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Abstract. We obtain an explicit description of the spectrum (set of closed
maximal ideals) of Hb(X), algebra of analytic functions on a Banach space
X which are bounded on bounded subsets. We show that the spectrum of
Hb(X) admits a natural linear structure. Some applications to the algebra of
uniformly continuous and bounded analytic functions on the unit ball B ⊂ X
are indicated.

Let A be a complex commutative topological algebra. Let us denote by M(A)
the spectrum (set of closed maximal ideals = set of continuous characters = set of
continuous complex-valued homomorphisms) of A. Recall that A is semisimple if
the complex homomorphisms from M(A) separate points of A. It is well known that
every semisimple commutative Fréchet algebra A is isomorphic to some subalgebra
of continuous functions on M(A) endowed with a natural topology. More exactly,
for every a ∈ A there exists a function â : M(A) → C defined by â(φ) := φ(a). The
weakest topology on M(A) such that all functions â, a ∈ A, are continuous is called
the Gelfand topology. The Gelfand topology coincides with the weak-star topology
of the strong dual space A′, restricted to M(A). If A is a Banach algebra, M(A) is
a weak-star compact subset of the unit ball of A′.

If A is a uniform algebra of continuous functions on a metric space G, then for
any x ∈ G the point evaluation functional δ(x) : f �→ f(x) belongs to M(A).

The purpose of this paper is to describe the spectrum of the Fréchet algebra
Hb(X) of entire analytic functions of bounded type on a Banach space X and to
study some related questions of infinite-dimensional holomorphy.

The problem of description of the spectrum of Hb(X) was first studied by Aron,
Cole and Gamelin [3, 4]. Using the Aron-Berner extension operation [2, 10], they
showed, in particular, that X ′′ belongs to the spectrum of Hb(X). In [5] it is proved
that this inclusion is proper if there exists a polynomial on X which is not weakly
continuous on bounded sets. This approach was generalized for algebra-valued
analytic functions by Garćıa et al. in [18]. Some analytic structure on the set of
maximal ideals was considered in [5] (for generalization for algebra-valued functions
see [17]). In [22] Mujica investigated ideals of analytic functions of bounded type on
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Tsirelson’s space T and showed that each character on Hb(T ) is a point evaluation
functional. Homomorphisms of Hb were studied by Carando, Garćıa and Maestre
in [9]. In [1] Alencar et al. considered maximal ideals of algebras of symmetric
analytic functions on �p.

In this paper we show that every element of the spectrum of Hb(X) can be
represented by a sequence of functionals (uk)∞k=1 such that each uk belongs to a
Banach space Ek, where E1 = X ′′ and En coincides with a special subspace of linear
functionals on n-homogeneous polynomials. It is also shown that the spectrum of
Hb(X) contains the linear space of all finite sequences (u1, . . . , um, 0, 0, . . .). Finally,
some related examples are considered.

For background on analytic functions on infinite-dimensional spaces, we refer the
reader to [13] or to [21]. For details on the Aron-Berner extension we refer to [8].

For a given complex Banach space X, P(nX) (resp. P(≤nX)) denotes the Banach
space of all continuous n-homogeneous complex-valued polynomials on X (resp.
the Banach space of all continuous n-degree complex-valued polynomials on X).
Pf (nX) denotes the subspace of n-homogeneous polynomials of finite type, that is
the subspace generated by all polynomials of the form P (x) = (γ(x))n with γ ∈ X ′

and Pc(nX) is the closure of Pf (nX) with the topology of uniform convergence on
bounded subsets of X. It is well known [6] that if X ′ has the approximation property,
then Pc(nX) coincides with Pwu(nX), the space of n-homogeneous polynomials
which are weakly uniformly continuous on bounded subsets of X.

Recall that for every polynomial P ∈ P(nX) there exists a (necessarily unique)
symmetric n-linear form AP , associated with P such that AP (x, . . . , x) = P (x). We
will write AP (xk1

1 , . . . , xkn
n ) instead of AP (x1, . . . , x1︸ ︷︷ ︸

k1

, . . . , xn, . . . , xn︸ ︷︷ ︸
kn

). We will use

the fact that P(nX) is isomorphic to the dual space of the symmetric projective
n-fold tensor product

⊗n
s,π X of X.

