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BANDURA A.I.

SOME WEAKER SUFFICIENT CONDITIONS OF L-INDEX BOUNDEDNESS IN

DIRECTION FOR FUNCTIONS ANALYTIC IN THE UNIT BALL

We partially reinforce some criteria of L-index boundedness in direction for functions analytic

in the unit ball. These results describe local behavior of directional derivatives on the circle, esti-

mates of maximum modulus, minimum modulus of analytic function, distribution of its zeros and

modulus of directional logarithmic derivative of analytic function outside some exceptional set. Re-

placement of universal quantifier on existential quantifier gives new weaker sufficient conditions of

L-index boundedness in direction for functions analytic in the unit ball. The results are also new

for analytic functions in the unit disc. The logarithmic criterion has applications in analytic theory

of differential equations. This is convenient to investigate index boundedness for entire solutions of

linear differential equations. It is also apllicable to infinite products.

Auxiliary class of positive continuous functions in the unit ball (so-denoted Qb(B
n)) is also

considered. There are proved some characterizing properties of these functions. The properties

describe local behavior of these functions in the polydisc neighborhood of every point from the unit

ball.

Key words and phrases: bounded L-index in direction, analytic function, unit ball, maximum
modulus, directional derivative, distribution of zero.
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INTRODUCTION

The paper is addendum to papers [4–6, 20]. There was introduced a concept of analytic

functions in the unit ball of bounded L-index in a direction, where L : Bn → R+ is a con-

tinuous function, R+ = (0,+∞), B
n = {z ∈ C

n : |z| < 1}. Besides, there were deduced

necessary and sufficient conditions of belonging of analytic function in the unit ball to func-

tions of bounded L-index in a direction b ∈ Cn \ {0}, where 0 = (0, . . . , 0). The conditions

describe local behavior directional derivatives, maximum modulus and minimum modulus of

the analytic function on the circle of arbitrary radii. There are also an estimate of logarithmic

directional derivative outside some exceptional set by the function L and an estimate of distri-

bution of zeros for the analytic functions. Moreover, we established connection [4] betweeen

analytic functions in the unit ball of bounded L-index in direction and analytic function in the

unit ball of bounded value L-distribution.

Of course, there are two big classes of functions analytic in bounded domains from Cn.

These domains are unit ball and unit polydisc. The domains are not biholomorpic equivalent.

Nevertheless, they are importance domains in function theory of several complex variables.

Many methods are firstly developing for these domains. Particularly, there are papers [8–10]
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on the concept of bounded L-index in joint variables for functions analytic in the unit polydisc

or in the unit ball. It was demonstrated application [17] of the concept to study properties of

analytic solutions of some systems of partial differential equations.

Recently, for entire functions of bounded L-index in direction new weaker sufficient con-

ditions are obtained [2, 16]. They require validity of some conditions for one value of radius

instead each positive value. Moreover, there was presented class [7] of entire functions of un-

bounded index in any direction. The proof of this fact checks validity of some conditions for

some radius. It is simpler than for any radius. Also this idea [11] was applied to investigate L-

index boundedness in direction of entire solutions of linear directional differential equations.

Here we will consider similar problems for analytic functions in the unit ball.

1 AUXILIARY CLASS OF POSITIVE CONTINUOUS FUNCTIONS IN THE UNIT BALL

This section is devoted to auxiliary class of of positive continuous functions in the unit

ball. Note that positivity and continuity are still weak restrictions to construct a deep theory of

bounded index. Thus, we suppose that the functions satisfy additional assumptions on local

behavior.

Let D = {t ∈ C : |t| < 1}, Bn = {z ∈ Cn : |z| < 1}, L : Bn → R+ be a continuous function,

b = (b1, . . . , bn) ∈ Cn \ {0} be a fixed direction, where 0 = (0, . . . , 0). For z ∈ Bn we denote

Dz = {t ∈ C : |t| ≤ 1−|z|
|b|

},

λb(η) = sup
z∈Bn

sup
t1,t2∈Dz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(B
n) stands for a class of positive continuous functions L : Bn → R+, satisfy-

ing

(∀η ∈ [0, β]) : λb(η) < +∞ (1)

and

L(z) >
β|b|

1 − |z|
, (2)

where β > 0 is some constant. It is easy to check that class Qb(B
n) can be defined as follows.

