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Generalized reversed Jensen-Steffensen
and related inequalities
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We compare two linear functionals that are negative on convex functions. Further, using Green’s

functions we give some new conditions for reversed Jensen-Steffensen and related inequalities to

hold. Using Green’s function we also give refinement of Levinson type generalization of reversed

Jensen-Steffensen and related inequalities. The acquired results are then used for constructing

mean-value theorems.
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1 Introduction and preliminaries

Fundamental articles regarding convex functions originate by the turn of the 19th cen-

tury, however, the concrete definition of the convex functions has been progressed by the

efforts of the Danish mathematician and engineer J.L.W.V. Jensen [7, 8] from 1905, and his

well known inequality. Many years later, the Jensen inequality was contemplated on the weak-

ened conditions, additionally refined, improved, reversed, generalized, etc., and it is yet a

consent of stimulus for further inquiry. By weakening the conditions of the Jensen inequal-

ity, the reversed Jensen, Jensen-Stefensen and reversed Jensen-Stefensen inequalities were ob-

tained. H.D. Brunk generalized it to a great extent in [4] and his result is known as the Jensen-

Brunk inequality also reverse of Jensen-Brunk inequality was given by J.E. Pečarić et. al. (see

[11, p. 85]). One more generalization is the Jensen-Boas inequality and the reverse Jensen-Boas

inequality (see [3] and [11, p. 86]). All these inequalities and many other results can be found

in [11], an outstanding book regarding convex functions. Moreover, many other celebrated

inequalities are obtained by making use of the Jensen inequality, like the Hölder inequality,

the Cauchy inequality, inequalities between means, and the Young inequality to mention but a

few. The power and significance of the Jensen inequality can not be measured because the ap-

plications of the aforementioned inequalities are broadly spread in all domains. An interested

scholar can view various articles, which apply this inequality (see, for example, [6–18]).
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Here, and in the rest of the article, [κ, λ] and [γ, δ] are intervals in R, and κ < λ, γ < δ. In

order to simplify the notation, throughout this paper we use the following notation

ζ =
1

Pn

n

∑
i=1

piζi and µ =
1

∫ λ
κ dψ(t)

∫ λ

κ
µ(t) dψ(t).

To begin with, we give a discrete form of Jensen inequality [11, p. 43] (see also [9, p. 6]).

Proposition 1. Let ζ = (ζ1, . . . , ζn) be n-tuple in [γ, δ]n and p = (p1, . . . , pn) be nonnegative

n-tuple such that Pn := p1 + · · ·+ pn > 0. Then for any convex function Υ : [γ, δ] → R we get

Υ

(

1

Pn

n

∑
i=1

piζi

)

≤
1

Pn

n

∑
i=1

piΥ(ζi), (1)

where

Pj =
j

∑
i=1

pi, j ∈ {1, . . . , n}. (2)

If Υ is strictly convex, then inequality in (1) is strict, except when ζ1 = · · · = ζn.

Jensen-Steffensen inequality is proved by J.F. Steffensen in [17] (see also [11, p. 57]).

Proposition 2. Let ζ = (ζ1, . . . , ζn) be a monotonic n-tuple in [γ, δ]n and p = (p1, . . . , pn) be a

real n-tuple such that ζ ∈ [γ, δ] and the inequalities

0 ≤ Pj ≤ Pn, 1 ≤ j ≤ n, Pn > 0,

are satisfied, where Pj are as in (2). Then for any convex function Υ : [γ, δ] → R the inequality

(1) still holds.

For later use, let us introduse the Jensen-Steffensen functional Aζ,p with

Aζ,p (Υ) =
1

Pn

n

∑
i=1

piΥ(ζi)−Υ

(

1

Pn

n

∑
i=1

piζi

)

.

Obviously, (1) can be expressed by Aζ,p (Υ) ≥ 0.

The integral version of Jensen-Steffensen inequality was established by J.F. Steffensen in

[17], however here we acknowledged a variant established by R.P. Boas [3] (see also [11, p. 58]).

Proposition 3. Let µ : [κ, λ] −→ [γ, δ] be a continuous and monotonic function. Let

ψ : [κ, λ] −→ R be either continuous or of bounded variation function such that µ ∈ [γ, δ]

and satisfying

ψ(κ) ≤ ψ(t) ≤ ψ(λ) for all t ∈ [κ, λ], ψ(λ)− ψ(κ) > 0.

