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Generalized reversed Jensen-Steffensen
and related inequalities

Rubab F.™ Khan A.R.2

We compare two linear functionals that are negative on convex functions. Further, using Green’s
functions we give some new conditions for reversed Jensen-Steffensen and related inequalities to
hold. Using Green’s function we also give refinement of Levinson type generalization of reversed
Jensen-Steffensen and related inequalities. The acquired results are then used for constructing
mean-value theorems.
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1 Introduction and preliminaries

Fundamental articles regarding convex functions originate by the turn of the 19th cen-
tury, however, the concrete definition of the convex functions has been progressed by the
efforts of the Danish mathematician and engineer J.L.W.V. Jensen [7, 8] from 1905, and his
well known inequality. Many years later, the Jensen inequality was contemplated on the weak-
ened conditions, additionally refined, improved, reversed, generalized, etc., and it is yet a
consent of stimulus for further inquiry. By weakening the conditions of the Jensen inequal-
ity, the reversed Jensen, Jensen-Stefensen and reversed Jensen-Stefensen inequalities were ob-
tained. H.D. Brunk generalized it to a great extent in [4] and his result is known as the Jensen-
Brunk inequality also reverse of Jensen-Brunk inequality was given by ].E. Pecari¢ et. al. (see
[11, p. 85]). One more generalization is the Jensen-Boas inequality and the reverse Jensen-Boas
inequality (see [3] and [11, p. 86]). All these inequalities and many other results can be found
in [11], an outstanding book regarding convex functions. Moreover, many other celebrated
inequalities are obtained by making use of the Jensen inequality, like the Holder inequality,
the Cauchy inequality, inequalities between means, and the Young inequality to mention but a
few. The power and significance of the Jensen inequality can not be measured because the ap-
plications of the aforementioned inequalities are broadly spread in all domains. An interested
scholar can view various articles, which apply this inequality (see, for example, [6-18]).
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Here, and in the rest of the article, [k, A] and [y, ] are intervals in R, and k < A, v < 4. In
order to simplify the notation, throughout this paper we use the following notation

{=5 Ypidi and Fi= p(t) dy ().
ni=1

1 A
g
S dp(e) I
To begin with, we give a discrete form of Jensen inequality [11, p. 43] (see also [9, p. 6]).

Proposition 1. Let { = ({1,...,{n) be n-tuple in [y, 6|" and p = (p1,..., pn) be nonnegative
n-tuple such that P, := p1 + - - - + p» > 0. Then for any convex function T : [, 5] — R we get

1 & 1 &
T (P_n i;méﬁ) < P—ni;PiT(Ci), (1)
where

j
Pi=Y pi, je{l,...,n} )
i=1

If T is strictly convex, then inequality in (1) is strict, except when {1 = - - - = (.
Jensen-Steffensen inequality is proved by ].F. Steffensen in [17] (see also [11, p. 57]).

Proposition 2. Let{ = ({1,...,{n) be a monotonic n-tuple in [y, 6" and p = (p1,...,pn) be a
real n-tuple such that { € [v, ] and the inequalities

OSP]SPﬂllg]Sn/ PH>O/

are satisfied, where P; are as in (2). Then for any convex function T : [y, 6] — R the inequality
(1) still holds.

For later use, let us introduse the Jensen-Steffensen functional A; ,, with
1 & 1 &
Arp (T) = P, Z;Pi'r(gi) -7 P, Z;pigi .
1= 1=

Obviously, (1) can be expressed by Az, (T) > 0.
The integral version of Jensen-Steffensen inequality was established by J.F. Steffensen in
[17], however here we acknowledged a variant established by R.P. Boas [3] (see also [11, p. 58]).

Proposition 3. Let u : [x,A] — [v,6] be a continuous and monotonic function. Let
P : [x,A] — R be either continuous or of bounded variation function such that i € [y, /]
and satisfying

Px) < p(t) <p(A) forallt € [k, A], P(A) —p(x) > 0.
Then for any continuous convex function T : [y, 6] — R the inequality

Tppﬁaﬁﬁmwm>sﬁﬁaﬂﬁwwww> ©

holds.
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Here equivalently we represent the Jensen-Boas functional B fj :\IJ with

BUY (T) = m / " ue) (e - (% / Apt(t)dl[)(t)) |

R.P. Boas [3] also proved a generalization of Proposition 3, so called Jensen-Boas inequality
(see also [13] and [11, p. 59]).