For η ∈ [0, β], z ∈ Cn, b = (b1, . . . , bn) ∈ Cn \ {0} and a positive continuous function L : Bn →

R+, satisfying (2), we define

λb
1 (η) = inf

z∈Bn
inf {L(z + tb)/L(z) : |t| ≤ η/L(z)} ,

λb
2 (η) = sup

z∈Bn

sup {L(z + tb)/L(z) : |t| ≤ η/L(z)} .

Then the class Qb(B
n) consists from the functions L, providing inequality

(∀η ∈ [0, β]) : 0 < λb
1 (η) ≤ λb

2 (η) < +∞, (3)

i.e., conditions (3) and (1) equivalent. Actually it is enough to require validity of any inequality

in (3) for one value η ∈ (0, β] (for η = 0 the inequality is trivial). If n = 1 then Q(D) ≡ Q1(B1).

The reasoning leads us to the proposition.
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Proposition 1. Let L : Bn → R+ be a positive continuous functions such that (∀z ∈ Bn) :

L(z) > β|b|
1−|z|

, where β > 1. Then the following statements are equivalent:

1. (∀η ∈ [0, β]) : λb(η) < +∞;

2. (∀η ∈ [0, β]) : 0 < λb
1 (η) ≤ λb

2 (η) < +∞;

3. (∃η ∈ (0, β]) : 0 < λb
1 (η) ≤ λb

2 (η) < +∞.

The proof of this proposition is elementary and uses the definition of class Qb(B
n). Other

propositions on class Qb are in [1, 14, 20].

2 LOCAL BEHAVIOR OF DIRECTIONAL DERIVATIVE

Henceforth, we everywhere suppose that β > 1.

Analytic function F : Bn → C is called a function of bounded L-index [4–6, 20] in a direction

b ∈ Cn \ {0}, if there exists m0 ∈ Z+ such that for every m ∈ Z+ and for each z ∈ Bn

|∂m
b F(z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF(z)|

k!Lk(z)
, (4)

where ∂0
bF(z) = F(z), ∂bF(z) =

n

∑
j=1

∂F(z)
∂zj

bj, ∂k
bF(z) = ∂b

(
∂k−1

b F(z)
)

, k ≥ 2. There is also

papers about analytic functions in the unit ball of bounded L-index in joint variables [19]. A

connection between these classes is established in [17].

Theory of entire functions of bounded L-index in direction is deeply considered in [13].

We need the following criterion of L-index boundedness in direction.

Theorem 1 ([5, 6]). Let L ∈ Qb(B
n). Analytic function F(z) in B

n has bounded L-index in

the direction b ∈ Cn if and only if for every η, 0 < η ≤ β, there exist n0 = n0(η) ∈ Z+ and

P1 = P1(η) ≥ 1 such that for each z ∈ Bn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and the

following inequality

max{|∂k0
b F(z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂

k0
b F(z)|

holds.

Let us formulate some auxiliary propositions.

Lemma 1 ([5, 6]). Let L ∈ Qb(B
n), 1

β < θ1 ≤ θ2 < +∞, θ1L(z) ≤ L∗(z) ≤ θ2L(z). Analytic

function F(z) in Bn has bounded L∗-index in the direction b if and only if the function F has

bounded L-index in the direction b.

Lemma 2 ([5, 6]). Let L ∈ Qb(B
n), m ∈ C, m 6= 0. Analytic function F(z) in Bn is of bounded

L-index in the direction b ∈ C
n if and only if the function F(z) is of bounded L-index in the

direction mb.

Theorem 2 ([5,6]). Let β > 1, L ∈ Qb,β(B
n). Analytic function F(z) in Bn has bounded L-index

in the direction b ∈ Cn \ {0} if and only if for any r1 and for any r2, 0 < r1 < r2 ≤ β, there

exists P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Bn

max
{
|F(z0 + tb)| : |t|=

r2

L(z0)

}
≤ P1 max

{
|F(z0+tb)| : |t|=

r1

L(z0)

}
. (5)
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Theorem 2 is criterion of L-index boudnedness in direction providing maximum modulus

estimate on the greater circle by maximum modulus estimate on the lesser circle. Also it is

known some stronger proposition as sufficient conditions.

