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Polynomials on algebraic manifolds

Atamuratov A.A.1,2

In this paper, we study polynomials on algebraic subvarieties A ⊂ C
N , dim A = n, n ≤ N, in the

point of view their polynomial extensions into the enclosing space C
N . It is important in observing

extremal Green function V(z, K) for compact subset K ⊂ A.
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Introduction

A holomorphic function p(z) ∈ O(CN) given on the space C
N is called to be a polynomial

on an algebraic set A ⊂ CN , dim A = n, with respect to CN , if for all z ∈ A it holds an inequal-

ity |p(z)| ≤ C(1 + ‖z‖)d with positive constants C, d > 0, where ‖z‖ is the Euclidean norm in

CN . The smallest of the numbers d satisfying this inequality is called degree of the polynomial

p, d = deg p. We denote by Pm
A (C

n) (or Pm
A for short) the class of all polynomials p on an

algebraic manifold A ⊂ C
N with deg p ≤ m. Let PA =

⋃∞
m=1 P

m
A is the class of all polyno-

mials on A. Obviously, in the definition of polynomials instead of the function p(z) ∈ O(CN)

we can take the functions p(z) ∈ O(A), since every holomorphic function on submanifold

A ⊂ CN , dim A = n, extends to CN as a holomorphic function.

Note that the algebraic manifolds are parabolic and the notion of polynomial can be defined

by another way, using special exhaustion function ρ(z). For complex manifolds of arbitrary di-

mensions its parabolicity means the existence of a special exhaustion function (see P. Griffiths

and J. King [5], W. Stoll [15, 16], A. Sadullaev [10], A. Aytuna and A. Sadullaev [1, 2] etc.).

Definition 1. A Stein manifold X ⊂ C
N of dimension n is called S-parabolic manifold, if there

exists a special exhaustion function ρ(z) that satisfies the conditions

a) ρ(z) ∈ psh(X), i.e. ρ is plurisubharmonic function, and {ρ ≤ M} ⊂⊂ X for all M ∈ R;

b) ρ is maximal plurisubharmonic function on the complement of a compact subset

K ⊂⊂ X, i.e. (ddcρ)n = 0 on X\K.

Let us define the concept of polynomials on a S-parabolic manifold X ⊂ CN .
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Definition 2. If for a function p(z) ∈ O(X) there exist positive real numbers c, d such that for

all z ∈ X the inequality

ln |p(z)| ≤ d · ρ+(z) + c (1)

holds, where ρ+(z) = max{0, ρ(z)}, then the function p is called ρ-polynomial of degree ≤ d.

The minimal value of d in the inequality (1) is called the degree of the polynomial p.

In order to determine the special exhaustion function on an algebraic variety A ⊂ C
N , we

will use the well-known geometric criterion for algebraicity by W. Rudin [9]: any algebraic set

of pure dimension n, 1 ≤ n < N, after a suitable unitary transformation can be represented in

the form

A ⊂
{

z ∈ C
N : ‖z′′‖ < c(1 + ‖z′‖)β

}

, z′ = (z1, . . . , zn), z′′ = (zn+1, . . . , zN),

where c, β are constants. In the work [11], A. Sadullaev pointed out that here we can actually

put β = 1, i.e. an algebraic variety can always be embedded into a cone

A ⊂
{

z ∈ C
N : ‖z′′‖ < c(1 + ‖z′‖)

}

.

Then as a special exhaustion function on A we can take the function ρ(z) = ln+ ‖z′‖, z ∈ A,

ρ(z) ∈ psh(A), (ddcρ(z))n = 0 on A\{‖z′‖ ≤ 1}.

According to the Definition 2, polynomials on A in terms of a special exhaustion function

ρ are defined as follows.

Definition 3. Assume that for a function p(z) ∈ O(A) there exist positive real numbers c, d

such that for all z ∈ A the inequality ln |p(z)| ≤ d · ln+ ‖z′‖+ c holds. Then the function p(z)

is called a ρ-polynomial of degree ≤ d on algebraic manifold A.

It is easy to check that if we choose the constant c sufficiently large, then

‖z′‖ ≤ ‖z‖ ≤ 2c‖z′‖

on A\{‖z′‖ ≤ 1}. Therefore the restriction p = P|A of an arbitrary polynomial P(z) ∈ P(CN)

is a ρ-polynomial on A.

