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INTRODUCTION

We consider linear nonhomogeneous systems of differential equations containing distributions as
coefficients. Descriptions of such systems typically contain some form of products of discontinuous
functions by generalized derivatives of functions of bounded variation. These products do not always
exist in the sense of distribution theory, and accordingly, different approaches to the definition of
a solution may give different results. A detailed review of the literature on this topic can be found
in [1], where the main approaches to the definition of a solution of the corresponding equations
are also described. We also note the papers [2–6] dealing with the analysis of classes of linear and
quasilinear differential systems with measures whose solutions are treated in the sense of distribution
theory, whereby their definition (under some restrictions on the coefficients) is independent of the
interpretation of the product of a measure by a function of locally bounded variation.

Here we study the solvability of a nonhomogeneous boundary value problem for a differential
system with measures assuming that the value of a parameter λ occurring linearly in the equation
coincides with some eigenvalue of the corresponding homogeneous problem. The simpler case in
which λ does not coincide with any eigenvalue was considered in [4].

1. NOTATION

Let Cn be the n-dimensional complex Euclidean space with inner product
(x, y) = y∗x = y1x1 + y2x2 + · · ·+ ynxn, x = (x1, . . . , xn)τ , y = (y1, . . . , yn)τ ,

where ∗ stands for Hermitian conjugation (that is, complex conjugation ·̄ followed by transpo-
sition τ). We denote the space of right continuous functions of locally bounded variation on
the compact set [a, b] by BV +[a, b]. The space of n × m matrices whose entries are complex-
valued functions of the real variable x ∈ [a, b] is denoted by L ([a, b]n×m). If A ∈ BV +[a, b] and
A ∈ L ([a, b]n×m) simultaneously, then we write A ∈ BV + ([a, b]n×m) and assume that each entry
of the matrix A(x) belongs to BV +[a, b]. By ∆C(x) = C(x) − C(x − 0) we denote the jump of a
function C ∈ BV + ([a, b]n×m) at a point x ∈ [a, b].

Let A = (akν)
n

1 ∈ BV +[a, b]n×n be a function nondecreasing in the matrix sense [7, p. 539 of the
Russian translation] on [a, b]. By L̄2

A[a, b] we denote the Hilbert space of classes of A-equivalent1

vector functions f = (fk)
n

1 ∈ BV +[a, b]n×1 with dA-measurable coordinates fk(x) such that

‖f‖2L̄2
A[a,b] = ‖f‖2A =

b∫
a

f ∗(t)dA(t)f(t) =

b∫
a

n∑
k,ν=1

fk(t)fν(t)dakν(t) <∞.

The inner product in L̄2
A[a, b] is defined in the standard way:

〈f, g〉L̄2
A[a,b] = 〈f, g〉A =

b∫
a

g∗(t)dA(t)f(t) =

b∫
a

n∑
k,ν=1

gk(t)fν(t)dakν(t).

1 As usual, functions f(x) and g(x) are said to be A-equivalent on [a, b] if they coincide dA-almost everywhere on [a, b].
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The space L̄2
A[a, b] will be called the space of A-square integrable functions, and convergence in the

norm ‖ · ‖L̄2
A[a,b] in L̄2

A[a, b] will be referred to as mean(-square) convergence on [a, b].

2. STATEMENT OF THE PROBLEM

Consider the nonhomogeneous system of differential equations

JY ′ = [B′(x) + λA′(x)]Y + F ′(x), a ≤ x ≤ b, (1)

where A, and B are n× n matrices, J is a constant n× n matrix, Y and F are n-vectors, and λ is
a scalar (complex) parameter. We assume that A,B ∈ BV +[a, b]n×n, F ∈ BV +[a, b]n×1, and A(x)
is nondecreasing (in the matrix sense) on [a, b]; by A′, B′, and F ′ we denote their generalized
derivatives, which are Stieltjes measures on [a, b] (see [8, p. 160 of the Russian translation]). Further,
we assume that

J∗ = −J, J∗J = E, A∗(x) = A(x), B∗(x) = B(x), (21−4)

where E is the identity matrix.
A solution of Eq. (1) is defined as a vector function Y ∈ BV +[a, b] satisfying this equation

in the generalized sense, i.e., with the differentiation and equality in (1) treated in the sense of
distribution theory [9, 10]. To make this definition unambiguous, we must subject the functions
A(x), B(x), and F (x) to the well-posedness conditions [2, 3], which in the case under consideration
have the form