Theorem 3 ([5, 6]). Let L ∈ Qb(B
n). Analytic function F(z) in B

n is of bounded L-index in the

direction b ∈ C
n \ {0} if and only if there exist r1 and r2, 0 < r1 < 1 < r2 ≤ β, and P1 ≥ 1 such

that for every z0 ∈ Bn inequality (5) is true.

The theorems distinguish universal and existential quantifiers for r1 and r2 such that 0 <

r1 < 1 < r2 < +∞.

This leads to a natural question: Is it possible to replace quantifiers in other criteria of L-index

boundedness in direction?

Using Fricke’s idea [21], we deduce a modification of Theorem 1.

Theorem 4. Let L ∈ Qb(B
n). If there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1

such that for any z ∈ Bn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F(z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂

k0
b F(z)|,

then analytic function F : B
n → C has bounded L-index in the direction b ∈ C

n \ {0}.

Proof. Besides mentioned paper of Fricke [21], our proof is similar to [3] (entire functions of

bounded L-index in direction) and to [29] (entire functions of bounded l-index).

Assume that there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that for any

z ∈ B
n there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F(z + tb)| : |t| ≤

η

L(z)
} ≤ P1|∂

k0
b F(z)|. (6)

If η ∈ (1, β], then we choose j0 ∈ N such that P1 ≤ η j0 . And for η ∈ (0; 1] we choose j0 ∈ N

such that
j0!k0!

(j0+k0)!
P1 < 1. The j0 is well-defined because

j0!k0!

(j0 + k0)!
P1 =

k0!

(j0 + 1)(j0 + 2) · . . . · (j0 + k0)
P1 → 0, j0 → ∞.

Applying integral Cauchy’s formula to the function F(z + tb) as analytic function of one

complex variable t for j ≥ j0 we obtain that for every z ∈ B
n there exists k0 = k0(z), 0 ≤ k0 ≤

n0, and

∂
k0+j
b F(z) =

j!

2πi

∫

|t|=
η

L(z)

∂k0
b F(z + tb)

tj+1
dt.

Taking into account (6), we deduce

|∂
k0+j
b F(z)|

j!
≤

Lj(z)

η j
max

{
|∂k0

b F(z + tb)| : |t| =
η

L(z)

}
≤ P1

Lj(z)

η j
|∂k0

b F(z)|. (7)

In view of choice j0 with η ∈ (1, β], for all j ≥ j0 one has

|∂
k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤

j!k0!

(j + k0)!

P1

η j

|∂k0
b F(z)|

k0!Lk0(z + t0b)
≤ η j0−j |∂

k0
b F(z)|

k0!Lk0(z)
≤

|∂k0
b F(z)|

k0!Lk0(z)
.
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Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) do not depend of z, and z ∈ Bn is

arbitrary, the last inequality is equivalent to the assertion that F has boudned L-index in the

direction b and Nb(F, L) ≤ n0 + j0.

If η ∈ (0, 1), then from (7) it follows that for all j ≥ j0

|∂
k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤

j!k0!P1

(j + k0)!

|∂k0
b F(z)|

η jk0!Lk0(z)
≤

|∂k0
b F(z)|

η jk0!Lk0(z)

or in view of choice j0

|∂
k0+j
b F(z)|

(k0 + j)!

ηk0+j

Lk0+j(z)
≤

|∂k0
b F(z)|

k0!

ηk0

Lk0(z)
.

Thus, the function F is of bounded L̃-index in the direction b, where L̃(z) = L(z)
η . Then by

Lemma 1 the function F has bounded L-index in the direction b, if ηβ > 1. When η ≤ 1
β , we

choose arbitrary γ >
1

ηβ . By Lemma 1 the function F is of bounded L1-index in the direction b,

where L1(z) = ηγL̃(z). Then be Lemma 2 the function F has bounded L1-index in the direction

γb. Since ∂k
γbF = γk∂k

bF and Lk
1(z) = γkLk(z), in inequality (4) with the definition of L-index

boundedness in direction the corresponding multiplier γ is reduced. Hence, the function F is

of bounded L-index in the direction b. Theorem is proved.