Let us denote by An(X) the closure of the algebra, generated by polynomials
from P(≤nX) with respect to the uniform topology on bounded subsets. It is clear
that A1(X) ∩ P(nX) = Pc(nX) and An(X) is a Fréchet algebra of entire analytic
functions on X for every n. The closure of the algebra of all polynomials P(X) with
respect to the uniform topology on bounded subsets is denoted by Hb(X) and is
called the algebra of entire functions of bounded type on X. It is well known that
Hb(X) consists of all entire functions that are bounded on bounded subsets. The
closure of the algebra of all polynomials with respect to the uniform topology on
the unit ball B, H∞

uc(B), is the algebra of all analytic functions on B which are
uniformly continuous and bounded. We will use the short notation Mb and Muc

for the spectra M(Hb(X)) and M(H∞
uc(B)) respectively.

According to [3], every continuous functional φ ∈ Hb(X)′ can be represented by
φ =

∑∞
k=0 φk, where φk = πk(φ) is the restriction of φ to P(kX). The infimum

of all r > 0, R(φ) such that φ is continuous with respect to the norm of uniform
convergence on the ball rB is called the radius function of φ. It is known [3] that

R(φ) = lim sup
n→∞

‖φn‖1/n.

For every polynomial P ∈ P(mkX) we denote by P(m)(u) the polynomial from
P(k

⊗m
s,π X) such that P(m)(x⊗m) = P (x), where x⊗m = x ⊗ · · · ⊗ x︸ ︷︷ ︸

mtimes

.
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Lemma 1. Let φ ∈ Hb(X)′ such that φ(P ) = 0 for every P ∈ P(mX)∩Am−1(X),
where m is a fixed positive integer and φm �= 0. Then there is ψ ∈ Mb such that
ψk = 0 for k < m and ψm = φm. The radius function R(ψ) = ‖φm‖1/m.

Proof. Since φm �= 0, there is an element w ∈ (
⊗m

s,π X)′′, w �= 0 such that for
any m-homogeneous polynomial P, φ(P ) = φm(P ) = P̃(m)(w), where P̃(m) is the
Aron-Berner extension of the linear functional P(m) from

⊗m
s,π X to (

⊗m
s,π X)′′ and

‖w‖ = ‖φm‖. For an arbitrary n-homogeneous polynomial Q we set

(1) ψ(Q) =
{

Q̃(m)(w) if n = mk for some k ≥ 0 ,
0 otherwise,

where Q̃(m) is the Aron-Berner extension of the k-homogeneous polynomial Q(m)

from
⊗m

s,π X to (
⊗m

s,π X)′′.
Let (uα) be a net from

⊗m
s,π X that converges to w in the weak-star topology

of (
⊗m

s,π X)′′, where α belongs to an index set A. We can assume that uα has a
representation uα =

∑∞
j=1 x⊗m

j,α for some xj,α ∈ X. Let us show that ψ(PQ) =
ψ(P )ψ(Q) for any homogeneous polynomials P and Q. Let us suppose first that
deg(PQ) = mr + l for some integers r ≥ 0 and m > l > 0. Then P or Q has
degree equal to mk + s, k ≥ 0, m > s > 0. Thus, by the definition, ψ(PQ) =
0 and ψ(P )ψ(Q) = 0. Suppose that deg(PQ) = mr for some integer r ≥ 0. If
deg P = mk and deg Q = mn for k, n ≥ 0, then deg(PQ) = m(k+n) and ψ(PQ) =
(P̃Q)(m)(w) = P̃(m)(w)Q̃(m)(w) = ψ(P )ψ(Q).

Now let deg P = mk + l and deg Q = mn + r, l, r > 0, l + r = m. Write ν =
1/(deg P +deg Q)! = 1/(m(k + n + 1))!. Let APQ denote the symmetric multilinear
map, associated with PQ. Then

APQ(x1, . . . , xm(k+n+1))

= ν
∑

σ∈Sm(k+n+1)

AP (xσ(1), . . . , xσ(mk+l))AQ(xσ(mk+l+1), . . . , xσ(m(k+n+1))),

where Sm(k+n+1) is the group of permutations on {1, . . . , m(k + n + 1)}. Thus for
α1, . . . , αk+n+1 ∈ A we have

ψ(PQ) = (P̃Q)(m)(w) = lim
α1,...,αk+n+1

ÃPQ(m)(uα1 , . . . , uαk+n+1)

= lim
α1,...,αk+n+1

ÃPQ(m)

⎛⎝ ∞∑
j=1

x⊗m
j,α1

, . . . ,
∞∑

j=1

x⊗m
j,αk+n+1

⎞⎠
= ν

∑
σ∈Sm(k+n+1)

lim
ασ(1),...,ασ(k+n+1)

∞∑
j1,...,jk+n+1=1

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

,

xl
jσ(k+1),ασ(k+1)

)AQ(xr
jσ(k+1),ασ(k+1)

, xm
jσ(k+2),ασ(k+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

).

