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The Boubaker polynomials, denote by Bn(x), are defined as follows:

B0(x) = 1, Bn(x) =
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where n ≥ 1 and ⌊s⌋ is the floor of s.
Boubaker polynomials can be represented also by recurrence relation

Bn+1(x) = xBn(x)−Bn−1(x), n ≥ 2,

with initial conditions B0(x) = 1, B1(x) = x, and B2(x) = x2 + 2.
The next a few members of this polynomial sequence are

B3(x) = x3 + x, B4(x) = x4 − 2, B5(x) = x5 − x3 − 3x,

B6(x) = x6 − 2x4 − 3x2 + 2, B7(x) = x7 − 3x5 − 2x3 + 5x,

B8(x) = x8 − 4x6 + 8x2 − 2, B9(x) = x9 − 5x7 + 3x5 + 10x3 − 7x.

Boubaker polynomials have many applications in different scientific
fields, such as thermodynamics, cryptography, biology, nonlinear dy-
namics and others sciences; see the recent papers [1, 2, 7, 8] and the
references given there. Solutions to several applied physics problems
are based on the so-called Boubaker Polynomials Expansion Scheme
(BPES), using the subsequence B4m of these polynomials.

Using Trudi’s formula for Toeplitz-Hessenberg determinants of a spe-
cial kind, we establish the following identities for Boubaker polynomials
with successive, even and odd subscripts.

Our approach is similar in spirit to [3, 4, 5, 6].
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where pn(t) =
(t1+···+tn)!

t1!···tn! is the multinomial coefficient, Tn = t1+· · ·+tn,
τn = t1 + 2t2 + · · · + ntn, and the summation is over integers tj ≥ 0
satisfying τn = n.
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