The following propostion is easy directly deduced from the definition of L-index bounded-

ness in direction.

Proposition 2. Let L : Bn → C be a positive continuous function. An analytic function

F : Bn → C has bounded L-index in the direction b ∈ Cn \ {0} if and only if the function

G(z) = F(az + c) has bounded L∗-index in the direction b
a for any c ∈ C

n and a ∈ B
n such

that |c| < 1 − |a|, aj 6= 0 (∀j), where az + c = (a1z1 + c1, . . . , anzn + cn),
b
a = ( b1

a1
, . . . , bn

an
),

L∗(z) = L(az + c).

The proof of the proposition is elementary and it is similar to proof in the case of entire

functions (see [12]).

Analog of Proposition 2 for entire functions has generated the following still open problem.

Problem 1 ([12]). Does exist numbers a1, a2, c1, c2 ∈ C and an entire function F(z1, z2) such

that F(z1, z2) is of bounded L-index in a direction b = (b1, b2), but F(a1z1 + c1, a2z2 + c2) is of

unbounded L-index in the same direction b = (b1, b2)?

3 ESTIMATE MAXIMUM MODULUS BY MINIMUM MODULUS

Previously (see [5,6]) we proved few criteria of L-index boundedness in direction. They are

analogs of one-dimensional criterion of l-index boundedness [29]. Moreover, we found that

some assertions (Theorems 1 and 2) have modified stronger versions. In fact, their reinforce-

ment is to replace universal quantifiers by existential quantifiers (see Theorems 3

and 4).

Also we can weaken sufficient conditions of Theorem 3, replacing the condition

0 < r1 < 1 < r2 < +∞ by 0 < r1 < r2 < +∞.
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Theorem 5. Let L ∈ Qb(B
n), F be a function analytic in Bn. If there exist r1 and r2, 0 < r1 <

r2 ≤ β, and P1 ≥ 1 such that for all z0 ∈ Bn inequality (5) is satisfied, then the function F is of

bounded L-index in the direction b.

Proof. Our proof is based on idea of A. D. Kuzyk and M. M. Sheremeta [24]. They proposed

this method to investigate the l-index boundedness of entire solutions of linear differential

equations. Later their idea was applied for entire functions of bounded L-index in the direction

and in joint variables [2, 15].

Inequality (5) for 0 < r1 < r2 < β implies

max

{
|F(z0 + tb)| : |t| =

2r2

r1 + r2

r1 + r2

2L(z0)

}
≤ P1 max

{
|F(z0 + tb)| : |t| =

2r1

r1 + r2

r1 + r2

2L(z0)

}
.

Putting L∗(z) = 2L(z)
r1+r2

, we obtain

max

{
|F(z0 + tb)| : |t| =

2r2

(r1 + r2)L∗(z0)

}

≤ P1 max

{
|F(z0 + tb)| : |t| =

2r1

(r1 + r2)L∗(z0)

}
,

(8)

where 0 <
2r1

r1+r2
< 1 <

2r2
r1+r2

<
2β

r1+r2
. Clearly, L∗(z) = 2L(z)

r1+r2
>

2β|b|
(r1+r2)(1−|z|)

, i.e., L∗ satisfies

(2) and belongs to the class Qb(B
n) with

2β
r1+r2

instead β. From validity of inequality (8) we get

that by Theorem 3 the function F has bounded L∗-index in the direction b. And by Lemma 1

the function F has bounded L-index in the direction b.

Theorem 6 ([5, 6]). Let L ∈ Qb(B
n). An analytic function F(z) in Bn has bounded L-index in

the direction b if and only if for every R, 0 < R ≤ β, there exist P2(R) ≥ 1 and η(R) ∈ (0, R)

such that for all z0 ∈ B
n and some r = r(z0) ∈ [η(R), R] the inequality

max
{
|F(z0 + tb)| : |t| = r/L(z0)

}
≤ P2 min

{
|F(z0 + tb)| : |t| = r/L(z0)

}
(9)

is true.

Taking into account analogs of Theorems 4 and 5 for entire functions there was posed the

following question in [12].

Problem 2 ([12, Problem 6]). Is the following Conjecture 1 true?