Proposition 4. Let : [k, A] — R be continuous or of bounded variation function satisfying
p(x) < 9(h) < Pls1) < P(fa) < - < Pplsp1) < P(ta) < P(A)

for all ty € (sx_1,sx), wheresy = «, s, = A and (k) < P(A). If a function u is continuous
and monotonic (either increasing or decreasing) in each of the n — 1 intervals (sx_1,sx) and
7 € [, 9], then for every continuous convex function T : [y,6] — R inequality (3) holds.

The following Jensen-Brunk inequality is also the generalization of Jensen-Steffensen
inequality (see [4]).

Proposition 5. Let u : [k,A] — [v,6] be a continuous and increasing function. Let
P : [k,A] — R be continuous or of bounded variation function, such that i € [v,4]| and
satisfying (k) < (A). Then for every continuous convex function T : [y, 6] — R inequality
(3) holds if and only if

[ ()~ p(®)dg() 20 and [ (u(s) — p(e)) dp(t) <0
foralls € [k, A].

J.E. Pecari¢ in his article [12] used the Fuchs generalization of majorization theorem [5] to
establish the necessary and sufficient condition for the validity of following reversed Jensen-
Steffensen inequality (see also [11, p. 83] and [9, p. 6]).

Proposition 6. Let { = ({3, ...,{n) be monotonic n-tuple in [y,5]" and p = (p1,...,pn) be a
real n-tuple such that P, > 0, [4= [7,6], and there exists] € {1,...,n} such that

P;<0 forj<l and P;j<0 forj>],

where P; are as in (2) and
n
Pj = Zpi, ] € {1,...,1’1}.
i=]
Then for any convex function T : [y,6] — R the inequality
1 & 1 &
T 7 Y pili | > i Y piT (%) (4)
=1 =1

holds.
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J.E. Petari¢ also established the following integral version of reversed Jensen-Steffensen
inequality in [14], which is a generalization of an inequality of R.E. Barlow et. al. in [2].

Proposition 7. Let u : [k,A] — [7,6] be a continuous and monotonic function, and let
Y : [k,A] — R be a function of bounded variation such that i € [v,d] and Pp(A) > P(k).
If there exists ¥ € [k, A] such that

P(f) < yP(x) for x<t<9,
P(t) > p(A) for 9 <t <A,
then for any continuous convex function T : [y, 6] — R the inequality

1 A 1 A
T<M / V(t)dw(t)> S AUCOILIC ®)
holds.

Remark 1. In Proposition 7, the interval [k, 8] and (8, A| can be recovered by [k, ¢) and [0, A],
respectively.

A reverse of Jensen-Boas inequality is given in [14] (see also [11, p. 86]).

Proposition 8. Let i : [k, A] — [, d] be a continuous function. Let a function : [k, A] — R
is of bounded variation such that i € [y, 6] with ¢(A) > ¢(x), and satisfies

P(sm—1) < P(tm—1) < Plsm—2) < -+ < P(tr) < P(x) < P(A)
< lP(tn) <. < ¢(tm+1) < l/J(Sm)
for all t, € (sx_1,sx), wherek # m, m € {1,...,n},so = k, s, = A, and there exists a
O € [Sy—1,5m] such that Y(ty) < (sy—1) for every ty, € [s;—1,09] and Y (tm) > P(sm) for
every t, € (8,sm], provided that u is continuous and monotonic (in either direction) in each

of the n — 1 intervals (si_1, sx). Then for every continuous convex function T : [y, 6] — R the
inequality (5) holds.

(6)

The following generalization of reversed Jensen-Steffensen inequality is known as the
reversed Jensen-Brunk inequality (see [11, p. 85]).

Proposition9. Let u: [k, A| — [, 6] be continuous and increasing function. Let ¢ : [k, A\] — R
be a function of bounded variation such that i € |, 4| and satisfying ¢(x) < ¢(A). Then for
every continuous convex function T : [y, 8] — R the inequality (5) holds if and only if

/S (u(s) — u(t)) dy(t) <0 holds for every s € [k, A] such that ji > u(s) (7)

and

/)L (u(s) — u(t))dp(t) > 0 holds for every s € [k, A] such that ji < u(s). (8)

Note, that if fi < u(x), the condition in (7) is taken to be vacuous, and if fi > p(A), the
condition in (8) is taken to be vacuous.

