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BILANYK I.B.}, BODNAR D.1.23, BuyAk L.M.3

REPRESENTATION OF A QUOTIENT OF SOLUTIONS OF A FOUR-TERM LINEAR
RECURRENCE RELATION IN THE FORM OF A BRANCHED CONTINUED
FRACTION

The quotient of two linearly independent solutions of a four-term linear recurrence relation is
represented in the form of a branched continued fraction with two branches of branching by anal-
ogous with continued fractions. Formulas of partial numerators and partial denominators of this
branched continued fraction are obtained. The solutions of the recurrence relation are canonic nu-
merators and canonic denominators of B-figured approximants. Two types of figured approximants
A-figured and B-figured are often used. A nth A-figured approximant of the branched continued
fraction is obtained by adding a next partial quotient to the (1 — 1)th A-figured approximant. A
nth B-figured approximant of the branched continued fraction is a branched continued fraction
that is a part of it and contains all those elements that have a sum of indexes less than or equal to
n. A-figured approximants are widely used in proving of formulas of canonical numerators and
canonical denominators in a form of a determinant, B-figured approximants are used in solving
the problem of corresponding between multiple power series and branched continued fractions. A
branched continued fraction of the general form cannot be transformed into a constructed branched
continued fraction. For calculating canonical numerators and canonical denominators of a branched
continued fraction with N branches of branching, N > 1, the linear recurrent relations do not hold.
B-figured convergence of the constructed fraction in a case when coefficients of the recurrence rela-
tion are real positive numbers is investigated.
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INTRODUCTION

It is well known that the general solution of a linear homogeneous recurrence relation of
second order: y, = buyy,—1 + anyn—2, n = 1,2,..., where the a,,b,, n > 1, are complex
numbers, can be represented in a form of a linear combination of two linearly independent

solutions
1) (1 2) (2
y(l): (1’0’y:(l ),yé ),...>,y(2): <O/11y](. )/yé )I"')'

These solutions are, respectively, canonical numerators and canonical denominators of approx-
imants of the continued fractions [15,18,19]
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In this paper, an analogous idea for a four-term linear recurrence relation

Yn = CnlYn—1+ bn]/n—z + anyn-3, (1)

where the a,,, by, ¢, n > 2, are complex numbers, is considered.

Different constructions of multidimensional generalizations arise as a result of consider-
ing the N-term recurrent relation, N > 1, [8,12,18]. They are widely used for compatible
approximations, for representation of solutions of algebraic equations, etc. The formulas of
the elements of these fractions were not obtained, in general, except for the Furshtenau’s two-
dimensional generalization of continued fractions [14]. B. V. Krukowski has proved the theo-
rem of convergence of these fractions [16].

This investigation leads to branched continued fractions (BCF) that are a multidimensional
generalization of continued fractions. Thus, BCF of the general form are under consideration
[7,9,11,21]. Also, the different forms of BCF exist, in particular, BCF of the special form [1,
3-6, 10, 13], two-dimentional continued fractions [2, 17, 20], etc. The different constructions
of their approximants [7] and, respectively, the different types of convergence appear in the
considering of different mathematical problems.

Let

7= {i(k) = (1,1 ..., 0k) :1<i, <2, p=T1k k> 1}

be the set of multiindices. Let us introduse an order relation < on the set Z for i(p) € Z and
j(q),j(p) € T, where j(s) = (j1, ja -, Js), s € N:

1) i(p) <jq),ifp <gq
2) i(p) = j(p), ifir < ji;

3) i(p) < j(p) ifexistsr,1 <r < p,suchthatiy =ji, k=1,7,i,41 < jri1.

—

Let we have sequenses of complex numbers {ﬁi(k) }, Mi(k) }, where i(k) € Z, then

™

i(k) (2)
i(k)

i) Gi(2) = XZ:
Mi(1) M) + -+ (i

=

=

XZ: Si(1) _ 22:
i+ S 1 B!
Y Emie

»
+ ir=1

be a general branched continued fraction with two branches of branching with complex ele-
ments.
A nth approximant of the BCF (2) is a finite BFC of the form

5 & Gk
=D Y S > (3)
=1 ir=1 (k)
The continued fraction
Gi)  Gi) Ci(k)

i) T i) + -+ T Wiy + - -+

is called a (i1, i, ..., i, ...) branch of the BCF (2). Let us fix i(n) € Z, then a (i1,iy,...,in)
branch be a finite branch of the BCF (3).
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Length of a finite (71,1, . ..,1,) branch of the BCF (3) is a number of partial quotient of the
nth approximant of the continued fraction (4).