Conjecture 1 ([12, 1]). Let L ∈ Qn
b. An entire function F : C

n → C has bounded L-index in the

direction b ∈ Cn \ {0} if and only if there exist R > 0, P2(R) ≥ 1 and η(R) ∈ (0, R) such that

for all z0 ∈ Cn and some r = r(z0) ∈ [η(R), R] inequality (9) is valid.

The was fully proved for entire functions in [2, 16].

Now, we will try to deduce similar results for functions analytic in the unit ball.

Theorem 7. Let L ∈ Qb(B
n), F : Bn → C be an analytic function. If there exists R ∈ (0, β/2)

(or if there exists R ∈ [β/2, β) and (∀z ∈ Bn) : L(z) > 2β|b|
1−|z|

) and there exist P2 ≥ 1, η ∈ (0, R)

such that for all z0 ∈ B
n and some r = r(z0) ∈ [η, R] inequality (9) holds, thenthe function F

has bounded L-index in the direction b.
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Proof. In view of Theorem 5 we need to show existence P1 such that for all z0 ∈ Bn

max
{
|F(z0 + tb)| : |t| = (β − R)/L(z0)

}
≤ P1 max

{
|F(z0 + tb)| : |t| = R/L(z0)

}
. (10)

Assume that there exist R ∈ (0, β/2), P2 ≥ 1 and η ∈
(
0, R

)
such that for every z0 ∈ Bn

and some r = r(z0) ∈
[
η, R

]
we have

max
{
|F(z0 + tb)| : |t| = r/L(z0)

}
≤ P2 min

{
|F(z0 + tb)| : |t| = r/L(z0)

}
.

Denote L∗ = max
{

L(z0 + tb) : |t| ≤ β/L(z0)
}

, ρ0 = R/L(z0), ρk = ρ0 + kη/L∗, k ∈ Z+. We

obtain
η

L∗
<

R

L∗
≤

R

L(z0)
=

β

L(z0)
−

β − R

L(z0)
.

Therefore, there exists n∗ ∈ N, independent of z0 and such that

ρp−1 <
β − R

L(z0)
≤ ρp ≤

β

L(z0)
,

for some p = p(z0) ≤ n∗. It is possible because L ∈ Qb(B
n). Ar first, one has

(
β

L(z0)
− ρ0

)/( η

L∗

)
=
(β − R)L∗

ηL(z0)

=
β − R

η
max

{
L(z0 + tb)

L(z0)
: |t| ≤

β

L(z0)

}
≤

β − R

η
λb(β).

Therefore, n∗ =
[

β−R
η λb(β)

]
, where [a] is an entire part of number a ∈ R. Let |F(z0 + t∗∗k b)| =

max{|F(z0 + tb)| : t ∈ ck}, ck = {t ∈ C : |t| = ρk}, and t∗k be the intersection point of the

segment [0, t∗∗k ] with the circle ck−1. Hence, for every r > η and for each k ≤ n∗ we get the

inequality |t∗∗k − t∗k | =
η
L∗ ≤ r

L(z0+t∗kb)
. Thus, for some r = r(z0 + t∗k b) ∈ [η, R] we deduce

|F(z0 + t∗∗k b)| ≤ max
{
|F(z0 + tb)| : |t − t∗k | = r/L(z0 + t∗k b)

}

≤ P2 min
{
|F(z0 + tb)| : |t − t∗k | = r/L(z0 + t∗k b)

}

≤ P2 min
{
|F(z0 + tb)| : |t − t∗k | = r/L(z0 + t∗k b), |t − t0| ≤ ρk−1

}

≤ P2 max{|F(z0 + tb)| : t ∈ ck−1}.

Hence,

max
{
|F(z0 + tb)| : |t| = (β − R)/L(z0)

}
≤ max{|F(z0 + tb)| : t ∈ cp}

≤ P2 max{|F(z0 + tb)| : t ∈ cp−1}

≤ . . . ≤ (P2)
p max{|F(z0 + tb)| : t ∈ c0}

≤ (P2)
n∗

max
{
|F(z0 + tb)| : |t| = R/L(z0)

}
.