This article is organized in the following manner. Next to the introduction, the section
accompanying the main results of the article follows. We analyze the aforestated functionals
under the class of 3-convex functions at a point that was established in [1] (our Theorems 1,
2 and 3). Further we give a unified analysis of inequalities of the reversed Jensen-Steffensen
type, for the Green’s function in Theorems 4 — 7. In the last section, these results are then used
to establish Cauchy and Lagrange type mean-value theorems.
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2 Main results

Throughout this section, for ease, we represent by e, the functions e, (t) = t",n € IN. The
underlaying class of functions is established in [1].

Definition 1. Let T : [y,0] — R and ¢ € (v, 6), where (v, ) is the interior of [y, 5]. We say
that T € K{([7,9]) (resp. T € K5([v,6])) if there exists a constant Ky such that the function
¥(0) =T() — K%ez(g) is concave (resp. convex) on [y, 5] N (—oo, c| and convex (resp. concave)
on [y,5] N[c,00).

Remark 2. A function T € K{([,0]) is said to be 3-convex at point c. It was shown in [1] that
a function T is 3-convex on an interval if and only if it is 3-convex at every point of interval. It
was also shown in [1] that if T"(c) exists, then Ky = T"(c).

In the following theorem we analyse the reversed Jensen-Steffensen functionals on the re-
versed Jensen-Boas conditions.

Theorem 1. Letc € (,0) and let y : [x1,AM] — [v,6] and v : [x2, A2] — [7,d] be continuous
functions such that u([x1,M\]) C [v,c] and v([x2,A2]) C [c,6]. Lety : [k1,A1] — R be a
function of bounded variation such that fi € [, c| with (k1) < (A1), and satisfying

P(si—1) < P(t—1) < P(sj_n) < ---

for all t, € (sg_1,5¢), wherek # 1,1 € {1,...,n}, s9 = x1, sy = Ay, and there exists a

O € [s;_1,51] such that P(t;) < ¢(s;_1) for every t; € [s;_1,0] and P(t;) > ¢(s;) for every

t; € (9,s)], provided that u is continuous and monotonic (in either direction) in each of the

n — 1 intervals (s;_1,s;). Let o : [k2,A2] — R be a function of bounded variation such that

v € [c, 6] witho(xy) < 0(A2), and satisfying
o(u—1) <o(v1) <o(uz) <+ <o(v) <o) <o(Ar)

o(vn) <+ <o(v41) <o(u)

IN A

for all v, € (up_q,uy), wherek # 1,1 € {1,...,n}, uy = %, uy = Ay, and there exists a
® € [u;_1,u] such that o(v;) < o(u;_1) for every v; € [u;_1,9] and o(v;) > o(u;) for every
v; € (9, uy], provided that v is continuous and monotonic (in either direction) in each of the
n — 1 intervals (u_q, uy).

If T € K{([7,4]) is continuous and ch”lj\ (e2) = B, (e2), i.e.

i a(e) [ 20 = (far wodg(n) " oz dots) 2030 = (f2vindo(n)”

(flrapen)” (f2ao(e))’

B (T) > BY7, (7). (10)

x1,AM K2,A2

)

then
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Proof. Let ¥(0) = T(C) — Kz—Tez(C), where Ky is the constant from Definition 1. Since
¥ : [y,6] N (—oo,c] — R is concave, reversed Jensen-Steffensen inequality (5) implies

0> B (—¥) = —B" (1) + 5TpMY (). (11)

= Tr,M K1,A 2 KM
Similarly, ¥ : [y, 6] N [c,0) — R is convex, so,

0> B", (¥) = BY, (T) — STBve (¢y). (12)

K2,A2 K2,A2 2 TK2,Ap

Adding up (11) and (12) we obtain

K
0= =T (BY,, (e2) — BL%, (e2)) = BLY, (T) — BLh, (T),

2 K2,A2 K1 K2,A2 K1,A1
which completes the proof. O

By the similar reasoning we can analyse the discrete reversed Jensen-Steffensen functionals
on the reversed Jensen-Steffensen conditions.