Each branch in the finite BFC (3) has length equal n. A figured approximant of the BFC (2)
is a BFC that is a part of (2) and has at least two branches with nonequal length. Two types of
figured approximants are often used. In particular, A-figured approximants are widely used
in proving of formulas of canonical numerators and canonical denominators in a form of a
determinant [7], B-figured approximants are used in solving the problem of corresponding
betweeen a multiple power series and a BFC.

a ¢
Let b = g denotes thata = ¢, b = d.
A nth B-figured approximanth of (2) is a BCF

S R >1 5
f?l - D Z 17* 7 n - 4 ( )
k=1 Zk:]. l(k)
where
Ci(k) o .
* if <mn;
i(k)z m(k), i1 +1p+ +1u.<n
13 0
i(k) 7 ifiy+ip+...4+i > n.

The BCF (2) converges (B-figured converges), if the finite limit of its sequence of approxi-
mants f, (B-figured approximants ) exists.

The canonical numerator A, and the canonical denominator B, of the B-figured approx-
imant fn are, respectively, the numerator and the denominator of a calculated BCF (5), fn =
Ay / By. In calculating we use the following algorithm [7]

2 &g
% _ Z : 1(/1)171(1), n>1 (6)
n g iy T S
and
& 2 &
l,(m) = ) . Z(m,H) (1) ,yim)eZ, m=n—1,n-2,...,5,n>2, (7)
Tiomy  imsr=1 Tigm+1)Ti(m+1) +¢; (m+1)
where

g;(i’l) - O, 77;(") - 1/ lp - 1/—2/ p - 1,—7’1,” Z 1. (8)

The algorithm (6)—(8) is equivalent to the gradual algorithm of calculation of the BCF (5) with-
out any reductions in the process.

1 SECTION WITH RESULTS

Let the y(l) = (1,0, bl,yél),yél), o), y(z) = (O,l,cl,ygz),yéz), ...), be the two solutions of
equation (1), where the by, c; are complex numbers. These solutions yield all three linear

independent solutions of (1), for example,

vV = 1,004, 5,..), ¥® = (0,1,0,4, v, .., y® = (1,015,557, ).
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Put Ay = y]((l), By = yl(cz), k=-1,0,1,..., where

Ap = cpAp_1 +byAyo+ayAy3, n=23...,

)
By =cyBy—1+byBy_o+ayB,_3, n=23...,

and
A—l =1, AO =0, Al = bl/ B—l =0, BO =1, Bl =C1. (10)

By analogous with a continued fraction let us construct the BCF such that each its nth
B-figured approximant equals A,,/B,, n > 1.

If n =1then Ay/By = by/c1. Forn = 2wehave Ay/By = by /(c1 + bzcgl) +ay/(cac1 +b7).
If n > 3 we replace n by n — 1 in (9) and put the obtained value A,,_; in (9), we get

A= Ao+ B Ay s+ Ay, (11)

n—1
where 7;(1”_)1 = Cy_1Cn + by, /5,(1”_)1 =b,_1¢,, + ay, rx,g"_)l = a,_1¢n. Next, if n > 4, by substituting

n — 2 for n in (9) and putting obtained A, in (11), we get a new formula for A;,, etc. If
n > r+ 2, after (n — r) steps we have

Ap = 'Y;gn)Ar—l + ,Bi(’n)Aer + “;gn)Arf& (12)

where
1 =\ + B B = b+l ol = anY, (13)

r=n—1n-2,...,2,and 7,(1”) = Cp, ﬁ;”) =b,, (ngn) = a,.
An analogous relation holds for B,

Bn = 'an)Brfl + ,Bgn)Br—Z + “£n)Br—3/ (14)
where 7£"),5§”),a£"),r =n—-1n-2,...,2, are defined by (13) and 7,(1”) = Cy, P’ = by,
(n)