We get (10) with P1 = (P2)
n∗

. Thus, for R ∈ (0, β/2) Theorem 7 is proved.
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Now, suppose that R ∈ [β/2, β) and (∀z ∈ Bn) : L(z) >
2β|b|
1−|z|

. Then inequality (9) can be

rewritten as

max

{
|F(z0 +

t

2
· 2b)| : |t/2| =

r/2

L(z0)

}
≤ P2 min

{
|F(z0 +

t

2
· 2b)| : |t/2| =

r/2

L(z0)

}
.

Denoting t′ = t/2, one has

max

{
|F(z0 + t′ · 2b)| : |t′| =

r/2

L(z0)

}
≤ P2 min

{
|F(z0 + t′ · 2b)| : |t′| =

r/2

L(z0)

}
.

Since r ≤ R ∈ [β/2, β), we have r/2 ≤ R ∈ [β/4, β/2) ⊂ (0, β/2). Therefore, as shown above

the function F has bounded L-index in the direction 2b, but by Lemma 2 the function is also

of bounded L-index in the direction b.

4 ESTIMATE OF DIRECTIONAL LOGARITHMIC DERIVATIVE

Below we formulate another criterion of L-index boundedness in direction. It describes

behavior of logarithmic derivative in direction and distribution of zeros. Firstly the criterion

was obtained by Fricke [21, 22] for entire function of bounded index.

We need additional notations.

Let gz0(t) := F(z0 + tb). If for given z0 ∈ Bn gz0(t) 6= 0 for all t ∈ Dz0, then Gb
r (F, z0) := ∅;

if for given z0 ∈ Bn gz0(t) ≡ 0, then Gb
r (F, z0) := {z0 + tb : t ∈ Dz0}. And if for some z0 ∈ Bn

gz0(t) 6≡ 0 and a0
k are zeros of the functions gz0(t), i.e., F(z0 + a0

kb) = 0, then

Gb
r (F, z0) :=

⋃

k

{
z0 + tb : |t − a0

k | ≤
r

L(z0 + a0
kb)

}
, r > 0.

Let

Gb
r (F) =

⋃

z0∈Bn

Gb
r (F, z0).

By n
(
r, z0, 1/F

)
=∑|a0

k|≤r 1 we denote counting functions of number of zeros a0
k .

Theorem 8 ([5, 6]). Let F be an analytic function in Bn, L ∈ Qb(B
n) and Bn \ Gb

β (F) 6= ∅. The

function F(z) has bounded L-index in the direction b if and only if

1) for every r ∈ (0, β] there exists P = P(r) > 0 such that for any z ∈ Bn\Gb
r (F)

∣∣∣∣
∂bF(z)

F(z)

∣∣∣∣ ≤ PL(z); (11)

2) for each r ∈ (0, β] there exists ñ(r) ∈ Z+ such that for all z0 ∈ Bn with F(z0 + tb) 6≡ 0

one has

n

(
r

L(z0)
, z0,

1

F

)
≤ ñ(r). (12)

We weak sufficient conditions in Theorem 8. The one-dimensional analog of Theorem 8

for entire functions revealed its efficiency in the investigation of boundedness of the l-index

of infinite products in the one-dimensional case [27, 28]. Recently, in [18], it has also used this

criterion to establish the sufficient conditions of boundedness of the L-index in joint variables

in terms of the restrictions imposed on the partial logarithmic derivatives and the distribution

of zeros. There was posed the following problem.
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Problem 3 ([12, Problem 7]). Is the following Conjecture 2 true?

Conjecture 2 ([12, 2]). Let F(z) be an entire function in Cn, L ∈ Qn
b. The function F has

bounded L-index in the direction b ∈ Cn \ {0} if and only if

1) there exist r > 0, P > 0 such that for every z ∈ Cn\Gr inequality (11) holds;

2) there exist r > 0, ñ ∈ Z+ such that for every z ∈ C
n inequality (12) is true.

By some additional restriction there was proved the conjecture in [2, 16].

