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N O N L O C A L  B O U N D A R Y - V A L U E  P R O B L E M S  FOR SYSTEMS 

OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

T. P. Goi I and B.  I. P tashnyk 2 

We study the classical well-posedness of problems with nonlocal two-point conditions for typeless sys- 
tems of linear partial differential equations with variable coefficients in a cylindrical domain. We prove 
metric theorems on lower bounds for small denominators that appear in the construction of solutions of 
such problems. 

UDC 517.956 

1. S tatement  of  the Prob lem 

1. Boundary-value problems with nonlocal conditions for hyperbolic, parabolic, and typeless systems of partial 
differential equations with constant and variable coefficients have been studied by many authors (see, e.g., [ I -19]  
and the bibliography therein). In general, such problems are conditionally well-posed and their solvability is con- 
nected with the problem of small denominators. 

The present paper is closely related to [13-18] and is devoted to the investigation of the classical well-posed- 

ness of problems with nonlocat conditions in a separated variable t and conditions of the Dirichlet type in the vari- 

ables x I . . . . .  x p  for typeless systems of linear partial differential equations with variable coefficients dependent on 

x. We establish conditions for the existence and uniqueness of classical solutions of problems, which are of number- 
theoretical character. To solve the problem of small denominators appearing in the construction of solutions of the 
problems considered, we use the metric approach. 

Weuse  the following notation: x =  ( x  I . . . . .  Xp) E R p, s = (s 0, Sl) E Z+, Isl* =So + 2Sl, [a]  is the integer 

par tofa  number a, G C R p is a bounded domain with smooth boundary G, Q = { ( t , x ) :  t~  (0, T ) , x ~  G};  

C (j'v) is the class of functions defined in the domain G" whose jth derivatives satisfy in G" the HOlder condition 

with exponent v, 0 < v  < 1, A (j'v) is the class of closed domains such that the functions that determine the equa- 

tions of boundary surfaces of these domains in local coordinates belong to C (j'v), and ~-r(~) is the Banach space 

of vector functions v (t, x )=  (v I (t, x) . . . . .  v,,,(t, x)) continuous together with all their derivatives up to the rth or- 

der inclusive in the domain Q with the norm 

IIv(t,x)ll~r(O) = ~ ~ m a x  ~lq lv i ( t ' x )  ]. 
- ~rq'~ ...~" j=l Iq}<-r ( t 'x)~Q 

2. In the domain Q, consider the problem 

( yo 
Pu(t,x) = ~ A~ (-L)S~u(t,x) = f(t,x), 

Isl*_<n 
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3S~ x) I Z B , ( - L ) ' ,  ( SOu(t,x) - -  = 
~. 3 ts~ t=O 3ts~ t=T 

Isl*_<n 
s 0 < .  

~t e c \{0 ) ,  (2) 

f lu ( t , x )  IbG = 0, j = 0, 1 ..... [ n / 2 ] -  1, (3) 

where u ( t , x )=  c o l ( U l ( t , x )  . . . . .  Um(t,x)), f ( t , x ) =  c o l ( f l ( t , x )  . . . . .  f ,n(t ,x)) ,  q 0 ( x ) = c o l ( g l ( x )  . . . . .  q}~(x)) ,  

/ill and 8s = II II.m,m are matrices of  sizes ( m • m )  and (nm x m ), respectively, with constant com- as--l[as 
plex elements, detA(,z,0) :~ 0, and the operator 

L = i.~j--1 Pij(x) - q ( x ) ,  Pij(x) > Po > O, q(x)  > O, 

is elliptic in G'. Assume that G- ~ A (2['/2]'v), pij(x) E C (2[nl2]-l'v), i , j  = 1 . . . . .  p,  and q(x)  ~ C (2[n12]-2,v) 

We do not impose any restrictions on the type of  the operator P. 