Then for any continuous convex function Υ : [γ, δ] −→ R the inequality

Υ

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t)dψ(t)

)

≤
1

∫ λ
κ dψ(t)

∫ λ

κ
Υ(µ(t))dψ(t) (3)

holds.
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Here equivalently we represent the Jensen-Boas functional B
µ,ψ
κ,λ with

B
µ,ψ
κ,λ (Υ) =

1
∫ λ

κ dψ(t)

∫ λ

κ
Υ(µ(t))dψ(t) −Υ

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t)dψ(t)

)

.

R.P. Boas [3] also proved a generalization of Proposition 3, so called Jensen-Boas inequality

(see also [13] and [11, p. 59]).

Proposition 4. Let ψ : [κ, λ] −→ R be continuous or of bounded variation function satisfying

ψ(κ) ≤ ψ(t1) ≤ ψ(s1) ≤ ψ(t2) ≤ · · · ≤ ψ(sn−1) ≤ ψ(tn) ≤ ψ(λ)

for all tk ∈ (sk−1, sk), where s0 = κ, sn = λ and ψ(κ) < ψ(λ). If a function µ is continuous

and monotonic (either increasing or decreasing) in each of the n − 1 intervals (sk−1, sk) and

µ ∈ [γ, δ], then for every continuous convex function Υ : [γ, δ] −→ R inequality (3) holds.

The following Jensen-Brunk inequality is also the generalization of Jensen-Steffensen

inequality (see [4]).

Proposition 5. Let µ : [κ, λ] −→ [γ, δ] be a continuous and increasing function. Let

ψ : [κ, λ] −→ R be continuous or of bounded variation function, such that µ ∈ [γ, δ] and

satisfying ψ(κ) < ψ(λ). Then for every continuous convex function Υ : [γ, δ] −→ R inequality

(3) holds if and only if

∫ s

κ
(µ(s)− µ(t)) dψ(t) ≥ 0 and

∫ λ

s
(µ(s)− µ(t)) dψ(t) ≤ 0

for all s ∈ [κ, λ].

J.E. Pečarić in his article [12] used the Fuchs generalization of majorization theorem [5] to

establish the necessary and sufficient condition for the validity of following reversed Jensen-

Steffensen inequality (see also [11, p. 83] and [9, p. 6]).

Proposition 6. Let ζ = (ζ1, . . . , ζn) be monotonic n-tuple in [γ, δ]n and p = (p1, . . . , pn) be a

real n-tuple such that Pn > 0, ζ ∈ [γ, δ], and there exists l ∈ {1, . . . , n} such that

Pj ≤ 0 for j < l and Pj ≤ 0 for j > l,

where Pj are as in (2) and

Pj =
n

∑
i=j

pi, j ∈ {1, . . . , n}.

Then for any convex function Υ : [γ, δ] → R the inequality

Υ

(

1

Pn

n

∑
i=1

piζi

)

≥
1

Pn

n

∑
i=1

piΥ(ζi) (4)

holds.



370 Rubab F., Khan A.R.

J.E. Pečarić also established the following integral version of reversed Jensen-Steffensen

inequality in [14], which is a generalization of an inequality of R.E. Barlow et. al. in [2].

Proposition 7. Let µ : [κ, λ] −→ [γ, δ] be a continuous and monotonic function, and let

ψ : [κ, λ] −→ R be a function of bounded variation such that µ ∈ [γ, δ] and ψ(λ) > ψ(κ).

If there exists ϑ ∈ [κ, λ] such that

ψ(t) ≤ ψ(κ) for κ ≤ t ≤ ϑ,

ψ(t) ≥ ψ(λ) for ϑ < t ≤ λ,

then for any continuous convex function Υ : [γ, δ] −→ R the inequality

Υ

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t) dψ(t)

)

≥
1

∫ λ
κ dψ(t)

∫ λ

κ
Υ(µ(t)) dψ(t) (5)

holds.

Remark 1. In Proposition 7, the interval [κ, ϑ] and (ϑ, λ] can be recovered by [κ, ϑ) and [ϑ, λ],

respectively.