Now we consider similar problem for analytic functions in the unit ball with r ∈ (0, β]

instead r > 0. Let us denote

Gr(F) := Gb
r (F) =

⋃

z : F(z)=0

{z + tb : |t| < r/L(z)},

a0
k are zeros of the function F(z0 + tb) for fixed z0 ∈ Bn. By nz0(r, F) = nb

(
r, z0, 1/F

)
:=

∑|a0
k|≤r 1 we denote the counting function of zeros a0

k for the slice function F(z0 + tb) in the

disc {t ∈ C : |t| ≤ r}. If for given z0 ∈ Bn and for all t ∈ Dz F(z0 + tb) ≡ 0, then we put

nz0(r) = −1. Denote n(r) = supz∈Bn nz(r/L(z)).

Theorem 9. Let L ∈ Qb(B
n), Bn \ Gb

β (F) 6= ∅, F : Bn → C be an analytic function. If the

following conditions are satisfied

1) there exists r1 ∈ (0, β/2) (either there exists r1 ∈ [β/2, β) and (∀z ∈ Bn) : L(z) > 2β|b|
1−|z|

)

such that n(r1) ∈ [−1; ∞);

2) there exist r2 ∈ (0, β), P > 0 such that 2r2 · n(r1) < r1/λb(r1) and for all z ∈ Bn\Gr2(F)

inequality (11) is true;

then the function F has bounded L-index in the direction b.

Proof. Suppose that conditions 1) and 2) are true.

At first, we consider the case n(r1) ∈ {−1; 0}. Then in the best case the function F can only

identically equals zero on the complex line z∗ + tb for some z∗ ∈ Bn, i.e., F(z∗ + tb) ≡ 0. For

all points lying on such complex lines inequality (9) is obvious.

Let z0 ∈ Bn \ Gr2 . For any points t1 and t2 such that |tj| =
r2

L(z0)
, j ∈ {1, 2}, one has

ln

∣∣∣∣
F(z0 + t2b)

F(z0 + t1b)

∣∣∣∣ ≤
∫ t2

t1

∣∣∣
∂bF(z0 + tb)

F(z0 + tb)

∣∣∣|dt| ≤ P
∫ t2

t1

L(z0 + tb)|dt|

≤ Pλb (r2) L(z0)
πr2

L(z0)
≤ πr2Pλb (r2)

(we also use that L ∈ Qb(B
n)). Hence,

max

{
|F(z0+tb)| : |t| =

r2

L(z0)

}
≤P2 min

{
|F(z0+tb)| : |t| =

r1

L(z0)

}
,

where P2 = exp {πr2 Pλ2 (r2)} . Therefore, by Theorem 7 the function F has bounded L-index

in the direction b.
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Let r1 > 0 be a such that n(r1) ∈ [1; ∞) and 2n(r1)r2 < r1/λb(r1). Put c = r1
2r2λb(r1)

−

n(r1) > 0. Clearly, r2= r1/(2(n(r1)+c)λb(r1)).

Under condition 1) each set K =
{

z0+tb : |t| ≤ r1
L(z0)

}
has no more n(r1) zeros of the func-

tion F, where F(z0 + tb) 6≡ 0.

Under condition 2) there exists P > 0 such that | ∂b F(z)
F(z)

| ≤ PL(z) for every z ∈ Bn\Gr2 , i.e.,

for all z ∈ K, lying outside the sets

{
z0 + tb : |t − a0

k | <
r2

L(z0+a0
kb)

}
, where a0

k ∈ K are zeros

of the slice function F(z0 + tb) 6≡ 0. By definition λb we obtain L(z0)/λb(r1) ≤ L(z0 + a0
kb).

Then | ∂b F(z)
F(z)

| ≤ PL(z) for every point z ∈ Bn, lying outside union of the sets

c0
k =

{
z0 + tb : |t − a0

k | ≤
r2λb(r1)

L(z0)
=

r1

2(n(r1) + c)L(z0)

}
.

The total sum of diameters of the sets c0
k does not exceed the value r1n(r1)

(n(r1)+c)L(z0)
<

r1
L(z0)

. Hence,

there exists a set c̃0 =
{

z0 + tb : |t| = r
L(z0)

}
, where r1 min{1,c}

2(n(r1)+c)
= η < r < r1, such that for all

z ∈ c̃0 we have

∣∣∣∣
∂bF(z)

F(z)

∣∣∣∣ ≤ PL(z) ≤ Pλb(r)L(z0) ≤ Pλb (r1) L(z0). For any points z1 = z0 + t1b

and z2 = z0 + t2b with c̃0 one has

ln

∣∣∣∣
F(z0 + t2b)

F(z0 + t1b)

∣∣∣∣ ≤
∫ t2

t1

∣∣∣∣
∂bF(z0 + tb)

F(z0 + tb)

∣∣∣∣|dt| ≤ Pλ2 (r1) L(z0)
πr

L(z0)
≤ πr1 P(r2)λb (r1) .