Under conditions imposed above on the domain G and the coefficients of the operator L, 

problem 

LX(x)  = -~ .X(x) ,  X (x )  I~o = 0 

the eigenvalue 

(4) 

has a complete system of classical eigenfunctions { Xk(x), k ~ N } orthonormal in L z (G) ,  and all eigenvalues 

L k, k ~ N, are positive. Denote the set of  these eigenvalues by A. Furthermore, Xk(x)  ~ C2[n/Z](G), k ~ N, 
and the following estimates are true [20, 21]: 

( V L k > K I )  Co k2/p < ~'k < CI k2/p" 0 < c 0 < c l '  (5) 

maxlX!J)(x) t  < ~ ap/4+j/2 _ ,  ,. - -, - "2"k , c 2 = c2(J),  j = 0,1 . . . . .  2 [ n / 2 ] .  
x~G 

(6) 

Let f ( t ,  x)  ~ C'([0, T], L2(G)) and ~(x)  ~ Lz(G).  Then the following expansions are true: 

f ( t , x )  = E f k ( t ) X k ( X ) ,  fk ( t )  = col(fkl( t)  ..... fkm(t)), 
k=l 

where 

o 0  

(p(x) = E(PkXk(X) ,  (Pk = COI((PkI(t) ..... (Pk,nm), 
k=l 

fk i( t )  = f f i ( t ,  X)Xk(X)dX , i = 1 . . . . .  m, 
G 

(Pkj = f (p j (x)Xk(x)dx ,  j = 1 . . . . .  nm, 
G 
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3. We seek a solution of  problem (1)-(3) in the form of a vector series 

oo 

u (t, x) = ~ul~(t  ) Xk(x ), uk(t ) = co1 (Ukl(t) ..... Ulon(t)). (7) 
k = l  

If series (7) and series obtained from it by termwise differentiation with respect to the variables x I . . . . .  xp up to the 

order 2 [ n / 2 ]  are uniformly convergent in the domain Q ,  then the vector function u (t, x) defined by (7) satisfies 

the boundary conditions (3). Each vector function uk(t); k ~ N, is a solution of the following problem for a sys- 

tem of  ordinary differential equations with nonlocal conditions: 

Z A s "~st,,(so)t,~ "~k"k ~'J = fk(t),  (8) 
Isl'_<n 

~ ,  Bs ~(u~S~ s~ = (Pk" (9) 

Isl'_<,z 
s o <n 

Consider the homogeneous  problem that corresponds to problem (8), (9): 

Z As "~kasl"~k(s~ = 0, (10) 
Isl*<n 

~[ Bs "~kas'["(s~176176 w ,  = 0. (11) 

Isl -<n 
S O <n 

Assume that, for all ~.t ~ A, the r o o t s  ~]j - ]]j(~.k) ,  j = 1 . . . . .  nm, of the characteristic equation 

M(rl ,  ~'k) - det [*<~nAs ks~qs0 = 0 (12) 
Is - 

are simple and are not equal to ze ro )  Then, for every "q j ,  

rang ~ A sl~"~rl~o = m - l ,  j = 1 . . . . .  rim, 
Isl'<-n 

and, therefore, at least one minor  of the (m - 1)th order of  the determinant M(rlj ,  k i)  is not equal to zero (let it be 

the minor of  an element of the row with the number l = l(j)).  The homogeneous system of differential equations 
(10) has the following fundamental system of solutions: 

Ykj(t) = col(hl t (r l j )  . . . . .  hlm(rlj))exp('qjt),  j = 1 . . . . .  nm. (13) 

Here, h l r ( Y l j ) ,  r = 1 . . . . .  m, are the minors of the elements of  the row with the number  l = l ( j )  of the deter- 

minant M(lqj, ~'k), which are calculated according to the formulas 

3 The results  of  the present paper  wi th  ins ignif icant  modif ica t ions  can be extended to the case where  Eq. (12) has mult iple  roots. 
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' ~ q ' ~ g ' t j  , r = 1 . . . . .  m ,  j = I . . . . .  n m ,  (14) 
[q[*<_n(m-1) 

ql < [ n / 2 ] ( m - l )  

~ l r  tr aZft  
= ~qo,ql  = E det[ ~0(~).co,(13)1y.13=1 ..... ,n, r =  t . . . . .  m, (15) 

m ~.~=loai(~)=qi; i=0;1 y e l ,  ~;er  

~ r  

where a "~13 COo([~),co~(~) q' = I . . . . .  m, are the elements of  the ~3th row of the matrix A s, s =  (co0(13), cot(13)). 