{J [∆B (xs) + λ∆A (xs)]}2 = 0, [∆B (xs) + λ∆A (xs)]J∆F (xs) = 0 ∀xs ∈ [a, b]. (3)

Let M and N be n× n matrices such that

M∗JM = N∗JN (4)

and moreover, it follows from the relation Mv = Nv = 0 (v ∈ Cn) that v ≡ 0. For Eq. (1),
we consider the boundary value problem

Y (a) = Mv, Y (b) = Nv, (5)

where v 6= 0 is a given vector.
In what follows, we assume that an arbitrary nontrivial solution Y (x) of the corresponding

homogeneous system
JY ′ = [B′(x) + λA′(x)]Y (6)

satisfies the positive definiteness condition
b∫

a

Y ∗(x)dA(x)Y (x) > 0 (7)

with a classical2 matrix3 Riemann–Stieltjes integral.
Note that the eigenvalue problem (6), (5) under the additional condition (7) was comprehensively

studied in [4] (see also [6]). Problem (1), (5) was also posed and partially solved there. In particular,
the following main result was obtained.

Theorem A [6, p. 29]. Let conditions (2)–(4) and (7) be satisfied. If λ is not an eigenvalue
of problem (6), (5), then the nonhomogeneous problem (1), (5) has a unique solution Y ∈ L̄2

A[a, b],
which can be represented in the form

Y (x) =

b∫
a

K(x, t, λ)dF (t), (8)

2 For the existence of the integral in the classical sense, it is sufficient that the so-called strengthened well-posedness
condition ∆A (xs)J∆B (xs) = 0 for all xs ∈ [a, b] be satisfied [6].

3 That is actually a set of integrals of scalar type [7, p. 492 of the Russian translation].
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where the resolving kernel K(x, t, λ) has the form

K(x, t, λ) =
{

Y (x, a, λ)M [Y (b, a, λ)M −N ]−1Y (b, t, λ)J for x < t
Y (x, a, λ)M [Y (b, a, λ)M −N ]−1Y (b, t, λ)J − Y (x, t, λ)J for x ≥ t; (9)

here Y (x, t, λ) is the evolution operator (the principal solution matrix) of Eq. (6). In particular, it
has the following properties (is harmonic and J-unitary) [6] for any x, t, s ∈ [a, b] :

(1) Y (x, t, λ)Y (t, x, λ) = E;
(2) Y (x, t, λ)Y (t, s, λ) = cY (x, s, λ);
(3) Y ∗

(
x, t, λ̄

)
JY (x, t, λ) = J ;

(4) Y (x, t, λ) belongs to BV +[a, b] with respect to x as well as with respect to t and is an entire
function of the parameter λ.

In the present paper, we study solvability conditions for the nonhomogeneous problem (1), (5) for
the case in which λ coincides with some eigenvalue of problem (6), (5). In this case, the reduction of
problem (1), (5) to an equivalent loaded integral equation (of Fredholm–Stieltjes type) with matrix
kernel is an effective method.

3. AUXILIARY ASSERTIONS

The results of [11] and [6] imply the following assertion.

Lemma 1. Let h ∈ BV +[a, b] with respect to each variable, and let f, g ∈ BV +[a, b]; moreover,
suppose that h(x, y) is a square matrix function of the variables (x, y) and f(x) and g(y) are
matrix functions admitting the formal product g′(y)h(x, y)f ′(x). In addition, let the conditions
∆g (ys) ∆yh (x, ys) = 0 for all x ∈ [a, b] and ∆xh (xp, y) ∆f (xp) = 0 for all y ∈ [a, b] be satisfied at
each point ys ∈ [a, b] of discontinuity of the functions g(y) and h(x, y) and at each point xp ∈ [a, b] of
discontinuity of the functions h(x, y) and f(x). Then the repeated integrals

∫ b
a
dg(y)

∫ b
a
h(x, y)df(x)

and
∫ b
a

(∫ b
a
dg(y)h(x, y)

)
df(x) exist as classical matrix Riemann–Stieltjes integrals, and

b∫
a

dg(y)

b∫
a

h(x, y)df(x) =

b∫
a

 b∫
a

dg(y)h(x, y)

 df(x). (10)