1 Extension of polynomials from algebraic submanifolds

We are interested on the opposite question: if p(z) ∈ O(A) is a polynomial on A, will it be

a restriction of some polynomial P(z) in C
N? Positive answer to this question is important for

the study of the Green function V(z, K) of a compact subset K ⊂ A, which plays a key role in

the questions of polynomial approximations.

The problem of continuation of analytic functions from algebraic subvarieties to the

enclosing complex space, with various restrictions on growth, to powers of polynomials, were

studied by many famous mathematicians. In the works of L. Hörmander [6], H. Skoda [14],

J.E. Björk [3], J.P. Demailly [4], Sh. Nakano [7], Y. Nishimura [8] and other authors such ques-

tions are resolved using the theory of ∂̄-equations and L2-estimates.

In our case, it is interesting that for an arbitrary polynomial p(z) on an algebraic variety

A ⊂ C
N there is a continuation from A to C

N as a polynomial with a controlled degree.



Polynomials on algebraic manifolds 403

Example 1. The graph A = {zn+1 = g(z)} of a polynomial g(z) in the space Cn
z , deg g(z) = s,

is a S-parabolic manifold with the special exhaustion function ρ(z, zn+1) = ln+ ‖z‖, where

(z, zn+1) ∈ A, ρ(z, zn+1) ∈ psh(A), (ddcρ(z, zn+1))
n = 0 on A\{‖z‖ ≤ 1}.

It is clear, that if p(z) is a ρ-polynomial on A of degree d, i.e. if ln |p(z)| ≤ d · ρ+(z, zn+1)+ c,

z ∈ A, then the polynomial P(z, zn+1) = p(z) ∈ P(Cn+1) satisfies the same property

ln |P(z, zn+1)| ≤ d · ρ+(z, zn+1) + c ≤ d · ln+ ‖z‖+ c, (z, zn+1) ∈ C
n+1.

Therefore, each ρ-polynomial extends to Cn+1 and this extension will be a polynomial of

degree ≤ d.

And vice versa, restriction p = P|A of a polynomial P(z, zn+1) ∈ P(Cn+1) is a ρ-polynomial

on A, and deg P|A ≤ deg P = q. Indeed, if (z, zn+1) ∈ A\{‖z‖ ≤ 1}, we have ρ+(z, zn+1) =

ρ+(z, g(z)) = ln+ ‖z‖. Consequently, if P(z, zn+1) = ∑
q
k=0 ck(z, zn+1), where ck(z, zn+1) are

homogeneous polynomials of degree deg ck(z, zn+1) ≤ q, then for some C > 0 we have

|P(z, t(z))| ≤
q

∑
k=0

|ck(z, t(z))| ≤ C ·
q

∑
k=0

‖z‖q = C(q + 1) · ‖z‖q .

Hence, ln |P(z, g(z))| ≤ q · ρ+(z) + c, with c = ln C(q + 1) and the restriction P|A =

P(z, t(z)) is a ρ-polynomial of the same degree q as polynomial P(z, zn+1) ∈ P(Cn+1).

In the general case for arbitrary algebraic manifolds, we have the following result.

Theorem 1 (see J. Bjork [3]). For a fixed algebraic submanifold A ⊂ CN there exists a constant

b(A), depending only on submanifold A, such that for each polynomial p(z) on A there exists

a polynomial P(z) in C
N satisfying P|A = p, deg P ≤ deg p + b(A).

2 Extremal functions

The classical Bernstein-Walsh theorem establishes a close connection between rate of poly-

nomial approximation of a function f (z), defined on a compact set K ⊂ C, and its holomor-

phic extension to a neighborhood of K, defined by well-known Green function V(z, K). In

1962, J. Siciak [13] proved the following generalization of this theorem to the multidimensional

case. Let K ⊂ C
n be a regular compact set and ed( f , K) = infP∈Pd(Cn) ‖ f (z) − P(z)‖K is a

minimal deviation of a function f ∈ C(K) from the class of polynomials Pd(Cn) on K. A func-

tion f (z) initially defined on a compact set K extends holomorphically into a neighborhood

DR = {z ∈ X : Φ(z, K) < R}, R > 1, if and only if the inequality limd→∞e1/d
d ( f , K) ≤ 1/R

holds. Here Φ(z, K) = sup{|p(z)|1/deg p : p ∈ P(Cn), ‖p‖K ≤ 1} is Siciak extremal function

of compact set K.