A reverse of Jensen-Boas inequality is given in [14] (see also [11, p. 86]).

Proposition 8. Let µ : [κ, λ] −→ [γ, δ] be a continuous function. Let a function ψ : [κ, λ] −→ R

is of bounded variation such that µ ∈ [γ, δ] with ψ(λ) > ψ(κ), and satisfies

ψ(sm−1) ≤ ψ(tm−1) ≤ ψ(sm−2) ≤ · · · ≤ ψ(t1) ≤ ψ(κ) < ψ(λ)

≤ ψ(tn) ≤ · · · ≤ ψ(tm+1) ≤ ψ(sm)
(6)

for all tk ∈ (sk−1, sk), where k 6= m, m ∈ {1, . . . , n}, s0 = κ, sn = λ, and there exists a

ϑ ∈ [sm−1, sm] such that ψ(tm) ≤ ψ(sm−1) for every tm ∈ [sm−1, ϑ] and ψ(tm) ≥ ψ(sm) for

every tm ∈ (ϑ, sm], provided that µ is continuous and monotonic (in either direction) in each

of the n − 1 intervals (sk−1, sk). Then for every continuous convex function Υ : [γ, δ] −→ R the

inequality (5) holds.

The following generalization of reversed Jensen-Steffensen inequality is known as the

reversed Jensen-Brunk inequality (see [11, p. 85]).

Proposition 9. Let µ : [κ, λ]−→ [γ, δ] be continuous and increasing function. Let ψ : [κ, λ]−→R

be a function of bounded variation such that µ ∈ [γ, δ] and satisfying ψ(κ) < ψ(λ). Then for

every continuous convex function Υ : [γ, δ] −→ R the inequality (5) holds if and only if
∫ s

κ
(µ(s)− µ(t)) dψ(t) ≤ 0 holds for every s ∈ [κ, λ] such that µ̄ ≥ µ(s) (7)

and
∫ λ

s
(µ(s)− µ(t)) dψ(t) ≥ 0 holds for every s ∈ [κ, λ] such that µ̄ ≤ µ(s). (8)

Note, that if µ̄ < µ(κ), the condition in (7) is taken to be vacuous, and if µ̄ > µ(λ), the

condition in (8) is taken to be vacuous.

This article is organized in the following manner. Next to the introduction, the section

accompanying the main results of the article follows. We analyze the aforestated functionals

under the class of 3-convex functions at a point that was established in [1] (our Theorems 1,

2 and 3). Further we give a unified analysis of inequalities of the reversed Jensen-Steffensen

type, for the Green’s function in Theorems 4 – 7. In the last section, these results are then used

to establish Cauchy and Lagrange type mean-value theorems.
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2 Main results

Throughout this section, for ease, we represent by en the functions en(t) = tn, n ∈ N. The

underlaying class of functions is established in [1].

Definition 1. Let Υ : [γ, δ] −→ R and c ∈ (γ, δ), where (γ, δ) is the interior of [γ, δ]. We say

that Υ ∈ Kc
1([γ, δ]) (resp. Υ ∈ Kc

2([γ, δ])) if there exists a constant KΥ such that the function

Ψ(ζ) = Υ(ζ)− KΥ

2 e2(ζ) is concave (resp. convex) on [γ, δ]∩ (−∞, c] and convex (resp. concave)

on [γ, δ] ∩ [c, ∞).

Remark 2. A function Υ ∈ Kc
1([γ, δ]) is said to be 3-convex at point c. It was shown in [1] that

a function Υ is 3-convex on an interval if and only if it is 3-convex at every point of interval. It

was also shown in [1] that if Υ
′′(c) exists, then KΥ = Υ

′′(c).

In the following theorem we analyse the reversed Jensen-Steffensen functionals on the re-

versed Jensen-Boas conditions.