Lemma 2. If x 6= t and λ is not an eigenvalue of problem (6), (5), then the kernel K(x, t, λ)
given by (9) is a right continuous matrix function of bounded variation on [a, b] with respect to each
of the arguments x and t; moreover,

K(x, t, λ) = K∗
(
t, x, λ̄

)
. (11)

If x = t, then
K(x, x, λ) = K∗

(
x, x, λ̄

)
− J. (12)

Proof. The first assertion readily follows from (9) and property (4). Let us show that the kernel
K(x, t, λ) can be represented in the different (equivalent) form

K(x, t, λ) =
{

Y (x, a, λ)M [Y (b, a, λ)M −N ]−1Y (b, t, λ)J for x < t
Y (x, b, λ)N [M − Y (a, b, λ)N ]−1Y (a, t, λ)J for x > t.

(13)

To verify that the right-hand sides of (13) and (9) coincide for x > t, we rewrite the right-hand
side of (9) on the basis of properties (1) and (2) in the form

Y (x, a, λ){M − [M − Y (a, b, λ)N ]} × [M − Y (a, b, λ)N ]−1Y (a, t, λ)J,

which can obviously be reduced to (13) for x > t after some simplifications.
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Now let us prove relation (11). To be definite, we assume that a ≤ x < t ≤ b (for x > t or x = t,
the proof follows the same scheme). Consider the difference

K(x, t, λ)−K∗
(
t, x, λ̄

)
= Y (x, a, λ)M [Y (b, a, λ)M −N ]−1Y (b, t, λ)J

−
{

Y
(
t, b, λ̄

)
N
[
M − Y

(
a, b, λ̄

)
N
]−1

Y
(
a, x, λ̄

)
J
}∗
.

(14)

Performing the conjugation and taking account of the first two relations in (2) and properties
(1)–(3), we obtain

K(x, t, λ)−K∗
(
t, x, λ̄

)
= Y (x, a, λ)M [Y (b, a, λ)M −N ]−1Y (b, t, λ)J

+ Y (x, a, λ) [M∗J −N∗JY (b, a, λ)]−1
N∗JY (b, t, λ)J

= Y (x, a, λ) [M∗J −N∗JY (b, a, λ)]−1
{

[M∗J −N∗JY (b, a, λ)]M

+N∗J [Y (b, a, λ)M −N ]
}

[Y (b, a, λ)M −N ]−1Y (b, t, λ)J

= Y (x, a, λ) [M∗J −N∗JY (b, a, λ)]−1 {M∗JM −N∗JN}
× [Y (b, a, λ)M −N ]−1Y (b, t, λ)J.

This, together with (4), implies that the difference (14) is zero and hence relation (11) is valid.
The proof of the lemma is complete.

Let {λk}∞1 be the sequence of eigenvalues of problem (6), (5) in which each λk is repeated
according to its multiplicity;4 therefore, to each λk there corresponds a set of rk (1 ≤ rk ≤ n)
successive indices. Let {Yk(x)}∞1 be the corresponding system of eigenfunctions, which, by [6], is
complete and orthonormal in the sense that 〈Yk, Yν〉A = δkν , where δkν is the Kronecker delta.

The following assertion can be derived from [5] in a straightforward manner.

Lemma 3. If a vector function ϕ ∈ L̄2
A[a, b] can be sourcewise represented in the form

ϕ(x) =

b∫
a

K(x, t, λ)dA(t)χ(t),

where the function A(x) and the kernel K(x, t, λ) are defined in Section 2 and χ ∈ L̄2
A[a, b], then

ϕ(x) =
∞∑
k=1

Yk(x)ck; (15)

moreover, ck = 〈ϕ, Yk〉A , and the series (15) converges absolutely and uniformly with respect to x5

to ϕ(x) on the interval [a, b] and converges also in mean, i.e., ‖ϕ(x) −
∑p

k=1 Yk(x)ck‖ −→
p→∞

0.

Corollary 1. Let λ not be an eigenvalue of problem (6), (5). Then

〈ϕ, Yk〉A = 〈χ, Yk〉A /(λk − λ) .

Lemma 3 and Corollary 1 imply the following assertion.
4 That is, the multiplicity of λk viewed as a root of the characteristic equation det[N − Y (b, a, λ)M ] = 0 of prob-

lem (6), (5).
5 The convergence is understood as the absolute and uniform convergence of the n series formed by n elements of

each of the vectors Yk(x)ck.
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Corollary 2. Let λ not be an eigenvalue of problem (6), (5), and let χ ∈ L̄2
A[a, b]. Then

b∫
a

K(x, t, λ)dA(t)χ(t) =
∞∑
k=1

Yk(x)
〈χ, Yk〉A
λk − λ

, (16)

and moreover, the series (16) converges absolutely and uniformly with respect to x on [a, b].