«;, ' = ay, with initial conditions from (10).
Let us introduse the following notation

Cp = CkCr_1+ by, k=21, n>2;
b = bxck—o +ay, k=3,n; n>3; (15)
a, = agcr_3, k=4,1m; n > 4;

and (n) () ()
7 cioB 4 a)
w(n) _ ﬁ] ) ] —1n ZJ(n) _ ] 2:3] J ’ ] =31, n>3. (16)
j (n) ] (n)
Wi j

Combining this with the initial conditions (10) and relations (12)—(14), for r = 2, we obtain

a0 el o)

_ (1)
= - - = —= =y =Wy, N > 3.
B "B+ Bo+alBy e+ By o
Using the denoting (15) and (16) we get
m_ b ayyy” b )

w + = + .
! 01+ wén) 1 (cz'ygn) + ﬁgn)) + bzfyén) + ocgn) 01+ wén) ch+ vén)
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Let us prove the recurrent formulas for w]((n), k=2n—-2,n>4, v,((n), k=3,n—-2,n>5 We
obtain

(n) _ ﬁl(cn) _ bk'y,ﬁ)l +“l(<n+)1 _ by Ak41
ey ) R e R R W (17)
Yk Vi1 T Prin kT Wy G T U
Analogously
NN Ck—Zﬁi(cn) + “lgn) _ Ck—Z(bk,Ylgi)l + "‘1(:21) + ‘lk%gi)l _ by B (18)
k (n) c (1) + 5(”) o+ w(ﬂ) o4 v(") '
Tk kY1 T Pria k k+1 Ck+1 T Pk42
Let us now consider thecasek =n — 1
b, a b !
n n—1 n n n—1 n
w = +— n>20 ' = +—, n>4
n—1 b, | Ch n—1 b, Ch (19)
Cp—1+ — Cp—1+ —
Cn n

b b
If we put w,ﬁ”) = c_n' v,&”) = C—n, wii)l = 01(1':21 =0, w;(ﬁzz = vfﬁzz = oo we have that recurrent

formulas (17), (18) ﬁold for k S 1,n, as well.
Consider the BCF (2), where

G1="b1, G = a, (20)
and foralli(k) € Z,k > 2

biivipt.vip, i1 =i =1

/ . . _ . . .
gz(k) — b11+12++1k’ lf lk*l - 2’ Zk - 1’ (21)
Ajypipt .. tipy i1 =1, =2;
and foralli(k) € Z,k > 1
Cirtipt.tipy k=1
Nik) = { il P i (22)
Cirtigttipr I Ik =2,
where the a;, b;, c;, i > 1, are coeficients of (1), the a; Lo b:- 1 c;,i > 2, are obtained from (15).

Theorem 1. Let {A,}, {B,} be sequences of complex numbers such that
A*lzll A():O, Alzbl, B.1=0,By=1, By =¢,

and
Ap = cpAp_1 +byAyo+ayAy3, n=23...,

By =cyBy_1+byBy_o+ayB,_3, n=23...,

where theay, by, c,, n > 1, are complex constants. Then the A, B;, are the canonical numerator
and the canonical denominator of nth B-figured approximant of the BCF (2), i.e. f, = A,/ By.
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(n)

Proof. Applying the equality A, /B, = w; ’, n > 1, we use the recurrent relations (17)—(19)
and step by step write the value A, /B, in a form of a finite BCF that is equal f,. On the first

step we have

A b a
B : w T : W~ d w T = "
noocitwy,’ ¢y, Mm+wy,’ 12470,

After the second step we get

Ay ¢1 ¢2
B, G1,1 C12 i i+ ol
Tt T ) ’
ma+wy M2+ 0y

and after the third step we obtain

An C1 N &2
By $11 1,2 $21 &y
n G111 G112 +1712—|—U(n) 172+1721+w(")+1722+v(”)
mit— ot — SRR

n
M1+ wz(; Mm,1,2 + 0g

etc. Using the method of mathematical induction we prove that after m steps, 1 < m < n, we

get

(23)

where @;.k(k) = Gigy tir+ia+...+i < morip+ix+...+i = m+Tland i = 2
ifiy +ip+ ...+ < m—1, then q;k(k) = Wiy if iy = land iy +i2+... +i = m, then

