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Polynomials on algebraic manifolds

Atamuratov A.A.12

In this paper, we study polynomials on algebraic subvarieties A C CN,dim A = n,n < N, in the
point of view their polynomial extensions into the enclosing space C. It is important in observing
extremal Green function V (z, K) for compact subset K C A.
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Introduction

A holomorphic function p(z) € O(CN) given on the space CV is called to be a polynomial
on an algebraicset A C CN, dim A = n, with respect to CN ifforallz € Aitholdsan inequal-
ity |p(z)| < C(1+ ||z|)¥ with positive constants C, d > 0, where |z|| is the Euclidean norm in
CN. The smallest of the numbers d satisfying this inequality is called degree of the polynomial
p, d = degp. We denote by P (C") (or P} for short) the class of all polynomials p on an
algebraic manifold A C CN with degp < m. Let P4 = Ujr_; P is the class of all polyno-
mials on A. Obviously, in the definition of polynomials instead of the function p(z) € O(CV)
we can take the functions p(z) € O(A), since every holomorphic function on submanifold
A C CN,dim A = n, extends to CN as a holomorphic function.

Note that the algebraic manifolds are parabolic and the notion of polynomial can be defined
by another way, using special exhaustion function p(z). For complex manifolds of arbitrary di-
mensions its parabolicity means the existence of a special exhaustion function (see P. Griffiths
and J. King [5], W. Stoll [15,16], A. Sadullaev [10], A. Aytuna and A. Sadullaev [1,2] etc.).

Definition 1. A Stein manifold X C CN of dimension n is called S -parabolic manifold, if there
exists a special exhaustion function p(z) that satisfies the conditions

a) p(z) € psh(X), i.e. p is plurisubharmonic function, and {p < M} CC X forall M € R;

b) p is maximal plurisubharmonic function on the complement of a compact subset
K cc X, ie (ddp)" =0 on X\K.

Let us define the concept of polynomials on a S-parabolic manifold X c CV.
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Definition 2. If for a function p(z) € O(X) there exist positive real numbers c, d such that for
all z € X the inequality
In|p(z)] <d-p*(z) +c (1)

holds, where p™ (z) = max{0, p(z)}, then the function p is called p-polynomial of degree < d.
The minimal value of d in the inequality (1) is called the degree of the polynomial p.

In order to determine the special exhaustion function on an algebraic variety A C CV, we
will use the well-known geometric criterion for algebraicity by W. Rudin [9]: any algebraic set
of pure dimension 7, 1 < n < N, after a suitable unitary transformation can be represented in
the form

AC {z cCV: |IZ"]| < c(1+ Hz’H)ﬁ}, 2 =(z1,...,z0), 2 = (zus1,---,2N),

where c, B are constants. In the work [11], A. Sadullaev pointed out that here we can actually
put B =1, i.e. an algebraic variety can always be embedded into a cone

AcC {z eCN: |IZ|| < c(1+ |yz'|y)}.

Then as a special exhaustion function on A we can take the function p(z) = In™ ||2'[|, z € 4,
o(z) € psh(A), (dd°p(z))" = 0on A\{]}2'] < 1}.

According to the Definition 2, polynomials on A in terms of a special exhaustion function
p are defined as follows.

Definition 3. Assume that for a function p(z) € O(A) there exist positive real numbers c, d
such that for all z € A the inequality In |p(z)| < d-In" ||Z’|| + ¢ holds. Then the function p(z)
is called a p-polynomial of degree < d on algebraic manifold A.

It is easy to check that if we choose the constant c sufficiently large, then
1271 < llzll < 2¢]|="]

on A\{||Z’|| < 1}. Therefore the restriction p = P|4 of an arbitrary polynomial P(z) € P(CN)
is a p-polynomial on A.

1 Extension of polynomials from algebraic submanifolds

We are interested on the opposite question: if p(z) € O(A) is a polynomial on A, will it be
a restriction of some polynomial P(z) in CN? Positive answer to this question is important for
the study of the Green function V(z, K) of a compact subset K C A, which plays a key role in
the questions of polynomial approximations.

The problem of continuation of analytic functions from algebraic subvarieties to the
enclosing complex space, with various restrictions on growth, to powers of polynomials, were
studied by many famous mathematicians. In the works of L. Hormander [6], H. Skoda [14],
J.E. Bjork [3], ].P. Demailly [4], Sh. Nakano [7], Y. Nishimura [8] and other authors such ques-
tions are resolved using the theory of d-equations and L?-estimates.

In our case, it is interesting that for an arbitrary polynomial p(z) on an algebraic variety
A C CN there is a continuation from A to CV as a polynomial with a controlled degree.
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Example 1. The graph A = {z,11 = g(z)} of a polynomial g(z) in the space C, deg ¢(z) =s,
is a S-parabolic manifold with the special exhaustion function p(z,z,41) = In" |z|, where
(z.2n11) € A, p(2,2n41) € psh(A), (dd°0(z,2,11))" = 0 on A\{]|z]| <1}.