Corollary 3. Let λ not be an eigenvalue of problem (6), (5), and let χ,ψ ∈ L̄2
A[a, b]. Then the

analog
b∫

a

b∫
a

χ∗(t)dA(t)K(t, x, λ)dA(x)ψ(x) =
∞∑
k=1

〈χ, Yk〉A 〈ψ, Yk〉A
λk − λ

of the Hilbert formula is valid.

Corollary 4. Let λ not be an eigenvalue of problem (6), (5). Then

b∫
a

K(x, τ, λ)dA(τ)K∗(t, τ, λ) =
∞∑
k=1

Yk(x)Y ∗k (t)
|λk − λ|2

; (17)

moreover, the series (17) is convergent 6 absolutely and uniformly with respect to each argument,
the other argument being fixed.

Indeed, the eigenfunction Yk(x) corresponding to the eigenvalue λk satisfies the differential equa-
tion

JYk(x) = [B′(x) + λA′(x)]Y + (λk − λ)A′(x)Y.
Therefore, by Theorem A,

Yk(x) = (λk − λ)

b∫
a

K(x, t, λ)dA(t)Yk(t) (18)

provided that λ is not an eigenvalue of problem (6), (5). Since [6, p. 28] λk ∈ R, it follows
from (18) and (23) that

〈χ, Yk〉A =

b∫
a

Y ∗k (τ)dA(τ)K∗(t, τ, λ)u =
Y ∗k (t)
λk − λ̄

u. (19)

Therefore, by using formula (16) for χ(τ) = K∗(t, τ, λ)u, where u is an arbitrary constant vector,
and by taking account of (19), we obtain (17).

Lemma 4. The kernel K(x, t, λ) can be expanded in the bilinear series
∞∑
k=1

Yk(x)Y ∗k (t)/ (λk − λ)

in eigenfunctions of problem (6), (5), which converges to K(x, t, λ) in the sense that

b∫
a

(
K(x, t, λ)−

p∑
k=1

Yk(x)Y ∗k (t)
λk − λ

)
dA(t)

(
K(x, t, λ)−

p∑
k=1

Yk(x)Y ∗k (t)
λk − λ

)∗
−→
p→∞

0 (20)

for each given x ∈ [a, b].
6 In the sense that the n2 matrix entries form n2 absolutely and uniformly convergent function series.
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Proof. By (17),
b∫
a

K(x, τ, λ)dA(τ)K∗(x, τ, λ) =
∞∑
k=1

Yk(x)Y ∗k (x)
|λk − λ|2

. (21)

Moreover, the series is convergent on the interval [a, b] absolutely with respect to x; however, one
cannot claim that it is uniformly convergent. By using (18) and (23) again, we obtain

b∫
a

(
K(x, t, λ) −

p∑
k=1

Yk(x)Y ∗k (t)
λk − λ

)
dA(t)

(
K(x, t, λ) −

p∑
k=1

Yk(x)Y ∗k (t)
λk − λ

)∗

=

b∫
a

K(x, t, λ)dA(t)K∗(x, t, λ)−
p∑

k=1

 b∫
a

K(x, t, λ)dA(t)Yk(t)

 Y ∗k (x)
λk − λ̄

−
p∑
k=1

Yk(x)
λk − λ

b∫
a

Y ∗k (t)dA(t)K∗(x, t, λ) +
p∑

k,ν=1

Yk(x)
λk − λ

 b∫
a

Y ∗k (t)dA(t)Yν(t)

 Y ∗ν (x)
λν − λ̄

=

b∫
a

K(x, t, λ)dA(t)K∗(x, t, λ)−
p∑

k=1

Yk(x)Y ∗k (x)
|λk − λ|2

.

This, together with (21), implies (20).

