On multinomial identities for Pell and Pell-Lucas polynomials

Goy T.P., Zatorsky R.A.
Vasyl Stefanyk Precarpathian National University

Extending the classical Fibonacci and Lucas numbers, Horadam and Mahon [4] introduced Pell and Pell-Lucas polynomials. They are defined respectively by the recurrence relation: for $n \geq 2$,

$$
P_{n}(x)=2 x P_{n-1}(x)+P_{n-2}(x), \quad Q_{n}(x)=2 x Q_{n-1}(x)+Q_{n-2}(x)
$$

with different initial conditions $P_{0}(x)=0, P_{1}(x)=2$, and $Q_{0}(x)=2, Q_{1}(x)=2 x$.
We investigate some families of Toeplitz-Hessenberg determinants the entries of which are Pell and Pell-Lucas polynomials. This leads us to discover some identities for these polynomials. Our approach is similar in spirit to [1-3].

Denote $|s|=s_{1}+\cdots+s_{n}, \sigma_{n}=s_{1}+2 s_{2}+\cdots+n s_{n}$, and $m_{n}(s)=\frac{|s|!}{s_{1}!\cdots s_{n}!}$ is the multinomial coefficient.

Proposition. Let $n \geq 1$, except when noted otherwise. Then

$$
\begin{gather*}
\sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{0}^{s_{1}}(x) P_{1}^{s_{2}}(x) \cdots P_{n-1}^{s_{n}}(x)=-(2 x)^{n-2}, \tag{1}\\
\sum_{\sigma_{n}=n} m_{n}(s) P_{0}^{s_{1}}(x) P_{1}^{s_{2}}(x) \cdots P_{n-1}^{s_{n}}(x)=\frac{\left(x+\sqrt{x^{2}+2}\right)^{n-1}-\left(x-\sqrt{x^{2}+2}\right)^{n-1}}{2 \sqrt{x^{2}+2}}, \\
\sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{0}^{s_{1}}(x) P_{1}^{s_{2}}(x) \cdots P_{n-1}^{s_{n}}(x)= \\
=\frac{\left(2 x-1-\sqrt{4 x^{2}-4 x+5}\right)^{n}-\left(2 x-1+\sqrt{4 x^{2}-4 x+5}\right)^{n}}{2^{n} \cdot \sqrt{4 x^{2}-4 x+5}}, \\
=\frac{\left(1+2 x+\sqrt{4 x^{2}+4 x+5}\right)^{n}-\left(1+2 x-\sqrt{4 x^{2}+4 x+5}\right)^{n}}{2^{n} \cdot \sqrt{4 x^{2}+4 x+5}}, \\
\sum_{\sigma_{n}=n} m_{n}(s) P_{0}^{s_{1}}(x) P_{1}^{s_{2}}(x) \cdots P_{n-1}^{s_{n}}(x)= \\
\sum_{\sigma_{n}}^{|s|} m_{n}(s) P_{2}^{s_{1}}(x) P_{3}^{s_{2}}(x) \cdots P_{n+1}^{s_{n}}(x)=0 \tag{2}\\
\sum_{\sigma_{n}=n} m_{n}(s) P_{2}^{s_{1}}(x) P_{3}^{s_{2}}(x) \cdots P_{n+1}^{s_{n}}(x)= \\
\sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{1}^{s_{1}}(x) P_{3}^{s_{2}}(x) \cdots P_{2 n-1}^{s_{n}}(x)=-4 x^{2}\left(4 x^{2}+1\right)^{n-2}, \\
\sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{3}^{s_{1}}(x) P_{5}^{s_{2}}(x) \cdots P_{2 n+1}^{s_{n}}(x)=-4 x^{2},
\end{gather*}
$$

where the summation is over integers $s_{i} \geq 0$ satisfying $\sigma_{n}=n$.

We establish similar formulas for Pell-Lucas polynomials.
Important special numerical cases are: $P_{n}(1)=P_{n}$ the $n^{t h}$ Pell number; $Q_{n}(1)=Q_{n}$ the $n^{t h}$ Pell-Lucas number; $P_{n}(1 / 2)=F_{n}$ the $n^{\text {th }}$ Fibonacci number and $Q_{n}(1 / 2)=L_{n}$ the $n^{\text {th }}$ Lucas number. Furthermore, $P_{n}(x / 2)=F_{n}(x)$, the $n^{\text {th }}$ Fibonacci polynomial, and $Q_{n}(x / 2)=L_{n}(x)$, the $n^{t h}$ Lucas polynomial [5]. Also, there is a relationship between Pell and Pell-Lucas polynomials with Chebyshev polynomials of the first kind $T_{n}(x)$ and of the second kind $U_{n}(x)$ as follows

$$
P_{n}(x)=(-i)^{n-1} U_{n-1}(i x), \quad n \geq 1, \quad Q_{n}(x)=2(-1)^{n} T_{n}(i x), \quad n \geq 0 .
$$

For example, from formulas (1)-(3) we obtain the following identities:

$$
\begin{aligned}
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{0}^{s_{1}} P_{1}^{s_{2}} \cdots P_{n-1}^{s_{n}}=-2^{n-2}, \quad n \geq 2, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) F_{0}^{s_{1}} F_{1}^{s_{2}} \cdots F_{n-1}^{s_{n}}=-1 \quad n \geq 2, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) F_{0}^{s_{1}}(x) F_{1}^{s_{2}}(x) \cdots F_{n-1}^{s_{n}(x)=-x^{n-2},} \quad n \geq 2, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{2}^{s_{1}} P_{3}^{s_{2}} \cdots P_{n+1}^{s_{n}}=0, \quad n \geq 3, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) F_{2}^{s_{1}} F_{3}^{s_{2}} \cdots F_{n+1}^{s_{n}}=0, \quad n \geq 3, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) F_{2}^{s_{1}}(x) F_{3}^{s_{2}}(x) \cdots F_{n+1}^{s_{n}}(x)=0, \quad n \geq 3, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) U_{1}^{s_{1}}(x) U_{2}^{s_{2}}(x) \cdots U_{n}^{s_{n}}(x)=0, \quad n \geq 3, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{3}^{s_{1}} P_{5}^{s_{2}} \cdots P_{2 n+1}^{s_{n}}=-4, n \geq 2, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) F_{3}^{s_{1}}(x) F_{5}^{s_{2}}(x) \cdots F_{2 n+1}^{s_{n}(x)}=-1, n \geq 2 .
\end{aligned}
$$

[1] Goy T. On new identities for Mersenne numbers // Appl. Math. E-Notes. 2018. - V. 18. - P. 100-105.
[2] Goy T. On Pell identities with multinomial coefficients // Int. Conf. "Numbers, Forms and Geometry": Abstracts. - Khabarovsk: Institute of Applied Mathematics, 2017. - P. 23-24.
[3] Goy T. Some families of identities for Padovan numbers // Proc. Jangjeon Math. Soc. - 2018. - V. 18, No. 3. - P. 413-419.
[4] Horadam A.F., Bro. Mahon J.M. Pell and Pell-Lucas polynomials // Fibonacci Quart. - 1985. - V. 23, No. 1. - P. 7-20.
[5] Koshy T. Pell and Pell-Lucas Numbers with Applications. - New York: Springer, 2014.
e-mail: tarasgoy@yahoo.com