Fix some σ ∈ Sm(k+n+1) and fix all xjσ(i),ασ(i) , for i ≤ k and for i > k + 1. Then

∞∑
j1,...,jk+n+1=1

lim
ασ(k+1)

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

, xl
jσ(k+1),ασ(k+1)

)

× AQ(xr
jσ(k+1),ασ(k+1)

, xm
jσ(k+2),ασ(n+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

) = 0
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because for fixed xkσ(i),ασ(i) , i ≤ k,

Pσ(y) :=
∞∑

j1,...,jk,jk+2,...,jk+n+1=1

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

, yl)

is an l-homogeneous polynomial and for fixed xkσ(i),ασ(i) , i > k + 1,

Qσ(y) :=
∞∑

j1,...,jk,jk+2,...,jk+n+1=1

AQ(yr, xm
jσ(k+2),ασ(n+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

)

is an r-homogeneous polynomial. Thus PσQσ ∈ Am−1(X). Hence

lim
α

(PσQσ)(m)(uα) = ψ(PσQσ) = 0

for every fixed σ. Thus ψ(PQ) = 0. On the other hand, ψ(P )ψ(Q) = 0 by the
definition of ψ. So ψ(PQ) = ψ(P )ψ(Q).

Thus we have defined the multiplicative function ψ on homogeneous polynomials.
We can extend it by linearity and distributivity to a linear multiplicative functional
on the algebra of all continuous polynomials P(X). If ψn is the restriction of ψ to
P(nX), then ‖ψn‖ = ‖w‖n/m if n/m is a positive integer and ‖ψn‖ = 0 otherwise.
Hence ψ =

∑∞
n=0 ψn is a continuous linear multiplicative functional on Hb(X) by

[3, 2.4. Theorem] and the radius function of ψ can be computed by

R(ψ) = lim sup
n→∞

‖ψn‖1/n = lim sup
n→∞

‖w‖n/mn = ‖w‖1/m = ‖φm‖1/m

as required. �

For each fixed x ∈ X, the translation operator Tx is defined on Hb(X) by

(Txf)(y) = f(y + x), f ∈ Hb(X).

It is not complicated to check that Txf ∈ Hb(X) and for fixed φ ∈ Hb(X)′ the
function x �→ φ(Txf), x ∈ X, belongs to Hb(X) (see [3]).

For fixed φ, θ ∈ Hb(X)′ the convolution product φ ∗ θ in Hb(X) is defined by

(φ ∗ θ)(f) = φ(θ(Txf)), f ∈ Hb(X).

Let φ, θ ∈ Mb. According to [3, 4.7. Corollary], there exist nets (xα), (yβ) ⊂ X
such that

(2) φ(P ) = lim
α

P (xα), θ(P ) = lim
β

P (yβ)

for every polynomial P. We will write the condition (2) by xα →P φ and yβ →P θ. Thus
for every polynomial P we have: (φ ∗ θ)(P ) = limβ limα P (xα + yβ). Note that Mb

is a semigroup with respect to the convolution product and φ ∗ θ �= θ ∗ φ in general
(see [5, Remark 3.5]). We denote φ1 ∗ · · · ∗ φn briefly by

n
+×

k=1
φk.

Let Ik be the minimal closed ideal in Hb(X), generated by all m-homogeneous
polynomials, 0 < m ≤ k. Evidently, Ik is a proper ideal (contains no unit) so it is
contained in a closed maximal ideal (see [21, p. 228]). Let

Φk := {φ ∈ Mb : kerφ ⊃ Ik}.
We set Φ0 := Mb. The functional δ(0), that is, point evaluation at zero, belongs to
Φk for every k > 0.
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Corollary 2. If Am(X) �= Am−1(X) for some m > 1, then there exists ψ ∈ Φm−1

such that ψ /∈ Φm.