Theorem 1. Let c ∈ (γ, δ) and let µ : [κ1, λ1] → [γ, δ] and ν : [κ2, λ2] → [γ, δ] be continuous

functions such that µ([κ1, λ1]) ⊂ [γ, c] and ν([κ2, λ2]) ⊂ [c, δ]. Let ψ : [κ1, λ1] → R be a

function of bounded variation such that µ̄ ∈ [γ, c] with ψ(κ1) < ψ(λ1), and satisfying

ψ(sl−1) ≤ ψ(tl−1) ≤ ψ(sl−2) ≤ · · · ≤ ψ(t1) ≤ ψ(κ1) < ψ(λ1)

≤ ψ(tn) ≤ · · · ≤ ψ(tm+1) ≤ ψ(sm)

for all tk ∈ (sk−1, sk), where k 6= l, l ∈ {1, . . . , n}, s0 = κ1, sn = λ1, and there exists a

ϑ ∈ [sl−1, sl] such that ψ(tl) ≤ ψ(sl−1) for every tl ∈ [sl−1, ϑ] and ψ(tl) ≥ ψ(sl) for every

tl ∈ (ϑ, sl], provided that µ is continuous and monotonic (in either direction) in each of the

n − 1 intervals (sk−1, sk). Let σ : [κ2, λ2] → R be a function of bounded variation such that

ν̄ ∈ [c, δ] with σ(κ2) < σ(λ2), and satisfying

σ(ul−1) ≤ σ(vl−1) ≤ σ(ul−2) ≤ · · · ≤ σ(v1) ≤ σ(κ2) < σ(λ2)

≤ σ(vn) ≤ · · · ≤ σ(vl+1) ≤ σ(ul)

for all vk ∈ (uk−1, uk), where k 6= l, l ∈ {1, . . . , n}, u0 = κ2, un = λ2, and there exists a

ϑ ∈ [ul−1, ul] such that σ(vl) ≤ σ(ul−1) for every vl ∈ [ul−1, ϑ] and σ(vl) ≥ σ(ul) for every

vl ∈ (ϑ, ul], provided that ν is continuous and monotonic (in either direction) in each of the

n − 1 intervals (uk−1, uk).

If Υ ∈ Kc
1([γ, δ]) is continuous and B

µ,ψ
κ1,λ1

(e2) = Bν,σ
κ2,λ2

(e2), i.e.

∫ λ1
κ1

dψ(t)
∫ λ1

κ1
µ2(t)−

(

∫ λ1
κ1

µ(t)dψ(t)
)2

(

∫ λ1

κ1
dψ(t)

)2
=

∫ λ2

κ2
dσ(t)

∫ λ2

κ2
ν2(t)−

(

∫ λ2

κ2
ν(t)dσ(t)

)2

(

∫ λ2

κ2
dσ(t)

)2
, (9)

then

B
µ,ψ
κ1,λ1

(Υ) ≥ Bν,σ
κ2,λ2

(Υ). (10)
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Proof. Let Ψ(ζ) = Υ(ζ) − KΥ

2 e2(ζ), where KΥ is the constant from Definition 1. Since

Ψ : [γ, δ] ∩ (−∞, c] → R is concave, reversed Jensen-Steffensen inequality (5) implies

0 ≥ B
µ,ψ
κ1,λ1

(−Ψ) = −B
µ,ψ
κ1,λ1

(Υ) +
KΥ

2
B

µ,ψ
κ1,λ1

(e2). (11)

Similarly, Ψ : [γ, δ] ∩ [c, ∞) → R is convex, so,

0 ≥ Bν,σ
κ2,λ2

(Ψ) = Bν,σ
κ2,λ2

(Υ)−
KΥ

2
Bν,σ

κ2,λ2
(e2). (12)

Adding up (11) and (12) we obtain

0 =
KΥ

2

(

Bν,σ
κ2,λ2

(e2)− B
µ,ψ
κ1,λ1

(e2)
)

≥ Bν,σ
κ2,λ2

(Υ)− B
µ,ψ
κ1,λ1

(Υ),

which completes the proof.

By the similar reasoning we can analyse the discrete reversed Jensen-Steffensen functionals

on the reversed Jensen-Steffensen conditions.

Theorem 2. Let ζ = (ζ1, . . . , ζn) and ρ = (ρ1, . . . , ρm) be two real monotonic tuples from

[γ, δ] such that ζi ∈ [γ, c] for all i ∈ {1, . . . , n} and ρj ∈ [c, δ] for all j ∈ {1, . . . , m}. Let

p = (p1, . . . , pn) and q = (q1, . . . , qm) are real tuples such that ζ ∈ [γ, c] with Pn > 0, and

ρ ∈ [c, δ] with Qm > 0. Moreover, there exist l ∈ {1, . . . , n} and k ∈ {1, . . . , m} such that

Pi ≤ 0 for i < l, and Pi ≤ 0 for i > l; (13)

Qj ≤ 0 for j < k, and Qj ≤ 0 for j > k. (14)

If Aζ,p(e2) = Aρ,q(e2), i.e.