It is clear, that if p(z) is a p-polynomial on A of degree d, i.e. if In |p(z)| < d-p"(z,z441) +¢,
z € A, then the polynomial P(z,z,.1) = p(z) € P(C"*"!) satisfies the same property

In|P(z,zy41)| <d-p7(z,2p01) +c<d-InT ||z|| +¢, (z,2,41) € C"TL.

Therefore, each p-polynomial extends to C"*! and this extension will be a polynomial of
degree < d.

And vice versa, restriction p = P| 4 of a polynomial P(z,z,1) € P(C"*1)isa p-polynomial
on A, and deg P[4 < degP = q. Indeed, if (z,z,41) € A\{|z]] < 1}, we have p"(z,z,11) =
p"(z,8(z)) = In*|z|. Consequently, if P(z,zy11) = ¥} _,ck(2 zuy1), where ci(z,2,41) are
homogeneous polynomials of degree deg ci(z,z,+1) < g, then for some C > 0 we have

9 9
P(z,t(z))] < ) le(z t(2)) < C- ) [lz]|7 = Clg +1) - [|z]".
k=0 k=0

Hence, In|P(z,g(z))| < q-pT(z) + ¢, with ¢ = InC(q+ 1) and the restriction P4 =
P(z,t(z)) is a p-polynomial of the same degree g as polynomial P(z,z,.1) € P(C"**1).
In the general case for arbitrary algebraic manifolds, we have the following result.

Theorem 1 (see J. Bjork [3]). For a fixed algebraic submanifold A C CN there exists a constant
b(A), depending only on submanifold A, such that for each polynomial p(z) on A there exists
a polynomial P(z) in CN satisfying P|4 = p, deg P < degp + b(A).

2 Extremal functions

The classical Bernstein-Walsh theorem establishes a close connection between rate of poly-
nomial approximation of a function f(z), defined on a compact set K C C, and its holomor-
phic extension to a neighborhood of K, defined by well-known Green function V(z,K). In
1962, J. Siciak [13] proved the following generalization of this theorem to the multidimensional
case. Let K C C" be a regular compact set and e4(f, K) = infpcpi(cn) [[f(2) — P(z)|k is a
minimal deviation of a function f € C(K) from the class of polynomials P?(C") on K. A func-
tion f(z) initially defined on a compact set K extends holomorphically into a neighborhood
Dg = {z € X : ®(z,K) < R}, R > 1, if and only if the inequality lim; ,e)/?(f,K) < 1/R
holds. Here ®(z,K) = sup{|p(z)|'/987 : p € P(C"), |pllx < 1} is Siciak extremal function
of compact set K.

Let us make a reservation right away that the extremal function ®(z, K) is very inconvenient
from the point of view of its study, due to its algebraic definition using polynomials. In this
regard, the Green function V(z, K), which is defined by plurisubharmonic functions, is much
more convenient. The last one is simpler to define and in the study of its geometric properties,
local properties of plurisubharmonic functions are usually used.

In the space CN it holds the equality (see [12])

V(z,K) = In®(z,K), (2)



404 Atamuratov A.A.

which plays a key role in the multidimensional Bernstein-Walsh theorem. On an algebraic
variety A C CN, K cC A, the Green function is defined as

Vf*l(zl K) = m VA(ZU, K)/

w—z

where V4 (z,K) = sup{u(z) € psh(A) : u(z) <cy+p(z), ulx <0}
The following result holds (it was proved together with A. Sadullaev).

Theorem 2. For any compact set K C A the following equality holds
V4(z,K) = In®4(z,K),
where @4 (z,K) = sup{|p(2)['/ 487 : p(z) € Py, [p(z)|x <1}.

Note that equality (2) in the space C" was proved using embedding C" C P" and using
homogeneous polynomials in P", so we cannot use such a method to prove a similar result on
an algebraic variety A.

Proof. 1f we, in defining a function ®4(z, K) for a fixed ¢ € N, limit ourselves to only polyno-
mials of degree > t, i.e.

P!, (z,K) = sup{|p(z)|"/ 987 : p(z) € Py, |p(z)|x <1, degp >t},

then ®4(z, K) = @/, (z,K).

Indeed, it is clear that CDtA (z,K) < ®4(z,K). On the other hand, for any fixed e > 0 and any
fixed point z0 € A there is a polynomial p(z) € P4, such that |p(z°)[1/ 487 > &, (20, K) — ¢,
because of ®4(z,K) = sup{|p(z)|'/ 487 : p(z) € P,, |p(z)|x < 1}. Raising the polynomial
p(z) € P, to a power, we also preserve this relation

PI(20)[V79EP > @,4(20,K) —¢, degpl(z) = jdeg p.
If we take j so large that jdeg p > t, we get

@) (2, K) = sup{|p(2°)|"/ 987 : p(z) € Py, |p(2)lk <1, degp >t}
> [p(20)]17987 > @4 (2", K) —e.