Problem (10), (11) has nontrivial solutions if and only if its characteristic determinant A(~.k) is equal to zero 

[22]. The determinant A(~. k) is calculated according to the formula 

II??l 

A(Lk) = D ( ) ~ k ) E ( ) ~ k )  I - I ( 1 - g e x p ( q j ( L k ) T ) )  1-I ( r l j (Lk)-r l i (3"k))  ' (16) 
j = l  l<-i<jNnm 

where 

D(~.k) = det st Z bird2 [ 
<_(n_so)l 2 j = I ..... nm 

r =  1 . . . . .  m; s 0 = 0 , 1  .. . . .  n - I  

(17) 

E ( ) ~ k )  = 

E 1 El ... 1 E 1 E l E n - 2  n - I  " ' "  n ( m - l )  0 . . .  0 

0 E~ ... 1 E I E ] l E l , - 3  n - 2  "'" n ( , n - 1 ) - t  E~( , , ,_I)  . . .  0 

0 0 . . .  0 E~ . . .  t 1 t En(,, ,- l)-n.l  E ~ ( m - l ) - n + 2  . . .  E~(,n_l) 
IYt Ill t n  t n  Ill 

E~) E 1 . . .  E n _  2 E; ,_  l . . .  E~( ,n_ j )  0 . . .  0 

0 E ;  n E j ,_  3 m . . .  E; , ( , , , _  1)_l ,n . . .  E l l _  2 - . .  m ,n E~(,n-I) 0 

0 0 . . .  0 E;n  . . .  m Enn(m_l)_n+2 . E~n(rrl_l) E ~ ( m _ l ) _ n +  1 .. 

(18) 

[(n ( m - l ) - j ) / 2 1  

E; E = ~ j , d  "~'k, 

d=O 

j = 0, I . . . . .  n ( m - 1 ) ,  r = I , . . . , m ,  

and ~tr are def inedby  (15). j . d  

R e m a r k l .  The determinant E(~.k) is not equal to zero for all ~.ke A because it is a factor in the expres- 

sion for the determinant 

w( k) ItV'(t)ll ,=,..m , 
q = O , I  . . . . .  n - I  

which, as is known [22], is not equal to zero, and 

Il tn 

w ( ~ )  = e(~k) 1-I exp(nj(~.k)t) 1--[ (n j (~)  - n~(~.k)) 
j = l  l<_i<j<_mn 
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Theorem 1. In order that problem (1)-(3) be uniquely solvable in the space ~n(-~), it is necessary and 
sufficient that the following conditions be satisfied: 

(V~.k~ A) 1-gexp(r l j (~ ,k)T ) r O, j = 1 . . . . .  nm; D()~k):/:O. (19) 

Proof. The proof is similar to the proof of Theorem 5.3 in [16, Sec. 2] and follows from (16), (17), Remark 1, 
and the theorem on the uniqueness of the Fourier expansion of a function from the space L2(G ) in a complete sys- 
tem of orthogonal functions. 

4. Consider the problem of the existence of a solution of problem (1)-(3). Let conditions (19) be satisfied. 
Then, for every ~'k ~ A, there exists a unique solution of problem (8), (9), which can be represented in the form of 

sum 

uk(t ) = Uk(t ) + Vk(t), 

where Uk(t)= col (Ukl (t) . . . . .  Uk,n(t)) and Vk(t ) = col ( Vkl (t) . . . . .  Vkm(t)) 
and (8), (11), respectively. The components of the vector functions Uk(t ) and 

tions 

are solutions of problems (9), (10) 

Vk(t ) are determined by the rela- 

n m  n m  n m  n m  

Ukj(t) : Z E E ~-~(-1)q-'hj(rlq(~'k))Otp(~k)Ep a(~'k)Sqm-a 
q=l  /=1 ct=l p = l  

,,m ))-1 
x E()~k)D(~.k)(1-~texp(TIq()~)T)) H (qq (~'k)-l]i(~'k) q)ktexp(rlq().k)t), j =  1 . . . . .  m, 

i = l , i ~ q  

(20) 

T 

Vkj (t) = I ~ Gk,j ,r(t''Qfkr('Od~c' 
0 r=l 

j = 1 . . . . .  m, (21) 

where Dij()~k) and EijQ~k) are the determinants obtained from D (Lk) and E(~.k), respectively, by deleting the 

ith row and j th  column, S.~ is the sum of all possible products of 7 factors lqj(kk), j =  1 . . . . .  nm, i ~ q (S~ = 1), 

and Gk,j,r(f, "C), j, r = 1 . . . . .  m, are the elements of the Green matrix of problem (8), (9), which are determined by 

the following relations in the square K r =  { (t, x) ~ R2:0  < t, z < T} except for the sides x = 0 and x = T: 