1

Pn

n

∑
i=1

piζ
2
i − ζ

2
=

1

Qm

m

∑
i=1

qiρ
2
i − ρ2, (15)

then for every Υ ∈ Kc
1([γ, δ]) we have

Aζ,p(Υ) ≥ Aρ,q(Υ).

Also by the similar reasoning we can analyse the reversed Jensen-Steffensen functionals on

the reversed Jensen-Brunk conditions.

Theorem 3. Let c ∈ (γ, δ) and let µ : [κ1, λ1] → [γ, δ] and ν : [κ2, λ2] → [γ, δ] be continuous and

increasing functions such that µ([κ1, λ1]) ⊂ [γ, c] and ν([κ2, λ2]) ⊂ [c, δ]. Let ψ : [κ1, λ1] → R

and σ : [κ2, λ2] → R be functions of bounded variation such that µ̄ ∈ [γ, c], ν̄ ∈ [c, δ], and

satisfying ψ(κ1) < ψ(λ1), σ(κ2) < σ(λ2). Let

∫ s

κ1

(µ(s)− µ(t)) dψ(t) ≤ 0 holds for every s ∈ [κ1, λ1] such that µ̄ ≥ µ(s) (16)

and
∫ λ1

s
(µ(s)− µ(t)) dψ(t) ≥ 0 holds for every s ∈ [κ1, λ1] such that µ̄ ≤ µ(s), (17)
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and let

∫ s

κ2

(ν(s)− ν(t)) dσ(t) ≤ 0 holds for every s ∈ [κ2, λ2] such that ν̄ ≥ ν(s) (18)

and
∫ λ2

s
(ν(s)− ν(t)) dσ(t) ≥ 0 holds for every s ∈ [κ2, λ2] such that ν̄ ≤ ν(s). (19)

Note, that if µ̄ < µ(κ1), the condition in (16) is taken to be vacuous, and if µ̄ > µ(λ1), the

condition in (17) is taken to be vacuous. Moreover, if ν̄ < ν(κ2), the condition in (18) is taken

to be vacuous, and if ν̄ > ν(λ2), the condition in (19) is taken to be vacuous.

If (9) is satisfied, then for any continuous Υ ∈ Kc
1([γ, δ]) inequality (10) holds.

In [10], J.E. Pečarić et. al. generalizes the Jensen inequality through Green’s function for

real Stieltjes measure which is not necessarily positive, nor increasing. Motivated by these re-

sults we established analogous results for reversed Jensen-Steffensen inequality in this section.

These established results gave us generalized refinement of Theorem 2. The Green function is

defined on [γ, δ]× [γ, δ] by

G(θ, η) =







(θ−δ)(η−γ)
(δ−γ)

, for γ ≤ η ≤ θ,
(η−δ)(θ−γ)

(δ−γ)
, for θ ≤ η ≤ δ,

(20)

which is continuous and convex regarding both η and θ. Under both η and θ the function

G is continuous, and, using integrating by parts, we can easily show that any function

Υ : [γ, δ] → R, Υ ∈ C2[γ, δ], can be represented by

Υ(ζ) =
δ − ζ

δ − γ
Υ(γ) +

ζ − γ

δ − γ
Υ(δ) +

∫ δ

γ
G(ζ, η)Υ′′(η)dη. (21)

To establish the generalized refinement of Theorem 2, first we have to prove using

Green’s functions some new conditions for reversed Jensen-Steffensen inequality under re-

versed Jensen-Boas conditions to hold.

Theorem 4. Let µ : [κ, λ] −→ [γ, δ] be a continuous function. Let ψ : [κ, λ] −→ R is a function

of bounded variation such that µ ∈ [γ, δ] with ψ(λ) > ψ(κ), and satisfies (6).

Then the following statements are equivalent.

(1) For every continuous convex function Υ : [γ, δ] → R the inequality (5) holds.