Let us make a reservation right away that the extremal function Φ(z, K) is very inconvenient

from the point of view of its study, due to its algebraic definition using polynomials. In this

regard, the Green function V(z, K), which is defined by plurisubharmonic functions, is much

more convenient. The last one is simpler to define and in the study of its geometric properties,

local properties of plurisubharmonic functions are usually used.

In the space CN it holds the equality (see [12])

V(z, K) ≡ ln Φ(z, K), (2)
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which plays a key role in the multidimensional Bernstein-Walsh theorem. On an algebraic

variety A ⊂ CN , K ⊂⊂ A, the Green function is defined as

V∗
A(z, K) = lim

w→z
VA(w, K),

where VA(z, K) = sup{u(z) ∈ psh(A) : u(z) ≤ cu + ρ(z), u|K ≤ 0}.

The following result holds (it was proved together with A. Sadullaev).

Theorem 2. For any compact set K ⊂ A the following equality holds

VA(z, K) = ln ΦA(z, K),

where ΦA(z, K) = sup{|p(z)|1/ deg p : p(z) ∈ PA, |p(z)|K ≤ 1}.

Note that equality (2) in the space Cn was proved using embedding Cn ⊂ Pn and using

homogeneous polynomials in Pn, so we cannot use such a method to prove a similar result on

an algebraic variety A.

Proof. If we, in defining a function ΦA(z, K) for a fixed t ∈ N, limit ourselves to only polyno-

mials of degree ≥ t, i.e.

Φt
A(z, K) = sup{|p(z)|1/ deg p : p(z) ∈ PA, |p(z)|K ≤ 1, deg p ≥ t},

then ΦA(z, K) = Φt
A(z, K).

Indeed, it is clear that Φt
A(z, K) ≤ ΦA(z, K). On the other hand, for any fixed ε > 0 and any

fixed point z0 ∈ A there is a polynomial p(z) ∈ PA, such that |p(z0)|1/ deg p ≥ ΦA(z
0, K)− ε,

because of ΦA(z, K) = sup{|p(z)|1/ deg p : p(z) ∈ PA, |p(z)|K ≤ 1}. Raising the polynomial

p(z) ∈ PA to a power, we also preserve this relation

|pj(z0)|1/j deg p ≥ ΦA(z
0, K)− ε, deg pj(z) = j deg p.

If we take j so large that j deg p ≥ t, we get

Φt
A(z

0, K) = sup{|p(z0)|1/ deg p : p(z) ∈ PA, |p(z)|K ≤ 1, deg p ≥ t}

≥ |pj(z0)|1/j deg p ≥ ΦA(z
0, K)− ε.

Since the number ε > 0 and the point z0 ∈ Cn are arbitrary, we get Φt
A(z, K) ≥ ΦA(z, K) and

therefore

Φt
A(z, K) ≡ ΦA(z, K) ∀ t ∈ N.

Now we show that for any compact K ⊂ A the equality ΦA(z, K) ≡ Φ(z, K), z ∈ A, holds.

In fact, if we take a polynomial p(z) in CN , then its restriction q(z) = p(z)|A is a polynomial of

the degree less than or equal to deg p. Therefore,

Φ(z, K) = sup{|p(z)|1/ deg p : p ∈ P(CN), |p(z)|K ≤ 1}

≤ sup{|q(z)|1/ deg q : q ∈ PA, |q(z)|K ≤ 1} = ΦA(z, K), z ∈ A.
(3)

On the other hand, for an arbitrary polynomial q(z) on an algebraic variety A ⊂ CN there

is a continuation q(z) from A to C
N as a polynomial of a controlled degree. More precisely,

there is a constant b(A) depending only on A such that for any polynomial q(z) on A there is
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such a polynomial pq(z) in CN with pq|A = q, deg pq = deg q + b(A) (Theorem 1). Hence for

z ∈ A we have

ΦA(z, K) = sup{|q(z)|1/ deg q : q ∈ PA, |q(z)|K ≤ 1}

= sup{|q(z)|1/ deg q : q ∈ PA, |q(z)|K ≤ 1, deg q ≥ t}

= sup{|pq(z)|
1/ deg q : pq ∈ P(CN), |pq(z)|K ≤ 1, t ≤ deg pq ≤ deg q + b(A)}.

But when |pq(z)| > 1, the inequality

|pq(z)|
1/ deg q ≤ |pq(z)|

1/(deg pq−b(A)) = (|pq(z)|
1/ deg pq)

deg pq/(deg pq−b(A))

holds.

Note, that for each given ε > 0 for a large enough t ∈ N we have ratio

deg p

deg p − b(A)
=

1

1 − b(A)/t
= 1 + ε(t), ε(t) → 0 as t → ∞.