Proof. Let P ∈ P(mX) and P �∈ Am−1(X). Since Am−1(X) is a closed subspace of
Hb(X), by the Hahn-Banach Theorem there exists a linear functional φ ∈ Hb(X)′

such that φ(Q) = 0 for every Q ∈ Am−1(X) and φ(P ) �= 0. So φk ≡ 0 for k < m and
φm(P ) �= 0. By Lemma 1 there exists ψ ∈ Mb such that ψk = φk for k = 1, . . . , m.
Thus ψ ∈ Φm−1, but ψ /∈ Φm. �

Note that A1(c0) = An(c0) for every n, but Ak(�p) = Am(�p) for k �= m if and
only if k < p and m < p. Moreover, if X admits a polynomial which is not weakly
sequentially continuous, then the chain of algebras {Ak(X)} does not stabilize and
if X contains �1, then Ak(X) �= Am(X) for k �= m [19, 12].

Lemma 3. If φ, ψ ∈ Mb and ψ ∈ Φk−1, then φ ∗ ψ(P ) = φ(P ) + ψ(P ) for every
P ∈ P(kX).

Proof. Let (xα) and (yβ) be nets in X such that xα →P φ and yβ →P ψ. For any fixed
yβ and 0 < n < k, AP (xk−n, yn

β ) is a (k − n)-homogeneous polynomial. Thus

φ(AP (xk−n, yn
β )) = lim

α
AP (xk−n

α , yn
β ) = 0.

Therefore,
φ ∗ ψ(P ) = lim

β,α
P (xα + yβ)

=
∑

n+m=k

lim
β,α

AP (xn
α, ym

β ) =
∑

n+m=k

lim
β

(
lim
α

AP (xn
α, ym

β )
)

= lim
β

(
lim
α

AP (xα, . . . , xα) + AP (yβ , . . . , yβ)
)

= φ(P ) + ψ(P ).

�

Lemma 4. If P ∈ P(kX), φj ∈ Φj−1, then for every m > k,
m
+×

j=1
φj(P ) =

k
+×

j=1
φj(P ).

Proof. Since φj ∈ Φj−1, φj(P ) = 0 for every j > k. �

Given a sequence (φn)∞n=1 ⊂ Mb, φn ∈ Φn−1, the infinite convolution
∞
+×

n=1
φn

denotes a linear multiplicative functional on the algebra of all polynomials P(X)

such that
∞
+×

n=1
φn(P ) =

k
+×

n=1
(P ) if P ∈ P(kX) for an arbitrary k. This multiplicative

functional uniquely determines a functional in Mb (which we denote by the same

symbol
∞
+×

n=1
φn) if it is continuous.

The point evaluation operator δ maps X into Mb by x �→ δ(x), δ(x)(f) = f(x).
The operator δ̃ is the extension of δ onto X ′′, i.e. δ̃(x′′)(f) = f̃(x′′) for every
x′′ ∈ X ′′.

Theorem 5. There exists a sequence of dual Banach spaces (En)∞n=1 and a sequence
of maps δ(n) : En → Mb such that E1 = X ′′, En = P(nX)′ ∩ I⊥n−1, δ(1) = δ̃ and
such that an arbitrary complex homomorphism φ ∈ Mb has a representation

(3) φ =
∞
+×

n=1
δ(n)(un)

for some un ∈ En, n = 1, 2, . . ..
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Proof. Put E1 = X ′′. Then δ(1)(x′′) = δ̃(x′′) ∈ Mb for every x′′ ∈ X ′′. Suppose
that spaces Ek and maps δ(k) are constructed for k < n. Denote by En the set
{πn(φ) : φ ∈ Φn−1}, where πn(φ) = φn is the restriction of φ onto the subspace
P(nX). In other words, En consists of linear continuous functionals on P(nX) that
vanish on all polynomials in P(nX)∩An−1. If An = An−1, then En ≡ 0. Otherwise,
by Corollary 2, there are nonzero points in En.