(2) For all η ∈ [γ, δ] the inequality

G

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t)dψ(t), η

)

≥
1

∫ λ
κ dψ(t)

∫ λ

κ
G(µ(t), η)dψ(t) (22)

holds, where the function G : [γ, δ]× [γ, δ] → R is defined in (20).
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Proof. (1) ⇒ (2). Let (1) holds. While the function G(., η), η ∈ [γ, δ], is also convex and

continuous accordingly also (5) holds for the function G(., η), i.e. (22) holds.

(2) ⇒ (1). Let (2) holds. We notice that we can easily shown every function Υ : [γ, δ] → R,

Υ ∈ C2([γ, δ]), in the structure of (21), where the function G is defined in (20). With simple

calculations, using (21), we can obtain with ease that

Υ

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t)dψ(t)

)

−
1

∫ λ
κ dψ(t)

∫ λ

κ
Υ(µ(t))dψ(t)

=
∫ δ

γ

[

G

(

1
∫ λ

κ dψ(t)

∫ λ

κ
µ(t)dψ(t), η

)

−
1

∫ λ
κ dψ(t)

∫ λ

κ
G(µ(t), η)dψ(t)

]

Υ
′′(η)dη.

If the Υ is also convex, then Υ
′′(η) ≥ 0 for all η ∈ [γ, δ]. Therefore, if (22) holds for every

η ∈ [γ, δ], then for the convexity of Υ : [γ, δ] → R with Υ ∈ C2([γ, δ]), it follows that inequality

(5) holds.

In the end, observe that it is not essential to claim the existence of the double derivative of

the function Υ (see [11, p. 172]). The condition of the differentiability can be directly removed

by applying the fact that it is feasible to approximate uniformly a continuous convex function

by convex polynomials.

The last part of our theorem can be proved analogously.

Observe that for each continuous concave function Υ : [γ, δ] → R inequality (5) is reversed,

i.e. the underlaying corollary holds.

Corollary 1. Under the conditions of Theorem 4, following two statements are equivalent.

(1′) For every continuous concave function Υ : [γ, δ] → R the reverse inequality in (5)

holds.

(2′) For all η ∈ [γ, δ] inequality (22) holds, where the function G is defined in (20).

Further, the statements (1′) and (2′) are also equivalent in case that we alter inequality sign

in both (1′) and (2′).

Now we give a Levinson type generalization of the result from Theorem 4, which will also

refined the result of Theorem 1.

Theorem 5. Let the assumptions of Theorem 1 are fulfilled.

If condition (9) holds, and for all η1 ∈ [γ, c] and for all η2 ∈ [c, δ] we have

G(µ̄, η1) ≥

∫ λ1
κ1

G(µ(ζ), η1)dψ(ζ)
∫ λ1

κ1
dψ(ζ)

and G(ν̄, η2) ≥

∫ λ2

κ2
G(ν(ζ), η2)dσ(ζ)
∫ λ2

κ2
dσ(ζ)

, (23)

where the function G is defined in (20), then for every continuous function Υ ∈ Kc
1([γ, δ]) we

have

B
µ,ψ
κ1,λ1

(Υ) ≥
KΥ

2
D ≥ Bν,σ

κ2,λ2
(Υ). (24)

The statement also holds if we reverse all signs of inequalities in (23) and (24).
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Proof. Let Υ ∈ Kc
1([γ, δ]) be continuous function on [γ, δ] and let Ψ(ζ) = Υ(ζ) − KΥ

2 e2(ζ),

where KΥ is constant from Definition 1.

As the function Ψ is concave and continuous on [γ, c] and (23) hold for every η1 ∈ [γ, c], it

follows from Corollary 1 that

Ψ(µ̄) ≤

∫ λ1

κ1
Ψ(µ(ζ))dψ(ζ)
∫ λ1

κ1
dψ(ζ)

.

When we reorganize the former inequality, we obtain

∫ λ1

κ1
Υ(µ(ζ))dψ(ζ)
∫ λ1

κ1
dψ(ζ)

−Υ(µ̄) ≥
KΥ

2





∫ λ1

κ1
µ2(ζ)dψ(ζ)
∫ λ1

κ1
dψ(ζ)

− µ̄2



 . (25)

As the function Ψ is convex and continuous on [c, δ] and for all η2 ∈ [c, δ] the inequalities

(23) hold, it follows from Theorem 4 that

Ψ(ν̄) ≥

∫ λ2

κ2
Ψ(ν(ζ))dσ(ζ)
∫ λ2

κ2
dσ(ζ)

.