Therefore, when |pq(z)| > 1, the inequality

|pq(z)|
1/ deg q ≤ (|pq(z)|

1/ deg pq)
deg pq/(deg pq−b(A))

= |pq(z)|
1/ deg pq · (|pq(z)|

1/ deg pq)
ε(t)

= |pq(z)|
1/ deg pq · Mε(t)

holds, where M = |pq(z)|
1/ deg pq ≤ Φ(z, K), z ∈ A.

But if |pq(z)| > 1, we have |pq(z)|
1/ deg q ≤ |pq(z)|

1/ deg pq because of deg pq ≥ deg q. Hence,

ΦA(z, K) = sup
{

|pq(z)|
1/ deg q : pq ∈ P(CN), |pq(z)|K ≤ 1, t ≤ deg pq ≤ deg q + b(A)

}

≤ sup
{

|pq(z)|
1

deg pq (max 1, M)ε(t) : pq ∈ P(CN), |pq(z)|K ≤ 1, t ≤ deg pq ≤ deg q + b(A)
}

=
(

max{1, Φ(z, K)}
)ε(t)

sup
{

|pq(z)|
1/ deg pq : pq ∈ P(C

N), |pq(z)|K ≤ 1, t ≤ deg pq

}

= (max{1, Φ(z, K)})ε(t) · Φ(z, K).

Thus, when t → ∞ we have ΦA(z, K) ≤ Φ(z, K), z ∈ A, and this together with inequality (3)

gives ΦA(z, K) = Φ(z, K), z ∈ A. Since ln Φ(z, K) ≡ V(z, K) for any compact subset K ⊂ C
N ,

then ln ΦA(z, K) = V(z, K). Since for any function from the Lelong class L(K) = {u(z) ∈

psh(CN ) : u(z)|K ≤ 0, u(z) ≤ cu + ln+ |z|} its restriction to the algebraic submanifold A ⊂

CN belongs to the Lelong class LA(K) = {u(z) ∈ psh(A) : u(z)|K ≤ 0, u(z) ≤ cu + ρ(z)},

we get the inequality V(z, K) ≥ VA(z, K). Moreover, for any polynomial p ∈ PA it holds the

Bernstein-Walsh inequality (see [1])

ln

[

|p(z)|

‖p(z)‖K

]1/ deg p

≤ VA(z, K), z ∈ A,

since ln [|p(z)|/‖p(z)‖K ]
1/ deg p ∈ LA, and this implies

VA(z, K) = sup
{

u(z) ∈ psh(A) : u(z)|K ≤ 0, u(z) ≤ cu + ρ(z)
}

≥ sup
{

ln |p(z)|1/ deg p : p ∈ PA, |p(z)|K ≤ 1
}

= ln ΦA(z, K).

Now, we can complete the proof of the property VA(z, K) = ln ΦA(z, K), z ∈ A. Namely,

the last equality follows from the chain of relations VA(z, K) ≥ ln ΦA(z, K) = ln Φ(z, K) =

V(z, K) ≥ VA(z, K).



406 Atamuratov A.A.

References

[1] Aytuna A., Sadullaev A. Polynomials on parabolic manifolds. In: Ibragimov Z., Levenberg N., Pinchuk S.,

Sadullaev A. (Eds.) Topics in several complex variables. First USA-Uzbekistan Conference on Analysis and

Mathematical Physics, May 20–23, 2014, California State University, Fullerton, CA. Contemporary Mathe-

matics, 662. AMS, Providence, RI, 2016, 1–22.

[2] Aytuna A., Sadullaev A. Parabolic Stein manifolds. Math. Scand. 2014, 114 (1), 86–109.

doi:10.7146/math.scand.a-16640

[3] Björk J.E. On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in

C
n. Ann. Inst. Fourier 1974, 24 (4), 157–165. doi:10.5802/aif.535

[4] Demailly J.P. Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimations L2.
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У цiй статтi ми дослiджуємо полiноми вiд алгебраїчних пiдмноговидiв A ⊂ C
N , dim A = n,

n ≤ N, з точки зору їх полiномiальних розширень в охоплюючий простiр C
N . Це важливо для

спостереження екстремальної функцiї Грiна V(z, K) для компактної пiдмножини K ⊂ A.

Ключовi слова i фрази: алгебраїчна множина, полiном, функцiя Грiна, полiномiальна апро-

ксимацiя.