Gk,j,r(t, Z) = (2D(~k)) -l 
nm /I//I /It/'/ 

Z Z Drct(~'k)Sqn'n-~ H('q[~(~'k)--Tlq(~'k)) -I 
q=l ct=l [3=1 

13*q 

X ((--1) n(q-I)+l sgn(t -- ~)hj('qq(~.k) ) exp(lqq(~k)(t -- "C)) 

n t n  lIt?l tDn 

+ Z Z Z Z (-l)(n-l)p+l hip~s'~s~ )hp(qq(~k))hJ (rlt(~'k)) 
1=1 i = l  p = l l s l *  < n  
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• exp(rlq(Lk)t)Dlp(~k)Epi(~,k)Sffm_ 1 (D(~,lc)E(Lk)) -1 

n,n 1 + ~t expO]l(~.k)T ) ) 
X I - I  (rlc~(%~) -- rb(%k)) -l 1 - ~t exp(rb(~.k)T ) ' 

o:=1 
cc~l 

j, r = I . . . . .  m, (22) 

where S,~ are the same as in relations (20). On the side "~ = 0 ('~ = T) 

Gk,j,r(t, ~), j ,  r = 1 . . . . .  m, is defined by continuity from the right (left). 

A solution of  problem (1)-(3) can be formally represented by the series 

of  the square Kr,  each function 

0o 

u(t ,x)  = Y~(uk(t)+ v~(t))X~(x), 
k=I 

(23) 

where the components of  the vector functions Uk(t ) and Vk(t ) are defined by relations (20)-(22). In general, the 

problem of convergence of  series (23) is connected with the problem of small denominators because the expressions 

nm 
1 - ~t exp(rl j (~.k)T),  H (T]J ()~k) - TIq(~'k))' J = 1 . . . . .  nm, D(kk) ,  E()~k), 

q=l 
q~j 

which appear as denominators  in relations (20) and (22), are not equal to zero and can be arbitrarily small  in 

modulus for an infinite set of  )~k ~ A. 

Let us introduce functional spaces that will be used for the investigation of the solvability of  problem (1)-(3).  
Denote 

Bq= I)(x)EL2(G)'.I)(x)= Z'OkXk(X), IIV(x)llq,m--= I o k l e x p ( q ~ . ( ~ ) <  o~ , 

k=l k=l 

q > 0 ,  co>0 ,  

and let C([0,  T], Bq)  be the space of functions w(t, x)  that are defined and continuous in the domain Q and, for 

every t ~ [0, T], belong to Bq with the norm 

II w(t,x)llc([o" r], Bq) = ~ re[O, rlmax Iwk(t)lexp(q~,~), 
k=l 

where 

wk(t  ) = f w ( t , x ) X k ( x ) d x ,  k~ N. 
G 

Note that Eq. (12) implies the following estimates: 

( V ~ ' k > K 2 )  Inj( -k)l- ~Xlk/2, j =  1, . . . ,  nm, or>0 .  (24) 

T h e o r e m  2. Suppose that there exist positive constants m j, 7j, J = 1 . . . . .  4, such that the following inequal- 

ities hold for all )~k ~ A, Lk > K3 : 
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]l-~texp(rl j(~.~)T)] > rnl~.J1 exp(-lRerlj(k~)lT ), j=  1 . . . . .  nm, 

n m  

I-[Irb(~,k)- rlqff.k)l - m2~,? '2, 
q=l 
q~j  

(25) 

where 

( 8 q )  . . . . .  R,,2 I f  f i ( t , x ) ~  C [0, T], 1/2 i = 1 ,m, (pj(x)~ _q , j =  1 . . . . .  nm, where q >ofT, then there exists the 

unique solution of  problem (1)-(3) in the space "~n(-~), which continuously depends on the vector functions 
f ( t , x )  and (p(x). 

[D(~.k)[ > m3k~ '/3, (27) 

IE(~,k) l --- m4~,k Y4. (28) 

Ilu(t, x) IIc.(~) 

Proof It follows from relations (20)-(23) and estimates (6) and (24)-(28) that 

< C 3 Z I ~ [ q ) k j ] + ~  maxlfki(t)])  
k < K \ j = l  i=1 t~[O,T] 

+ C  4 (Pkjl)~ak ' exp(c~T-f~-~)+ max lY, i(t)IZ:~2 exp(c~T-f~-;~) , 
'= i=! t~[0, T] 

K = max(KpK2 ,  K3), c l  = Z - ( n + 3 ) / 2 ,  (~2 = Z + P / 4 ,  

m-I 4 
nm+ m [ n / 2 ] [ ( n + l ) / 2 ] - [ n / 2 ] - [ n ( m -  1)/2] +n Z [ n ( m -  j ) /2]  + Z Y j .  