Theorem 2. Let { = (1,...,0n) and p = (p1,...,pm) be two real monotonic tuples from
[v,0] such that {; € [v,c] foralli € {1,...,n} and p; € [c,¢] forall j € {1,...,m}. Let
p = (p1,...,pn) and g = (q1,...,qm) are real tuples such that { € [vy,c] with P, > 0, and
p € [c, 8] with Q,, > 0. Moreover, there exist | € {1,...,n} andk € {1,...,m} such that

P;<0 fori<l, and P;<0 fori>]I; (13)
Q<0 for j <k, and GjSO for j > k. (14)
IfAC,P (62) = Ap,q(EQ), ie.
1 ¢ =2 1 ¢ _
5Pl =8 = o Y qip; — P (15)
Py i=1 Qm i=1
then for every T € K{([v,]) we have
Agp(T) = Apy(T).

Also by the similar reasoning we can analyse the reversed Jensen-Steffensen functionals on
the reversed Jensen-Brunk conditions.

Theorem 3. Letc € (v,6) and lety : [k1,A] — [y,6] and v : [k, Ap] — [, 8] be continuous and
increasing functions such that y([x1,A1]) C [v,c] and v([rp, A2]) C [c,d]. Let : [k1,A1] = R
and 0 : [kp,A2] — R be functions of bounded variation such that ji € [y,c], 7 € [c,d], and
satisfying (k1) < (A1), 0(k2) < 0(Az). Let

/S (u(s) — u(t))dy(t) <0 holds forevery s € [k1,A1] such that ji > u(s) (16)

1
and

/)Ll (u(s) —u(t))dp(t) > 0 holds for every s € [K1,A1] such that fi < u(s), (17)
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and let

/ (v(s) —v(t))do(t) <0 holds foreverys € [k, Ay] such thatv > v(s) (18)
K

2
and

A
/ ’ (v(s) —v(t))do(t) > 0 holds forevery s € [ky, Ay] such thatv < v(s). (19)
S

Note, that if i < u(x1), the condition in (16) is taken to be vacuous, and if fi > (A1), the
condition in (17) is taken to be vacuous. Moreover, if 7 < v(ky), the condition in (18) is taken
to be vacuous, and if U > v(A,), the condition in (19) is taken to be vacuous.

If (9) is satisfied, then for any continuous T € Kf([v, 6]) inequality (10) holds.

In [10], J.E. Pecari¢ et. al. generalizes the Jensen inequality through Green’s function for
real Stieltjes measure which is not necessarily positive, nor increasing. Motivated by these re-
sults we established analogous results for reversed Jensen-Steffensen inequality in this section.
These established results gave us generalized refinement of Theorem 2. The Green function is
defined on [v, 8] x [v, 4] by

(9*5)(’7*7) f < <0
G(6,) { Gy v T == (20)

(1=0)(6=7)
W, for 0 S n S 5,
which is continuous and convex regarding both 7 and 6. Under both 7 and 6 the function
G is continuous, and, using integrating by parts, we can easily show that any function
T:[y,6] = R, T € C?[v,J], can be represented by

)

T(Q) = S=27 () + ==L (s) + /7 G(Z, )T (). (21)

To establish the generalized refinement of Theorem 2, first we have to prove using
Green’s functions some new conditions for reversed Jensen-Steffensen inequality under re-
versed Jensen-Boas conditions to hold.

Theorem 4. Let i1 : [k, A]| — [, 8] be a continuous function. Let ¢ : [k, A\]| — R is a function
of bounded variation such that7i € [y,6] with (1) > ¢(x), and satisfies (6).

Then the following statements are equivalent.
(1) For every continuous convex function T : [y, ] — R the inequality (5) holds.
(2) For ally € [, 4] the inequality

G (% / A#U)M(ﬂw) > s o @)

holds, where the function G : [y, 6] x [v,6] — R is defined in (20).
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Proof. (1) = (2). Let (1) holds. While the function G(.,77), # € [7,6], is also convex and
continuous accordingly also (5) holds for the function G(., ), i.e. (22) holds.

