). From (5) using (4), we have

$$h_{2n-1} = \begin{vmatrix} p & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -\frac{h_2}{1} & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -\frac{h_4}{h_1} & 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -\frac{h_6}{h_3} & 1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -\frac{h_{2n-4}}{h_{2n-7}} & 1 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{h_{2n-2}}{h_{2n-5}} & 1 \end{vmatrix}.$$

After obvious simple transformations, we get (7).

Formula (8) can be proved similarly.

Example 3.2. Fibonacci numbers with odd indices:

$$F_{2n-1} = \frac{1}{F_1 F_3 \cdots F_{2n-5}} \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -F_2 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -F_4 & F_1 & F_1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -F_6 & F_3 & F_3 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -F_{2n-4} & F_{2n-7} & F_{2n-7} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -F_{2n-2} & F_{2n-5} \end{vmatrix}.$$

Example 3.3. The Fibonacci numbers with even indices:

$$F_{2n} = \frac{1}{F_2 F_4 \cdots F_{2n-4}} \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -F_3 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -F_5 & F_2 & F_2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -F_7 & F_4 & F_4 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -F_{2n-3} & F_{2n-6} & F_{2n-6} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -F_{2n-1} & F_{2n-4} \end{vmatrix}.$$

Example 3.4. The Lucas numbers with odd indices:

$$L_{2n-1} = \frac{1}{L_1 L_3 \cdots L_{2n-5}} \begin{vmatrix} 2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -L_2 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -L_4 & L_1 & L_1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -L_6 & L_3 & L_3 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -L_{2n-4} & L_{2n-7} & L_{2n-7} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -L_{2n-2} & L_{2n-5} \end{vmatrix}.$$

Example 3.5. The Lucas numbers with even indices:

Note, that determinants of matrices, elements of which are classical or generalized Fibonacci numbers, in particular, studied in [1, 2, 3, 4, 6, 7, 8].

4 Acknowledgements

The author is grateful to professor Roman Zatorsky, Department of Mathematics and Informatics, Vasyl Stefanyk Precarpathian National University (Ukraine), for constant attention to this work and for useful discussions.

References

[1] Civciv, H. (2008) A note on the determinant of five-diagonal matrices with Fibonacci numbers, *Int. J. Contemp. Math. Sciences*, 3(9), 419–424.

- [2] İpek, A. (2011) On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers, *Eurasian Math. J.*, 2(2), 60–74.
- [3] İpek, A., K. Arı (2014) On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers, *Appl. Math. Comput.*, 229, 433–439.
- [4] Jaiswal, D. V. (1969) On determinants involving generalized Fibonacci numbers, *Fibonacci Quart.*, 7(3), 319–330.
- [5] Horadam, A.F. (1961) A generalized Fibonacci Sequence, *Amer. Math. Monthly*, 68, 455–459.
- [6] Koshy, T. (2001) Fibonacci and Lucas Numbers with Applications, New York: John Wiley & Sons.
- [7] Kwong, H. (2007) Two determinants with Fibonacci and Lucas entries, *Appl. Math. Comput.*, 194(2), 568–571.
- [8] Tangboonduangjit, A., T. Thanatipanonda (2015) Determinants containing powers of generalized Fibonacci numbers, http://arxiv.org/pdf/1512.07025.pdf.
- [9] Zatorsky, R. (2015) Introduction to the theory of triangular matrices (tables). In: I. I. Kyrchei (eds.) *Advances in Linear Algebra Research*, New York: Nova Science Publishers, 185–238.
- [10] Zatorsky, R. A. (2002) On paradeterminants and parapermanents of triangular matrices, *Matematychni Studii*, 17(1), 3–17 (in Ukranian).
- [11] Zatorsky, R. A. (2007) Theory of paradeterminants and its applications, *Algebra Discrete Math.*, 1, 108–137.
- [12] Zatorsky, R., T. Goy (2016) Parapermanents of triangular matrices and some general theorems on number sequences, *J. Integer Seq.*, 19(2), Article 16.2.2.
- [13] Zatorsky, R. A., I. I. Lishchynskyy (2006) On connection between determinants and paradeterminants, *Matematychni Studii*, 25(1), 97–102 (in Ukranian).