Chernega I. ${ }^{1}$, Zagorodnyuk A. ${ }^{2}$

NOTE ON BASES IN ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES

Let $\left\{P_{n}\right\}_{n=0}^{\infty}$ be a sequence of continuous algebraically independent homogeneous polynomials on a complex Banach space X. We consider the following question: Under which conditions polynomials $\left\{P_{1}^{k_{1}} \ldots P_{n}^{k_{n}}\right\}$ form a Schauder (perhaps absolute) basis in the minimal subalgebra of entire functions of bounded type on X which contains the sequence $\left\{P_{n}\right\}_{n=0}^{\infty}$? In the paper we study the following examples: when P_{n} are coordinate functionals on c_{0}, and when P_{n} are symmetric polynomials on ℓ_{1} and on $L_{\infty}[0,1]$. We can see that for some cases $\left\{P_{1}^{k_{1}} \cdots P_{n}^{k_{n}}\right\}$ is a Schauder basis which is not absolute but for some cases it is absolute.

Key words and phrases: Schauder bases, analytic functions on Banach spaces, symmetric analytic functions.

[^0]
INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space. We recall that $H_{b}(X)$ is the algebra of all entire analytic functions on X which are bounded on bounded subsets. It is well known that $H_{b}(X)$ endowed with the metrisable topology generated by the countable family of norms

$$
\|f\|_{r}=\sup _{\|x\| \leq r}|f(x)|, \quad r \in \mathbb{Q}_{+}, f \in H_{b}(X)
$$

is a Fréchet algebra and the space $\mathcal{P}(X)$ of all continuous polynomials on X is a dense subalgebra in $H_{b}(X)$.

Let $\mathbb{P}=\left\{P_{n}\right\}_{n=0}^{\infty}$ be a sequence of continuous algebraically independent homogeneous polynomials on X with $\left\|P_{n}\right\|=1$ and $P_{0}=1$. We denote by $\mathcal{P}_{\mathbb{P}}(X)$ the algebra of all polynomials generated by the sequence \mathbb{P} and by $H_{b \mathbb{P}}(X)$ its closure in $H_{b}(X)$.

Clearly,

$$
\left\{P^{(k)}=P_{1}^{k_{1}} \cdots P_{n}^{k_{n}}:(k)=\left(k_{1}, \ldots, k_{n}\right), \quad n=0,1,2, \ldots\right\}
$$

is a linear basis in $\mathcal{P}_{\mathbb{P}}(X)$, and so the span of $P^{(k)}$ is dense in $H_{b \mathbb{P}}(X)$. Here we set $P_{0}=1$. This work is motivated by the following natural question: Under which conditions $\left\{P^{(k)}\right\}$ is a

```
У \(\Delta \mathrm{K} 517.98\)
2010 Mathematics Subject Classification: 46J15, 46J20, 46 E15.
```

This work was supported by the budget program of Ukraine "Support for the development of priority research areas" (CPCEC 6451230)

Schauder (perhaps absolute) basis in $H_{b \mathbb{P}}(X)$? The main result of this paper is that depending on the sequence \mathbb{P} we can have different answers on this question. In the paper we study the following examples: when P_{n} are coordinate functionals on c_{0}, and when P_{n} are symmetric polynomials on ℓ_{1} and on $L_{\infty}[0,1]$.

Let us recall some definitions in the theory of locally convex spaces (see e.g. [14]).
A sequence of subspaces $\left\{E_{n}\right\}_{n}$ of a locally convex space E is a Schauder decomposition of E if for each x in E there exists a unique sequence of vectors $\left(x_{n}\right)_{n}, x_{n} \in E_{n}$, such that

$$
x=\sum_{n=1}^{\infty} x_{n}:=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} x_{n}
$$

and the projections $\left(u_{m}\right)_{m=1}^{\infty}$ defined by

$$
u_{m}\left(\sum_{n=1}^{\infty} x_{n}\right):=\sum_{n=1}^{m} x_{n}
$$

are continuous. A Schauder decomposition $\left\{E_{n}\right\}_{n}$ of a locally convex space E is absolute if for each semi-norm $p \in c s(E)$,