Since the number ¢ > 0 and the point Z20 € C" are arbitrary, we get @fq (z,K) > ®4(z,K) and
therefore
®(z,K) = D4(z,K) VtEN.
Now we show that for any compact K C A the equality ®4(z,K) = ®(z,K), z € A, holds.

In fact, if we take a polynomial p(z) in C, then its restriction q(z) = p(z)|4 is a polynomial of
the degree less than or equal to deg p. Therefore,

®(z,K) = sup{|p(z)[/ 487 : p e P(CY), |p(z)|x <1}

1/ degq (3)
< sup{[g(z)| D€ Pa |q(2)[x <1} = PalzK), ze A

On the other hand, for an arbitrary polynomial g(z) on an algebraic variety A C CV there
is a continuation g(z) from A to CV as a polynomial of a controlled degree. More precisely,
there is a constant b(A) depending only on A such that for any polynomial q(z) on A there is
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such a polynomial p,(z) in CN with py|4 = g, deg p; = degg + b(A) (Theorem 1). Hence for
z € A we have

DAz, K) = sup{|g(z)["/ *B7: g€ Py, |9(2)|g <1}
= sup{|g(2)|"/ 98T : g € Py, |9(z)|x <1, degq > t}
= sup{|ps(2)|"/ 487 : p; € P(CY), |py(2)l <1, t < degpy < degq+b(A)}.
But when |p;(z)| > 1, the inequality

e e e degp,/(degp,—b(A))
[pa(2)[" T < g ()| EITI) = (g ()] ewPe) TR

holds.
Note, that for each given € > 0 for a large enough t € IN we have ratio

degp B 1
degp—b(A) 1-b(A)/t
Therefore, when |p,(z)| > 1, the inequality

=1+¢(t), et) >0 as t— oo.

[pa(2)| 289 < (|pg(z) [/ dosray 8P/ 8P

= Ipg(2)] 4B P1 - (|, (z)] "/ deBray™")

holds, where M = |p,(z)|"/ 9871 < @(z,K), z € A.
Butif |p,(z)| > 1, we have |pq(z)|1/degq < |pq (z)|" 9871 because of deg pg > degq. Hence,

_ |pq(z)|1/degpq . ME®)

D 4(z,K) = sup {|pg(2)|" 987 py € P(CV), |pg(2)|( <1, t < degpy < degq+b(A)}
< sup {|pq(z |dem<max1 M) py € PCY), |pg(2)]

= (max{1, ®(z,K)})" sup {|pg(2)["/ 45" . py € P(CN), |pgl2)l <1, ¢ < degpy}
= (max{1, ®(z, K) )P . &(z,K).

<1,t <degp, < degq+b(A)}

Thus, whent — co we have @4 (z, K) < ®(z,K), z € A, and this together with inequality (3)
gives P4 (z,K) = ®(z,K), z € A. Since In®(z,K) = V(z,K) for any compact subset K C CN,
then In®4(z,K) = V(z,K). Since for any function from the Lelong class L(K) = {u(z) €
psh(CN) : u(z)|x <0, u(z) < cy+1In" |z|} its restriction to the algebraic submanifold A C
CN belongs to the Lelong class L4 (K) = {u(z) € psh(A) : u(z)|x <0, u(z) < cu+p(2)},
we get the inequality V(z,K) > Vj4(z,K). Moreover, for any polynomial p € P, it holds the
Bernstein-Walsh inequality (see [1])

1/degp
Z
" [HLP((Z))H'K] <Va(z,K), z€ A,

since In[|p(2)|/[|p(z)|Ix]"/ %87 € L, and this implies

Va(z,K) = sup {u(z) € psh(A) : u(z)|x <0, u(z) <cu+p(z)}
> sup { In|p(z)|"/ 87 : p € Pa, [p(2)|x <1} = InD4(z,K).

Now, we can complete the proof of the property Va(z,K) = In®,(z,K), z € A. Namely,
the last equality follows from the chain of relations V4(z,K) > In®4(z,K) = In®(z,K) =
V(z,K) > V4(z,K). O
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Y wilf cTaTTi MM AOCAIAXYEMO TIOAIHOMM BiA aATebpaldHMX M AMHOTOBYAIB A C CN,dim A =n,
n < N, 3 TOUKM 30py iX MOAIHOMiaABHMX PO3IIPeHb B oxoratotounit mpocTip CN. Tle BaxAMBO AAs
CIOCTepeXXeHHs! eKcTpeMaAbHol pyHkuil I'pina V(z, K) Aast koMmakTHOT miamMHOXMEN K C A.

Kntouoei cnoea i ppasu: arrebpaiuHa MHOXMHA, TOAIHOM, dyHKIIis ['piHa, moAiHOMiaAbHA ampo-
KCUMaLIisl.