4. STATEMENT OF AN EQUIVALENT PROBLEM

Without loss of generality, we assume that λ = 0 is not an eigenvalue of problem (6), (5). Let us
treat Eq. (6) as a nonhomogeneous equation (with nonhomogeneity λA′Y ). Then, on the basis of
Theorem A, the solution of problem (6), (5) can be represented via the loaded Fredholm–Stieltjes
integral equation

Y (x) = λ

b∫
a

K(x, t)dA(t)Y (t) (22)

with Hermitian matrix (see Lemma 2) kernel K(x, t) given by formula (9) with λ = 0. Further,
obviously, the solution of problem (1), (5) can be represented in the form

Y (x) = λ

b∫
a

K(x, t)dA(t)Y (t) + f(x), (23)

where

f(x) =

b∫
a

K(x, t)dF (t). (24)

If λ = 0 is an eigenvalue of problem (6), (5), then we take a value λ0 of the parameter λ that
is not an eigenvalue (such a value always exists by [6]). Further, we rewrite Eq. (6) in the form
JY ′ = (B′(x) + λ0A′(x))Y + (λ− λ0)A′(x)Y , or

JY ′ =
(
B+′(x) + λ−A′(x)

)
Y, (25)

where B+(x) = B(x) + λ0A(x) and λ− = λ − λ0. Then, obviously, λ− = 0 is not an eigenvalue
of problem (25), (5), and therefore, one can use the above-represented considerations. Note also
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that the eigenfunctions of problem (25), (5) coincide with those of problem (6), (5) with the only
difference that Yk(x) corresponds to the “shifted” eigenvalue λ−k = λk − λ0.

5. MAIN RESULTS

First, we consider the case in which λ is not an eigenvalue of problem (6), (5) and show that
the solution of the nonhomogeneous problem (1), (5) can be represented in an equivalent form
(an analog of the Schmidt formula) that has an advantage over the Fredholm formula (8) in that
it explicitly shows the meromorphic character of the solution with respect to the parameter λ and
indicates the leading part of the solution with respect to each pole λ = λν .

Theorem 1. Let assumptions (2)–(4) and (7) be valid, and let λ not be an eigenvalue of prob-
lem (6), (5). Then the nonhomogeneous problem (1), (5) has the unique solution

Y (x) = f(x) + λ

∞∑
ν=1

Yν(x)
1

λν (λν − λ)

b∫
a

Y ∗ν (t)dF (t)

 , (26)

where f(x) is given by (24); moreover, the series on the right-hand side in (26) is convergent
absolutely and uniformly with respect to x on the interval [a, b].

Proof. It was shown in Section 4 that problem (1), (5) is equivalent to the integral equation (23).
Consider the vector function

ϕ(x) ≡ Y (x)− f(x)
λ

≡
b∫

a

K(x, t)dA(t)Y (t). (27)

It satisfies all assumptions of Lemma 1; therefore,

ϕ(x) =
∞∑
ν=1

〈ϕ, Yν〉A Yν(x), (28)

and the series (28) converges absolutely and uniformly with respect to x on the interval [a, b].
By Corollary 1, we have

〈ϕ, Yν〉A = 〈Y, Yν〉A /λν . (29)

On the other hand, 〈ϕ, Yν〉A = 〈(Y − f)/λ, Yν〉A = (〈Y, Yν〉A − 〈f, Yν〉A) /λ. This, together with
(29), implies that

(λν − λ) 〈Y, Yν〉A = λν 〈f, Yν〉A . (30)

Since λ is not an eigenvalue, i.e., λν − λ 6= 0, we have

〈Y, Yν〉A =
λν

λν − λ
〈f, Yν〉A . (31)

By taking account of (28) and (29), we obtain

ϕ(x) =
∞∑
ν=1

〈f, Yν〉A
λν − λ

Yν(x). (32)

This, together with (27), implies that Y (x) = f(x) + λ
∑∞

ν=1 (λν − λ)−1 〈f, Yν〉A Yν(x). Further,
since the eigenfunction Yν(x) satisfies Eq. (22) for λ = λν , it follows from (23), (11), and (12) that

b∫
a

Y ∗ν (x)dA(x)K(x, t) =
Y ∗ν (t)
λν − λ̄

− Y ∗ν (t)∆A(t)J.

DIFFERENTIAL EQUATIONS Vol. 39 No. 3 2003



360 MAZURENKO, TATSII

By using formula (24) and the last relation, we obtain

〈f, Yν〉A =
1
λν

b∫
a

Y ∗ν (t)dF (t) −
b∫

a

Y ∗ν (t)∆A(t)JdF (t).