$$
q\left(\sum_{n=1}^{\infty} x_{n}\right):=\sum_{n=1}^{\infty} p\left(x_{n}\right)
$$

defines a continuous semi-norm on E. Finally, a Schauder decomposition $\left\{E_{n}\right\}_{n}$ of a locally convex space E is global if for all $r>0$, all $x=\sum_{n=1}^{\infty} x_{n} \in E$ with all $x_{n} \in E_{n}$

$$
\sum_{n=1}^{\infty} r^{n} x_{n} \in E
$$

and for each $p \in \operatorname{cs}(E)$,

$$
p_{r}\left(\sum_{n=1}^{\infty} x_{n}\right):=\sum_{n=1}^{\infty} r^{n} p\left(x_{n}\right)
$$

defines a continuous semi-norm on E.
If each E_{n} is a finite dimensional subspace, then the decomposition is called finite dimensional. If each E_{n} is one dimensional and e_{n} spans E_{n}, then $\left(e_{n}\right)_{n=1}^{\infty}$ is a Schauder basis.

1 Main results

Let $X=c_{0}$ and $P_{n}=e_{n}^{*}$ be the coordinate functionals on c_{0}. Then

$$
P^{(k)}(x)=\left(e_{1}^{*}(x)\right)^{k_{1}} \cdots\left(e_{n}^{*}(x)\right)^{k_{n}}=x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}, \quad n=0,1,2, \ldots,
$$

are so-called $k_{1}+\ldots+k_{n}$-homogeneous monomials on c_{0}. Since every polynomial on c_{0} can be approximated by polynomials of finite type and every polynomial of finite type belongs to linear span of monomials, we have that $H_{b \mathbb{P}}\left(c_{0}\right)=H_{b}\left(c_{0}\right)$. Moreover, in [8] it is proved that the monomials $\left\{P^{(k)}\right\}$ endowed with some special order form a Schauder basis for $H_{b}\left(c_{0}\right)$ which however is not absolute. Indeed, if it is absolute, then the subset of monomials $\left\{P^{(k)}: \operatorname{deg} P^{(k)}=m\right\}$ form an unconditional basis in the Banach space of all m-homogeneous polynomials $\mathcal{P}\left({ }^{m} c_{0}\right)$. But it is not so for $m>1$, according to [6].

Let now $\operatorname{deg} P_{n}=n$. So if $P \in \mathcal{P}_{\mathbb{P}}(X)$ and $\operatorname{deg} P=m$, then

$$
\begin{equation*}
P(x)=\sum_{n=0}^{m} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} a_{k_{1} \ldots k_{n}} P_{1}^{k_{1}}(x) \cdots P_{n}^{k_{n}}(x), \quad a_{k_{1} \ldots k_{n}} \in \mathbb{C} \tag{1}
\end{equation*}
$$

We denote $\mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)$ the linear space of all n-homogeneous polynomials in $\mathcal{P}_{\mathbb{P}}(X)$. From (1) it follows that $\mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)$ is finite dimensional, polynomials $\left\{P_{1}^{k_{1}} \cdots P_{n}^{k_{n}}: k_{1}+2 k_{2}+\ldots+n k_{n}=n\right\}$ form a linear basis in $\mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)$ and $\operatorname{dim} \mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)=\mathfrak{p}(n)$, where $\mathfrak{p}(n)$ is the number of partitions of n.

Proposition 1. Let $\operatorname{deg} P_{n}=n$. Then the sequence of spaces $\left\{\mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)\right\}_{n=0}^{\infty}$ is a global finite dimensional Schauder decomposition for $H_{b \mathbb{P}}(X)$. Here $\mathcal{P}_{\mathbb{P}}\left({ }^{0} X\right)=\mathbb{C}$.