By Lemma 3, for P ∈ P(nX) and φ, ψ ∈ Φn−1 ⊂ Mb, πn(φ∗ψ)(P ) = φ∗ψ(P ) =
φ(P ) + ψ(P ) = πnφ(P ) + πnψ(P ). Hence πn(φ ∗ ψ) = πn(φ) + πn(ψ). For an
arbitrary complex number a, aφ ∈ Hb(X)′ and πk(aφ) = aπk(φ). So aφ vanishes
on all homogeneous polynomials of degree less than n. By Lemma 1 there exists
ψ ∈ Mb such that ψk = aφk for 1 ≤ k ≤ n. Thus ψ ∈ Φn−1 and aφn = ψn ∈ En.
Hence En is a linear space and polynomials from P(nX) are acting on En as linear
functionals. Put Wn = P(nX)/(In−1 ∩ P(nX)). Then Wn is a Banach space of
linear functionals on En and the functionals from Wn separate points of En. Let us
define a norm on En, ‖ · ‖n as the supremum of values of a vector from En on the
unit ball of Wn. Therefore W ′

n = (P(nX)/(In−1∩P(nX)))′ = P(nX)′∩I⊥n−1 ⊃ En.

On the other hand, if u ∈ P(nX)′ ∩ I⊥n−1, then by Lemma 1, u = πn(φ) for some
φ ∈ Mb and so u ∈ En. Thus En = W ′

n.
For given w ∈ En let us define δ(n)(w)(Q) = ψ(Q) on homogeneous polynomials

Q by formula (1) and extend it to the unique complex homomorphism on Hb(X) as
in Lemma 1. So δ(n) maps En into Mb. For any φ ∈ Mb put u1 := φ1 ∈ X ′′ = E1,
u2 := φ2 − π2(δ(1)(u1)). It is clear that u2 ∈ E2. Suppose that we have defined
uk ∈ Ek, k < n. Set

(4) un := φn − πn

(
n−1
+×

k=1
δ(k)(uk)

)
.

Let us show that un ∈ En. It is enough to check that for every P ∈ P(nX) such
that P = PkPm, deg Pk = k �= 0, deg Pn = n �= 0 implies un(P ) = 0. Note that for
all n-homogeneous polynomials Pn,

φn − πn

(
n−1
+×

k=1
δ(k)(uk)

)
(Pn) = φn −

n−1
+×

k=1
δ(k)(uk)(Pn).

From the multiplicativity of φ and Lemma 4 it follows that

un(P ) = φn(PkPm) −
n−1
+×

j=1
δ(j)(uj)(PkPm) = φk(Pk)φm(Pm)

−
(

n−1
+×

j=1
δ(j)(uj)(Pk)

) (
n−1
+×

j=1
δ(j)(uj)(Pm)

)
=

(
uk(Pk) +

k−1
+×

j=1
δ(j)(uj)(Pk)

) (
um(Pm) +

m−1
+×

j=1
δ(j)(uj)(Pm)

)
−

(
k
+×

j=1
δ(j)(uj)(Pk)

) (
m
+×

j=1
δ(j)(uj)(Pm)

)
= 0.

The last equality holds because by the induction assumption, uk ∈ Ek, um ∈ Em

and hence, by Lemma 3,

(5) uk(Pk) +
k−1
+×

j=1
δ(j)(uj)(Pk) =

k
+×

j=1
δ(j)(uj)(Pk)
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and

um(Pm) +
m−1
+×

j=1
δ(j)(uj)(Pm) =

m
+×

j=1
δ(j)(uj)(Pm).

Let us consider the functional
∞
+×

j=1
δ(j)(uj). Since uk ∈ Ek, by Lemma 3,

∞
+×

j=1
δ(j)(uj)(f) = f(0) +

∞∑
n=1

n
+×

j=1
δ(j)(uj)(fn),

where f =
∑

fn is the Taylor series expansion of f. Hence
∞
+×

j=1
δ(j)(uj) is well defined

on P(X). On the other hand, applying (4) and (5) we obtain(
φ −

∞
+×

j=1
δ(j)(uj)

)
(Pn) = φn(Pn) −

n
+×

j=1
δ(j)(uj)(Pn)

= un(P ) +
n−1
+×

j=1
δ(j)(uj)(Pn) −

n
+×

j=1
δ(j)(uj)(Pn) = 0

for arbitrary Pn ∈ P(nX). Thus φ =
∞
+×

j=1
δ(j)(uj) on P(X). Hence φ =

∞
+×

j=1
δ(j)(uj)

on Hb(X). �

Let us denote by E∞ the space of all finite sequences (u1, . . . , um, 0, . . .), uk ∈ Ek.
According to Theorem 5, every finite sequence u = (u1, . . . , um, 0, . . .) defines a

character φu =
m
+×

k=1
δ(k)(uk) ∈ Mb. Thus E∞ ⊂ Mb and for every u, v ∈ E∞,

φu+v ∈ Mb. Moreover, from the density of polynomials in Hb(X) it follows that
E∞ is dense in Mb with respect to the Gelfand topology. So we have proved the
following theorem.