When we rearrange the previous inequality, we get

KΥ

2





∫ λ2

κ2
ν2(ζ)dσ(ζ)
∫ λ2

κ2
dσ(ζ)

− ν̄2



 ≥

∫ λ2

κ2
Υ(ν(ζ))dσ(ζ)
∫ λ2

κ2
dσ(ζ)

−Υ(ν̄). (26)

Inequality (24) follows directly by combining (25) and (26), and taking into consideration

the condition (9).

Corollary 2. Under the conditions of Theorem 5 we have the following statements.

(1′′) If for all η1 ∈ [γ, c] and for all η2 ∈ [c, δ] inequalities (23) hold, where the function G is

defined in (20), then for every continuous function Υ ∈ Kc
2([γ, δ]) the reverse inequalities hold

in (24).

(2′′) If for all η1 ∈ [γ, c] and for all η2 ∈ [c, δ] the reverse inequalities (23) hold, then for

every continuous function Υ ∈ Kc
2([γ, δ]) the inequalities (24) hold.

Following theorem gave some new conditions for reversed Jensen-Steffensen inequality to

hold using Green’s functions.

Theorem 6. Let ζ = (ζ1, . . . , ζn) be real monotonic n-tuple such that ζi ∈ [γ, δ] for all

i ∈ {1, . . . , n}. Let p = (p1, . . . , pn) be real n-tuple such that
1

Pn

n

∑
i=1

piζi ∈ [γ, δ] with Pn > 0.

Moreover, there exists l ∈ {1, . . . , n}, satisfying (13).

Then the following statements are equivalent.

(1) For every continuous convex function Υ : [γ, δ] → R the inequality (4) holds.

(2) For all η ∈ [γ, δ] the inequality

G

(

1

Pn

n

∑
i=1

piζi, η

)

≥
1

Pn

n

∑
i=1

piG(ζi, η)

holds, where the function G : [γ, δ]× [γ, δ] → R is defined in (20).
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Now we give a Levinson type generalization of the result from Theorem 6, which will also

refined the result of Theorem 2.

Theorem 7. Under all the assumptions of Theorem 2 we have the following.

If condition (15) holds, and for all η1 ∈ [γ, c] and for all η2 ∈ [c, δ] we have

G(ζ̄, η1) ≥
1

Pn

n

∑
i=1

piG(ζi, η1) and G(ρ̄, η2) ≥
1

Qm

m

∑
j=1

qjG(ρj, η2),

where the function G is defined in (20), then for every continuous function Υ ∈ Kc
1([γ, δ]) we

have

Aζ,p(Υ) ≥
KΥ

2
C ≥ Aρ,q(Υ).

3 Mean value results

In this section, we establish linear functionals as certain differences of the linear functionals

from the previous section. We utilize the linearity of these functionals to obtain two mean

value theorems. For tuples ζ, p ∈ R
n and ρ, q ∈ R

m that fulfilling the conditions of Theorem 2,

i.e. such that ζ ∈ [γ, δ]n and ρ ∈ [γ, δ]m are monotonic and (13), (14) and (15) hold, we represent

the linear functional

∧1(Υ) = ∧1(Υ; ζ, p, ρ, q) = Aρ,q(Υ)− Aζ,p(Υ). (27)

The linear functional ∧1 depends on the selection of ζ, p, ρ and q, but we will exclude them

from the representation, when they are clear from the text. By Theorem 2, for every continuous

Υ ∈ Kc
1([γ, δ]) we have ∧1(Υ) ≥ 0.

Similarly under the assumptions of Theorem 1, we define the linear operator

∧2(Υ) = ∧2(Υ; µ, ψ, κ1, λ1, ν, σ, κ2, λ2) = Bν,σ
κ2,λ2

(Υ)− B
µ,ψ
κ1,λ1

(Υ).

We establish the mean value results for the linear functional ∧1, whereas related results are

also valid for linear functional ∧2. The following theorem is a mean value result, which is of

Lagrange type.