Proof. In [14] it is proved that $\left\{\mathcal{P}\left({ }^{n} X\right)\right\}_{n=0}^{\infty}$ is a global Schauder decomposition for $H_{b}(X)$. Since $H_{b \mathbb{P}}(X)$ is a closed subspace of $H_{b}(X), \mathcal{P}_{\mathbb{P}}\left({ }^{n} X\right)=\mathcal{P}\left({ }^{n} X\right) \cap H_{b \mathbb{P}}(X)$ is a global Schauder decomposition for $H_{b \mathbb{P}}(X)$.

Note that in the general case the existence of a finite dimensional Schauder decomposition does not imply the existence of a Schauder basis (see [13]).

Algebras of symmetric functions on ℓ_{1} or $L_{1}[0,1]$ deliver us interesting examples of $H_{b \mathbb{P}}(X)$. By a symmetric function on ℓ_{1} we mean a function which is invariant under any reordering of the basis in ℓ_{1}. We use the notations $\mathcal{H}_{b s}\left(\ell_{1}\right)$ for the algebra of all symmetric analytic functions on ℓ_{1} that are bounded on bounded sets.

In [12] it is proved that the polynomials

$$
F_{k}(x)=\sum_{i=1}^{\infty} x_{i}^{k}, \quad k=1,2, \ldots
$$

form an algebraic basis in the algebra of all symmetric polynomials on ℓ_{1}. This means that the polynomials $\left\{F_{k}\right\}$ are algebraically independent and their algebraic combinations coincide with the space of all symmetric polynomials $\mathcal{P}_{s}\left(\ell_{1}\right)$ on ℓ_{1}. Thus, $\left\{F^{(k)}=F_{1}^{k_{1}} \cdots F_{k}^{k_{n}}\right\}$ forms a linear basis in $\mathcal{P}_{s}\left(\ell_{1}\right)$ or, in other words, $\mathcal{H}_{b s}\left(\ell_{1}\right)=H_{b \mathbb{F}}\left(\ell_{1}\right)$.

The algebras $\mathcal{H}_{b s}\left(\ell_{p}\right)$ and their spectrum were investigated in [2-4,10].
In [5] was constructed an example of a symmetric analytic function on ℓ_{1} which is not of bounded type.

The algebra $\mathcal{P}_{b s}\left(\ell_{1}\right)$ has other natural algebraic bases. For us it is important the basis $\left\{G_{n}\right\}$:

$$
G_{n}(x)=\sum_{k_{1}<\cdots<k_{n}}^{\infty} x_{k_{1}} \cdots x_{k_{n}}
$$

and $G_{0}:=1$. It is known [3] that $\left\|G_{n}\right\|=1 / n$!. By the Waring's formula we have

$$
G_{k}=\sum_{\lambda_{1}+2 \lambda_{2}+\ldots+k \lambda_{k}=k}(-1)^{k-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}\right)} \frac{1}{\lambda_{1}!1^{\lambda_{1}} \cdots \lambda_{k}!k^{\lambda_{k}}} F_{1}^{\lambda_{1}} \cdots F_{k}^{\lambda_{k}} .
$$

Note that in the general case, algebra $\mathcal{P}_{\mathbb{P}}(X)$ admits a lot of algebraic bases of homogeneous polynomials and linear bases as well. Indeed, if $\operatorname{deg} P_{n}=n$, then we can set $Q_{1}=a_{11} P_{1}$ and

$$
Q_{n}=a_{n 1} Q_{n-1} P_{1}+a_{n 2} Q_{n-2} P_{1}+\cdots+a_{n n} P_{n}
$$

for some complex numbers $a_{i j}$ such that $a_{i i} \neq 0$. Then polynomials Q_{n} form an algebraic basis and $Q^{(k)}=Q_{1}^{k_{1}} \cdots Q_{k}^{k_{n}}$ form a linear basis in $\mathcal{P}_{\mathbb{P}}(X)$. Note that there is a linear basis of $\mathcal{P}_{s}\left({ }^{n} \ell_{1}\right)$ which is not generated by an algebraic basis. For a given partition $(k)=\left(k_{1}, \ldots, k_{n}\right)$ such that $|(k)|=k_{1}+\ldots+k_{n}=n$ we denote by $M^{(k)}(x)=\sum_{i_{1} \neq \ldots \neq i_{n}} x_{i_{1}}^{k_{1}} \ldots x_{i_{n}}^{k_{n}}$. Then $\left\{M^{(k)}\right\}_{|k|=0}^{\infty}$ is a linear basis in $\mathcal{P}_{s}\left({ }^{n} \ell_{1}\right)$.