Theorem 6. Mb contains the dense linear subspace of all finite subsequences
(u1, . . . , um, 0, . . .), uk ∈ Ek.

According to [3, 7], the operation of sum on X may be discontinuous with re-
spect to the Gelfand topology, induced from Mb. Hence, in general, E∞ is not a
topological vector space. Thus, the density of E∞ in Mb does not imply that Mb

is a linear space.
We need to have some properties of the radius function, proved by Aron, Cole

and Gamelin in [3].

Proposition 7. (1) For each r > 0, the set of φ ∈ Mb satisfying R(φ) ≤ r
coincides with the spectrum of H∞

uc(rB). In particular, Muc = {φ ∈ Mb :
R(φ) ≤ 1}.

(2) For every φ, ψ ∈ Hb(x)′, R(φ ∗ ψ) ≤ R(φ) + R(ψ).

Example 8. 1. Let X be c0 or Tsirelson’s space. Then Ek = {0} for k > 1 [4, 22].
2. Let X = �1 and φ ∈ Hb(�1)′, ‖φ‖ = 1. According to [3], φ ∈ Mb(�1) if and

only if for every m = 1, 2, . . . there exists a symmetric measure on β(Nm), νm and
a constant c > 0 such that ‖νm‖ ≤ cm and for each Pm ∈ P(m�1),

φ(Pm) =
∫

β(Nm)

P̂mdνm,
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where P̂m is just Pm regarded as a vector from �∞(Nm). By Theorem 5, φ ∈ Mb(�1)
if and only if there is a sequence of symmetric measures (µm) which are orthogonal
to β(Nj) × β(Nk) ⊂ β(Nm), for m > 1, k + j = m, k, j > 0, and functionals

um(Pm) =
∫

β(Nm)

P̂mdµm

determine φ by formula (3).
3. (Cf. [1, Example 3.1].) Let X = �p for some integer p, 1 < p < ∞. For every

n, put

vn =
1

n1/p
(e1 + · · · + en),

where (ek) is the standard basis in �p. Since ‖vn‖ = 1, R(δ(vn)) = 1 and so
δ(vn) ∈ Muc ⊂ Mb. By compactness of Muc there is an accumulation point φ ∈ Muc

of the sequence (δ(vn)). If 0 < k < p, then by Pitt’s Theorem (see [16, Theorem
5.1]) every polynomial P ∈ P(k�p) is weakly continuous on bounded sets. Since vn

is weakly null in �p, φ(P ) = 0. On the other hand, φ(Q) = 1 for the polynomial

Q(x) =
∑∞

n=1 xp
n. Thus φ ∈ Φp−1 and φ �= 0. In other words, if φ =

∞
+×

k=1
δ(k)(uk) is

the representation of φ by Theorem 5, then uk = 0 for k < p and up �= 0.

Proposition 9. Let φ ∈ Mb and let φ =
∞
+×

k=1
δ(k)(uk), uk ∈ Ek, be its representa-

tion. Then

lim sup
k→∞

‖uk‖1/k
k ≤ R(φ) ≤

∞∑
k=1

‖uk‖1/k
k .

Proof. The first inequality holds because ‖uk‖k ≤ ‖φk‖ and by the definition of the
radius function. The second inequality follows from Proposition 7 and the following
calculation:

R(δ(k)(uk)) = lim sup
m→∞

‖πkm(δ(k)(uk))‖1/km = ‖δ(k)(uk)‖m/km = ‖uk‖1/k.

�

Let F be an analytic map from �1 to �1 defined by

F (x) = F

( ∞∑
n=1

xnen

)
=

∞∑
n=1

xn
nen.

We denote by F (�1) the range of F and by F (B�1) the range of F restricted to the
unit ball B�1 ⊂ �1.