By using the elementary inequality 

q~ < c s e x p ( p q  ), 

j= l  j= l  

c 5 = c5(5 ), q > 0 ,  

which holds for arbitrary 5 > 0 and p > 0, we obtain from estimates (5) and (29) that 

Ilu(t, x)l[c.(~) 

The theorem is proved. 

< c 6 q0kj]exp(q-qr~-k)+ ~[ max ]fki(t)]exp(q~-~k) 
k=l \ j = l  i=1 t~[0, T] 

"" " x) [Ic (to, n, / = c6 Z[l%(x)]lq, l/Z +Z l l f i ( t ,  ,,=, 
j=l  i=1 Bq ) 

(29) 

j = 1 . . . . .  nm, (26) 
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5. Let us investigate under what conditions estimates (25)-(28) can be satisfied. 

Lemma 1. Let ~()~k) be a bounded sequence o f  real numbers. Then for  almost all (with respect to the Le- 

besgue measure in R )  numbers T > 0, the fol lowing inequality holds for  all (except finitely many) pairs o f  
numbers (Lk, d), ~'k ~ A, d ~ Z: 

0 < 5 < 1  

Proof. The proof can be carried out according to the scheme of the proof of Lemma 2.4 in Sec. 1 of [16-] with 
regard for estimates (5). 

Theorem 3. For almost all (with respect to the Lebesgue measure in R) T > 0 and arbitrary f ixed ~t and 

a~J~ , Is I < n, i , j  = 1 . . . . .  m, inequalities (25) hold for  "?1 > p / 2  for  all (except finitely many) values ~'k ~ A .  

Proo f  By using the inequality sin x > 2x/x, which is true for all x ~ [0, x /2] ,  we get 

It - ~t exp(qj(~.k)T)l _> [btl exp(Re rlj()vk)T)l sin (V + Imrlj(~,k)T)l 

> Ig lexp(- I ierb(Tvk) lT ) v + I m r b 0 ~ ) T  x dJ(Lk) J = 1 . . . . .  rim, (30) 

where ~ =  arg/.t and dj(Ek) ~ Z is such that 

1~ + Imrlj(~,k) T 1 
X - d J ( ) ~ i )  < -" 2 

By using Lemma 1 and estimates (24) and (30), we establish that, for all (except finitely many) ~,/~ A and al- 

most all numbers T > 0, the following estimates are true: 

]l - g exp(rlj(~,k)T)[ _> l u l T - I ~ ' k  exp(Re n / X k ) T )  ~ T / n  + Imrb(Xk)T 2 ~ / x  Tdj()~k) 

> [~ t lT - l~ . -kP/2-~exp( - lReq j (Lk) lT) ,  j =  1 . . . . .  nm, 

where ~5 is an arbitrary positive number. The theorem is proved. 

By Y E R (r, we denote the vector composed of the real and imaginary parts of the numbers a~, [ s [* < n, 
i , j  = 1 . . . . .  m, of system (1), where 

~ = 2m 2 n + l +  / . 

Theorem 4. For ahnost all (with respect to the Lebesgue measure in the space R ~ ) vectors Y,  inequal-  

ities (26) hold for all (except finitely many) ~, ~ ~ A for  72 > ( n m  - 1 ) ( p - 2 - 2re[n~2] + n m ) / 4. 
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Proof. Let us represent the polynomial M(rl, ~,k) in the form 

1667 

n m  

M(q,  )~k) = ~ H j ( ~ ' k ) r l  j ,  
j=O 

where Hj(~,k) - Hj is a polynomial in t. k whose degree does not exceed [ ( n m  - j ) / 2 ]  and whose coefficients 

are expressed via the elements of the matrices A s, j =  O, 1 . . . . .  nm, Hnm = detA(n,0 ). For the discriminant W ( M )  

of the polynomial M(r  I, E~), the following representations are true: 