We need the following simple lemma which probably is well known (c.f. [1, Theorem 2.1]).
Lemma 1. Let P_{1}, \ldots, P_{N} be algebraically independent polynomials from a Banach space X to C such that the map

$$
X \ni x \mapsto\left(P_{1}(x), \ldots, P_{N}(x)\right) \in \mathbb{C}^{N}
$$

is onto. Then there is an isomorphism I_{N} from the minimal subalgebra of entire functions generated by P_{1}, \ldots, P_{N} onto the algebra of all entire functions on $\mathbb{C}^{N}, H\left(\mathbb{C}^{N}\right)$ such that $I_{N}\left(P_{k}\right)=$ $t_{k}, k=1, \ldots, N,\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{C}^{N}$.

Theorem 1. Let $P_{n}=n!G_{n}$. Then $\left\{P^{(k)}=P_{1}^{k_{1}} \cdots P_{k}^{k_{n}}\right\}$ is a Schauder basis in $\mathcal{H}_{b s}\left(\ell_{1}\right)$.
Proof. Let r_{N} be the operator of restriction onto subspace $V_{N} \subset \ell_{1}$ spanned on the standard basis vectors e_{1}, \ldots, e_{N}. Clearly that $r_{N}\left(G_{k}\right)=0$ if $N<k$. Also, we know that $r_{N}\left(P_{1}\right), \ldots, r_{N}\left(P_{N}\right)$ are algebraically independent and the map

$$
\ell_{1} \ni x \mapsto\left(r_{N}\left(P_{1}\right), \ldots, r_{N}\left(P_{N}\right)\right) \in \mathbb{C}^{N}
$$

is onto. So from Lemma 1 we have the isomorphism I_{N} from the minimal subalgebra of entire functions $H_{s}\left(V_{N}\right)$ on V_{N}, generated by $r_{N}\left(P_{1}\right), \ldots, r_{N}\left(P_{N}\right)$ to $H\left(\mathbb{C}^{N}\right)$. By the same reason, we have the isomorphism \mathcal{I}_{N} from the minimal subalgebra of entire functions $H_{s}^{N}\left(\ell_{1}\right)$ on ℓ_{1}, generated by P_{1}, \ldots, P_{N} to $H\left(\mathbb{C}^{N}\right)$. From here we have that the operator of restriction $r_{N}: \mathcal{H}_{b s}\left(\ell_{1}\right) \rightarrow H_{s}\left(V_{N}\right)$ is onto and $\mathcal{I}_{N}^{-1} \circ I_{N}$ is the "extension" isomorphism from $H_{s}\left(V_{n}\right)$ to $H_{s}^{N}\left(\ell_{1}\right)$. Also, we know [7, p. 240] that monomials on t_{1}, \ldots, t_{n} form an absolute basis in $H\left(\mathbb{C}^{N}\right)$. Thus $P_{1}^{k_{1}} \cdots P_{k}^{k_{n}}$ for $k \leq N$ form an absolute basis in $H_{s}^{N}\left(\ell_{1}\right)$ and so all projections T_{m} to finite dimensional subspaces W_{m} generated by these basis vectors are continuous. Thus any projection u_{m} from $\mathcal{H}_{b s}\left(\ell_{1}\right)$ to W_{m} can be represented by

$$
u_{k}=T_{n} \circ \mathcal{I}_{N}^{-1} \circ I_{N} \circ r_{N}
$$

and so is continuous.
Let us denote $\mathcal{A}_{u s}\left(B_{\ell_{1}}\right)$ the completion of $\mathcal{H}_{b s}\left(\ell_{1}\right)$ by the norm $\|\cdot\|_{1}$ that is, the sup-norm on the unit ball $B_{\ell_{1}}$ of ℓ_{1}. Such algebra consists of analytic and uniformly continuous functions on $B_{\ell_{1}}$ and was considered in [1].