(2) = (1). Let (2) holds. We notice that we can easily shown every function T : [y,d] — R,
T € C?%([y,4]), in the structure of (21), where the function G is defined in (20). With simple
calculations, using (21), we can obtain with ease that

1 A 1 A
(i ) u(t)dlp(t))—m [

= e L s ) = e [ ot o] T

If the T is also convex, then T”(y) > 0 for all # € [v,d]. Therefore, if (22) holds for every
11 € [7,0), then for the convexity of T : [, 6] — R with T € C?([y, ¢]), it follows that inequality
(5) holds.

In the end, observe that it is not essential to claim the existence of the double derivative of
the function T (see [11, p. 172]). The condition of the differentiability can be directly removed
by applying the fact that it is feasible to approximate uniformly a continuous convex function
by convex polynomials.

The last part of our theorem can be proved analogously. O

Observe that for each continuous concave function T : [, 6] — R inequality (5) is reversed,
i.e. the underlaying corollary holds.

Corollary 1. Under the conditions of Theorem 4, following two statements are equivalent.
(1') For every continuous concave function T : [y,6] — R the reverse inequality in (5)
holds.
(2) For allyj € v, d] inequality (22) holds, where the function G is defined in (20).
Further, the statements (1') and (2') are also equivalent in case that we alter inequality sign
in both (1") and (2').

Now we give a Levinson type generalization of the result from Theorem 4, which will also
refined the result of Theorem 1.

Theorem 5. Let the assumptions of Theorem 1 are fulfilled.
If condition (9) holds, and for all 1 € [y, c] and for all 1, € [c, 5] we have

M G(u(Z),m)d 2 Gw(Q), m)d
G(ﬁ’q)_f lP(C) and GO, 2 Jo a(é’)

f I 4 Az do(
where the function G is defined in (20), then for every continuous function T € K{([v,4]) we
have

, (23)

B (1) > Kz D > B"’, (7). (24)

x1,M *2,A2

The statement also holds if we reverse all signs of inequalities in (23) and (24).
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Proof. Let T € K([7,4]) be continuous function on [v,d] and let ¥({) = T(7) — KZ—Tez(C)
where K is constant from Definition 1.

As the function ¥ is concave and continuous on [7, ¢] and (23) hold for every 111 € [v, c], it
follows from Corollary 1 that

e )
] f

When we reorganize the former inequality, we obtain

Al,r M 2
Ji fK @) s I<2[f = ﬁzl'

As the function ¥ is convex and continuous on [c, ] and for all 7, € [c, d] the inequalities
(23) hold, it follows from Theorem 4 that

(25)

f do(Z)
f“ dcr(@) |
When we rearrange the previous inequality, we get

Ky | Jo P@Qde@) S| [y T(E)do ()
2 fAsz B f/\zda

— T (). (26)

Inequality (24) follows directly by combining (25) and (26), and taking into consideration
the condition (9). O

Corollary 2. Under the conditions of Theorem 5 we have the following statements.

(1) If for all gy € [, c] and for all n € [c, ] inequalities (23) hold, where the function G is
defined in (20), then for every continuous function T € K5([7, d]) the reverse inequalities hold
in (24).

(2") If for all ;y € [7,c| and for all 5, € [c, 6] the reverse inequalities (23) hold, then for
every continuous function T € K5([v, d]) the inequalities (24) hold.

Following theorem gave some new conditions for reversed Jensen-Steffensen inequality to
hold using Green’s functions.

Theorem 6. Let { = ({1,...,{n) be real monotonic n- tuple such that gz [v,6] for all
ie€{l,...,n}. Letp = (p1,...,pn) be real n-tuple such that — szgz v, 6] with P, > 0.

Moreover, there exists | € {1,...,n}, satisfying (13).
Then the following statements are equivalent.
(1) For every continuous convex function T : [y, 8] — R the inequality (4) holds.
(2) Forally € [v,d] the inequality

1 n n
G <P_ Zpigi/ 17) Z CZ/
nij_—1 i=1

holds, where the function G : [y, 6] x [v,6] — R is defined in (20).
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Now we give a Levinson type generalization of the result from Theorem 6, which will also
refined the result of Theorem 2.