Theorem 8. Let ζ, p, ρ and q be as in Theorem 2 and let ∧1 be given by (27). Then for

Υ ∈ C3([γ, δ]) there exists ξ ∈ [γ, δ] such that

∧1(Υ) =
Υ
′′′(ξ)

6
=

[

1

Qm

m

∑
i=1

qiρ
3
i −

(

1

Qn

m

∑
i=1

qiρi

)3

−
1

Pn

n

∑
i=1

piζ
3
i +

(

1

Pn

n

∑
i=1

piζi

)3 ]

. (28)

Proof. Since Υ ∈ C3([γ, δ]), there exist m = minζ∈[γ,δ]Υ
′′′(ζ) and M = maxζ∈[γ,δ]Υ

′′′(ζ).

Define

Υ1(ζ) = Υ(ζ)− m
6 e3(ζ),

Υ2(ζ) =
M
6 e3(ζ)−Υ(ζ).

These functions satisfy Υ
′′′
i (ζ) ≥ 0, i = 1, 2, so they are three times differentiable 3-convex

functions.
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Therefore, Υ1,Υ2 ∈ Kc
1([γ, δ]) (see Remark 2) and by Theorem 2 we have ∧1(Υi) ≤ 0,

i = 1, 2, so

m

6
∧1(e3) ≥ ∧1(Υ) ≥

M

6
∧1(e3). (29)

Since e3 is 3-convex, by Theorem 2 we have

0 ≥ ∧1(e3) =
1

Qm

m

∑
i=1

qiρ
3
i −

(

1

Qn

m

∑
i=1

qiρi

)3

−
1

Pn

n

∑
i=1

piζ
3
i +

(

1

Pn

n

∑
i=1

piζi

)3

.

If ∧1(e3) = 0, then (29) implies ∧1(Υ) = 0 and (28) holds for every ξ ∈ [γ, δ]. Otherwise,

dividing (29) by ∧1(e3)
6 < 0, we get

m ≤
6∧1(Υ)

∧1(e3)
≤ M.

So, continuity of Υ′′′ insures existence of ξ ∈ [γ, δ] satisfying (28).

The following theorem is a mean value result, which is Cauchy type.

Theorem 9. Let c, [γ, δ], ζ, p, ρ, q and ∧1 be as in Theorem 8 and let Υ, ψ ∈ C3([γ, δ]). If

∧1(ψ) 6= 0, then there exists ξ ∈ [γ, δ] such that either

∧1(Υ)

∧1(ψ)
=

Υ
′′′(ξ)

ψ′′′(ξ)
,

or

Υ
′′′(ξ) = ψ′′′(ξ) = 0.

Proof. Define τ ∈ C3([γ, δ]) by τ(ζ) = αΥ(ζ) − βψ(ζ), where α = ∧1(ψ), β = ∧1(Υ). Because

linearity of ∧1 we have ∧1(τ) = 0. Now, by Theorem 8 there exist ξ, ξ1 ∈ [γ, δ] such that

0 = ∧1(τ) =
τ′′′(ξ)

6 ∧1(e3),

0 6= ∧1(ψ) =
ψ′′′(ξ1)

6 ∧1(e3).

Therefore, ∧1(e3) 6= 0 and

0 = τ′′′(ξ) = αΥ′′′(ξ)− βψ′′′(ξ),

that gives the claim of the theorem.
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Рубаб Ф., Хан А.Р. Узагальненi оберненi нерiвностi Єнсена-Штеффенсена та пов’язанi нерiвностi

// Карпатськi матем. публ. — 2024. — Т.16, №2. — C. 367–378.

Ми порiвнюємо два лiнiйнi функцiонали, якi є вiд’ємнi на опуклих функцiях. Крiм того,

використовуючи функцiї Грiна, ми наводимо деякi новi умови для виконання обернених не-

рiвностей Єнсена-Штеффенсена та пов’язаних нерiвностей. Використовуючи функцiю Грiна,

ми також надаємо уточнення узагальнення типу Левiнсона обернених нерiвностей Єнсена-

Штеффенсена та пов’язаних нерiвностей. Вiдтак отриманi результати використовуються для

побудови теорем про середнє значення.

Ключовi слова i фрази: нерiвнiсть Єнсена-Мерсера, нерiвнiсть Єнсена-Штеффенсена.