Since
b∫

a

Y ∗ν (t)∆A(t)JdF (t) =
∑

a≤tk≤b

Y ∗ν (tk) ∆A (tk) J∆F (tk) ,

where the sum is taken over all points of discontinuity of the functions A(t) and F (t) and is zero
by (3), we have

〈f, Yν〉A =
1
λν

b∫
a

Y ∗ν (t)dF (t). (33)

Therefore, for the solution of the integral equation (23) [and hence of problem (1), (5)], we have
the Schmidt type formula (26).

Let us show that the series on the right-hand side in (26) is convergent on the interval [a, b]
absolutely and uniformly with respect to x. To this end, we rewrite it in the form

∞∑
ν=1

(1− λ/λν)−1
λ−1
ν 〈f, Yν〉A Yν(x).

By Corollary 2, the series
∑∞

ν=1 λ
−1
ν 〈f, Yν〉A Yν(x) is absolutely and uniformly convergent. More-

over, by [6, p. 28], the eigenvalues of problem (6), (5) have no finite limit points, i.e., λν → ∞ as
ν → ∞; therefore, (1− λ/λν)−1 → 1. Hence it follows that the series is absolutely and uniformly
convergent with respect to x on the interval [a, b]. The solution (26) is unique. Indeed, if Y 1(x)
and Y 2(x) [Y 1(x) 6= Y 2(x)] are solutions of Eq. (23), then the function Y 1(x) − Y 2(x) (6= 0) is a
solution of the homogeneous equation (22); consequently, λ is an eigenvalue, which contradicts our
assumptions. The proof of the theorem is complete.

Remark. If for a given value of the parameter λ the series
∑∞

ν=1 Yν(x)Y ∗ν (t)/(λν − λ) is con-
vergent on the interval [a, b] uniformly with respect to t, then, by setting (see Lemma 5)

K(x, t, λ) =
∞∑
ν=1

Yν(x)Y ∗ν (t)/(λν − λ) ,

one can rewrite the solution of problem (1), (5) in the form (8).
Now consider the case in which λ coincides with some eigenvalue of problem (6), (5). For ex-

ample, suppose that λ = λk is an eigenvalue of multiplicity rk (1 ≤ rk ≤ n), so that

λ = λk = λk+1 = · · · = λk+rk−1. (34)

Theorem 2. Let assumptions (2)–(4) and (7) be valid, and let λ = λk be an eigenvalue of
problem (6), (5) of rank rk. The nonhomogeneous problem (1), (5) has a solution if and only if the
following rk conditions are satisfied :

b∫
a

Y ∗ν (t)dF (t) = 0, ν ∈ K ≡ {k, . . . , k + rk − 1} . (35)

In this case, the solution is given by the formula

Y (x) = f(x) + λ

∞∑
ν=1, ν 6∈K

Yν(x)
1

λν (λν − λ)

b∫
a

Y ∗ν (t)dF (t)

 +
∑
i∈K

ciYi(x), (36)

where the ci are arbitrary constants and f(x) is given by (24).
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Proof of necessity. Arguing as in the previous case, we obtain (30). Since, by (34), λ = λν ,
ν ∈ K , it follows from the last relation that

〈f, Yν〉A = 0, ν ∈ K . (37)

Therefore, we obtain rk necessary conditions for the existence of a solution of the integral
equation (23) and hence of problem (1), (5). By (33), these conditions are equivalent to (35).

Proof of sufficiency. If ν 6∈ K , then λν − λ 6= 0; just as above, relation (31) is valid for
such values of ν, and ϕ(x) is given by (32), where the summation is performed over ν ∈ N\K .
However, for ν ∈ K , the coefficients 〈Y, Yν〉A /λν become indefinite. Therefore, we write

Y (x) = f(x) +
∑
ν∈K

cνYν(x) + λ

∞∑
ν=1, ν 6∈K

〈f, Yν〉A
λν − λ

Yν(x), (38)

which, by (33), coincides with (36).
The convergence of the series in (36) is obvious from the argument carried out in the previous

case. The proof of the fact that the vector function Y (x) is a solution of the nonhomogeneous
problem (1), (5) can be carried out by a straightforward substitution of the expression (38) into
Eq. (23) with regard to Corollary 2, relations (37), and the fact that the eigenfunctions Yν(x),
ν ∈ K , of problem (6), (5), and hence their arbitrary linear combination, are solutions of the
homogeneous equation (22). The proof of the theorem is complete.
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