Theorem 7. Under all the assumptions of Theorem 2 we have the following.
If condition (15) holds, and for all 1 € [y, c] and for all n, € [c, 8] we have

n

Z G(Ci,m) and G(p,n2) > Q Zq] (0 112),
l’l’l

where the function G is defined in (20), then for every continuous function T € K{([v,4]) we
have

3 Mean value results

In this section, we establish linear functionals as certain differences of the linear functionals
from the previous section. We utilize the linearity of these functionals to obtain two mean
value theorems. For tuples {, p € IR" and p, g € R™ that fulfilling the conditions of Theorem 2,
i.e.such that € [y,d]" and p € [, ]™ are monotonic and (13), (14) and (15) hold, we represent
the linear functional

M(T)=MN(T;8p,p0,9) = Apqg(T) — Agp(T). (27)

The linear functional A depends on the selection of , p, p and g, but we will exclude them
from the representation, when they are clear from the text. By Theorem 2, for every continuous
T € K{([7,6]) we have A1(T) > 0.

Similarly under the assumptions of Theorem 1, we define the linear operator

Ao (T) = AT 0,9, 51, A1, v, 0, K2, Ag) = BY7, (T) — B¥% ().

K2,A2 x1,M

We establish the mean value results for the linear functional A7, whereas related results are
also valid for linear functional A;. The following theorem is a mean value result, which is of
Lagrange type.

Theorem 8. Let {,p,p and q be as in Theorem 2 and let A\ be given by (27). Then for
T € C3([v,4]) there exists & € [v, 5] such that

:T/N(g):[im,3_<im‘,>3_in,3 (in>3]
A1(T) 6 m;q#’z Qn;‘hpz Pﬂ;pz€z+ Pﬂ;ngz . (28)

Proof. Since T € C3([,d]), there exist m = minge(,,s) 7" (¢) and M = max;¢,5 7" ({)-
Define

These functions satisfy T/'({) > 0, i = 1,2, so they are three times differentiable 3-convex
functions.
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Therefore, T1, T, € K{([7,6]) (see Remark 2) and by Theorem 2 we have A(T;) < 0,
i=1,2,s0

% prles) > Aa(T) > %/\1(63). (29)

Since e3 is 3-convex, by Theorem 2 we have

1 o, (1 R A ’
0> AM(es) ==Y qip; — | ==Y qioi | —— Y_piGi + (5 Y_pridi]| -
Qm i— Qn i1 Py i=1 Py i=1
If A1(e3) = O, then (29) implies A1(T) = 0 and (28) holds for every ¢ € [, d]. Otherwise,
dividing (29) by % < 0, we get

6A1(T)
A1(e3)

So, continuity of T"" insures existence of ¢ € [v, d] satisfying (28). O

m < < M.

The following theorem is a mean value result, which is Cauchy type.

Theorem 9. Let c,[v,6],,p,p,q and A\, be as in Theorem 8 and let T,y € C3([v,d]). If
A1() # 0, then there exists { € [y, 6] such that either

M) T(E)
M) TP

or

() = (@) =0

Proof. Define T € C3([v,6]) by T(¢) = aT({) — By({), where « = A1(¢p), B = A1(T). Because
linearity of A1 we have A1(T) = 0. Now, by Theorem 8 there exist ¢, 1 € [, d] such that

0= /\1(1’) = #/\1(63),
0 # A(yp) = LA (e3).

Therefore, A1(e3) # 0 and

0=7"(&) = T"(Z) — By (2),

that gives the claim of the theorem. O
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Mm nopiBHIOEMO ABa AiHiVHI pyHKIIOHAAM, sIKi € Bia'eMHi Ha onmyxkamx dpyrkuisx. Kpim Toro,
BUKOpyMCTOBYIouM pyHKIil ['piHa, MI HABOAMMO AesIKi HOBi YMOBM AASI BUKOHAHHS ObepHEHMX He-
piBHOCTelt €HceHa-llITedppeHcena Ta OB’ s13aHNX HepiBHOCTel. Buxopucrosyroun dpynxuito I'piHa,
MM TaKOXX HaAA€EMO YTOUHEHHs y3araAbHeHHs THIy AeBiHCOHa obepHeHMX HepiBHOCTelt €HceHa-
Ireddencena Ta mos’si3aHNX HepiBHOCTe. BiaTak oTpyuMaHi pe3yAbTaTy BUKOPUCTOBYIOTBCS AAS
OOy AOBM TeOpeM IIPO cepeAHE 3HAUEHHSI.

Kntouosi crosa i ppasu: HepiBHicTH €HceHa-Mepcepa, HepiBHicTh €HceHa-1lITedpdencena.