Theorem 2. $\left\{F^{(k)}=F_{1}^{k_{1}} \cdots F_{k}^{k_{n}}\right\}$ cannot be an absolute Schauder basis in $\mathcal{H}_{b s}\left(\ell_{1}\right)$ and cannot be an unconditional basis in $\mathcal{A}_{\text {us }}\left(\ell_{1}\right)$.

Proof. Let us remind that a sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an unconditional basis of a Banach space, if there exists a constant M such that for every $\sum_{n=1}^{m} a_{n} e_{n}$ and for every $\varepsilon_{1}, \ldots, \varepsilon_{n},\left|\varepsilon_{k}\right|=1$, we have

$$
\begin{equation*}
M\left\|\sum_{n=1}^{m} a_{n} e_{n}\right\| \geq\left\|\sum_{n=1}^{m} \varepsilon_{n} a_{n} e_{n}\right\| . \tag{2}
\end{equation*}
$$

It is well known in combinatorics that

$$
\begin{equation*}
\sum_{\lambda_{1}+2 \lambda_{2}+\ldots+k \lambda_{k}=k} \frac{1}{\lambda_{1}!1^{\lambda_{1}} \cdot \ldots \cdot \lambda_{k}!k^{\lambda_{k}}}=1 . \tag{3}
\end{equation*}
$$

Let $g(x)=\sum_{n=0}^{\infty} G_{n}(x)$. Since $\left\|G_{n}\right\|=\frac{1}{n!}, g(x) \in \mathcal{H}_{b s}\left(\ell_{1}\right) \subset \mathcal{A}_{u s}\left(\ell_{1}\right)$. According to the Waring's formula,

$$
g(x)=\sum_{n=0}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n}(-1)^{n-\left(k_{1}+k_{2}+\ldots+k_{n}\right)} \frac{1}{k_{1}!1^{k_{1} \cdots k_{n}!n^{k_{n}}}} F_{1}^{k_{1}} \cdots F_{n}^{k_{n}}
$$

We set $\varepsilon_{(k)}=\varepsilon_{\left(k_{1}, \ldots, k_{n}\right)}=(-1)^{\left(k_{1}+k_{2}+\ldots+k_{n}+n\right)}$. According to (3) and $\left\|F_{1}^{k_{1}} \cdots F_{n}^{k_{n}}\right\|_{1}=1$ the series

$$
\sum_{n=0}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \frac{1}{k_{1}!1^{k_{1} \cdots k_{n}!n^{k_{n}}}} F_{1}^{k_{1}} \cdots F_{n}^{k_{n}}
$$

diverges. It contradicts (2). Also, if $\left\{F^{(k)}\right\}$ is an absolute basis in $\mathcal{H}_{b s}\left(\ell_{1}\right)$, then the series

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \|(-1)^{n-\left(k_{1}+k_{2}+\ldots+k_{n}\right)} & \frac{1}{k_{1}!1^{k_{1}} \cdots k_{n}!n^{k_{n}}} F_{1}^{k_{1}} \cdots F_{n}^{k_{n}} \|_{1} \\
& =\sum_{n=0}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \frac{1}{k_{1}!1^{k_{1} \cdots k_{n}!n^{k_{n}}}}
\end{aligned}
$$

should be convergent. But it is not so.
Algebra of symmetric analytic functions $H_{b s}\left(L_{\infty}[0,1]\right)$ on $L_{\infty}[0,1]$ consists of analytic functions which are invariant with respect to all measurable automorphisms of $[0,1]$.