(n) (n)

n;‘(k) = i) + Wy, ;i iy =2and iy + iy + ... + iy = m, then n;‘(k) = (k) + Vv

- - . () Gitky _ 0
i1+iy+...+i =m+1, then Tiey = Mitk) T Vo In all other cases 17*— =7
i(k)
Let us make the next, m 41, step. Letiy +ip + ...+ iy = m, iy = 1, then
T (n) b1 Am+2
Niky = Mitk) + Winp1 = Mik) T + )

Cni1 + Wity Chya+Oinls
or by using (21), (22) we obtain
. Gi(k)1 Ci(k),2

Mitk) = Mitk) + T '
Mi(k),1 T wﬁfﬂz Mi(k)2 + 0%3

Ifiy+iy+...+ i =m, i =2, then

o (ny _ byt [
Uity = Mitk) + Vpr =Mik) + T (n)

/
Cmt1 T Wyio  Chpyo T Upis

ik Ci(k),2
=Mi(k) + © w - )
i1 T Wyio Mtk 2+ Vs

1 if iy = 2and
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(n)

Ifll +12++Zk = m+1,ik :2,then17;"(k) = qi(k) —}—’(’)m+2.
Hense, we get the equality (23), where m is replaced by m + 1.

Put m = n —1. Then, using the equalities (19) we obtain that n;k(k) = i) + gi(k)’l
i(k),1
lf11+12++1k :n—l,andiﬁ‘(k) = qi(k) lf11+12++1k :Vl,ik = 2.
Thus,
Ar 1N & Sl o
o Z PR f"
B 2 i1 Mk
O

Remark 1. A BCF with two branches of branching with arbitrary complex elements
ol 2 N
DY @
=1 =1 Bito)

can not be transformed into the form (2), where the &jy), 1x), i(k) € Z, are determined by
formulas (20)—«22). For calculating canonical numerators and canonical denominators of a
BCF with N branches of branching, N > 1, the linear recurrent relations do not hold.

Let us consider the nth B-figured approximants of BCF (24) and (2). Let n = 2, then we get
second B-figured approximant of the BCF (24) g, = a1/ <,31 +ap ,81_%) + ay/ B2, and by using
the formulas (20)-(22) and (15) we obtain second B-figured approximant of the BCF (2) fz =
b,/ <c1 +b2c2_1) +ay/ (cica+by) . If weput by = ay, c1 = B1, a2 = ap, by = ay1, ¢2 = P1o,
then we get that the relation 8112 + a11 = B2 must hold. But the j, is arbitrary. Hense, this is
the case that illustrates the truth of the Remark 1.

Theorem 2. Let the coefficients a,, by, c,, n > 2, of equation (1) be positive real numbers such
that

) e = e, (25)
k=2
where
M; M;
M = min {—] , ,]H}, k>2,
k<j<2k R]'+1 Rj+2
Mj = cjcicivacio, [ 22,
R]' = b]‘C];lC]-+1 + aj+1Cj-1Cj, ] >3,
R] - b]C]_1C]+1 + ﬂ]‘_i_lC]‘,lC]', ] Z 4,
and a; iy b; Ry c;-, i > 2, are determited by (15). Then the BCF (2), whose elements satisfy

relations (20)—«(22), B-figured converges.

Proof. Let us show that the elements of the BFC (2) satisfy the conditions of the Theorem 3.11 [7,
p- 85]. For this, we consider the following expressions d;1) = i) Mi(k+1)/ Ci(k+1), i(k+1) e
Z, k>2 Ifwefixi(k—1) € Z, k > 2, using the relations (21), (22), we obtain
¢ qC;
s dik—1)22 = Was ey
a.
j+3

! !
J _CiCi P _ Ciy1Cj42 P G2
ik=1)11 = T Gilk-1)21 T T 7 Fitk-1),12 =
]+1 ]'+2 ]+2
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k-1
where j = Z i; + 1. From this we obtain
I=1
7 ! !/
CiC; Cit1Ci C.C. C: 1C:
. . jUi+1 Y12 T2 Ti+1743
. min {di(k+1)} = min b ’ 7 ’ 7 7
i(k+1)€Z, k>2 k<js2e k=2 | Dja1 o by, o G2 a4