W ( M ) =  Hn2(;"n-1) H (rlj(~.k)-rli(Xk)) 2, (31) 
l<-i<j<-nm 

(__ 1)nm (rim- 1)/2 
W ( M )  - • 

Hnm 

nnm Hn,n-  . . .  H0 0 .. .  0 

o ... HO ... 0 

0 0 ... Hn,n_ 2 Hnm_ 3 ... H 0 

nmHnm ( n m - 1 ) H , , n _  l ... 0 0 ... 0 

0 nmH,,,. ... H l 0 ... 0 

(32) 

By using the scheme of the proof of Theorem 6 in [23], we establish that, for almost all (with respect to the Le- 

besgue measure in R (r) vectors Y and all (except finitely many) t, k e A, the following inequality is true: 

- - V - E  [ReW(M)I > Z k , v = ( n m -  1 ) ( p / 2 - m [ n / 2 ] ) ,  e > 0 .  (33) 

Since I W ( M )  [ > I Re W ( M )  1, it follows from (31) that the following estimate holds for almost all vectors Y e R~r: 

H I'l]j (~Lk) -- l]i(~%k)] -> ~"-k ('un-l)(p-2m[n/2])/4-e/2" (34) 
l<i<j<mn 

The equality 

n m  

H (lqq (~'k) -- TlJ (~'k)) = H [rlj(l'k)- rli(kk)l 1-] -1 

q=l l<-i<j<nm l<a<~<-nm 
q~:j otC:j,~j 

and estimates (24) and (34) imply that, for almost all vectors Y ~ R e, 

l l ln 

H (1]q(~'k) - qj()~k)) > C7•-k (n'n-ll(p-2+n'n-2m[n/2])/4-e/2, 

q=l 
qcj 

j =  l , . . . , n m ,  C7>0. 

The theorem is proved. 
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Now consider inequalities (27) and (28). The determinants E(Zk) and D(TLt) are polynomials of the form 

M! 

r=0  

M2 

D(Zk) = E DJZ~' 
j=o 

where 

m - -  1 

M 1 = n E [ n ( m - j ) / 2 ] ,  
j = l  

M 2 = m[n/2][(n+l)/2],  

and the coefficients E r and Dj are expressed via the elements of the matrices A s and B s, respectively. L e t  131 = 

(13~1) ..... 13~1)) and 132 = (~2) ..... 13~ 2/) be vectors composed, respectively, of the real and imaginary parts of the 

numbers b~ j ; here, 

= m2n n+ /2 . 

The following statements are true: 

Theorem 5. For almost all (with respect to the Lebesgue measure in R ~) vectors ~I and arbitrary f ixed 

~2 (or for  almost all ~2 and arbitraryfixed ~1 ), inequality(27)holds for Y3 > p /2  for aU (except finitely 
many) values Zk ~ A. 

Theorem 6. For almost all (with respect to the Lebesgue measure in R ~ ) vectors Y,  inequality (28) 

holds for  ~t 4 > p / 2 for  all (except finitely many) values ~'k ~ A. 

If the free terms of the polynomials D(7~k) and E(~k) are not equal to zero, then Theorems 5 and 6 can be 

proved according to the scheme of the proof of Theorem 4 in [23]. If the polynomials D (~'k) and E (Zk) do not 

contain free terms, then the proof of these theorems is similar to that of Theorem 6 in [24]. 
The results are generalized to the case of the following problem for a typeless system of linear partial differen- 

tial equations perturbed by a nonlinear integro-differential operator: 

~t nj EPjr  ~ t ,L  Ur(t,x ) = f j ( t , x ) + e  EKjq ( t , x , y )Fq ( t , y ,~ ( t , y ) )dy ,  j = l  . . . . .  m, 
r= l  G q=l  

j = l  s<nj 
l<H 

~" S s "~ uj(t, x) ~ uj (t, x) 
-- - -  ~ = (pq(X),  

Ots t=0 P ~ts t= T 
q=  1 , . . . ,n ,  
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Lquj(t,x)lOG, = 0, j = l  . . . . .  m, q = 0 , 1  . . . . .  H - l ,  

where  

12 1 + . . . + n  m = r/, ejr(~'~t, L)= Z Pjlr(~tt) ( -g)l, 
$<12j 
I<-H 

j , r =  l . . . . .  m; PYr, bff ~ C, 

I. OSo+~2!tq( t, Y) . < 
if( t ,  y )  : L ot,`, Oy~ 1 . . .Oy~,' so _ nq, 

E, g e c \ { 0 } ,  

]s l_<2H, q = l  . . . . . .  m } .  
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