According to [9] polynomials $P_{n}=R_{n}$, where

$$
R_{n}(x)=\int_{[0,1]}(x(t))^{n} d t, \quad n \in \mathbb{N},
$$

form an algebraic basis in the algebra of all symmetric polynomials on $L_{\infty}[0,1]$. In [11] it is proved that $\left\{R^{(k)}=R_{1}^{k_{1}} \cdots R_{k}^{k_{n}}\right\}$ is an absolute basis in $H_{b s}\left(L_{\infty}[0,1]\right)$.

References

[1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebra of symmetric holomorphic functions on ℓ_{p}. Bull. Lond. Math. Soc. 2003, 35, 55-64.
[2] Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. (2) 2012, 55, 125-142.
[3] Chernega I., Galindo P., Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569-577.
[4] Chernega I., Galindo P., Zagorodnyuk A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut. 2014, 27 (2), 575-585.
[5] Chernega I., Zagorodnyuk A. Unbounded symmetric analytic functions on ℓ_{1}. Math. Scand. 2018, 122 (1), 84-90.
[6] Defant A., Kalton N. Unconditionality in spaces of n-homogeneous polynomials. Q. J. Math. 2005, 56 (1), 53-64. doi:10.1093/qmath/hah022
[7] Dineen S. Complex Analysis in Locally Convex Spaces. North-Holland, Mathematics Studies, Amsterdam, New York, Oxford, 57(1981).
[8] Dineen S., Mujica J. A monomial basis for the holomorphic functions on c_{0}. Proc. Amer. Math. Soc. 2013, 141, 1663-1672. doi:10.1090/S0002-9939-2012-11436-4
[9] Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on L_{∞}. Proc. Roy. Soc. Edinburgh Sect. A 2017, 147 (4), 743-761. doi:10.1017/S0308210516000287
[10] Galindo P., Vasylyshyn T., Zagorodnyuk A. Symmetric and finitely symmetric polynomials on the spaces ℓ_{∞} and $L_{\infty}[0,+\infty)$. Math. Nachr. 2018, 291, 1712-1726. doi:10.1002/mana. 201700314
[11] Galindo P., Vasylyshyn T., Zagorodnyuk A. On the algebra of symmetric analytic functions on L_{∞}. Preprint.
[12] González M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. (2) 1999, 59 (2), 681-697.
[13] Szarek S. A Banach space without a basis which has the bounded approximation property. Acta Math. 1987, 159, 81-98.
[14] Venkova M. Global Schauder decomposition of locally convex spaces. Math. Scand. 2007, 101, 65-82.

Чернега I., Загороднюк А. Про базиси в алгебрах аналітичних функиій на банахових просторах // Карпатські матем. публ. — 2019. - Т.11, №1. — С. 42-47.

Нехай $\left\{P_{n}\right\}_{n=0}^{\infty}$ - послідовність неперервних алгебраїчно незалежних однорідних поліномів на комплексному банаховому просторі X. Розглянемо наступне питання: За яких умов поліноми $\left\{P_{1}^{k_{1}} \cdots P_{n}^{k_{n}}\right\}$ утворюють базис Шаудера (можливо абсолютний) в мінімальній підалгебрі цілих функцій обмеженого типу на X, які містять послідовність $\left\{P_{n}\right\}_{n=0}^{\infty}$? У роботі досліджуються наступні приклади: коли $P_{n} \in$ координатними функціоналами c_{0}, і коли $P_{n} \in$ симетричними поліномами на ℓ_{1} і на $L_{\infty}[0,1]$. Ми бачимо, що у деяких випадках $\left\{P_{1}^{k_{1}} \cdots P_{n}^{k_{n}}\right\} \in$ базисом Шаудера який не є абсолютним, але в деяких випадках є абсолютним.

Ключові слова і фрази: базис Шаудера, аналітичні функції на банахових просторах, симетричні аналітичні функції.

[^0]: ${ }^{1}$ Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, $3 b$ Naukova str., 79060, Lviv, Ukraine
 ${ }^{2}$ Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
 E-mail: icherneha@ukr.net (Chernega I.), andriyzag@yahoo.com (Zagorodnyuk A.)