Therefore,

max

{
|F(z0 + tb)| : |t| =

r

L(z0)

}
≤ P2 min

{
|F(z0 + tb)| : |t| =

r

L(z0)

}
, (13)

where P2 = exp {πr1 P(r2)λb (r1)} . If F(z0 + tb) ≡ 0, then inequality (13) is obvious. By

Theorem 7 the function F(z) has bounded L-index in the direction b. Theorem 9 is proved.

Remark 1. We proved Hypothesis 2 for analytic function in the unit ball under the additional

condition 2r2n(r1) < r1/λb(r1). The same condition was firstly appeared for entire functions

in [16]. At present, we do not know whether this condition is essential (see Problem 3 in [16]).

Note that Theorems 4, 5, 7 and 9 are new even for analytic functions in the unit disc (cf.

[23, 25, 26]). Particularly, for n = 1 and analytic functions of bounded l-index Theorem 9

implies the following corollary.

Corollary 1. Let l ∈ Q(D), f : D → C be an analytic function in the unit disc. If the function

f satisfies the condition:

1) there exists r1 ∈ (0, β/2) (either there exists r1 ∈ [β/2, β) and (∀t ∈ D) : l(t) >
2β

1−|t|
)

such that n(r1) ∈ [0; ∞);

2) there exists r2 ∈ (0, β), P > 0 such that 2r2 · n(r1) < r1/λb(r1), D\Gr2( f ) 6= ∅ and for

all t ∈ D\Gr2( f ) | f ′(t)|
| f (t)|

≤ Pl(t);

then the function f has bounded l-index.
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As we have written that similar criteria (estimate of maximum modulus, minimum mod-

ulus, logarithmic derivative and distribution of zeros for arbitrary radii) are also known for

function analytic in the unit disc and in arbitrary domain on the complex plane [23,25,26]. But

they contain the universal quantifier in their assumptions.

Acknowledgement. These researches are inspired by Prof. O.B. Skaskiv. Author cordially

thanks him for his questions and interesting ideas which help the studies.
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Бандура А.I. Деякi слабшi достатнi умови обмеженостi L-iндексу за напрямком для аналiтичних

в одиничнiй кулi функцiй // Карпатськi матем. публ. — 2019. — Т.11, №1. — C. 14–25.

Частково посилюються деякi критерiї обмеженостi L-iндексу за напрямком для аналiти-

чних в одиничнiй кулi функцiй. Цi результати описують локальне поводження похiдних за

напрямком на колi, оцiнки максимуму модуля, мiнiмуму модуля аналiтичної функцiї, розпо-

дiлу її нулiв та модуля логарифмiчної похiдної за напрямком вiд аналiтичної функцiї зовнi

деякої виняткової множини. Замiна квантора унiверсальностi на квантор загальностi дає но-

вi слабшi достатнi умови обмеженостi L-iндексу за напрямком для аналiтичних в одиничнiй

кулi функцiй. Цi результати також є новими для функцiй, аналiтичних в одиничному крузi.

Отриманий логарифмiчний критерiй має застосування в аналiтичнiй теорiї диференцiйних

рiвнняь. Вiн зручний у дослiдженнi обмеженостi iндексу цiлих розв’язкiв лiнiйних диферен-

цiйних рiвнянь. Також вiн застосовний до нескiнченних добуткiв.

Дослiджено допомiжний клас додатних неперервних функцiй в одиничнiй кулi (так званий

Qb(B
n)). Для функцiй з цього класу доведено деякi характеристизацiйнi властивостi. Цi вла-

стивостi описують локальне поводження таких функцiй в полiкругових околах кожної точки

з одиничної кулi.

Ключовi слова i фрази: обмежений L-iндекс за напрямком, аналiтична функцiя, одинична

куля, максимум модуля, похiдна за напрямком, розподiл нулiв.