Given a sequence of Banach spaces (En, ‖ · ‖n)∞n=1 and 0 < ρ ≤ ∞ the Köthe
sequence space λ1(Kρ; (En)) (where Kρ = {(rn)∞n=1 : 0 < r < ρ}) is the Fréchet
space {

(xn)∞n=1 ∈
∞∏

n=1

En : pr((xn)∞n=1) =
∞∑

n=1

‖xn‖rn < ∞ ∀r, 0 < r < ρ

}
,

endowed with the topology given by the seminorms {pr}0<r<ρ. By Cauchy-
Hadamard’s formula,

λ1(Kρ; (En)) =

{
(xn)∞n=1 ∈

∞∏
n=1

En : lim sup
n→∞

‖xn‖1/n
n ≤ 1

ρ

}
.
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Corollary 10. (1) Mb contains every sequence u = (uk)∞k=1, uk ∈ Ek, such
that the sequence (‖(uk)‖)∞k=1 is in F (�1).

(2) Muc contains every sequence u = (uk)∞k=1, uk ∈ Ek, such that the sequence
(‖(uk)‖)∞k=1 is in F (B�1).

(3) Every complex homomorphism φ ∈ Mb is contained in a Köthe sequence
space λ1(Kρ; (En)) for ρ = 1/R(φ).

(4) Muc is contained in λ1(K1; (En)).

Proof. Since F−1((‖uk‖)∞k=1) ∈ �1,
∑∞

k=1 ‖uk‖1/k ≤ ∞ and by Proposition 9,
R(φu) < ∞. Thus φu ∈ Mb. Moreover, if F−1((‖uk‖)∞k=1) ∈ F (B�1), then R(φu) ≤ 1
and φu ∈ Muc.

Suppose that φu ∈ Mb for some u = (uk)∞k=1. Then R(φu) < ∞ and by Propo-
sition 9, lim sup

k→∞
‖uk‖1/k ≤ R(φu). Hence φu ∈ λ1(K1/R(φu); (En)). In particular, if

R(φu) ≤ 1, then φu ∈ λ1(K1; (En)). �

Dixon [14] has given an example of an algebra of polynomials of infinitely many
variables which admits discontinuous scalar-valued homomorphisms. In [15] a
construction is given of a discontinuous scalar-valued homomorphism of an alge-
bra of polynomials on an arbitrary infinite-dimensional Banach space. The next
corollary shows that the restriction of a discontinuous complex homomorphism on
An(X) ∩ P(X) can be continuous for every n. Note that the problem of existence
of discontinuous complex homomorphisms on Hb(X) for an infinitele-dimensional
Banach space X is still open and equivalent to the famous Michael Problem [20],
[21, p. 240].

Corollary 11. If the sequence of algebras An(X) does not stabilize, then there is
a discontinuous complex homomorphism ζ on P(X) such that the restriction of ζ
on An(X) ∩ P(X) is a continuous complex homomorphism for every n.

Proof. By Corollary 2 and Theorem 5 there exists an infinite sequence (uk)∞k=1,
uk ∈ Ek, uk �= 0. Since each Ek is a linear space, we can choose uk such that
lim sup

k→∞
‖uk‖1/k

k = ∞. Put ζ =
∞
+×

k=1
δ(k)(uk). Evidently,

ζ(f) =
n
+×

k=1
δ(k)(uk)(f)

for every f ∈ An(X). So ζ is well defined and continuous on An(X) ∩ P(X).
If ζ is continuous on P(X), then it can be extended to a continuous complex
homomorphism on Hb(X). But this contradicts Proposition 9. �

In [11] Deghoul, using Borsuk’s theorem, shows that there is an “exceptional”
character φ on Hb(�2) such that φ vanishes on odd degree homogeneous polynomials
and is different from the evaluation at 0. The next proposition delivers the existence
of exceptional characters on Hb(X) for a large number of X.

Proposition 12. Suppose that Am(X) �= Ak(X) for some m > 1 and all k < m.
Then there exists a nontrivial character ψ0 ∈ Mb such that ψ0(P ) = 0 for every
homogeneous polynomial P, deg P �= nm, n = 1, . . . ,∞.
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Proof. By Corollary 2 there exists a nontrivial character ψ ∈ Mb which vanishes
on all k-homogeneous polynomials for k < m. From Theorem 5 it follows that
Em contains a nonzero vector um. Put ψ0 = δ(m)(um). Then ψ0 vanishes on all
homogeneous polynomials excepting nm-homogeneous polynomials, n = 1, 2, . . ..

�
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