/

: M; My,

>  min R = Yg-
k<j<2k, k>2 j+1 R]-+2

Now from (25) it follows that the elements of the BFC (2) satisfy the conditions of the

Theorem 3.11 [7, p. 85]. This means that the BFC (2) converges.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

%]

[10]

(1]

[12]
[13]

[14]

(15]

(16]

Finally, by the Theorem 2.2 [7, p. 48], the BFC (2) B-figured converges. O
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BiaHOIIEHHST ABOX AiHIHO He3aAeXHMX PO3B’sI3KiB YOTMPUYAEHHOIO AiHIIHOTO peKypeHTHOTO
CIIiBBiAHOIIIEHHS 32 aHAAOTI€IO 3 HellepepBHMMIL APOOaMI IIPEACTABAEHO Y BUTASIAY TiAASICTOTO AdH-
LIFOrOBOTO APOOY 3 ABOMA TiAKaMM pO3raAy>kKeHHs. 3HaliAeHO (POpMYAM YaCTMHHVX UMCEABHVKIB Ta
YJaCTMHHMX 3HaMEeHHUKIB IIbOTO TiAASICTOTO AAHIFOTOBOTO Apoby. Po3s’s3km pisHMIIEBOrO piBHSIH-
HsI € KaHOHIYHMMM YMCeAbHMKAMY i KaHOHIUHMMM 3HaMeHHMKamu B-pirypHmx maxiaHmx Apobis.
YacTo BUKOPUCTOBYIOTh ABa TuIm pirypHmx maxiaumx Apob6is: A-dirypHi i B-dirypsi. n-mit A-
diryprvt miaxiaEMT Apib TIAASICTOTO AGHIFOTOBOTO APOOY OTPMMYETHCS AOAABAHHSM HaCTYITHOI
YaCTMHHOIL 9acTku A0 (1 — 1)-To A-dirypHoro maxiaHoOro aApoby. n—oi B-pirypHynt miaxiaHwmit Api6
TiAASICTOTO AQHITIOTOBOTO APO6Y € TiAASICTMI AGHIFOTOBMIA Apib, IITO € JI0TO YaCTMHOIO i MiCTUTD BCi
Ti eAeMeHTH, cyMa iHAeKciB sSIKMx MeHIa, abo pisHa 1. A-dirypHi maxiaHi Apo6u BUKOPUCTOBYIO-
TBCSI IIPY AOBEAEHHI (POPMYA AASI KAHOHIYHIMX UMCEABHVKIB i 3HAMEHHNKIB y BUTASIAL BUSHAYHMIKIB,
B-dirypai miaxiaHl Apoby — y 3apavax BiATIOBIAHOCTI MiXX KPaTHMMM CTEIleHEBVMMIU PSAAMM i Ti-
AASICTMY AQHIIFOTOBUMM ApO6aMiL. 3araAbHMIA TIAASICTVV AQHIIFOTOBIMI Api6 He MOXKHA 3BECTM AO
0Oy AOBAHOTO TiAASCTOrO AQHIFOTOBOTO APOOY. AAsI 06UMCAEHHS KaHOHIYHIIX WCeABHMKIB i KaHO-
HiYHMX 3HAMEHHMKIB TiAASCTHX AGHIFOrOBMX Apo6iB 3 N, N > 1, rinkamm po3raay>keHHS He CITpaB-
AXYIOTBCSI AiHIIHI peKypeHTHi criBBiaHOIIIeHHS. AocaiaxeHa B-dirypHa 36ikHicTb TO6YA0BaHOTO
ApoOy y BUIIaAKY, KOAM KoedpillieHTaMI peKypeHTHOTO CIIiBBiAHOIIIEHHSI € AiJiCHI AOAATHI uMcAa.

Kntouosi cnosa i ¢ppasu: TIAASICTIL AQHIIIOTOBUI APi6, peKypeHTHe CITiBBiAHOIIIEHHSI.



